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ABSTRACT

An approximate method has been developed to ana­
lyze natural convection along a vertical flat plate 
with variable surface conditions and temperature strat­
ification. This method uses the boundary layer veloci­
ty and temperature profiles from the local similarity 
method and imposes explicit conservation of energy 
along the plate resulting in required relationships for 
the similarity parameters for energy conservation. The 
results from this Modified Local Similarity (MLS) meth­
od are compared to those from other methods for a num­
ber of nonsimilar natural convection problems. Based 
on these comparisons, the MLS method is a significant 
improvement to the local similarity approach and is a 
useful approximate tool for analyzing natural convec­
tion on vertical surfaces for nonsimilar conditions.

NOMENCLATURE

A area
cp specific heat 
f velocity similarity variable 
g gravitational constant 
Grx Grashof number based on x 
J stratification similarity parameter 
LS local similarity 
m mass flow rate per unit width 
n temperature difference similarity parameter
N temperature difference constant
PL Power Law Distribution 
Pr Prandtl number 
q" heat flux
Q integrated heat flux per unit width 
AT temperature difference, Tw - Tt 
T temperature

* Prepared by Sandia National Laboratories, Albuquer­
que, New Mexico 87185 and Livermore, California 94550 
operated for the United States Department of Energy 
under contract DE-AC04-76DP00789.

u x-direction velocity
v y-direction velocity
U width of plate
Ax difference in x, x2 - Xj
x distance along plate surface
y distance normal to plate surface

Greek
q thermal diffusivity
0 coefficient of thermal expansion
& boundary layer thickness
q dimensionless coordinate
p viscosity
v kinematic viscosity
p density
t dimensionless temperature

Subscripts
1 value at position xx
2 value at position x2
12 value between xt and x2
f fluid
r reference
w wall

Superscripts
average value

' derivative with respect to ij
* entrainment or ejected value

INTRODUCTION

Natural convection along vertical surfaces occurs 
in the more than 50 oil-filled caverns in the Strategic 
Petroleum Reserve (SPR). These caverns are located in 
a number of large salt domes where the geothermal 
temperature difference over the cavern height of up to 
600 m can be 15*C or more. The hotter salt is located 
at the bottom of the cavern; this configuration causes 
natural convection in the enclosed fluids as a result 
of buoyancy forces. Due to the large length scale, 
highly turbulent boundary layer conditions will be en­
countered with Rayleigh numbers up to approximately
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1016. Since the heat transfer between the salt and the 
fluids in the cavern is coupled, heat transfer to the 
oil and the resulting natural convection can occur dur­
ing the entire anticipated storage period of up to 30 
years. SPR cavern wall conditions are nonuniform due 
to the geothermal temperature difference. In addition, 
the fluid temperature is nonuniform owing to the ther­
mal stratification of the oil. Thus, the wall condi­
tions and the ambient fluid temperature are both vari­
able. In order to efficiently evaluate the natural 
convection boundary layer behavior in each cavern, a 
rapid analysis technique is needed.

The methods in general use for the analysis of 
natural convection are the integral (Sparrow, 1955), 
similarity, local similarity, local nonsimilarity 
(Sparrow, et al., 1970, 1971 and Minkowycz and Sparrow, 
1974), and finite difference approaches (Cebeci and 
Bradshaw, 1984). In addition, approximate methods have 
been developed by Raithby, et al. (1975, 1977, 1978), 
Kao, et al. (1977), Yang, et al. (1982), and Lee and 
Yovanovich (1987, 1988).

The integral method could be used, although the 
assumed profiles are a problem for turbulent flow con­
ditions. The wall and fluid temperature variations 
preclude direct use of the similarity solutions. The 
local similarity method, which applies the similarity 
solutions based only on the local boundary conditions, 
would be appropriate for SPR since the boundary layer 
results can be tabulated for use at each time step; 
therefore, the resulting calculations would be fast. 
However, the method does not consider the history of 
the boundary layer, and errors in the heat transfer 
rate can be significant even for simple cases. Local 
nonsimilarity and finite difference methods are im­
practical due to long estimated computing times for the 
30 year transient Involved.

Approximate methods have been proposed by a number 
of authors. However, the methods developed by Raithby, 
et al. (1975, 1977, 1978) and Lee and Yovanovich (1987, 
1988) were not considered for use in SPR since neither 
method reduces to the similarity solutions for similar 
boundary conditions. Differences of up to 20% have 
been noted. The methods developed by Kao, et al. 
(1977) and by Yang, et al. (1982), approach the local 
nonsimilarity method in complexity and were therefore 
not considered.

If the heat transfer rate errors noted for the 
local similarity approach can be significantly reduced, 
the method would be ideal for SPR. The present study 
attempts to minimize this problem by modifying the 
local similarity approach to explicitly conserve energy 
as the boundary layer develops along the surface. This 
Modified Local Similarity (MLS) approach is developed 
and compared to results from other methods in this 
paper. This method is used in the SPR velocity model 
developed by Webb (1988a).

FORMULATION

Consider natural convection boundary layer flow 
along a flat plate as depicted in Figure 1. The bound­
ary layer energy equation can be integrated along the 
plate using the local boundary layer velocity and 
temperature profiles. This equation must be satisfied 
for global energy conservation. In the present study, 
the boundary layer profiles used in this equation are 
calculated by the local similarity method. The local 
similarity method has two parameters which are mathe­

matical descriptions of the temperature variation along 
the plate and in the surrounding fluid. In addition to 
being mathematical parameters, these variables have 
physical significance with regard to conservation of 
energy. The global energy conservation equation, which 
must be satisfied, can be written in terms of the local 
similarity parameters. Relationships for the two local 
similarity parameters can then be developed to explic­
itly satisfy energy conservation.
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Fig. 1. Boundary layer coordinates.

For example, if the wall heat flux and fluid 
temperature variation are known, the use of the local 
similarity profiles in the global energy conservation 
equation results in a required variation of the two 
similarity parameters. If these relationships are 
satisfied, global energy conservation is achieved. 
This approach is called the MLS method and is detailed 
below.

Global Energy Eouatlon

Conservation of energy along the plate per unit 
width can be written as

*1 cp (tl ‘ Tf) + **12 Ax " *2 cp (f2 ' V (1) 

where

i r*2 -
qi2- -srj q ^ (2)

xi

and T$ Is the average temperature of the fluid en­
trained into or ejected from the boundary layer between 
x1 and x2. The value of TJ is then equal to Tf at 
location x*. In the present analysis, the MLS approach 
results in a relationship for x* based on energy con­
servation considerations. Note that the fluid specific 
heat, cp, is assumed to be constant.

The average temperature of the entrained or 
ejected fluid will be assumed equal to the local 
environmental fluid temperature for this analysis. For 
Prandtl number fluids of order 1.0 and higher, such as 
air, water, and oil, the velocity boundary layer thick­
ness is larger than the the thermal boundary layer, so



any fluid exchange will be at the environmental 
temperature. This assumption breaks down for low 
Frandtl number fluids such as liquid metals where the 
similarity solution gives a larger thermal boundary 
layer than velocity boundary layer (Gebhart, 1985).

The average boundary layer temperature, T, to be 
used in equation (1) is simply the bulk fluid tempera­
ture at that location, or

h T dyJ u dy
which for the present analysis is rewritten as

[ u (T - T (x)) dy
T - T (x) + -J-----r---^------- .j u dy

Combining the equations (1) and (4) results in

(3)

(9)

*1 Cp (T1 • V + q12 Ax

" “2 cp (Tf2 ‘ Tf
[ u (T - T (x)) dy

+ J------)-
I u dy

(5)

where the integrals in equation (5) are evaluated at 
x2. The above equation is general; any restrictions as 
to the orientation, etc. are from evaluation of the 
boundary layer velocity and temperature profiles. 
These profiles will be based on local similarity.

MLS Method

The boundary layer profiles in this study are for 
laminar natural convection over a nonisothermal verti­
cal flat plate in a variable temperature fluid medium. 
Invoking the Boussinesq approximation with otherwise 
constant properties and neglecting viscous dissipation 
and the pressure-work term, the steady-state conserva­
tion equations are (Jaluria, 1980)

Continuity

3u Sv 
dx + 3y

x-Momentum

u -fr+ v ir “8 ^(T - Tf(x)) +du a2u
ay2

Energy 

dT Au~ + v dT
dy

2a t
dy2

(6)

(7)

(8)

The above conservation equations can be integrated 
across the boundary layer resulting in

Momentum

d
dx

J u2 dy - g 0 J <T - Tf(x)) dy - * -g-|
(9)

Energy

d
dx (T Tf(x)) dy +

dT,
dx J u dy

axay lw (10)

where the second term on the LHS of the energy equation 
accounts for temperature stratification.

Two energy equations are considered in the present 
analysis. The global energy equation (5) is concerned 
with the energy in the boundary layer as it develops 
along the plate. The local energy equation (10) is 
related to the energy in the boundary layer at location 
x only. Both equations must be satisfied. Similarity 
variables will be used to rewrite the energy equations. 
These equations will then be combined to lead to rela­
tionships for the similarity variables that must be 
satisfied for global and local energy conservation.

According to Sparrow and Gregg (1958) and Yang 
(1960), similarity exists for two temperature distri­
butions; the power-law and the exponential distribu­
tions. The power-law distribution is the more useful 
case and is discussed in this paper. Results for the 
exponential distribution are given by Webb (1988b).

For the power-law distribution, the temperature 
difference between the wall and fluid is a function of 
the distance x to a power, or

AT(x) - T (x) - T,(x) - N x"
V I

(11)

For similarity, the fluid temperature variation must be 
of the same form, or (Jaluria, 1980)

Tf(x> - Tr - ^ “ TV AT<X> (12>

where the reference temperature, Tt, is the fluid 
temperature at x - 0. If the fluid temperature is con­
stant, J is equal to 0.

The similarity variables for this case are (Geb­
hart and Mollendorf, 1969)

V -

Hi)
T(x) - Tf(x)v*) • Tf(x)

(13)

(K)

(15)

where

Grx

g 0 X3 (Tw(x) - Tf(x)) 
_ (16)

Using the similarity variables and assuming local 
similarity, the boundary layer partial differential 
equations (6)-(8) reduce to a set of coupled ordinary 
differential equations which are (Jaluria, 1980)

,, ,2
f + (n + 3) f f - 2 (n + 1) f +«-0 (17)
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Pr + (n+3)ftf - Anf «-Jf - 0 (18)

so the boundary layer velocity and temperature profiles 
are a function of the similarity parameters n and J. 
The above equations have been solved by a finite dif­
ference method as summarized by Webb (1989).

Expressing the fluid temperature difference in 
terms of the similarity parameter J gives

. J AT. *- 2 . x .n.T* - T, - —;---- (1 - (---) ).f2 f An' x2 (19)

Using the similarity parameters along with equa­
tion (19), the global energy equation (S) becomes

*1 cp (T1 - V + Ax

*2 CP (1
* i f’« dq

' + iT-^------- )

J f dq
AT2. (20)

The mass flow rate per unit width can be expressed 
in terms of the local similarity variables as

m-puA/V-puS 

-Up J f* a, (-Lg.,^ ,3/4 ati/a_ (21)Av
The heat flux relationship

q"_.kfl| _.k/ AI5/* ,-1/A (22)
J I U

Energy

Jf''(5n + 3) | f « dq - - - J | f dq. (26)
Rearranging the local boundary layer energy equa­

tion (26) and substituting it into the global energy 
equation (2A) results in

* "
(n^ cp (Tx - Tf) + q12 Ax) / (q2 x2>

* f » f '
-Z- (1 - + 4 J f » dq / j f' dqn

J + (5n + 3) J f’ # dq / J f' dq (27)

The similarity parameter n is independent of J. 
Therefore, from equation (27), the expression for n is

n - | [A qj x2/ (^ cp (Tj- T*) + q^2 Ax) - 3], (28)

Taking Xj at the leading edge of the plate (Xj-0.) 
with no Initial mass flow rate, which is usually the 
case, then Ax-x2, and the equation for n simplifies to

n---jj- t4 92 / 912 - 3] • (29)

The value of the similarity parameter n is just a func­
tion of the ratio of the local to the average heat flux 
up to that point.

Similarly, from equations (27) and (28),

x* _ x m . --------iVn
x x2 11 (5n + 3) (30)

can be used to get the temperature difference as a 
function of x, and the mass flow rate per unit width is

The fluid temperature evaluated at x* is that required 
for global energy conservation.

m - A „ J f'dq x'"” (-- a—^)T-‘ (23)-Lg-)0-2 x0-8 (—a-^0-2 
Ai/^ - k »

The global energy equation (20) then becomes

*1 cp (T1 - V + 112 AX

A Pr | f'dq (—V) - «
V

_ * I d»7(i - <-^>n> + -V4—> x2-
u n x2 J f dq

(2A)

Using the similarity variables in the integrated 
local boundary layer equations (9) and (10) results in 
the following equations for the boundary layer quanti­
ties under the assumption of local similarity

Momentum

Surprisingly, the stratification parameter, J, is 
independent of global conservation of energy. Instead, 
the value of J is determined by the local value of the 
heat flux, q2. Equating equations (1) and (28) gives

* Am. c (T. - T.) -“2 "p v*2 ~ ‘f' (5n + 3) q2 x2 (31)

where the values on the RHS are known. This equation 
Includes the effect of temperature stratification on 
the local energy balance. Using the relationships de­
veloped above for m and AT, the equation can be 
written as

jf dq [f 0 dq

-----n———+jf dq (-fw)V-
'1 '02 ^A2 
1 (-« )U-Z w

8 ■ Tf2- V - A3 (32)

where

Al - A c u (-4-)0-2 x°2-8 (^-)°-2 (33)

(5 + 3n) # d, - f (25) a,,- (JLfj-O-Z x0-2 ^0.8
Uv

(3U)



A3
4 "

(5n + 3) q2 X2' (35)

For uniform fluid conditions, Tf2 is equal to TJ, and 
the above expression reduces to the local integrated 
energy equation with J equal to zero. As discussed 
earlier, the boundary layer parameters in the above ex­
pression are dependent on the similarity parameters n 
and J. Since the value of n is determined by equation 
(28) or (29), the only undefined parameter is J.

Solution of the equation (32) for J initially 
looks difficult. In practice, however, solution is 
straightforward and, for the present investigation, has 
been accomplished by iterating on the form

J f’, dq A3 - mj*1 cp (T - Tj)

------ --------------------;----- ----- (36)
• #w 4 Pr q2 X2

The temperature gradient for a given Prandtl number is 
only a function of n and J, so iteration is required on 
this equation and, when necessary, equation (39) for J.

For specified surface temperatures, the MLS method 
is not a local similarity approach since the answer at 
x depends on the results at the upstream locations. 
Iteration is required for the variation of the similar­
ity parameters with x. However, this iteration is 
easily accomplished since the only term that depends on 
n and J is 0^, and convergence is rapid for the cases 
analyzed in this report.

While specified temperatures are a convenient ana­
lytical case, the wall temperature and wall heat fluxes 
are usually coupled to each other through heat conduc­
tion, and either the wall temperature or the heat flux 
can be used in the solution scheme. For the MLS meth­
od, heat fluxes are considerably more convenient than 
temperatures since no iteration is Involved.

where m2 is the value of m2 from the previous itera­
tion and TJ is evaluated from conservation of energy. 
The ratio of the IHS of the equation is a strong func­
tion of J for a given value of n, and convergence has 
not been a problem.

In summary, for a specified heat flux problem, the 
similarity parameter n is determined directly from 
equation (28) or (29). For a uniform environmental 
fluid temperature, the similarity parameter J is equal 
to 0. Otherwise, the value of J is determined by 
iterating on equation (36). All the boundary layer 
parameters are uniquely determined by these values of n 
and J. For situations where similarity conditions are 
imposed, the similarity solutions are obtained. This 
is not the case for the approximate methods developed 
by Raithby, et al. (1975, 1977, 1978) and by Lee and 
Yovanovich (1987, 1988). For variable conditions where 
an exact similarity solution does not exist, the MLS 
method provides an estimate of "equivalent" similarity 
conditions including velocity and temperature profiles 
by requiring global conservation of energy and the same 
local heat flux at position x2.

In the above development, the heat flux variation 
is assumed to be specified. This situation is not 
always the case, as the temperature distribution is 
sometimes given. In order to calculate the similarity 
parameters, energy consistency between the specified 
problem and the MLS method is required. The integrated 
heat flux per unit width for constant properties is 
proportional to the following integral

Q - J q" dx oc J / AT5/4 x'1/4 dx (37) 

and the expression for n becomes

EVALUATION

The Modified Local Similarity (MLS) method derived 
above has been applied to a number of nonsimilar wall 
temperature and heat flux cases with uniform fluid 
temperature and to an isothermal plate in a stratified 
fluid environment. The results in this section compare 
the predictions from the MLS method with those from 
other approaches and, for the case of an isothermal 
plate in a stratified fluid, to experimental data. The 
results from another possible implementation of the 
local similarity approach in addition to the MLS method 
are also given. While the MLS method is based on con­
servation of energy as the boundary layer develops and 
matching the local heat flux, another reasonable ap­
proach would be matching the local value of the speci­
fied parameter (temperature difference or heat flux) as 
well as the local slope of that parameter. The predic­
tions from this method will be referred to as the LS* 
approach.

Uniform Fluid Temperature

For uniform fluid temperature conditions, the MLS 
and LS* methods have been applied to specified wall 
temperature and specified heat flux cases. Results of 
these cases for a number of other methods are summar­
ized by Yang, et al. (1982) for a Prandtl number of 0.7 
where the property term is assumed equal to 1.0, or

(-M-) - 1.0. (40)
Uv

In all these cases, the stratification parameter, J, is 
equal to 0. since the fluid temperature is uniform.

The results from the MLS method and the LS* ap­
proach will be compared to the following predictions.

n - | t4 ^ x2 / c (T^ T*) + Q) - 3] (38)

which, for xt and si! equal to 0. can be written

- 3],
/ .,5/4 3/41 . 4 *w AT2 x2

11 " 5 1 F .,5/4 -1/4■R (39)
AT dx

1. Numerical - as given by Kao, et al. (1977).
2. Kao LS - Kao, et al. (1977) local similarity.
3. Kao method - The method of Kao, et al. (1977) 

which is basically a perturbation approach.
4. Yang method - The method of Yang, et al. (1982) 

which is a series expansion approach.

Predictions from other methods, such as the integral 
approach, will also be Included where available.



Specified Surface Temperature. The comparisons 
are based on the temperature gradient at the surface 
which is related to the local heat transfer coeffi­
cient. In addition, the approximation of the tempera­
ture difference behavior is presented.

1) AT-ex. Figure 2a shows the desired temperature 
difference as well as the variation predicted by the 
MLS and LS* approaches. The predictions depend on n 
which itself is a function of x. Therefore, in Figure 
2a, two curves for the appropriate value of n corre­
sponding to the two x values of 0.5 and 2.0 are shorn 
for each approach. In general, the variation of the 
temperature difference is reasonably close to the de­
sired behavior. The temperature difference variation 
is well represented by both methods. The surface 
temperature gradient as a function of x is depicted in 
Figure 2b. The gradient is underpredicted by the MLS 
method by approximately 5». While the error is larger 
than the other methods, the magnitude is still rela­
tively small. For the LS* approach, a slight over­
prediction of the gradient, especially near the front 
of the plate, is noted. This behavior is also seen for 
the Kao LS method. Predictions for the Kao and Yang 
methods are not shown in this figure since both ap­
proaches yield predictions indistinguishable from the 
numerical results.

ULS APeROXMATION
lS*APPftOXaiAT»N

<1 4.0

>>0.5

Fig. 2a. Approximation of AT for AT - ex.

--------- KAO LS

Fig. 2b. Surface temperature gradient for AT - e*.

2) AT-sin x. The predicted surface temperature 
gradient as a function of x for a number of other meth­
ods is depicted in Figure 3. The Yang method gives 
excellent results up to an x value of 2.2 after which 
the method has convergence problems. The Kao method 
also gives good results out to an x value of 2.3; after

this point, the Kao method also no longer converges. 
The Kao local nonslmilarity (LNS) results are surpris­
ingly poor; only results to an x value of 2.0 are given 
by Kao (1976). The Kao LS results show reasonable 
agreement for the entire problem, although a systematic 
underprediction is evident.

<r> 0.4 VANG

KAOLS
KAO LNS

0.2 -

Fig. 3. Surface temperature gradient for AT - sin x. 
Results from other methods.

MLS APPROXBAATION
Lt*APPNOXaiATION

Fig. 4a. Approximation of AT for AT - sin x.

Results for the MLS and LS* power-law approaches 
are shown in Figure 4. The temperature difference is 
given in Figure 4a for n corresponding to x values of 
1.0 and 2.5. For small x values (<-<r/2), both methods 
give a good approximation of the sinusoidal temperature 
difference. For larger x values, the MLS distribution 
becomes increasingly poor since n becomes negative for 
x values greater than about 2.16. When n changes sign, 
the shape changes dramatically as shown in Figure 4a. 
No temperature difference variation is presented for 
the LS* method at an x value of 2.5 since the zero heat 
flux location is x-1.88 for this approach. From Figure 
4b, the temperature gradient is well predicted for 
small x values. For large x values, the MLS method 
overpredicts the temperature gradient and the location 
of zero heat flux, while the LS* approach underpredicts 
the results. While not as good as some of the other 
methods, the MLS approach is better than the LS* method 
and about the same as the Kao LS approach. This dis­
crepancy is not unexpected due to the poor approxima­
tion of the temperature difference behavior by the MLS 
method at large x values.



-------KAO LSOS -

Fig. 4b. Surface tenperature gradient for AT - sin x.

Specified Wall Heat Flux. The comparisons between 
the various methods are based on the wall to fluid 
temperature difference. In addition, the approximation 
of the heat flux behavior is presented.

1) q'/k-e*. The heat flux distribution for the 
MLS and LS* approaches is given in Figure 5a for n 
corresponding to x values of 0.5 and 2.0. In general, 
the heat flux variation is well represented by both 
methods. These conclusions are similar to those for 
the exponential temperature difference case discussed 
earlier. The surface temperature as a function of x is 
depicted in Figure 5b. The MLS and LS* methods both 
successfully predict the surface temperature variation 
with x. The predictions of the Kao and the Yang 
methods are not shown since they are indistinguishable 
from the numerical results. All the methods perform 
well for this case.

qVk • •'
MLS APeitOXMATION
LS* AePftOXMATON10 -

>-0.5

Fig. 5a. Approximation of q"/^ f°r q'/k - e*-

KAOLS

Fig. 5b. Temperature difference for q'/k “ e*-

2) q"/k-l+x. Figure 6a compares the heat flux 
variation for the power-law distribution to the desired 
variation for n corresponding to x values of 0.5 and 
3.0. As with a number of the previous cases, the heat 
flux behavior is reasonably well represented by both 
approaches. Figure 6b shows the temperature difference 
variation along the plate. The answers from the Kao 
method and the Yang method are not given since they 
essentially coincide with the numerical results. The 
results from the integral analysis as given by Sparrow 
(1955) are also shown. All methods give good predic­
tions for this case Including the integral method.

V >-3.0
>-0.5

MLS APPOOXIMATION
LS* ASPftOXMATION

Fig. 6a. Approximation of q'/k for q'/k - 1 + x.

— KAOLS
SAAKDOW MTEORAL
RESULTS

Fig. 6b. Temperature difference for q'/k - 1 + x.

3) q"/k-l-x. The predicted temperature difference 
variation along the plate for a number of different 
methods is given in Figure 7. The Kao and Yang methods 
diverge from the numerical solution for x values great­
er than about 0.5. The Kao LS method gives widely dif­
ferent results. The Integral results from Sparrow 
(1955) seem to be well behaved, although the results 
are only provided out to an x value of 0.5 due to the 
limited information presented by Sparrow.

Figure 8a gives the heat flux predictions for the 
MLS and LS* methods for n corresponding to x values of 
0.1 and 0.5. The behavior of both methods is not un­
reasonable, although significant differences can be 
seen between the approximation and the desired varia­
tion. Figure 8b shows the temperature difference 
results. The MLS method provides a reasonable pre­
diction for the surface temperature behavior; the re­
sults are superior to all the other methods based on



Stratified Fluid Temperature

numerical

YANG

KAO LS
SPARROW INTEGRAL

RESULTS

0.9 -

Fig. 7. Temperature difference for q"/k - 1 - x. 
Results from other methods.

comparison to the numerical predictions. The LS* pre­
dictions diverge like the Kao LS results.

x*o.s1-0.1
o.e -

0.4 -

------- MLS APPROXIMATION0.2 - --------- LS* APPROXIMATION

Fig. 8a. Approximation of q"/k for q"/k - 1 - x.

The stratified fluid temperature problem is an 
isothermal plate in a linearly stratified fluid as 
shown in Figure 9. The temperature difference between 
the plate and the fluid decreases linearly up the 
plate. A similar solution is not available for this 
problem. Chen and Elchhorn (1976) present an analysis 
of this problem using local similarity and local non­
similarity methods for their coordinate transformation. 
In addition, Chen and Elchhorn (1976) acquired heat 
transfer data for water with a nominal Prandtl number 
of 6.0. Raithby and Hollands (1978) have applied their 
approximate technique (Raithby, et al. (1975, 1977)) to 
this problem with good results.

THERMALLY-VERTICAL
PLATE STRATIFIED

FLUID

Fig. 9. Stratified fluid temperature problem.

Results for this problem are given in terms of the 
ratio of Nusselt numbers for the stratified fluid to 
that for an isothermal fluid as a function of the 
stratification parameter S, which is

S
L
AT"

dT.
dx (41)

When S<2, the entire plate is hotter than the fluid. 
For S>2, the bottom portion of the plate is hotter than 
the fluid while the top is colder.

-----------  MLS-PL

-----------KAO LS

1.2 -

1.0 -

Fig. 8b. Temperature difference for q’/k - 1 - x.

The MLS and LS* approaches have been used to ana­
lyze this case for Prandtl numbers of 0.7 and 6.0. 
Only the results for a Prandtl number of 6.0 are in­
cluded in this paper since this is the only case where 
data are available. The results for a Prandtl number 
of 0.7 are given in Uebb (1988b). For the LS* ap­
proach, the value of n is determined by matching the 
local temperature difference value and the local slope; 
the value of J is calculated by the appropriate fluid 
temperature variation equation.

Figure 10 gives the variation of the temperatures 
for n corresponding to an x value of 0.5. For both 
methods, the reference value of the fluid temperature, 
TI, is calculated by matching the temperatures at an x 
value of 0.5. The temperature variation for the MLS 
method is more reasonable than the LS* approach as the 
temperature difference is closer to the desired be­
havior. Both methods give an adequate, though certain­
ly not perfect, prediction of the temperature varia­
tion.



Fig. 10a. Approximation of AT for Stratified Fluid 
Case. (S-2).

Fig. 10b. Approximation of Tw and Tf for Stratified 
Fluid Case. (S-2).

Figure 11 shows the predicted value of the average 
Nusselt number for a stratified fluid over that for an 
isothermal fluid with the same average temperature dif­
ference for a Prandtl number of 6.0. The MLS predic­
tions are shown on this figure; results from the LS* 
method are not included as discussed below. The local 
similarity and local non-similarity (LNS) results are 
shown as well as the experimental data from Chen and 
Eichhorn (1976) . The predictions by Raithby and 
Hollands (1978) are also Included in the figure.

LOCALLOCAL SMILAMTY

lz 1.3
<er - S.0)

□ EXKMMENTAL DATA

Fig. 11. Variation of Nusselt Number with 
Stratification for Pr-6.0.

The MLS results were calculated for a number of 
discrete S values out to 2.0. For S>2, the predictions 
are based on an S1'* dependence as used by Chen and 
Eichhorn (1976) and Raithby and Hollands (1978). The 
MLS predictions show reasonable agreement with the data 
with a consistent overprediction of about 4». The 
local similarity results by Chen and Eichhorn (1976)

are much higher than the data with an error of about 
16%. The Raithby and Hollands predictions go right 
through the data, although their results are for a 
Prandtl number of 5.0, not 6.0. The LNS results show 
good agreement with the data with a small consistent 
underprediction. Overall, the MLS, Raithby and Hol­
lands , and LNS results are In good agreement with the 
data. The maximum difference between these methods is 
about 5%, while the uncertainty in the data is of this 
order, or ±3.2% for Nu and ±3.5% for S (Chen and Eich­
horn, 1976).

The LS* method performs poorly for this case. For 
a Prandtl number of 6.0 and an S value of 2.0, the wall 
is always as hot or hotter than the fluid. The LS* 
method predicts that the wall temperature gradient will 
change sign about 1/4 up the plate. For the first 1/4 
of the plate, heat is transferred from the hotter wall 
to the fluid. However, for the last 3/4 of the plate, 
heat is predicted to flow from the colder fluid to the 
hotter plate, which is unreasonable. Therefore, the 
LS* predictions are not shown on the figure.

SUMMARY AND CONCLUSIONS

The MLS method has been developed and evaluated 
for a number of nonsimilar temperature and heat flux 
cases for the power-law similarity distribution. For 
variable conditions where an exact similarity solution 
does not exist, the MLS method provides an estimate of 
•equivalent" similarity conditions including velocity 
and temperature profiles. This estimate is achieved by 
requiring global conservation of energy and the same 
local heat flux at position x2. In addition, another 
possible application of the local similarity approach, 
has been evaluated. This method, designated the LS* 
approach, matches the local value and local slope of 
the prescribed parameter whether it be temperature 
difference or heat flux. The MLS and LS* results have 
been compared to those from a number of other methods, 
including a numerical approach.

The predictions from the LS* approach vary from 
reasonable to absurd, so the LS* method is not a relia­
ble technique. The MLS method is not the most accurate 
approach as expected but is superior to the traditional 
local similarity approach. In addition, many of the 
other more complex approaches, such as the methods of 
Kao, et al. (1977) and of Yang, et al. (1982), have 
problems with certain cases such as the linearly de­
creasing heat flux situation and have not been applied 
to a nonuniform fluid temperature case. In contrast, 
all the MLS predictions are reasonable even where the 
more complex methods fail or no longer apply. Through 
the introduction of global conservation of energy, the 
MLS method has significantly improved the predictive 
capability of the local similarity approach and may be 
superior to more complex methods.

The MLS method is not without its problems. For 
specified temperature cases, iteration is required 
which violates the local similarity assumption. How­
ever, in most practical cases, temperatures and heat 
fluxes are related through heat conduction in the wall, 
and the more convenient variable can be used. Use of 
heat flux information permits use of the MLS method on 
a local basis consistent with the local similarity ap­
proach.

Where computing times are a major constraint, as in 
the analysis of natural convection in SPR caverns (Webb 
(1988a)), standard techniques such as finite differences



and local nonsimilarity are Impractical. In this case, 
the approximate results provided by the MLS method 
should usually provide reasonable results with minimal 
computing time. Thus, the MLS method Is a useful ap­
proximate tool for natural convection analysis for ana­
lyzing vertical plates for nonsimilar conditions.
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