DISCLAIMER

ncy of the United States
thereof, nor any of their

This report was prepared as an account of work sponsored by an age

Government.

Neither the United States Government nor any agency

al liability or responsi-

or assumes any leg

ess or implied,

employees, makes any warranty, expr

bility for the accuracy,

apparatus, product, or

or usefulness of any information,

hat its use would not i

completeness,

hts. Refer-
trademark,

nfringe privately owned rigl
or imply its endorsement, recom-

process, or service by trade name,

ly constitute

or favoring by the United States Government o

and opinions of authors expressed herei
United States Government or any agency ¢

process disclosed, or represents t

1 product,

ence herein to any specific commercia

manufacturer, or otherwise does not necessari

mendation,

r any agency thereof. The views
ly state or reflect those of the

n do not necessari

hereof.

under contract DE-AC05-840R21400 with Martin Marietta Energy Systems, Inc. ,.

Computing the Hough Transform

on an MIMD Hypercube*

Kevin W. Bowyer
University of South Florida
Tampa, FL

Judson P. Jones

Oak Ridge National Laboratory

Oak Ridge, TN

Christopher H. Lake
University of South Florida
Tampa, FL

“The submitted manuscript
authored by =a contractor
Government under
AC05.840R21400.
Government

has
of the
contract
Accordingly,

been
uU.s.
DE-
the U.S.
retains a nonexclusive,
royalty-free license to publish or reproduce
the published form of this contribution, or

allow others to do so, for U.S. Government
purposes.”

LS00/ 7

CBSAR-8972%

Engineering Physics and Mathematics Division

Reeiund B 02T,

JUL 10 1989

CONF-8906167--1

DE89 013920

Paper to be presented at the 6th Scandanavian Image Analysis Conference in Oulu, Fin-
land, June 19-22, 1989

* Research supported by the University of South Florida by Air Force Office of Scientific
Research grant AFOSR-89-0036 and National Science Foundation grant IRI-8817776 and at
Oak Ridge National Laboratory by the Office of Nuclear Energy, the Office of Technology
Support Programs and the Office of Basic Energy Science, U.S. Department of Energy,

DISTRIBUTIC: ¢

FTHIS DOCUMENT ¢

-

¥ 5
S
x

&8 }5“{ ER

P

S UNLIMITED



DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.



Computing the Hough Transform on an MIMD Hypercube!

Kevin W. Bowyer
Department of Computer Science and Engineering
University of South Florida
Tampa, Florida 33620
kwb@usf.edu

Judson P. Jones
Engineering Physics and Mathematics Division
Oak Ridge National Laboratory
Oak Ridge, Tennessce 37831-6364"
Jjov@stc10.ctd.ornl.gov

Christopher H. Lake
Department of Computer Science and Engineering
University of South Florida

Abstract. The computational expense of Hough transforms has prompted researchers to investigate
the feasibility of parallel implementations. Most such work to date has dealt with special-purpose archi-
tectures or with implementations for SIMD machines such as the MPP or GAPP. This report considers
the problem of efficiently implementing Hough transforms on an MIMD hypercube architecture. Be-
ginning with a general analysis of how the data structures might be partitioned to allow a parallel
computation, we formulate algorithm and data structure partitioning strategies appropriate to the ar-
chitecture and then discuss modifications to optimize the performance for a particular hypercube system

(the NCUBE). We also present the results of implementing and benchmarking Hough transforms on a
64-processor NCUBE.

1 Introduction

Since its introduction over 25 years ago, the Ilough transform has become an important and widely-used
tool in computer vision. In view of the large volume of literature dealing with Hough transforms, we
do not attempt any comprehensive review here. Instead, we direct the interested reader to two recent
survey articles [10, 22].

Due to the computational expense of Hough transforms, researchers have naturally been interested in
the possibility of parallel implementation. Illingworth and Kittler {10] cite eleven studies concerned with
parallel implementations. Most of tliese studies focus on single-instruction multiple-data (SIMD) mesh
architectures {3, 5, 13, 18, 21], others discuss special purpose and/or VLSI architectures (1, 4, 8, 16}, one
deals with an SIMD hypercube [14] and another with a switch-based multiple-instruction multiple-data
(MIMD) architecture [15). Wahl [22] cites a number of further studies on special purpose and/or VLSI
architectures (2, 7, 12, 19, 20], and with tree-structured SIMD machines [9]. In addition, Rosenfeld [17]
presents some initial results of the first DARPA Image Understanding Architectures (IUA) benchmark,
of which the Hough transform is one task, and initial results of implementing the Hough transform on an
MIMD hypercube are discussed in [11]. The purpose of this report is to present a more detailed analysis
of the problems in efficiently implementing the Ilough transform on an MIMD hypercube architecture.

! Research supported by the University of South Florida by Air Force Office of Scientific
Research grant AFOSR-89-0036 and National Science Foundation grant IRI-8817776 and at
Oak Ridge National Laboratory by the Office of Nuclear Energy, the Office of Technology
Support Programs and the Office of Basic Energy Science, U.S. Department of Energy,
under contract DE-AC05-840R21400 with Martin Marietta Energy Systems, Inc.



2 The Hough Transform Benchmark

The general sequence of steps involved in applying the Hough transform is: 1) detect edges in the
original image to obtain a binary image where each pixel is marked as edge or not edge, 2) compute
the transform itself: for each edge pixel, increment a set of accumulator bins in Hough space which
correspond to possible parameterizations of a shape on which the edge pixel would be found, 3) select
local maxima in Hough space, which should correspond to those instances of a parameterized shape
(canonically, straight lines) which actually appear in the image. Since the number of possible instances
of a shape which could give rise to the observed edge pixel is typically large, the computation of the
transform itself (step 2), is generally much more expensive than the other two steps. Consequently, we
will concentrate on this step.

The two major data structures involved in computing the Hough transform are: 1) the binary
image of edge pixels and 2) the Hough space. Computing the transform can be viewed as a (possibly
interleaved) two-stage process. First, the binary image must be scanned for edge pixels. Second, for
each edge pixel, the appropriate locations in Hough space must be incremented.

As a first example, let us consider the Hough transform for lines as defined in the IUA benchmark.
In this benchmark, a 512 x 512 binary image is assumed as input, with the origin assumed to lie in the
lower left corner. The ”votes” contributed by each edge pixel are accumulated into a two-dimensional
”p,8” Hough space. For each edge pixel, a value of p is computed for each value of 4 in the range of 0
to 179, where p is the distance along a line at angle 6 from the origin to a perpendicular line which runs
through the edge pixel. Each such p, 8 location in Hough space is incremented. (See Figure 1.)

As a second example, we consider the Hough transform for a particular parametrized shape. The
detection of rectangular outlines is simple and will serve to illustrate the relevant issues. If rectangular
outlines appearing in the image are aligned with the X and Y axes of the image (as might be the case
for box-shaped obstacles standing on the floor), then they may be parametrized by their location in
the image, their height and their height/width ratio. If the binary image is of dimension 512 x 512,
the number of distinct heights is H, and the number of distinct widths for each height is W, then the
dimension of the Hough space is 512 x 512 x H x W. For each edge pixel, a vote is accumulated for each
possible location and size of a rectangular outline which would contain this pixel. If the average height
value is h and the average width value is w, then the number of votes accumulated for a given edge pixel
is Hx W x h x w. (See Figure 2.) In the computation we have implemented, the height/width ratio is
fixed at one, giving square outlines, and the height ranges over the ten values [41,43,...59], giving us a
512 x 512 x 10 Hough space.

These two Hough transforms were implemented in C on a SUN workstation and on a 64-processor
NCUBE hypercube, and timings were obtained for a set of test images. Four ”synthetic” test images
were used, with 100, 1000, 10000, and 30000 randomly distributed edge points (similar to the 30,000-
point image described in [15]). One real image (of San Francisco) was used, with a small number of
randomly chosen edge points removed so that exactly 30000 edge points remained. The results of the
computations on the SUN were compared with those obtained on the NCUBE in order to verify that
the parallel computation was correct.

3 Algorithm Partitioning

The most straightforward method of assigning computations to processing elements in an MIMD ar-
chitecture is to use a ”single program - multiple data stream” (SPMD) model. In an SPMD model, a
complete copy of the same program resides in the local memory of each processing element (PE), but
operates with possibly diflerent threads of execution on diflerent data structures or on different portions
of a distributed data structure. Interprocessor communication synchronizes these programs, which as a
result tend to cleave naturally into a sequence of alternating epochs of (possibly overlapped) computa-
tion and communication. In the SPMD model, the key to efficiency is in distributing the data structures
50 as to simultaneously 1) balance the computational workload across PEs, avoiding redundant calcula-
tions and 2) minimize delays associated with communications between PEs. An ideal SPMD application
is one in which all PEs execute an identical number of distinct calculations with no communication.
Since this is rarely possible, the practical objective is to balance the computation by distributing data
among all PEs such that each PE executes approximately the same number of instructions, and minimize
communication delays by minimizing the number of communication epochs (synchronization points),
the number of messages passed in each communication epoch, and the length of each message. For any
given machine, there are specific costs associated with the transmission of any message (setup time)



and the message length (communication rate). Also, for any given application, there are specific costs
associated with unbalanced computations (delays in subsequent synchronization).

4 Logical Partitioning of Access to the Data Structures

We first consider how access to the data structures may be logically partitioned among PEs. At the
highest conceptual level, access to each data structure may be either complete, meaning that each
PE accesses (at least potentially) the entire data structure, or partitioned, meaning that each PE
accesses a restricted portion of the data structure. Each PE in an MIMD hypercube system has its own
purely local memory, in the sense that the addresses generated by different PEs refer to distinct memory
spaces. Therefore, complete-access implies that the entire data structure must be replicated in each
PE’s local memory, whereas partitioned-access implies a distribution of the data structure such that
one partition resides in each PE’s local memory.

This distinction between complete- and partitioned-access data structures yields four basic al-
ternatives:

1. complete binary image / complete Hough space.
Each PE scans the entire binary image and updates all appropriate elements of Hough space for
each edge pixel. In other words, each PE individually executes a complete sequential computation
of the transform. The amount of work done by each PE is, obviously, evenly balanced across
PEs, and there is no communication required between PEs. But because the calculations are all
redundant, this alternative generally does not make sense — there is no speedup over a single PE.

2. complete binary image / partitioned Hough space.

Each PE scans the entire binary image, but accumulates votes only within its assigned partition of
Hough space. Since each PE looks at the entire image, the image scan part of the computation is
well-balanced, albeit redundant. If the Hough space is partitioned appropriately, then the compu-
tation for accumulating votes should also be reasonably well-balanced. Again, no communication
is required between PEs. However, a large amount of memory is required at each PE. For some
hypercube systems (such as the original NCUBE, with 128K bytes per PE, or the current NCUBE,
with 512K bytes per PE) this may present an obstacle which effectively eliminates this alternative.
For other hypercube systems (such as the current Intel iPSC, with up to 16M bytes per PE) this
should not present a problem.

3. partitioned binary image / complete Hough space.

Each PE scans its assigned partition of the image for edge pixels, and accumulates votes to all of
Hough space for each edge pixel. If the number of edge pixels per PE is approximately the same (see
below), then the computation is well-balanced and not redundant. But since each PE operates
with its own local copy of Hough space, this does not, by itself, result in a completed Hough
space at any PE. To complete the computation, either 1) image partitions must be exchanged
and the local Hough spaces updated for each partition, or 2) the local Hough spaces must be
accumulated globally, The first alternative is of no merit, since updating the local Hough spaces
requires redundant calculation — eventually all PEs compute the entire Hough space, and the whole
calculation is as slow as in the sequential case. The second alternative is more reasonable - local
Hough spaces can be accumulated onto a single node using a logarithmic minimum spanning tree,
with a cost proportional to O(logP * HS), where P is the number of PEs and HS is the size of
Hough space. However, since each PE may process radically different numbers of pixels, the initial
computation of the local Hough spaces will likely be very unbalanced.

4. partitioned binary image / partitioned Hough space.
Each PE scans its assigned image partition and accumulates votes to its assigned partition of the
Hough space. By itsell, this results in only a partial computation. To complete the computation,
this step must be repeated while PEs cycle through the partitions of either the image or the Hough
space. (Each pixel contributes to possibly many partitions of the Hough space.) Exchanging
partitions of the image is usually the better choice, since the communication cost is determined
by the (usually smaller) number of edge pixels rather than by the size of the Hough space.

In both the partitioned binary image/complete Hough space and the partitioned binary im-
age/partitioned Hough space alternatives, an approximately balanced workload can be guaranteed
with a logarithmic cost pre-processing step in which edge pixels are exchanged so that the number of



edge pixels on each PE is equalized. At successive stages of the exchange, pairs of directly connected
PEs along successive dimensions of the hypercube exchange the number of edge pixels currently residing
on each PE. Then one PE sends its ”excess” edge pixels to the PE with the smaller number. At the end
of this process, all PEs have approximately the same number of edge pixels. (See Figure 3). Specifically,
the difference between the number of edge pixels contained on two PEs is no more than the Hamming
distance between the two PEs, so that the residual imbalance (defined for this application as the largest
such difference for any pair of PEs) is no more than the dimension of the hypercube. For a 30,000 edge
point Hough transform on a 64 PE hypercube, this is no more than 1.28 percent (6 points).

From this analysis, it appears that there are really just two feasible alternatives. One is to structure
the parallel computation with a replicated complete binary image at each PE, and a Hough space
partitioned across PEs. Due to memory requirements, this option might be feasible on a system like
the Intel iPSC but not feasible on a system such as the NCUBE. The other feasible alternative is to
structure a parallel computation with both data structures partitioned across PEs, building lists of
edge pixels and exchanging them across the hypercube in order to complete the computation. This
alternative should be feasible on systems with even a very small amount of memory per PE, and since
the computation and communication can be overlapped to some extent, it should be possible to ”hide”
some of the communication costs.

5 Mapping Partitions Onto Physical Memory

The question that now remains is how exactly to partition the data structures for mapping onto the
hypercube. Assume that there are P PEs and an N x N image. If P > N2, then some PEs necessarily
go unused, since there will be more PEs than pixels in the image. If N < P < N2, partitions of less
than one row of elements are required in order to make use of all the PEs, and square partitions are
preferred. In instances where P < N, it is possible to partition the image into either blocks of complete
rows (or columns) or into general square subregions. For a given P and N, the square partition has
fewer border elements than does the block of complete rows partition. However, it is sometimes the
case that the block of complete rows partition will result in a more efficient algorithm. The reasoning
for this is as follows.

Consider applying a local neighborhood operator, such as the 3 x 3 Sobel edge detector, to the image.
When the image is partitioned into blocks of complete rows, then each partition has just two neighboring
partitions and they are easily mapped onto directly connected PEs of the hypercube in an embedded
graycode ring [11]. However, when square partitions are used, it is not possible for neighboring partitions
to be mapped onto directly connected PEs. To see why this is true, consider the computation for a
corner element in a general square partition. This computation requires values to be communicated from
three adjacent partitions. Directly connected PEs have, by definition of the hypercube, PE numbers
which differ in exactly one bit position. For all the neighboring partitions of the corner element to lie on
directly connected PEs, it would have to be the case that three overlapping pairs of PE numbers each
differ in exactly one bit, which cannot be true (there are no "odd cycles” in a hypercube). (See Figure
4)

The result is that a block of complete rows partition incurs a substantially different communication
cost than a general square partition. Which mapping should actually be used depends on the relative
costs of different components of the communication. For particular values of the different components
of the communication cost which approximate those found in the current NCUBE, mapping blocks of
complete rows results in a lower communication cost than mapping square subregions. This is a pleasing
result, since there are other strong practical reasons for using a mapping of blocks of complete rows.
One is that the code to implement the message passing is much simpler. Another is that the code to
load /unload image data into/from the hypercube is also much simpler. Since the binary edge image is
derived from the original grayscale image by applying a local operator, it is natural to use the same
partitioning for the binary edge image as for the original grayscale image.

In the case of the transform for lines, partitioning the Hough space along the § dimension results in
the best performance. This is because each edge pixel generates votes to Hough space for a range of
180 distinct § values. Thus a uniform partitioning along the 8 dimension results in a workload which
is evenly balanced across PEs and where each PE’s computation is independent of all others. If the
partition of the § dimension is on an embedded graycode ring, subsequent processing for finding local
maxima using image processing algorithms is eased.

In the case of the transform for rectangles, partitioning Hough space for a balanced computation is
slightly more difficult. Partitioning along one of the dimensions representing the location in the image



may result in a highly unbalanced computation, since then some PEs may have no work for some edge
pixels. In this case, partitioning along a dimension which represents one of the other parameters should
result in a better load balance. However, this partitioning has a built-in imbalance to whatever degree
the size of the outline varies with the parameter value. In our case, partitioning Hough space along
the height dimension ensures that each PE performs some of the computation generated by each edge
pixel. However, the partitions representing greater height values generate a greater computational load
than the partitions representing lesser height values, since the outline is larger and so requires more
votes. Splitting the slice of the Hough space for a given height value across PEs is not a solution, since
this introduces required communication between PEs. Fortunately, the load imbalance inherent in the
partitioning of Hough space should, in most cases, be relatively small.

6 Benchmarks on the NCUBE Hypercube System

We implemented the Hough computation using partitioned image and Hough space on the 64-PE
NCUBE system in the CESAR lab at Oak Ridge National Laboratory. The NCUBE uses custom VLSI
processors with hardware floating-point and has a 512 KB local memory for each PE. The NCUBE/10
can be configured with up to 1,024 PEs, and a near linear speedup over this entire range has been
demonstrated for some engineering computation problems [6]. The main language constructs for con-
trolling parallelism in the NCUBE version of C are nwrile and nread, which are used to send and receive
messages, niest(), which is used to test if there is a message in the message bufler, and whoami(), which
is used to determine the physical number of a PE in the hypercube.

The ’preferred’ version of the parallel computation proceeds as follows. Each PE is initialized with
the same environment, and the image partitions are mapped onto the PEs of the hypercube using a
graycode ring. First, each PE scans its partition of the image and forms a list of the edge pixels.
Then the lengths of the lists are equalized through a sequence of exchanges along the dimensions of the
hypercube, as explained earlier. Finally, the transform itself is computed through another succession of
exchanges along dimensions of the hypercube, interleaved with incremental accumulation of votes to the
Hough space. In each of the successive exchanges, each PE 1) initiates an nwrile of its current pixel list,
2) updates its partition of Hough space for the ‘new’ pixels in its pixel list, and 3) performs an nread to
accept the pixel list from its neighbor on this dimension and adds these 'new’ edge pixels to its current
pixel list. This ordering of steps in each exchange allows computation to be overlapped with message
passing to whatever extent possible. The lists exchanged along the first dimension are roughly N/P in
length, where N is the total number of edge pixels in the image and P is the number of PEs, and the
lists exchanged along the final dimension are roughly N/2 in length. In this way, after exchanges along
all dimensions, each PE has updated its partition of Hough space for all edge pixels in the image.

Table 1 summarizes benchmark timings (in milliseconds) for this ’preferred’ version of the computa-
tion, along with seven other versions of the computation, using the transform for lines and the synthetic
1,000 edge pixel image. Times for the preferred version of the computation are listed in line 1. Line 2
represents a version of the computation which is the same except for not overlapping the computation
and message passing in computing the transform. Lines 3 and 4 represent the same computations as
lines 1 and 2, respectively, but without the pre-processing step in which the lengths of the edge pixel
lists at each PE are equalized. Lines 5 through 8 represent the same computation as lines 1 through 4,
respectively, but with each PE forwarding its list of edge pixels along the graycode ring in computing
the transform (using N — 1 message steps) instead of forwarding cumulative lists along the cube (using
loga N message steps). Note that, other factors being equal, the computation using overlap is always
faster and the amount by which it is faster increases with the dimension of the hypercube. Also, other
factors being equal, cube forwarding of pixel lists is always faster than ring forwarding and the amount
by which it is faster increases with cube dimension. These effects are both as would be expected. How-
ever, the use of load balancing results in a slower computation. This is because a balanced workload
was already assured by the way in which the synthetic image was generated, and so the load balancing
represents an unnecessary overhead. However, we still expect that for real images, where the initial edge
pixel distribution may be very uneven, load balancing will prove to be worthwhile.

Two major problems arose in benchmarking the ’preferred’ version of the computation for the orig-
inally chosen set of benchmark images. Both problems relate to the memory limitations of the NCube
system. The first problem is that, due to the size of the message buffers kept by the operating system, it
was not possible to use cube forwarding for images with larger numbers of edge pixels. For this reason,
we used the ring forwarding version of the computation for a benchmark computation to compare across
all the images. The second problem is that storing one 512 x 512 slice of Hough space, representing one



possible value for rectangle height, takes 256K of memory, which is half of the available memory in a PE.
Thus it is clearly not possible to store more than one slice of Hough space at a PE. If we want each PE
to operate on an integral number of slices, then we can only use of a number of PEs equal to the number
of height values. Also, the 512 x 512 x 10 Hough space could not be stored in a hypercube of less than
dimension three. Thus, for our benchmark computation, we simply computed one slice of the Hough
space (for a height value of 41), and partitioned the Hough space by blocks of rows. In an application,
different slices of the Hough space could be computed iteratively, with local maxima detected inbetween
computing successive slices. The actual benchmark computation exhibits a speedup function which falls
noticeably below that for the transform for lines.

The results of the final benchmark computations for lines and rectangles are summarized in Figures
5 and 6. The reported execution times do not include the time needed to read the initial image data
structure into the hypercube. Several general conclusions can be drawn from the benchmarks. With
the parallel Hough computation for lines, a nearly linear speedup is possible, provided that the amount
of work to divide up between the PEs is large in comparison to the overhead. Images with a smaller
number of edge pixels exhibit a relatively poor speedup function. Also, the initial distribution of edge
pixels in the image can have a noticeable effect on the observed speedup (compare the speedup for the
real and synthetic 30,000-point images).

7 Summary

It is possible to formulate essentially ”fully parallel” Hough transform computations on an MIMD
hypercube because 1) the binary image can be scanned by all PEs in parallel, and 2) the Hough space
can generally be partitioned along some dimension which distributes the workload fairly evenly between
PEs and allows updates of Hough space without potential access conflicts. Assuming that the percentage
of edge pixels in an image is independent of image size, the complexity of the sequential Hough transform
is O(N? x V), where V is the number of votes generated by each edge pixel. Our parallel formulation,
then, essentially divides V by the number of PEs. In the case of the transform for lines, the parallel
algorithm could be expected to make reasonable use of up to 180 PEs (one for each value along the 8
dimension). However, several factors contribute to degrading the observed actual speedup, chief among
them the total workload of the computation. As the absolute size of the workload executed by each PE
declines, the communication overhead becomes a larger relative portion of the total execution time.

The main difference between the p, 8 Hough transform for lines and the Hough transform for rect-
angles described here is that, in the former, votes from each pixel are evenly distributed across the 0
dimension whereas in the latter the vote distribution is more localized. This localization complicates
the problem of partitioning the data structures so as to achieve a balanced workload. In the transform
for lines, partitioning Hough space into uniform blocks of 8 values and cycling all edge pixels by each PE
simultaneously guarantees that 1) all PEs perform the same amount of work, and 2) each PE’s access to
Hough space is independent of all others. In the transform for rectangles, there is no way of partitioning
Hough space so as to simultaneously achieve both goals. If Hough space is partitioned by complete
slices of the height parameter, then each PE’s access to Hough space is independent of all others but
the amount of work done by each PE varies. If llough space partitions are allowed to begin/end within
a height value, then a more balanced workload can be achieved, but different PEs will sometimes need
to access the same elements of Hough space. For hypercube machines, it will generally be preferable
to have a modest load imbalance rather than to introduce extra communication between nodes. For
the NCUBE specifically, memory limitations caused us to partition the Hough space for a single height
value across all PEs, thereby accepting a possibly large load imbalance.

The implementations described here heavily utilize embedded graycode rings for both image and
Hough space domain decompositions. For the convolution-like image processing routines likely to be
used in pre- and post-processing, these decompositions are optimal for only a restricted set of image and
Hough space sizes, and this optimality depends on certain machine parameters such as the overhead
accrued in initiating communication and the rate at which data are communicated between adjacent
processors. For large images and/or large hypercubes, rectangular domain decompositions theoretically
yield better performance. However, the graycode ring decomposition for the Hough space for lines is
arguably optimal, since for each value of # a pixel may contribute to any value for p, and subdividing
the p dimension will necessarily result in redundant excess calculation (a PE must decide if a given pixel
will contribute to its section of p). For post-processing, the conversion of a ring-mapped Hough space
into a suitably grid-mapped Hough space requires only @(Iogﬂ/]_’-) messages, and both the complexity
of the post-processing and the machine parameters will determine whether this cost is worth paying.



References

[1] Baringer, W.B., Richards, B.C., et al. 1987. A VLSI Implementation of PPPE for real time image
processing in Radon space, CAPAMI Workshop, 88-93.

[2] Chuang, H.Y.H., and Li, C.C. 1987. A Systolic Array Processor for Straight Line Detection by
Modified Hough transform, CAPAMI Workshop, 300-304.

[3] Cypher, R.E., Sanz, J.L..C., and Snyder, L. 1987. The Hough transform has O(N) complexity on
SIMD NxN mesh array architectures, CAPAMI Workshop, 115-121.

[4] Fisher, A.L. and Highman, P.T. 1987. Computing the Hough transform on a scan line array pro-
cessor, CAPAMI Workshop, 83-87.

[5] Guerra, C. and Hambrusch, S. 1987. Parallel algorithms for line detection on a mesh, CAPAMI
Workshop, 99-106.

[6] Gustafson, J.L., Montry, G.R. and Benner, R.E. 1988. Development of Parallel Methods for a
1024-processor Hypercube, SIAM J. Sci. Stat. Comp. 9, 4 (July 1988).

{7] Hanahara, K., Maruyama, T. and Uchiyama, T. 1986. High-Speed Hough Transform Processor
and its Applications to Automatic Inspection and Measurement, IEEE Robotics and Automation
Conference, 1954-1959.

[8] Hanahara, K. ,Maruyama, T. and Uchiyama, T. 1988. A real-time processor for the Hough trans-
form, IEEE PAMI 10, 1, 121-125.

[9] Ibrahim, H.A.H., Kender, J.R., and Shaw, D.E. 1986. On the Application of Massively Parallel
SIMD Tree Machines to Intermediate-Level Vision Tasks, CVGIP 36, 53-76.

[10] Ilingworth, J. and Kittler, J. 1988. A Survey of the Hough transform, CVGIP 44, 1 (October 1988),
87-116.

[11] Jones, J.P. 1988. A Concurrent On-Board Vision System for a Mobile Robot, Third Conference on
Hypercube Concurrent Computers and Applications, 1022-1032, Pasadena, California.

[12] Kung, H.T., and Webb, J.A. 1985. Global Operations on a Systolic Array Machine, IEEE Int. Conf.
on Comp. Design., 165-171.

[13] Li, H. 1985. Fast Hough transform for multidimensional signal processing, IBM research report RC
11562, Yorktown Heights.

(14] Little, J.J., Blelloch, G. and Cass, T. 1989. Algorithmic techniques for computer vision on a fine-
grained parallel machine, IEEE PAMI 11, 3, 244-257; See also ICCV ’87, 335-340.

[15] Olson, T.J., Bukys, L. and Brown, C.M. 1987. Low level image analysis on an MIMD architecture,
ICCV ’87, 468-475.

[16] Rhodes, F.M., Dituri, J.J., et al. 1988 A monolithic Hough transform processor based on restruc-
turable VLSI, IEEE PAMI 10, 1, 121-125.

[17] Rosenfeld, A. 1987. A Report on the DARPA Image Understanding Architectures Workshop, Proc.
DARPA Image Understanding Workshop, 298-302.

[18] Rosenfeld, A., Ornelas, J., and Hung, Y. 1988. Hough transform Algorithms for Mesh-Connected
SIMD Parallel Processors, CVGIP 41, 3 (March 1988), 293-305.

[19] Sanz, J.L.C. and Dinstein, I. 1987. Projection-Based Geometrical Feature Extraction for Computer
Vision: Algorithms in Pipeline Architectures, IEEE PAMI 9, 1, 160-168.

[20] Sher, D. and Tevanian, A. 1984. Vote Tallying Chip: A Custom Integrated Circuit, Univ. of
Rochester TR-44.

[21] Silberberg, T.M. 1985. The Hough transform on the GAPP, IEEE Conf. on Computer Architecture
for Pattern Analysis and Image Database Management, 387-393.

[22] Wahl, F.M. 1988. A Survey of Hough transform Techniques, Technical Report 5-88-1, Technische
Universitat Braunschweig, D-3300 Braunschweig, FRG.



Table 1 - Benchmark Times for Different Versions of Parallel Hough Computation

O ~ND O WN -

options in each version

dimension of hypercube

forward balance overlap i 4 3 4 b 6
cube on on 4594 2306 1179 616 318 170
cube on off 4699 2313 1187 627 331 186
cube off on 4592 2303 11756 612 3156 166
cube off off 4688 2453 12569 648 343 190
ring on on 4621 2321 1191 632 346 226
ring on off 4626 2326 1200 646 370 272
ring off on 4620 2318 1187 628 341 219
ring off off 4716 2666 1375 739 433 315

y Image Region y Image Region

512
® L J

8=1

P = Xg cos(l)+y, sin(1)

Figure 1 - Computation of the Hough Transform for Lines with

180

512

Hough Space

P = x0 cos (179)+ y0 sin (179)

179 =prercccennnncccanen

/ 1086
X cos(l)+y0 sin(1)

Xg cos(l79)+y0 sin(179)

p-© Hough Space.

For each edge pixel encountered in scanning the image, 180 votes are
p-© Hough Space.

accumulated in the



For a 5x5 outline Each edge pixel Generates votes

parameterized in image space ... for the possible
around its center ... center locations
in Hough space.
A
S
¥ R ] I
i ]
NNy

Figure 2 - Example of the Hough Transform for Parameterized Outlines.

The Hough space votes generated for a 5 x 5 square outline are depicted
in the figure. The benchmark computation detects outlines in the range
of 40 to 49 pixels, resulting in a Hough space of size 512 x 512 x 10.

000 001 100 101 000 001 100 101

17 pixels 95 pixels 12 pixels 131 pixels 57 pixels 57 pixels 79 pixels 79 pixels
010 011 110 111 010 011 110 111

55 pixels 40 pixels 72 pixels 100 pixels 57 pixels 66 pixels 79 pixels 78 pixels
(a) initial distribution of pixels among nodes (c) lengths of pixel lists after exchange on dimension 2 (bold lines)
000 001 100 101 000 001 100 101

66 pixels 66 pixels 72 pixels 71 pixels 68 pixels 68 pixels 68 pixels 68 pixels
010 0t1 110 111 010 011 110 111

48 pixels 47 pixels 86 pixels 86 pixels 68 pixels 67 pixels 68 pixels 67 pixels

{b) lengths of pixel lists after exchange on dimension 1 (bold lines)

Figure 3 - Example of Balancing Lengths of Edge Pixel Lists Across Nodes.of the Hypercube.

At each stage, the neighbors on one dimension of the hypercube exchange their current edge
pixel lists, so that each has a copy of the combined list, and the 0 (1) neighbor then keeps the
bottom (top) half of the combined list. After the final exchange, the range of the lengths of
the lists will be no grealer than the dimensionality of the hypercube

{d) lengths of pixel lists after exchange on dimension 3 (bold lines)



-
-

<

[<8)

J\J. L
}wwfmkw

N

FIGURE 4 - 8-Connected Image Does Not Map Onto Directly Connected Nodes.

In order to embed subregions of the image (bold lines) so that the 8-connected
neighbor regions are embedded on directly connected nodes of the hypercube
(dotted lines), each of the pairs of node numbers a-b, b-c, and c-a must differ
in exactly one bit position, but these three pairs form an odd-length cycle, and
so such an embedding is not possible on a hypercube.

40 300
.30
3 I
he] °
s € 200
[3] (5]
8 Q
2 g
S 8
= o
=~ 20 £
[+ [}
E . £
[~ 1 100 Random Poinls =

2 1k Random Points
5 3 10k Random Points 100
4 30k Random Points
10 3 4 5 30k Real Image
2
og=v 0
123 4 5 6 123 4 5 6
Hypercube Dimension Hypercube Dimension

Figure 5§ - Hough Transform for Lines Figure 6 - Hough Transform for Rectangles



