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1 Introduction

An iterative approach, the waveform relaxation method, for solving large systems of initial 

value problems has been shown to converge superlinearly in [1]. In [2] we define the order 

of accuracy of approximate solutions generated by the waveform relaxation method and have 

shown that the accuracy after one relaxation step is at least one order higher than before the 

step starts. In this paper we will discuss the accuracy increase (by which we mean increase in 

the order of accuracy) of a special scheme, the waveform Gauss-Seidel method, and show that 

the average accuracy increase for the waveform Gauss-Seidel method is equal to the minimum 

value C/d among all cycles in the dependency graph, where C is the length of a cycle and d is 

the number of times the numbering of succesive nodes around the cycle decreases. Note that 

the value, C, depends on the coupling relation after a system is partitioned and the value, d, 

depends on the numbering of nodes in the system’s dependency graph that is imposed by the 

Gauss-Seidel scheme. So after a systems’s partitioning, we should order the nodes to maximize

2 Basic Results

Consider the following system of ordinary differential equations

u = .F(u), u(0) = uq (1)

where u € -ff”, and F : B71 —► Rn. The iteration formula of the waveform relaxation method 

is

_ <j(u^+1^, uM) = f’(uW) - G(u^, uM), u^+1^(0) = uo (2)

where uM is the kth iterate of waveform relaxation. Suppose the system is partitioned into m 

coupled subsystems

*1 = tt2, • • • Um), «i(0) =S ti1)0

dm = /m(ul» **2,.. .tim), ttm(O) = Um,0
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where Uj ei^, u = (uft&)r, : R? -> IC1*, F = 1 < i < m, and

n,- = n, then the iteration formula of the Gauss-Seidel scheme becomes

^[*+1] _ G(uP,+1l, UW) = 0, u^+1^(0) = uq,

where G = (91,92,...,gm)T and for i = l,...,m

«(jh.],uW)=............................................... .a1).

That is, when a subsystem is being integrated in the waveform Gauss-Seidel method it always 

uses the most recently computed values of other subsystems. Before proceeding we redefine 

the order of accuracy of an approximate solution. (This order of accuracy is one less than that 

defined in [2].)

Let ti,(t) be the t** component of the exact solution and Zi(t) be the 1th component of an 

approximate solution to Equation (1).

Definition 2.1 If Zi(t) — Uj(t) = 0(t)-Mi>+1 over a fixed, finite interval [0, T], then the order 

of accuracy of Zi(t) is defined as: N(zi) = Mi for 1 < i < n. The order of accuracy of z(t) is 

defined as: N(») = mini<i<n IV(zj).

Since, in waveform Gauss-Seidel iteration, we solve each subsystem sequentially and in­

dependently, as one subsystem is integrated during a Gauss-Seidel iteration the remaining 

subsystems are specified approximants to the exact solutions. By definition of the order of 

accuracy we then have the following result:

Theorem 2.2 Consider the equation for the Ith component after partitioning,

t*i =«i(0) = txi,0. (3)

The equation to be solved after applying the Gauss-Seidel scheme is

u - fiK[*+l] ,.. ., [fc+1] Jk+1] M 0, «Sfc+1](0) = «i,o.

Assume that

ef = = o(t)^‘l+1

for j < i, 

for j > i.

(4)

(5)
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(6)

and all the ’s and ’s are sufficiently smooth. Then

jvf^ > m«»(j\rj*+l1,..., , jvW) +1

(For detailed proof see [2].)

In the Gauss-Seidel scheme the numbering of the subsystems is important since it determines 

the order of their sequential solution. One subsystem affects another if any of its variables 

appear on the right-hand side of the differential equations describing the other. This coupling 

is an oriented relationship and an adjacency matrix can be used to describe the coupling 

relations among all subsystems. A directed graph that is built from the adjacency matrix is 

called the dependency graph of a system. If a system’s dependency graph is acyclic we could 

get the exact solution with only one waveform Gauss-Seidel iteration when each subsystem is 

sequentially integrated in a proper order; otherwise iterations are needed until a sufficiently 

accurate solution has been computed. (From now on a subsytem is referred as a node in a 

dependency graph.)

From Theorem 2.2, we know that the order of accuracy at one node after one waveform 

Gauss-Seidel iteration is at least one greater than the minimum order of its incoming nodes, 

and possibly more if there is fortuitous cancellation. But the fortuitous cancellation can only 

occur under very special coupling, so it will be ignored in general. Hence we assume equality 

in that theorem and investigate some examples to study the accuracy increase of the waveform 

Gauss-Seidel method. From these examples we will see that the accuracy increase in the 

waveform Gauss-Seidel method is related to the coupling and the numbering on a given system’s

dependency graph.
/

3 Ascending Chains and Accuracy Increase

First let us consider:

Example 1 Consider a system with the following dependency graph after partitioning and 

ordering. This graph has only two cycles and all the nodes inside each cycle are sequentially 

ordered, i.e. there is only one decrease in the numbering of all nodes Mound every cycle.

3
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The two cydes are A\ = {(1,2,3,4,5)} of length Ci = 5 and Aj = {(1,4,5)} of length C2 = 3. 

The sole numbering decrease is the branch (5,1) shown dashed. So di = dz = 1. Hence 

C\/d\ = 5 and Cz/dz = 3. In the following tables we list the order of accuracy and accuracy 

increase after each waveform Gauss-Seidel iteration assuming we start with u(°)(t) = uq.

Order of Accuracy
Node Iteration No

No 0 1 2 3 4 5 6 7 8 9 10 •••
1 0 1 4 7 10 13 16 19 22 25 28
2 0 2 5 8 11 14 17 20 23 26 29 ••
3 0 3 6 9 12 15 18 21 24 27 30 •••
4 0 2 5 8 11 14 17 20 23 26 29 •••
5 0 3 6 9 12 15 18 21 24 27 30 ...

Accuracy Increase
Node Iteration No

No 0 1 2 3 4 5 6 7 8 9 10 •••
1 1 3 3 3 3 3 3 3 3 3 ...
2 2 3 3 3 3 3 3 3 3 3 ...
3 3 3 3 3 3 3 3 3 3 3 ...
4 2 3 3 3 3 3 3 3 3 3 ...
5 3 3 3 3 3 3 3 3 3 3 ...

From Example 1 we see that, after the waveform Gauss-Seidel iteration stabilizes, the 

accuracy increase after one iteration is equal to the minimum cycle length in the dependency 

graph. Note, however, that in this example the internal node of the cyde with minimum length 

have been ordered sequentially around this cyde. In general, the internal node of a cyde may 

not be ordered sequentially; in this case we can not achieve an accuracy increase equal to the 

cyde length in one waveform Gauss-Seidel iteration. However, we will show that, in the case 

of a single cyde, an order increase equal to the length of the cyde will occur in some number

4



of iterations. Let us consider another example in which the nodes are not sequentially ordered 

around a cycle.

Example 2: Consider a dependency graph which contains only one cycle and nodes inside the 

cycle are not sequentially ordered,

©—©

®«—q

i = {(1,4,6), (2,5), (3)}; C/d = 6/3

The tables for order of accuracy and accuracy increase are given below.

Order of Accuracy
Node Iteration No

No 0 1 2 3 4 5 6 7 8 9 10 •••
1 0 1 2 4 7 8 10 13 14 16 19 •••
2 0 1 4 5 7 10 11 13 16 17 19 •••
3 0 1 3 6 7 9 12 13 15 18 19 •••
4 0 2 3 5 8 9 11 14 15 17 20 •••
5 0 2 5 6 8 11 12 14 17 18 20 •••
6 0 3 4 6 9 10 12 15 16 18 21 •••

Accuracy Increase
Node Iteration No

No 0 1 2 3 4 5 6 7 8 9 10 •••
1 1 1 2 3 1 2 3 1 2 3 ...
2 1 3 1 2 3 1 2 3 1 2 ...
4 2 1 2 3 1 2 3 1 2 3 ...
5 2 3 1 2 3 1 2 3 1 2 ...
6 3 1 2 3 1 2 3 1 2 3 ...

We see in Example 2 that the order increase of 6 , the cycle length, is achieved in 3 iterations. 

The reader might notice that in this example, three is the number of times the numbering of 

succesive nodes around the cycle decreases. This will be seen to be a general result, for which 

we need to define the concept of an ascending chain in a cycle.

Suppose an ordering for the Gauss-Seidel method applied on a graph containing a cycle A 

of length C has been chosen. Number the nodes of the graph by the Gauss-Seidel ordering.

5



Definition 3.1 An ascending chain of length l in a cyde A is a sequence of nodes with numer­

ical ordering jo, such that (1) jo < ji <•’• < jl-i, (2) there exists an edge from

node ji to node ji+\ for * = 0,1,— 2 in the cyde, and (3) no ascending chain in cyde A 

contains {jo,j\,..as a subsequence (in other words, it is as long as possible).

It then follows from the definition that any cyde can be decomposed into a mutually 

ezdusive set of ascending chains and the number of ascending cIimtis in a cyde equals the 

number of times the numbering of successive nodes around the cyde decreases. By the equality 

assumption in Theorem 2.2, we know that after one waveform Gauss-Seidel iteration, each 

node, ji, in an ascending chain can not have order of accuracy more than one greater than the 

order of accuracy of its predecessor node, ji — 1, in the chain at this iteration, while the first 

node in an ascending chain can not have order of accuracy greater than one plus the order of 

accuracy, prior to the iteration, of its predecessor, the last node in the chain precedes it. (If no 

other node except its predecessor in the cyde is connected to a node k, it will achieve exactly 

this order increase.) Now we introduce some simple notations to express these ideas.

Let A be a cyde of length C with d ascending chains. Let h, h,..., /^ be the lengths of the d 

ascending chains that follow the orientation of A and W, .- ^ be the order of accuracy of the k*h 

node of the ascending chain at the waveform Gauss-Seidd iteration. For convenience, 

define U+d — U and Wn,j+<i,* = for all i. Then by assuming equality in Theorem 2.2, we

have

Wn+1,»+1,0 < WnAk-l + 1

for fcj = 0,1,..., — 2,and n > 1. For ease of derivation later, we now define = W^o and 

W*i = , i.e. let (Wj®-) denote the order of accuracy at the tail (head) node of

the t** ascending chain at the n** waveform Gauss-Seidd iteration. And it is easy to see that

< K<+*< (7)
WS-W < wS-i + (8)

< Ci-i + ii-,. (9)
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Based on these relations, we then have the following result.

Theorem S.2 If a cycle A of length C consists of d ascending chains, then, after the first 

iteration, the accuracy increase at the internal nodes of A due to d waveform Gauss-Seidel 

iterations is bounded by C.

Proof: By Eqn (9) for n > 1

= IPJUtW

^ ^n+4-l,i+d-l + k+d-l

< Wn+d-2,i+d-2 + U+d-2 + U+d-l

< W1- ^n+l.t+l + ^*+1 + • * • + lt+d-1

< ^n,i + U + 1%+1 + * • • + U+d-l

< wj + c.

The proof for the remaining nodes in an ascending chain is similar:

Wn+d,i,ki — Wn+d,i+d,ki 

^ Wn+d,i+d +
^ Wn+d-l,i+d-l + 1 +
^ ^n+</-a,i+<i-2 + U+d-l + 1 + ki

^ ^n+<i—3,*+<i—3 + U+d-2 + U+d-l + 1 + fc»

< ^n+l,i+l + U+2 + * • • + U+d-2 + U+d-l + l + ki

^ + U+l + U+2 H-- * + U+d-2 + U+d-l +1 + hi

< Wn,ijti + — 1 — + U+l + U+2 + ‘ ' * + U+d-2 + ft+d-l + 1 +
d

=
7=1

== ^n,i,ki "I" C.

7



Q. E. D.

When d = 1, i.e. when all the internal nodes of a cyde are solved in cyclic order, the 

accuracy increase in one waveform Gauss-Seidd iteration is then bounded by the cyde length. 

That is the result we saw in Example 1.

If we assume that each node of a cyde has no other nodes connected to it except its 

predecessor in the cyde, then its order of accuracy after each waveform Gauss-Seidel iteration 

is exactly one over its predecessor’s in the cyde, i.e.

+1 (10)

WmVH = ^'+1 (11)

for all t and fcj’s. Thus

Wn,i,k, = + (12)

tt'fn.i = + (13)

K'J+i.i = W-J-. + fc-, (14)

for = 0,1,...,!; —1, * = 1,2, ...,dandn > 1. We then see that for a single cyde, theayerage 

accuracy increase in each iteration is C/d. Ignoring fortuitous cancellation, a cyde can not 

have a greater average accuracy increase, so it is dear that a bound on the average accuracy 

increase for a graph is given by min^Ci/di) where t indexes all the cydes in the graph. We 

will show that this bound is realized by all the graphs, so that we should order the nodes to 

maximize this minimum.

4 Accuracy Increase in a Single Cycle

If we examine Example 2 again we see that the accuracy increase at a given node at successive 

iteration followed a repetitive pattern after some initial irregularity. For some it was (1,2,3), 

for others it was (2,3,1), and for the remainder it was (3,1,2). The important property of 

these patterns is that they are circular shifts of the partition of the cyde length (7 = 6, where 

there are d = 3 members in the partition. In general we say that a set of strictly positive 

integers {?i, ?2j • • •»9d} » an integer partition of C, if Ya=\ Qi = C. We now show that given a

8



cyde of length C with d ascending chains of lengths l\, I2,..and Id, and an integer partition, 

•••>&}> °f O, if the initial orders of accuracy at all nodes of the cyde are chosen 

carefully, then the accuracy increase at each node at every d successive waveform Gauss-Seidd 

iterations is {94, qa-i, • • • > ?2> 9x} or its circular shifts.

Theorem 4.1 Let A be a cycle of length C with d ascending chains of lengths, h,h,...,Id, 

and let {91,92? • • • * 9<*} 6e an integer partition ofC. If the initial order of accuracies are chosen 

such that

= 52j=i(gj — lj) for i = 1,2,...,d
+ hi for fej = 0,1,..., Zj — 1,

then

= Wn-Iti,ki + 9i—n (15)

for ki = 0,l,2,...,Zj — 1, i = 1,2,and n > 1, where qn = qn%d and n%d = nmod (d) 

for any integer n.

Proof: By Eqn (12), Wn,i,in ~ i-e- all the nodes in an ascending

chain have the same accuracy increase after each waveform Gauss-Seidd iteration, so we only 

need to show

= (16)

for t = 1,2,..., d and n > 1.

When n = 1 and t = 1,2,..., d, from Eqn (14) and the choice of initial orders, we have

wfi = + '.-1

- X] (ft -13)+
j=i-l

d

— Wqj + 9i_i.

Hence, (16) holds for n = 1. Let us use induction and assume the statement is true when 

n <m and t = 1,2,...,d, i.e.

W'ii = Wl-U + (17)

9



Then when n = m + 1 and t = 1,2,.. .,d, from Eqns (13), (14), and (17) we have

w'S+i.i =
= + 9(*-l)-m + U-l

?*—(f»+l)

Hence, by induction, Eqn (16) holds for all n > 1.

From Eqn (15) and the periodic behavior of q/s we have

n+d

^n+d,i,ki = ®—j
J=n+1

= Wn.iA+Efc 
i=i

Q. E. D.

which are exactly the results we saw in previous examples. Since all the nodes in an ascending 

chain have the same accuracy increase after each waveform Gauss-Seidel iteration, from now 

on we will use the head or tail node at each ascending chain to discuss the accuracy increase 

property. In Table 1 we list the accuracy increase at the tail node of each ascending chain after 

each waveform Gauss-Seidel iteration using the result in Theorem 4.1. From this table it is easy 

to see that the accuracy increase at any node in every d successive iterations is {q^, qd-i,..., qi} 

or its circular shifts.

To avoid the decreasing subscripts in q^’s as iteration proceeds, we let pj = qd-j for j = 

0,1,...,d — 1 and rewrite Table 1 to obtain Table 2. With some manipulation we have the 

following formula for the order of accuracy at the nth waveform Gauss-Seidel iteration:

d n%d
= Ebi-j - h) + bJ « c + £ (is)

i=» j=l

for t = 1,2,...,<2 and n > 1.

In particular, if we choose a specific integer partition of the cycle length C, we will not only 

have a nice formula for the order of accuracy at each node, but will have an accuracy increase

10



Iteration Index
0 12 ... d d+1 d+2

h
0 =

— +••• +9i +?d +9d-i +•••

h
- ?i=

Y$=2(<Ii ~ lj) +9l +9d +••• +92 +9l +9<i -i-----

h
h — qi+h — 92 =
11^=3 (?i ~ h) +92 +9i + • • • +93 +92 +9i +'' *

l • •••••••
• •••••••
• *••••••

k
zr‘(ij - -b) =
Ei=i(.9j ~ lj) +9*-i +9»-2 + • • • +9* +9*-i +9*-2 +' • •

• • ■••••••
• •••••••
• •••••••

U-i 9d~ Id + 9d—l — ld-1 +9d-2 +9d-3 + • • * +9d-l +9d-2 +9d-3 + • * *

U 9d ~ U +9d-l +9rf-2 + * *' +9d +9«i-l +9<i-2 + * * *

Table 1: Accuracy increase at tail node of each ascending chain

Iteration Index
0 1 2 ... d d+1 d+2

*1
0 =
12j=l(Pd-j — lj) +P0 +Pl +••• +Pd-1 +P0 +Pl +•••

h Hj=2(Pd-j ~ lj) +Pd-1 +P0 +'•• +P«i—2- +Pd-1 +P0 H-----

h Y^=3iPd-j ~ lj) +P<J—2 +Pd-1 H----- +Pd—3 +P«i—2 +P<f-1 H-----
l • •••••••

• •••••••

k Ej=i(Pd-j ~ lj) +Pd-*+l +P<J—»+2 H----- +Pd-i +Pd-i+l +Pd-i+2 H-----
•

■

• •••••••
• - • • ••• • «
• ••••■••

ld-i PO — Id + Pi ~ ld-1 +P2 +P3 + * * * +Pl +P2 +P3 + • * ■

U PO — Id +Pl +P2 + * • • +PD +Pl +P2 + • •'

Table 2: Accuracy increase at tail node of each ascending chain

11



pattern that can not be destroyed by other cycles in the same graph that do not have a smaller 

C/d.

Lemma 4.2 Given a cycle of length C with d ascending chains of lengths Zi, Z2,..., Id, respec­

tively. If

Pi = iU + l)f J - uf J for j = 0,1, 1, (19)
then {poiPi*• • is an integer partition of C. Further, if

j=*
then

wS-c-Sii+L(» + i—
J=*

for t = 1,2,..d and n > 1.

Proof: Since § = |_^J + for some 0 < e < 1, by assumption

Pi = L(j + D§J-ufj
= uf+lfj+«j-lifj 
= ifj + lif + 'j-ufj 
£ if J

and

> 1

<*-i d-i r r

= <?,

(20)

(21)

therefore {po,P\,.. .,Pd-i} is an integer partition of C. Moreover
nfet
E = L(i-.- + n%i+l)2j-L(<i-(+l)5j
i=l

= KnJW+l-ofj-Ul-ofj. (22)

12



Substituting (22) into (18), we have

= E(w-i-W + LjJxC+L(»*<i+i-<)fj-Ui-ofj
3=i

= Bw-i - W + LI5J X c + (»%<! +1 - i)£j - L(1 - of J
i=*

= - 0) + Klfj X d + n%d + 1 - of J - 1(1 - of J

i=»

= E(w-< - o)+1(»+1 - of j - i(i - of j

i=»‘

= ^(Pd-j ~ lj) + L(n+1-*)^J +

i=* i=i

= ~ S Zi + L(n + 1 - *)^J

3=1 J=*

= c - 53 /,• + [(n + 1 - t)—J 
3'=*

Q. E. D.

For a cyde of length C with d ascending chains, the set of integers, {po,Pi,.. 

defined in (19) will be called the natural partition of C. Let us use Example 2 again but choose 

the initial orders specified by (20), that is, based on the natural partition {2,2,2} of the cyde 

of length 6. The accuracy increase pattern is:

Order of Accuracy
Node Iteration No

No 0 1 2 3 4 5 ...
1 0 2 4 6 8 10 ...
2 1 3 5 7 9 11 •••
3 1 3 5 7 9 11
4 1 3 5 7 9 11 ...
5 2 4 6 8 10 12 •••
6 2 4 6 8 10 12 •••

Accuracy Increase
Iteration No

From the table we see that the phenomena described in Theorem 4.1 and Lemma 4.2 axe 

satisfied. Next we examine how one cyde interacts with the remainder of a graph.

13



5 Accuracy Increase in General Graphs

We now want to discuss general graphs. Our analysis technique will be to analyze part of the 

graph and consider driving terms from other parts of the graph. These driving terms are the 

branches entering the part of the graph selected for analysis. The orders on the nodes at the 

start of these branches may, or may not, reduce the order of subsequent iterations of nodes in 

the selected part of the graph.

From Lemma 4.2 we see that, for a cycle of length C with d ascending chains, if the initial 

orders at all nodes of the cycle are chosen properly and if a driving term, if there is any, does 

not interfere with the order of accuracy in this cycle, then at the nth waveform Gauss-Seidel 

iteration, the order of accuracy at each node of the cyde can be expressed as 0+[(n + 7)§J 

for some constant integers /3 and 7. If such a cyde is the only cyde in a system’s dependency 

graph, then all the nodes in the dependency graph that are reachable from this cyde will have 

a similar pattern for their accuracy increase. (A node U is reachable from a cyde if there exists 

a directed path from any node in this cyde to U.) Now let’s look at an example first, which 

shows that result in Lemma 4.2 is satisfied not only by the nodes in the cyde with minimum 

C/d but also by any node that is reachable from that cyde.

Example 3: Consider a dependency graph that has two cydes and nodes are ordered as shown.

0—,0_*0

I * I© ©
I i

©—©—©
Since cyde Ai has smaller Cjd ratio, we choose the initial orders inside A\ according to 

(20) in Lemma 4.2. That is the natural partition {2,2,3} of 7, length of Ax, is considered. Bdow 

we list the order of accuracy and accuracy increase at each node.

Ax = {(1,4), (2,7,8), (5,6)}; Ci/dt = 7/3 
i, = {(1,4), (2,3,6)}; C2/d2 = 5/2

14
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Order of Accuracy
Node Iteration No

No 0 1 2 3 4 5 6 7 8 9 10 •••
1 0 3 5 7 10 12 14 17 19 21 24 •••
2 0 2 5 7 9 12 14 16 19 21 23 •••
3 4 3 6 8 10 13 15 17 20 22 24 •••
4 1 4 6 8 11 13 15 18 20 22 25 •••
5 1 3 5 8 10 12 15 17 19 22 24 •••
6 2 4 6 9 11 13 16 18 20 23 25 •••
7 1 3 6 8 10 13 15 17 20 22 24 •••
8 2 4 7 9 11 14 16 18 21 23 25 •••

Accuracy Increase
Node Iteration No

No 0 1 2 3 4 5 6 7 8 9 10 •••
1 3 2 2 3 2 2 3 2 2 3 ...
2 2 3 2 2 3 2 2 3 2 2 ...
3 -1 3 2 2 3 2 2 3 2 2 ...
4 3 2 2 3 2 2 3 2 2 3 ...
5 2 2 3 2 2 3 2 2 3 2 ...
6 2 2 3 2 2 3 2 2 3 2 ...
7 2 3 2 2 3 2 2 3 2 2 ...
8 2 3 2 2 3 2 2 3 2 2 ...

Prom the previous accuracy increase table, we see that the result in Lemma 4.2 is satisfied 

by all the other nodes, besides the nodes in cycle Ai, in the graph. Next we want to see what 

will occur if the initial accuracies are not specified with the natural partition of 7. Let us use 

the partition {1,2,4} of 7 to specify the initial accuracies and list the order of accuracy and 

accuracy increase at all nodes.
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Order of Accuracy
Node Iteration No

No 0 1 2 3 4 5 6 7 8 9 10 •••
1 0 4 5 7 10 12 14 17 19 21 24 •••
2 1 2 6 7 9 12 14 16 19 21 23 •••
3 4 3 7 8 10 13 15 17 20 22 24 •••
4 1 5 6 8 11 13 15 18 20 22 25 •••
5 2 4 5 9 10 12 15 17 19 22 24 •••
6 3 4 6 9 11 13 16 18 20 23 25 •••
7 2 3 7 8 10 13 15 17 20 22 24 •••
8 3 4 8 9 11 14 16 18 21 23 25 •••

Accuracy Increase
Node Iteration No

No 0 1 2 3 4 5 6 7 8 9 10 •••
1 4 1 2 3 2 2 3 2 2 3 ...
2 1 4 1 2 3 2 2 3 2 2 ...
3 -1 4 1 2 3 2 2 3 2 2 ...
4 4 1 2 3 2 2 3 2 2 3 ...
5 2 1 4 1 2 3 2 2 3 2 ...
6 1 2 3 2 2 3 2 2 3 2 ...
7 1 4 1 2 3 2 2 3 2 2 ...
8 1 4 1 2 3 2 2 3 2 2 ...

In this case we see that the partition {1,2,4} does not appear in the acunracy increase table, 

whereas the natural partition {2,2,3} of 7 does. Let us use another partition {1,1,5} of 7 to 

specify the initial orders and see how it affects the accuracy increase pattern.

Order of Accuracy
Node Iteration No

No 0 1 2 3 4 5 6 7 8 9 10
1 0 5 5 7 10 12 14 17 19 21 24 •••
2 1 2 7 7 9 12 14 16 19 21 23 •••
3 4 3 8 8 10 13 15 17 20 22 24 •••
4 1 6 6 8 11 13 15 18 20 22 25 •••
5 3 4 5 10 10 12 15 17 19 22 24 •••
6 4 4 6 9 11 13 16 18 20 23 25 •••
7 2 3 8 8 10 13 15 17 20 22 24 ...
8 3 4 9 9 11 14 16 18 21 23 25 •••
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Accuracy Increase
Node Iteration No

No 0 1 2 3 4 5 6 7 8 9 10 •••
1 5 0 2 3 2 2 3 2 2 3 ...
2 1 5 0 2 3 2 2 3 2 2 ...
3 -1 5 0 2 3 2 2 3 2 2 ...
4 5 0 2 3 2 2 3 2 2 3 ..
5 1 1 5 0 2 3 2 2 3 2 ...
6 0 2 3 2 2 3 2 2 3 2 •••
7 1 5 0 2 3 2 2 3 2 2
8 1 5 0 2 3 2 2 3 2 2 ...

From the table we see that this partition {1,1>5} of 7 is also not preserved in the accuracy 

increase pattern. From this example we see that when a dependency graph contains more than 

one cycle, only the natural partition of the length of the cyde with TniTii-mnm Cjd in the graph 

may be preserved in the accuracy increase pattern when it is used to specify the initial orders.

Now we select for analysis any cyde with a minimum value of Cjd. We will call this the 

minimum cycle. Let us initialize the orders in the graph such that the nodes in this cyde follow 

the pattern specified in (20) and all other nodes in the graph are infinitely accurate. (This is 

not possible in practice, but is used to show that the minimum cyde determines the average 

accuracy increase.) We know from Lemma 4.2 that the minimum cyde will maintain an average 

order increase of Cjd unless a driving term restricts the order of some node in the cyde. Since 

all other nodes were initially set to order infinity, the only way for this to happen is for the 

orders of a chain of nodes starting from some point on the minimum cyde and ending on the 

minimum cyde (called the nodes on a sidetrack path of the minimum cyde) to be lowered by 

the minimum cyde so as to reduce the order of the minimum cyde. Suppose the chain is as 

shown in Figure 1 by the sidetrack path from node U to node V on cyde A, where cyde A 

is a minimum cycle. We want to show that the order in cyde A will not be lowered by any 

sidetrack path.

Let /i,l^...,ld be the lengths of the d ascending chains of cyde A. Then lj = C. 

Let B be the cyde consisting of the sidetrack path of A from U to V and the path from V to 

U on A. Suppose B has d ascending chains of length mi, mj,..., mj and Ylj=i mj — By
* A

assumption C/d < C/d. We now number the ascending chains on both cydes such that node

17



Sidetrack path

Figure 1: A TniTiimnm cyde with a sidetrack path

Z7 is in the 9th chain of both cydes and node F is in the chain of cyde A and in the <rh 

rhain of cyde B. This means mj = lj far j = 1,2,..s — 1. Furthermore we assume node U 

is the Jfef1 node in chain s and node V is the k^1 node in chain d of cyde A. (Note the indexing 

of a node in a ehain starts with 0.) So node V will be the (mj — Id + kd)**1 node in chain d of 

cyde B. Now we want to show that the order coming into node V from the path on A is no 

greater than the order coming from the sidetrack path.

Lemma 5.1 Let Wn,^ denote the order of the kf1 node in chain i of cycle A (B) at

the n** iteration. If

Wm L. = (7 — V' /,• + [(1 — t)-?] + h for nodes on cydeA
r-f ai=*

and

Then

Wo,i,ki = W~n T-for nodes on path V to U
i = oo for nodes on the sidetrack path,

(23)
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Note that the (kj — 1)** node on chain d of cyde A and the ((mj — U + kd) — l)^ node on 

chain d of cyde B are the only predecessors of node V.

Proof'. From Figure 1 we can see that the order of node U propagating through the sidetrack 

path will not affect node V until d — s + 1 iterations later. So the first possible lowering of 

order at node V by the sidetrack path will happen at the (d — s + 1)** iteration. Thus we first 

show that

Since

W + (mi - ^ + *<i) -1

:== + (md ~ld + kd)
d-1

= ^5+ S mJ + (md “ ^ + fc«i)
i=*+l

J-l

= + m, - 1 + mj + (mj -ld + kd)
i=*+i 

d
- w*»+^2mi - ld+kd-1

= C ~Yll3+\{2-S)^i\+Hm3-ld + kd-l
3=* 3=*

= +2rni“^ + ^”1
i=l 3=‘

d

= C+[(2-s)-\-ld + kd-l

and

- ^J-i+Ud + ^ 1

= C — ld-\- [(d — s + 1 + 1 — d)—J + kd — 1 

= C — Id[(d — s + 2)— — C\ + kd — l
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= l(d-3 + 2)^\-U + kd-li

to prove (24) we only need to show that

l(<i-* + 2)£j<d + L(2-»)|j.

This is easy, since %<£=$■ < C, and hence

l(<2- . + 2)|j = |i§ + (2 - «)|j < [C + (2 - »)£j = C + L(2 - .)|j. 

In subsequent iterations we have

W — ^n+1,# + X) m3 U + kd 1
J=*

— C + [(n + 2 — — k — 1

and
Wn+d-.+i^ki-i = l(n + d-s + 2)^\ -ld + kd-l 

from which (23) follows directly.

Q. E. D.

6 Average Accuracy Increase in Waveform Gauss-Seidel

We define the average accuracy increase of a node to be the limit of p„/n as n —► oo where pn 

is the order of accuracy of a node and n is the iteration number. The average accuracy increase 

of a numbered graph is the minirmrm average accuracy increase over all nodes. Theorem 3.2 

shows that the average accuracy increase in a waveform Gauss-Seidel method can not exceed 

the Cjd of the minimum cycle. Lemma 5.1 shows that if the minimnm cycle is initialized to the 

natural accuracy (accuracy specified by the natural partition of its length) and the remaining 

nodes are infinitely accurate, no sidetrack paths destroy the natural accuracy. These results 

can now be combined to show that the average accuracy increase for the waveform Gauss-Seidel 

method is exactly the Cjd of the minimum cycle in the dependency graph of a given system 

after partitioning and ordering.
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Theorem 6.1 Suppose a minimum cycle in the dependency graph of a given system is of length 

C and has d ascending chains. Then the waveform Gauss-Seidel method applied to this system 

has average accuracy increase C/d.

Proof: Consider two identical dependency graphs, <?i and G2, with N nodes and identical 

numberings. If we start with all initial orders of accuracy on both graphs set to zero and run the 

waveform Gauss-Seidel iterations on both synchronously, the order of accuracy of corresponding 

nodes on the two graphs will be the same at all steps.

After M iterations, we will perturb the iteration on Gz in the following way: lower the 

order of accuracy at the nodes in the minimum cyde, Az, of G2 following (20), i.e. using the 

natural partition of C. Then resume waveform Gauss-Seidel iterations on both graphs. The 

accuracy at any node in G2 will never surpass the accuracy of its corresponding node in G\. 

This is easy to see inductively: the new accuracy at a node being integrated is equal to one plus 

the mininum accuracy of its predecessors on a graph. If the accuracy of every node in Gi is at 

least as large as the accuracy of its corresponding node in Gzi then the same condition holds 

after the integration and hence before the next integration. Therefore, the average accuraacy 

increase of G2 is a lower bound for the average accuracy increase of the unperturbed problem 

on Gi.

It remains to show that the average accuracy increase for G2 is C/d. Since M is fixed, the 

first M iterations can be ignored in computing the average. The important step is to choose 

M large enough that the orders of accuracy of the nodes not in the minimnni cyde Az of G2 

are effectivdy infinite at the perturbation, so that the result in Lemma 5.1 applies. Note that 

(i) after M iterations starting from accuracy 0, all nodes have accuracy > M, and (ii) when a 

cyde is set to the accuracy specified by its natural partition as in (20), the accurades assigned 

are < N. Hence the nodes not in Az will have an order of accuracy at least M — N greater 

than those in A2 after the perturbation.

Now consider iterations on G2 after the perturbation. If the average accuracy increase is 

less than C/d, the graph Gz — Aj must be lowering the order of A2 (Lemma 5.1 implies that 

the propagation of an accuracy from A2 into G2 — Az and.back to A2 can not be responsible for 

lowering the accuracy). Since the order of accuracy of G2 — A2 can be made arbitrarily higher
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than that of A? at the perturbation (M — N higher), the average accuracy of Gj — Ai must be 

less than Cfd. The argument can now be completed by induction on the size of the graph: It 

is certainly true for N = 2. Assume it is true for 2<N<K — l. If (GjI = K than either Gj 

has no cycles or |G2 — Aj| < K — 2 where Aj is a minimum cycle. Hence the average accuracy 

increase of Gj — A2 Is least G/d so it can not lower the order of Aj-

Q. E. D.

In the following we give some examples to illustrate this result.

Example 4: Consider a dependency graph that has four cycles and the nodes are ordered as 

shown.

©— -©
1 ♦

■
1

© © , 1

1
1
1■

t i © ©
© ©

A1
1
1

\!
'

©~ --*■©

At = {(1,6,13), (11), (7,10), (5,14), (3.9)}
12 = {(1,6,13), (11), (7,12,14), (3.9)}
13 = {(2,8), (4,7,10), (5,14))}
A4 = {(2,8), (4,7,12,14)}

Ct/dt = 10/5 
C^/di — 9/4 
Cz/ds = 7/3 
C4/d4 = 6/2

From the graph we see that cycle At is the minimum cycle. We would like to see how the 

minimum cycle affects the remaining cycles in the graph. First we use the same initial orders 

for all nodes in the graph and list the order of accuracy and accuracy increase at all nodes.
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Order of Accuracy
Node Iteration No

No 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 1 3 5 7 8 11 13 15 17 18 21 23 25 27 28
2 0 1 3 5 6 9 11 13 15 16 19 21 23 25 26 29
3 0 1 3 5 6 9 11 13 15 16 19 21 23 25 26 29
4 0 1 3 5 7 8 11 13 15 17 18 21 23 25 27 28
5 0 1 3 4 7 9 11 13 14 17 19 21 23 24 27 29
6 0 2 4 6 8 9 12 14 16 18 19 22 24 26 28 29
7 0 1 2 5 7 9 11 12 15 17 19 21 22 25 27 29
8 0 2 4 6 7 10 12 14 16 17 20 22 24 26 27 30
9 0 2 4 6 7 10 12 14 16 17 20 22 24 26 27 30
10 0 2 3 6 8 10 12 13 16 18 20 22 23 26 28 30
11 0 1 4 6 8 10 11 14 16 18 20 21 24 26 28 30
12 0 2 3 6 8 10 12 13 16 18 20 22 23 26 28 30
13 0 3 5 7 9 10 13 15 17 19 20 23 25 27 29 30
14 0 2 4 5 8 10 12 14 15 18 20 22 24 25 28 30

Accuracy Increase
Node Iteration No

No 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 2 2 2 1 3 2 2 2 1 3 2 2 2 1
2 1 2 2 1 3 2 2 2 1 3 2 2 2 1 3
3 1 2 2 1 3 2 2 2 1 3 2 2 2 1 3
4 1 2 2 2 1 3 2 2 2 1 3 2 2 2 1
5 1 2 1 3 2 2 2 1 3 2 2 2 1 3 2
6 2 2 2 2 1 3 2 2 2 1 3 2 2 2 1
7 1 1 3 2 2 2 1 3 2 2 2 1 3 2 2
8 2 2 2 1 3 2 2 2 1 3 2 2 2 1 3
9 2 2 2 1 3 2 2 2 1 3 2 2 2 1 3
10 2 1 3 2 2 2 1 3 2 2 2 1 3 2 2
11 1 3 2 2 2 1 3 2 2 2 1 3 2 2 2
12 2 1 3 2 2 2 1 3 2 2 2 1 3 2 2
13 3 2 2 2 1 3 2 2 2 1 3 2 2 2 1
14 2 2 1 3 2 2 2 1 3 2 2 2 1 3 2

From the table we see that after every 5 iterations the accuracy at each node increases 

by 10, the cycle length of Ai. And the increase pattern at each node is {2,2,2,1,3}, or its 

circular shifts, which happens to be the ascending chain lengths of A\ in reverse orientation. 

Next we choose the initial orders inside Ai such that the natural partition {2,2,2,2,2} of C\ is
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considered.

Order of Accuracy
Node Iteration No

No 0 i 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
2 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
3 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
4 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
5 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
6 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
7 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
8 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
9 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
10 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
11 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
12 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
13 2 4 ff 8 10 12 14 16 18 20 22 24 26 28 30 32
14 i 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Accuracy Increase
Node Iteration No

No 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
13 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
14 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

From the table we see that all the nodes in the graph have the same accuracy increase 

pattern, the natural partition of C\.
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Example 5 Consider a dependency graph that has two cycles and one of the cycle is reachable 

by the other.

Ax = {(2,8), (6), (4,10)}; Cj/di = 5/3 
i2 = {(l,5),(3,7)}; Ci/di = 4/2

Again we list the order of accuracy and accuracy increase at all nodes after each waveform 

Ganss-Seidel iteration. From the table we can see that the minimnTn cycle dominates the 

accuracy increase for the entire graph.

Order of Accuracy
Node Iteration No

No 0 1 2 3 4 5 6 7 8 9 10 •••
2 0 1 3 4 6 8 9 11 13 14 16 •••
3 0 1 3 5 6 8 10 11 13 15 16 •••
4 0 1 2 4 6 7 9 11 12 14 16 •••
5 0 2 4 5 7 9 10 12 14 15 17 ...
6 0 1 3 5 6 8 10 11 13 15 16 •••
7 0 2 4 6 7 9 11 12 14 16 17 ...
8 0 2 4 5 7 9 10 12 14 15 17 •••
9 0 2 3 5 7 8 10 12 13 15 17 ...
10 0 2 3 5 7 8 10 12 13 15 17 ...
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Accuracy Increase
Node Iteration No

No 0 1 2 3 4 5 6 7 8 9 10 •••
1 1 2 1 2 2 1 2 2 1 2
2 1 2 1 2 2 1 2 2 1 2 ...
3 1 2 2 1 2 2 1 2 2 1 •••
4 1 1 2 2 1 2 2 1 2 2 ...
5 2 2 1 2 2 1 2 2 1 2 ...
6 1 2 2 1 2 2 1 2 2 1 •••
7 2 2 2 1 2 2 1 2 2 1 •••
8 2 2 1 2 2 1 2 2 1 2 ...
9 2 1 2 2 1 2 2 1 2 2 ...
10 2 1 2 2 1 2 2 1 2 2 ...

7 Conclusion

Effective use of the Waveform Gauss-Seidel method depends on the ordering of the nodes. The 

result in this paper provides a basis for selecting the ordering. It is probable that the problem of 

finding an ordering that maximizes the average order increase is NP hard so not computationally 

feasible. However, the result suggests heuristics that could be used to maximize the lengths of 

ascending chain in short cycles. Future work will test some heuristics.

Although the waveform Gauss-Seidel is usually thought of as a serial method, there are 

several ways in which it can be used for parallel computation. In one approach, the integration 

of later nodes can be staggered in time. In another, several nodes can be integrated in parallel. 

In this approach, for a p processor system, up to p nodes can be numbered with each number 

in the sequence so long as there are no branches between nodes with the same number. At 

each step of a single waveform Gauss-Seidel sweep, all nodes with the same number can be 

integrated in parallel. Since they are mutually independent, the order result of Theroem 2.2 

applies, and hence all results in this paper apply.
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