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Abstract

A new type of optical dipole transition in GaAs quantum wells has been ob-
served. The dipole occurs between two envelope states of the conduction band
electron wavefunction, and is called a quantum well envelope state transition (QWIZST).
The QWEST is observed by infrared absorption in three different samples with
quantum well thicknesses 65, 82, and 92 A and resonant energies of 152, 121,
and 108 meV, respectively. The oscillator streagth is found to have values of
over 12, in good agreement with prediction. The linewidths are seen as nar-
row as 10 meV at room temperature and 7 meV at low temperature, thus prov-
ing a narrow line resonance can indeed occur between transitions of free electrons.
Techniques for the proper growth of these quantum well samples to ..Iena‘hle ob-
servation of the QWEST have also been found using (AlGa)As compounds.

The quantum dipole matrix element of the QWEST is found to have a size
of nearly 20 e-A. This extremely large dipole, in combination with the narrow
resonance linewidth, give the QWEST very strong nonlinear properties. Because
both the lower and upper quantum well states consist of free electrons in the same
conduction band, an electron can relax from the upper to the lower energy state
by an elastic scattering, requiring no energy transfer. This property enables the
transition to have an extremely fast transition time, predicted to be subpicosecond.

This QWEST is considered to be an ideal material for an all optical digital
computer. The QWEST can be made frequency matched to the inexpensive Carbon
Dioxide laser with an infrared wavelength of 10 microns. The nonlinearity ard
fast relaxation time of the QWEST indicate a logic element with a subpicosecond
switch time can be built in the near future, with a power level which will eventually
be limited only by the noise from a lack of quanta to above approximately 10

microwatts.
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I. Introduction

With the advent of quantum mechanics, many classical phenomena were found
to give better agreement with experiment when reinterpeted in the quantum mechani-
ca] formalism. In addition, many new phenomena were discovered With no clas-
sical analog. Quantum wells fall in the later category. Quantum wells are described
by nothing more than the kinetic term of Schrodinger’s equation and boundary
conditions.

A parlicle in one dimension trapped between two high potential barriers is said
to be in a well. The resultant quantization of states and energy is rarely obscrved
directly because dimensions as small as a micron have energies easily washed out by
thermal and other effects. However within the last few years it has become possible
to grow alternate layers of GaAs and (GaAl)As with dimensions of 0.5 nanometers.
With layers of this dimension, the GaAs acts as the well and the (GaAl)As acts as
the barrier to either the electron or hole. With these small layers and small mass
of the electron in GaAs, the energies become a fraction of an electron volt and are
observable.

However, these quantum wells are not completely one dimensional. The electrons
are still free to move about within the layer and: %his degree of freedom adds
an arbitrary energy to the quantum state. In the past these quantum well states
have been optically observed by several mechanisms, all of which involve conduction-
to-valence band tra,nsitions'.‘ For instance, single photon alusorpti;:)n experiments
on ar insulating GaAs mantum well at low temperature has revealed a jump
in the density of states as ...e energy is scanned during an optical transition through
each quantum state. Additionally, an electron and a hole can form a bound
state in two dimensions called a two dimensional exciton. This state has a nar-

row bandwidth and a bound state energy of about 10 meV. Thus one 2-D



exciton is seen for each quantum well state at an energy just below the jump in

density of states. These effects will be discussed further in the next chapter.

These single photon absorption experiments involve transitions between the
conduction band and valence band. Thus the energy of the quantum well state
was only observed as an incremental addition to the band energy. However, theory
predicts that a direct transition can be observed between quantum well states. This
transition occurs between two states which are both in the conduction band and

differs significantly from band-to-Hiand transitions.

A quantized state in a crysial can be described by the multiple of the wavefunc-
tions of two states, the Bloch state and the envelope state. The Bloch state (also
called Bloch function) is periodic with the lattice spacing. The envelope state
describes the non-periodic behavior. Whereas a band-to-band transition uses a
" dipole betwe;zn the Bloch states with the envelope states (or momentum) remaining
constant, the transition reported here uses a dipole between envelope states with
the Bloch states remaining constani. For these reasons, this transition between
quantum well states wili be called a Quantum "Vell Envelope State Transition ( or

QWEST ).

The envelope state transiticn has several significant characteristics of special in-
terest in optical applications. First, the spread in energy of the quantum well states
from the transverse kinetic energy is cancelled for the transition when momentum is
conserved and the energy band has a quadratic dependence on the wavevector mag-
nitude. Both of these conditions are valid for experiments performed. As a result,
the transition has a very narrow bandwidth. Second, the dipole matrix element is
between the envelope states. Since these envelope states are fairly large ( 5 - 10
nanometers ), when compared with atomic or Bloch states ( 0.05 to 0.3 nanometers

), the dipole is also very large. This large dipole in turn yields a strong absorption
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and x{®) nonlinear effects, which vary as the second and fourth power, respectively,
of the dipole matrix eleraent. Third, the relaxation time of the transition is on the

picosecond time scale, allowing high speed optical nonlinear interactions.

It is interesting to note the QWEST was not discovered out of a desire to
demonstrate quantum physics or an extension of work with quantum wells. Instead,
the QWEST discovery arose out of the need for a narrow transition with a large
dipole and fast relaxation time for optical logic. Because of the requirement for
picosecond relaxation, a transition was needed betwecen two states in the same
band. It was realized that two quantized states in the same band could have
significant energy difference and a large dipole if the crystal were small and the
effective mass were small. A year was spent exploring ways to grow spherical
crystals 15 nanometers in diameter with high precision and regularity. Although this
growth was possible with single element crystals, only binary crystals had sufficiently
small effective masses. Possible techniques for growth and sorting of good quality
nanocrystals were found, but would take years to fully develop. These difficultics
motivated a closer investigation of the quantum well substrates, which had been
grown for ten years and were fully developed, giving good quality and high precision.
The broadening of the energies from the lack of confinement in the transverse
dimension was originally thought to lead to poor absorption and poor nonlinearities
from the resultant transition broadening. Upon realizing the transition was not
biroadened in the quantum wells, nanociystal research was abandoned in favor of

the QWEST.

This development of the QWEST is only a part of a long and continuing attempt
to enhance the processing capability of todays electronic computers by many orders
of magnitude by use of optics instead of electronics. This research began with the

construction of supersonic jet streams to carry away the extreme heat generated
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by the high optical powers needed. The nanocrystals were originally investigated
because their reduced Rayleigh scattering allowed use of semiconductors in a jet
stream. The advances, some of which are seen in this manuscript, caused by
investigation of the properties of matter at small sizes has eliminated the need
for jet streams for cooling. In fact, it now appears as though this understanding
will now lead to optical switching which is limited in power only by the need for

sufficient quanta to define a signal. (See Appendix B. for details.)

The QWEST is seen to be breakthrough for the purpose of optical computing.
The advantages for optical logic are both physical and technical. The physical
advantages of the QWEST li» in the low power nonlinear properties, provided
by its large dipole and its narrow bandwidth, and its very fast relaxation time.
The engineering advantages of the QWEST are multifold. The QWEST energies
are in the infrrred where inexpensive laser sources can be found and the GaAs
materials in whicl it is constructed are sufficiently transparant to allow creation
of waveguides in the same material. The QWEST energy is tunable to allow use
of both signs of nonlinearity within the same logic element. Furthermore, a fully
developed semiconductor technology has evolved which can be converted to optical
logic fabrication with very little alteration. Logic designs based on the QWEST
appear capable of a thousand-fold improvement over todays elrcctronic logic in
both speed and power simultaneously, or subpicosecond switch times at microwatt
power levels, all at room temperature operation. An overview of an optical digital

computer based on the QWEST is given in Appendix B.



H.Background

A. Gallium Arsenide Quantum Wells

The discussion of an infinite one dimensional quantum well is often used as a
simple example in beginning quantum physics.l2] Tkis elementary example takes on
a particularly important realization with the advent of the ability to grow crystals
with one dimension as small as nanometers, giving very significant quantized energy
differences. The best quality quantum weils have been grown with alternate layers
of GaAs for the well and Ga_,AlyAs (0 <x< 1) for the barrier to the electron. 34l
The confinement of the electron occurs because the bandgap of Gaj_, Aly As is given
byl8l E; = 1.424 + 1.247x {eV) for x less than 0.45. Above this concentration of
aluminum, the bandgap becomes indirect and the above formula is invalid. The
heterojunction in {GaAl)As compounds sustains 65% of the bandgap difference as
a jump in the conduction band potential, and 35% as a jump in the valence band
potential.2¥ Thus the potential barrier height between GaAs and (GaAl)As for the

conduction band electron is given by AV = 0.81x {eV).

The crystal structure of GaAs consists of two interpeaetrating [ace-centered
cubic lattices, one lattice each of Ga or As respectively, creating a zinc-blende
structure. The gallium lattice site can be occupied instead by an aluminum atom,
with no change in crystal structure and little crystal expansion, in any concentration

up to 100%, or pure AlAs.

A number of significant reasons are responsible for the ability to grow excel-
lent quality quantum wells with (GaAl)as compounds. First, for a variety of
reasons, GaAs has become a very common growth material, especially for microwave
transistors and diode lasers. This large commercial interest has led to a rich data
base on the properties and processing of (GaAl)As compounds. More importantly,

numerous facilities now exist which are devoted to the growth and analysis of
5



good quality {GaAl)As materials. During the last decade, many of these facilities
have given strong attention to growth of (CaAl)As quantum wells. This atten-
tion arises from the quantum well's higher electron mobility, of use in making
high speed transitors,l and in significantly improving the performance of diode
lasers.i] The best quantum well structures have been grown!® either by Molecular
Beam Epitaxiall¥ (MBE) or Organometallic Chemical Vapor Depositionlt] (OM-
CVD) techniques. These epitaxial growth techniques allow the freedom to grow
planar materials with arbitrary choice of doping or lattice composition in the ver-
tical dimension, An abrupt change in material composition in less distance than
one lattice spacing is called an abrupt heterojunction and is required for quantum
well manufacture. Typically, two materials at a heterojunction have different lattice
sizes (and sometimes different lattice structure ) which leads to stress at the interface
and dislocations, in general giving poor materials. But fortunately, GaAs and AlAs
have very similar lattice spacings ( 5.642 A and 5.661 A respectively ), with only a
0.34% lattice mismatch. This mismatch is even less for experimental conditions to
be described, with only 30% of the gallium atoms substituted by aluminum atoms
in the AlyGaj_As electron barrier regions. A particular advantage to the ternary
(GaAl)As compounds is this good lattice size match for the substitution of only one
site, whereas more generally this match is obtained only with the use of quaternary
compounds. This advantage greatly eases the manufacture of these compounds.
The growth of good quantum wells is aided by the isoelectronic nature of the Al
and Ga atoms which lie in the same column of the periodic iable in adjacent rows.
Thus the electronic structure of the two compounds is very similar. In particular,
both compounds are insulating, which is fortunate since the high Al doping re-
quired to create a significant barrier to the electron would otherwise dominate the

electronic properties of the sample. The structures are also very stable, with very



iow interdiffusion of the Al and Ga atoms. Quantum well structures are observed
to operate in devices at elevated temperatures for 10's of thousands of hovrs with
little degradation.(s2!

The interface, or heterojunction, in these (GaAl)As growths is very smocth, with
deviations in well thickness typically less than 0.3 nanometcrs.[58 The smoothness
of the surface results from the thermodynamics of epitaxial crystal growth. During
the epitaxial growth, the deposited atoms of gallium, aluminum, or arsenic are given
a thermal energy sufficiently low to allow a high probability of remaining bound to
the surface. But this thermal energy is sufficiently high to permit the atom to move
about the surface. When this atom now encounters a lattice site discontinuous
with the planar surface, the binding en2rgy of the atom increases since the atom
is now bound on more than one side. If the increased binding energy is sufficient,
the atom has strong preference to bind to the irregularities, smoothing the surface.
If the growth rate is held sufficiently low, then the growth occurs on a previously
established irregularity. Thus after smoothing all initial irregularities, the growth
completes one atomic plane ( about 2.8 A for a Ga.As atomic pair in the [100]
plane ) before initiating a new atomic plane of growth. The summation of all these
processes in an optimal situation can lead to growth of an epitaxial layer extending
centimeters in each transverse dimension without a single jump to the next atomic
lattice plane. In practice, occasionally one or two lattice spacing jumps with of
order 300 A of lateral extent are seen.l5:8] These surfaces contain local imperfections
( of order 1 micron in size ) from the radial growth of imperfections on the surface.
In a clean growth chamber with a good starting substrate, these imperfections are
few in number, with the fractional area of these imperfections usually very much

less than 0.01%.



B. Quantum Well Energies

The simplest example of a quantum mechanical statz is the particle in a box in
one dimension. Suppose a particle is trapped in an energy potential described by
V(z) where V(z) is given by V(z) = 0 for || < L;/2 and V(z) — oo for |z| > L./2
.The Schrédinger equation is given bylt2l

oy _ "

2 -
iy == 5-Vy + V(F)y (rr.1)

where y is the particle wavefunction, m is the particle mass, and 4 is Planck's con-
stant. Since Schrédinger's equation is separable in the coordinates for this potential,
only the z dependance is solved here. The other coordinates are considered in the
next section. Solving equation (I.1) for constant energy with the one dimensional

potential above, this equation reduces in one dimension tol!.2]

K2 d2u(z) —

~Zm 3.2 Eu(z) |2| € L:/2 (11.2)

where E is the energy of the state and

¥(2yt) = u(z)eEY/A (11.3)

is the definition of u(z), which has po time dependence. For |z| > L, /2, the potential
demands u{z) = 0. This requirement also gives the boundary conditions u(L,/2) =
u{—L:/2) = 0. The wavefunctions are then quantized and equation (II.2) has the

solution given byl1.2l

un(z) = \/gsin nir;(z+Lz/2) (17.4)

where n, a positive integer, is the quantum number of the state un(z).
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Similar quantum well states are often used in solid state theories of electrons in
larger crystals but are never observed as a single state. In fact, because the states
are never observed individually, the true wavefunctions are rarely used in solid state
theory. Instead solid state theorists use a more convenient wavefunction which is
continuous in value and siope in wrapping around frem opposite boundries. This
commonly used wavefunction takes the form exp(ik;z) instead of the form sin k.z
and is said to obey periodic boundary conditions. This exponential form only allows
k2 to take on integer values of 2n/L. instead of »/L,, but compensates for the lower
density of states by allowing negative values of k;. This form gives totally erroneous
results for the quantum well states and energies. Furthermore, it can be shown that
Bloch states are no lenger a strictly valid concept. This will be discussed in Chapter

IV, where the band theory is reworked.

Each state has an energy given by equation (II.2) as

"2
En= ﬁ(nk.,)2 = n’E, (11.5)

where k; and E; are defined by

kq = E (I’.SG)
and
52
Eg = gk, (11.65)



C. Quantum Well Density of States

This quantization of states from an infinite barrier is now seen to lead to
quantized energy states increasing in energy ir proportion to the square of the
quantum state number. But in a three dimensional crystal confined in one dimension
as above, the particles are free to move in the lateral or transverse dimensions. This
freedom allows the particles to take on a continuum of energies, and the energy
density of states to take on a stairstep appearance. First, in three dimensions

equation (I1.3) takes on the separable form

Yenu(7, t) = X(2)Y{y)u(z)e~EH/H (11.7)

as a result of the separability of Schriodinger's equation, (II.1), with the quantum
well potential varying only in one ditnension. The x and y dimensions have boundary
conditions similar to that of the z dimension. In particular the wavefunction must
go to zero at the x and y boundries and be zero outside the crystal. However, the
dimensions of crystals of ipterest in the x and y directions are macroscopic and
individual states are sufficiently close in energy to be indistinquishable. As such we
can use wavefunctions, as is standard in solid state theory, oi the form exp(ik.z)
and exp(ikyy) for the x and y dimensions. Also customary for this form of the
wavefunctions, we use the periodic boundary conditions. Assume the crystal has
transverse dimensions Lz and Ly . Then the allowed wavevectors are evenly spaced
in k space with a spacing of 27 /L, and 2x/Ly, respectively. Now define a transverse

wavevector k; by

k= k2 + K2 (11.8)

The number of states with an absolute value of the wavevector between &, and

k¢ + dky, where dk; is much smaller than ki, is then given by (L Ly/472)2xk.dk;. For
10



a particle in free space with constant poicutial, the relation between energy and
wavevector in the two transverse dimensions is given by
2
E =1 (11.9)

Taking the derivative, this equation becomes

K
dE¢ = ;kgdkg. (1110)

The number of states with energy between E, and E. + ¢E, per unit area, p(E;), is
then giver. by equation (I1.10) and the above relation for density in k; space. If in

addition the particle has a spin degeneracy g,,

— gem
p(E;)dE'g oy dE} (Il.ll)

and we see that the density of states does not vary with E, for a given quantum
state.

This derivation for density of states per unit area has made several assumptions.
First and most importantly, equation (I1.11) applies to each quantum state. Thus
each quantum state has a density of states given by equaticn {IL.11). Second, since
E; must be positive, from equation (I1.9), no states exist for £; less ti.an zero, This

means

AE)=0, E <O0. (11.12)

If a step function is defined by

Step(z) =0 z<0 (11.13a)
11



and
Step(z) =1 >0 (11.13b)

then the density of states can be extended to negative values of E; by the formula

ol B E, = 2";';'2 x Step(E()dE, (11.14)

From the use of equation {IL7) in equation (I.1), we have the total energy E given

by

E = E¢+n*E,. (11.15)

The density of states as a function of total energy is now given by the summation

over all quantum states with use of equations (II.14) and (I.15):

(o] o0
/(E)dE = Z] o E — n?Eg)dE = z] %:%Step(E - n?E,)dE (11.16)
nNa= =

which is illustrated in Fig. IL.i. As the quantum number » becomes large compared
to unity, it can be seen that p(E) is proportional to the square root of E, as is

expected for a particle in a three dimensional box.

p {E) T, T ]
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£~
[ ]
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-]
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! L !
Eq 4Eq 9Eq 16E,

Band energy

Figure IL.1: A plot of the density of states vs. electron energy for a quantum

well.
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D. Two-Dimensional Excitons

Solid state physics has long recognized and observed excitons in semiconductors.
Excitons are composed of 2n electron in the conduction band and a hole in the
valence band bound to each other by a coulomb potential. The solution in three
dimensional space is very similar to the solution for the hydrogen atom in free space,
but with a larger dielectric constant and a smaller electron mass. The justification
for this approximation is tedius and given in the large amount of literature on the
exciton.l!%11] The energy is thus given by

Eez(n) = —ﬁ”%%;-:—z (r1.17)
in CGS units, where m! is the effective reduced mass (see equation I1.28 for definition),
e is the electron charge, and ¢ is the dielectric constant. For GaAs, with m}
about 0.065 electron masses and ¢ around 11, E.;(n) is approximately 7.5 meV/n2, .
The radius s.. of the exciton is analogous to the Bohr radius of the hydrogen

atom and is given by

A

miel

(11.18)

ae: =

and is about 90 A for GaAs. The diameter is then approximately 180 A

This three dimensional model of the exciton is based on the electron and hole
being confined by only their mutual attraction. But when the confining boundries
of the particles are separated by distances smaller than the exciton diameter this
model is obviously no longer valid. The solution for the two dimensional case has
been given by Ralphi'?l and a derivation is outlined here. For sufficiently small
confinement in one dimension, the electron wavefunction can be broken into a

product of the previous quantum well states in equation (I1.4) and a two dimensional
13



wavefunction as in equation (I1.7). This two dimensional wavefunction is solved by

a two dimensional Schrédinger equation (equation (II.1) in two dimensions). Let the

wavefunction u(r, ¢) be the wavefunction in cylindrical coordinates r and ¢ which is

separable into the form

u(r, ) = A R(r) B(¢).

(11.19)

This wavefunction obeys the two dimensional Schrédinger equation in cylindrical

coordinates of the form

_ @ f1ogou, 100 &
2my|r8r' Or r2 9¢2 er

The separable equation for ® is easily solved to give

B(g) = ™

where m is an integer. Now make the following definitions

PEanr

52

2
Ap = — —%)1/2

and

R(r) = e ?I2F(p).
14
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(11.21)

(11.22)

(11.23)

(11.24)

(11.25)



With these definitions, equation (I1.20) becomes

An—1/2 mz]
-=|F=0 (11.26)
’ [

F"+(%—1)F'+[

where the prime on #(p) indicates a derivative with respect to . The function F(p)
can be solved by a polynomial expansion in ¢ but remains finite as p goes to both
zero and infinity only if A takes on values of n+} where n = 0,1,2,.... The energy

En is now given by equation (I1.24) and takes on values(t?]

4

mee 1

Epe= ot = 11.27
"W (12 (re.21)

On comparison with equation (I1.17), we find the maximum binding energy <f the
two dimensional exciton is four times larger than the three dimensional exciton. In
GaAs, this energy is then about 30 meV. This large increase in binding energy has
been used, with significant advantage, to increase the fraction of the electron-hole

population residing in the exciton state at room temperature.l!

When the confining boundries in one dimension are no longer small compared
to the exciton diameter, the two dimensional approximation breaks down. However,
we also know the solution in the other limit of large boundaries is simply that of the
three dimensional exciton. The interpolation between the two is difficult analytically
and is not known to be solved. Unfortunately, the dimensions of the quantum wells
of interest are in the intermediate regime. As such the energies of these excitons
are closer to the thiee dimensional exciton energies and would be expected to be
about 2 to 3 times the three dimensional exciton energics or about 15 to 20 meV.
Furthermore, the spectra of the excitons indicate that the above euergies are high
by a factor of two, so that the actual three dimensional binding energies are at ~ut 4

meV and the quantum well excitons of 5 to 10 nanometers thickness have about 10
15



meV binding energies. 3.5 A possible reason for the smaller energy is that the reduced
mass of the exciton was taken to be that of the electron in the conduction band.
But the valance band has a mass which varies from 0.5m® to 0.082m’, depending
on which of the three valance bands is chosen. Thus the reduced mass will be
somewhere between 0.058m' and 0.036, with the actual value to be found from
a more detailed analysis of the exciton effect. However, it is seen from equation
(IL.17) that this lowered reduced mass yields a lower exciton binding energy and
gives better agreement with observation. Unlike interband spectra, excitons are not
of interest to the QWEST cbservations because the QWEST operates entirely in
the conduction band and never creates the holes in the valence band needed for an

exciton. So no excitons ever exist for the type of measurements performed.
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E. Interband Spectra

A large number of experiments have been perfoi med to investigate the properties
of optical transitions between the conduction and valence bands in GaAs quantum
wells.[31314] In particular, the absorption spectral®l and photoexcitation spectraft3
have been measured in quantum well samples. The photoexcitation experiment
scans a pump laser beam in frequency above the bandgap edge while observing
the spontaneous emission of light at the bandgap energy. The assumption is that
relaxation within the band of the electron and hole are fast enough compared to
the spontaneous emission rate that all transitions emit at the bottom of the energy
bands. Thus the emission rate at this band edge reflects the strength of the original
absorption but is free of the background light of the pump laser with adequate

filtering of the light spectrum.

This conduction-to-valance band, or interband, sprectrum can be derived from
the discussions of the previous sections. First, for the free electron and hole the
envelope state is described by equations (I1.4) and (II.7). The optical dipole is
between the Bloch states which multiply these envelope states to completely specify
the particle wavefunction. The Bloch states vary slowly with energies of interest here
{to be shown in a later chapter), so the transition strength is also nearly constant
with transition energy. In order for the transition to have a nonzero dipole, and
therefore nonzero strength, the envelope states for the electron and hole must have
the same quantum well number and the same transverse wavevector, &,, since these
states are orthogonal. Although the photon can contribute some momentum to the
wavevector, the contribution is insignificant in comparison with the electron’s much
larger momentum. The energy difference for a particular transition can then be
given by equation (I1.15) with m in equations (II.6b), (I1.9), (I.11), and elsewhere

replaced by m¢, where, as in equation (I1.17),
17



mi: - mie + mlh (11.28)
and ra is the effective electron mass and m}, is the effective hole mass. The density of
states for transition energy is then giver by equation (I1.16) with m = m}. Finally,
let the wells be undoped and at low temperature so the valence band is full and the
conduction band is empty. Since the transition strength and occupation probability
are constant for each of these transitions, the free electron and hole absorption
spectrum is given by transition density density of states, or the shape of Fig. 11.1
with m = m}.

For each quantum well state u,(z), a two dimensional exciton exists which has
a quantized energy, given by equation (IL.27). This energy, resulting from the
transvorse degrees of freedom and the coulomb interaction of the electron and hole,
adds to the quantum well transition energy in equation (IL.5) with m = m?. Since
this energy is negative, a peak in the absorption spectrum occurs in front of each
step of Fig. IL1, giving a experimental absorption spectrum shewn in Fig. 1.2,

The resonance of the exciton has some energy spreading from such mechanisms as

phonon dephasing and irregularities in quantum well thickness. !

The valance band consists of three differert bands. One band is split off with
a different energy at zero transverse wavevector. The other two are degenerate
at zero wavevector, but have different effective masses. Each of these bands has
an absorption spectra, with the value of m} different for each of the bands. The
overall interband absorption spectra is the sum of the spectrum for each of the three
valance-to-conduction band transitions as described above. The split-off band has
an energy 0.34 eV below the degenerate bands and is not in the spectral region of
most interband spectra. The degenerate valance band creates two valance quantum

wells for each wavefunction given in equation (IL4). For each quantum number, n,

18



there exists two different quantum energies, given by the different effective masses
of the degenerate bands used in aquations (IL5) and (II.6). This energy difference is

slight but the two states can be resolved on higher resolution spectra.ial
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Figure I1.2: Absorption spectra of a GaAs quantum well at 77 K both before
and 100 picoseconds after pumping to an electron density of 5 x 101! ¢em=2, Note
that the excitons disappear with the presence of the free electrons because of the

shielding of the coulomb potential (from Ref.[27)).
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F.Inelastic light scattering

The quantum wells have also been probed by inelastic light scattering.!8.17]
In the typical experiment, light is incident normal to the sample with a photon
energy equal to the sum of the band gap energy, Eo, and the split off valance band
energy, A,, so as to be in resonance between the conduction band and the lower
energy split-off valance band (see Fig. I1.3.). The photon causes an electon in
the split-off valance band to be injected into the conduction band with the same
transverse wavevector as in the initial valance state, as discussed above for interband
transitions. However, for the inelastic light scattering, the conduction band is
populated and a conduction band electron with the same transverse wavevector,
‘but in a smalller energy quantum well state, falls into the recently vacated valance
band hole, emitting a photon in the process. Since the transverse wavevector
remains constant, the emitted photon would be the same energy as the absorbed
photon, giving elastic scattering, if the quantum well state does not change quantum
number. But the transitions of interest are the inelastic transitions, in which the
conduction band quantum well states are not the same for the initial and final
states. In this case, the energy difference of quantum well states can be found froin
the energy difference of the absorbed and scattered photon. The band gap energy
can therefore be subtracted out. These interband transitions use a dipole between
the Bloch states, and the integral of the product of the initial and final envelope
states multiplies this integral. The quantum well envelope states are orthogonal
for an infinite barrier potential and thus no change in quantum well envelope state
would be allowed were it not for finite barrier giving slightly different, and not quite

orthogonal, envelope states for the conduction and valance bands.
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Figure IL.3: A plot of the conduction and valence bands of GaAs, including a

possible inelastic scattering.

Furthermore, the incident photon to be absorbed selects out a narrow range
of wavevector states, thus the quantum well energy difference can be measured
as a function of transverse wavevector and the emitted photon spectra is narrow.
The narrow photon emission spectra is obtained by the selection of a narrow range

of transverse wavevector states by the incident photon. In comtrast, the exciton
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spectra is narrow because of the creation of quantum states without free electrons
in any dimension, thus creating a state with only one energy. In the QWEST to be
discussed, not only are the electrons free in two dimensions, leading to broad energy
states, but any of these states can make a transition. The QWEST nevertheless is

seen to be narrow because all these transition energies happen to be the same.

The split-off valance band is shifted from the other two valance bands by spin-
orbit coupling. This same interaction also quantizes this split-oflf valance band's
Bloch state into a sum of two wavefuctions, ¢y = (2/3)1/2(x +i¥)/VZ | +(1/3)/2Z
, where the arrow refers to the electron spin and X,Y, and Z refer to the same
odd symmetry valance wavefunction, when rotated to be symmetric about either
the x, y, or z directions respectively. These wavefunctions will be derived in a
later section. The conduction band’s single Bloch state, labelled S, is rotationally
symmetric and of course can have either electron spin. A dipole exists between
the 5 state and any of the X,Y, or Z states and gives rise to the conduction to
valance band transitions. Now let the quantuin well be confined in the y direction,
in contrast to the z direction as in equations (II.1) through (I1.6), and the electron is
now free in the x and z direction. Now assume an electron is optically excited from
the n=1 envelope state in the split-off valance band into the n==2 envelope state in
the conduection band by light polarized in the x direction and propagating in the y
direction, normal to the quantum well surface. Then given the form of ¢, above we
see that the conduction band electron must have a { spin. The hole in the valance
band can now be filled by an electron in the conduction band’s n=1 envelope state.
If this conduction band electron's Bloch state has a | spin, as did the electron excited
to the n=2 conduction envelope state, then we see from the form of ¢, that the
dipole is in the x direction and emits light with this polarization. If, on the other

hand, the electron filling the valance band hole has a { spin, the dipole is seen to
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be in the z direction, with orthogonal polarization to the original incident beam.
Thus the inelastic scattering transfers an electron from the m=1 conduction band
envelope state to the m=2 conduction band envelope state. The emitted spectra
with a polarization parallel to the incident spectra results from a transition with no
change in electron spin, and the emitted spectra with a polarization perpendicular
to the incident light polarization results from a transition in which the electron’s
spin flips.

The ability to probe transitions with and without spin flip is used to separate
collective electron effects from single particle effects. If the electron changes spin
in the transition, the excited state cannot interact with the remainder of the
electron gas, which is Fermi degenerate with an opposite spin hole, because of
Fermi repulsion. In contrast, if the electron does not change spin, the excited
electron interacts with the remaining conduction band electron plasma and has a
different excitation energy than that of the noninteracting single particle excitation.
The collective excitation has a higher absorption energy than the single particle
excitation because of the extra energy in the oscillating polarization field of the
oscillating charge coherence between the lower and upper envelope statcs. The
absorption erergy of the collective effect, w;z, ic given in terms of the quantum
energy difference between the states, wjp, and the plasma frequency, {1,, of the

conduction band electron gas by the relationls2-34]

wig = wh + 02, (11.29)

The plasma frequency is close to the normal three dimensional plasma frequency
obtained when the two dimensiona! electron density, N,, is converted into a three
dimensional electron density by dividing vy the quantum well width, or Q2 ~

N, e /m*eL. The above relation and the formula for the plasma frequency are
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developed later.

The experimental observationslt?) were performed at temperatures of 2 K and
conduction band doping of about 5 x 101em~2. The quantum well widths used in
thish?l study were in the range of 250 A. Therefore the lowest energy (¥, — ¥,)
quantum well transition has an energy of about 20 meV. The plasma frequency
at this doping density is about the same as the transition resonant frequency.
Furthermore, the phonons also have resonunt frequencies in tnis range. Thus,
although the single particle spin-flip transition has an energy shift at the 20 meV
energy, the collective mode spectra shows the energy shift as being higher as
indicated in equation (I1.29) above, with an energy of about 34 meV. Furthermore,
the interaction of the phonons with the dielectric constant further split this non
spin-flip spectra into two inelastic scattering energy shifts of about 28 and 39 meV.
The spin-flip spectra, however, continues to exhibit only one unaflected scattered
energy shifi at the quantum well resonant energy. The shifts caused by the collective
effects will be shown to operate on the QWEST also, but be nearly unobservable
because of the higher energy, over 100 meV, of the transitions with the much smaller

well widths, 60 - 80 A, used for the investigations of the QWEST.
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G. Intersubband Transitions in Other 2-D Systems

The most similar 2-D transition to the QWEST are the infrared transitions
occuring between the surface charge states at the top surfaces of Sil?7], InAsl38l,
InSbse], and (HgCd)Telt0). These observations were all reported by F. Kocii and his
group at Technische Universitit Miinchen in West Germany over the las: several
years. The surface charge states are electrons which are trapped at the surface
of a semiconductor. With an appropiate cover, the band will bend down within
about 100 A of the surface and the electrons will lie within quantized states at this
boundary. The energy of these states can be changed by application of s voliage
across the interface and thus bending the bands. Typically the electron surface
densities are in the 1 x 10!2em=2 range and the energies of the transition lie in the
30 to 100 meV range. These transitions were observed by illumination with a far

infrared laser while changing the voitage across the interface.

These transitions are similar in nature to the QWEST, but differ in several
aspects. First, the bands are not -ymmetric, thus even parity transitions become
allowed. Second, the transitions and surface density are very itrongly coupled,
as the electrons themselves perform the confinement on one side of the surface
layer. The QWEST can entirely decouple these quantities. ‘a . ¢ the scan of
the surface charge transition as a function of voltage makes measurement of the
absorption strength difficult as the density changes significantly (30% ) from one
side of the absorption to the other. Third, the QWEST is capable of transition
energies of over 500 meV. Energies this high, if even possible, from surface charge
layers would require surface charge densities so high that the transition _would be
very broadened. Fourth, the band bending is very dependant on the temrperature for
a given charge density, and the energy of the transition changes very dramatically

with temperature. In contrast, the QWEST will be seen to change very little (<
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3% ) over a large temperature range (30 -300 K).

These are only a few of the differences between these quantum wells and surface
charge layers. Yet another way to create surface charge layers in semiconducton‘;
is by aiternating layers of n and p type materials. Such stuctures are called NIPI
layers.11) These layers are confined on both sides by the potential set up by the
charges themselves. The discussion above for surface charge layers also apply to
NIPI layers as they are confined on both sides by tie same sort of self-coulomb
potential that exists on one side for surface charge layers, No observation has yet

been reported for infrared transitions between the envelope states of the NIPI layers.

Another related development involves free carrier photoionization of electrons
out of GaAlAs quantum well states. A photodetector based on this effect has
been proposed recently by D. D. Coon and R. P. G. Karunasiri at University of
Pittsburgh.*3] A device with much lower absorption strength was proposed and
tested by J. S. Smith, L. C. Chui, S. Margalit, A. Yariv, and A. Y. Cho at Caltech
and Bell Labs.[84 Their devicel®] had an absorption of about 30 ¢cm~! and was used

to create a photodetector with a response of 200 Amps per Watt of infrared power.



MlInfinite Barrier and Parabolic Energy Bands

A. The Envelope State Transition

The energy and wavefunction of a three dimensional particle trapped between
two coplaner barriers was considered in chapters II.B. and II.C.. The density of
states per unit of energy was also derived. These results are well known to any
beginning quantum mechanics student but nevertheless give accurate predictions of
GaAs quantum well properties.!34 These expressions will now be used to develop
properties of Quantum Well Envelope State Transition. The states in equation (I1.7)
are called envelope states because they are not the full electron state in GaAs. The
full electron state must include the wavefunction describing the local properties
about each atom in the crystal lattice. But, as will be shown later, the behavior
of the GaAs transition under consideration is determined almost entirely by the

envelope states.

From equation (I1.7) the wavefunction for the envelope state is given by

5

e
Venvlkz, by, n) = me'k"e'kvyslnnl:(z+Lz/2). (111.1)

This wavefunction does not include the time dependance which is given, for the
energy eigenstates under consideration, simply by multiplying the above equation
by exp(—iEt/#) for a state with energy E. This energy, for the above states, is

assumed to be of the same form as in equations I1.5 through IL.15, namely

»2
E(kzyky,n) = 2_;(,,2::3 + i) (111.2)

where, as before, ky = /L. and & = /42 + k. The effects of the GaAs lattice
potential are assumed to be taken into account by the effective mass, m*. Thus, the

energy of the electron in the conduction band has the same quadratic dependance
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on the wavevector, k, as would a free electron, only with a greatly reduced mass.
This assumption is good, but the higher order dependance of the energy on the

wavevector is important and will be discussed later.

The Quantum Well Envelope State Transition (QWEST) is an infrared dipole
transition between two of the above quantum w=ll states. In a (GaAl)As crystal, both
initial and final states are in the conduction band for this transition. Although the
electron envelope wavefunction of equation (III.1) is not the full GaAs wavefunction,
the properties of the QWEST are determined almost entirely from this envelope
wavefunction. As such, this wavefunction is used to predict the properties of the

QWEST to first order. The corrections to this approximation are discussed later.
B. The QWEST Dipole

The QWEST involves the interaction of an infrared beam of light with discrete
quantized states. This interaction between light and matter is treated in semiclas-
sical quantum mechanies by the potential term in Schrodinger's equation, eq. (I1.1).
The semiclassical treatment is valid for cases here with the potential term V{F) in
equation (II.1) becoming V() = V,(?)+e'r’-1-§('r',t). Vo(r) is the static potential describ-
ing the original problem, which has aiready been solved to give a particle wavefunc-
tion, such as equation (IIl.1) above. Here ¢ is the electron charge, and E(7,1) is the
electric field of the optical wave. The equation of motion resulting from inserting
this new potential in Schrédinger's equation, (I1.1), can be solved by time dependant
perturbation theory,!ts] where the e7 - E(7, t) term is the perturbation. Now assume
the electric field is given by E(?,¢} = E, exp(i%p 7 —iwt) The important parameter for
the optical transition between two quantum mechanical states becomes the dipole
matrix element between the two states of the perturbating potential. This matrix

element, , for the optical transition is given by

28



p= e(ibf|7€'%"?|¢.‘)
= e/y;f?e‘.l”'? \b‘-dar,

where ¥, and y; are the final and initial quantum states of the optical transition.

(11.3)

The final and initial states for the QWEST will be penv(#, £, m) and veno(kz, ky, n),
respectively.

We now evaluate this dipole for the QWEST in the above approximations of
infinite barriers and parabolic energy bands. From equation (III.1) we have the
wavefunction of the two states. In performing the integral of equation (IIL.3) we find
the integral is separable into three parts, labeled X,Y, and Z, which are different
for each of the three vector components. We first consider the z component of the

dipole matrix element. We find

by =eXY2Z, {111.40)
where
1 [l e ikpae ik
X = A ¢ WRaZgthp2Z tRaT fp (r11.48)
'z
| T
=fy_ b € vWetfrvl il gy, (I11.4¢)
and
g (%
_ . n ik . n
Z= E/;f-‘- smmL—z(z+L;/2)e' P‘zZSInnE(z+L;/2)dz. (111.4d)

The values of k;L; and kyLy for cases of interest here are in the range of 10° to
108. It is seen that the integrals of equations (II.4b) and (IIl.4c) are then very small

and equal to the inverse of the previously stated values unless £}, = kps + &, and
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Ky = kpy + ky, in which case they are equal to unity. As such, the transition will
invariably satisfy these conditions. We next look at equation (111.4d), which contains
the z component of the dipole. We first note that the quantum wells of interest
will generally have dimensions, L., less than 10 nanometers. The energies of the
transition, to be determined from equation (II.2), will generally require resonances
with infrared beams from 4 to 10 micrometers in wavelength, ». The term in the
exponent in equation (Ill.4d) will vary from O to k,.L. = 2xL./, which is seen
to have a maximum value of 0.015, and is generally less. The exponential will
therefore be very close to unity throughout the integral and can be ignored. The

dipole integral of equation (1lI.4a) is now seen to reduce to

bz = el¥rlz|vg)z,

where

L.
Y. — infm- in(n ™
e(vrlaivs)e e[o sln(mLz 7z Sln(an z}dz. {111.5)

Note a change in the origin of the coordinate z has been made. The integrals in x
and y coordinates were seen above to drop out with the creation of a selection rule
on the transverse wavevector of the final state, in terms of the transverse wavevector
of the initial state and the electric field.

The dipole matrix element, u;, of equation (III.5) will now be solved. We first
note the comutation relation for the position operator, %, with the Hamiltonion

operator, H,, is given by the position operator:

- ) it -
(Hoy o] = -#2/m" &~ =125, (111.60)
m
where
) 2 52
i, = _2" . :_2 (111.65)
m* 9z
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and

P =75 (111.6¢)

Similar relations can be found for the coordinates x and y. This relation can now

be used in the expression III.5 to give

(byloslv) = ﬁ(w;t(m, v
= ;‘m (Em — En) (vylzlvi) (11.7)
= P82 — ) ol
where use has been made of equatlons (IL1) through (I1.6). The evaluation of (p,)
is straightforward. The sines in equation (II.5) are first converted into sums of
complex exponentials. The operator p, is then an eigenvalue of these exponentials.
The resulting combinations of exponents must then be gathered and integrated over

the integer number of half cycles. The result of this integration is

2ik
(Wrlpeled = T == (=1 = 1]
it (111.8)
. L. Par{n + m)
L, me — n? )

We have defined a function Par(n) as a function of any integer n which takes on the

values

0, if n =even;
Par(n) = (111.9)
1, if n =odd.

Using equations (I11.7) and (II1.8) we finally obtain an expression for the dipole for

an arbitrary quantum well envelope state transition:

8
e{vrlalv) = —el; — = (—2—"2-)—2-Par(n + m). (111.10)

This dipole is seen to exist, as expected, only for transitions between envelope states

of opposite parity. The transition receiving most of our attention will be between
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states m=2 and n=1, or between the two lowest energy states. For this transition,

the dipole is seen to be
16
62lz|1) = —eL; — =~ ~0.18¢L, (111.11)
On?

for a well of thickness L.

We now look at the other components of the dipole matrix element in the x and
y direction. Note first that the above matrix element made no assumptions about
the size of Z,. Thus equation (II1.10) applies to the other directions x and y simply
by substitution of the appropiate dimension, x or y, for z in the equation. The
principle observable differences arise from L and L, being about 10° times larger
than L. for the samples of interest. From equation (III.2), the energy of a transition
is lowered by the square of this well width and thus is about 10'2 times smaller.
These energies are not of interest and too easily broadened to be observable. In
order for a n=1 to m transition to have sufficient energy to be comparable with the
quantum well energies, m must be as high as L./Z, ~ 105. But we see from equation
(i11.10) that the dipole matrix element is reduced to about eLz/10!% or eL,/10'2 and
thus is effectively zero at the energies of observation. The dipole matrix element
for the QWEST is therfore polarized in the z direction with zero components in the

other two directions.
C.The QWEST Energy

The energy of the envelope states is given in equation (III.2). In the previous
section we found that dipole matrix element gave strong enhancement to final
states with transverse wavevectors which are the vector sum of the initial envelope
state transverse wavevector and the photon’s transverse momentum vector. Using
this selection rule, we find the transition energy from state yeno(kz,ky,n) to state

‘ll’em;(k;, kin m) as
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2
AE(m, Kyn, k) —_——";[(m2 — )kl + kP - k?]
2m

2
- 2—”—:[("12 - n2)kg + kp' . kg + kgt] (Il ".12)
m

where ky; is the component of the photon wavevector in the plane of the quantum
well. As remarked previously, the value of &, is about a thousand times smaller

than either k, or k;. The above energy reduces to

[ YI%
5 (m? - 2)
2m
A2
= — (m
2m*L2

AE( l’ ‘l’") :‘)

and becomes independent of the initial wavevector. This very important result
indicates the density of states for the transtition is a delta function and has an
infinitely narrow linewidth. This result is in stark contrast to the conduction-to-
valance band transitions in which the transition density of states increases as the
square root of E — Eg for three dimensional crystals or a step function for two

dimensional crystals as shown in section ILE..

D. The QWEST Oscillator Strength

We define an oscillator strength, f, for the transition between quantum well
states m and n by the formula,

_ 2m.w

/= -"——(3)2 (r11.14)

where m, is the free electron mass, w is equal to the energy difference between
the states divided by #, and () is the dipole between the states as defined in
equation (II1.10) for the potential under consideration here. The above definition

of the oscillator strength is based on the relative dielectric response of a quantum
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mechanical electron to a classical bound electronlt®l and is thus very general and
will be used later in a more accurate theory of the QWEST in (AlGa)As quantum
wells. This oscillator strength also obeys a sem rulel's] which for a single electron

transition is given by

Yr=1 (111.15)

where the sum is over all transitions which start from state s to any and all other
states, labeled k. The oscillator strength is positive when coupling to energies above
E, and negative when coupling to lower energies. We observe that the derivation
of this sum rule is sufficiently fundamental and general so as to also apply to our
system. The derivation relys only on the comutation relations |z,p,] = i% and
[H, 2] = —ifip; which apply to all quantum mechanical systems. If we use the energy
of a envelope state transition from equation (III.13) and the transition dipole from
equation (III.10), we obtain an oscillator strength for a transition between quantum

well states m and n given by

2,2
fmn=ﬁgL (111.16)

m® 22 (m2 — n2)3
The oscillator strength has the interesting property of increasing linearly with m

for a (m — m + 1) transition. For a (¥, — W) transition, / = 0.96m./m*. For a

(¥5 — ¥3) transition, / = 1.87m,/m*. For GaAs m¢/m" = 15.

The sum of QWEST oscillator strengths between a given quantum state and all
other states can be found by creating an artificial hamiltonian as we have done in the
previous sections and deriving the sumn rule using the effective mass of this system.
The oscillator strengths must, as before, sum to unity. But if we renormalize the

oscillator strengths to the free electron, we find that for the QWEST, ¥, fmn =
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me/m*. But in a real system, we know that the sum must continue to equal unity.
Obviously, there are other transitions which must be included in a real system in

the sum rule. We will see how this occurs in detail at the end of the next chapter.
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IV.Quantum Wells in (AlGa)As Crystals

This chapter is concerned with the structure of the QWEST in a real crystal
such as the (GaAl)As compounds. A single quantum well would consist of a planer
well regior of GaAs with a thickness Ly, of about 100 A covered on both sides by
infinite sheets of Gay_, Aly As (see Fig. [V.1). Throughout this chapter, we will take
the zero of the z coordinate at the center of the well, so the boundaries occur at z=
+L:/2. We make this change so as to more easily take advantage of the symmetry
properties of these wells. We placed the zero at the edge of boundary throughout
the previous chapter because the infinite barrier caused the wavefunction to go to
zero at the boundaries and allowed us to describe all envelope states by sine wave
functions. By taking the zero at the center of the well, we have the additional
complication of having to use cosine functions for even symmetry states and sine
functions for odd symmetry states. We begin by looking at the properties of GaAs
and their effects on the QWEST.

Algz Gagy As Ga As Alg 3 Gagz As
2
— - 243 meV
¥y /-\
o E— By

—— e 243 meV

Yo o ] - —184 meV

~ \/f \—- 0 meV

Figure IV.1: A diagram of an actual quantum well in (AlGa)As materials. The

potentials and two lowest envelope wavefunctions are illustrated.
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A. Band Structure in Ga. s

In the previous chapter the states were labeled envelope states and the wavefuc-
tions were labeled envelope wavefuctions. This distinction was made because the
full condunction band electron wavefunction in {AlGa)As compounds is generally a
product of this wavefunction and the Bloch wavefunction. The Bloch wavefunction
describes the part which is periodic from one crystal unit cell to another, The en-
velope wavefunction describes the nonperiodic behavior. In contemporary solid state
theory, the full wavefunction is taken to be a product of these two wavefuctions.
This approximation will be seen to need modification for the quantum well states.
However, within this approximation, the electron beheavior can ‘be well described by
the envelope with its kinetic energy hased on a lower effective mass as done in the
previous chapter. In this chapter, we look more at the complete wavefuction and
energy.

The important behavior of the GaAs conduction hand, which is where the
QWEST occurs in entirety, can be adequately described by &.p theory.[20] The k. p
theory is an expansion in k- p around any . Fortunately, the region of interest for
our experiments is a small region in ¥ space about ¥ = 0. Because we will need
much of the results and use many parts of the k.p theory in our development, we

will sketch the major points in a relatively quick derivation.

We first note that solid state theorists generally use a wavefunction of the form

¥(r)= "env(') u(r) (rv.1)

where u(r) is the Bloch wavefuction and is periodic with the lattice spacing. The
envelope wavelunction, W.no(r), describes the nonperiodic extended behavior of the
electron wavel'uéti\on. For periodic boundry conditions in uniform ecrystals, ¥eny is

generally shown to take on the form
\
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Yoy = e"E'?. (1v.2)

The value of # is quantized by the periodic boundry conditions into taking on the

values only of

- 2%, 2, 2,
k—nEz+mzy-—y+pE~z, (Iv.3)

where n,m, and p are positive and negative integers and Lz, Ly, and L; are the
crystal's dimensions in the x,y, and z direction. If we now apply Schrodinger’s
equati n to the wavefunction as given by equations (IV.1) and (IV.2), we find the

Schrodinger equation for the Bloch state wavefunction becomes

(p2/2m+V +(h/m)E -3 + (K 4m2A)|VV x F] - 0
+ (82/4m22)[VV x F] - o)ui(r) (1v .4)
= (B} — (#2/2m)k* }u(r),

where V is the potential and 7 is the momentum operator. We have used the product
rule for derivitives and applied the operators the full wavefunction and afterwards
divided out the exponential envelope wavefunction. We now assume knowledge of
the solution of the ¥ = 0 Bloch state wavefunction and energy. From group theory,
the conduction band Bloch wavefunction is shown to have symmetry properties
similar to the atomic s state and is therefore labeled S. The valance band Binch
functions are shown to have symmetries similar to the atomic p wavefunctions,
have three-fold degeneracy and are labeled X, Y, and Z, depending on which is
antisymmetric in the x, y, or z direction, respectively. Each of these states are
twofold degenerate depending on electron spin. Thus we have assumed an exact
soluticn to the above first two terms in the Schrodinger’s equation {IV.4). The last
spin-o-bit term in terms of ¥ is neglected relative to the fourth term, which gives

the spin-orbit in terms of the much larger 3. The third %3 term and the fourth,
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spin-orbit, term are then treated as a perturbation. The % -7 term will be seen to
lead to the small eflective mass of GaAs and the spin-orbit, term will be seen to lead
to the split-off valance band. We now let % be in the z direction, ¥ = &,5. The two
-perturbing terms can be shown to couple only four of the above eight states if they
are normalized in the basis S|, Z!, (X-iY)1, (X+iY)t, where the arrow indicates the
direction ol the electron spin. The other four states, with spins in each of the states
opposite to those here, are independant of the first four but.interact in the same
manner. In this basis, the perturbing terms become off-diagonal matrix elements in

the Hamiiltonian and can be solved exactly to all orders. The Hamiltonian becomes

E. l’ksz 0 0
—ikP, E, A 0
H= : (v.5
0 %A E-4 0 )
0 0 0 E+4

The energies E, and Ep refer to the corduction band and valence band energies,

respectively. The quantities P, and A are defined by

P. = Xslp,l2) (1v.6)
and
3ik 2% v
A = m—(x Epy et —anz Y). (IV7)

Note that both P; and A are real and A is positive. If we now let ' = E — "2,’7"2

’

then the solutions of H u = E'u give eigenvalues for E’ solved by



E(E - Eg)(E + A) - k2PYE +2A/3)=0 (1v.8)

for the energies of the four states, where Eq = E, — Ep — A/3. We label the states
de, $u1s bu2, a0d ¢,3. If we expand the above solution to the first power of ¥2P2, we

obtain the zero order solutions for the Bloch wavefunctions as

$e=25|
¢o1 = (X +4Y) 1]/V2

b2 = \1/3[X - 1)t (VB +/2/3(21] (1v.9)
b2 = \23((x ~ ¥} 1 V] - \/173(z ]

and with associated energies of

Wit puf 2 1
E. =Eq+ o+ = 4
¢ G om 3 \EG Eg+A
#24?
vl = §—
2m
[ 7252 _ op2;? (1v.10)
vz = 2m 3EG
122 P22
E03=—A+—2—"n——————.
3Eg + A)

We notice the conduction band has a positive effective mass and the valance bands
have a negative effective mass, except ¢,;, which is unaffected to this approximation.
Coupling to other bands does make the effective mass of ¢,; go negative, but not
strongly so because of their weaker coupling. The k-7 theory is thus seen to explain
the small positive effective mass of the conduction band and the three valence bands.
Two valence bands are predicted to be degenerate at £ = C, one with a heavy
negative mass and the other with a light negative mass. A split-off valence band
is also predicted with a energy below the other two and a small negative effective
mass.

The equation for the energy of the conduction band is quadratic in the momen-

tum wavevector, k. This dependance allows us to describe the nature of the band
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near the band edge by the use of an effective mass, m;, defined by

(1v.11)

We now define for future convenience the value of a dipole coupling energy, Ep, by

2 2
Ep= %pz = m—e(sw,w)?. (Iv.12)

The effective mass can now be found from equation (IV.10) as

1 _ 1 Bpf 2 1
—=—(1+ 2 =+ . 1v.13
mh  Me 3(50 EG+A)] ( )

It can be seen that if A =0, then m./m; = 1+ E,/Eg. The eflective mass and the

bandgap energy, of GaAs at T= 0 K is foundl®?) to be m_/m, = 0.067 and Eg =
1.52 eV, which from equation (IV.13) gives E, = 22.54 eV, At 300 K, Eg = 1.423
eV and m{/m, = 0.063, giving E, = 22.62 eV

We are primarily interested in the conduction band properties in the analysis of
the QWEST. 1t is noticed that the spin-orbit coupling does not directly couple the
conduction band with any other state. The spin-orbit only effects the conduction
band through the mixing of valence band states, which is a higher order effect. Thus
we can often approximate the above Hamiltonian in equation (IV.5) by its reduced
two-by-two Hamiltonian coupling only the S and Z states via the k,P, terms. Either
by solving for the eigenvalues of this reduced Hamiltonian or by solving for equation
(TV.8) with A =0, we find the quantum energies of the two states from a quadratic

equation with solutions of

E==84 (——)2 + (kP;)? (1v.14)



where the plus gives the conduction band energy and the minus gives the valence

band energy. For small (,P;)?, the above equation reduces to

=%i(%+"g‘f) (1v.15)
where as before the plus gives the conduction band energy and the minus is the
valence band energy. Notice the conduction band energy is the same as in equation
{IV.10) with A = 0. However the valence band energy cannot be similarly obtained.

The two-by-two Hamiltonian with the above energy is solved by wavefunctions

which can easily be expanded to first order in &,P; to be

$e=5]| "l'(kzpz/EG)z { V.16
po = —i(k:P[EG)S | +2 | (1v.18)

with the normalization of the wavefunction not included. The value of k.P./Eg can
is evaluated as follows. We first notice k2P2 = E;E, where E; = #2k2/2m, is the
free electron energy. But the energy of an electron in the conduction band is given
in the effective mass approximation by E.(k) = me/m:Ef and we saw previously

that Ep = (me/m; — 1)Eg =~ m,/m, Eg. Using these observations, we find

kP, _ VEREG _ [B(x)

E,
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B. GaAs Quantum Well Energy

We now use the above analysis to derive formulations for the band energy of
the GaAs quantum well and various related quantities such as QWEST density of
states and Bloch functions. We are first concerned with the energy of the QWEST.
We found previously that the density of states for the transition would be a delta
function, or with zero bandwidth. But this result, as indicated in equation (I11.12),
is based on the energy being quadratic in the momentum vector, or the effective
mass approximation. Since we are interested in finding the density of states for
the transition at least to first order, we must retain the higher order terms in
equation (IV.8) for the energy eigenvalues. It can also be noted that inclusion of
the nonquadratic terms must be used simply to calculate the quantum well energies
with any accuracy for smaller well widths where the energy of the momentum
state begins to extend into the linear part of the band diagram and the effective
mass approximation is no longer valid. Tke effective mass approximation must be
adjusted for two effects. The first has been illustrated above. The solution to the
quadratic equation, (IV.14), for the band energy in k. p theory is not quadratic in
k. for large values of k,P,. Next, the spin-orbit coupling also affects the bands. But
this Jatter effect is lower for the conduction bands since the spin-orbit coupling does
not directly connect the conduction band to any other band in the Hamiltonian.
Our approach will solve equation (IV.8) without mathematical approximation with
the aid of a computer. But this does not imply our solutions will be particularly
accurate. In the derivation of equation (IV.8), we neglected the coupling to the other
bands by &-p theory. This additional coupling is given by second order perturbation

theory in quantum mechanics, neglecting spin- orbit coupling, asf21l

R R k(¥ jlp-1¥ )2

— Iv.18
2m, m2 o Ejp— Ejo ' ( )

El'(kz) =Eyp+
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where we see the coupling of band “i” with the other bands )” through the &-p term.
This expression reduces to that of equation (IV.15) when the sum only includes two
bands. This extension of the k-p coupling to the other bands is critical for the heavy
valence band as it is seen to be totally unaffected by the coupling to the conduction
band. As a measure of the accuracy of the &.p theory, we can calenlate the value of
m* independently for the three bands that are affected by k- p theory and checking
for consistency. We use the relations of equation (IV.10) and room temperature
values for Eg and Ep of 1.423 eV and 22.62 eV. This value of E; was derived from
the conduction band effective mass and will return the original number used for this
mass. We let the spin-orbit splitting be 0.341 ¢VI?2. From equation (IV.10) we find
the effective masses of the bands to be m; = 0.063, m,, = 1.0, m,, = ~0.104, and
my3 = —0.305. In comparison, the experimental values are found to bel??l m* =

0.063, m,, = -0.50, m,, = ~0.076, and m,3 = -0.145.

The valence band masses are seen to have different degrees of accuracy. The
most likely cause of errors is the neglect of the coupling to all other bands as
indicated in equation (IV.18). A clear measure of the effect of the other bands is
seen from the calculation of m;,. This valence band is not affected at all by &.p
theory in the two-band approximation, and in fact bends in the wrong direction. An
examination of a GaAs band diagraml*®! indicates that bands exist at energies 4.55,
1.51, 0, -0.35, and -12.55 eV above and below the valence band edge, respectively.
The energies at 1.51 and -0.35 correspond to conduction and split-off valence bands,
already descriped by k- p theory in the two-band model. The next closest band is at
4.55 eV, about 3 eV above the conduction band. It can be seen from equation (IV.18)
that this band will reduce the inverse effective mass. The value of the reduction of
me/m,; from the two-band value of 1.0 to the emperical value of -2.0 is equal to -3. If

we assume the other valence band inverse effective masses calculated in the two-band
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model are reduced by a similar amount, we find new values of m* of m,, = —0.079
and m,‘,3 = —.159, in much better agreement with theory. We measure the strength
of a band coupling in equation (IV.18) by dividing by the electron free energy to
obtain units of me/m’. This unit will be seen later, in equations (IV.53) and (IV.54),
to be related to the oscillator strength. In this unit the strength of the two-band
coupling is about 12 for the conduction band coupling to the valence band and
about 3 for coupling to the other bands. The two-band model is therefore considered
to be accurate only to about 256%. Nevertheless, the energy of the quantum well
wavefunctions within the well region can be obtained to first order accurately using
this analysis by simply matching the quadratic expansion of the solution to equation
(1V.8) to the known electron effective mass in the conduction band, since this is
the the only band of interest. The only energy approximation remaining is for
the deviations of the energy from quadratic dependance on momentum wavevector.
Our calculations indicate that for the small k vectors, relative to the reciprocal
lattice vector, of interest here, the deviation from the effective mass approximation
changes the energy of the QWEST by only about 15 meV for the higher energy
transitions. Also, deviation of the band erergy from quadratic dependence on the
k vector only causes the density of states to increase to about 5 meV at room
temperature and much less at lower temperatures. Furthermore, even if we had
perfectly accurate band energies, the quantum well energies can be off by as much
as 10 meV or more because of the great difficulties in treating the well boundary
conditions. The broadening of the states by the band nonparabolicity is not the
dominant broadening mechanism. Thus the approximation of using the two-band

k- p theory seems well justified for cases of interest here.

The envelope approximation for the behavior of the electron assumes the electron

remains in a similar environment, such as the conduction band of a GaAs
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crystal. We now attempt to describe the behavior of an electron in the inhomogeneous
medium of a2 quantum well (see Fig. IV.1). We first note our quantum wells
are piecewise continuous, with the well defining one region and the barriers defining
another two regions. The crystals used in the experiments to be described usually
contain more than one well, but we separate the wells sufficiently to prevent any cou-
pling or interaction between wells. Since we are concerned with only three regibns,
the most practical approach seems to be one of describing the behavior in each of
the regions as described above and then trying to define what happens at the bound-
ary. This boundary condition determines much of the properties of the quantum
well states. Yet it will be seen to be the most difficult to describe for a large number
of reasons. The boundary condition for an electron at a potential barrier is normally
simply taken to be continuity of the wavefunction and its derivitive normal to the
boundary. This boundary condition is a direct result of first and second integrations
of Schrédinger's equation across the boundary in the absence of delta function or
infinite potentials. However, the boundary condition for our electron is more difficult

because the envelope wavefunction is not the full wavefunction of the electron.

One of the first modifications of the boundary is to the concept of a Bloch state
which remains constant from one cell to another, and the assumptions of equations
(IV.1), (IV.2), and (IV.3) do not hold and need to be changed. The separation
of the electron wavefunction into a product, as in equation (IV.1), is permitted
in band theory because of translational invariance of the potential terms. The
usual treatment of the wavefunction uses periodic boundary conditions to require
the envelope take the form given in equations (IV.2) and (IV.3). This treatment is
improper for real crystals. First we note that the crystal is not infinite, translational
symmetry does not hold, and thus not allowing a separation of the envelope and

Bloch states as simple as stated in equation (IV.1). We also note that periodic
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boundary conditions are improper and instead one should use boundary conditions
which allow the wavefunction to go to zero at the edge of the crystal. If we assume
equation (IV.1) to be correct momentarily, then ¥ = 0 boundary conditions give
envelopes which are sine functions instead of exponentials and allow ¥ to take values
balf that of equation (IV.3). Negative values of ¥ are no longer valid as they describe
the same exact state which has already been described by the positive values of .
Thus the number density of states per unit energy is the same as under the usual
band theory. The states missing by not allowing negative values of ¥ are made up
in the density count by allowing half integer values of 2x/L for ¥ in addition to the
normal full integer values, The improper treatment usually makes little difference
for large crystals involving averages over large numbers of states, but for quantum

wells in which only one state is being described, the differences are critical.

We now attempt a simple description of how the states are modified to ac-
count for the differences. We first note that for ¥ = 0 boundary conditions, the
wavefunction must be symmetric about the center of the well. This is also true for
our quantum well with a finite barrier on both sides which is also symmetric about
its center. A solution we might look for is one which is sinusoid and symmetric or
antisymmetric about the crystal center. We first investigate, using k- p theory, a
sinusoid envelope. The solution can be found with the simple observation that the
energies resulting from the -p theory are independent of the sign of k., as illustrated
in equation (IV.8). This degeneracy of the positive and negative k, states allows
us to renormalize the states by any linear combination of the two wavefunctions
of the degenerate states. For this discussion we use the simple wavefunctions of
equation (IV.16), when combined with the exponential envelope of equation (IV.2)
as in equation (IV.1). We notice that equation (IV.16) is not independant of the

sign of k. and thus the periodicity of the Bloch state wavefunction from one lattice
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cell to another breaks down as expected. The linear combinations of interest are

W(kD) = [*524(k2) + (~1)" e~ kE o k7)) /2 (1v.19)

which, with the aid of equation (IV.16), becomes

(k) = (1)"~cos(k?: - g(n -1))s¥ + "g’; 2 $iliyny 2 ~ g(.. -1))z2%) . (v.20)

We have superscripted the Bloch states § and Z because the well and barrier regions
consist of similar but different materials and their Bloch states may have different
wavefunctions. For an infinite well, ? = nky = njL. The value of &.P./Eg was
found in equation (IV.17) to be equal to the square root of the ratio of the quantum
well energy to the band gap energy. This quantity takes on a maximum value of
about 0.3 or less for quantum states to be discussed. We see that this form still does
not go entirely to zero at the boundary of an infinite well since, for a finite &, a
small component of the Z Bloch state remains because the sine term has a maximum
magnitude where the cosine term is zero. Also note that we have assumed here that
the zero of the z coordinate is at the center of the well. This assumption is used
throughout the remainder of this chapter. In contrast, the zero of the z coordinate
was taken at the edge of the well throughout chapter HI.

A similar analysis to that above may be done for the barrier region. Only
the confined states are of interest here so the electron will have a wavefunction
which decays as it penetrates the barrier, We try to find such a state in GaAs by
replacing k; with iy in equations (IV.1) through (IV.18). The envelope equation,
(IV.2), becomes

VB =2, (rv.21)
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As before, we find that equation (IV.16) in combination with equation (IV.21) above

for the envelope gives a full wavefunction of

VB(y") = e=7%[sB + (P, /Eg)25] | . (1v.22)

The superscript on 7 refers to the n'th state of the quantum well. The value of »
for this quantum state depends on the energy of the state. If we use the expression

for the energy of two bands in equation (IV.15) and replace &, by iy we obtain

_Eg  (Eg _ 1P}
=7 *(T E ) (1v.23)

This is equivalent to use of the effective mass approximation with the energy below
the conduction band edge being given by #%+2/2m*. This barrier region is made
of Gaj_yAl;As (0 £x< 1). The bandgap of Ga;_,AlyAs is given by Eg = 1.424 +
1.247x for x< 0.45, For 0.:15 <x< 1.0, the bandgap is indirect and the value of
the direct bandgap varies as Eg = 1.424 + 1.247x+1.147(x2 in this region, to a
maximum of 3.018 eV for AlAs. However the minimum gap of AlAs is indirect and
has a much lower value of 2.168 eV. Since we are interested only in bound states,
the effect of the electron band structure in the barrier region is not very critical
and we describe the behavior of the electron in this region by an electron effective

mass of i8] m;, = 0.067 + 0.083x for a barrier with Al fraction of x.

The question now is how the difference in the energy gap between the GaAs
and the Ga;_yAlyAs, or AEg, is divided between the conduction and valence bands
at the interface of the two materials, a much more difficult parameter to measure.
For many years it was felt that the conduction band discontinuity was 85% of
AEg. However, very recent measurementsi?3l are consistent in pointing towards

a different value of about 65% AEg for the conduction band discontinuity, and
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this is the value we use for the barrier height of the electron in the conduction
band quantum well. Then for an Al fraction x less than 0.45 we find a potential
barrier height of Vg == 0.811x eV. For 0.45 <x < 1.0, the barrier potential is taken
to be Vg == 0.811x+0.746(x~0.45)%. This barrier height for x> 0.45 assumes that
an electron in the well region couples to the same symmetry Bloch state into the
barrier region. This assumption is arbitrary and niay need modification in light of
the future accuracy of its predictions. A possible alternative assumption sllows the
well region electron, at the lowest energy point with I' symmetry, to have a smaller
barrier height by coupling to the X symmetry Bloch state. This is because the bands
become indirect for x greater than 45% with the X symmetry state becoming the
lowest energy state in the conduction band and the I' point remaining the energy
maximum for the valence band for 2ll values of x. But this lower barrier height
would only occur for a change in symmetry of the Bloch state across the boundary,

and is considered to be a lower probability assumption.

The quantum well eigenvalues can now be solved with the above assumptions
by first assuming an energy for the state. Then from equation (IV.8) we know the
value of k. for that energy and from equation (IV.20} the wavefunction in the well
region of that energy. From the barrier height given above we can determine how
far the quantum energy is below the band edge in the barrier region. Then from
equation (IV.23) we determine the value of + for the state and from equation (IV.22)
the wavefunction of the state in the barrier region. These calculations can be done
for any energy and do not yet determine which energies are allowed quantum states.
This quantization is performed by the boundary conditions at the boundary between
the well and the barrier. Unfortunately, this boundary condition is one of the most

difficult conditions to determine.

The boundary conditions for a full Hamiltonian can easily be found by a simple
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integration of the Hamiltonian across the boundary, and are given by contiﬁuity
of the wavefunction, ¥, and its derivative, 9¥/3z, at the boundary of the two
regions.!1.2) However, this approach fails for the envelope approximation. The en-
velope cannot be assumed to have a continuous wavefunction and denivitive at the
boundary. The reason is that the envelope wavefunction is not the full wavefunction
of the conduction band electron. The full wavefunction is given by such expression
as equations (IV.186), (IV.20), and (IV.22), where the Bloch states § and Z are strong
functions of position of the electron. Some attempts have been made to create
a new Hamiltonian based on the envelope states(?428l, with this new Hamiltonian
being given simply by an effective mass approximation or better as in the £ .p
approximation. This attempt typically leads to a requirement that the envelope
wavefunction, ¥, and the inverse effective mass times its derivitive, (1/m*)a¥/az,
remain constant across the boundary. Unfortunately, this approach of assuming a
new Hamiltonian for the envelope states, although strictly valid for the envelopes
within a uniform region, has problems in being valid across a boundary because
the basis states {the Bloch states, in this instance) which are used are no longer
constant across the boundary. An analysis by Bastardi?4l explicitly assumes that
the Bloch states remain constant across the bcundary and that they couple to the
other S and Z Bloch states across the boundary in the same relative ratio. Both of
these assumptions are arbitrary and not necessarily correct. This assumption will be
compared with others in relation to experimental evidence in the next chapter. We
first look at what is believed to be the proper boundary conditions. We assume that
that the continuity of the full wavefunction and its derivitive holds. One then has,

srom equations (IV.20) and (IV.22), the following relation at the boundary +L,/2

r n
A[cos(ﬁ,,) s¥ 4+ "—;:? sin(vn) zw] = Be™" L=/2[sﬂ + 112%23] (1v.24)
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from the continuity of the wavefunction across the boundary and

Ak"[ sin(6n) SW + kE‘G cos(o,,)ZW]+A[cos(0,) k’P’ (0,,) ]
B n
— _pyn-1"L:/2)| gB 4 1Pz 4B (=v"Ls/2)| 958 | 1"P; 925
By"e [S + EGZ +BeTT R+ Eg 07 (rv.25)

from the continuity of the derivitive acress the boundary. The value of 9 is defined

by

fn = k2L /2 - %(n -1). (1v.26)

These boundary conditions are the proper form to achieve accurate quantum well
energies. The problem is that they require knowledge of the wavefunction of
the Bloch states, which has not been required up until now. However, from the
symmetry properties of the Bloch states, the above can be reduced slightly. For
instance, assume the boundary ocurrs at the edge of a primitive lattice cell. Then
from the symmetry of the S Bloch state, we know it must have a derivitive which
goes to zero at the boundary. Similarly, we know that the wavefunction of the 2
Bloch state must go to zero at the boundary. The above equation then simplifies
by a factor of two, Using these symmetry assumptions, the above equations reduce

to

Acos{n) SW = Be~1"L:/2gB (rv.27)

and

. B
Ak"[ sm(f?,.)Sw]+A[ksz sm(ﬂ,,) ]_ —~ByPel=7 Lz/2)[55 +Bel™ ”r"Lz/?)['”’EEZ_E’_Z__]_

G dz
(1v.28)
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It is noticed that equation (IV.27) reduces simply to continuity of the envelope
wavefunction if we assume the Bloch wavefunction of the well region is similar to
the Bloch wavefunction of the barrier region. However, equation (IV.28) is much
more compli-ated and cannot be solved without detailed knowledge «f the 3loch
state wavefunctions. If we alter equation (IV.17) slightly, we find that vP./Eq is
approximated by \/—AETE(;, where AE is the energy of the state below the bandgap.
It is easy "o see this value is about 0.4 for the GaAs bandgap of 1.43 eV and barrier
heights of about 300 meV. Assume momentarily that the derivitive of the Z Bloch
state is smaller than the value of the 5§ Bloch state multiplied by k. or 4 (this is a
poor assumption since one expects the Bloch state to vary much more rapidly than
the envelope). In this approxihmation one sees that the second terms on each side of

equation (IV.27) drop out. Then the ratio of (IV.28) to (IV.27) reduces simply to

kP tan(6) = 1" (1v.29)

which is the expected boundary cordition if we were to assume continuity of the
‘envelope wavefunction and its derivitive for the S Bloch state alone. Note the Bloch

function drops out in this ratio automatically with no further assumption.

We are still faced with the unsolved problem of the boundary conditions for the
quantum wells. Inspection of the past literaturell indicates that good agreemecnt
was found in the envelope approximation simply with the use of equation (IV.29).
Unfortunately these energies were calculated in the past when the energy barriers
were thought to be 85% of the bandgap discontinuity instead of the now known 65%.
A common assumption currently made in the calculation of quantum well energies
[24.25] js that the envelope remains continuous as before but that the derivitive of the
envelope must be multiplied by the inverse effective mass to be continuous across

the boundary. If we ignore the Z Bloch state and only lonk at the § state envelope,
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this boundary condition reduces simply to

("—?a) tan(én) = -5 (1v.30)
My mp

for effective masses in the well and barrier of my, and mp, respectively. This
boundary condition is one of the most commonly used relations in the calculation
of the quantum well states. However as discussed previously, these assumptions
are not necessarlly any more accurate then the ones here. Yet further problems
occur because the béundary between, for instance, GaAs and Al3Ga7As is further
complicated because the Al atoms are not uniform thoughout the boundary. Thus
even if the Bloch wavefunctions were known accurately, one would need to somehow
perform the proper averaging technique to get the proper boundary conditions.
Ultimately we must judge the merit of which assumptions by which ones agree best
with observation. Fortunately, the very simple boundery conditions of equation
{IV.30) when combired with the new barrier height assumption of 65% gives nearly
perfect agreement with experimental observations. Several effects will be discussed
soon which have been observed to shift the quantum well energies, but these en «y

shifts are only 2 or 3 meV in magnitude.

The energies of the quantum wells are nov' calculated using the above assump-
tions. We calculate the transition energies for both assumptions of continuity of
the envelope derivitive, with equation (IV.29) above, and with this derivitive multi-
plied by the inverse effective mass, using equation (IV.30) above. We then compare
these two results with the experimental results for best agreement. The envelope
wavefunction within the well is assumed to be entirely the envelope part of equation
(IV.20) for the S Bloch state with the Z part ignored. Similarly, we use only the
envelope part of equation (IV.22) which belongs to the § state. These assumptions

were implicit in the form of equations (IV.29) and (TV.30). We connect the quantum
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well energy with k; by use of equation (IV.8) and the room temperature valuesl22l
of m* = 0.063m., Eg = 1.423 eV, and A = 0.341 eV. We can use these values and
equation (IV.13) to derive a value of E, equal to 22.62 eV, which is used in the
solution to equation (IV.8). The energy in the barrier region is related to v by use
of the effective mass approximation as shown in equation (IV.23). Equation (IV.23)

can be made simpler by use of the effective mass definition to give the result

n2,12

where Vg and mg* are the barrier height and the eflective mass of the AlyGaj_yAs

barrier, respectively. The values of Vg and mg* used were given previously.
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Figure IV.2: A plot of the calculated QWEST energies using the m* and

normal boundary conditions with the experimental observations also indicated.
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A plot of the calculated QWEST energies as a function of well thickness is
given in Fig. IV.2 for both assumptions of boundary conditions and a barrier of
Al 3Ga7As. Also plotted is the QWEST energies for the three observed transitions.
It can be seen that a much better fit to the observations is obtained with the 1/m*
boundary conditions of equation (IV.30). Thus these conditions are used for al}

future discussions and analysis.
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C. GaAs QWEST Dipole and Oscillator Strength
GaAs QWEST Dipole

In chapter ITI., we described the envelope states and the dipole between them.
Quantum states in GaAs have much more structure than presented by the envelopes
and in this chapter we describe how the dipole must be modified. It will be seen
that the envelope approximation is very good.

The dipole between two quantum well states can be written down directly with
the use of equations (IV.20) and (IV.22) for their full wavefunctions. A dipole, umn
between an upper state with envelope quantum number of m and 2 lower state with

an envelope quantum number of n is given by

00 L]
tmn = e{Wylz|¥)) = /_oo WV, 2V, dz

k7

L. /2 . .
=ef {cos(k;"z-g(m-l))szv + 5P Ginkn - 3(m— 1) 2 }z

-L./2 Eg
n kP, . n
x {cos(kgz - §n=1)s¥ + £ sin(igz - F(n - 1) Z,w}dz

o0
+2¢C /L o2 {sf‘ + ";,2 2 z.’?‘} z {s,B + %zf};hww)z dz. (1v.32)

The subscripts 1 and u refer the lower and upper quantum well states with envelope
quantum numbers of n and m, respectively. The constant € is the product of the
amplitude of ihe barrier wavefunctions, found as stated in the previous section by
continuity of the envelope at the boundary. We have made use of the assumptions
of symmetry of the quantum well about z=0 to simplify the integral of the barrier
wavefunction. As noted before we are interested in transitions between envelope
states which are of opposite parity, or equivalently, m and n must be of opposite
parity. For example, we are most interested in the ¥, — W, transition. In this
case the lower state has an S Bloch state multiplied by a cosine function and a 2

Bloch state multiplied by a sine function. The upper state has an § Bloch state
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multiplied by a sine function of approximately twice the lower state frequency and
a Z Bloch state multiplied by a cosine function of approximately twice the lower
state frequency.

We now wish to integrate equation (IV.32). We first note that the Bloch states,
although strong functions of position, are periodic in the lattice spacing. The
envelope wavefunction, however is a slowly varying funciion and changes very little
across a given lattice spacing. The size of the FCC lattice cell of GaAs is about
5.642 A on a sidel?2l and we are interested in quantum wells with thicknesses in
the range of 60 to 100 A. Because the envelope varies slowly over a unit cell, we
can approximate the above integral over a unit cell by the integral of the Bloch
functions times the value of the envelope at the center of that unit cell. The value
of the Bloch state integral over the unit cell is the same for each cell. The overall
integral then reduces to a sum over all values of the envelope at the center of each
cell times the overlap integral of the Bloch states. The sum over the values of the
envelope can then be reduced to an integral of the envelope over the entire quantum
well. For simplicity, we label the independent variables in the cosines and sines of

equation (IV.32) by 6,5(z) and é,(z). Equation (IV.32) now reduces to

xR e
umn = e(Wy|z|¥)) = -/—oo W,V d:

L:/2
=f 1.1 ®05(0m(2) 3 cos(en(2) 5 | 51

(kEPZk ’:)sm(%( ))z sin(en(z)) (28 | 2}¥)
k3P,
Eqg

34
+EG

{8m(2)) sin(on(2)) (s |21 21")

$in(9,m(2)) cos(bn(2)) (2¥)2|SYY) dz

+ 2¢C / ze'(7'+7‘)zdz{(SB[SB)+WP : 2P (28| 2} )}. (1v .33)

We have taken the values of (S | Z) to be zero. Note that the dipole integral has
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now reduced to four terms in the well region and one term in the barrier region.
The barrier integral is simply the product of the envelope dipole part and the Bloch
state overlap. The principle term in the well region is the first term, which accounts
for over 90% of the dipole. For allowed transitions of opposite parity, then one of
the envelope states will change all of its cosine functions into sine functions and
sine functions into cosine functions because of the #/2(m — 1) term in é,,(z). The
first term in the well region integral is seen to be the dipole as calculated from the
envelope wavefunctions multiplied by the overlap of the two S Bloch states. The
integral can be transformed into the form of equation (II.5) by letting &* = mk, =
mn/L, and changing the origin of z by substitution. We then have for an infinite

barrier

L./2
e[—L,/z c0s(0m(z)) z cos(n(z)) dz

L
= (~1)m+n fo sin(mkyz) 2 sin(nkgz) dz
8 mn
— (_1\ymtntly =
=(-1) inr2(m2-n2)2 (1v.34)

where use has been made of equation (III.10).

The second term is more complicated since it occurs out of phase with the
envelope wavefunction normally multipling the § Bloch state. This term has a
maximum at the well boundary. We relate this envelope integral to the envelope
integral of the first term by integrating by parts. For simplicity of this calculation,
we use the envelope wavefunctions of the infinite well. It will be assumed that for
the finite well the two integrals will extend into the barrier by a similar amount since
they are integrated over wavefunctions with identically the same 7 values, but with
a different phase. Therefore the ratio of the integrals for the infinite well should

remain reasonably accurate for the finite well. Also this second term contributes less
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than 10% to the dipole strength so this approximation is quite adequate to achieve
answers accurate to better than 1% . We first transform the second integral to
a form with the zero at the boundary edge using the infinite barrier solutions of

kP = mn/L, with the result

L/2 _
[ 1o Sm(2) s (2)
L
= (-l)’"*"/; cos(mkyz) z cos(nkgz) dz

Le L
. . 1,
= (_1)m+n[/; i sin(mk,z) z sin(nkyz)dz — /; -';I—";sm(mqu) cos{nkyz) dz| (IV.35)

where we note the first term in the last equation contains the dipole integral of
equation (IV.34). The second term is integrated by the use of trigonometric relations

with the result

1 Ly .
m—-—kq/‘; sin(mkgz) cos(nkyz) dz

L:
= o Jlintlm+ wlegs) - sin((m = n)kee)

1 1/ 2 2
_;n—,:gi(m-!-n*—m—n)

4 1
= (1v.36)

where the parity properties of the allowed m and n values are used and note the
normalizing constant 2/L. has been multiplied in the last step. We now ear find

the value of the integral of equation (IV.35) as

Le/2
[ 7. pSin(om(e)  sin(on(z))

= (caymn|BLe_ 2t dLs 1
12 (m2-n2)2 22 m2_n2

= (—l)vn+n("_:l‘2_¢)(;l"f_ff;;_2. (1v.37)
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This integral is now ratioed with the integral of equation (IV.34) to find the ratio

of the integrals, R, is given by

m? +n?
mn

(Iv.38)

1
k=3

Although derived for an infinite barrier, this ratio is assumed to be valid for any

barrier height as discussed above.

The two remaining terms are treated the same as the second term. We calculate
the ratio of this term to the first term for the infinite well and assume the ratio
remains constant for any barrier height. As before, we begin by converting the

integral to a form with the zero at the edge of the boundary. This gives

Lef2
/—L,/z C%(om(z))sin(gn(z)) dz

L:
= (~1)mn+l /0 sin(mkqz) cos(nkez) dz

4 m
= (-t 2_m 1v.39
T m? — n2 ( )

A similar term for the last integral in the well region can be solved by a simple
exchange of the variables m and n. These last two terms take their dipoles between
the Bloch states instead of between the envelopes. The magnitude of this dipole
can be determined from the earlier k. p theory. We do not know the sign of this
dipole but we can nevertheless determine the sign of this term, important because
this term can subtract or add to the other terms, by relation to the value of 7,.
Using the relations (IV.6) and the commutation relations of (Il.6) and {II.7) with

the free electron mass instead of the effective mass, we obtain

P, = Eg{52)Z). (Iv.40)
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With the aid of equations (IV.39) and (IV.40) the third term of equation (IV.33)

becomes

Lz/2 I
/—L,/ k;::’ cos(6m(2))sin(6n(2)) (SY|2|12}¥) a2

— "?Pg(_l)m+n+lﬂ m
E% T2 - n?

= kP yment 4_mn
= Eza( 1) ey (rv.41)

We have used % = nky. The fourth term is identical to the above term with the
exchange of variables n and m. It is then seen that the fourth term is identical in
all respects to the third term except that the sign is opposite. Thus these two terms

cancel one another and drop from the integral for the dipole.

The remaining terms contain an overlap integral, such as (S, | 5;) or {Z, | Z)).
The s and Z Bloch states are based on the atomic potential, as discussed in the
section on k- p theory, and are the same for all k vectors. The overlap integral is
not necessarily unity, however, because the reference frames of the two states can
be rotated from one another. The rotational properties of these states are given by
E. O. Kanel?®l. The S Bloch state is rotationaly symmetric and indeed has a unity
overlap. The Z Bloch state rotates as the crystal axis, giving their overlap equal to

the cosine of the angle between the lower and upper quantum state k vector, or

KPED + kD

(Zu] 2)) = .
Jk;n2 + kzn2\/kg2 + k;ﬂ

(1v.42)

For low denstities and temperatures, the value of the overlap is close to unity as
both the upper and lower states are have a very small transverse &, component and
both k vectors point normal to the boundary surface. As estimate of the above

overlap can be found from effective mass theory, where we take the value of &,
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to be proportional to the square root of the quantum energy of the state and the
value of ¥ to be a distribution from zero to the square root of the thermal energy,
with the same proportionality constant. The minimum overlap integral can now be

estimated by

VEE [+ Ey,
Zul 2) = ——t——— v.43
(Zul 20 VE + Ep\/Es ¥ By, (1v.43)
where E|, E;, and E, are the lower quantum state energy, the upper quantum state
energy, and the thermal energy, respectively. Taking the values of E,, E), and E,; to
be 50, 180, and 25 meV respectively, the minimum value of (Zy | 2;) becomes 0.967.
For a given transition, we must evaluate this term by using a thermally weighted

average over all possible transverse k vectors for a given temperature.

The second term is also multiplied by a term of ¥7*47P%/E%. This term can be
seen with the aid of equation (IV.17) to reduce to \/E;Eu/Eg. This term will take
on the value of 0.066 using as values of E; and B, and Eg the energies 0.05, 0.180,
and 1.43 eV, respectively. We saw earlier from equation (IV.38) that the envelope
dipole of this second term was about 5/4 times the value of the first terms envelope
dipole for a 1 ~ 2 transition. Thus this second term contributes less than 10% to
the dipole. Because of the small contribution of this term, we can approximate the
Bloch state overlap factor of equation (IV.43) by unity with good accuracy. This
approximation is consistent with the other approximations in terms of accuracy and
eliminates the difficulty of having a dipole that has a dependance on density and

temperature.

The approximations for the overlap of the Bloch states also apply to the barrier
region with similar results. However, equation (IV.17) must be modified with the

aid of equation (IV.23) to give
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wiP} _ VVB=Eu/Vp~Fi (Iv.44)
EVI E :

E% G

where Vg is the barrier height given earlier.

The dipole integral of equation (IV.33) now reduces to a much simpler form

given by

o0 L]
Bmn = e{Wy|z|W)) = j;oo ¥, 2V, d:

Lif2 wient e
= [y eos(kP = m =) cose - 5= 1)) ‘/‘ * f";" 'Vfi”'_/’f/i_
- 1+ Eu/Eg\[1+ Ei/Eg
* - -
+2eCj;l 1229‘(‘7-+'1()z ds % 1+ Vg =Eus/Vg=E|/Eq 1v.45)

V1+ (Ve - Bu)/Eg\/1+ (Vg - E})/Eg

where we have included the Bloch state normalization factor in the denominator.

For convenience, we will define the quantities Ry and Rg by

mi+nl EeTIE,
= LT VT vt
V1+Eu/Eg\/1+EfEg

and

_ 1+/Vg—Ey\/VB - E|/Eg (IV.465)
B—- . .
V1+ (Vg - Eu)/Egy\/1+ (Va - B)/Eg

Using these definitions the dipole can be written in a yet simpler form of

o *
bmn = e{Vyjz|¥)) = /_m V¥, ¥, dz

Lej2
=e L2 cos(k7'z — %(m— 1)) z cos(k?z - %(n— 1))dz x Ry
[eo}
+ 260/1, e’ o=t 0z x Ry (1v .47).
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The dipole integral is now very similar to the integral expected simply from the
envelope of the S Bloch state solved for the finite barrier, but with some reduction
given by the factors Ry and Rg. As an example, using values for Ey, E;, Eg, and
Vp of 180, .050, 1.43 and .243 eV, respectively, we find that Ry and Rp equal 1.003

and .9895, respectively, or 1.00 to the degree of approximation valid here.

GaAs QWEST Oscillator Strength

In chapter III. we defined an oscillator strength, f, of an optical dipole transition

between two quantum states by equation (II1.14), which we repeat here as

/= i"‘—“"(z)2 (v .48)

where m, is the free electron mass, w is equal to the energy difference between the
states divided by 4, and e(z) is the dipole between the states .s defined in equation
(IV.32) for the wavefunctions under consideration here. This form of the oscillator
strength is fundamentally derived using the quantum mecharical formula for the
dipole interaction of two quantum states with an electric fieldl'5] and comparing

with the definition based on the classical responselt®] of a bound electron.

The oscillator strength of a GaAs QWEST is ca' ulated using the energies of
the states as solved by the method of section B and with the dipole solved as
indicated in equation (IV.47). The factors Ry, and Rg are taken to be unity with
1% accuracy. The oscillator strengths of 2 well with Al 3Ga ;As barriers and GaAs
well thicknesses of 65, 82, and 92 A are found to be 12.1, 13.2, and 13.7, respectively.
In contrast to the quantum well energies and dipole, the oscillator strength is a slow
function of well width. In chapter HI, the oscillator strength for an infinite well
was found in equation (ITI.16) to be 0.96m./m* or about 15.2 at room temperature,
and independent of well width. Quantum wells with finite barriers will have smaller

oscillator strengths because the envelope wavefunctions of the two states involved
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in the transition will extend into the barriers different distances, lowering dipole
integral. Some insensitivity of the oscillator strength to the well width nevertheless
remains because as the energies of the quantum well states are lowered substantially
by extension of the envelope wavefunctions into the barrier, the dipole is increased
similarly to compensate in the expression for the oscillator strength.

The oscillator strength also obeys a sum rule!8l known as the Thomas-Reiche-
Kuhn sum rule. This sum rule is derived in the quantum mechanics textlt®l by E,

Merzbacher, among others, and for a single electron transition is given by

Efks'_’: 1, ([V‘lg)
k

based on the definition of the oscillator strength, fi,, similar to that above and

given by

Jpo = 2Tk (5 2. (1v.50)

Note this nscillator strength need not necessarially be equal to the above definition
since this quantity is simply an element occuring in a sum over states afler some
manipulation. However it happens to be identical. The sum in equation (TV.49)
must be over all states, both bound and unbound. The quantities w, and {z,)* are

defined by

Wiy = (2 — Ee) /N (1v.51)

and

(zee)? =] f 1 20 7L : (1v.52)
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The oscillator strength is positive when coupling to energies above E, and negative
when coupling to lower energies. We observe that the derivation of this sum rule
is sufficiently fundaments] and general so as to also apply to our system. The
derivation relys only on the comutation relations [z,p.] = i4 and [H,:] = -ifp,
which apply to all quantum mechanical systems. The sum rule includes both positive
and negative values and includes all dipole couplings, even to nonbound states. Thus
the sum rule is useful for giving limits on the strength of a given oscillator strength
only for transitions from the lowest energy state, where all terms in the sum rule are
positive. The QWEST does not occur between a ground state. The sum rule still
applies, but does not directly tell us anything about the QWEST oscillator strength
from fundamental principles.

Some properties of the oscillator strength of the QWEST can be developed,
however. To see in detail how the oscillator strength applies to GaAs quantum wells
and their transitions, we first look at the results of Ridleyl?ll. Ridley's expression
for the energv bands of GaAs was given by & -p theory in equation (IV.18). This

equation is reduced to give the effective mass, m*, of the electron as

AL AL Al
Eo-E;

me 1+ 2y (1v.53)

m; e iyt
where Ejy are the k=0 Bloch .tate energies and the dipoles are between the Bloch

states. We now note with the use of equation (II1.7}, the oscillator strength can be

written as

Tis = 2”‘_3‘_8#’;__5’_)(21“)2_

— 2 [(vulpalvall?
=i E—EB (1v.54)
Comparing equations (IV.53} and (IV.54), we see that
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_m—: =1- E le (IV5-5)
m; ik

where the sum is over all Bloch states. From the conduction band oscillator strength
of 0.067, we find that the oscillator sum is equal to 1 — m¢/m* or about -14.
Whereas the conduction band summation of interband oscillator strengths is large

and negative, t} : valence band has a large positive sum.

It might appear that the Thomas-Reiche-Kuhn sum rule either implies all effective
masses mwust be infinite for all bands or else is invalid. However the sum in equa-
tion has not included all possible dipole transitions. The sum was over inter-
band transitions which have their dipole between the Bloch states and the en-
velope states remain nearly constant. But we must sum over all transitions for
the sum rule to apply. Thus we must include ali possible intraband dipole transi-
tions between the envelope states (such as the QWEST) between each state and
its neighbor in the band. This sum can be found either by summing equation
(U1.16) (which is independant of well width even up ¢o large crystals) or not-
ing that an artificial Hamiltonian can be created for the conduction band electron
with a smaller effective mass which will vield a sum rule equal to unity in terms
of its effective mass which will be equal to m/m"' when normalized to the free
electron mass. Similarly, the valence band will have a large negative sum of
oscillator strengths over its intraband envelupe state transitions. Thus we see
the sum of equation (IV.55) plus the envelope state transition oscillator strengths

does indeed sum to unity and the Thomas-Reich-Kuhn sum rule continues to apply.

The & - P theory shows us that the coupling between the envelope states and
Bloch states causes the sum of oscillator strengths to separate into two large groups
of opposite sign, with the interband conduction band transitions between Bloch

states having a large negative sum of 1 —m/m* and the intraband conduction band
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transitions between envelope states having a large positive sum of m/m’. The
reciprocity of the two systems, the envelope states apd the Bloch states is deep
and each system gains greatly from the other by the their coupling from the - p
perturbation. For instance, the energy of the Bloch states is easy to understand
from the nature of the atomic energy states, but it is difficult to understand why
these atomic Bloch states would have a dipole between them of nearly 7 e-A. (The
size of a primitive cell is about 2 A and the dipole size is usually a small fraction
of the physical size, but the GaAs atomic dipole is bigger than the atoms!). On the
other hand the dipole of envelope state transitions is readily understandable from
the size of the wavefunctions, but it is hard to understand why the energy should
be so high. Obviousi, the k. p perturbation has allowed a highly favorable trade to
take place between the two systems and the measure of that trade is given by the
oscillator strength splitting and therefore the inverse effective mass. The intricacies

of the interaction are very interesting20.21}, but beyond the scope of this thesis.
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D. Energy Broadening Mechanisms

In chapter IlI. the optical absorpticn of the QWEST was shown to have zero
bandwidth. In this section we attempt to determine the mechanisms which lead to
a finite absorption bandwidth.

Several mechanisms are important. First the density of states for the QWEST
was seen in chapter III. to be infinitely narrow only for parabolic bands and con-
servation of the transverse momentum during a transition in an infinite well. Real
bands and transitions depart from this ideal. Second, the transition has a finite
lifetime which leads to some linewidth. Third, the energy of the transition dcpends
on the well width. If some variations occur in the width of the well from one location
to another, then the QWEST energy is inhomogeneously broadened by this effect.
An attempt is made to determine the magnitude of each of these effects and offer
an exblaination of the observed linewidths. All of these broadening effects contain
large uncertainties at this time, thus no definitive conclusions can truly be made

here, instead only a qualitative indication.

Density of QWEST states

Two effects give a finite bandwidth to the density of states. One is deviation
of the energy bands from parabolic dependence on the wavevector. The second
is the dependence of the offective electron barrier height on transverse momentum
wavevector. These two effects are very nearly equal for quantum wells with our

parameters.

The calculation begins by solving for the quantum well energies as a function of
the transverse k vector. We continue to use the material poperties as described in
sections A. and B., and the boundary condition (IV.30) does not change. However,
the equations relating the energy and the propogation vectors in the two regions are

changed to include the transverse energy. The energy in the well region is described
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in equation (I'V.8) and now becomes

B(E - BEg)E' + A) - (k2 + 43)PYE +24/3) =0 (1v.56)

where k, is the transverse wavevector. Similarly, we modify equation (IV.31) for the

barrier region to give

Vp—E= ;:’; -;:_"E. (1v.57)
From continuity of the wavefunction across the boundary, the transverse wavevector
is taken to be the same in both the barrier and well region. The additional kinetic
energy from this transverse momentum is not equal in the two regions, however.
This energy difference can be described with parabolic bands in the effective mass
approximation. The transverse kinetic energy of the well region is h2k?/2m;y but
in the barrier region is #%}/mp. The effective mass in the well region at room
temperature is 0.063m, and that of the Al 3Ga 7As barrier is approximately 0.088m,.
Thus an electron at room temperature with a transverse kinetic energy in the lower
quantum state of 25 meV has a transverse kinetic energy in the barrier region
about 30% lower. This energy difference is equivalent to a reduction of the barrier
height, in the one dimensional calculation, by the same energy difference or about
7 meV. This effective lowering of the barrier height depends on the magnitude of
the transverse momentum and thus gives some bandwidth to the density of states.
The finite bandwidth of the QWEST thus arises from both the nonparabolic part

of equation (IV.56) and the change in effective barrier height.
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Figure IV.3: a.} A plot of the quantum well energies versus transverse k vector
for the two lowest energy quantum well states. b.) A plot of the the magnitude of

QWEST energy reduction from the k,=0 value as a function of k,.

The solution of the transverse band energies including both effects is given in
Fig. IV.3a for a 65 A thick well of GaAs with a barrier of Al3GasAs. In Fig
IV.3b the reduction in the QWEST energy as the transverse wavevector increases
is plotted. It can be seen that as the thermal energy of the electrons in the lower
state increases towards 25 meV above the k;, = 0 edge, the transverse wavevector
takes on values of about 0.022 A~1, At this transverse wavevector, this reduction
in QWEST energy is about 4 meV. The relative importance of the reduction of
the effective barrier height is found by letting the bands be perfectly parabolic in a
similar calculation. The reduction in QWEST energy with transverse momentum
is very similar in form with very close to half the QWEST energy reduction found
with both effects included. The two effects are thus very nearly equal for quantum
wells with the parameters we use.

The density of states for the QWEST is now derived in terms of the band

energies of the lower and upper quantum states, o. Ej(k;) and Ey,(#:), respectively.
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The QWEST energy, Eg(k:), is defined in terms of quantum well energies by

EQ(ks) = Eu(ke) - Ey(ke)- (1v.58)

We first calculate the density of states for the lower quantum well state assuming
the bands are spherically symmetric in the direction of the k vector. If we rederive
the density of states equation (II.11) without assuming Ej(k.) to be quadratic as we

did in equations (I1.9) and (I1.10), then the density of states can be written

kt

g
et __4E). V.59
& aE (k) dky (1v-59)

pi(E)) dE; =

This equation is solved numerically to give a solution very similar to that illustrated
in Fig. I.1, with the difference 'rom the nonparabolic nature of the bands only

barely observable.

The QWEST energy density of states depends on the population distribution in
the lower state. The spread of electrons among the transverse momentum states is
dependent on both doping density and temperature. Furthermore, both broadening
effects are very dependent on the thickness of the quantum well region. The
probability of any of the lower states being occupied is given by the Fermi factor,

F(E}), which is given by

1

FE)= ————
1+ el E-u)/kT

(1v.60)

where .. is the Fermi energy of the electron. The Fermi level determines the electron
density from the integral over all states to the probability of an electron being in
that state. If we label the surface density as g4, then the surface density of electrons

per well is given by
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ps = /P(EI)F(El)dEI- (rv.61)

Only the lower quantum state is included in the above integral over transverse
states. The upper quantum states are assumed to be sufficiently high in energy so
as to not be populated. This assumption is valid because the QWEST energies are

over 100 meV but the experimental temperatures are 25 meV and below.

The density of QWEST states is now calculated for a given Fermi level and
temperature. The density of QWEST states is expected to have the narrowest
linewidth for low Fermi energies and low temperatures, since the electrons would
then be concentrated in the low energy parabolic region of the lower state where
we would expect zero bandwidth. However if either the doping is high, requiring
the Fermi level at zero temperature to move up into the nonparabolic region of the
band, or the temperature is high, allowing the electron the freedom to move into
the upper part of the transverse band, the QWEST density of states will broaden.
This QWEST density of states, pg(Eg), is found from the equation

dE,
rglEg)dEg = "’(E‘)F(E’)&Eé dEg. (1v.62)

We calcuate the QWEST density of states for some of the conditions under which
experiments are performed. The calculation is performed for several different Fermi
levels. The Ferm’ level also determines the surface density of states, and the Fermi
level chosen is that which corresponds best with the actual surface density of the
well. All the wells used in our experiments were doped to have a surface density
of 4 x 10" /em2. The actual doping varied somewhat as will be discussed in the
next chapter. The density of states at room temperature varied very little with
the surface charge density, and the low temperature density of states varied slowly

but was almost negligable in comparison with the other broadening mechanisms.
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Therefore small differences in surface charge density do not change the density of
states significantly. Illustrated in Fig. IV.4a is the calculated QWEST density
of states for the 65 A thick well with an electron thermal energy of 3 meV or a
temperature of about 35 K. The Fermi energy for this calculation was at 70 meV,
or 15 meV above the 55 meV energy of the £, = 0 band edge of the lower state
(all energies are measured relative to the band edge in bulk GaAs). The surface
density, g, at this Fermi level is 4.32 x 10! /em2. The FWHM of the distribution
of energies is seen to be about 2.4 meV for this temperature. As the temperature is
increased to room temperature with 25 meV thermal energies, the density of states
broadens as illustrated in Fig. IV.4b. The Fermi level at this temperature decreases
to about 45 meV or 10 meV below the lowest energy quantum state, for a surface
density of 3.76 x 10!!/cm?. It can be seen that the FWHM has now increased to

about 7.4 meV at room temperature.

The QWEST density of states linewidth is also a function of the well thickness.
A larger thickness well has a smaller wavevector in the z direction and does not place
the electron as far into the nonparabolic region as does the thinner well. Thus a
larger thickness weli has a much reduced linewidth in its density of QWEST states.
We illustrate the QWEST density of states for an 82 A thick well in Fig. IV.4c.
This calculation is at room temperature (25 meV) with a Fermi energy of 31 meV,
which is 10 meV below the lowest energy quantum state at 41 meV. This Fermi
level corresponds to a surface electron density of 3.68 x 10! fem?2. This density of
states can be seen to have a FWHM of 6.3 meV. This linewidth is 0.9 meV below

that of the 65 A thick well at room temperature.
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Figure IV.4: a.) A plot of QWEST density of states for 65 A well at 35 K. b.)

QWEST density of states for a 65 A well at 300 K. ¢.) QWEST density of states

for an 82 A well at 300 K.
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It must be noted that some serious uncertainties as to the validity of this
calculation exists. Most all of the uncertaintity concerns the degree to which real
GaAs bands are nonparabolic. Of the many parameters used to calculate the
properties of the QWEST, this parameter is one of the few which has no emperical
verification. This term instead was derived based on the &.p theory between two
bands and is subject to the limitations both of the theory and limited number of
bands used. In the begining of section B., the accuracy of k.p theory was shown
to be imperfect at predicting the effective masses of both conduction and valence
bands simultaneously, with indications that the imperfections arose from the limited
number of bands incorporated into the theory. The coupling to other bands was
shown to have as much as a 30% eifect. The theory works well at predicting
energies because the major part of this energy term can be found emperically from
the effective mass. Whereas the error in the energy terms might only be 10 %, the

error in the bandwidth of the QWEST density of states is'only accurate to 30%.
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Lifetime Broadening

The upper state can relax back to the lower state elastically simply by rotating
its momentum vector so as to convert some of its momentum perpendicular to the
barrier to momentum transverse to this direction (see Fig. IV.5). This effect allows
the electron to return to the lower state via an inelastic collision and thus gives the
relaxation a very high speed. For sufficiently high excitation of this electron gas,
the inelastic scattering among the electrons heats the electron gas relative to the
lattice temperature. The QWEST absorption and refractive index would thereby
lower since the QWEST energy would then be a smaller multiple of the temperature
times Boltzmann's constant, and the electron gas would quickly reach equilibrium
{ in a time suspected to be much less than a picosecond). The relaxation of the
electron gas temperature to the lattice temperature is much slower and has been

measured to be several picoseconds.l?7]

Ath E
n=3 n=2
n=2 \ n=1
n=1\ —_— —
[ =
n=0 K. : K,

Figure IV.5: A diagram of the electron path during its relaxation from the
upper quantum well state. The initial process is an elastic scattering tu the lower
band, followed by a slower inelastic decay to the iattice temperature. The plot on
the left is of the allowed wavevectors of a quantum well. The transverse wavevectors
are suffiriently close to be drawn as a line. Note the lowest energy quantum well
is the n=1 state. A constant energy surface is also indicated. The plot on the
right illustrates the energy of the two lowest quantum well states as a function of

transverse wavevector.
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The process by which an electron looses momentum is similar to the eiectron
processes which determine the mobility of an electron in the conduciion band of
GaAs. An estimate of the speed of this process might be deduced from the measured
mobility of the quantum well. The mobility, ., is related to the scattering time, 7

of an electron by the expressionl?l

pe= . (1v.63)
me
A typical room temperature mobility for a quantum well sample is about 7,000 em2/v —
sec, which increases to 50,000 em?/V —sec as the temperature is reduced to 77 K. The
scattering time, as given by the above formula, is found to be about 0.25 picoseconds
for the room temperature sample and about 1.9 picoseconds for the low tem-
perature sample. If the decay of the upper state is assumed to be exponential then
the lifetime will lead to a broadening with a Lorentzian lineshape and a FWHM of

h/zr. The linewidth increase for a room temperature sample due to lifetime is about.

5.3 meV. The low temperature increase is about 0.69 meV by the same calculation.

Unfortunately, the mobility lifetime is only loosly related to the fetime of
the upper quantum well state. The two relaxation processes are related in that
they both involve a scattering of a conduction band electrca. The similarity ends
here and the differences are many. The mobility is determined by the relaxation
of the average momentum of an electron distribution back to the rest frame of the
crystal, which requires inelastic scattering. Furthermore, the mohility of a quantum
well is increased by the tendancy of a conduction band elect: .. not to scatter
between quantam well states, but instead scatter only within the plane of a single
quantum state. But the scattering rate which determines the QWEST lifetime is
probably an elastic transition between quantum well states, in contrast to both

of the processes determining the mobility lifetime. Elastic scattering is generally
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much faster than inelastic scattering, and thus the mobilty determined rate is too
slow on this grounds. But the scattering rate between quantum well states, which
determines the QWEST lifetime, is slower than the scattering rate within the plane
of single quantum well state, which determines the mobility lifetime. So the mobilty

lifetime could easily be many times larger or smaller than the QWEST lifetime.

Attempts have been made to measure this lifetime in quantum wells with the
newly developed femtosecond lasers.[27-20] Unfortunatly, these experiments, in spite
of ti1eir resolution and sophistication, do not quite measure the quantities of interest
to the QWEST. The highest resolution study performed of these references is that
of D. 1. Erskine, A. J. Taylor, and C. L. Tangl?%), in which relaxation times as small
as 30 femtoseconds are measured for the quantum well samples. But they used a
2.0 eV photon as as the excitation of the upper states, leaving the electron with an
excess energy of about 0.5 eV for the room temperature measurement. An electron
at this high an energy can elastically scatter froni the I' symmetry point in the band
diagram to the L symmetry states, which have a band edge about 310 meV above
the direct band edge at the I' symmetry point. Since our quaninm well energies
are less than 310 meV above the oand edge, this scattering does not occur in our
quantum wells. The optical phonon scattering was calculated in the same paper(2s]
have about an order of magnitude lower scattering rate, which would give a number

similar to the numbers based on the mobility, but this rate was not measured.

An excellent measurement of the relaxation time of the electron gas temperature
to the lattice temperature over many picoseconds under various exciatations and
temperatures has been made by two groups. The first is that of C. V. Shank, R.
L. Fork, R. Yen, J. Shah, B. I. Green, A. C. Gossard, and C. Weisbuch at Bell
Laboratories.[?”l The second is Z. Y. Xu and C. L. Tang at Coznell University. But

of interest to the QWEST upper state lifetime is a different quantity, that of the
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relaxation time of the electrons among themselves, known to be a much faster

phenomena.[27]

One of the measuremerts of D. J. Erskine, A. J. Taylor, and C. L. Tang,i3
is of special interest since this experiment does measure the relaxation time of the
electrons among themselves by viewing how quickly electrons excited at 0.5 eV above
the band edge return to the band edge. Thi. measurement has he same problems as
that of reference 29 in that at this high an excitation energy, the electron’s dominant
scattering mechanism is the I'-L intervalley scattering mentioned above. But unlike
the measurement of reference 29, this*® experiment is looking at the lower energy
states as it excites the upper states. So the electrons, which may initially scatter
to other valleys, eventually must return to the I' valley as they cool. The rate of
intervalley scattering is found?l to be in the 30 to 60-fsmtosecond time scale. Thus
we expect this measurement to be of some utility since the electrons quickly return
to the valley of interest. The relaxation time measured for the quantum wells at
room temperature was about 1 picosecond. However this measurement was made
with an excitation density of 2 x 10'9/cm? and our quantum wells are doped to a
density of 4 x 1017 /cm2. Furthermore the electrons excited via the QWEST are
only about 130 meV above the lowest energy state, whereas the measurement30l is
from electrons which start about 500 meV above the lowest energy state. As such

the QWEST lifetime could be significantly different.

In view of the uncertainties of the above description and meas:rements and
their relation to the upper quantum well relaxation time, little can be definitively
said about the QWEST lifetime. However the above observations lead us to expect
a relaxation time between 0.2 and 1.0 picoseconds for the quantum well at room
temperature. This would lead to a linewidth broadening between 1 and 6 meV.

The scaling to lower temperatures is not known. If the scattering is primarily
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determined by phonon scattering, then the QWEST would almost certainly have
a longer lifetime and smaller broadening as the temperature is reduced. However,
if the scattering is determined by free electron scattering or scattering off of the
walls, jons or other fixed source, then the scattering rate for the upper state will
probably remain constant with temperature reduction. The latter case is suspected

to be much more prebable.

Well width inhomogeniety

A variation in the width of the well can Jead to a change in the energy of the
qu.antum well states. As an example we see in Fig. IV.2 that the variation in
QWEST energy with well thickness is roughly linear with a slope of 1.1 meV per A
of well width. Fortunately, this well width variation can be measured directly from
its broadening of a two-dimensional exciton energy (see chapter Il., section D.). This
measurement has been made as a function of the substrate growth temperature in
the Molecular Beam Epitaxy chamberl3!l and found to have a minimum width of
1.0 meV at a growth temperature of about 690° C (see Fig. 1V.6). Our sarples
were grown at a temperature of about 660° C. The linewidths of the exciton at this
temperature are about 1.4 meV. Since the well thickness used in this measurement[3t]
is 200 A, the linewidth of our 65 to 100 A wells with the same size variation in

thickness is about 1.6 meV.
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Figure IV.6: A plot of the 2-D exciton linewidth of various quantum well
samples as a function of substrate growth temperature (from Ref. [31]).

In addition to perturbations on a microscopic scale, one can also have syste: . atic
gradients in well thickness across the surface of a quantum well sample. These
usually arise from a gradient in the rate of the molecular flux or the surface of
the sample since the molecular sources are usually off axis from the center of the
sample. The variation in flux rate is about 20 to 30 % across the diameter of a 2 inch
wafer. The wafer is sometimes rotated to average out these variations. This was
not done for the quantum wells grown since the maximum rotation rate possible for
the growth apparatus did not permit several rotations during the 30 seconds needed
to grow a single well of 65 A. It will be shown later that the infrared beam probing
the QWEST has a dimension of 3 by 11 mm. The variation in thickness will then
be that of the wafer times 3/51 or 11/51, depending on the direction scanned. For
a 30 % variation in thickness across the wafer, the variation in thickness across

the beam pattern is about 1.8 to 6.5 % of the thickness grown. We note this
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variation corresponds to a variation in thickness of about 1.1 to 4.2 A for a 65 A
well. This in turn gives a linewidth increase oi about 1.2 to 4.6 meV, depending
on the orientation of the crystal thickness gradient to the infrared beam pattern.
If we add this inhomogeneous term to that above, the inhomogeneous broadening
is anticipated to be in the range of 2.8 to 6.2 meV. The crystal is oriented so as to
acheive the narrowest linewidth so the smaller number will be used. The variation

of linewidth with erystal orientation will be examined later.

One of the quantum wells we tested was inadvertantly rotated at a very slow
speed during growth, so each section of the sample received a distribution of well
widths within the 50 quantum well stack which was grown. The measured spectra
was seen to be broadened about an additional 10 meV, corresponding to a thickness
variation of about 10 to 15 % among the wells. The spectra also became very
strongly dependent on the beam pattern on the surface. This sample, B-331, will

be discussed in some detail in the next chapter.

Sum of the broadening effects

The suspected broadening terms of the QWEST linewidth are tabulated for a

65 A well at room temperature in Table IV.1.
Table IV.1
Broadening effects for a 65 A quantum well at 300 K.

Density of QWEST states 7.5 +2.0 meV
Lifetime broadening 3.0 £3.0 meV
Inhomogeneous well width 3.0+1.5 meV

Total 8.7 £3.3 meV

The total assumes the linewidths add as the square root of the sum of squares

of the individual linewidths. If we reduce the temperature of a 85 A well to 35 K,
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the broadening terms change as shown in Table IV.2.
Table IV.2
Broadening effects for a 65 A quantum well at 35 K.

Density of QWEST states 2.4 0.6 meV

Lifetime broadening 3.0 3.0 meV
Inhomogeneous well width 3.0 £1.5 meV
Total 4.9 3.0 meV

The bandwidth can be seen to have large uncertainties as to the mechanisms
involved, particuarly in the lifetime. The 82 A well is clearly broadened by an
inadvertant variation of weil thickness from well to well during growth of this sample
as will be discussed later. Precise measurements of lifetime, exciton linewidths,
and quantum well energies as a function of well thickness (to determine band
nonparabolicity ) may eventually lead to a better understanding of the precise role

of each of these mechanisms.
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E. Energy Shift Mechanisms

The energy of the quantum well states was calculated in section B. from the
potential of the crystal in which it was contained. However this calculation neglected
any external fields and the coulomb potential arising from the electrons themselves.
An external field can be shown to have only a small effect on the QWEST energy and
is not discussed. In contrast, the electron self-repulsion can have a noticable effect
on the quantum well energy. This effect is dependent on electron density and lowers
the QWEST encrgy by about 2 meV at the densities we use of 4x 10!} /em®, Another
mechanism which shifts the observed energy spectrum is the dynamic interaction
of the probing field with the electron plasma of the quantum well. This causes
the absorption peak to appear at a higher energy than the true quantum energy
difference of the states. For the density of electrons and well thicknesses we use, the
observed energy absorption peak is about 3 meV above the quantum well energy

difference.

Coulomb interaction

The electrons within the well region create an electrostatic potential, ®, which
interacts with both upper and lower quantum well states. This potential can be
found from Maxwell's equations in one dimension;

52 —pl2)e?

b= (1v.84)

We can use the solution to the wavefunctions in section B to find the electron
distribution as a function of z. This probability distribution is integrated twice
to find the potential using equation (IV.64). The effect of this potential on the
quantum well states is found from first order perturbation theory.

The integrations over the wavefunctions of section B and the subsequent per-

turbation calculations are very lengthy and fairly tedious. But all understanding
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and a fairly good estimate of the effect can be found by using infinite well envelope
states. This estimate calculation is presented here and later compared with the
results of the accurate calculation.

The wavefunctions of the lower and upper envelope states for the infinite well

are given by

o= \/gcos(qu) (1v.65¢)

and

vu = [ 2 sin(2ke2) (IV.65b)
2

respectively, where the origin of the well is taken at the center of the well and as
before, kg = 7 /L. and the edges of the well are at +L./2. The electrons are assumed
to all reside in the lower energy state. The electron surface density is taken to be

ps. The density distribution, p(z) then becomes

o) = %—cos2(qu). (v .66)

Insertion of this density into equation (IV.64) yields after the first integration the

result

04— _rec® 2|z sin(2kge)|

where Ej is the constant of integation and is equal to the electric field at z==0.
In the absence of an external field, this term can be seen to be equal to zero by
reason of symmetry. Note that even if this term were nonzero, by application of an

external field or by absence of symmetry, the effect on the quantum well energies
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can be seen to cancel to first order. If we let Ey be zero, the integral of equation

(IV.67) gives an expression for the potential of

27 _ cos@hgz) (1v.68)

pec 2{22  c0s(2kyz2)
178

where we have taken the arbitrary constant of the potential to be zero.

Using the above expression for the electrostatic potential of the quantum well,
the energy shift of the two quantum well states can now be calculated using first
order perturbation theory. Perturbation theory gives the first order correction to

the energy of the states, A% as

AE = (y|®|y)

L:f2 (rv.69)
_/—L;/2¢ Dy d:.

The energy shift of the lower envelope state now becomes

L. /2 2 2,2
_ poc®( 2 Y122 cos(kgz)| o
Ap=- e (“L,) [ e LT

— paez Lz
== Zﬁ" (rv.70)
where
/2
B = f_ o [292 - cos(20)] cos?(4) ds. (1v.71)

The integral 1, is evaluated in Appendix A, part 1. The perturbation energy now

becomes

oc® L;
= -"—E—%[g - 3—2 . (Iv.72)
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The upper state energy shift is calculated similarly. Tue energy shift of the

upper state is found from first order perturbation theory as

Lz/2 2 2,2
pee® 2 Y°| 22 cos(2kgz)| . 2
AB —“fz,,/z —“(L—) [? g | (k)

2
=t L, (1v.73)
where the integral & is equal to

w2 .
Iy = ./:_”/2 [202 - cos(29)] sin®(26) do {(1v.74)

and is evaluated in Appendix A, part 2. The upper state energy is then shifted by

an amount

€ 253
__ﬂoesz l_ 1
=83 g (1v.75)

The energy shift of the QWEST, AEg can now be caleulated from the above

two expressions;

AEQ=AEu—AE(
=l -1 8
€ 20222 L2
___p.e2L, 5

. Iv.76
€ 1622 ( )

This energy shift is seen to be proportional to product of the well thickness
and the surface charge density. If we let L, and p, be 80 A and 4 x 10'! /em? and
use ¢ = 13¢, then AEg = -1.4 meV. A more extensive derivation including the

envelope tunneling into the barrier and the solutions for k, gives an energy shift
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of -2.1 meV. The larger number is expected for the larger wavefunction of the true
envelope states relative to those for the infinite well. The energy shift of other size
wells scale proportionally so a 65 A thick well would have an encrgy shift of -1.7

meV.

Dynamic interaction with the free electron plasma

The effect of an external electric field on the quantum well states is described
by its value at the location of the well. But the potential at the location of the
electron in the quantum well is not neccesarialy that determined from an external
field, depending on the shielding caused by the electron gas. This shielding has
been shown to cancel the peak absorption resonance at what would be expected to
be absorption energy of the transition(32-34], The effect was first described by Chen,
Chen, and Bursteinl*! and then formulated in a readily understandable quantum
argument by Allen, Tsui, and Vinterl*2. The quantum argnment was then further
developed by Dahl and Sham.[33] The validity of this effect was confirmed by inelastic
light scatteringl!®l in GaAs quantum wells as discussed in chapter II, section F.

A simple explaination in classical terms for this effect can be given as follows.
Suppose the quantum well is placed in an external electric field of frequency w. Then
the dielectric constant of the medium near a strong resonance at wy can be written

as

2
dw) = em+ — LE4 (rv.77)
wo

wg —w? + i
where 2 = ne?/mee is the plasma frequency squared, v is a resistive loss term of
the resonance, n is the three dimensional electron density, and s is the oscillator
strength. The dielectric strength from all other transitions are assumed to be slowly
varying for this description near wy, and are included by the constant ¢,,. The power

absorbed per unit volume, PA, is now given byl®l
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PA= DI Im(—<(w)) (1v.78)

where E; is the internal field of the crystal. Using this formula we usually expect a
maximum absorption peak at the resonant frequency of wy, as occurs from simple
substitution of equation (IV.77) into equation (IV.78). But for strong resonances,
this expression must allow for the differences between the external and internal field
which varies as a function of frequency. For instance, the field which interacts with
the QWEST is normal to the surface of the quantum well. Thus the boundary
condition gives the relation E; = E./e(w), where E; and E. are the internal and

external electric fields, respectively. From equation (IV.77), we see that

le(w))? %(ﬂﬁ Tlem +wf —w?)2 +w2q?’

1 1 (w% —w?)? 4 w2y (1v.79)

The plasma frequency term can be written as 02//em = 2, where (2 is the
effective plasma frequency obtained by using the crystal dielectric strength and
effective mass in the above expression for plasma frequency. The numerator of
equation (IV.79) can be seen to cancel the denominator of the imaginary part of

¢(w) as given in equation (IV.77). The power absorbed then becomes

02 fyw? €0

PA= =
(0 + 2 — w2 + 72t 26,

|Eef? (1v.80)

and now is maximized at a different resonant frequency of w;, given by

2 __ vo
b »
wol = w§+ 0 (1v.81)

as stated earlier in equation (11.29). The theory of Allen, Tsui, ard Vinteri3
develops an expression from the quantum dynamics of the interaction and has the

following result for the power absorbed per unit area;
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P (l|z|2)2w%w2'7

Pe 2
PAS = — Iv.82
g (wd + wE — w?)? + wiy? IEel { )
where
2 2N3€2 .
wp =~y woSa2; (1v.83q)
00 1 2
Spp = / [ / 'pz(z')w,(z’)dz'] d (1v.83b)
~00 |/~00

where ¢y, is the envelope wavefunction of the un'th envelope state and p, is the
electron density per unit area. If we let the plasma frequency be the same, then
the two expressions (IV.80) and (IV.8%) are identical with the aid of the definition
of oscillator strength in equation (I1l.14) and letting PAS, the absorption per unit

area, be converted to an absorption per unit volume by the ratio of » to p,.

The expression for w? in equation (IV.83) can be related to a three dimen-
sional plasma frequency il we use the infinite barrier envelope states of chapter
L. The frequency wy becomes wy = 3hk§/2m° and the integral S;; becomes
Spp = (5/97%) L, = 0.0563L;. The plasma frequency squared then becomes w} =
(No/Lz)e?/em* x 5/3. This expression shows qualitatively how the expression of

equation {IV.83) is about 5/3 times the three dimensional plasma frequency.

The energy shift is calculated using the expression for the plasma frequency
in equation (IV.83). The value of Sy is found emperically(tel to be about 0.072L,.
This is larger thau the value of 0.056L, found for an infinite well, as expected,
since the wavefunctions for a finite barrier extend further into the barrier region.
We now calculate the energy shift for several wells for a doping concentration of
4 x 10" /em2. The energy used in equation (IV.83) is that calculated in section B

with the assumption of continuity of the envelope derivitive at the well boundary
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and labeled Ego. The shifted encrgy is labeled EZ, and the plasma [frequency times
i is labeled E,;. Note the infinite well expression gives a value of Ey; of 51 meV for a
65 A quantum well. On the other hand, equation (IV.83) gives a value of 28.5 meV
for Ey,;. The infinite well thus gives a poor approximation for the plasma frequency
of the two-dimensional well.

The calenlated enpergies and shifts are now tabulated in Table IV.3 for three well
thicknesses of interest. The theoretical absorption resonance energy, £4, is found

by adding the coulomb energy shift of the previous part to Eb

Table IV.3

The QWEST energy and energy shifts for quantum wells with thicknesses of
65, 82 and 92 A. Energies are in units of meV.

Thickness  Egy  Ey Ep AEg E4
65 A 141 2098 1441  -1.7 142.4
82 A 16 305 1199  -2.1 117.8
92 A 103 304 1074 -24 105.0

The dynamic electron plasma interaction is seen to nearly cancel the electros-
tatic coulomb interaction, anc ihe net energy shift is about 1.0 meV upward for the
well widths and doping densities used here. This small an energy shift is below the

accuracy of the initial quantum well energies.
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F. Optical Properties

The optical properties of the QWEST are of special interest because of the
transition’s high oscillator strength, narrow bandwidth, and fast decay time. In
this section, several optical properties are calculated for the QWEST. These include
the index of refraction, the absorption rate, and the nonlinear index of refraction,
usually called ng.

Index of refraction

The electric susceptibility of a dielectric medinm, x, is defined by P = ¢xE
where P and E are the polarization of the medium and the applied electric field,
respectively. The electric susceptibility for an dipole transition between tv.c quan-

tum states is given by Yarivitél as

2
1oy — B T2ANy (wo - w)Ty V.84
x(w) cof 14 (w—w)?T3 + 40277’ (1v.840)

2
WMw) = ETAN 1 (Iv.848)

©F ]+ (w-wp)2T} +402Tyr
where the dielectric response has been seperated into real and imaginary parts,
where x = x' + #x". The linear and nonlinear index of refraction is determined
from x' and the absorption of light and its saturation are determined by x”. The
time for the upper and lower quantum states to loose phase coherence from one
another is called 73. The relaxation time for the quantum states to return to
their equilibrium distribution between the lower and upper states is called 7. The
“precession” frequency ) is defined by Q = pEy /2% where Ep is the amplitude of
the driving field at a frequency w. The equilibrium population difference, ANy,
between the upper and lower states is taken to be the doping density since at the

energies and temperatures we use, only a small fraction of electrons are in the upper
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ctate. The polarization obtained from the use of a surface density must be averaged
over the distance between wells to obtain the average polarization. Therefore, one
can generally use an averaged densityA for ANg. The dipole, u, is the same dipole
calculated previously in section C. The resonant frequency, wy, is equal to the energy
difference of the two quantum states over 5.

The index of refraction of the medium is determined from square root of the
dielectric constant, ¢, which is related to x by e = ¢+ ¢gx, Where e, is the dielectric
constant of all other transitions in the frequency domain of interest. The refractive
index of the media from all other trasitions, ng, is given by ny = \/em. The index

of refraction change, Ar due to the transition at wg is then given by

An=X
n= —270. (IV.85)

If we assume that the dipole is 17 e-A and T, is equal to 0.2 picoseconds, then

An = 2.5 x 10~18m3 ANy g(w), where g(v) is the lineshape factor,

— (wg-w)T»
g(w) = TH(w—wglT WP TS (1v.86)
Nonlinear refraction

A nonlinear refraction index, ng, is difined by

n = ng + ngl (fV.87)

where ng is seen to be the linear constant between the iudex of refraction and
the incident optical intensity, I. The expression for this term can be found from
equation (IV.84a) by expanding the 12 term in the denominator to first order in
this term. This first order term of x’ in 22 is labeled x{3)E§ since the polarization

is now proportional to EJ instead of Ey. Expansion of equation (IV.84a) now gives
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2udng T3 7 (w — wp) noE}
BN w)E2 = £ M0 "2 0 ___ AN, "0 Iv.88
xHw)Eg moco (1 + (0 — woPTRE - 2mp (1v88)

where 79 = \/uo/ep ~ 377ohm and o is the magnetic permeability of free space.
This nonlinear coeflicient can be related to the nonlinear index of refraction by first
using the relation between the amplitude of an oscillating electric field in a dielectric

medium and the optical intensity in the medium;

_ "oE}
= o (rv.89)
Now using equations ([V.86) through (IV.89) we obtain
oo XIWEY _ M T3 ANy (w—wo)T (Iv.90)

2nol eﬁchsng 1+ ('»v.’--wo)zT%)2
wherg the dipole 4 has been set equal to e{z). We now define the lineshape factor on

the right by ¢®}(w), given by

o) (w) = v +(((‘Jw_—w:(:;;21‘§)2' (rv.e1)

If we now take {z) =17 A, ANy = 4 x 1017 /emB, ng = 3.27, r = 4 picoseconds, and

T; = 0.5 picoseconds we then obtain

2
ng = 0.96 x 104 v':,_’"aﬁ ¢ w). (1v.92)

The magnitude of the nonlinear coefficient depends on how close the light is to the
resonance. We find the maximum occurs when (w — wp)T; equals 1/v3, at which
point g3)(w) = 0.325. The nonlinear coefficient then has a maximum value of 3.11 x

1075 em? /Watt.



Absorption rate

The absorption rate, 4(w), for a collection of dipole oscillators i» the rate at
which light of a given intensity I wili decay exponentially into a medium. This rate

is given by Yarivtsl as

rw) = -"‘,’";' (Iv.93)

where kp is the free space wavevector of the light. This equation becomes with the

aid of equation (IV.84b),

2 W2T3 AN,
)=~ S8 ), (1v.94)

where )¢ is the free space wavelength and the absorption lineshape factor, ¢(w) is

defined by

-1
14 (w—wp )2T2

This absorption consiant can be put into a simpler form with the aid oi' the osclllator

o'(w) = (v -95)

strength, f. Using the oscillator strength definition of equation (IMl.14), one obtains

2
1w} = &Np ————260,"?‘; s g'{w). (1v .95)

Wg now take value of )y as 8.15 microns, which is the wavelength of a photon with
energy of 0.152 meV. We also let g — 17 e-A, ng = 3.27, T, = 0.5 picoseconds,
and ANp = 4 x 107cm~ . absorption constant then becomes y(w) = 3.8 x
104 cm—! ¢(w). The cross section, o, defined as the ratio of the absorption constant
to the population difference, is approximately ¢ ==1 x 10~13,

We remark that the all of the above optical properties are proportional to

ANp, the average dopant density. In our numerical estimates we used a value of
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4 x 1017 cm=3 for this quantity. In the next chapter we will see that this doping
density only exists within a 100 A region, with the average undoped spacing between
each of the doped regions being from 400 to 100 A, depending on whether buffer
layers are inserted or not. Thus the lower state density, when averaged over the
entire region, will become equal to 20 to 50 % of the doping density in the doped
region. If we wish for the above numerical estimates, which are linear in lower state
density, to apply we must multiply them by .2 to .5 respectively. These optical
quantities also only apply to optical rays propagating entirely within the epitaxial
region containing the quantum wells in a regular array. Obviously, outside the
region containing the quantum wells no QWEST optical effects can occur. Also,
the QWEST has a nonzero dipole only for one polarization of the electric field.
The interaction of infrared light of other polarizations with the QWEST must be
reduced by a factor including the inner product of this polarization with tue QWEST
dipole, usually taken to be in the z direction. The effect of this lower coupling is
equivilent to lowering the dipole in the above optical quantities by the cosine of the
angle between the infrared polarization and the QWEST dipole. The next chapter
will show how the above optical properties are t> be modified when the optical
beam is propagating at an angle to a number of quantum wells, as occurs for our

measurements.
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V.QWEST Absorption Experiments
In this chapter we describe the experiments performed to observe the QWEST.
We present the results of those experiments and compare these results with the

theory of chapter IV.
A. Mechanics of the Optical Probe

The optical experiments were oriented towards observing absorption of infrared
radiation by the QWEST, The primary goal was simply to prove that a dipole
transition between the envelope states truly exists in a real material. It reguired
years of effort to see this effect, during which many serious questions arose about
both its theoretical existence and how close real quantum wells approximated a
theoretical two dimensional system. For instance, if the quantum well walls were
sufficiently rough then scattering could destroy the effect either by increased lifetime
broadening or by lack of conservation of transverse momentum wavevector. As will
be shown, neither is the case. The primary difficulty in the observation of the effect
was found to simply be a trappiug of all free electrons by deep energy states, most

likely at the interfaces.

The second goal was to measure the energy of the QWEST. These energies could
then be cc ‘pared with the theoretical predictions as a measure of understanding
of the quant.m well states. A third goal was to prove that the oscillator strength
of the transition was as large as theory predicted and to obtain good agreement
between the two. And finally, a measure of the linewidth wouid indicate if k vector

conservation truly occured.

The lower quantum well state could be populated by either photopumping the
state from the valence band or by doping the conduction band. The advantage of
photopumping is the capability to vary the electron surface density by adjusting

the pump power. The disadvantage is spatial inhomogeneity of the lower state
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population, transversly because of the laser beam profile and in depth because of
attenuation of the optical beam. These variations would make an accurate measure-
ment of oscillator strength very difficult. Also, it would require approximately 1
kilowatt of optical power to maintain an inversion density of 4 x 10!! cm™?2 per

well, and this inversion is desired to be continous.

The infrared absorption measurement could use either an infrared laser or a
spectrometer. The laser has the advantage in that it could be focused into a
waveguide on the surface to couple to the QWEST with the proper polarization.
In addition it could be pulsed to allow photopumping &s a method of populating
the lower state. The problem with using a laser is that it is not very tunable. A
COy laser can be tuned from 9 to 11 micron wavelength and would be an ideal
source for the absorption measurement if a QWEST resonance could be placed
in the vicinity of the lasing tunability. However, it was felt that the chance of a
successful measurernent would be much better if a broad absorption spectrum could
be observed. Not only would less demands be placed on the precision of the crystal
growth and theory, but a surrounding spectrum could be observed as an example
of types of phenomena which occur in the energy region. This approach proved

invaluable.

Once it was felt a spectrometer measurement was advantageous, the choice of
instuments eventually narrowed to a Fourier Transform Infrared Radiation (FTIR)
spectrometer. These spectrometers are commonly used by chemists and readily
available. Furthermore, the FTIR spectrometers are capable of measuring low
absorption values with low noise and large spectral regions with fundamentally

accirate calibration of frequencies.

The spectrometer used for these measurements was a Nicolet 7199 which incor-

porates its own 20 bit computer. The optical layout of the 7199 FTIR spectrometer
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is illustrated in Fig. V.1.
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Figure V.1: Nicolet spectrometer configuration.

The legend is as follows:
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Si -Infrared Source M12 -Off-axis parabolic mirror, 9.3” E.F.L.
M1 -Spherical mirror M13 -Off-axis parabolic mirror, 8.3” E.F.L.
Al -Aperture and chopper M14 -Off-axis parabolic mirror, 9.3” E.F.L.
M2 -Spherical mirror, 8.0” E.F L. M15 -Off-axis parabolic mirror, 9.3” E.F.L.

M3 -Flat mirror M18 -Flat mirror

BS1 -Beamsplitter . M19 -Off-axis parabolic mirror, 8.3” E.F.L.
BS2 -White light beamsplitter L1 -Alignment laser

M4 -Fixed mirror L2 -Centerline laser

M5 -White light mirror M20 -Flat mirror

P1 -Centerline laser prism WS1 -White light source

M6 -4-position flat mirror WD1 -White light detector

M16 -2-position flat mirror BE1 -Beam expander

M17 -2-position flat mirror D2 -HgCdTe detector and LN2 dewer

The interferometer operates as follows. Infrared light is emitted by source
S1 and is then apertured by Al. The infrared light then enters a Michelson
interferometer formed by beamsplitter BS1 and the two mirrors, M4 and a second
movable mircror on an air bearing. The movable mirror slides back and forth on its
mount, so that a given wavelength will have a sinusoidal variation in its intensity on
the output of the interferometer at mirror M8. Each wavelength will have a different
periodicity, so by looking at how each frequency component of an infrared beam
differs on being transmitted through a sample or not, the absorption spectrum is
obtained. The fourier transform needed to convert the detected interferogram into
a spectral curve is done digitally. The position of the moving mirror assembly is
detected by laser L2, the centerline laser, which is also sent through the Michelson
interferometer by a small prism which protrudes into the infrared beam path. The

wavelength of the infrared light is ratioed to the HeNe laser wavelength of laser L2 by
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simply comparing the relative ratio of cycles in the interferogram. Thus the infrared
frequency calibration is very good and always within the frequency resolution of the
measurement. The zero point of interferometer is found from a white light source,
WS1, with its own interferometer formed by BS2 and detected by WD1. The
resolution of a given measurement is determined by how far the moving mirror of
the interferometer moves. The farther the slide moves, the more periods per cycle,
and the better seperation between two close periods. OQur experiments are typically
performed with 4 cm™! resolution, which corresponds to about a half ceniimeter
movement of the interferometer mirror per scan. The minimum sensitivity of the
system is limited by the detector noise. The single scan noise at 4 cm=! resolution
is at about the 2 x 10~3 level. By averaging of 1000 to 2000 scans, the noise level
can be reduced to under the 1 x 10~* level. Reduction of noise much below this level
is limited by the 15 bit resolution of the analog to digital converter at the output
of the infrared detector. A single scan at 4 cm—! resolution takes 0.5 seconds. A
2000 scan experiment then takes about 20 minutes of run time. The optical system
is totally enclosed and flushed with argon to eliminate infrared absorption from
atmospheric HyO and more importantly, CO,. After rapidly placing a sample in
the chamber, while holding one’s breath, another 20 minutes of wait was required
to bring the CO, absorption to an acceptably low level by purging with argon. The
argon had the unfortunate problem of short circuiting the HeNe laser high voltage
power supply in spite of podding of the lasers in insulative material. Frequent
replacement of these lasers was required and thus only the centerline laser, L2, was

generally used.
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Figure V.2: Sketch (a) shows the polarization and angle of the 3 mm diameter
infrared beam with respect to the sample. Note the internal electric field has only
a small component perpendicular to the surface because of the strong refraction.
Sketch (b) shows the elliptical beam pattern on the surface when the sample is at
Brewster’s angle (§ = 73°). The angle between the major axis of the ellipse and an
arbitrary axis in the crystal plane is shown as ¢.

The quantum well crystal was placed in the sample chamber at the 3 mm
diameter focus of the infrared beam. A polarizer and sample holder were placed
on a translation mount and adjusted to place the sample exactly at the center of
the infrared beam. Centering of the sample was particularly important since at
Brewster’s angle the 15 mm square samples orly presented a 4.4 mm wide target to
the 3 mm diameter infrared beam. The infrared beam was polarized horizontally
by a KRS-5 window with a lithographically produced 0.4 um period metal grating
on the surface. As shown in Fig. V.2, the sample was then rotated an angle ¢
about a vertical axis within the plane of the wafer. Because of:the high indzx of
refraction of GaAs, about 3.27 in the infrared region, Fresnel reﬁection ofl each
surface of the wafer at normal incidence is about 28%. These two surfaces form a

Fabry-Perot cavity with a length of the wafer thickness and thus lead to very strong
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transmission oscillations as the frequency is scanned. A GaAs wafer of thickness T
will have a spacing between maximum cavity transmissions, A, of 1/2nyT, where
ng is the index of refraction. A 400 pm thick substrate will have a frequency
spacing between resonances of 3.8 cm~!. The scans are typically taken at 4 cm™!
resolution so as to filter out these strong oscillations ir frequency. Otherwise, these
Fabry-Perot oscillations, with a peak-to-peak oscillation height of about 30% of the
transmission, make observation of the QWEST with a 2% absorption impossible.
A further reduction in these oscillations is found by operating at Brewster's angle.

Brewster's angle, ép, is defined by

tan(ég) = ny (v.1)

and is found to be about 73° for the refractive index of 3.27. At Brewster’s angle
our horizontally polarized infrared beam is transmitted entirely without reflection
at either surface and the cavity resonance disappears. A second Fabry-Perot cavity
is formed with reflection at the top surface of the epitaxial growth forming one
mirror of the cavity and the interface between the eptaxial layers, consisting mostly
of Al3GaAs, and the GaAs substrate forming the other mirror uf the cavity. This
Fabry-Perot cavity can be shown to have a transmission peak-to-peak height of
about 4%. The periodicity of this resonance is found, as before, from the equation
Ab = 1/2mT,,;. A typical value of the epitaxial thickness is about 3 ym and
using this value for T,,;, the spacing between rescnaces becomes about 520 em~!.
This large a frequency spacing cannot be spectrally filtered, but because of the
small amplitude of this oscillation, it can be eliminated in entirety at Brewster’s
angle. This resonance was extremely useful in calibrating the thickness of the
overall epitaxial growth. This calibration was then used to calibrate the quantum

well thickness. The procedure involved first deducing the overall epitaxial thickness
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from the Fabry-Perot cscillations with the infrared beam at normal incidence to
the surface of the wafer. The ratio of the actual overall thickness to the overall
design thickness is asummed constant throughout the epitaxial growth and thus
the wells are multiplied by the same proportion. This assumption is not necessarily
valid since the wells consist of a dilferent material, GaAs, than the majority of
the epitaxial growth, which consists mostly of Al 3Ga ;As. However, Transmission
Electron Microscope (TEM) data indicate this assumption may be valid. This TEM

data is discussed in the next section.

Sample orientation at large angles such as Brewster's angle is important to
see the QWEST absorption. This is because the QWEST dipole is normal to the
surface and so the electric field of the infrared beam must have as large 2 component
as possible normal to the surface to maximize the absorption. Unfortunately the
beam is strongly refracted upon entering the sample and the electric field has only
a small component in the desired direction (See Fig. V.2). The angle ¢ must be
maximized if we wish to have any coupling to the QWEST dipole. If ¢ is small or
zero, the QWEST absorption wouldl disappear. But as # becomes very close to 90°,
the projected area of the wafer to the infrared beam becomes very small and the 3
mm diameter infrared beam could.intercept only a fraction of the wafer. Use of 4 at
Brewster's angle provides near maximum possible coupling of the infrared field to
the QWEST dipole by a beam incident on the surface and yet projects a resonable
cross section to the infrared beam. It also has the advantage of eliminating the
Fabry-Perot resonances mentioned above. Thus this angle is generally used for the

QWEST absorption measureinents.

We now need to calculate the absorption strength of a quantum well sample at
Brewster’s angle. This calculation is complicated by the two-dimensional nature of

the states and propogation of an infrared beam at an angle to these states. The
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technique to calculate this absorption is thus based on energy conservation, which
allows a simple but accurate derivation frum fundamental principles. We czlculate
the power absorbed by the quantum wells from the infrared beam from the quantum
mechanics of these states in the presence of an infrared beam. This power is then
normalized by the incident beam power to deduce the absorption fraction. We begin

by noting that the power absorbed per unit volume, PA, is given bylttl

PA="FMw)|E:|2. (v.2}

TL2 power absorption per unit surface, PAS, can be found by substitution of p, for
ANy in equation (IV.84b) and using this expression for x”(w) in equation (V.2) to

obtain

2
. wp“Ty ps 1 2
PAS == E:|°. V.3
) (w- wp)2T3 ? ¥3)

This expression was found without inclusion of the plasma interaction described in
chapter IV, sectio= E.. This interaction was found to shift the absorption maximum

from wy to wy, where
0 0

w;,2 = wg -+ wg (v.4)

and wp is the plasma frequency defined for a quantum well by equation (IV.73).
The power absorpiion per unit area in the presence of this energy shift was given
in equaiion (IV.82). The expression for x in equation (IV.84) was derived in the
rotating wave approximation. If we apply a similar assumption (wp + w ~ 2wp) to
equation (IV.82), it becomes identical to equation (V.5) but multiplied by wp/wg, so

PAS become
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2
PAS = wowg ‘szl 1 !Ezlz. (V.5)
2uph 1+ (w—wp)?T]

This absorption per area must be multiplied by the number of wells excited, W, to

determine the total absorption.

The component of the electric field in the z direction squared, |E,|?, must now
be related to the incident power, Py. This relation is calculated for Brewster's angle,
6g. We first note that at Brewster’s angle, the power incident on the wafer surface
is fully transmitted into the wafer. We also use the relation between the infrared

intensity, 1, and the electric field;

B
= V.6
== (v.6)

where ng is the refractive index and no equals 377 ohms. Using power conservation,
we have a relation between Py and the magnitude of the electric field inside the

wafer, Ey,

— [ rolEul?
= [l g, v.7)

where the integral is over a surface normal to the direction of propogation inside
the wafer. The internal infrared beam is found to propagate at an angle 4; to the
normal to the surface. From Snell's law, we know sin(4;) = sin(¢g)/np = 1/ \/;%:—l )
where we assume the infrared beam is incident at Brewster's angle, 65, and note
that tan(ég) = ng by definition. The component of the internal field perpendicular
to the surf#ce, E, is equal to Ey, sin{¢;} = Ey/ \/nﬁT The total absorbed power,

AP, is equal to
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AP = [ PAS dS
2 1
B o fisas
2wgk 1+ (w—wp)?T3-
— wowuzTgp. 1 [
2(‘1;" 1+ (U - (an)gT%

|Ewl2/(n§ + 1) dS (v.8)

where the integral of the electric field squared is over the two dimensional quantum
well surface. This integral is otherwise identical to the integral of equaﬁo_p‘ (V.7).
The surfaces are related by the projection formula dS, == d5 cos(¢;) = dSno/\/nd + 1.

Equation (V.8) now becomes

AP = wowiTaoeW 1 2n0f0
&
248 1+ (o-w)TE /e + 1
_ 21 iPTypW 1 wo Po (v.9)

T L (- w)TRwp no\/n§+1

where we have multiplied the absorbed power by the number of wells, W. If we let
2¢W equal the integral of the averaged three dimensional lower state density, ANp,
over 2, then it is noticed that equation (V.9) is very similar to the integral of v(w)
as given in equation (IV.94). In particular, AP = [ 7(w)d2(wp/wg)/ng\/nd +1. The
division by the ny terms is a result of the component of the field perpedicular to
the surface being reduced by a factor of approximately ng upon refraction at that
surface. The absorption fraction, AF, is found by dividing AP by Py. We also use

the definition of oscillator strength to find

AF =
2epmec g nfy/ng +1 1+ (w—wo)?T3

where the first term is seen to contain only fundamental constants, the second term,

(v.10)

which is a measure of the effect of the plasma shift, is nearly unity, the third term
109



contains the product of the oscillator strength and the number of oscillators, divided
by the refractive power of the wafer approximately to the cube, all of which are
material parameters, and the iast term is simply a lineshape factor. Because the
lineshape will be hard to predict and we wish to obtain a relation for the oscillator
strength independent of lineshape, we integrate the absorption fraction over the

lineshape to obtain an integrated absorption fraction, JAF, given by

IAF = f AF(w) d(h)
ch_up _JoW (v.11)

 daomec “(.) n%\/n% + l.

This expression is evaluated using W = 50 and p, = 4 x 10!! em~2, and wp/wy =

0.975 to obtain JAF = 0.062 fmeV. The infrared spectrometer uses units of Absorbance
to measure absorption. The Absorbance {Abs} is defined by Abs=-log,¢( Transmission).
If the transmission is close to unity then Abs==Absorption/In (10) where Absorption=1-
Transmission. For instance, a 1% absorption will give an absorbance of 0.01/In(10)=4.34
mAbs, where mAbs=10"3Abs. The frequency, p, is measured in units of in-
verse centimeters and is related to the photon energy, E, in ¢V by E == heb ==
1.24 x 10~45. For example, a 1000 cm~! frequency corresponds to an energy

of 124 meV. The integrated linestrength becomes, in units of the spectrometer,
TAF =0.218 f Abs-cm~1, This expression is used to measure the oscillator strength

of each of the quantum wells.
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B. (AlGa)As QW Crystal Development

The quantum well crystal growth evolved over the course of several years of
development. The type of structures made and the manner in which they were
made were both critical to the proper observation of the QWEST. In fact, it was
not until a few months ago that this growth procedure became sufficiently refined to
see any significant effect. However, once the proper technique for growth was found,

the QWEST appeared in full strength with near perfect agreement with theory.

The crystal growth was performed with the aid of Steve Eglash, a Stanford
graduate student, using the Molecular Beam Epitaxy (MBE) apparatus at Hewlett-
Packard. Hewlett-Packard generously agreed to cooperate by providing these samples.
One of the problems was that Hewlett-Packard had not, previous to my request,
grown quantum well crystals. However, they had grown heterojunctions of (AlGa)As
on GaAs. These surfaces are capable of quantizing an electron in the direction
perpendicular to the surface and were used to make high mobility transistors.
These heterojunctions were well characterized and it was felt that quantum wells,
which merely required another hetrojunction on the other side, would be a simple
step beyond the known crystal growth procedure. This turned out not to be
the case. First, the previous crystal growing procedures had some errors in many
of the growth parameters. Second, it is now known that it is much easier to
grow (AlGa)As on GaAs and obtain a good interface than it is to grow GaAs
on (AlGa2)As. The reasons are still not well understood, but appears to be re-

lated to how impurities are incorporated into the two materials.!35.3¢)

The first samples grown, in May of 1982, were a set of three crystals, with one
well each of a single quantum well of GaAs with Al ;Ga - As barriers. Une well was
grown in each sample of 0, 80, and 100 A thickness, respectively. The Al3Gay*s
barriers were 100 A thick. The doping was in the GaAs well region with a Si
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donor density of 4 x 10’7 cm=3 The absorption spectra for these samples had little
absorption at the higher energies and quickly went to infinite absorption for energies
around 1200 em~! (or ~150 meV) and below. It was quickly realized that the
substates were not insulating. The observed absorption spectra matched perfectly
with that expected from a Drude model with a doping density of 5 x 10'8cm™3, a
scattering time of 0.2 picoseconds (from the mobility) and a substrate thickness of

0.34 mm. Hewlett-Packard confirmed these substrate properties.

R
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0 3590 2770 1950 1130 310

Wavenumbers

Figure V.3: An example of a typical infrared absorption spectra of a GaAs
substrate with epitaxial growth of (AlGa)As quantum wells. This sample, A-5186,
failed to show any QWEST resonances, but exhibites the two small phonon abosrp-
tion peaks at 709 and 770 cm~! seen on all of the later samples. Note that (AlGa)As
materials have very little absorption in a broad region of the infrared from 2 to 20

micron wavelengths. (Absorbance=-log,o(transmission) )
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The next set of three samples were grown as before but on insulating substrates.
The spectra is flat except for a strong absorption band which occurs for wavenum-
bers below about 500 cm~1! from optical phonon absorption.l*2] On these samples is
also observed a small peak at 770 cm™! (95.5 meV) with a height of about 5 mAbs
and a width of 5 meV. This peak was the same on all samples and independent of
polarization of the infrared beam. No other absorptions were observable. A typical
infrared spectra of 8 GaAs substrate with epitaxial growth is shown in Fig. V.3,
which is the spectra of a later sample, A-516, which shows an absorption at both

770 cm~! and 709 cm™!.

During the months of October and November, 1982, several different samples
were investigated to better understand the infrared spectra of GaAs and its epitaxial
growth. Four samples were provided by Steve Eglash of Hewlett-Packard as ex-
emplary of various types of substrates and epitaxial growth. The first of these
samples, G-718, is a GaAs insulating substrate doped with Cr and Te, which have
midgap bound energy states, to insure the Fermi level is pinned at midgap. This
substrate is the most commonly used form of insulating substrates. A second pure
GaAs substrate, without any doping at all, G-739, was also provided. Two samples
with epitaxial growth were also examined. Both samples had 4.5 ym of Al, Ga,_, As
grown eptiaxially by Hewlett-Packard’s MBE machine. The first 0.9 um of growth
was undoped and the latter 3.6 ym was grown with about 8 x 10!7 Si donors. For
one of these samples, A-388, the Al fraction, x, is 0.18. For the other sample, A-
309, the Al fraction, x, is 0.28. The samples G-739 and G-718 exhibit no narrow
absorption peaks above the 500 ¢cm~% phonon absorption edge and have a noise
level of 0.6 mAbs (=0.014% absorption). In particular, neither of these substrate
materials exhibit either the 708 or 770 cm™! resonances. Also sven are shallow

maxima, slowly varying over 100’s of wavenumbers (10's of meV}, with amplitudes
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of about 2 mAbs. These are common throughout the spectrum and are believed
to be noise. Both samples A-388 and A-399 have similar spectra but with an ab-
sorption observable at 70{ e¢m~!. This resonance has a height of 5.3 mAbs for
sample A-388 and 11.8 for sample A-399. The 770 cm™! resonance is not seen on
any of these samples. However, for all samples measured after this set, the 770
em~! resonance is observed. On a later set of samples, we fir.d that the substrate,
F620ES, has an absorption at 770 em™! but not at 709 cm~!. The samples B-133
and B-134, with a few microns of epitaxial growth on the same substrate material
as F620ES, subsequently exhibit an additional line resonance at 708 ecm~!. The
absorption peak at 770 em~! has been previously reported to be a third order op-
tical phonon absorption in GaAsl#?l. This third harmonic absorption is probably
enhanced by various crystal defects or impurities. This peak was not seen on any
of the older samples, including those with epitaxial growth. However, it is seen
on all of the newer samples, including those with no epitaxial growth. ( Hewlett-
Packard changed their crystal suppliers about the time of the change.) In addition
to this resonance at 770 cm~?, another very similar resonance appears at 708 cm~—!
(87.9 meV) only for those samples with over a micron of epitaxial growth. Tests
on wafers both before and after growth indicate that the 709 em=—1 absorption is
generated by the epitaxial growth. The 709 ¢cm~! absorption is suspected to be the
same phenomena as the 770 cm“‘l absorption, only occuring in (AlGa)As instead
of GaAs. Note the energy of this 709 cm™~! line is observed at exactly the same
frequency for both Al 3Ga g2As and Al 95Ga 73As epitaxial growths, but with about
twice as large an absorption for the latter. Thus this absorption is more related
to the presence of Al than the properties of (AlGa)As. Other than these phonon
resonances, no other peak whick could be confused with a QWEST was observed

on any sample.
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The absorption experiments with the above set of samples allowed a calibration
of the minimum noise of the spectrometer. This is found to be equivilent to about
10—* absorption strength. But depending on such factors as the CO, content of the
spectrometer and the surface quality of the wafer, the noise of transmission through
a GaAs wafer is variable but often several times 10—4. A single quantum well
doped in the well region with a 10 meV linewidth is calculated to have over a 10—4
absorption. However, caution and the lack of observation of a QWEST at this level
indicated further samples should be grown with 50 wells to increase the absorption
signal. The doping was also changed from the well region to the barrier region.
The electrons would then diffuse into the well and populate the lowest quantum
well. Two advantages are seen for doping in the barrier regicn. The first is that the
lower energy quantum well state is fully populated by the donor electruns and this
population density is independent of temperature. As the lower quantum well energy
tends to be more than 50 meV above the GaAs band edge, which is the location of
the Si donor energy with doping in the well region, only 10% of the donor electrons
populate the lower state at room temperature and much less at lower temperatures.
In contrast, the Si donors in the Al 3GazAs barrier have a donor energy only a
few meV below the barrier band edge, but 100's of mzV above the GaAs quantum
well states, thus the electrons fully ionize into the lowest quantum well states for
all temperatures. The electrostatic energy between fully ionized donors and free
electrons in the well for a surface density of 4 x 101! em~2 s easily shown to be
only about 30 meV for 100 A wells and doping regions. Since the barrier is about
260 meV high, the relatively weak electrostatic forces allow full donor ionization
into the well region. The effect of the electrostatic forces on the quantum well
energies was already covered in chapter IV, section E. This change increases the

room temperature population of the quantum wells, and therefore the absorption
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strength, by a factor of about 10 for the same doping density. So this increase,
in combination with the growth of 50 wells, increases the absorption strength by
2 factor of about 500 to about 5 x 10~2 or 5%. This absorption strength is very
clearly observable witl: the FTIR spectrometer with a signal to noise ratio of over
30. A second advantage to doping in the barrier region is the isolation of the ionized
donors from the free electrons, which would undoubtedly help to conserve matching
of the transverse k vector (because of reduced impurity scattering), essential for a
QWEST linewidth sufficiently small to see the absorption and for the transition to

be usefd! once seen.

Layer Thickness Materiat Doping

Oxidation cap 5004 GaAs Undoped

Buffer region 10 Al ;GajAs Undoped
Barrier 504 Al;Ga,As Np =4 X 1077 /em?3

1 Well Lo GaAs Undoped
| Barrier 1004 Al ;Ga,As Np =4 X 1077 fem®

2 Well L GaAs "Undoped
"| Barrier  100A Al 4Ga 5 As Np =4 X 107 /em?

o] T, Gahs Undoped
Barrier 1004 Al ;Ga, As Np =4 X 10" /cm3

Well L, GaAs

Barrier  50A Al 4Ga,As Np =4 X 10" /cm3

Buffer region 10p Al,GazAs Undoped

GaAs substrate undoped

Figure V.4: Layer structure of the epitaxial quantum well growth for the earlier

samples.
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Figure V.5: Infrared absorption spectra of quantum well samples at 4 = 73°
{except where indicated) and at room temperature. a.) Sample A-494, b.) Sample
A-495, ¢.) Difference spectra of samples A-495 and A-494, d.) Sample A-495, two
days after spectra b.) was taken (note the differences), e.) Sample A-495 at normal
incidence (¢ = 0), {.) Sample A-495 two months after spectra b. above (note the

energy shift of one peak).
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Samples A-494 and A-405 were then grown, as shown in Fig. V.4, on January
3, 1983. The two samples, A-494 and A-495, were grown with 50 wells and were
specified to have well thicknesses, Ly, of 80 A and 65 A, respectively. The epitaxial
growth was performed with a constant substrate temperature of 580° C for both the
(AlGa)As and GaAs regions. No sample was grown with L,, equal to zero since the
infrared spectra of the epitaxial growth had become sufficiently well understood to
not require this sample. Furthermore the epitaxial growth was becoming sufficiently
thick, about 3um, that it took 4 hours to grow a single sample, and a full day at
a time seemed near the limits of Hewlett-Packard’s generosity. This meant two
samples. These samples were polished on the back side and probed within 2 days of
their growth. Unexpectedly, this rapid response was critical to the first observation
of the QWEST. The spectra of these samples are shown in Fig. V.5. As indicated
above and in equation (V.11), a 10 meV linewidth transition is expected to have a
30 mAbs absorption strength. The spectrum of sample A-494 is seen in Fig. V.53
to have the commonly observed phonon peaks at 709 and 770 cm~! but no other
transitions indicative of a QWEST. Sample A-494 was specified to have 80 A thick
wells and thus should have a QWEST frequency of about 1000 cm=*. The spectrum
of sample A-485 taken on January 5, 1983, is illustrated in Fig. V.5b. This sample
with 65 A thick wells should have a resonance at about 1220 ¢cm=!. No resonance
is seen at this energy, but it is noticed that a new absorption peak, never observed
before on any of the previously measured samples, is seen at 835 cm~! (or 104
meV). This new resonance is made clear by the subtraction of the two quantum
well samples in Fig. V.5¢c. This transition has a linewidth of 10 meV and a peak
height of about 8 mAbs. This gives a linestrength about a factor of 3 below that
predicted. Two days later, on January 7, 1983, the spectrum of Fig. V.5d was

taken. The anomalous resonance is seen to have shifted about 0.3 meV, broadened
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slightly, and most significantly, decreased in peak height by about a factor of two.
A few days later it disappeared altogether. The spectrum of this sample at normal
incidence, taken on January 7, 1983, is shown in Fig. V.5e. It is noticed that the
absorption peak height has decreased by about a factor of 2 or 3 but does not go
to zero, as it should do if it were a QWEST. Yet another anomaly appeared two
months later after sample A-495 had oeen heated to 450° C. for approximately
45 minutes {in an attempt to diffuse in some In) and re-examined. The QWEST
resonance is seen in Fig. IV.5f to reappear, but shifted by an energy of 6.6 meV.

This spectra will be discussed later,

The above observations of samples A-494 and A-495 in early January, 1083,
brought up many questions. One problem was that if this transition was a QWEST,
then why is its energy so far from prediction? The answer is that the wells were
not the specified thickness. This problem had already been indicated in samples
A-388 and A-398. The infrared spectrum of these samples at normal incidence
allowed determination of the epitaxial thickness from the Fabry-Perot resonance
of this thin optical cavity. Using an index of refraction of 3.2 for the (AlGa)As
epitaxial growth,!#] the resonant peak spacing indicated the epitaxial thickness of
the two samples, A-388 and A-399, were 5.7 and 6.6 um, respectively. This is
contrasted with the specified thickness of 4.5 um for both the samples. A SEM
scan of the edge of the wafer indicated the thickness of the two samples were much
larger than 4.5 pm, but the SEM calibration was not correct to better than 10%
and could not give an independent accurate measurement. These SEM photos did
indicate, however, that the two samples were not of the same thickness and that
A-399 has an epitaxial thickness about 15% larger than that of A-388. Hewlett-
Packard revealed that their method for calibration the epitaxial thickness relied on

an optical microscope with about the same : olution as the ym growths, so their
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accuracy was in question. But the accuracy of the infrared cavity measurements
had not been truly verified. The distance between the cavity resonance peaks
could usually be determined with an accuracy of about 3%. But the accuracy
of the index of refraction was in doubt. The refractive index of GaAs at 10 pm
wavelengths was found to have numbers as different as 3.095 and 3.309.144 Our
calculations indicated that GaAs should bee an index of refraction of 3.30 at 10
pm wavelengths.13] An attempt was made to determine the refractive index by
increasing the resolution of the spectrometer sufficiently to see the interference
resonances of the entire wafer. This measurement gave the results of 3.13 and 3.25.
The limitation of this determination of index was the difficulty in measuring the
thickness of a 0.011 inch thick wafer with an accuracy better than 0.0003 inches
with the tools immediately available (one problem is that the samples appear to
have a wedge and other spatial nonuniformities at this scale). An analysis of the
literature gave a strong indication that the index of refraction was in the range of
3.27 to 3.30, within 1% of the theoretical derivation.lt3] The theoretical modell4l
alsc predicted an index of refraction of 3.16 for Al3Ga ;As. These became the two_
values used for GaAs and the epitaxial growth, respectively, and are suspected to
be accurate within 195. The accuracy of the epitaxial growth then became that of
determining the resonance period in the proper frequency region. This measurement
is usually accurate to within ahout 3% and thu. limited the ovarall accuracy of the
epitaxial thickness measurement to a similar amount. But this accuracy is quite
adequate to conclude the epitaxial growths were significantly larger than predicted.
But the variation in the thickness of samples A-388 and A-399 was a mystery, since
even if the calibration of the growth rate was wrong, it should be repeatable. One
possiblity is that the additional 10% Al added to the molecular beam could have
increased the growth of sample A-399 by 20% over that of sample A-388. Another
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possiblility is that the samples simply came from different parts of the 2 inch wafer.
Evidence will be shown later that variations in thickness -wer the wafer can be
over 10%. In light of these uncertainties, Hewlett-Packard decided to rely cn their

previous calibrations when growing samples A-494 and A-495.

The period of the oscillations in Fig. V.5e was found to be 390 cm~!. Using
ny = 3.16, T' == 1/2ny AP = 4.06pm. But the sum of the layers in Fig. V.4 add up to
2.875 um using Ly, = 65 A. If we assume the GaAs well has grown by the same ratio
as the overall epitaxial thickness, then we find the well thickness is actually 1.411
times Jarger than 65 A, or about 92 A. A similar expansion exists for sample A-
494. This increase in the well width gives a theoretical resoriance frequency for the
QWES'T of 811 cm™1! for sample A-495, now in the neighborhood of the anomalous
resonance peak. The resonance energy of sample A-494 is similarly increased and
predicted to be at about 720 cm~!. Although this resonance energy should be
observable, it could be lost in the phonon spectra. The increased well thickness,
if it occurs, offers some explainations to the observations to samples A-494 and A-
495. But it was still not absolutely certain that the infrared technique for epitaxial
thickness was valid. Even should tk<c overall thickness prove to be as accurate as
expected, the well is grown with a different material, GaAs, froin *he .bulk of the
epitaxial growth, which was Al 3Ga7As, and the excess growth need not have the
same ratio in the two. Fortunately, both problems were answere:’ c.  "usively in a

highly sophisticated probe.

During this time period, Fernando Ponce of Hewlett-Packard was developing a
highly sophisticated Transmission Electron Microscope. He asked Steve Eglash if
he had avy int.resting samples to observe and Steve happened to give Fernando a
piece of sample A-495 to work with. In addition to resolving the well and barrier

regions, Ferrando found that by orienting the surfaces in the [110] direction and
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thinning the samples to about 50 atoms thick, he could resolve individual Ga-As
atom pairs in the quantum well layers (see Figs. V.6 and V.7). From this photo
of the structure, several conclusions can be made about the quantum well layers.
First, a direct ratio of the barrier width to the well width shows that indeed the
65 to 100 ratio is maintained in the growth. In addition an absolute calibration
of the well width can be found by counting the number of GaAs unit cells in the
height of the well. This number, depending on which plane the count start and
stops, appears to be about 33+1 half-unit-cell layers. The lattice spacing of GaAs is
known from X-ray diffraction measurements to belttl 5,65315 A, making a 33 layers
of atoms equal to about 93.277 A. This dimension is in good agreement with that
based on the epitaxial cavity resonances and gave us confidence in this technique
for calibration of the epitaxial thickness. (This is probably one of the more unusual

methods used to calibrate the index of refraction of a material.)
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Figure V.6: A very high resolution TEM photograph of sample A-495 in
the [011] direction, showing atomic resolution of the well and barrier regions and
indicating a high quality interface has been created. The 10 nm marker is slightly
incorrect, the thickness of the black well region is actually about 33 half cells of

the FCC lattice, or 93.277 A. (Photograph courtesy of F. Ponce at Hewlett-Packard

Laboratories)
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Figure V.7: A lower magnification of Fig. V.6 showing several of the 50

quantum wells grown for sample A-495.
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The observation of samples A-484 and A-495 could then have a simple explana-
tion. The resonances of both samples were shifted into the infrared because the
wells were excessively large. One resonance, of sample A-495 was observed, but that
of sample A-494 was lost in the infrared or else disappeared in a similar fashion to
the resonance of A-495, only on a faster time scale. A sample of the same layer
structure as these two, but with a smaller well, was grown in an effort to see a
second resonance with a higher energy. This sample, A-516, was grown on January
19, 1983 and observed on the same day as its growth. The well width was grown
to be 7/9 of the one in sample A-485, or about 70 A. Unfortunately, this sample
showed no additional resonances other than those commonly observed at 770 and

709 em~!. This sample was exhibited in Fig. V.3.

The lack of observation of a QWEST on these samples is in direct conflict with
theory. The theory of how a transition between states occurs was examined further
in an attempt to find effects which might destroy or counteract such a transition.
None were found. The samples were then examined further to see how they might
have failed. One of the more suggestive failure modes is the leakage of the electrons
out of the lowest quantum well states into lower energy bound states. These bound
states could either arise from impurities in the system or interface states somehow
being created. Hewlett-Packard had years of experience with the crystal growth and
had reduced the impurity levels to less than 10! em—2 in the bulk structures they
had grown. Qur quantum wells are doped with 4 % 1017 em~3 electrons so that it
was hard to see the electrons going into bulk impurity states. The other possibility
was interface states. These interface states could arise either from impurities being
concentrated on tke interface or else from poor interfaces having large numbers of
dislocated bonds or other surface states which could destroy the effect. A test of the

lower state population can be made simply by measurement of the Hall resistance of
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the sample. Unfortunately, connecting to these quantum wells in our thick samples
was difficult. Normally the test is performed by diffusing In into the sample to make
ohmic contact. But with our samples so thick this connection could not be assured.
When a sample with such a contact was measured, the readings would tend to have
very high resistances and give unphysical results. Electrical experiments performed
at Hewlett-Packard indicated that sample A-495 had about one half of the expected
doping and the other two samples gave ambiguous results. Steve Eglash claimed
that the ambiguous results are consistent with no electrons in the sample. I initially
attempted to test sample A-495 by diffusing In into the sample by placing four dots
of In on the edges of the wafer and heating the sample in an oven for 30 minutes at
400° C. Because the In did not appear to be melted (later found to be an illusion
created by an exterior crust formation), the sample was heated for an additional
45 minutes at 450° C. This test of conductivity exhibited high resistances and
ambiguous results. The problems with these measurements is believed to arise from
the difficulty of In diffusion through many microns of semiconductor and making
connection with 50 wells simultaneously, all srparated by insulating material. I
then tried a new technique to make contact on a seperate piece of sample A-495 by
performing a selective etch to create holes with the edge of the hole slanted outwards
to expose all 50 well regions. A Au-Ge alloy ohmic contact was then evaporated into
the hole. Four holes were made in a row and the conductivity was measured with
a four point probe. Assuming a mobility of 5,000 cm2?/V-sec, an electron density of

about half that of the doping level was found.

The piece of sample A-495 which had been heated to 450° C. in an attempt to
diffuse In into the edges was placed back into the spectrometer. The spectrum of
Fig. V.5f was observed. The resonance is now seen to have returned, but shifted t»

an frequency of 888 cm~! or an increase in energy of 6.6 meV ! No explanation can
126



be found for this behavior. However, as will be shown later, all of the observations

exhibit shifts over long periods of time in their resonant energy and line shape.

In view of the results of sample A-495, sample A-516 was heated in an oven for 20
minutes at 450° C. The spectrum was measured within 30 minutes of removal from
the oven, but exhibited no change over its previous spectrum, with no observations

of new transitions.

At this time, Hewlett-Packard’s MBE machine was taken out of service for about
9 months for improvements and cleaning. I used this time to search the literature for
the procedures and problems encountered by other groups in their MBE epitaxial
growth. Fortunately, several discoveries of importance to our growth were emerging,.
First, several reports indicated the surfaces of a quantum well are not equally high
quality on both sides of the well.(35:36.48} A conclusive demonstation of this is reported
by Morkog et. al. in Ref. 46. They c mpare the mobilty of heterostructures with
(AlGa)As grown on GaAs, called a “normal structure”, with that of GaAs grown on
(AlGa)As, called an “inverted structure”, as a function of growth temperature of
the substrate. The 78 K mobility for the normal structure is found®l to be aboul
85,000 cm?/V-s for growth temperatures from 600 to 700° C. Above this growth
temperature, the 78 K mobility drops rapidly to 10,000 em2/V-s at 750° C. The
inverted structure has an entirely different behavior. The inverted structure h:-
a very low 78 K mobility of about 1000 ¢m?/V-s for growth temperatures in the
region of 600 to 660° C. The 78 K mobility then rapidly rises to a maximum of 8000
em?/V-s at a growth temperature of 700° C, after which it quickly drops again.
The mobility is an indication of the interface quality, so these results suggest that
the one side of the quantum well is a poor interface and its quality is eritically
dependent on growth temperature. The excition linewidth is also an indicator of

interface quality as interface variations will vary the energy of the quantum well
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states. This linewidth is given as function of energyi®!! in Fig. IV.6. This linewidth
is much more sensitive to larger (~ 100 Aor greater) lateral variations in well
thickness.l?] But both these measures of interface quality find the best interfaces

occur at a substrate growth temperature of 680 to 700° C.
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Figure V.8: A plot of the photoluminescence intensity of various quantum
well samples as a function of the substrate growth temperature. Annealing of the
samples, at temperatures up to 750C for up to 4 hours, was found to increase the

photoluminescence intensity as shown (from Ref. [31]).

The peak photoluminescence intensity of GaAs quantum wells with 200 A thick
wells and 200 A thick barriers is also measured at 1.6 K as a function of substrate
growth temperaturel$!] with the results shown in Fig. V.8. The photoluminescence
intensity is seen to improve dramatically as the growth temperature is increased
from 610 to 650° C. The photoluminescence intensity is felt to be an indication of
the purity of the quantum wells. A low photolumicescence intensity is thought to
be caused by the presence of electron traps with energies in the band gap which

allow the conduction band electron to nonradiatively decay to the lower valence
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band. If these traps exist, then they could also capture electrons which have been
doped into the well region. This could explain the disappearance of our quantum

well electrons.

The problems with the interface structure are thought to be related to the way
in which impurities such as earbon are incorporated into the epitaxial layers. A
common view!3538] is that the impurities do not easily incorporate themselves into
the (AlGa)As material, but instead lie on the surface of the growth region until a
GaAs layer is grown, at which point these impurities are deposited into the crystal.
A test of this explanation is performed by growing a series of 10 A GaAs wells
in the (AlGa)As barrier immediately before growing a test quantum well of larger
thickness. These tests show an increase in photoluminescence efficiency by a factor
of 71261 and 160.13%] The tests also showed that the rapid periodic structures only
enhanced the inverted interface and placing the structures on the normal interface

did not improve the PL efficiency of the quantum well,

Also during this period, I encountered Gottfried Dohler who was visiting Hewlett-
Packard from the Max-Planck-Institut in Germany. He was working on NIPI
structures, which are alternating layers of n and p type materials seperated by
insulating material in GaAs. These materials are similar to single heterojuction
wells in that the confinement is electrostatic rather than from the crystal poten-
tial. These structures have an advantage of tunability of the quantum well energies
by application of a voltage across the interface or by excition with a light source.
We attempted to find an envelope state transition in these structures (NIPIEST?).
No transition could be found, probably because of lack of sufficient population

in the lower quantum well states.

The design of the next epitaxial growth was to be decided. Further thought

on the doping mechanism lead to the realization that the ionized donors have a
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significant effect on the quantum well states. The potential terms discussed in
chapter IV., section E., were assumed to be one-dimensional. But the spacing
between donor ions for our doping density of 4 x 1017 em=2 becomes, on average,
about 135 A. This is larger than the thickness of the barrier region, and so the
one-dimensional assumption is not quite valid. The electrostatic potential of a
charge at 2 distance of r in GaAs is given by & = ¢/4xer, which for a dielectric
constant, ¢, equal to 1l¢ and a distance r = 100A is equal to 13 meV. This
potential term is random and can possibly broaden the quantum well energies. The
QWEST has a much smaller broadening since both lower and upper quantum well
states shift by a similar amount. But the potential could possibly also perturb the
envelope wavefunction in the transverse dimensions, thus destroying the polarization
selectivity of the QWEST. Evidence for the broadening effects was found in the
inelastic scattering experiments!i?] in which the linewidth of the scattering intensity
was found to reduce from 7.8 to 3.6 meV when a 150 A thick buffer layer of undoped
(AlGa)As was inserted between the quantum well and the donor region. It was then
decided to place 2 150 A buffer layer or each side of the well, as shown in Fig,
V.0. In addition to the reduction in broadening, it was also felt this buffer would
prevent Si diffusion into the well region, which could also have lowered the electron
density. No evidence for this diffusion is found, however, and is not expected to be
an important mechanism. The evidence discussed above found that the quantum
wells, because of the inverted interface, had their best mobility, photoluminescence
efficiency and exciton linewidths for substrate growth temperatures between 670
and 700° C. But Hewlett-Packard has clearly found that their best bulk material
and heterostructures occurs for subsirate growth temperatures of 580° C. Also, if
these results were dependent on impurities, then the best growth parameters could

easily be different from one MBE machine to another. It was decided to grow this
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next set of samples at 580° C.

Muttiple quantum well of thickness LW

N-1

|

Layer Thickness Material Doping
Oxidation cap 5004 GaAs Undoped
Buffer region 0.5u Al ;Ga ;As Undoped
Barrier 50A  AlzGaj,As Np=4X10"7/cm®
Dopant shield 160A Al ;Ga 5As Undoped
Well Ly GaAs Undoped
Dopant shield 1504 Al 3Ga 5 As Undoped
Barrier 1008  Al;Ga,As  Np=4X10"7/cm3
Dopant shield 1504 Al ;Ga ;As Undoped
Well Lw GaAs *Indoped
Dopant shield 150A Al ;Ga ;As Undoped
Barrier 1004 Al ;Ga;,As  Np=4X10"7/cm3
Dopant shield 150A Al 3Ga 5As Undoped

®

®

®
Well L GaAs Undoped
Dopant shield 1504 Al 3Ga ;As Undoped
Barrier 1004 Al;Ga,As  Np=4X10"7/cm?
Dopant shield 150A Al ;Ga ;As Undoped
Well Ly GaAs Undoped
Dopant shield 150A Al ;Ga ,As Undoped
Barrier 504  AlzGajAs  Np=4X10"/cm?
Buffer region 0.5 Al_3Ga.7As Undoped

GaAs substrate undoped

Figure V.9: Layer structure of the epitaxial quantum well growth for the later

samples.
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On Monday, January 23, 1984 two new samples were grown at a substrate
temperature of 580° C. The layers structure is shown in Fig. V.9, with a thickness,
Ly, of 75 and 85 A for each of the 50 wells of samples B-133 and B-134, respectively.
The back side of the wafer was polished on January 24, 1984 and the infrared
spectrum was measured on January 25. Other than the usual absorption lines at
770 and 709 cm—!, the only other absorption seen is a narrow ( 1 meV wide) spike
with an amplitude of 6 mAbs at a frequency of 956 cm=! (= 118 meV). This spike
is on both samples and remains at full absorption strength at normal incidence of
the infrared beam. The narrowness of the spike is typical of molecular absorption
and the spike is attributed to a contaminant. The difference of the spectrum B-133
and B-134 showed no structure above the 1 mAbs level and the structure below this
level had the appearance of noise. A sample of the substrate upon which these layers
were grown, F620ES, was also scanned. The substrate exhibited the 770 cm™! line,
but as discussed previously the 708 cm™! line was missing. The substrate was also
missing the spike at 956 ¢cm™~!, so this contaminant must have been added later.
From the photoluminescence spectra of Fig. V.8, it is noticed that the PL intesity is
enhanced by about a factor of 10 by the annealing of the sample for 1 hour at 750°
C. This improvement suggests that some of the deep level traps thought to exist
were eliminated. A similar treatment was given to samples B-133 and B-134 in the
hope that the deep traps would anneal out and the electrons would then repopulate
the lower quantum state. The samples were sent, along with a piece of the substrate
upon which the layers were grown, to Jim Ewan at Aerotech General in Los Angeles,
California. Jim Ewan first coated the samples with SizN, to prevent the arsenic
from evaporating out of the GaAs wafers and then annealed the samples at 750°
for one hour. The infrared spectra of these samples all had some new infrared

structure, but upon subtraction of the substrate F620ES spectrum, the samples
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B-133 and B-134 exhibited no discernable signal within the 5 mAbs level noise.

The reason for the absence of a QWEST absorption signal on these samples was
unknown. The possibilities included absence of electrons from the lower quantum
state, excessive broadening of the transition by poor interface structure or lack of k
vector conservation, or simply an error in the theory. Of these problems, an error
in the theory could not be found and of the experimental problems, the lack of
electrons in the lower state seemed to be the easiest to measure. However, problems
had already been encountered in making contact to the wells for measurement of
conductivity, and the present samples, in which buffer layers were added, were even
thicker than the previous samples. A new technique was then tried. A photoresist
mask was prepared with an array of Hall effect and van der Pauw geometries, as
shown in Fig. V.10. The overall width of the mask as etched is about 11 mm.
The mask was oriented so that one side of each contact pad is sloped out when
etched into the wafer. A Au-Ge, Ni, Au layer ohmic contact was then evaporated
over each of the six Hall geometry pads and each of the four corners of the van der
Pauw geometry. The metalization is seen to make contact with the edge of each of
the quantum well layers in Fig. V.11. The impedance between the contacts is very
high, over 10 Megaohm in some cases. A number of anamolous effects are seen in
these measurements. For instance, a 100 Volt potential across the outer two pads of
the Hall effect pattern will induce a current of 1 microamp. But when the sample
is placed into a 1.3 kilogauss field, the current will drop to about 20 nanoamps,
when the current should not have dropped at all. If these problems are ignored, a
electron density per well layer for sample B-133 is found to have values of 4 x 104,
4 % 107, and 3 x 10* em~2 with mobilities of 2,400, 3,000, and 95,000 cm2/V-s,
for a van der Pauw and two Hall measurements, respectively. The mobilities are

within a factor of 10 of the expected mobilities. But we expected surface densities
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of 4 x 10" em~2 for each of the layers. The measured values are too low by 4 to
7 orders of magnitude, The numerous ambiguities of these measurements did not
make a convincing argument for the lack of electrons, howe—er. A better contact
to the quantum wells is clearly needed. Fortunately, about this time Steve had
mentioned our problems to Dan Tsui of Princeton. Dan Tsui had a microwave
probe which could be used to measure the electron concentration by the magnitude
of the electron cyclotron absorption in a magnetic field. Thus a contact free method
could be used to measure the electron density. We sent Dan one wafer each of
samples B-133 and B-134. Dan responded on May 26, 1984, with the statement
“We did cyclotron resonance measurements on your samples B-133 and B-134. Our

conclus: ‘n is that there are no free carriers at all at 4.2 K.”
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Figure V.10: Photoresist mask of Vaa der Pauw and Hall probe measurements
to determine the electron density in the quantum well samples. The overall width
of the entire pattern as etched was about 11 mm. Thus each probe pattern wus

slightly over 1 mm, _
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Figure V.11: % SEM photograph of the metalization overiay of a pad of a
Hall probe etch in sample B-133. Note that the 7 micron deep etch clearly exposed
the quantum well layers, seen as a darker coating about 3 micronz deep, at an angle
so as to provide some area of contact to the metalization for each of the 50 weils
independently. Also notc that some of the metalization over the pa:s -xtended
down the edge of the etched region from improper Bftoff of this metal. A larger
view shows the et hed regions shows that the metal extension cuis off completely
at several spots. Also, since the upper surface is insulating, the only effect of this

extra metal would be to short contact pad to one another. This was not observed.

With the above evidence, it was becoming increasingly clear ¢that the problem
with the lack of observation of the QWEST was the lack 0. electrons in the lower
quanfum well state. It was also becoming clear tha¢ the reason for the disappearance
of the electrons was because of a poor quality interface at the inverted, GaAs on
(GaAl)As, heterojuncti ~u. What is not clear is the reason for this poor interface, be
it dislocations or impurities. It is also not knovwn what densities of deep level traps
are generated or if their location is on the surface or in the bulk. But the evidence
did indicate many improvements occured at this interface when the substrate growth
temperature is increased from 580 to over 650° C. Steve Eglash then-decided to

grow a number of samples with only a few wells and without the undoped (AlGa)As
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spacer layer between the well and doped region and a thin overcladding so as
to facilitate measurement of the electron density by use of In diffusion into the
thin layers. Hewlett-Packard also had recently installed a Reflection High Energy
Electron Diffraction (RHEED) probe onto their MBE machine which could be used
during the growth process. Steve then increased the growth temperature of the
substrate as high as possible with the RHEED pattern continuing to indicate a good
crystal structure. This temperature was about 660° C. All the test samples were
grown with 85 A quantum wells. The samples were then doped to various levels
as predicted by experience with bulk materials. Sample B-271 was grown with 10
wells and Si donor density of 2.8 x 10'8 em=3 in a 100 A thick Al 3Ga 7As barrier
region around each well. The electron density was measured to be 3.5 x 101 ¢em~2,
or 25% above the desired amount, and remained the same at both 300 and 77 K. A
second sample B-272, was growr: with pure AlAs barriers, each doped with 9.2 x 1018
em~2 and a total of 10 wells. The electron density was found to be independent
of temperature with a value of 5.5 x 10!3 cm—2, or 62% of that predicted. Next,
sample B-285 was grown with only § welis and a Si donor concentration of 5.6 x 1047
¢m=3 in a 100 A thick Al 3GayAs barrier region. This sample had the same density
at 300 and 77 K of 3.3 x 1012 em~2 or 18% above the predicted density. The last
sample, B-286, is identical to sample B-285 except that the wells ncw have 150 A of
undoped Al 3GayAs spacer between the well and the doped region. The measured
density remained the same, at 3.3 x 1012 ¢cm~2, as the previous sample. However,
the 300 K mobility went from 4370 in sample B-285 to 6910 ¢cm?/V-s in sample
B-286. The 77 K mobility increased from 9720 to 52,000 cm?/V-s with the addition
of the spacer layers in sample B-286. The spacer lzyers separating the donor ions
from the quantum well states are thus seen to be of great benefit in reducing the

electron scattering times. The 18% increase in electron density over that predicted

136


http://Al.3Ga.7As
http://Al.3Ga.7As
http://Al.3Ga.7As

is of the same order as the typical overgrowth and could possibly be a result of a

slighty larger doping region with the same donor concentration.

With these results demonstrating that electron population of the lower quantum
well states can be performed successfully, two samples were grown as above, at a
_ temperature of about 660° C. The structure grown is that of Fig. V.9, but with
| the outer 0.5 um thick buffer regions reduced to 0.29 um and the GaAs cap reduced
from 500 to 50 A. The samples B-331 and B-332 are grown with 50 wells of a
design thickness of 85 and 75 A, respectively. After growth of these samples, it
was noted that insufficient In had been applied on some regions of the back surface
of the GaAs wafer. The lack of thermal contact with the temperature controlled
Molybdenum block allows that region to have a temperature below the 660° C
growth temperature. A large milky haze appeared over large parts of the sample.
Furthermore, micron sized hills were seen to be covering the sample with a 2 to 10
% areal density fraction in some regions of the 2 inch diameter wafer. Because of
these defects, the samples were not expected to perform well. We carefully cleaved
out two 1.5 cm square wafers in a section of the growth which appeared to have

only a small fraction of defects.

Samples B-331 and B-332 were grown on Thursday, September 6, 1984. Prior
arrangements had been made with Joe Vrhel in the Applied Physics opties shop to
polish the samples on Friday, September 7, and that evening the infrared spectrometer
had finally been brought back to working order after weeks of problems. The
infrared spectra of these samples is illustrated in Fig. V.12, A very large anomalous
peak is observed on each sample and shifts to a higher energy for sample B-
322, the sample with the smaller well thickness. The height of the absorption
peak is about 20 mAbs. The spectrum with the infrared beam at normal in-

cidence is shown in Fig. V.13. This anomalous peak disappears at normal
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incidence for both samples. This is indeed the QWEST.
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Figure V.12: Infrared absorption spectrum of sample B-331 and B-332 at ¢ =
73° and at room temperture. mAbs= —10-3log,o(Transmission). Spectrum (a) is
of sample B-332, a 65 A quantum well, and was independent of rotation about ¢.
Spectra (b) and (c) are both of sample B-331, a 82 A well on average, with ¢ = 0°
(b) and ¢ = 80° (c), showing sample inhomogeneity with scan direction (see Fig.

V.2).
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Figure V.13: Absorption spectrum of sample B-332, a 65 A quantum well, at
room temperature with (a), § = 73°, and (b), § = 0°. Note the QWEST absorption
peak disappears when the electric field vector of the infrared beam is rotated to
lie completely in the sample plane, as expected. The shallow baseline slope is an
artifact of the fourier transform process of the spectrometer in the presenée of small

jitter in the zero point of the interferogram,
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C. Optical Observations of the QWEST

The QWEST has been observed on samples B-331 and B-332. The anomalous
peak seen on sample A-495 is now also believed to be a QWEST. The properties of
this new effect are now to be carefully measured and compared with the theoretical

values.

Two wafers of each sample are observed, They are labeled B-331-A, B-331-B,
B-332-A, and B-332-B. The last letter refers to the specific sample of each growth.
The samples are identified by either one, for specimen A, or two, for specimen B,
red dots marked on the upper right corner of the sample on the side with infrared

light incident with ¢ (see Fig. V.2) equal to zero.

The well thickness of samples B-332-A is now calibrated using the infrared
epitaxial cavity technique developed in the last chapter. The lowest frequency
Fabry-Perot maximum occurs at 1203 em™!. This corresponds to a resonance with
two waves in the epitaxial cavity. The thickness is found from this resonance and
an index of refraction of 3.16 to be.2.63 pm. The sum of the specified layers should
be 2.97 pm. The ratio of these two is 0.886 and the specified well thickness of 75 A
ratios to an actual thickness of 66 A. The resonance has a peak at 1231 cm™! ( or
152.6 meV) with a peak height of 23 mAbs. The FWHM of the resonance is 13.4
meV at ¢ = 0° and 14.1 meV at ¢ = 90°.

The sample B-332-B is taken from the edge of the 2 inch wafer and one side has
a rounded smooth edge which is clearly the edge of the original wafer. The MBE
machine is known to have a several percent variation in epitaxial growth rate across
the wafer. This variation occurs because the molecular sources are not located on the
axis of the sample and have flux variations across the surface from simple geometry
considerations. In addition the edge of the crystal may have a different temperature

during growth and other environmental differences which lead to a difference at the
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edge. Some of the spatial inhomogenieties can be eliminated by rotation of the
sample during growth. Hewlett-Packard had just added this capability during the
9 months in which the MBE machine was down for improvements in 1983. The
rotation rate of the sample holder was limited by the controlling electronics during
its initial period of insertion into the chamber to a rate less than the speed of growth
of a single quantum well. { A single well typically takes about 20 to 30 seconds to
grow.) Because of the inadequate spin rate of the holder, the motor was turned off
for the measurement. Because of these effects the samples were expected to have
a gradient in thickness. This effect was indeed observed in the edge piece. The
well thickness at the center of the sample is calculated from the epitaxial cavity
resonances to be 65.5 A. The thickness is found to vary 7.6+0.8 % across a 10
mm distance perpendicular to the rounded edge, with the smallest growth occuring
closest to the rounded crystal edge. A 7 % variation in thickness of a 65 A thick
well corresponds to a variation in thickness of the well of 5 A. F‘:Pm Fig. IV.2 this
variation can be seen to correspond to a2 5 meV increase in the linewidth when the
infrared beam is oriented to have the major axis of the 3 by 11 mm beam pattern
{see Fig. V.2) on the surface oriented in this direction {which for my label happens
to occur for ¢ = —90°). This increase is indeed seen to occur. At ¢ = 0°, which
corresponds to a scan parallel with the rounded edge of the wafer, the resonance
occurs at an energy of 164 meV with a FWHM of 11.9 meV. The scan with ¢ =
—~80° has a central resonance energy of 161 meV with a bandwidth of 18,7 meV. The
bandwidth in this high gradient direction is thus seen to be 6.8 meV higher than
the low gradient direction, in agreement with expectation based on energy change

with well thickness.
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Spectra as a function of rotation angle
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Figure V.14: Infrared absorption spectra of B-331-B at room temperature and

¢ = 73° as function of rotation angle, ¢, with ¢ indicated for each of the spectra.

Samples B-331-A and B-331-B have very broad energy bands. The samples
appear to have similar behavior so we only discuss sample B-331-B. A maximum in
the epitaxial cavity resonance occurs at an frequency of 1088 cm™1. The epitaxial
thickness then becomes 2.91 pm. The design layers add to 3.02 gm. If we scale the
design 85 A well thickness by the same proportion, the actual well thickness becomes
82 A. The spectra of this sample has very broad linewidths, as shown in Fig. V.12.
Furthermore, as shown in Figs. V.12 and V.14, the spectra are highly sensitive to
the scan angle, ¢. A hypothesis that this variation might be due to irregularities on
the surface was investigated by scanning the thickness of the epitaxial layers over
the surface. Suprisingly, the surface was found to be extremely flat with only a 2%

variation in thickness found in one direction ¢ = 0° over a distance of 10 mm and
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no gradient at all found in the orthogonal direction ¢ = 90°. The spectra all show a
central peak at 121 meV with a FWHM of 21 to 30 meV, depending on the rotation,
¢, of the sample. If approximately 10 meV of the broadening is assumer to occur
even for perfectly uniform wells, then the excess broadening of these lines would be
about 10 to 20 meV. From Fig. IV.2 it can be seen that a nonuniformity of up to
20% would be required to explain the excess linewidth. But the epitaxial growth
was found to be an order of magnitude more uniform. In fact the uniformity of the
epitaxial layers of this sample, B-331-B, is several times better than that of sample
B-332-B, which has a much narrower linewidth in spite of its larger gradient. The
explaination to this phenomena was fou;ld when Steve recalled that he had stopped
the rotation of the sample during growth differently for samples B-331 and B-332.
For sample B-331 he simply turned the motor speed to zero, wheras for sample
B-332 he turned off the power to the motor. It is known that the motor speed when
turned to zero does not go exactly to zero, and some rotation of an unknown amount
occurs during 4 hours of the epitaxial growth. However, if only one rotation or more
occured during the 4 hour growth, then each region of the wafer got a selection of
all possible well widths within the growth region. The sample B-332-B above, held
stationary during the growth, has a thickness gradient of 7% per centimeter. If
linearly extrapolated across the 50 mm diameter wafer, then the wafer could have
an edge to edge variation in thickness of 30%. Thus a region travelling around
the chamber on an inner radius could easily have a 209 variation from one well
width to another. The sample would also appear to have a better than normal
uniformity of the overall surface because of the averaging effects of the rotation.

This inadvertant rotation thus explains the contradictions of sample B-331.

Low temperature experiments were performed in an attempt to betiter under-

stand the broadening mechanisms of the QWEST. Because the broadening of the
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QWEST of sample B-331 was obviously determined primarily by inhomogeneities,
the low temperature measuréments focused on sampie B-332-A. The sample B-332-
A is found to have a sightly reduced linewidth of 10.6 meV at room temperature
when it is oriented at an angle of ¢ = 45°, and this is the orientation used to probe
the low temperature properties of this sample. The room temperature QWEST has
a resonant energy of 152.3 meV and peak heigh’ of 30 mAbs with a linewidth of
10.6 meV. As the temperature is reduced to 34.5 K, the resonance energy of the
QWEST increases to 156.2 meV, the peak increases to 43 mAbs, and the linewidth
decreases to 7.2 meV, The small variation in these quantities as a function of tem-
perature is linear to within the accuracy of the measurement. Note the product
of peak height and linewidth stay constant within 3% throughout the temperature
region, indicating the electron density and oscillator strength remain constant with
temperature. The spectra of the QWEST at several temperatures are shown in
Fig. V.15. The 294 K QWEST resonance is compared to the 34.5 K spectra in an
expanded plot in Fig. V.16. The full absorption spectra, from 4000 cm™! (or 2.5 ym
infrared wavelengths) to 400 em=? { 25 pm infrared wavelengths), is shown in Fig.
IV.17 for two temperatures for sample B-332-A. The two traces are untouched for
the purpose of showing actual noise of the full spectrum. The high frequency fuzz
at the higher wavelengths is unfiltered cavity resonances of the full GaAs wafer.

This spectra can be compared to that of sample A-516 in Fig. V.3.
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Figure V.15: Infrared absorption spectra of sample B-332-A at ¢ = 73° and

several femperatures.
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Figure V.16: Infrared absorption spectra of B-332-A at 4 = 73° for 34 and 294

K.
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Figure V.17: Infrared absorption spectra of B-332-A at ¢ = 73° for 280 anrd
41 K. This spectra is not redrawn so as to retain the original noise of the GaAs
substrate and epitaxial layers. Note that excep’ for the QWEST, the spectrum is
devoid of absorption peaks at this level. The noise present is from two sources. The
first is residual COg in the spectrometer, which is the source of the broad bumps
at 3000 cm™! for the 41 K plot and the numerous peaks around 1600 cm-1. The
COy spectrum actually consists of numerous 1 em~! wide peaks, but the spectra
here are taken with too low & resolution to see the individual peaks. In addition,
high frequency oscillations, from the cavity resonance formed by reflections of the
outer wafer surfaces which are not cuite removed at Brewster's angle, are seen at

the higher wavenumbers.

The oscillator strength can be found from equation (V.11), which gave the

oscillator strength from the integral of the line over optical frequency. It was found
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that JAF = 0.218f Abs-cm™). A computer integral of the QWEST of sample B-
332-A at 0 and 90 degrees rotation (¢ = 0,90°) found integrals of 2.754 and 2.715
Abs-em™!, respectively. These integrals give an oscillator strength of 12.6 and 12.5
for the two rotations. For sample B-332-B, the integral of the line shape is found
to be 2.277 and 1.683 Abs-cm™! for rotation angles of 90 and O degrees. Thesc
integrals result in an oscillator strength of 10.4 and 7.7 for the two angles. It should
be noted that the measurements assume the electron density per quantum well is
4x 10! cm~2, However we saw that {or sample B-286 the electron density had 18%
extra electrons, and our samples could have similar inaccuracies. If the electron
density is assumed to scale by the size of the doping region, the above numbers
for the oscillator strength increase by 15% to as high as 14.5. The abnormally low
oscillator strength of the second sample indicate some of the electrons are missing,.

The integral of the lineshape of sample B-331-B, as probed on October 31, 1984,
at rotational angles of -45, 45, 0, and 80 degrees found oscillator strengths of 10.9,
11.5, 11.6, and 11.4 respectively. It should be noted that three weeks earlier, on
October 11, the same spectra was measured with a weaker lineshape. See Fig. V.13.
On Oct. 11, the oscillator strength at rotation angles of 0 and 90 degrees was found
to 7.16 and 8.91. The increase in the oscillator strength is probably because of
an increase in the number of electrons in the lower quantum well state that were
previously trapped elsewhere. Thus the larger numbers of Oct. 31 are probably the
more accurate numbers, for the osciliator strength. The larger linestrengti of Oct.

31 also appears more consistent as a function of rotation angle.
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Figure V.18: The infrared absorption spectrum of sample B-331-B at ¢ = 73°
and ¢ == 0° on two different dates.

Other changes in lineshape are noticed in several spectra. In Fig. V.19, the
spectrum of sample B-332-A on two different dates is noticed to have shifted 6 meV
from 152 meV to 146 meV. At a later date, on Feb. 28, 1985, this resonance shifted
back to the original position at 152.4 meV, but the oscillator strength changed from
12.6 on Oct. 11, 1983 to 11.2 on Nov. 3, 1983 to 11.3 on Feb. 28, 1985. If we use
the measurement of oscillator strength as an indication of electron density, undei
the assumption that the true oscillator strength remains constant, we find that the

energy shift is unrelated to the changes in electron density.
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and ¢ = 0° on two different dates.
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2. Analysis of Observations

The infrared measurements of the QWEST yield three parameters for analysis.
These are the QWEST energy, oscillator strength, and bandwidth. These parameters
are measured both as functions of well width and sample temperature. One ob-
servation is also seen with different quantum well crystal structure. These ob-
servations are compared with the thecretical predictions of the previous chap-
ter and nsed for further analysis of the quantum well states,

The first parameter measured is the QWEST energy. This energy was seen in
chapter IV to be very nearly equal to the difference in energy of the two lowest
energy conduction band quantum well states. Unlike exciton measurements, these
energy measurements are independent of band gap and valance band quantum well
energies. The predicted QWEST energies, from Table IV.3, are compared with the

observed energies, given in the previcus two sections, in Table V.1,

Table V.1

Comparison of observed QWEST energ..3 with theoretical expectation. Energie

are measured in me¥Y.

Sample Well Thickness Predicted Energy Observed Energy

B-332-A 65 A 142.4 152
B-331-A 82 A 117.8 124
A-495 92 A 105.0 110

The observed QWEST energy peak wandered over a range of about 6 meV
within a several week time frame. This wandering of energy was associated with a
change of absorption strength, but interestingly, the bandwidth of the QWEST did

not change. This behavior of the QWEST currently has no explanation. Furthermore,
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a shift in quantum well energies has never been reported by any of the many
other types of probes as mentioned in chapter II. However, those interband mea'sure-
ments include a large energy from the bandgap which changes rapidly with tem-
peraturel#] (0.5 meV/°C). Thus it cannot be certain if the quantum well energies
change over time and merely have not been noticed or else this energy wander
is unique to the QWEST. The observed energies listed above are either the central
energy or the most stable energy of the QWEST during the wander. The detailed

behavior of this wander was presented in the previous two sections.

The predicted energies in Table V.1 are seen to be consistently about 5 to 10
meV below the observed energies. The predicted energies in Table V.1 were based on
continuity of the derivative of the envelope wavefunction across the well boundary.
If wo use the alternative boundary condition, with continuity of this derivitive .
multipltied by the inverse effective mass assumed, then the predicted energies are
yet lower still. But then the change of QWEST energy with well thickness is in
better agreement. The predicted energies under the two assumptions are both
plotted in Fig. IV.2, along with the experimental points. The approximately 5
% error between the predicted and observed energies could have several causes.
The largest theoretical problem is the treatement of envelope wavefunction at
the boundary between the GaAs well and the (AlGa)As barrier. This boundary
condition determines entirely how the quantum well states are quantized, and the
QWEST energy depends highly on this treatement. Fortunately, the well and
barrier materials are sufficiently similar that simple continuity conditions on the
envelope and its derivitive have been found to give fair agreement with observations.
18 Furthermore, the discrepencies between observed and predicted QWEST energies
can be entirely explained by uncertainties in the input quantum well parameters.

For instance, the height of a Al 3Ga 7As barrier to the GaAs well was only recently
151


http://Al.3Ga.7As

discovered ¥ to be near 240 meV instead of 320 mev, as had been thought for many
years.[3! This difference in barrier height can change the QWEST energy by about
20 meV, and the true height is stili being refined. Also, the calculation of the band
energy of a conduction band electron using k- p theory neglected the higher order
effects from other bands. Although the band energy could be renormalized to first
order by use of the empirical effective mass of GaAs, the deviations of true bands
from the effective mass approximation lowers the QWEST energy by about 10 meV.
The error in this deviation is estimated to be about 30%, so this uncertainty could
be the source of another 3 meV error. Finally, an unknown effect is causing the
QWEST resonance to wander over a 6 meV range. Until this effect is understood,
it is impossible to make a prediction with any greater accuracy than the magnitude
of wander. Thus the theoretical treatment of the quantum wells used here provides
values of the energy, oscillator strength, and bandwidth as accurate as possible with

the present knowledge of the well structure.

The QWEST energy was measured as a function of temperature for the sample
B-332-A. The QWEST ecnergy was found to increase from 152.3 to 156.2 meV as
the temperature was reduced from 300 K to 35 K. Since the thermal expansion
coefficient of GaAs is about 8.7 x 10-8/°C, the well size only increases by about
0.2 % or 0.1 A for a 270 K temperature rise. This small thickness change has a
negligible effect on the quantum well energies. However, the inverse effective mass
of GaAs drops from 15.9 to 14.9 (in units of 1/m,) as the temperature drops from
300 K to 35 K.i22 If the barrier height remains constant, this mass change predicts
a 4 meV drop in the QWEST energy of sample B-332-A as the temperature is
reduced from 300 K to 35 K. The barrier height does not remain constant, however.
The band gap of Al 3GaAs is found to increase at a greater rate than the band

gap of GaAs as the temperature is reduced.#%] The increase of the barrier bandgap
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over that of the well bandgap as the temperature is reduced from 300 K to 35 K
islt?) about 20 meV. H the fraction of the band gap discontinuity which becomes
a barrier to a conduction band electron remains constant at 65%, as reported in
some observations, |23} then the increase in barrier height is only 13 meV. This small
an increase in barrier height only increases the QWEST energy by about 2 meV.
If the effective mass change is included, the predicted net change is a QWEST
energy reduction of 2 meV, in contrast with the observation of a 4 meV increase,
as the temperature is lowered from 300 to 35 K. This QWEST energy temperature
dependence can be explained by a 40 meV increase in the barrier height. However,
this 40 meV increase in barrier height would require the fraction of the bandgap
difference which is a barrier to the conduction band electron increase from 65% to
70% as the temperature is reduced from 300 K to 35 K. Since this fraction is not
known at any temperature to this 5% accuracy, a temperature dependence of this

size cannot be deduced from present observations.!?3

The second parameter of interest is the QWEST bandwidth. The suspected
effects of various broadening mechanisms are tabulated in Tables IV.1 and IV.2 for
a 65 A thick well at temperatures of 300 and 35 K respectively. The bandwidth
was predicted to be about 8.7 +3.3 meV at room temperature and reduce substan-
tially to 4.9 + 3.0 meV at 35 K. The sample B-332-A, a 65 A quantum well, was
observed to have a bandwidth of 10.6 and 7.2 meV at temperatures of 300 and 35 K,
respectively. The behavior of these broadening mechanisms as a function of tem-
perature, as shown in Tables IV.1 and IV.2, shows discrepencies between prediction
and observation. In particular, & net broadening is predicted which is too smail by
about 2 meV. If we look at the low temperature linewidth, the density of states of
the QWEST, which is dominant at higher temperatures, becomes fairly small (2.6

meV) and more accurate. The other two broadening effects were assumed to be
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independent of temperature. The inhomogeneous broadening is mostly from trans-
verse variation of the well width with distance, which was measured, as described in
the previous section, to be in agreement to the assumptions of Tables IV.1 and IV.2.
Thus this term is thought to be accurate. The last term, from lifetime broadening,
has large theoretical uncertainties. Furthermore, the other terms are lairly accurate
and are too small to come close to explaining the low temperature linewidth. The
low temperature linewidth is therefore suspected to reflect the lifetime broadening,
and results in a lifetime broadening of about 6 meV, near the maximum expected.
This bandwidth corresponds to a lifetime of 0.2 picoseconds. If Tables IV.1 and
IV.2 are changed to reflect this interpretation, then they become as given in Tables

V.2 and V.3.

Table V.2

A possible interpretation of the broadening effects for a 85 A quantum well at

300 K.,

Density of QWEST states 7.5 2.0 meV

Lifetime broadening 6.0 0.0 meV
Inhomogeneous well width 3.0+1.5 meV
Total 10.1 £2.0 meV
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Table V.3

A possible interpretation of the broadening effects for a 65 A quantun well at

35 K.

Density of QWEST states 2.4 +0.6 meV

Lifetime broadening 6.0 £0.0 meV
Inhomogeneous well width 3.0 +£1.5 meV
Total 7.1 £0.5 meV

This explanation, which was found neccesary to properly describe the low tem-

perature data, is also seen to correctly describe the 300 K bandwidth.

The bandwidth of sample B-331, with approximately 82 A thick wells, is not
discussed since its bandwidth is clearly broadened by an inadvertant variation in
well thickness from well to well during the growth of the 50 wells. This gave a
bandwidth for this sample of over 20 meV and nearly 30 meV for some orientations

of the wafer.

The above bandwidth discussion assumed the ionized donors in the barrier
region were sufficiently far away from the quantum well so as not to affect the
envelope wavefunction and energy states. The growth of the above two samples,
B-331 and B-332, had an undoped barrier region 150 A thick separating the ionized
donors from the well region for this purpose. The effect of these ionized donors is
found by examination of sample A-495. This sample had no undoped region in the
barrier separating the well from the ionized Si donors. As discussed in the previous
section, the fluctuation of this potential is of order 10 meV. However, the effect of
this fluctuation on the QWEST bandwidth is anticipated to be much smaller for two

reasons. First, the potential affects both lower and upper quantum well energies by
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a similar amount. Second, the electrons will tend to concentrate in the lower energy
regions, so regions observing the full fluctuation of the potential will not be equally
populated. The latter point has another important consequence. If the electrons
tend to concentrate in the lower energy regions of the two-dimensional surface, and
the average distance between donors is 140 A, then the envelope wavefunction will
have some structure in this transverse dimension with a similar size variation. Since
this 140 A variation in envelope wavefunction is much smaller than the infrared
wavelengths, this perturbation could easily lead to a small dipole in the transverse
dimension. The QWEST would then have a nonzero absorption strength in the

other two dimensions.

The observations of sample A-495 saw 3 QWEST absorption with a 10.5 meV
linewidth, similar to the sample B-332-A. But since sample A-495 contains 92 A
wells, the density of QWEST energy has a predicted FWHM of 5.6 meV, which is
2 meV smaller than that of sample B-332, seen to have a 7.5 meV density of states
bandwidth. If the net bandwidth is taken as the sum of squares of the individual
terms, and we take the other terms in Table V.2, besides the density of states, to
be the same, then we find the ionized donors contribute an additional term with 6
meV broadening. It should be emphasized that this value is obtained by taking the
difference of the squares of large terms which are themselves uncertain, and should
not be considered to be very accurate. The absorption strength was also observed to
drop by a factor of about 3 when the polarization of the infrared beam was rotated
to lie in the well plane by changing the incident angle of the beam from Brewster’s
angle to normal incidence. But theoretically, the absorption strength should have
dropped to identically zero, as observed in samples B-331 and B-332. In section A of
this chapter, the electric field of the infrared probe was shown to lie almost entirely

in the plane of the quantum well. The coupling of the field to a dipole normal to
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the well, as we expect the QWEST to be, is thus 10 times smaller than the coupling
to a similar size dipole in the plane of the well. The factor of 3 reduction in tue
absorption strength for this polarization actually indicates a reduction of 30 in the
oscillator strength in this direction when the fields are taken into account. The
effect of placing the ionized donors in the vicinity of the well is therfore suspected
to add a broadening term of about 6 meV and convert about 3% of the oscillator

strength to a direction in the plane of the quantum well.

The remaining optical parameter of interest is the oscillator strength of the
QWEST. This strength was difficult to measure because the electron density in the
well was difficult to obtain, measure, and maintain, Thus the absorption strength
would vary significantly. The samples B-331 and B-332 were finally developed with
some stability in this electron density. The problem with the electron density in
the lower state was always found to be one of disappearance rather than an excess.
This behavior is consistent with lower energy bound states being formed which can
trap an electron from the lower quantum state. Because of this behavior, it was
felt the maximum oscillator strength found for a given sample was probably the
most accurate. The maximum value obtained for sample B-331 was found to be
11.6 and that for sample B-332 was 12.6. The oscillator strength predicted for
these two samples is 13.2 and 12.1, respectively. The experimental values, which
are uncertain to about 10 % because of inaccuracies in doping density, are thus
seen to be in excellent agreement with prediction. If the experimental values for
the oscillator strength and energy are used with the aid of the definition of the
oscillator strength in equation (IV.50), then the dipole matrix element is found to

be 18.9 e-A and 17.8 e-A for samples B-331 and B-332, respectively.

The optical parameters of the QWEST are seen to match well with prediction

and good understanding of thier behavior has been found. Further work and more
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samples is sure to refine this understanding. Some uncertainties still lie in the
fabrication of samples without electron traps, numbers for well parameters such as
barrier height, and the lifetime of the upper state, among others. These problems
are also of current interest to those involved with quantum well samples and will

undoubtedly be solved in the near future.
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IX. Conclusion and Future Applications

An infrared dipole transition between two envelope siates within the same band
of a quantum well is predicted and observed. This transition is called a Quantum

Well Envelope State Transition or QWEST.

The QWEST is now very clearly shown to be realizable in the conduction band
of a (AlGa)As quantum well. The observation of a QWEST is seen on three different
samples with quantum well thicknesses 65, 82, and 92 A and resonant energ_ies of
152, 121, and 108 meV, respectively. The observed resonant energies are in good
agreement with theory. The oscillator strength is found to have values of over 12,
in good agreement with prediction. The linewidths arc seen as narrow as 10 meV
at room temperature and 7 meV at low temperature, thus proving a narrow line
resonance can indeed occur between transitions of free electrons. Techniques for the
proper growth of these quantum well samples to enable observation of the QWEST

have also been found using (AlGa)As compounds.

The QWEST has a quantum dipole as large as 20 e-A. The transition also
has a narrow Bandwidth, an anomaly for transitions between free electrons. This
large dipole and narrow bandwidth result in strong nonlinear optical properties. For
instance, the ratio of index of refraction change to incident infrared intensity, ns,
can be as high as 10~% em?/Watt. In addition, both the lower and upper quantum
well states consist of free electrons in the same conduction band. An electron can
thus relax from the upper to the lower energy state by an elastic scattering, requiring
no energy transfer. This property enables the transition to have an extremely fast

transition time, predicted to be subpicosecond.

The motivation for the development of the QWEST was its application to the
development of a digital computer based entirely on optics, with no electronics

required. Advartages for an optical system over electronic are seen in both the
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elimination of inductance-resistance-capacitance problems and in the elimination of
electron transit times through small channels. A discussion of optical computing is

given in Appendix B.

The importance of the QWEST to the physical operation of a logic element lies
in its large dipole, which gives it a very large nonlinear coeficient. Of interest to
optical logic is the ny coefficient, which varies as the dipole to the fourth power
(see chapter IV, section F). The dipole of the QWEST is 100 times larger than the
dipole of an atomic state, giving an improvement in the ny coefficient by a factor
of 108 over atomic systems. In addition, the currently proposed implementations
of an optical logic element in the solid state are limited in speed by the relaxation
rate of an electron from one band to another, with relaxation times in the 10's of
nanoseconds. 5162l The QWEST has a subpicosecond relaxation time, much faster

than any of today’s nanosecond logic.

In addition to the physical properties of the QWEST, which gives it a high
nonlinearity and fast response time, the QWEST also has a number of properties
which are extremely important to the engineering of integrated optical logic ele-
ments into a inexpensive system. (See Appendix B.) One of the properties of
the QWEST important to optical logic is its tunabilty in the infrared. Infrared
wavelengths are considered essential to integrated optics for several reasons. First,
the larger wavelengths allow easy fabrication of integrated optical elements and
waveguides by use of standard photolithographic processes. Second, many very
inexpensive and very high efficiency lasers exist in the infrared. Two examples are
the CO; and CO lasers, with wavelengths of 10 and 5 microns, respectively, wall-
plug efficiencies as high as 30%, and prices as low as $50 per watt of output for
high power lasers. Third, the GaAs materials are very transparent in the infrared.

Furthermore, Germanium, a material which grows well on GaAs and is important to
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the fabrication of integrated optical elements, only transmits light with wavelengths
greater than 2 microns.

The tunabilty of the QWEST is also important to optical logic. First, the
transition can be tuned to match any laser in the infrared, allowing use of the best
available laser source throughout the region. Second, as an optical computer is
scaled to smaller sizes to achieve higher speeds, the scaling to a smaller wavelength,
necessary to make smaller structures, is allowed by the QWEST. Third, the QWEST
resonance can be placed on both sides of the laser frequency. A given logic element
can then use nculinearities of both signs simultaneously. This extra freedom is
important in fabrication of logic elements which preseut zero reflection to the input
signals for all levels of output, for instance.

In conclusion, the discovery of the QWEST in GaAs is a breaktirough in the
construction of an all optical digital computer. The advantages offzred by a logic
element based on the QWFEST are similar to those of the transistor when first
developed, namely, a factor of 1000 in both speed and power simultaneously, for
a million-fold reduction in the speed-time product. The break‘hrough is not only
because of the physical effect and all the properties such as nonlinearity and speed
associated with it, but also the engineering properties of the SaAs QWEST, which
allows construction of an optical logic element and assoc.ated interconnects and
elements into a full optical digital computer system, all highly leveraged off of
existing GaAs technology. My original goal, which lead to the discovery of the
QWEST, was the development of an all optical computer. The developments are
far surpassing what I thought, even with my wild idees, would be possible. However,
the results presented in this thesis are only the opening through which the rapid
advances towards optical logic can now proceed, which is the direction I am now

taking. The QWEST has only begun.
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Appendix A: Evaluation of Coulomb Potential Integrals

Part 1

The first integral, Iy, is given by equation (IV.71) and repeated here as

I = '[_ ’;//22 [292 - cos(zo)] cos?(8) df. (A1)

The evaluation of this integral is now illustrated. The integral is first separated

into a sum of several integrals as follows.

h =L””//22 [202 - cos(20)] cos?(6) do
=[__1;/:2 [92(1 + cos(: - * - cos(28){1+ cos{20))/2J d9

/2
o= [_”/2 [02 + 6% cos(26)) - % cos?(20} - %cos(20)] d8. (4.2)

The first integral over 62 is trivially integrated with a result of 3/12. The

second term is solved by intlegration by parts as

/2 o 62 . /2 /2 )
[_”/2 6 cos(26)) do = 5 sin{26) |_,r/2 - /:_”/2 ¢sin 20 db. (A.3)

The first term on the right hand side of equation (A.3) can be seen to be equal

to zero. The second integral is again integrated by parts to obtain

LIC 2 P) 2 1 /772
—/_ﬂ/gasm 2648 =  cos(26) |1/"/2 -3 _"/2c0529d0
= %cos(%) - %sin(20) |’:/:/2
"
=3 (A.4)

The third term can be integrated as directly with the result
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1 1/2 9 _ 1 ﬂ’/2
=1 o) == /_”/2(1 + cos(46)) ds

1 1.
- _E(a - z5in(46)) l:lnz/z

a‘- (A.s)

The last term is easily seen to integrate to zero. The integral J; in equation

(A.1) can now be evaluated with the use of the above equations to find

PL I 2 3z
h [1—2'_5_2]'"[1—:5_'4_]' (486)
Part 2

The second integral, f», is given by equation (IV.74) and repeated here as

/2
= /_:/2 [292 - cos(20)]sin2(20) a8

= LY; [92(1 - cos(46)) - sin®(26) cos(29)] dé. (A7)

The second term in the integral is evaluated by parts as

n/2 2 xf2

2 _ 6 w2 1 .

/_"/2 6% cos(49) do = T sin(46) |_”/2 5o 0sin(46) ¢¢
e 1 [1/2
-n/2 § /—-1[/2

cos(48) ~ §1§ sin(46) lil,r",/z

cos(49) | cos(46) dé

Q)aml'a 00} ©

(A.S;

The last integral in equation (A.7) is easily integrated as

/2 . 1.
/_ o2 sin%(26) cos(26) d6 = 8 sin®(20) |:/1?/2= 0. (A.9)

170



The integral I, is now found with the use of the above equations to have the

value

= [l—2~ - g]. (A.10)
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Appendix B: Design of an Optical Digital Computer

The primary motivation for an all optical digital computer is enhanced com-
putational power. Secondary benefits of reduced power and simpler fabrication
over electronic approaches also appear possible. The advantages of optical logic
primarily lie in the elimination of inductance-resistance- capacitance problems in-
herent in electronics. These problems often become the limit in the speed of an
electronic system. In addition, the relatively slow speed of an electron across a gate,
which can slow down an electronic logic element, requires very small lithographic
regions to minimize this time. An optical gate does not have this problem and can
be much larger for the same speed. Also, the interconnect is much easier to build

optically than electrically at Terahertz frequencies,

The approach: lenses vs. waveguides

The approach to optical computing described here differ= fundamentally from
the more common approaches to optical computing under current investigation.
The optical logic described here is designed for use in a system interconnected by
integrated optical waveguides. In contrast, the more common research direction in
optical computingl63 is based on the free space propagation of optical signals, with
processing being performed in the image or fourier planes of an optical imaging
system. In these imaging systems, lenses and other optical elements are used as
conduits for information in an array (1000 by 1000 or so) transverse to the optical
direction of propogation. Examples of optical systems of this type, which also show
promise for performing the full set of logical operations neccasary for computing,

are given by the works of Huang!® and Sawchuck.[#5}

The two types of computer systems, which differ on the type of interconnection
used, both have significant advantages depending on the type of computing which

must be performed. An optical computer interconnected by free space propagation
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is limited to a logic array in two dimensions since the third axis is used for transit
of optical signals. Because a given logic element always has a minimum size, this
limit to two dimensions severely limits the number of logic elements which can be
placed within a given communication time of each other. In contrast, the system
based on integrated optics can stack many logic boards, created in two dimensions
by standard lithographic techniques, in a third dimension in a very similar manner
to a current electronic computer. This difference is very important for a serial
processor, with its speed limited by the time of transit of the signals between a
large number of logic elements. But the difference is not significant for a parallel
processor which does not rely on the speed of a given operation as much as the
ability to perform operations simultanecusly with a large number of logic elements
at a very low cost per element. The integrated optical interconnect is thus seen
to be advantageous for very fast serial processors and the free space interconnect

advantageous for low cost parallel processors.

The choice of interconnect has implications for the optical wavelength, the type
of nonlinear media used in the logic element and the design of the logic gate itself.
The wavelength -ol‘ the light used for the integrated optical elements should allow
fabrication of optical waveguides and integrated optical elements, to be described
later, with simple lithographic techniques. For media with an index of refraction of
3 and lithographic resoiution of about 1 micron, the wavelength of the light should
be about 10 microns. The wavelength of light for a free space interconnect system
should be as small as possible since the resultant reduction in the resolvable pixel
size reduces the optical power requirements and increases the logie element density
on the surface of the array. The availability of high quality and inexpensive visible
lenses and imaging system give strong preference to this optical band for free space

systems. Futher differences in the design of the two systems are in the geometry of
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the logic element. A logic element the free space should have all inputs arriving from
the axis of signal propogation whereas the integrated optical logic element should
have all inputs arriving from within the plane of the given optical logic board in
which it lies. This obvious condition complicates use of the QWEST in a free space
system since its dipole is zero for all light incident perpendicular to the growth
plane. Furthermore, a free space system is intrinsically slower than an integrated
optical system because of the lower density of optical logic elements and the longer
transit times between them. Thus a slower honlinearity with a lower optical power
requirement would be useful, suggesting the QWEST is not optimal for this type of

system.

The choice to develo~ integrated optical systems over free space systems was
made for several reasons. First, not all computations of interesi can be properly
partitioned to be solved by a parallel processor. Second, if a parallel processor is
desired, then it can be obtained by connecting together several serial processors.
But the reverse approach is not possible, an intrinsically parailel machine makes a
very poor serial processor. The fabrication of integrated optical elements is much
more difficult than {ree space elements, but once the hardware is deveiuped, a much
superior system should be achieved. Furthermiore, although the fabrication costs
of a given logic element in a free space system are lower than a logic element in
an integrated optical system, the lower speed of the free space system requires
proportionally more logic elements in parallel to acheive the same throv-ghput as
an integrated optical system. For comparison, a free space system consisting of a
1 mm square logic array connected by a series of lenses with a maximum optical
path length of 1 em will create a system compatable with a logic gate speed of
under .00 picoseconds. An integrated optical computer consisting of a stack of

20 boards in a 1 mm cube can take full advantage of the speed of a logic element
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with a speed under 1 picosecond. This factor of 100 in speed ratio between the two
systems requires the free space system have a cost, when divided by the number of
logic elements, a factor of 100 below that of the integrated optical system simply
to be comparable for processes capable of being effectively partitioned in a parallel
processor. Unfortunately, the ecomomics of these systems is unknown with any
precision until further development. However, the fast serial processor is clearly
only achievable by the integrated optical interconnect, and is clearly needed for
some applications, independent of the performance of parallel systems. Research
on this type of processor is justified for this reason alone. Furthermore, present
analysis indicates that an integrated optical digital computer to be described is
capable of improving the speed and lowering the power used both by a factor of 1000
over current electronic computers., This improvement combined with fabrication by
current semiconductor industry methods suggests that ihis technology may also find

widespread utility within the computing demands of the future.

The requirements of an optical logic element

A digital computer consists of logic elements, their interconnection, and memory,
all supp~rted by a framework consisting of a power supply, cooling and connec-
tion to the outside world. A properly working computer demands }slance and
proper proportion among these components. But the speed and performance of
a computer depends primarily on the logic element, not o~ly because of its speed
but its functionality and characteristics. Ten requirements for an optical digi-

tal logic elemnent are now given which are essential to a working computer system.
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Figure B.1: The desired transfer functions of a logical identity and inverter

operation.

The first requirement of a logic element is an output power as a function of the
input power, or transfer function, with a proper form. Because the power of the
optical signal varies significantly with location, the input is considered for purposes
here to be the value of output of the previous logic element. This definition ‘allows

the transfer function to include the effects of the interconnection and beamsplitting.
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If we momentarily take a logic element with only ore =t then this element will
be either an identity or inversion operation. The tra .:cr function of the identity
operation must cross the output=input axis three times (see Fig. B.1). The lowest
power point is a “low” signal and the highest power point is a “high” signal. Both
the upper and lower power points must have a slope less than unity at the crossing
point in order to be stable. The intermediate power point must have a slope greater
than unity. A similar argument also applies to the inversion operation. The transfer
function should have very little hysteresis and be single valued. The “low” power
value should be sufficiently small so that several low inputs to a logic element do

not combine to appear as 2 “high” and change the output of the gate.

The second requirernent, is for gair of the signals from the input of a given logic
element to its output. This gain is needed to allow sufficient power to drive many
other logic elements and allow for losses in the interconnects. Gain rhould be a

factor in the range of 4 to 10.

The third requirement is to prevent random phase variations in the optical
signals from affecting the function of the logic element. This requirement is unique
to optical waves and has no parallel for electronic computers. The problem arises
from the wave nature of light and the phase relationship among the signal inputs and
the light power source. These waves must be present in the same physical location
since they must interact through the same dielectric. But the effect of these waves
on the media depends on the local intensity, which varies radically depending on
the rela..ve phase of the interacting light signals, even if their individval intensities
remain constant. Furthermore, the signals arrive from different locations through
long waveguides, which can change the phase of the light at a logic element via
small changes in the refractive index. The great difficulties in predicting and and

maintaining a precise phase relationship between all beams indicates that the logic
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element should be designed to be independant of the phase relationship of the

interacting sources.

The fourth requirement is the provision of the complete logic family. In par-
ticular, an inverter operation is mandatory. In addition the OR or AND logic
operstion is also needed to provide the complete logic set. A very powerful logic
element is the complementary NOR or NAND loﬁic elements. These logic elements
provide the OR or AND operation and its inverse simultaneously. This duality has
many advantages. It can reduce the overall computer optical power requirements,
logic element count, and number of gate delays per operation all by as much as a
factor of 2. Furthermore, because an OR operation will turn into an AND operation
upon inversion of sll inputs and outputs, it entirely eliminates the need for both
operations, thus the cornolete logic family can be accomplished with only one logic
element. For these reasons, a complimentary NOR or NAND logic operation is

strongly preferred.

The fifth requirement is for a logic element which does not reflect the input
signals (or be “impedence matched”) for all possible states in which the logic element
may exist. Reflection of the inputs can obviously affect the performance of the
previous logic element and also can set up cavity resonanccs between the output
of one element and the input of the next. These resonances depend critically on
the length of the transmission line and can also affect the transmission efficiency

randomly.

A sixth requirement for the logic element is for multiple inputs. Although only
two inputs are needed to create the entire logic family, actual computers can use
many more with such great frequency that a gate with only two inputs could slow
today’s computers by a factor of over 2, while again doubling the logic gate count

and overall power requirements. As such, a logic gate with at least 4 inputs is
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generally preferred. Again recalling requirements three and five, thes. inputs should
not interact with each other, except as needed for the logic operation, and not be
reflected for any logic state.

A seventh requirement for a logic element is the tolerence to variations in
manufacture (dopant density, linewidth, etc. ) and environmental conditions
(temperature changes and gradients, dust, ete. ). A i gic element which does not
have a transfer function or other properties which are tolerent to these variations
will fail, For instance, the temperature of a logic element could easily « 'ty by more
than 16° C, yet this temperature change will cause the index of refraction of GaAs
to change by 1.5 x 10~2 and the bandgap of GaAs by 5 meV. Neverthe! ss, many
designs are seen which are sensitive to an order of magnitude smaller variations
with predictable results.

An eighth requirement is for the logic element to be manufacturable The
manufacture of the logic element (and its interconnections) should be suffic ~ntly
inexpensive to be competitive with electronic logic and fabricatable in very iarge
numbers with reasonable reliability and yields.

A ninth requirement is for low ontput noise on the signal lines. Most optical
logic tends to have low noise simply because of the very high frequency of the carrier
signals and low numbers of optical modes involved. However, narrow bandwidth

sensitivity and isolation of crosstalk will reduce this noise margin even further.

The tenth requirement is that all obvious conditions be satisfied. For instance, a
logic family would not be able to make an optical computer if the output wavelengths
did not match the required input wavelengths. Many other conditions of this

type exist and must also be satisfied.
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Examples of an optical logic element

In a logic gate, the optical beams will interact through a nonlinear material. This
interaction will be described by the dielectric constant of the material. The optical
beams will have an effect on this dielectric constant and this dielectric constant
will in turn describe the effect of the nonlinear material on the optical beams. The
higher the nonlinearity of this material, the lower the optical power needed to create
a given effect. The logic element can use either the refractive or absorptive part of

the dielectric constant and often is a combination of both.

A coramonly used component of an optical logic element is a Fabry-Perot resonator
formed by two mirrors with a nonlinear material in between. The frequency of
the optical signals is tuned to be slightly off resonance of the nonlinear material
so as be more affected by the change in refractive index rather than the change
in absorptioh. The cavity will be resonant only when an integer number of half
wavelengths is equal to the cavity length. But since this wavelength depends
on the refractive index, and therefore the optical power within the cavity, the
cavity will tend to transmit only a particular power, no matter what power is
incident. Although if the incident optical power should drop too low the cavity
will simply switch to no transmission. The behavior of these nonlinear cavities
is described in several references.[56-5% A simple examplelt!l of the form of the
transfer function of this cavity is shown in Fig. B.2. The cavity can be biased so that
the resonant phase occurs for any particular optical power for the first transmission
step. However, all further cavity resonances must have sufficient power to shift the
round trip phase of the cavity by multiples of 2x. Because the power of a nonlinear
element must be kept at a minimum, a logic element will attempt to work with the
first cavity resonance biased to occur with very little incident power. How small this

bias can be made is dependent on the properties of the Fabry-Perot cavity. A cavity,
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formed by mirrors with transmission T and single pass loss in optical intensity lower
than a factor of T, will have an internal optical intensity increased by a factor of
1/T over that incident when in resonance. This cavity will not significantiy change
its transmission factor until the optical phase has been shifted by an amount of
order »/T from the cavity resonance. This cavity property sets the minimam phuse
bias which is usable and therfore the mimimum optical power of an optical element.
The limits on this resonant enhancement are set by such factors as the buildability
of the high reflectivity mirrors, a sufficiently low unsaturable loss in the cavity,
and uitimately, the optical cavity decay times, which rapidly become sigrificant for
high reflectivities and large cavities. Typical cavities used will have lengths of order
1 to 10 microns with mirrors of transmission between 1 to 10 %5. The cavity decay

times, for materials with a refactive index of 3, will be of crder .1 to 10 picoseconds.

Transmitted powsr (mW}
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Figure B.2 An example of a transfer function of an optical cavity containing
a nonlinear material (From Ref. 61).
A nonlinear Fabry-Perot cavity does not in itself create a logic element which

satisfies the previous requirements. An example is now presented which uses the
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Fabry-Perot cavity, the QWEST and integrated optics to satisfy the earlier require-
ments. The fabricated structure is illustrated in Fig. B.3. This structure coniains a
number of features which aid in the physical behavior and manufacturability of the
device, The integrated optical structure consists of the materials Ge, GaAs, AlAs,
and ZnSe which are not only of similar lattice structure but have nearly identical
lattice sizes. Furthermore, they have all been demonstrated to grow well upon one
another epitaxially as a single crystal. The refractive index of these materials at 10
micron wavelengths is 4.0, 3.3, 2.8, and 2.4 respectively. These materials are all very
transparant for light with wavelengths from 2 microns (limited by the Ge bandgap)
to well beyond 10 microns (limited by phonon absorption in several of the materials),
Epitaxial growth of various low index {1.4) materials such as BaF, and CaF, has
been demonstated on GaAs and Ge sub:trates with sufficient quality to be a good
cover material for these logic elements aud waveguides. A large index difference
between the cover and waveguide material can be used to allow efficient control
of the signals, as exhibited for instance in the right angle corners and waveguide
cross-over (see Fig. B.3). Because of the ease of growth of Ge and the (AlGa)As
compounds (which has even lead to alternating GaAs and Ge quantum wells(s0]),
the less common ZnSe growth could be substituted entirely by waveguides made of

AlyGaj y As with x being close to unity.
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Figure B.3: An example of a complementary NOR optical logic gate, also

illustrating several interconnection elements such as right angle corners and cross-

throughs.
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There are several new irtegrated optical elements lustrated in Fig. B.3. One of
the more important is the waveguide dielectric mirror. This mirror is an analogue of
the dielectric mirrors used with lasers today. This mirror differs from a distributed
feedback integrated optical mirror in that the alternating dielectric material extends
fully across the waveguide instead of merely being a surface perturbation. This
device is much easier to fabricate with today’s technology for use in the infrared
region than with visible light. A mirror with 90 to 99 % reflection can be made with
3 to 5 quarter wave thick Ge slabs inserted into an AlAs wavequide, A second very
important element is the corner reflector. The large refractive index of Ge and the
small refractive index of the coating material allows the waveguides to make very
abrupt bends, important for minimizing the space needed for interconnection. An
abrupt waveguide bend is illustrated in Fig. B.3 which uses total internal reflection
in a Ge prism to turn the light. Note that this prism does not appear to directly
reflect rays from the center of one waveguide into the other. This is a result of the
Goos-Hinchen shift, which makes the effective reflection surface appear behind the
actual surface. The waveguide as shown is fairly inefficient, with losses of over 20
% to diffraction away from the corner. However, more complicated designs may
reduce this loss to under 5 %. Yet another important integrated optical element is
the cross-through, also illustrated in Fig. B.3. This element allows two waveguides
to cross through one another without any exchange of signals between them. This
element allows the signals to remain in one plane if so desired. The reduction
in signal planes greatly aids in fabrication and compactness of optical computer
systems. The cross-through allows the waves to be continually confined as they
transit through the higher index Ge block. The reflection off of each surface is
about 3 % for the indices of refraction involved, but if the waveguides are made

close to a half integer number of wavelengths wide, then the Ge block will be a
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resonant cavity and allow the optical signals through without any reflection loss.
Also illustrated in Fig. B.3 is a beam splitter based on the prism corner refeclor.
The beam splitter has an additional corner which catches the infrared radiation
which is exponentially decaying away from the reflection surface. For the materials
indicated in Fig. B.3 and 10 micron wavelengths, this gap \\;ill be about 1.5 microns

for a 50 % coupling beamsplitter.

With this understanding of the integrated optical elements and the nonlinear
Fabry-Perot cavity, the operation of logic element presented in Fig. B.3, a com-
plementary NOR gate, can be explained. The infrared power to this logic element
is supplied externally { and quite possibly external to the computer in the form of
bulk laser such as a CO or CQOy) and applied to a power limiter. This power limiter
is a nonlinear Fabry-Perot cavity biased to be resonant for the exact infrared power
needed for the logic element. This limiter allows the external power to fluctuate
from continous to Terahertz frequency with up to 50 %variation while still provid-
ing a constant output with only a few percent variation. The limiter operates by
a similar mechanism used in the logic element. As such, the output is similarly
dependent on such parameters as cavity length and quantum well doping density
as the logic element. Thus the limiter also reduces requirements on the tolerances
of these parameters to a mnch easier relation between its cavity and that of the
logic element a few microns away on the same substrate. After the power limiter,
the beam splitter is used to properly proportion the infrared intensity between the
two cross coupled logic cavities. The accuracy of this split is essential and must be
within about 3 % for logic cavities with a 10 % transmission mirrors. This accuracy
implies a beamsplitter gap tolerance of under 0.1 microns, which may be excessively
difficult. The power limiter would then best be placed on each of the infrared paths

after the beamsplitter as close as possible to the logic cavities instead of its present
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location.

The logic element consists of two Fabry-Perot cavities cross-coupled to one
another, with one cavity greatly extended to provide areas for the inputs to couple.
These logic cavities are biased such that, with n> logic signal input, the shorter
cavity transmits the infrared intensity incident and the longer cavity is close to
resonance, but does not quite have sufficient infrared power incident to turn on.
The infrared power incident on the longer cavity is greater than that incident on
the shorter cavity. This greater power is needed because of the larger number of
nonlinear absr rption regions in this cavity and the desire for this cavity, when on,
to turn off the shorter cavity by driving it off resonance. The longer cavity is biased
off resonance by a much larger factor than the smaller cavity because of the large
number of nonlinear regions in this cavity. The input signals to the logic element
saturate the nonlinear regions and cause the longer cavity to draw photons into
it by both lowering the loss of this cavity and pulling it closer to resonance. The
high intensity infrared field in the longer cavity shifts the cavity resonance of the
smaller cavity sufficiently far off to not allow any transmission. Thus a sufficiently
strong infrared signal on any of the input lines causes the longer cavity to change
its output from a low intensitr ‘5 a high intensity, or the OR operation, and the
shorter cavity output from a low intensity to a high intensity, which is the NOR
operation. The gain is given by the ratio of the output infrared intensity to the
input signal required to switch ii. The gain is directly proportional to the fan-out,
or the number of logic elements a given output can drive. The gain is given by
the ratio of the logic cavity transmission to the input cavity transmission. A large
ratio indicates that the relatively smaller intensity of the signal builds up to a larger
intensity inside the logic cavity and thus control it. Yet other factors relating to

doping density and overall logic cavity absorption must also be satisfied to create
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a good transfer function with high gain. However, the gain of the logic element

shown is in the range of 5 to 10.

The nonlinear interactions occur only at the antinodes of these cavities. A
change in the dielectric constant at the node of the cavity has no effect on either the
cavity resonance or absorption loss. Furthermore, the excitation of these antinodes
is much higher than that of the nodes simply because of the greater infrared intensity
at these points. The nonlinear interaction is therefore considered not to take place
homogeneously, but rather at these cavity antinodes which are indicated in Fig.
B.3 by black spots. A cavity with mirrors of transmission T requires a change in
phase of about 2T to change the cavity from transmitting to blocking. We label
the phase change required as ®;. For a mirror transmission of 10 %, this phase
change using the QWEST can be acheived with a power of about 2 milliwatts.
However, several of these interaction regions, each of which are capable of this large
a phase change, are seen to be required to create an operating logic element. These
requirements, combined with the power losses in the limiter, lead to an overall logic
gate powet of about 50 milliwatts. The speed of this element is primarily limited by
the approximately 3 to 5 picosecond time for the electron gas in the quantum wells
to relax back to lattice temperature. Additionally, the longer logic cavity requires
about 3 picoseconds to discharge its photons. Thus this logic eilement is anticipated

to have a switch speed of under 10 picoseconds.

The inputs to the logic gate can have an arbiirary phase relation w.th the other
inputs and the power source since the relative phase depends on the lozation of the
original source, its phase and the net phase shift after transversing a long path, all
of which are difficult to predict and Auctuate with time and temperature. The logic
gate is made insensitive to this phase relation by several means. The inputs are

seperated physically from one another such that thier phase relation is not directly
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significant. The phase relation between the inputs and the cavity fields directly
affects the local infrared intensity at the nonlinear interaction points. This relation
is compensated by allowing the input, which is a single transverse waveguide mode,
to interact with two adjacent cavity antinodes. The adjacent antinodes are 180° out
of phase with each other but the input siglial does not change phase. If we let x be
the cavity ficld at one antinode and -x the field at the other, then the effect of a signal
with field y at both antinodes is proportiona' ‘o the sum of the intensities at the two
antinodes. This effect is thus proportional to (x+y)(X+y)® +(x-y)(x-y)' =2xx*+2yy"

and phase relational xy* part drops out.

This logic element based on the QWEST is also relatively independent to changes
in temperature. The QWEST resonance has been measured to change by less
than 0.16 meV for a 10° C change in temperature. For a signal biased about
7 meV away from resonancr. this small change is negligable. The nonlinear effect
of the QWEST can also be affected by a change in the decay or dephasing time
with temperature. However, these quantities also appear to change very little

over broad temperature ranges.

The quantum well doping densities needed for the logic device of Fig. B.3 are
in the range of 4 to 20 x10!8 /em®. For proper operation of the logic element, this
doping density should be accurate to about 3 %. The jresence of the power limiter
can reduce this accuracy requirement by a factor of at least 3 to over 10 %. The
limiter also reduces a requirement for a cavity length accuracy to 0.1 micron to a
much easier requirsment that the lengths of the limiter and logic element cavities

be equal to within 0.1 microns.

The largest fault of the logic element of Fig. B.3 is the lack of good impedence
matching of inputs to the logic element. :is the optical intensity of the logic

cavities change, the reflectivities of the input cavities (used to assure high absorption
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efficiency of the signals) change the reflected infrared signal intensity. A proper
impedence match in this system is easiest obtained be placing a large waveguide
attenuation in the path of the signal. This reduction in reflected signal also has
the unfortunate consequence of requiring more power to the input and reducing the

gain and fanout available.

This logic element is felt to be capable of demonstrating all the properties needed
for an optical logic element, but is certainly not an optimal device. The value
of this device is considered to be proof of principle ( or a counterexample to the
impossibility proofs ) in a readily manufacturable device. The relatively high power
of this logic gate is compatable with a room temperature computer with maximum
dimensions of about 3 centimeters, cooled by demonstrated techniques. Suprisingly,
a computer based on this germinal logic element could itself be a significant advance
over current computational capabilities at a very reasonable cost. However, logic
elements of this type are nevertheless considered an intermediate demonstration for

yet much better performance devices to be designed.

Logic element improvements

The above coupling mechanisms were enhanced by an electromagnetic resonanre
of the Fabry-Perot cavity, which aided in lowering the power requirements by
a factor equal to the mirror transmission. This resonance has its limits, both
because of the difficulty in obtaining a cavity with a loss lower than the mirror
transmission and in the lifetime of the cavity, which increases as the inverse of the
mirror transmission. These considerations limit use of this enhancement to mirror
transmissions in the range of 0.01 and higher, for a maximum performance increase
in the range of a factor of 100. However, improvements in fabrication tnchnique
could eventually increase this .electromagnetic enhancément by another order of

magnitude.
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But other enhancements of the electromagnetic field are possible. One of the
more interesting occurs in crystals much smaller than the wavelength of incident
light. These small crystals have resonances for various negative ratios of the dielectric
constant of the crystal with its surroundings, ¢. For instance, the electric field
inside a dielectric sphere, E;, in a uniform field, Ey, is also uniform and given
by E; = 3Ep/(er +2). A dielectric constant can be negative by several mechanisms.
The most common occurs when the light oscillates below the plasma frequency
of a metal, semimetal, or highly doped semiconductor. Another frequency band
with a negative dielectric constant occurs in between the longitudal and trans-
verse optical phonon frequencies of an crystal, typically in the mid-infrared. The
infrared wavelengths of interest are generally too small to be near th: plasma
frequencies of metals and too large to allow use of doped semiconductors. The
semimetal of most interest is the As erystal, which has an electron density in
the range of 10%/em3. The electomagnetic resozance can be obtained by ad-
justing the shape of the crystal, the dielectric constant ¢f the surrounding material,
the applied infrared frequency, and possibly the electon concentration of the plasma.

The resonances of these small crystals only depend on the shape of the crystal,
but not the size if they are much smaller than the wavelength of incident light.
The small size of these crystals gives nearly instantaneous response, even for very
large enhancements, unlike the Fabry-Perot resonance. The largest problem with
the use of these crystals is the large Rayleigh scattering which also resonates with
the enhancement of the crystal fields. Rayleigh scattering decreases with increasing
wavelength to the fourth power and decreasing scatterer size to the sixth power.
Thus, with infrared wavelengths this resonance scattering may be elimimated with

particles of dimensions less than about 30 nanometers.
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If the Rayleigh scattering of these crystals can be eliminated, then their ap-
plication to a logic device can be made simply by their implantation at the inter-
action antinodes of the previous logic element. The crystals lower the infrared
power needed for the logic element by confining optical fields into small volumes of
nonlinear materia! with the same excited state density required to create a given
change in refractive index. Because of the difficulties of manufacturing these small
crystals with good uniformity, new logic designs are being investigated which allow
the scattering to occur. Two possible scattering-coupled integrated optical inter-
ferometer designs are illustrated in Fig. B.4. The logical operation of these devices
depeads on the scattered radiation being collected with good efficiency in another
mode of the cavity. The switching can result from, as before, a change in refractive
index of the coupled modes in a Fabry-Perot cavity, or more likely, from a change in
the scattering coeflicient itsell as a result of the local infrared intensity. This local
intensity in turn depends on the scattéring-coupled modes and provide a feedback
mechanism. The signal inputs can then change this*talance and cause a switching of
the modes with gain. These interferometers need to use both first and second order
waveguide modes at each of the four waveguides, for a total of eight interaction
chanaels overzll, in order te allow sufficient numbers of connections to the external
elements. Other electromagnetic enbancements also exist, but are more difficult to
use. All of thrse enhancements can theoretically be used in conjuction with one

another and with the improvements multiplying.
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Figure B.4: An example of a scattering-coupled interferometer.

The limits to the enhancements are quickly approached from quantum noise
statistics. If we allow a logic signal to be represented by only 300 quanta, and
let these photon quanta have an energy as low as 0.1 eV (or voltages of .1 volt
for electronic charge quanta), then the power in a picosecond signal is equal to
5 microwatts. For an average gain of 3 (althonugh some elements will have much
higher gain) the average power to the logic elements must be about 3 times higher
or about 15 microwatts. It can be seen that we only use a factor of about 3000

in enhancements before we run into significant noise problems. Use of higher
192



energy photons ( or higher voltages for electronic logic) only increases the energy
requirements proportionally. Incidentally, the power-time product of such a low
power logic element would be about 0.015 femtojoules, and appears quite possible
if proper logic funcéion can be found utilizing these electromagnetic enhancements

in a fabricatable element.

Optical logic element packaging

The optical logic element of Fig. B.3 must be placed into a computer system to
operate properly. We first make the assumption that the logic element has a switch
time of 10 picoseconds. This time is predicted by measurements of the relaxation
time of the electron temperature to the lattice temperature and the decay time of
the logic cavity. The computer is taken to be a size, by comparison with today's
supercomputers, which allows the signals to propagate across in about 15 logic gate
delays. If the waveguides have an effective index of refraction of 1.5, then the
computer can be about 3 centimeters in maximum dimension. A possible physical
structure of the computer is illustrated in Fig. B.5. This structure consists of 100
boards, each of which is 300 micrometess thick and 3 centimeters square. The
overall computer is anticipated to contain approximately 1 million logic structures,
with 10,000 on each board, and an average distanc= between logic elements of about
300 microns. Each board will consist of many chips, each with the most number
of logic elements compatable with high vield and reliable fabrication. If we assume
about 100 logic gates perc¢’ ** en each board would have about 100 of these chips.
The signals are routed within the chip on the same plane u-ing cross-through devices
shown in Fig. B.3. Tk« signals couple to each other through a backplane directly
above the chips and -msisting of low index (1.5) waveguides. The chips couple
the the backplane optically via a grating structure which produces a 50 micron

diameter infrared beam perpendicular to ike surface. A chip with 100 logic elements
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would possibly have as many as 30 connections. This 50 micron infrared spot
size greatly eases tolerances to dust and translatiOI; errors, and could be increased
further if needed. An infrared beam of this diameter can propogate over 700 microns
without diffracting, so a 50 micron gap between the signal backplane and the chips
is allowed without change in overall system function. Board to board connection
is accomplished by another backplane at the edges of the logic boards. Electronic
computer backplanes connecting similar densites of chips with multilevel printed
circuit boards will have between 6 and 12 levels. The ability to cross waveguides

through one another is expected to reduce this number of signal planes significantly.

Optical computer

Figure B.5: A possible optical computer physical layout.
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The logic elements will be powered by a CO; laser outside the computer and
beamsplit to couple into the various boards. If the computer consists of 1 million
logic elements, each of which consume 50 milliwatts of infrared power, then the
CO; laser must emit 50 kilowatts of infrared light. (This high an infrared power
will probably never be needed since improvements will be ir ade in the logic element
before buiding to this scale.) This infrared laser is anticipated to be the most
expensive component of the optical computer and cost around $2,000,000 if this
much power were actually needed. (Future development of the logic element as
indicated in the previous section may lead to 10 microwatt logic elements, or an
overall computer requirement of only 10 Watts of infrared power, which can be
purchased for about $8,000.)

The waste heat generated in the logic elements will be dissipated in cooling
channels under each board. Each 3 centimeter board will generate about 500 watts
of heat. Cooling channeis at 50 psi water pressure with 50 micron channels and 50
micron fins have been demonstrated to be able to dissipate 790 Watts/cm? with a
thermal resistance of 0.080 cm?2-°C/Watt.[80] A similar cooling on the optical logic
boards with 50 milliwatt logic elements will have only a 5° temperature rise. Future
low power logic elements will have temperature rises lower by yet another factor
of 3000. Contrary to conventional wisdom, no valid thermal argument against
optical logic exists. Rather, it is not clear if terahertz room temperature electronic
structrures will ever obtain subfemtojoule switching energies (or even can reach

such speeds in a computer system).
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