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1 Introduction

An iterative approach, the waveform relaxation method, for solving large systems of initial
value problems has been shown to converge superlinearly in [1]. In [2] we define the order
of accuracy of approximate solutions generated by the waveform relaxation method and have
shown that the accuracy after one relaxation step is at least one order higher than before the
step starts. In this paper we will discuss the accuracy increase (by which we mean increase in
the order of accuracy) of a special scheme, the waveform Gauss-Seidel method, and show that
the average accuracy increase for the wav;eform Gauss-Seidel method is equal to the minimum
value C/d among all cycles in the dependency graph, where C is the length of a cycle and d is
the number of times the numbering of succesive nodes around the cycle decreases. Note that
the value, C, depends on the coupling relation after a system is partitioned and the value, d,
depends on the numbering of nodes in the system’s dependency graph that is imposed by the
Gauss-Seidel scheme. So after a systems’s partitioning, we should order the nodes to maximize

this mm.unum.
2 Basic Results

Consider the following system of ordinary differential equations
a=F(u),  u(0)=u (1)

where u € R, and F : R™ — R". The iteration formula of the waveform relaxation method
is

alstl] — gul+, o) = F(ul*) - g(ul™, o), l»,[’¢+1](0) = 1, (2)
where ul* is the k*® iterate of waveform relaxation. Suppose the system is partitioned into m

coupled subsystems

Uy fl(u’h U2y .- 'um)’ U],(O) =10

dm = F(t1 e e tm), m(0) = ttmo



where u; € R™,u = (uf,uf,...uX), f; : R > R, F=(ff,fF,...f5)7,1<i<m,and
3.2, n; = n, then the iteration formula of the Gauss-Seidel scheme becomes

where G = (91,92,..-,9m)F and fori=1,...,m
gi(u[k".l]’ u["]) = fi(ug.k‘.-l]’ ceey “Lﬁll’ u£k+1]’ "E’-ﬂl’ vony ug:])'

That is, when a subsystem is being integrated in the waveform Gauss-Seidel method it always
uses the most recently computed values of other subsystems. Before proceeding we redefine
the order of accuracy of an approximate solution. (This order of accuracy is one less than that
defined in [2].)

Let u;(t) be the i** component of the exact solution and z(t) be the i** component of an

approximate solution to Equation (1).

Definition 2.1 If z;(t) — ui(t) = O(t)M+! over a fized, finite interval [0, T|, then the order
of accuracy of z;(t) is defined as: N(z) = M; for 1 < i < n. The order of accuracy of z(t) is
defined as: N(s) = min) cicn N(z)-

Since, in waveform Gauss-Seidel iteration, we solve each subsystem sequentially and in-
dependently, as one subsystem is integrated during a Gauss-Seidel iteration the remaining

subsystems are specified approximants to the exact solutions. By definition of the order of
accuracy we then have the following result: .

Theorem 2.2 Consider the equation for the i** component after partitioning,

U= fi(ul"-'3ui9--~suvn)’ “t(o) = U4,0- (3)

The equation to be solved after applying the Gauss-Seidel scheme is

[e+1] | [k+1]

R i NP s S e N R L I B O LT T )

Assume that
E}kﬂ] = u_!,-"“]—uj = O(t)ﬂ"’m‘]+1 for j<i,
(5)
Ef = u:[ih] - uj O(t)l\r’['hl"'1 for j>i.
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and all the Eg‘] ’s and E}"Hl ’s are sufficiently smooth. Then

]V"[,..H':I 2 mz'n(NllH'l], ceny ,'[f.-;u; N;I.’:.]p ceey Ni[r,:]) + 1. . (6)

(For detailed proof see [2].)

In the Gauss-Seidel scheme the numbering of the subsystems is important since it determines
the order of their sequential solution. One subsystem affects another if any of its variables
appear on the right-hand side of the differential equations describing the other. This coupling
is an oriented relationship and an adjacency matrix can be used to describe the coupling
relations among all subsystems. A directed graph that is built from the adjacency matrix is
called the dependency graph of a system. If a system’s dependency graph is acyclic we could
get the exact solution with only one waveform Gauss-Seidel iteration when each subsystem is
sequentially integrated in a proper order; otherwise iterations are needed until a sufficiently
accurate solution has been computed. (From now on a subsytem is referred as a node in a
dependency graph.)

From Theorem 2.2, we know that the order of accuracy at one node after one waveform
Gauss-Seidel iteration is at least one greater than the minimum order of its incoming nodes,
and possibly more if there is fortuitous cancellation. But the fortuitous cancellation can only
occur under very special coupling, so it will be ignored in general. Hence we assume equality
in that theorem and investigate some examples to study the accuracy increase of the waveform
Gauss-Seidel method. From these examples we will see that the accuracy increase in the
waveform Gauss-Seidel method is related to the coupling and the numbering on a given system’s
dependency graph. ’

3 Ascending Chains and Accuracy Increase

First let us consider:
Example 1 Consider a system with the following dependency graph after partitioning and
ordering. This graph has only two cycles and all the nodes inside each cycle are sequentially

ordered, i.e. there is only one decrease in the numbering of all nodes around every cycle.



The two cycles are 4; = {(1,2,3,4,5)} of length C; = 5 and 4; = {(1,4,5)} of length C; = 3.
The sole numbering decrease is the branch (5,1) shown dashed. So d; = d; = 1. Hence
C:/dy =5 and C3/d; = 3. In the following tables we list the order of accuracy and accuracy

increase after each waveform Gauss-Seidel iteration assuming we start with u(®)(z) = u,.

O—~

N\

O—0—0O

Order of Accuracy

Node Iteration No
No |01 2 3 4 5 6 7 8 9 10
1 0 1 4 7 10 13 16 19 22 25 28
2 0 2 5 8 11 14 17 20 23 26 29
3 0 3 6 9 12 15 18 21 24 27 30
4 0 2 5 8 11 14 17 20 23 26 29
5 0 3 6 9 12 15 18 21 24 27 30

Accuracy Increase
Node Iteration No
No (01 2 3 4 5 6 7 8 9 10
1 13 3 33 3 3 3 3 3
2 2 3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3 3 3
4 2 3 3 33 3 3 3 3 3
5 3 33 3 3 3 3 3 3 3

From Example 1 we see that, after the waveform Gauss-Seidel iteration stabilizes, the
accuracy increase after one iteration is equal to the minimum cycle length in the dependency
graph. Note, however, that in this example the internal node of the cycle with minimum length
have been ordered sequentially around this cycle. In general, the internal node of a cycle may
not be ordered sequentially; in this case we can not achieve an accuracy increase equal to the
cycle length in one waveform Gauss-Seidel iteration. However, we will show that, in the case
of a single cycle, an order increase equal to the length of the cycle will occur in some number
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of iterations. Let us consider another example in which the nodes are not sequentially ordered
around a cycle.

Example 2: Consider a dependency graph which contains only one cycle and nodes inside the
cycle are not sequentially ordered,

O—-O—0
O~-O—

The tables for order of accuracy and accuracy increase are given below.

A= {(17 4, 6)9 (2, 5)9 (3)}; Cld= 6/3

Order of Accuracy
Node Iteration No
No |01 2 3 4 5 6 7 8 9 10
1 0 1 2 4 7 8 10 13 14 16 19
2 9 1 4 5 7 10 11 13 16 17 19
3 g 1 3 6 7 9 12 13 15 18 19
4 0 2 3 5 8 9 11 14 15 17 20
5 0 2 5 6 8 11 12 14 17 18 20
6 0 3 4 6 9 10 12 15 16 18 21
Accuracy Increase
Node Iteration No
No |01 2 3 4 5 6 7 8 9 10
1 112 31 2 31 2 3
2 1 312 31 2 3 1 2
4 21 2 31231 2 3
5 2 31 231231 2
6 3 12 3 12 31 2 3

We see in Example 2 that the order increase of 6 , the cycle length, is achieved in 3 iterations.
The reader might notice that in this example, three is the number of times the numbering of
succesive nodes around the cycle decreases. This will be seen to be a general result, for which
we need to define the concept of an ascending chain in a cycle. |

Suppose an ordering for the Gauss-Seidel method applied on a graph containing a cycle A
of length C has been chosen. Number the nodes of the graph by the Gauss-Seidel ordering.



Definition 3.1 An ascending chain of length | in a cycle A is a sequence of nodes with numer-
ical ordering jo, j1;. .., j1-1, such that (1) jo < j1 < -++ < ji-1, (2) there ezists an edge from
node j; to node jiiq fori=0,1,...,1 - 2 in the cyc\le, and (3) no ascending chain in cycle A
contains {jo, j1,...,Ji-1} as @ subsequence (in other words, it is as long as possible).

It then follows from the definition that any cycle can be decomposed into a mutually
exclusive set of ascending chains and the number of ascending chains in a cycle equals the
number of times the numbering of successive nodes around the cycle decreases. By the equality
assumption in Theorem 2.2, we know that‘ after one waveform Gauss-Seidel iteration, each
node, j;, in an ascending chain can not have order of accura;:y more than one greater than the
order of accuracy of its predecessor node, j; — 1, in the chain at this iteration, while the first
node in an ascending chain can not have order of accuracy greater than one plus the order of
accuracy, prior to the iteration, of its predecessor, the last node in the chain precedes it. ( If no
other node except its predecessor in the cycle is connected to a node k, it will achieve exactly
this order increase.) Now we introduce some simple notations to express these ideas.

Let Abea cycle of length C with d ascending chains. Let l3,ls,...,[lq be the lengths of the d
ascending chains that follow the orientation of A and W, ; s, be the order of accuracy of the kt*
node of the i** ascending chain at the n*? waveform Gauss-Seidel iteration. For convenience,
define I;,q = & and Wi ;4ax = Wiz for all i. Then by assuming equality in Theorem 2.2, we
have

IA

Wik +1 Waig +1

Wattit10 £ Wiy +1
for k; = 0,1,...,/;—2,and n > 1. For ease of derivation later, we now define W7, = W,, ;0 and

WE = Woig-1, ie. let WT, (WH,) denote the order of accuracy at the tail (head) node of
the #** ascending chain at the n** waveform Gauss-Seidel iteration. And it is easy to see that

Wi S Witk - (7)
Wg}-l,i < Wf.‘-1 + (8)
W$+1,i < W,f.-_x + b1 (9)



Based on these relations, we then have the following result.

Theorem 3.2 If a cycle A of length C consists of d ascending chains, then, after the first
iteration, the accuracy increase at the internal nodes of A due to d waveform Gauss-Seidel
iterations is bounded by C.

Proof: By Eqn (9)forn > 1

Wirdi = Wardira
< Wiia-viva-r +liva-t
< Wiia-aivas +livd—z + lirdo
< Winam s+t lipan
S Wihith+lp+-o+liaa
< Wii+cC.

The proof for the remaining nodes in an ascending chain is similar:

14

Watdii = Wniditdh
< Wiigivath
< WnH+d—1.i+d—1 +1+k
< WE sivaz a1 +1+k
< WnH+d-3,s'+d-3 +lhitd-2+ bita-1+1+ K
< W,ﬂl,.~+1 +hyat oot hija-2 +liya-1+1+ Kk
< WEtln+lpe+ o tlipdaatlipaa +1+ K
S Wi +li—=1-k+hpyi+hi2 4+ +lhia2+liva1+1+k
= Wais + i I
= Wik + JC_-I



Q.E.D.

When d = 1, i.e. when all the internal nodes of a cycle are solved in cyclic order, the
accuracy increase in one waveform Gauss-Seidel iteration is then bounded by the cycle length.
That is the result we saw in Example 1. |

If we assume that each node of a cycle has no other nodeé connected to it except its
predecessor in the cycle, then its order of accuracy after each waveform Gauss-Seidel iteration

is exactly one over its predecessor’s in the cycle, i.e.

Woikit1 = Waik +1 (10)

Woitisn = Wag+l (11)
for all ¢ and k;’s. Thus

Waie = Witk (12)

Wf{-m = Wf,.'_l +1 (13)

Waii = Wi +lhia (14)

for k; = 0,1,...,,—-1,i=1,2,...,d and n > 1. We then see that for a single cycle, the average
accuracy increase in each iteration is C/d. Ignoring fortuitous cancellation, a cycle can not
have a greater average accuracy increase, so it is clear that a bound on the average accuracy
increase for a graph is given by min;(C;/d;) where i indexes all the cycles in the graph. We
will show that this bound is realized by all the graphs, so that we should order the nodes to

maximize this minimum.
4 Accuracy Increase in a Single Cycle

If we examine Example 2 again we see that the accuracy increase at a given node at successive
iteration followed a repetitive pattern after some initial irregularity. For some it was (1,2,3),
for others it was (2,3,1), and for the remainder it was (3,1,2). The important property of
these patterns is that they are dmﬂar shifts of the partition of the cycle length C = 6, where
‘there are d = 3 members in the partition. In general we say that a set of strictly positive
integers {g1,93,...,ga} is an integer partition of C, if ¢, ¢; = C. We now show that given a
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cycle of length C with d ascending chains of lengths I3, I,..., and l4, and an integer partition,
{#1,92,...,94}, of C, if the initial orders of accuracy at all nodes of the cycle are chosen
carefully, then the accuracy increase at each node at every d successive waveform Gauss-Seidel

iterations is {gd, gd—1,-.-.,92,q1} OF its circular shifts.

Theorem 4.1 Let A be a cycle of length C with d ascending chains of lengths, Iy, 1,,...,13,
and let {q1,92,...,94} be an integer partition of C. If the initial order of accuracies are chosen
such that

WE = Tiule - k) fori=1,2,...,d
Woihs = W},'.-+k,- for k; =0,1,...,5; -1,
then
Waiki = Wa—t,ik; + Gi-n (15)

for k; = 0,1,2,...,1; - 1,i=1,2,...,d, and n > 1, where g, = g,5%q and n%d = n mod (d)

for any integer n.

Proof: By Eqn (12), Wik — Wa1,ik; = W,{' - W,’f_l’,-, i.e. all the nodes in an ascending
chain have the same accuracy increase after each waveform Gauss-Seidel iteration, so we only
need to show

Wi =Was; + Gi-n (16)

fori=1,2,...,dand n > 1.
Whenn=1and i =1,2,...,d, from Eqn (14) and the choice of initial orders, we have

WII:.' = Wg,'i—l + li—l
d

= 3 (G-L)+ha

j=i=-1

d
E(QJ - 1)+ gi—1
J=i
= Wg:,' + ¢i-1.

Hence, (16) holds for n = 1. Let us use induction and assume the statement is true when
n<mandi=12,...,d,i.e.

Wi =Wh_1i+ Gim- (17)

9



Then when n =m +1 and i = 1,2,...,d, from Eqns (13), (14), and (17) we have
Wii1s

Wi+ li-1
W$-1,i-1 + 4i-1)-m + li1
Wi+ di-1)-m

mi T Gi—(m+1)

Hence, by induction, Eqn (16) holds for all n > 1.

From Eqn (15) and the periodic behavior of ¢;’s we have

n+d
Wiidies = Wain + Z G—j
j=n+1

d .
= Wik + 24

i=1
= Wnin +C,
which are exactly the results we saw in previous examples. Since all the nodes in an ascending
chain have the same accuracy increase after each waveform Gauss-Seidel iteration, from now
on we will use the head or tail node at each ascending chain to discuss the accuracy increase
property. In Table 1 we list the accuracy increase at the tail node of each ascending chain after
each waveform Gauss-Seidel iteration using the result in Theorem 4.1. From this table it is easy
to see that the accuracy increase at any node in every d successive iterations is {¢4, ¢g4—1,...,91}
or its circular shifts.

To avoid the decreasing subscripts in ¢;’s as iteration proceeds, we let p; = g4-; for j =
0,1,...,d — 1 and rewrite Table 1 to obtain Table 2. With some manipulation we have the
following formula for the order of accuracy at the n** waveform Gauss-Seidel iteration:

d n%d
Wi = Y (pami = i) + 5] X C+ Y pacinis (18)
i=i =1
fori=1,2,...,dand n > 1.
In particular, if we choose a speciﬁc integer partition of the cycle length C, we will not only

have a nice formula for the order of accuracy at each node, but will have an accuracy increase

10



Iteration Index

0 1 2 see d d+1 d+2
0= ,

h Timlgi— 1) +44 +qd-1 +--- +a1 +94  +gi-1 +---
h-q=

b | Tia(ei— 1) +q1  +ga  +ee te @ @ e
h-q+l3—-q=

I | Bis(gi— 1) t¢2 +@  +--- +gs +@2 ter  +---

ST og) =

L >a_i(g; = 1) +gi1 +gi-z +--- +g; +¢i-1 +g-2 +---

laey | a4 —la+gd-1 —ld-1 +Qa-2 +9d-3 +-+- +qi-1 +¢i-2 +gi-3 +---

la -l +qd-1 +9d-2 +°-+ +4d +¢d-1 +gd-2 +---

Table 1: Accuracy increase at tail node of each ascending chain

Iteration Index

0 1 2 cee d d+1 d+2
0=
L 5=1(Pa-j = 1;)  +po +p1 +--- +pi-1 +po +p
b | Tiaa-j—4)  +Pi-r  +po 4+ +pica +pi-1 +po

Is ;;'Ls(?d—:i L)) +Pd-2 +Pd-1 +ecc +Ppi-3 +Pd-2 +Pd-1

k Y3 i(pa-j — 1) +Pd—it1  +Pd—it+z ++ +Pd—i +Pd-i41 +Pd-i+2

lisy [po—latpr—li-1 +p2 +ps +:- +p1 +p2 +p3

la [po—-ls -pr +p2 +:e¢ +pg +p1 +p2

Table 2: Accuracy increase at tail node of each ascending chain
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pattern that can not be destroyed by other cycles in the same graph that do not have a smaller
c/d.

Lemma 4.2 Given a cycle of length C with d ascending chains of lengths Iy, 1,,...,14, respec-
tively. If

. .C .C . ~

pj= I.(J'l'l)z.l - UEJ for1=0,1,...,d—1, (19)

then {po, P1,...,Pd-1} is an integer partition of C. Further, if

T < c
W;=C— 215 +|(1- 1)7J , (20)
i= :
then

d c

Wai=C=3 li+|(n+1-4)7] (21)
j=i

fori=1,2,...,dandn>1.

Proof: Since % = I_%J + ¢, for some 0 < € < 1, by assumption

, o .C

s = G+05]-1ig)
.C . C .C
= lg+lgl+e -7l
c .C .C
lgi+lig+e-ligl

1<)
1

v -

v

and
d-1 d-1

Se = LlG+D3]- S
0

= g1~ 105)

= C,

therefore {py, P1,...,Pd~1} is an integer partition of C. Moreover

n%d
Sopeii = Ld-i+n%d+ DS - (@-i+ 1))

=1

= |(%d+1-3)g] - [(1-9)=). (22)

12



Substituting (22) into (18), we have

T d n ~C N
WE = S(pasi =)+ 51 x C + [(%d+1-9)Z) - [(1- )=
J=t

; n . C .C
;g(pa—,-—l,-n U3 X C+(n%d+1- i) 7| - (1 - )]

3 n . C N
= Y(pei =)+ [(15] xd+n%d + 1= )] - [(1- )]

. |

= Ypui—B)+n+ 1= - [(1- )]
‘1; C i-1

= 3 (Pi-i k) + (n+1-4)7] +Z:p,,_,.

d d C
= Y p-i—-D li+|(n+1 -7l

J=1 =i
d c
= C-3 Li+l(n+1-i)7]
J=i

Q.E.D.

For a cycle of length C with d ascending chains, the set of integers, {po,P1,...,Pd-1},
defined in (19) will be called the natural partition of C. Let us use Example 2 again but choose
the initial orders specified by (20), that is, based on the natural partition {2,2,2} of the cycle

of length 6. The accuracy increase pattern is:

Order of Accuracy Accuracy Increase
Node Iteration No Node Iteration No
No |01 2 3 4 5 ... No |0 1 2 3 4 5
1 0 2 4 6 8 10 -.- 1 2 2 2 2 2
2 1 3 57 9 11 2 2 2 2 2 2
3 1 3 5 7 9 1 3 2 2 2 2 2
4 1 3 5§67 9 11 4 2 2 2 2 2
5 2 4 6 8 10 12 5 2 2 2 2 2
6 2 4 6 8 10 12 6 2 2 2 2 2

From the table we see that the phenomena described in Theorem 4.1 and Lemma 4.2 are

satisfied. Next we examine how one cycle interacts with the remainder of a graph.

13



5 Accuracy Increase in General Graphs

We now want to discuss general graphs. Our analysis technique will be to analyze part of the
graph and consider driving terms from other parts of the graph. These driving terms are the
branches entering the part of the graph selected for analysis. The orders on the nodes at the
start of these branches may, or may not, reduce the order of subsequent iterations of nodes in
the selected part of the graph.

From Lemma 4.2 we see that, for a cycle of length C with d ascending chains, if the initial
orders at all nodes of the cycle are chosen properly and if a driving term, if there is any, does
not interfere with the order of accuracy in this cycle, then at the nt* waveform Gauss-Seidel
iteration, the order of accuracy at each node of the cycle can be expressed as 8 + |(n + 7)%]
for some constant integers 8 and v. If such a cycle is the only cycle in a system’s dependency
graph, then all the nodes in the dependency graph that are reachable from this cycle will have
a similar pattern for their accuracy increase. (A node U is reachable from a cycle if there exists
a directed path from any node in this cycle to U.) Now let’s look at an example first, which
shows that result in Lemma 4.2 is satisfied not only by the nodes in the cycle with minimum
C/d but also by any node that is reachable from that cycle.

Example 3: Consider a dependency graph that has two cycles and nodes are ordered as shown.

O O—0
! l

Y
@ ‘él = {(1,4),(2,7,8),(5,6)}; Ci1/d1=7/3

: Ag = {(1, 4), (2, 3, 6)}; Cz/dz = 5/2

O~ ©—®

Since cycle A; has smaller C/d ratio, we choose the initial orders inside A; according to
(20) in Lemma 4.2. That is the natural partition {2,2,3} of 7, length of A;, is considered. Below

we list the order of accuracy and accuracy increase at each node.

14



Order of Accuracy

Node Iteration No

No |01 2 3 4 5 6 7 8 9 10
1 0 3 5 7 10 12 14 17 19 21 24
2 0 2 5 7 9 12 14 16 19 21 23
3 4 3 6 8 10 13 15 17 20 22 24
4 1 4 6 8 11 13 15 18 20 22 25
3 1 3 5 8 10 12 15 17 19 22 24
6 2 4 6 9 11 13 16 18 20 23 25
7 1 3 6 8 10 13 15 17 20 22 24
8 2 4 7 9 11 14 16 18 21 23 25

Accuracy Increase

Node Iteration No

No |0 1 2 3 4 5 6 7 8 9 10 .
1 3 2 23 2 2 3 2 2 3
2 2 3 2 2 3 2 2 3 2 2
3 -1 3 2 2 3 2 2 3 2 2
4 3 2 23 2 2 3 2 2 3
5 2 2 3 2 2 3 2 2 3 2
6 2 2 3 2 2 3 2 2 3 2
7 2 3 2 2 3 2 2 3 2 2
8 2 3 2 2 3 2 2 3 2 2

From the previous accuracy increase table, we see that the result in Lemma 4.2 is satisfied
by all the other nodes, besides the nodes in cycle A, in the graph. Next we want to see what
will occur if the initial accuracies are not specified with the natural partition of 7. Let us use

the partition {1,2,4} of 7 to specify the initial accuracies and list the order of accuracy and

accuracy increase at all nodes.

15




Order of Accuracy
Node Iteration No
No |01 2 3 4 5 6 7 8 9 10 ---
1 0 4 5 7 10 12 14 17 19 21 24 ---
2 1 2 6 7 9 12 14 16 19 21 23 ...
3 4 3 7 8 10 13 15 17 20 22 24
4 1 5 6 8 11 13 15 18 20 22 2§
5 2 4 5 9 10 12 15 17 19 22 24 ...
6 3 4 6 9 11 13 16 18 20 23 25 ...
7 2 3 7 8 10 13 15 17 20 22 24 ...
8 3 4 8 9 11 14 16 18 21 23 25 ...
Accuracy Increase
Node Iteration No
No {0 1 2 3 4 5 6 7 8 9 10 ---
1 4 1 2 3 2 2 3 2 2 3 ...
2 1 41 2 3 2 2 3 2 2 .
3 -1 412 3 2 23 2 2 .
4 4 1 2 3 2 23 2 2 3 ...
5 21 412 3 2 2 3 2 .
6 1 2 3 2 2 3 2 2 3 2
7 1 4123 2 2 3 2 2 -
8 1 412 3 2 23 2 2 ..

In this case we see that the partition {1,2,4} does not appear in the acuuracy increase table,
whereas the natural partition {2,2,3} of 7 does. Let us use another partition {1,1,5} of 7 to

specify the initial orders and see how it affects the accuracy increase pattern.

Order of Accuracy

Node Iteration No

No 4 5 6 7 8 9 10

10 12 14 17 19 21 24 ...
9 12 14 16 19 21 23 ...
10 13 15 17 20 22 24

11 13 15 18 20 22 25 ...
10 12 15 17 19 22 24 ...
11 13 16 18 20 23- 25 ...
10 13 15 17 20 22 24 -
11 14 16 18 21 23 25

oo 0o =] ~x| W

1
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Accuracy Increase
Node Iteration No
No |0 1T 2 3 4 5 6 7 8 9 10
1 5 0 2 3 2 2 3 2 2 3
2 1 5 0 2 3 2 2 3 2 2
3 -1 5§ 0 2 3 2 2 3 2 2
4 5 0 2 3 2 2 3 2 2 3
5 115 0 2 3 2 2 3 2
6 0 2 3 2 2 3 2 2 3 2
7 1 50 2 3 2 23 2 2
8 15 0 2 3 2 2 3 2 2

From the table we see that this partition {1,1,5} of 7 is also not preserved in the accuracy
increase pattern. From this example we see that when a dependency graph contains more than
one cycle, only the natural partition of the length of the cycle with minimum C/d in the graph
may be j)reserved in the accuracy increase pattern when it is used to specify the initial orders.

Now we select for analysis any cycle with a minimum value of C/d. We will call this the
minimum cycle. Let us initialize the orders in the graph such that the nodes in this cycle follow
the pattern specified in (20) and all other nodes in the graph are infinitely accurate. (This is
not possible in practice, but is used to show that the minimum cycle determines the average
accuracy increase.) We know from Lemma 4.2 that the minimum cycle will maintain an average
order increase of C/d unless a driving term restricts the order of some node in the cycle. Since
all other nodes were initially set to order infinity, the only way for this to happen is for the
orders of a chain of nodes starting from some point on the minimum cycle and ending on the
minimum cycle (called the nodes on a sidetrack path of the minimum cycle) to be lowered by
the minimum cycle so as to reduce the order of the minimum cycle. Suppose the chain is as
shown in Figure 1 by the sidetrack path from node U to node V on cycle A, where cycle A
is a minimum cycle. We want to show that the order in cycle A will not be lowered by any
sidetrack path.

Let I1,03,...,14 be the lengths of the d ascending chains of cycle 4. Then ¥4, 1; = C.
Let B be the cycle consisting of the sidetrack path of A from U to V and the path from V to
U on A. Suppose B has d ascending chains of length m,, m,,...,m; and Ef=1 m; = €. By
assumption C/d < € /&. We now number the ascending chains on both cycles such that node

17



Sidetrack path

5

Figure 1: A minimum cycle with a sidetrack path

U is in the s** chain of both cycles and node V is in the d** chain of cycle A and in the dth
chain of cycle B. This means m; =1l; for j = 1,2,...,8 — 1. Furthermore we assume node U
is the kt* node in chain s and node V is the k* node in chain d of cycle A. (Note the indexing
of a node in a chain starts with 0.) So node V' will be the (m; -z + k4)t* node in chain d of
cycle B. Now we want to show that the order coming into node V from the path on 4 is no

greater than the order coming from the sidetrack path.

Lemma 5.1 Let Wi, (Wnix;) denote the order of the k* node in chain i of cycle A (B) at
the nth iteration. If

d .
Wo,ih; = C — Z i+ |(1- z)%] + k; for nodes on cycle4d-
=i

and )

Woik; = Wo,ik; for nodes on path Vto U _

Woik = 0 for nodes on the sidetrack path,
Then

W"vdvhd-l S Wn,i,(m‘—l‘+l¢4)—1' (23)
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Note that the (ks — 1)*» node on chain d of cycle A and the ((mj— lg + k4) — 1)** node on
chain d of cycle B are the only predecessors of node V.

Proof: From Figure 1 we can see that the order of node U propagating through the sidetrack

path will not affect node V until d — s + 1 iterations later. So the first possible lowering of
order at node V by the sidetrack path will happen at the (d — s + 1)** iteration. Thus we first

show that
w

Since

WJ— l+1,i,(md—l¢+kg)—1 =

and

WJ—-.+1,d,h¢—1

WT

<

d—st+1,d kg1 = WJ—.+1,J,(m j-latke)-1°

Wf +1,d it (mi- la+ka) -1

Wi, gt (mg—latka)

d-1
1,,+ 2 m; + (my—lg + kq)
i=s+1
d-1
Wh+m, -1+ 3 mj+(my—lg+ka)
j=s+1

d
W£,+ij—l¢+kd—1

C- El +|_(2—s)—]+2m,—l¢+kd-
—1

Zl,+|_(2—s)—_]+2m, latka—-1

i=1 Jj=s

s=~1

Zm,+t(2—s)—J+Zm, lg+ka—1

j=1

C+|_(2—8)EJ —ld+kd—1

d-et1,d T ks -1

R c
C—Id+[(d—s+1+1-—d)z_|+kd—1

5 c
C—l¢+|_(d—s+2)E—CJ+kd—1
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s (o]
= I.(d—8+2)'a—_| —-ld-l-kd—-l,
‘ to prove (24) we only need to show that
. (o4 5 C
- s+2)5] < +[2-2)5].

= J% < €, and hence

il

This is easy, since %'- <
(d-s+23] =45 +2- 05| < |6+ 2-9)T| = 0 +|2- ).

In subsequent iterations we have

d
i T
Wn+J—:+1,d.,(m i—l¢+k‘)-1 = Wn+1,, + Z m; — ld + kd -1

j=a

A C
C’+[_(n+2-—s)-‘-i-J —lg+ka—1

and
- C
Wordstrgpg-1 = l(n+d-s+ 2)7] —la+ks—1

from which (23) follows directly.

6 Average Accuracy Increase in Waveform Gauss-Seidel

We define the average accuracy increase of a node to be the limit of p,/n as n — oo where p,

is the order of accuracy of a node and n is the iteration number. The average accuracy increase

of a numbered graph is the minimum average accuracy increase over all nodes. Theorem 3.2

shows that the average accuracy increase in a waveform Gauss-Seidel method can not exceed

the C/d of the minimum cycle. Lemma 5.1 shows that if the minimum cycle is initialized to the

natural accuracy (accuracy specified by the natural partition of its length) and the remaining

nodes are infinitely accurate, no sidetrack paths destroy the natural accuracy. These results

can now be combined to show that the average accuracy increase for the waveform Gauss-Seidel

method is exactly the C/d of the minimum cycle in the dependency graph of a given system

after partitioning and ordering.
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Theorem 6.1 Suppose a minimum cycle in the dependency graph of a given system is of length
C and has d ascending chains. Then the waveform Gauss-Seidel method applied to this system

has average accuracy increase C/d.

Proof: Consider two identical dependency graphs, Gy and G, with N nodes and identical
numberings. If we start with all initial orders of accuracy on both graphs set to zero and run the
waveform Gauss-Seidel iteratioﬁs on both synchronously, the order of accuracy of corresponding
nodes on the two graphs will be the same at all steps.

After M iterations, we will perturb the iteration on G in the following way: lower the
order of accuracy at the nodes in the minimum cycle, A;, of G; following (20), i.e. using the
natural partition of C. Then resume waveform Gauss-Seidel iterations on both graphs. The
accuracy at any node in G will never surpass the accuracy of its corresponding node in Gy.
This is easy to see inductively: the new accuracy at a node being integrated is equal to one plus
the mininum accuracy of its predecessors on a graph. If the accuracy of every node in G, is at
least as large as the accuracy of its corresponding node in G, then the same condition holds
after the integration and hence before the next integration. Therefore, the average accuraacy
increase of G is a lower bound for the average accuracy increase of the unperturbed problem
on G;.

It remains to show that the average accuracy increase for G; is C/d. Since M is fixed, the
first M iterations can be ignored in computing the average. The important step is to choose
M large enough that the orders of accuracy of the nodes not in the minimum cycle A, of G,
are effectively infinite at the perturbation, so that the result in Lemma 5.1 applies. Note that
(i) after M iterations starting from accuracy 0, all nodes have accuracy > M, and (ii) when a
cycle is set to the accuracy specified by its natural partition as in (20), the accuracies assigned
are < N. Hence the nodes not in A, will have an order of accuracy at least M — N greater
than those in A, after the perturbation.

Now consider iterations on G, after the perturbation. If the average accuracy increase is
less than C/d, the graph G5 — A; must be lowering the order of A, (Lemma 5.1 implies that
the propagation of an accuracy from A4, into G5 — A; and back to A, can not be responsible for

lowering the accuracy). Since the order of accuracy of G2 — A, can be made arbitrarily higher
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than that of A, at the perturbation (M — N higher), the average accuracy of G — A; must be

less than C/d. The argument can now be completed by induction on the size of the graph: It
is certainly true for N = 2. Assume it is true for 2 < N < K — 1. If |G2| = K than either G,

has no cycles or |é2 — A3| < K — 2 where A; is a minimum cycle. Hence the average accuracy

increase of G3 — A, is at least C /d so it can not lower the order of As.

Q. E.D.

In the following we give some examples to illustrate this result.

Example 4: Consider a dependency graph that has four cycles and the nodes are ordered as

shown.

@ @D—®
v
©
1 i @
© ®

\

O—O~ @@

———————

———

Ay = {(1,6,13),(11),(7, 10), (5,14), (3.9)}
A = {(1,6,13),(11),(7,12,14),(3.9)}

As = {(2,8), (4,7,10), (5,14))}

Ay ={(2,8),(4,7,12,14)}

C1/d, =10/5
Ca/d; =9/4
C3/ds=17/3
Cs/dy=6/2

From the graph we see that cycle A; is the minimum cycle. We would like to see how the

minimum cycle affects the remaining cycles in the graph. First we use the same initial orders

for all nodes in the graph and list the order of accuracy and accuracy increase at all nodes.
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Order of Accuracy

Node Iteration No

No {01 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 1 3 5 7 8 11 13 15 17 18 21 23 25 27 28
2 01 3 56 9 11 13 15 16 19 21 23 25 26 29
3 0 1 3 5 6 9 11 13 15 16 19 21 23 25 26 29
4 0 1 3 5 7 8 11 13 15 17 18 21 23 25 27 28
5 01 3 4 7 9 11 13 14 17 19 21 23 24 27 29
6 0 2 4 6 8 9 12 14 16 18 19 22 24 26 28 29
7 01 25 7 9 11 12 15 17 19 21 22 25 27 29
8 0 2 4 6 7 10 12 14 16 17 20 22 24 26 27 30
9 0 2 4 6 7 10 12 14 16 17 20 22 24 26 27 30
10 |0 2 3 6 8 10 12 13 16 18 20 22 23 26 28 30
11 |0 1 4 6 8 10 11 14 16 18 20 21 24 26 28 30
12 |0 2 3 6 8 10 12 13 16 18 20 22 23 26 28 30
13 |0 3 5 7 9 10 13 15 17 19 20 23 25 27 29 30
14 [0 2 4 5 8 10 12 14 15 18 20 22 24 25 28 30

Accuracy Increase

Node Iteration No v

No |01 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 122 213 2 22 1 3 2 2 2 1

2 1 22132221 3 2 2 2 1 3

3 1 22132221 3 2 2 2 1 3

4 1 22 213222 1 3 2 2 2 1

5 1213 22213 2 2 2 1 3 2

6 2 22213222 1 3 2 2 2 1

7 113 22 2132 2 2 1 3 2 2

8 2 22132221 3 2 2 2 1 3

9 2 221332221 3 2 2 2 1 3

10 213 222132 2 2 1 3 2 2

11 1 3 2221322 2 1 3 2 2 2

12 213 22 2132 2 2 1 3 2 2

13 3 22213222 1 3 2 2 2 1

14 2 21322213 2 2 2 1 3 2

From the table we see that after every 5 iterations the accuracy at each node increases
by 10, the cycle length of A;. And the increase pattern at each node is {2,2,2,1,3}, or its
circular shifts, which happens to be the ascending chain lengths of A; in reverse orientation.
Next we choose the initial orders inside A; such that the natural partition {2,2,2,2,2} of C) is
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considered.

Order of Accuracy
Node Iteration No
No {01 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
2 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
3 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
4 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
5 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
6 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
7 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
8 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
9 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
10 {1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
11 §j1 3 56 7 9 11 13 15 17 19 21 23 25 27 29 31
12 {1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
13 (2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
14 |1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Accuracy Increase
Node Iteration No
No |01 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 2 22 2 22222 2 2 2 2 2 2 .
2 122222 222 2 2 2 2 2 2
3 2 222 22222 2 2 2 2 2 2
4 1 22 2 2 2 222 2 2 2 2 2 2
5 2 2 22 2 2 222 2 2 2 2 2 2
6 2 22222222 2 2 2 2 2 2 .
7 2 22 2 22222 2 2 2 2 2 2 ..
8 2 222 22 222 2 2 2 2 2 2
9 2 2 2222 22 2 2 2 2 2 2 2 .-
10 2 22 2 2 2 222 2 2 2 2 2 2
11 2 22222222 2 2 2 2 2 2
12 2 222 22222 2 2 2 2 2 2
13 2 22 2 22222 2 2 2 2 2 2.
14 2 222 22222 2 2 2 2 2 2.

From the table we see that all the nodes in the graph have the same accuracy increase
pattern, the natural partition of C;.
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 Example 5 Consider a dependency graph that has two cycles and one of the cycle is reachable

by the other.
LO. \
. / N

g  To—o—-& @ ®
'\@«--/ NG

*‘;1 ={(2,8),(6),(4,10)}; C1/d1=5/3
42 = {(1,5),(3,7)}; Cz/d2 = 4/2

Again we list the order of accuracy and accuracy increase at all nodes after each waveform
Gauss-Seidel iteration. From the table we can see that the minimum cycle dominates the

accuracy increase for the entire graph.

. Order of Accuracy
Node Iteration No
6 7 8 9 10 ...

9 11 13 14 16 -
10 11 13 15 16

9 11 12 14 16
10 12 14 15 17
10 11 13 15 16
11 12 14 16 17
10 12 14 15 17
10 12 13 15 17 --.
10 12 13 15 17 ...

g
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Accuracy Increase
Node Iteration No
No |01 2 3 4 5 6 7 8 9 10
1 1 21 2 212 21 2
2 1 212 212 21 2
3 1 2 212 212 2 1
4 112 212 212 2
5 2 21 2 212 21 2
6 1 2 212 212 2 1
7 2.2 212 212 2 1
8 2 212 212 21 2
9 21 2212 212 2
10 212 212 212 2

7 Conclusion

Effective use of the Waveform Gauss-Seidel method depends on the ordering of the nodes. The
result in this paper provides a basis for selecting the ordering. It is probable that the problem of
finding an ordering that maximizes the average order increase is NP hard so not computationally
feasible. However, the result suggests heuristics that could be used to maximize the lengths of
ascending chain in short cycles. Future work will test some heuristics.

Although the waveform Gauss-Seidel is usually thought of as a serial method, there are
several ways in which it can be used for parallel computation. In one approach, the integration
of Iater nodes can be staggered in time. In another, several nodes can be integrated in parallel.
In this approach, for a p processor system, up to p nodes can be numbered with each number
in the sequence so long as there are no branches between nodes with the same number. At
each step of a single waveform Gauss-Seidel sweep, all nodes with the same number can be
integrated in parallel. Since they are mutually independent, the order result of Theroem 2.2
applies, and hence all results in this paper apply.
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