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ABSTRACT

An approximate method has been developed to ana-
lyze natural convection along a vertical flat plate
with variable surface conditions and temperature strat-
ification. This method uses the boundary layer veloci-
ty and temperature profiles from the local similarity
method and imposes explicit conservation of energy
along the plate resulting in required relationships for
the similarity parameters for energy conservation. The
results from this Modified Local Similarity (MLS) meth-
od are compared to those from other methods for a num-
ber of nonsimilar natural convection problems. Based
on these comparisons, the MLS method is a significant
improvement to the local similarity approach and is a
useful approximate tool for analyzing natural convec-
tion on vertical surfaces for nonsimilar conditions.

NOMENCLATURE
A area
¢, specific heat
f' wvelocity similarity variable

g gravitational constant

Gry Grashof number based on x

J stratification similarity parameter
LS local similarity

m mass flow rate per unit width

n temperature difference similarity parameter
N  temperature difference constant

PL Power Law Distribution

Pr Prandtl number

q" heat flux

Q integrated heat flux per unit width
AT temperature difference, T, - Tg

T temperature
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under contract DE-AC04-76DP00789.
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x-direction velocity
y-direction velocity

width of plate

difference in x, x; - X,
distance along plate surface
distance normal to plate surface
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thermal diffusivity

coefficient of thermal expansion

boundary layer thickness

dimensionless coordinate

viscosity

kinematic viscosity

density

dimensionless temperature

Subscripts
1  value at position x;

2 value at position x,

12 wvalue between x; and x,

D TR I wmR

f fluid

r reference

w wall
Superscripts

-  average value
' derivative with respect to n
* entrainment or ejected value

INTRODUCTION

Natural convection along vertical surfaces occurs
in the more than 50 oil-filled caverns in the Strategic
Petroleum Reserve (SPR). These caverns are located in
a number of large salt domes where the geothermal
temperature difference over the cavern height of up to
600 m can be 15°C or more. The hotter salt is located
at the bottom of the cavern; this configuration causes
natural convection in the enclosed fluids as a result
of buoyancy forces. Due to the large length scale,
highly turbulent boundary layer conditions will be en-
countered with Rayleigh numbers up to approximately
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1016, Since the heat transfer between the salt and the
fluids in the cavern is coupled, heat transfer to the
oil and the resulting natural convection can occur dur-
ing the entire anticipated storage period of up to 30
years. SPR cavern wall conditions are nonuniform due
to the geothermal temperature difference. 1In addition,
the fluid temperature is nonuniform owing to the ther-
mal stratification of the o0il. Thus, the wall condi-
tions and the ambient fluid temperature are both vari-
able. In order to efficiently evaluate the natural
convection boundary layer behavior in each cavern, a
rapid analysis technique is needed.

The methods in general use for the analysis of
natural convection are the integral (Sparrow, 1955),
similarity, local similarity, local nonsimilarity
(Sparrow, et al., 1970, 1971 and Minkowycz and Sparrow,
1974), and finite difference approaches (Cebeci and
Bradshaw, 1984). In addition, approximate methods have
been developed by Raithby, et al. (1975, 1977, 1978),
Kao, et al. (1977), Yang, et al. (1982), and Lee and
Yovanovich (1987, 1988).

The integral method could be used, although the
assumed profiles are a problem for turbulent flow con-
ditions. The wall and fluid temperature variations
preclude direct use of the similarity solutions. The
local similarity method, which applies the similarity
solutions based only on the local boundary conditionms,
would be appropriate for SPR since the boundary layer
results can be tabulated for use at each time step;
therefore, the resulting calculations would be fast.
However, the method does not consider the history of
the boundary layer, and errors in the heat transfer
rate can be significant even for simple cases. Local
nonsimilarity and finite difference methods are im-
practical due to long estimated computing times for the
30 year transient involved.

Approximate methods have been proposed by a number
of authors. However, the methods developed by Raithby,
et al. (1975, 1977, 1978) and Lee and Yovanovich (1987,
1988) were not considered for use in SPR since neither
method reduces to the similarity solutions for similar
boundary conditions. Differences of up to 20% have
been noted. The methods developed by Kao, et al.
(1977) and by Yang, et al. (1982), approach the local
nonsimilarity method in complexity and were therefore
not considered.

If the heat transfer rate errors noted for the
local similarity approach can be significantly reduced,
the method would be ideal for SPR. The present study
attempts to minimize this problem by modifying the
local similarity approach to explicitly conserve energy
as the boundary layer develops along the surface. This
Modified Local Similarity (MLS) approach is developed
and compared to results from other methods in this
paper. This method is used in the SPR velocity model
developed by Webb (1988a).

FORMULATION

Consider natural convection boundary layer flow
along a flat plate as depicted in Figure 1. The bound-
ary layer energy equation can be integrated along the
plate using the local boundary layer velocity and
temperature profiles. This equation must be satisfied
for global energy conservation. In the present study,
the boundary layer profiles used in this equation are
calculated by the local similarity method. The local
similarity method has two parameters which are mathe-

matical descriptions of the temperature variation along
the plate and in the surrounding fluid. 1In addition to
being mathematical parameters, these variables have
physical significance with regard to conservation of
energy. The global energy conservation equation, which
must be satisfied, can be written in terms of the local
similarity parameters. Relationships for the two local
similarity parameters can then be developed to explic-
itly satisfy energy conservation.
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Fig. 1. Boundary layer coordinates.

For example, if the wall heat flux and fluid
temperature variation are known, the use of the local
similarity profiles in the global energy conservation
equation results in a required variation of the two
similarity parameters. If these relationships are
satisfied, global energy conservation is achieved.
This approach is called the MLS method and is detailed
below.

Global Energy Equation

Conservation of energy along the plate per unit
width can be written as

. - * ] . - *
m1 cp (T1 - Tf) + q12 AX = m2 cp (T2 - Tf) (1)

where
X2
‘.l“ - 1__ q' dx (2)
12 Ax x

b

and T; is the average temperature of the fluid en-
trained into or ejected from the boundary layer between
x, and x;. The value of T; is then equal to T; at
location x*. In the present analysis, the MLS approach
results in a relationship for x* based on energy con-
servation considerations. Note that the fluid specific
heat, ¢, is assumed to be constant.

The average temperature of the entrained or
ejected fluid will be assumed equal to the local
environmental fluid temperature for this analysis. For
Prandtl number fluids of order 1.0 and higher, such as
air, water, and oil, the velocity boundary layer thick-
ness is larger than the the thermal boundary layer, so



any fluid exchange will be at the environmentsl
temperature. This assumption breaks down for low
Prandtl number fluids such as liquid metals where the
similarity solution gives a larger thermal boundary
layer than velocity boundary layer (Gebhart, 1985).

The average boundary layer temperature, T, to be

used in equation (1) is simply the bulk fluid tempera-
ture at that location, or

u T dy

u dy
which for the present analysis is rewritten as

Ju (T - Tg(x)) dy
. (4)
I u dy

Combining the equations (1) and (4) results in

T = Tp(x) +

* -
c (T1 - Tf) + q12 Ax

17
* J u (T - Te(x)) dy
(’rf - 'rf +

2 J u dy

!

2 cp

(5)

where the integrals in equation (5) are evaluated at
X,. The above equation is general; any restrictions as
to the orientation, etc. are from evaluation of the
boundary layer velocity and temperature profiles.
These profiles will be based on local similarity.

MLS Method

The boundary layer profiles in this study are for
laminar natural convection over a nonisothermal verti-
cal flat plate in a variable temperature fluid medium.
Invoking the Boussinesq approximation with otherwise
constant properties and neglecting viscous dissipation
and the pressure-work term, the steady-state conserva-
tion equations are (Jaluria, 1980)

Continuity
du av
ax * ay =0 (6)
x-Momentum
du du 62u
u—tv 3y -g B (T - Tf(x)) + v 5 (7)
8y
Energy
I R SR o 8
ax ay 8y2

The above conservation equations can be integrated
across the boundary layer resulting in

Momentum
d 2 - . . du
&= I u dy -g 8 I (T Te(x)) dy - v 3y 9)

w

Energy

a aTe
- J u (T - Tf(x)) dy + ax I u dy

--a gr | (10)
yw

where the second term on the LHS of the energy equation
accounts for temperature stratification.

Two energy equations are considered in the present
analysis. The global energy equation (5) is concerned
with the energy in the boundary layer as it develops
along the plate. The local energy equation (10) is
related to the energy in the boundary layer at location
x only. Both equations must be satisfied. Similaricy
variables will be used to rewrite the energy equations.
These equations will then be combined to lead to rela-
tionships for the similarity variables that must be
satisfied for global and local energy conservation.

According to Sparrow and Gregg (1958) and Yang
(1960), similarity exists for two temperature distri-
butions: the power-law and the exponential distribu-
tions. The power-law distribution is the more useful
case and is discussed in this paper. Results for the
exponential distribution are given by Webb (1988b).

For the power-law distribution, the temperature

difference between the wall and fluid is a function of
the distance x to a power, or

AT(x) = T _(x) - Tg(x) = N x", (11)

For similarity, the fluid temperature variation must be
of the same form, or (Jaluria, 1980)

J J

Tf(x) - Tr -~ X = n AT(X) (12)
where the reference temperature, T,, is the fluid
temperature at x = 0. If the fluid temperature is con-

stant, J is equal to 0.

The similarity variables for this case are (Geb-
hart and Mollendorf, 1969)

' X -1/2
f = 3 v er u. (13)
i A er e
-l as
T(x) - Tf(x)
6(n) ——Tw(x) - Tf(x) (15)
where
3
g8 X (T (X) - To(x)
Cr = (16)
b y2

Using the similarity variables and assuming local
similarity, the boundary layer partial differential
equations (6)-(8) reduce to a set of coupled ordinary
differential equations which are (Jaluria, 1980)

rer e '2
f + (n+3)ff -2 n+1)f +6=0 (17)
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so the boundary layer velocity and temperature profiles
are a function of the similarity parameters n and J.

The above equations have been solved by a finite dif-
ference method as summarized by Webb (1989).

Expressing the fluid temperature difference in
terms of the similarity parameter J gives

. J AT2

*
% .n
£ £ 7. - (—;;) ). (19)

Using the similarity parameters along with equa-
tion (19), the global energy equation (5) becomes

o " * "
m1 cp (T1 - Tf) + ql2 Ax

3 x* n f'ﬂ dn
=m, c_ (7= (1 - (")) + ; ) &T
2 7p 4n X, £ dn

2 (20)

The mass flow rate per unit width can be expressed
in terms of the local similarity variables as

hepud / W=0p u s

-4y J £ dn (—5—;-‘—)1/“ %374 arl/%, (21)
4y

The heat flux relationship

--k4
w

(—E—‘g—)l/“ a1?/4 M4 (22)
4y

can be used to get the temperature difference as a
function of x, and the mass flow rate per unit width is

PRPE j £ag (BL)02,08 (9 02y
4y -k 8

w
The global energy equation (20) then becomes

; S a

m e (T - T + gy &x

L]

. q,
-hPrdeq( —)
-8
w
* £6 dn
J X .n
(77— @1 - (—)) + ; ) x,. (24)
4 n x, £ dn 2

Using the similarity variables in the integrated
local boundary layer equations (9) and (10) results in
the following equations for the boundary layer quanti-
ties under the assumption of local similarity

Momentum

12 '
(5+3n)Jf dq-Iadq-fw (25)

Energy

, 6 )
(5n+3).|l£0dr]---l-,:—-.1.[f dn. (26)

Rearranging the local boundary layer energy equa-

tion (26) and substituting it into the global energy
equation (24) results in

. A * -" "
(ml Cp (Tl - Tf) + q12 Ax) / (qz xz)

*
_%_ a - (-ﬁ;)“) + 4 I £ 0dn/ J £ dn

; ; (27)
J+(5n+3)Jf odq/_[f dn

The similarity parameter n is independent of J.
Therefore, from equation (27), the expression for n is

1 " . - * "
ne-g [4 9, x2/ (m1 cp (Tl- Tf) + 9,4 ax) - 3]. (28)

Taking x, at the leading edge of the plate (x;=0.)
with no initial mass flow rate, which is usually the
case, then A&x=x,, and the equation for n simplifies to

1 n on

The value of the similarity parameter n is just a func-
tion of the ratio of the local to the average heat flux
up to that point.

Similarly, from equations (27) and (28),

4n 1/n
TGne (30)

* 1
X =%, {
The fluid temperature evaluated at x* is that required
for global energy conservation.

Surprisingly, the stratification parameter, J, is
independent of global conservation of energy. Instead,
the value of J is determined by the local value of the
heat flux, qi. Equating equations (1) and (28) gives

4 "

= *
T T " Gae s 2% G

my cp (Tp - Tg) =
where the values on the RHS are known. This equation
includes the effect of temperature stratification on
the local energy balance. Using the relationships de-
veloped above for m and AT, the equation can be

written as

If'dn Jf'0 dn
A a

*
+ T, -T.) = A, (32)
1 r.0.2 2 ' *.0.8 £ f 3
(-Gw) jf dn (-ow) 2
where
q
- g8 .0.2 0.8 2 0.2
Ay 4 cP u( auz ) x, (_E__) (33)

_ (8B .,02 02 92 o8
Ay m o) TR ) (34)
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For uniform fluid conditions, T, is equal to Tg, and
the above expression reduces to the local integrated
energy equation with J equal to zero. As discussed
earlier, the boundary layer parameters in the above ex-
pression are dependent on the similarity parameters n
and J. Since the value of n is determined by equation
(28) or (29), the only undefined parameter is J.

Solution of the equation (32) for J initially
looks difficult. In practice, however, solution is
straightforward and, for the present investigation, has
been accomplished by iterating on the form

£ 4 A, -atte (T, - TH
" 37 % % Ve, T e
; - - (36)
- 0w 4 Pr q, X,

where ﬁi'l is the value of m, from the previous itera-
tion and T; is evaluated from conservation of energy.
The ratio of the LHS of the equation is a strong func-
tion of J for a given value of n, and convergence has
not been a problem.

In summary, for a specified heat flux problem, the
similarity parameter n 1s determined directly from
equation (28) or (29). For a uniform environmental
fluid temperature, the similarity parameter J is equal
to 0. Otherwise, the value of J 1is determined by
iterating on equation (36). All the boundary layer
parameters are uniquely determined by these values of n
and J. For situations where similarity conditions are
imposed, the similarity solutions are obtained. This
is not the case for the approximate methods developed
by Raithby, et al. (1975, 1977, 1978) and by Lee and
Yovanovich (1987, 1988). For variable conditions where
an exact similarity solution does not exist, the MLS
method provides an estimate of "equivalent” similarity
conditions including velocity and temperature profiles
by requiring global conservation of energy and the same
local heat flux at position x,.

In the above development, the heat flux variation
is assumed to be specified. This situation is not
always the case, as the temperature distribution is
sometimes given. In order to calculate the similarity
parameters, energy consistency between the specified
problem and the MLS method is required. The integrated
heat flux per unit width for constant properties is
proportional to the following integral

qQ - I q dx « I 0 ar/4 V8 ax (a7
and the expression for n becomes
g, i T,- To) + 3 38
n 5 [ q2 x2 / (ml cp ( 1' f) Q) = ] ( )
which, for x; and m; equal to 0. can be written as

! S/4 _3/4
o 1 4 ﬂw AT2 X,

[ : -
5 I 'w ATS/Ax 1/4dx

- 3], (39)

The temperature gradient for a given Prandtl number is
only a function of n and J, so iteration is required on
this equation and, when necessary, equation (39) for J.

For specified surface temperatures, the MLS method
is not a local similarity approach since the answer at
x depends on the results at the upstream locations.
Iteration is required for the variation of the similar-
ity parameters with x. However, this iteration is
easily accomplished since the only term that depends on
n and J is §,, and convergence is rapid for the cases
analyzed in this report.

While specified temperatures are a convenient ana-
lytical case, the wall temperature and wall heat fluxes
are usually coupled to each other through heat conduc-
tion, and either the wall temperature or the heat flux
can be used in the solution scheme. For the MLS meth-
od, heat fluxes are considerably more convenient than
temperatures since no iteration is involved.

EVALUATION

The Modified Local Similarity (MLS) method derived
above has been applied to a number of nonsimilar wall
temperature and heat flux cases with uniform fluid
temperature and to an isothermal plate in a stratified
fluid environment. The results in this section compare
the predictions from the MLS method with those from
other approaches and, for the case of an isothermal
plate in a stratified fluid, to experimental data. The
results from another possible implementation of the
local similarity approach in addition to the MLS method
are also given. While the MLS method is based on con-
servation of energy as the boundary layer develops and
matching the local heat flux, another reasonable ap-
proach would be matching the local value of the speci-
fied parameter (temperature difference or heat flux) as
well as the local slope of that parameter. The predic-
tions from this method will be referred to as the LS*
approach.

Uniform Fluid Temperature

For uniform fluid temperature conditions, the MLS
and LS* methods have been applied to specified wall
temperature and specified heat flux cases. Results of
these cases for a number of other methods are summar-
ized by Yang, et al. (1982) for a Prandtl number of 0.7
where the property term is assumed equal to 1.0, or

(—5—5—) -1.0. (40)
4y

In all these cases, the stratification parameter, J, is
equal to 0. since the fluid temperature is uniform.

The results from the MLS method and the LS* ap-
proach will be compared to the following predictions.

1. Numerical - as given by Kao, et al. (1977).

2. Kao 1S - Kao, et al. (1977) local similarity.

3. Kao method - The method of Kao, et al. (1977)
which is basically a perturbation approach.

4. Yang method - The method of Yang, et al. (1982)
which is a series expansion approach.

Predictions from other methods, such as the integral
approach, will also be included where available.



The comparisons
are based on the temperature gradient at the surface
which is related to the local heat transfer coeffi-
cient, 1In addition, the approximation of the tempera-
ture difference behavior is presented.

1) AT=e*. Figure 2a shows the desired temperature
difference as well as the variation predicted by the
MLS and LS* approaches. The predictions depend on n
which itself is a function of x. Therefore, in Figure
2a, two curves for the appropriate value of n corre-
sponding to the two x values of 0.5 and 2.0 are shown
for each approach. In general, the variation of the
temperature difference is reasonably close to the de-
sired behavior. The temperature difference variation
is well represented by both methods. The surface
temperature gradient as a function of x is depicted in
Figure 2b. The gradient is underpredicted by the MLS
method by approximately 5%. While the error is larger
than the other methods, the magnitude is still rela-
tively small. For the LS* approach, a slight over-
prediction of the gradient, especially near the front
of the plate, is noted. This behavior is also seen for
the Kao LS method. Predictions for the Kao and Yang
methods are not shown in this figure since both ap-
proaches yield predictions indistinguishable from the
numerical results.

AT=0"
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Fig. 2a. Approximation of AT for AT = er
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Fig. 2b. Surface temperature gradient for AT = e~
2) AT=sin x. The predicted surface temperature

gradient as a function of x for a number of other meth-
ods is depicted in Figure 3. The Yang method gives
excellent results up to an x value of 2.2 after which
the method has convergence problems. The Kao method
also gives good results out to an x value of 2.3; after

this point, the Kao method also no longer converges.
The Kao local nonsimilarity (LNS) results are surpris-
ingly poor; only results to an x value of 2.0 are given
by Kao (1976). The Kao LS results show reasonable
agreement for the entire problem, although a systematic
underprediction is evident.

o8 T T =T T T
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0.0
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Fig. 3. Surface temperature gradient for AT = sin x.

Results from other methods.
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Fig. 4a. Approximation of AT for AT = sin x.

Results for the MLS and LS® power-law approaches
are shown in Figure 4. The temperature difference is
given in Figure 4a for n corresponding to x values of
1.0 and 2.5. For small x values (<~x/2), both methods
give a good approximation of the sinusoidal temperature
difference. For larger x values, the MLS distribution
becomes increasingly poor since n becomes negative for
x values greater than about 2.16. When n changes sign,
the shape changes dramatically as shown in Figure 4a.
No temperature difference variation is presented for
the LS* method at an x value of 2.5 since the zero heat
flux locstion is x~1.88 for this approach. From Figure
4b, the temperature gradient is well predicted for
small x values. For large x values, the MLS method
overpredicts the temperature gradient and the location
of zero heat flux, while the LS* approach underpredicts
the results. While not as good as some of the other
methods, the MLS approach is better than the LS* method
and about the same as the Kao LS approach. This dis-
crepancy is not unexpected due to the poor approxima-
tion of the temperature difference behavior by the MLS
method at large x values.
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w The comparisons between
the various methods are based on the wall to fluid
temperature difference. In addition, the approximation
of the heat flux behavior is presented.

1) q"/k=ex. The heat flux distribution for the
MLS and LS* approaches is given in Figure 5a for n
corresponding to x values of 0.5 and 2.0. In general,
the heat flux variation 1is well represented by both
methods. These conclusions are similar to those for
the exponential temperature difference case discussed
earlier. The surface temperature as a function of x is
depicted in Figure 5b. The MLS and LS* methods both
successfully predict the surface temperature variation
with x. The predictions of the Kao and the Yang
methods are not shown since they are indistinguishable
from the numerical results. All the methods perform
well for this case.

12 - q/k=e*
— === MLS APPROXIMATION
—— e L§* APPROXMATION

10 +

q"/k
[ ]
T

Y

4“r 7
2
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-
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Fig. 5a. Approximation of q'/k for q'/k = eX.
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Fig. 5b. Temperature difference for q'/k = e*.

2) q"/k=l+x. Figure 6a compares the heat flux
variation for the power-law distribution to the desired
variation for n corresponding to x values of 0.5 and
3.0. As with a number of the previous cases, the heat
flux behavior is reasonably well represented by both
approaches. Figure 6b shows the temperature difference
variation along the plate. The answers from the Kao
method and the Yang method are not given since they
essentially coincide with the numerical results. The
results from the integral analysis as given by Sparrow
(1955) are also shown. All methods give good predic-
tions for this case including the integral method.

40 r
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q/k

/ — QKX
/ —— LS APPROXIMATION
=== L8* APPROXIMATION
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00 & i 1 J
0.0 10 2.0 3.0
x
Fig. 6a. Approximation of q'/k for q'/k = 1 + x.
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RESULTS
3 7
2 1
1 -
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0.0 0.5 1.0 15 2.0 25 3.0
x
Fig. 6b. Temperature difference for q'/k = 1 + x.
3) q"/k=1-x. The predicted temperature difference

variation along the plate for a number of different
methods is given in Figure 7. The Kao and Yang methods
diverge from the numerical solution for x values great-
er than about 0.5. The Kao LS method gives widely dif-
ferent results. The integral results from Sparrow
(1955) seem to be well behaved, although the results
are only provided out to an x value of 0.5 due to the
limited information presented by Sparrow.

Figure 8a gives the heat flux predictions for the
MLS and LS* methods for n corresponding to x values of
0.1 and 0.5. The behavior of both methods is not un-
reasonable, although significant differences can be
seen between the approximation and the desired varia-
tion. Figure 8b shows the temperature difference
results. The MLS method provides a reasonable pre-
diction for the surface temperature behavior; the re-
sults are superior to all the other methods based on
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Results from other methods.

comparison to the numerical predictions.
dictions diverge like the Kao LS results.
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Fig. 8b. Temperature difference for q"/k = 1 - x.

Stratified Fluid Temperature

The stratified fluid temperature problem is an
isothermal plate in a linearly stratified fluid as
shown in Figure 9. The temperature difference between
the plate and the fluid decreases linearly up the
plate. A similar solution is not available for this
problem. Chen and Eichhorn (1976) present an analysis
of this problem using local similarity and local non-
similarity methods for their coordinate transformation.
In addition, Chen and Eichhorn (1976) acquired heat
transfer data for water with a nominal Prandtl number
of 6.0. Raithby and Hollands (1978) have applied their
approximate technique (Raithby, et al. (1975, 1977)) to
this problem with good results.

x4

4 \ °

ZVERTICAL THERMALLY- =0 T
PLATE STRATIFIED
FLUID
Fig. 9. Stratified fluid temperature problem.

Results for this problem are given in terms of the
ratio of Nusselt numbers for the stratified fluid to
that for an isothermal fluid as a function of the
stratification parameter S, which is

L de
= 3T & (41)
When S<2, the entire plate is hotter than the fluid.

For §>2, the bottom portion of the plate is hotter than
the fluid while the top is colder.

The MLS and LS* approaches have been used to ana-
lyze this case for Prandtl numbers of 0.7 and 6.0.
Only the results for a Prandtl number of 6.0 are in-
cluded in this paper since this is the only case where
data are available. The results for a Prandtl number
of 0.7 are given in Webb (1988b). For the LS* ap-
proach, the value of n is determined by matching the
local temperature difference value and the local slope;
the value of J is calculated by the appropriate fluid
temperature variation equation.

Figure 10 gives the variation of the temperatures
for n corresponding to an x value of 0.5. For both
methods, the reference value of the fluid temperature,
T,, is calculated by matching the temperatures at an x
value of 0.5. The temperature variation for the MLS
method is more reasonable than the LS* approach as the
temperature difference is closer to the desired be-

havior. Both methods give an adequate, though certain-
ly not perfect, prediction of the temperature varia-
tion.
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Figure 11 shows the predicted value of the average
Nusselt number for a stratified fluid over that for an
isothermal fluid with the same average temperature dif-
ference for a Prandtl number of 6.0. The MLS predic-
tions are shown on this figure; results from the LS*
method are not included as discussed below. The local
similarity and local non-similarity (INS) results are
shown as well as the experimental data from Chen and
Eichhorn (1976). The predictions by Raithby and
Hollands (1978) are also included in the figure.
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Fig. 11. Variation of Nusselt Number with

Stratification for Pr=6.0.

The MLS results were calculated for a number of
discrete S values out to 2.0. For $>2, the predictions
are based on an S¥* dependence as used by Chen and
Eichhorn (1976) and Raithby and Hollands (1978). The
MLS predictions show reasonable agreement with the data
with a consistent overprediction of about 4%. The
local similarity results by Chen and Eichhorn (1976)

are much higher than the data with an error of about
16%. The Raithby and Hollands predictions go right
through the data, although their results are for a
Prandtl number of 5.0, not 6.0. The LNS results show
good agreement with the data with a small consistent
underprediction. Overall, the MLS, Raithby and Hol-
lands, and LNS results are in good agreement with the
data. The maximum difference between these methods is
about 5%, while the uncertainty in the data is of this
order, or *3.2% for Nu and %3.5% for S (Chen and Eich-
horn, 1976).

The LS* method performs poorly for this case. For
a Prandtl number of 6.0 and an S value of 2.0, the wall
is always as hot or hotter than the fluid. The LS*
method predicts that the wall temperature gradient will
change sign about 1/4 up the plate. For the first 1/4
of the plate, heat is transferred from the hotter wall
to the fluid. However, for the last 3/4 of the plate,
heat is predicted to flow from the colder fluid to the
hotter plate, which is unreasonable. Therefore, the
LS* predictions are not shown on the figure.

SUMMARY AND CONCLUSIONS

The MLS method has been developed and evaluated
for a number of nonsimilar temperature and heat flux
cases for the power-law similarity distribution. For
variable conditions where an exact similarity solution
does not exist, the MLS method provides an estimate of
"equivalent” similarity conditions including velocity
and temperature profiles. This estimate is achieved by
requiring global conservation of energy and the same
local heat flux at position x;. In addition, another
possible application of the local similarity approach,
has been evaluated. This method, designated the LS*
approach, matches the local value and local slope of
the prescribed parameter whether it be temperature
difference or heat flux. The MLS and LS* results have
been compared to those from a number of other methods,
including a numerical approach.

The predictions from the LS* approach vary from
reasonable to absurd, so the LS* method is not a relia-
ble technique. The MLS method {s not the most accurate
approach as expected but is superior to the traditional
local similarity approach. In addition, many of the
other more complex approaches, such as the methods of
Kao, et al. (1977) and of Yang, et al. (1982), have
problems with certain cases such as the linearly de-
creasing heat flux situation and have not been applied
to a nonuniform fluid temperature case. In contrast,
all the MLS predictions are reasonable even where the
more complex methods fail or no longer apply. Through
the introduction of global conservation of energy, the
MLS method has significantly improved the predictive
capability of the local similarity approach and may be
superior to more complex methods.

The MLS method is not without its problems. For
specified temperature cases, iteration is required
wvhich violates the local similarity assumption. How-
ever, in most practical cases, temperatures and heat
fluxes are related through heat conduction in the wall,
and the more convenient variable can be used. Use of
heat flux information permits use of the MLS method on
a local basis consistent with the local similarity ap-
proach.

Where computing times are a major constraint, as in
the analysis of natural convection in SPR caverns (Webb
(1988a)), standard techniques such as finite differences



and local nonsimilarity are impractical. 1In this case,
the approximate results provided by the MLS method
should usually provide reasonable results with minimal
computing time. Thus, the MLS method is a useful ap-
proximate tool for natural convection analysis for ana-
lyzing vertical plates for nonsimilar conditions.
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