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Abstract 

A new type of optical dipole transition in GaAs quantum wells has been ob­

served. The dipole occurs between two envelope states of the conduction band 

electron wavefunction, and is called a quantum well envelope state transition (QWEST). 

The QWEST is observed by infrared absorption in three different samples with 

quantum well thicknesses 65, 82, and 92 A and resonant energies of 152, 121, 

and 108 meV, respectively. The oscillator strength is found to have values of 

over 12, in good agreement with prediction. The linewidths are seen as nar­

row as 10 meV at room temperature and 7 meV at low temperature, thus prov­

ing a narrow line resonance can indeed occur between transitions of free electrons. 

Techniques for the proper growth of these quantum well samples to ..enable ob­

servation of the QWEST have also been found using (AlGa)As compounds. 

The quantum dipole matrix element of the QWEST is found to have a size 

of nearly 20 e-A. This extremely large dipole, in combination with the narrow 

resonance linewidth, give the QWEST very strong nonlinear properties. Because 

both the lower and upper quantum well states consist of free electrons in the same 

conduction band, an electron can relax from the upper to the lower energy state 

by an elastic scattering, requiring no energy transfer. This property enables the 

transition to have an extremely fast transition time, predicted to be subpicosecond. 

This QWEST is considered to be an ideal material for an all optical digital 

computer. The QWEST can be made frequency matched to the inexpensive Carbon 

Dioxide laser with an infrared wavelength of 10 microns. The nonlinearity and 

fast relaxation time of the QWEST indicate a logic element with a subpicosecond 

switch time can be built in the near future, with a power level which will eventually 

be limited only by the noise from a lack of quanta to above approximately 10 

microwatts. 
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I. Introduction 

With the advent of quantum mechanics, many classical phenomena were found 

to give better agreement with experiment when reinterpeted in the quantum mechani­

cal formalism. In addition, many new phenomena were discovered with no clas­

sical analog. Quantum wells fall in the later category. Quantum wells are described 

by nothing more than the kinetic term of Schrodinger's equation and boundary 

conditions. 

A particle in one dimension trapped between two high potential barriers is said 

to be in a well. The resultant quantization of states and energy is rarely observed 

directly because dimensions as small as a micron have energies easily washed out by 

thermal and other effects. However within the last few years it has become possible 

to grow alternate layers of GaAs and (GaAl)As with dimensions of 0.5 nanometers. 

With layers of this dimension, the GaAs acts as the well and the (GaAl)As acts as 

the barrier to either the electron or hole. With these small layers and small mass 

of the electron in GaAs, the energies become a fraction of an electron volt and are 

observable. 

However, these quantum wells are not completely one dimensional. The electrons 

are still free to move about within the layer and- this degree of freedom adds 

an arbitrary energy to the quantum state. In the past these quantum well states 

have been optically observed by several mechanisms, all of which involve conduction-

to-vak>nce band transitions. For instance, single photon absorption experiments 

on an insulating GaAs nan turn well at low temperature has revealed a jump 

in the density of states as ^ e energy is scanned during an optical transition through 

each quantum state. Additionally, an electron and a hole can form a bound 

state in two dimensions called a two dimensional exciton. This state has a nar­

row bandwidth and a bound state energy of about 10 meV. Thus one 2-D 



exciton is seen for each quantum well state at an energy just below the jump in 

density of states. These effects will be discussed further in the next chapter. 

These single photon absorption experiments involve transitions between the 

conduction band and valence band. Thus the energy of the quantum well state 

was only observed as an incremental addition to the band energy. However, theory 

predicts that a direct transition can be observed between quantum well states. This 

transition occurs between two states which are both in the conduction band and 

differs significantly from band-to-band transitions. 

A quantized state in a crystal can be described by the multiple of the wavefunc-

tions of two states, the Bloch state and the envelope state. The Bloch state (also 

called Bloch function) is periodic with the lattice spacing. The envelope state 

describes the non-periodic behavior. Whereas a band-to-band transition uses a 

* dipole between the Bloch states with the envelope states (or momentum) remaining 

constant, the transition reported here uses a dipole between envelope states with 

the Bloch states remaining constant. For these reasons, this transition between 

quantum well states will be called a Quantum '.Veil Envelope State Transition ( or 

QWEST ). 

The envelope state transition has several significant characteristics of special in­

terest in optical applications. First, the spread in energy of the quantum well states 

from the transverse kinetic energy is cancelled for the transition when momentum is 

conserved and the energy band has a quadratic dependence on the wavevector mag­

nitude. Both of these conditions are valid for experiments performed. As a result, 

the transition has a very narrow bandwidth. Second, the dipole matrix element is 

between the envelope states. Since these envelope states are fairly large ( 5 - 1 0 

nanometers ), when compared with atomic or Bloch states ( 0.05 to 0.3 nanometers 

), the dipole is also very large. This large dipole in turn yields a strong absorption 
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and x' 3 ' nonlinear effects, which vary as the second and fourth power, respectively, 

of the dipole matrix element. Third, the relaxation time of the transition is on the 

picosecond time scale, allowing high speed optical nonlinear interactions. 

It is interesting to note the QWEST was not discovered out of a desire to 

demonstrate quantum physics or an extension of work with quantum wells. Instead, 

the QWEST discovery arose out of the need for a narrow transition with a large 

dipole and fast relaxation time for optical logic. Because of the requirement for 

picosecond relaxation, a transition was needed between two states in the same 

band. It was realized that two quantized states in the same band could have 

significant energy difference and a large dipole if the crystal were small and the 

effective mass were small. A year was spent exploring ways to grow spherical 

crystals 15 nanometers in diameter with high precision and regularity. Although this 

growth was possible with single element crystals, only binary crystals had sufficiently 

small effective masses. Possible techniques for growth and sorting of good quality 

nanocrystals were found, but would take years to fully develop. These difficulties 

motivated a closer investigation of the quantum well substrates, which had been 

grown for ten years and were fully developed, giving good quality and high precision. 

The broadening of the energies from the lack of confinement in the transverse 

dimension was originally thought to lead to poor absorption and poor nonlinearities 

from the resultant transition broadening. Upon realizing the transition was not 

broadened in the quantum wells, iianocr/sla! research »vas abandoned in favor of 

the QWEST. 

This development of the QWEST is only a part of a long and continuing attempt 

to enhance the processing capability of todays electronic computers by many orders 

of magnitude by use of optics instead of electronics. This research began with the 

construction of supersonic jet streams to carry away the extreme heat generated 
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by the high optical powers needed. The nanocrystals were originally investigated 

because their reduced Rayleigh scattering allowed use of semiconductors in a jet 

stream. The advances, some of which are seen in this manuscript, caused by 

investigation of the properties of matter at small sizes has eliminated the need 

for jet streams for cooling. In fact, it now appears as though this understanding 

will now lead to optical switching which is limited in power only by the need for 

sufficient quanta to define a signal. (See Appendix B. for details.) 

The QWEST is seen to be breakthrough for the purpose of optical computing. 

The advantages for optical logic are both physical and technical. The physical 

advantages of the QWEST 1!̂  in the low power nonlinear properties, provided 

by its large dipole and its narrow bandwidth, and its very fast relaxation time. 

The engineering advantages of the QWEST are multifold. The QWEST energies 

are in the infrared where inexpensive laser sources can be found and the GaAs 

materials in which it is constructed are sufficiently transparant to allow creation 

of waveguides in the same material. The QWEST energy is tunable to allow use 

of both signs of nonlinearity within the same logic element. Furthermore, a fully 

developed semiconductor technology has evolved which can be converted to optical 

logic fabrication with very little alteration. Logic designs based on the QWEST 

appear capable of a thousand-fold improvement over todays electronic logic in 

both speed and power simultaneously, or subpicosecond switch times at microwatt 

power levels, all at room temperature operation. An overview of an optical digital 

computer based on the QWEST is given in Appendix B. 
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n.Background 

A. Gallium Arsenide Quantum Wells 

The discussion of an infinite one dimensional quantum well is often used as a 

simple example in beginning quantum physics.I'-2! This elementary example takes on 

a particularly important realization with the advent of the ability to grow crystals 

with one dimension as small as nanometers, giving very significant quantized energy 

differences. The best quality quantum weils have been grown with alternate layers 

of GaAs for the well and Ga|. xAl xAs (0 <x< 1) for the barrier to the electron.M 

The confinement of the electron occurs because the bandgap of Gaj. xAl x As is given 

byl»l Es = 1.424+ 1.247x (eV) for x less than 0.45. Above this concentration of 

aluminum, the bandgap becomes indirect and the above formula is invalid. The 

heterojunction in (GaAl)As compounds sustains 65% of the bandgap difference as 

a jump in the conduction band potential, and 35% as a jump in the valence band 

potential.I23l Thus the potential barrier height between GaAs and (GaAI)As for the 

conduction band electron is given by Av =0.81x (eV). 

The crystal structure of GaAs consists of two interpenetrating face-centered 

cubic lattices, one lattice each of Ga or As respectively, creating a zinc-blende 

structure. The gallium lattice site can be occupied instead by an aluminum atom, 

with no change in crystal structure and little crystal expansion, in any concentration 

up to 100%, or pure AlAs. 

A number of significant reasons are responsible for the ability to grow excel­

lent quality quantum wells with (GaAl)^s compounds. First, for a variety of 

reasons, GaAs has become a very common growth material, especially for microwave 

transistors and diode lasers. This large commercial interest has led to a rich data 

base on the properties and processing of (GaAl)As compounds. More importantly, 

numerous facilities now exist which are devoted to the growth and analysis of 
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good quality (GaAl)As materials. During the last decade, many of these facilities 

have given strong attention to growth of (GaAl)As quantum wells. This atten­

tion arises from the quantum well's higher electron mobility, of use in making 

high speed transitors,!7! and in significantly improving the performance of diode 

lasers.HI The best quantum well structures have been grown!8! either by Molecular 

Beam Epitaxial!3) (MBE) or Organometallic Chemical Vapor DepositionI"! (OM-

CVD) techniques. These epitaxial growth techniques allow the freedom to grow 

planar materials with arbitrary choice of doping or lattice composition in the vor­

tical dimension. An abrupt change in material composition in less distance t*»nn 

one lattice spacing is called an abrupt heterojunction and is required for quantum 

well manufacture. Typically, two materials at a heterojunction have different lattice 

sizes (and sometimes different lattice structure ) which leads to stress at the interface 

and dislocations, in general giving poor materials. But fortunately, GaAs and AlAs 

have very similar lattice spacings ( 5.642 A and 5.661 A respectively ), with only a 

0.34% lattice mismatch. This mismatch is even less for experimental conditions to 

be described, with only 30% of the gallium atoms substituted by aluminum atoms 

in the AlxGai_xAs electron barrier regions. A particular advantage to the ternary 

(GaAl)As compounds is this good lattice size match for the substitution of only one 

site, whereas more generally this match is obtained only with the use of quaternary 

compounds. This advantage greatly eases the manufacture of these compounds. 

The growth of good quantum wells is aided by the isoelectronic nature of the Al 

and Ga atoms which lie in the same column of the periodic table in adjacent rows. 

Thus the electronic structure of the two compounds is very similar. In particular, 

both compounds are insulating, which is fortunate since the high Al doping re­

quired to create a significant barrier to the electron would otherwise dominate the 

electronic properties of the sample. The structures are also very stable, with very 
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iow interdiffusion of the Al and Ga atoms. Quantum well structures are observed 

to operate in devices at elevated temperatures for 10's of thousands of hours with 

little degradation. I82l 

The interface, or heterojunction, in these (GaAl)As growths is very smooth, with 

deviations in well thickness typically less than 0.3 nanometers.I5'6! The smoothness 

of the surface results from the thermodynamics of epitaxial crystal growth. During 

the epitaxial growth, the deposited atoms of gallium, aluminum, or arsenic are given 

a thermal energy sufficiently low to allow a high probability of remaining bound to 

the surface. But this thermal energy is sufficiently high to permit the atom to move 

about the surface. When this atom now encounters a lattice site discontinuous 

with the planar surface, the binding ensrgy of the atom increases since the atom 

is now bound on more than one side. If the increased binding energy is sufficient, 

the atom has strong preference to bind to the irregularities, smoothing the surface. 

If the growth rate is held sufficiently low, then the growth occurs on a previously 

established irregularity. Thus after smoothing all initial irregularities, the growth 

completes one atomic plane ( about 2.8 A for a GaAs atomic pair in the [100] 

plane ) before initiating a new atomic plane of growth. The summation of all these 

processes in an optimal situation can lead to growth of an epitaxial layer extending 

centimeters in each transverse dimension without a single jump to the next atomic 

lattice plane. In practice, occasionally one ot two lattice spacing jumps with nf 

order 300 A of lateral extent are seen.Ml These surfaces contain local imperfections 

( of order 1 micron in size ) from the radial growth of imperfections on the surface. 

In a clean growth chamber with a good starting substrate, these imperfections are 

few in number, with the fractional area of these imperfections usually very much 

less than 0.01%. 
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B. Quantum Well Energies 

The simplest example of a quantum mechanical state is the particle in a box in 

one dimension. Suppose a particle is trapped in an energy potential described by 

V{z) where v{z) is given by V(z) = 0 for \z\ < Lzj2 and V(z) - oo for |*| > Lz/2 

.The Schrodinger equation is given byM! 

'*§ = - £** + *&* ("•») 
where $ is the particle wavefunction, m is the particle mass, and H is Planck's con­

stant. Since Schrodinger's equation is separable in the coordinates for this potential, 

only the z dependance is solved here. The other coordinates are considered in the 

next section. Solving equation (II.1) for constant energy with the one dimensional 

potential above, this equation reduces in one dimension tot1-2! 

where E is the energy of the state and 

is the definition of u(z), which has no time dependence. For \z\ > Lt/2, the potential 

demands u(z) = 0. This requirement also gives the boundary conditions u(Lz/2) = 

u(-Lz/2) = 0. The wavefunctions are then quantized and equation (II.2) has the 

solution given by Ml 

uB(*) = J^ sin nj-{z + Lzj2) (ITA) 

where n, a positive integer, is the quantum number of the state un(z). 
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Similar quantum well spates are often used in solid state theories of electrons in 

larger crystals but are never observed as a single state. In fact, because the states 

are never observed individually, the true wavefunctions are rarely used in solid state 

theory. Instead solid state theorists use a more convenient wavefunction which is 

continuous in value and slope in wrapping around from opposite boundries. This 

commonly used wavefunction takes the form exp(ifeIi) instead of the form sin kxx 

and is said to obey periodic boundary conditions. This exponential form only allows 

kx to take on integer values of 2n/Lx instead of it/Lx, but compensates for the lower 

density of states by allowing negative values of kx. This form gives totally erroneous 

results for the quantum well states and energies. Furthermore, it can be shown that 

Bloch states are no longer a strictly valid concept. This will be discussed in Chapter 

IV, where the band theory is reworked. 

Each state has an energy given by equation (D.2) as 

ft2 

E" = 2^ n *«) 2 = " 2 £ ; « ( / A 5 ) 

where kq and Eq are defined by 

kq ss / • (//.6a) 

and 

*-£:*,• (//.86) 
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C. Quantum Well Density of States 

This quantization of states from an infinite barrier is now seen to lead to 

quantized energy states increasing in energy in proportion to the square of the 

quantum state number. But in a three dimensional crystal confined in one dimension 

as above, the particles are free to move in the lateral or transverse dimensions. This 

freedom allows the particles to take on a continuum of energies, and the energy 

density of states to take on a stairstep appearance. First, in three dimensions 

equation (11.3) takes on the separable form 

*«».(?, 0 - X(x)Y{y)u(z)e-iEt/ii (11.7) 

as a result of the separability of Schrodinger's equation, (0.1), with the quantum 

well potential varying only in one dimension. The x and y dimensions have boundary 

conditions similar to that of the z dimension. In particular the wavefunction must 

go to zero at the x and y boundries and be zero outside the crystal. However, the 

dimensions of crystals of interest in the x and y directions are macroscopic and 

individual states are sufficiently close in energy to be indistinquishable. As such we 

can use wavefunctions, as is standard in solid state theory, oi the form exp(t'^x) 

and exp(rt(,ff) for the x and y dimensions. Also customary for this form of the 

wavefunctions, we use the periodic boundary conditions. Assume the crystal has 

transverse dimensions Lx and Ly . Then the allowed wavevectors are evenly spaced 

in k space with a spacing of 2ir/Lx and in/Ly, respectively. Now define a transverse 

wavevector kt by 

k, s >ft[+q. (11.8) 

The number of states with an absolute value of the wavevector between kt and 

kt + dkt, where dkt is much smaller than kt, is then given by (Lxlyl'4^2)2wktdkt. For 
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a particle in free space with constant potential, the relation between energy and 

wavevector in the two transverse dimensions is given by 

Taking the derivative, this equation becomes 

A 2 

dEt = —ktdkt. (//.10) 

The number of states with energy between Et and E, 4- dEt per unit area, p{Et), is 

then giver, by equation (11.10) and the above relation for density in kt space. If in 

addition (he particle has a spin degeneracy g„ 

p(Et)dEt = ^dEt [11.11) 

and we p«e that the density of states does uot vary with Et for a given quantum 

state. 

This derivation for density of states per unit area has made several assumptions. 

First and most importantly, equation (11.11) applies to each quantum state. Thus 

each quantum state has a density of states given by equation (11.11). Second, since 

Et must be positive, from equation (II. 9), no states exist for Et less t i in zero. Thi-3 

means 

41?,) = 0, Et<0. (//.12) 

If a step function is defined by 

Step{z)=:0 x<0 (77.13a) 
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and 
Step(x) = l x>0 (//.136) 

then the density of states can be extended to negative values of Et by the formula 

Pt(Et)dE, = | j g X Step{E,)dE, ( " H ) 

From the use of equation (II.7) in equation (11.1), we have the total energy E given 

by 

E = Et + n2Eq. [11.16) 

The density of states as a function of total energy is now given by the summation 

over all quantum states with use of equations (11.14) and (11.15): 

p(E)dE = £ Pt(E - n%)<*£ = £ ^Step(E - n%)dE (7/.16) 
n - 1 n - 1 i 1 , 1 i 

which is illustrated in Fig. II. 1. As the quantum number n becomes large compared 

to unity, it can be seen that p[E) is proportional to the square root of E, as is 

expected for a particle in a three dimensional box. 
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Figure II.l: A plot of the density of states vs. electron energy for a quantum 

well. 
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D. Two-Dimensional Excitons 

Solid state physics has long recognized and observed excitons in semiconductors. 

Excitons are composed of an electron in the conduction band and a hole in the 

valence band bound to each other by a coulomb potential. The solution in three 

dimensional space is very similar to the solution for the hydrogen atom in free space, 

but with a larger dielectric constant and a smaller electron mass. The justification 

for this approximation is tedius and given in the large amount of literature on the 

exciton.l10>nl The energy is thus given by 

E^=-w^ ("17) 

in CGS units, where m* is the effective reduced mass (see equation 11.28 for definition), 

e is the electron charge, and t is the dielectric constant. For GaAs, with mj 

about 0.065 electron masses and e around 11, Ea(n) is approximately 7.5 meV/n2. 

The radius atx of the exciton is analogous to the Bohr radius of the hydrogen 

atom and is given by 

771* e * 

and is about 00 A for GaAs. The diameter is then approximately 180 A. 

This three dimensional model of the exciton is based on the electron and hole 

being confined by only their mutual attraction. But when the confining boundries 

of the particles are separated by distances smaller than the exciton diameter this 

model is obviously no longer valid. The solution for the two dimensional case has 

been given by Ralph!12! and a derivation is outlined here. For sufficiently small 

confinement in one dimension, the electron wavefunction can be broken into a 

product of the previous quantum well states in equation (D.4) and a two dimensional 
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wavefunction as in equation (11.7). This two dimensional wavefunction is solved by 

a two dimensional Schrodinger equation (equation (IIJ.) in two dimensions). Let the 

wavefunction u(r, <t>) be the wavefunction in cylindrical coordinates r and <t> which is 

separable into the form 

u{r,4>) = AR(r)m>). (j/.lfl) 

This wavefunction obeys the two dimensional Schrodinger equation in cylindrical 

coordinates of the form 

J2_ 
"2mr 

l d, «9u. . l a2u 
rdry dr' 

e 2 

er 

The separable equation for 4> is easily solved to give 

(7/.20) 

$(4,) = e<"»* 

where m is an integer. Now make the following definitions 

(11.21) 

psanr (11.22) 

2 _ 8mrBn 
»n s Z— (//.23) 

*-&-&)* 

and 

(11.24) 

R(r)=e-<>/*F(p). 
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With these definitions, equation (11.20) becomes 

p 

where the prime on F(p) indicates a derivative with respect to p. The function F(p) 

can be solved by a polynomial expansion in p but remains finite as p goes to both 

zero and infinity only if X takes on values of n+ J where n = 0,1,2, — The energy 

En is now given by equation (11.24) and takes on valuesl'2! 

En = - ^ l- . (11.27) 
2»2£2(n +1/2)2 * ' 

On comparison with equation (11.17), we find the maximum binding energy cf the 

two dimensional exciton is four times larger than the three dimensional exciton. In 

GaAs, this energy is then about 30 meV. This large increase in binding energy has 

been used, with significant advantage, to increase the fraction of the electron-hole 

population residing in the exciton state at room temperature.I5I 

When the confining boundries in one dimension are no longer small compared 

to the exciton diameter, the two dimensional approximation breaks down. However, 

we also know the solution in the other limit of large boundaries is simply (hat of the 

three dimensional exciton. The interpolation between the two is difficult analytically 

and is not known to be solved. Unfortunately, the dimensions of the quantum wells 

of interest are in the intermediate regime. As such the energies of these excitons 

are closer to the three dimensional exciton energies and would be expected to be 

about 2 to 3 times the three dimensional exciton energies or about 15 to 20 meV. 

Furthermore, the spectra of the excitons indicate that the above energies are high 

by a factor of two, so that the actual three dimensional binding energies are at ~ut 4 

meV and the quantum well excitons of 5 to 10 nanometers thickness have about 10 
15 

* n - l / 2 m 2 

P2 
F = 0 (11.26) 



meV binding energies.Is'5! A possible reason for the smaller energy is that the reduced 

mass of the exciton was taken to be that of the electron in the conduction band. 

But the valance band has a mass which varies from 0.5m to 0.082m , depending 

on which of the three valance bands is chosen. Thus the reduced mass will be 

somewhere between 0.058m' and 0.036, with the actual value to be found from 

a more detailed analysis of the exciton effect. However, it is seen from equation 

(11.17) that this lowered reduced mass yields a lower exciton binding energy and 

gives better agreement with observation. Unlike interband spectra, excitons are not 

of interest to the QWEST observations because the QWEST operates entirely in 

the conduction band and never creates the holes in the valence band needed for an 

exciton. So no excitons ever exist for the type of measurements performed. 
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E. Interband Spectra 

A large number of experiments have been perfoimed to investigate the properties 

of optical transitions between the conduction and valence bands in GaAs quantum 

wells.I*'13'14! In particular, the absorption spectral'! and photoexcitation spectra!13! 

have been measured in quantum well samples. The photoexcitation experiment 

scans a pump laser beam in frequency above the bandgap edge while observing 

the spontaneous emission of light at the bandgap energy. The assumption is that 

relaxation within the band of the electron and hole are fast enough compared to 

the spontaneous emission rate that all transitions emit at the bottom of the energy 

bands. Thus the emission rate at this band edge reflects the strength of the original 

absorption but is free of the background light of the pump laser with adequate 

filtering of the light spectrum. 

This conduction-to-valance band, or interband, sprectrum can be derived from 

the discussions of the previous sections. First, for the free electron and hole the 

envelope state is described by equations (II.4) and (II.7). The optical dipole is 

between the Bloch states which multiply these envelope states to completely specify 

the particle wavefunction. The Bloch states vary slowly with energies of interest here 

(to be shown in a later chapter), so the transition strength is also nearly constant 

with transition energy. In order for the transition to have a nonzero dipole, and 

therefore nonzero strength, the envelope states for the electron and hole must have 

the same quantum well number and the same transverse wavevector, ktl since these 

states are orthogonal. Although the photon can contribute some momentum to the 

wavevector, the contribution is insignificant in comparison with the electron's much 

larger momentum. The energy difference for a particular transition can then be 

given by equation (11.15) with m in equations (II.6b), (Il.fl), (11.11), and elsewhere 

replaced by mj, where, as in equation (11.17), 
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mf mj m h 

and ml is the effective electron mass and m^ is the effective hole mass. The density of 

states for transition energy is then given by equation (11.16) with m = mf. Finally, 

let the wells be undoped and at low temperature so the valence band is full and the 

conduction band is empty. Since the transition strength and occupation probability 

are constant for each of these transitions, the free electron and hole absorption 

spectrum is given by transition density density of states, or the shape of Fig. II.1 

with m = mj. 

For each quantum well state un(j), a two dimensional exciton exists which has 

a quantized energy, given by equation (11.27). This energy, resulting from the 

transvorse degrees of freedom and the coulomb interaction of the electron and hole, 

adds to the quantum well transition energy in equation (II.5) with m = mjl. Since 

this energy is negative, a peak in the absorption spectrum occurs in front of each 

step of Fig. II.1, giving a experimental absorption spectrum shown in Fig. II.2. 

The resonance of the exciton has some energy spreading from such mechanisms as 

phonon dephasing and irregularities in quantum well thickness.I51 

The valance band consists of three different bands. One band is split off with 

a different energy at zero transverse wavevector. The other two are degenerate 

at zero wavevector, but have different effective masses. Each of these bands has 

an absorption spectra, with the value of m* different for each of the bands. The 

overall interband absorption spectra is the sum of the spectrum for each of the three 

valance-to-conduction band transitions as described above. The split-off band has 

an energy 0.34 eV below the degenerate bands and is not in the spectral region of 

most interband spectra. The degenerate valance band creates two valance quantum 

wells for each wavefunction given in equation (II.4). For each quantum number, n, 
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there exists two different quantum energies, given by the different effective masses 

of the degenerate bands used in equations (II.5) and (0.6). This energy difference is 

slight but the two states can be resolved on higher resolution spectra.l13) 

c « 
a 
w 
O 
v> 

J2 

1.51 1.54 1.57 1.60 

Energy (eV) 

Figure II.2: Absorption spectra of a GaAs quantum well at 77 K both before 

and 100 picoseconds after pumping to an electron density of 5 x 10 1 1 cm - 2 . Note 

that the excitons disappear with the presence of the free electrons because of the 

shielding of the coulomb potential (from Ref.[27]). 
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F.Inelastic light scattering 

The quantum wells have also been probed by inelastic light scattering.!16-17! 

In the typical experiment, light is incident normal to the sample with a photon 

energy equal to the sum of the band gap energy, E0, and the split off valance band 

energy, A 0, so as to be in resonance between the conduction band and the lower 

energy split-off valance band (see Fig. H.3.). The photon causes an electon in 

the split-off valance band to be injected into the conduction band with the same 

transverse wavevector as in the initial valance state, as discussed above for interband 

transitions. However, for the inelastic light scattering, the conduction band is 

populated and a conduction band electron with the same transverse wavevector, 

but in a smalller energy quantum well state, falls into the recently vacated valance 

band hole, emitting a photon in the process. Since the transverse wavevector 

remains constant, the emitted photon would be the same energy as the absorbed 

photon, giving elastic scattering, if the quantum well state does not change quantum 

number. But the transitions of interest are the inelastic transitions, in which the 

conduction band quantum well states are not the same for the initial and final 

states. In this case, the energy difference of quantum well states can be found from 

the energy difference of the absorbed and scattered photon. The band gap energy 

can therefore be subtracted out. These interband transitions use a dipole between 

the Bloch states, and the integral of the product of the initial and final envelope 

states multiplies this integral. The quantum well envelope states are orthogonal 

for an infinite barrier potential and thus no change in quantum well envelope state 

would be allowed were it not for finite barrier giving slightly different, and not quite 

orthogonal, envelope states for the conduction and valance bands. 
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Figure II.3: A plot of the conduction and valence bands of GaAs, including a 

possible inelastic scattering. 

Furthermore, the incident photon to be absorbed selects out a narrow range 

of wavevector states, thus the quantum well energy difference can be measured 

as a function of transverse wavevector and the emitted photon spectra is narrow. 

The narrow photon emission spectra is obtained by the selection of a narrow range 

of transverse wavevector states by the incident photon. In contrast, the exciton 
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spectra is narrow because of the creation of quantum states without free electrons 

in any dimension, thus creating a state with only one energy. In the QWEST to be 

discussed, not only are the electrons free in two dimensions, leading to broad energy 

states, but any of these states can make a transition. The QWEST nevertheless is 

seen to be narrow because all these transition energies happen to be the same. 

The split-off valance band is shifted from the other two valance bands by spin-

orbit coupling. This same interaction also quantizes this split-off valance band's 

Bloch state into a sum of two wavefuctions, <f,v = (2/3)V2(x + tY)/v^ I +{l/3)l/2Z \ 

, where the arrow refers to the electron spin and X, Y, and Z refer to the same 

odd symmetry valance wavefunction, when rotated to be symmetric about either 

the x, y, or z directions respectively. These wavefunctions will be derived in a 

later section. The conduction band's single Bloch state, labelled S, is rotationally 

symmetric and of course can have either electron spin. A dipole exists between 

the S state and any of the X,Y, or Z states and gives rise to the conduction to 

valance band transitions. Now let the quantum well be confined in the y direction, 

in contrast to the z direction as in equations (II.1) through (II.6), and the electron is 

now free in the x and z direction. Now assume an electron is optically excited from 

the n = l envelope state in the split-off valance band into the n=2 envelope state in 

the conduction band by light polarized in the x direction and propagating in the y 

direction, normal to the quantum well surface. Then given the form of 0„ above we 

see that the conduction band electron must have a i spin. The hole in the valance 

band can now be filled by an electron in the conduction band's n = l envelope state. 

If this conduction band electron's Bloch state has a J spin, as did the electron excited 

to the n=2 conduction envelope state, then we see from the form of 0„ that the 

dipole is in the x direction and emits light with this polarization. If, on the other 

hand, the electron filling the valance band hole has a f spin, the dipole is seen to 
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be in the z direction, with orthogonal polarization to the original incident beam. 

Thus the inelastic scattering transfers an electron from the m = l conduction band 

envelope state to the m=2 conduction band envelope state. The emitted spectra 

with a polarization parallel to the incident spectra results from a transition with no 

change in electron spin, and the emitted spectra with a polarization perpendicular 

to the incident light polarization results from a transition in which the electron's 

spin Mips. 

The ability to probe transitions with and without spin flip is used to separate 

collective electron effects from single particle effects. If the electron changes spin 

in the transition, the excited state cannot interact with the remainder of the 

electron gas, which is Fermi degenerate with an opposite spin hole, because of 

Fermi repulsion. In contrast, if the electron does not change spin, the excited 

electron interacts with the remaining conduction band electron plasma and has a 

different excitation energy than that of the noninteracting single particle excitation. 

The collective excitation has a higher absorption energy than the single particle 

excitation because of the extra energy in the oscillating polarization field of the 

oscillating charge coherence between the lower and upper envelope staUs. The 

absorption energy of the collective effect, uj 2 . is given in terms of the quantum 

energy difference between the states, ^12, and the plasma frequency, n p , of the 

conduction band electron gas by the relation!32-84! 

<"i£=wi2 + nj;. (11.29) 

The plasma frequency is close to the normal three dimensional plasma frequency 

obtained when the two dimensional electron density, N„ is converted into a three 

dimensional electron density by dividing uy the quantum well width, or Q$ ~ 

N, ei/m*eLw. The above relation and the formula for the plasma frequency are 
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developed later. 

The experimental observations!17! were performed at temperatures of 2 K and 

conduction band doping of about 5 x 10 n em - 2 . The quantum well widths used in 

thisl17! study were in the range of 250 A. Therefore the lowest energy (*| -* * 2 ) 

quantum well transition has an energy of about 20 meV. The plasma frequency 

at this doping density is about the same as the transition resonant frequency. 

Furthermore, the phonons also have resonant frequencies in tnis range. Thus, 

although the single particle spin-flip transition has an energy shift at the 20 meV 

energy, the collective mode spectra shows the energy shift as being higher as 

indicated in equation (11.29) above, with an energy of about 34 meV. Furthermore, 

the interaction of the phonons with the dielectric constant further split this non 

spin-flip spectra into two inelastic scattering energy shifts of about 28 and 39 meV. 

The spin-flip spectra, however, continues to exhibit only one unaffected scattered 

energy shift at the quantum well resonant energy. The shifts caused by the collective 

effects will be shown to operate on the QWEST also, but be nearly unobservable 

because of the higher energy, over 100 meV, of the transitions with the much smaller 

well widths, 60 - 80 A, used for the investigations of the QWEST. 
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G. Intersubband Transitions in Other 2-D Systems 

The most similar 2-D transition to the QWEST are the infrared transitions 

occuring between the surface charge states at the top surfaces of Sil37l, InAst38l, 

InSbl9"), and (HgCd)TeH°l. These observations were all reported by F. Kocli and his 

group at Technische Universitat Miinchen in West Germany over the last several 

years. The surface charge states are electrons which are trapped at the surface 

of a semiconductor. With an appropiate cover, the band will bend down within 

about 100 A of the surface and the electrons will lie within quantized states at this 

boundary. The energy of these stages can be changed by application of a voltage 

across the interface and thus bending the bands. Typically the electron surface 

densities are in the 1 x 10 1 2 cm~2 range and the energies of the transition lie in the 

30 to !00 meV range. These transitions were observed by illumination with a far 

infrared laser while changing the voltage across the interface. 

These transitions are similar in nature to the QWEST, but differ in several 

aspects. First, the bands are not rymmetric, thus even parity transitions become 

allowed. Second, the transitions and surface density are very itrongly coupled, 

as the electrons themselves perform the confinement on one side of the surface 

layer. The QWEST can entirely decouple these quantities, n . t the scan of 

the surface charge transition as a function of voltage makes measurement of the 

absorption strength difficult as the density changes significantly ("30% ) from one 

side of the absorption to the other. Third, the QWEST is capable of transition 

energies of over 500 meV. Energies this high, if even possible, from surface charge 

layers would require surface charge densities so high that the transition would be 

very broadened. Fourth, the band bending is very dependant on the terr perature for 

a given charge density, and the energy of the transition changes very dramatically 

with temperature. In contrast, the QWEST will be seen to change very little (< 
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3% ) over a large temperature range (30 -300 K). 

These are only a few of the differences between these quantum wells and surface 

charge layers. Yet another way to create surface charge layerr in semiconductors 

is by alternating layers of n and p type materials. Such stuctures are called NIPI 

layers.!41! These layers are confined on both sides by the potential set up by the 

charges themselves. The discussion above for surface charge layers also apply to 

NIPI layers as they are confined on both sides by the same sort of self-coulomb 

potential that exists on one side for surface charge layers. No obsei nation has yet 

been reported for infrared transitions between the envelope states of the NIPI layers. 

Another related development involves free carrier photoionization of electrons 

out of GaAlAs quantum well states. A photodetector based on this effect has 

been proposed recently by D. D. Coon and R. P. G. Karunasiri at University of 

Pittsburgh.!8'] A device with much lower absorption strength was proposed and 

tested by J. S. Smith, L. C. Chui, S. Margalit, A. Yariv, and A. Y. Cho at Caltech 

and Bell Labs.!84! Their device!84! had an absorption of about 30 c m - 1 and was used 

to create a photodetector with a response of 200 Amps per Watt of infrared power. 
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HI.Infinite Barrier and Parabolic Energy Bands 

A. The Envelope State Transition 

The energy and wavefunction of a three dimensional particle trapped between 

two coplaner barriers was considered in chapters n.B. and D.C.. The density of 

states per unit of energy was also derived. These results are well known to any 

beginning quantum mechanics student but nevertheless give accurate predictions of 

GaAs quantum well properties.!''4! These expressions will now be used to develop 

properties of Quantum Well Envelope State Transition. The states in equation (II.7) 

are called envelope states because they are not the full electron state in GaAs. The 

full electron state must include the wavefunction describing the local properties 

about each atom in the crystal lattice. But, as will be shown later, the behavior 

of the GaAs transition under consideration is determined almost entirely by the 

envelope states. 

From equation (II.7) the wavefunction for the envelope state is given by 

1>mv{kx,kv,n) = J z - l I - e «'***e , '*»»sinn^( Z + i s / 2 ) . (III.1) 

This wavefunction does not include the time dependance which is given, for the 

energy eigenstates under consideration, simply by multiplying the above equation 

by exp(-«Ei/ft) for a state with energy E. This energy, for the above states, is 

assumed to be of the same form as in equations II.5 through 11.15, namely 

ft2 

E(kx, ky, n) = —(n 2 * 2 . + fc?) {III.2) 
2m 

where, as before, kq = ir/Lt and kt s= Jk% + A2,. The effects of the GaAs lattice 

potential are assumed to be taken into account by the effective mass, m*. Thus, the 

energy of the electron in the conduction band has the same quadratic dependance 
27 



on the wavevector, k, as would a free electron, only with a greatly reduced mass. 

This assumption is good, but the higher order dependance of the energy on the 

wavevector is important and will be discussed later. 

The Quantum Well Envelope State Transition (QWEST) is an infrared dipole 

transition between two of the above quantum well states. In a (GaAl)As crystal, both 

initial and final states are in the conduction band for this transition. Although the 

electron envelope wavefunction of equation (DTI) is not the full GaAs wavefunction, 

the properties of the QWEST are determined almost entirely from this envelope 

wavefunction. As such, this wavefunction is used to predict the properties of the 

QWEST to first order. The corrections to this approximation are discussed later. 

B. The QWEST Dipole 

The QWEST involves the interaction of an infrared beam of light with discrete 

quantized states. This interaction between light and matter is treated in semiclas­

sical quantum mechanics by the potential term in Schrodinger's equation, eq. (II.1). 

The semiclassical treatment is valid for cases here with the potential term V(r) in 

equation (II. 1) becoming V[?) = V0(?) + er•£(?,«). V0{7) is the static potential describ­

ing the original problem, which has already been solved to give a particle wavefunc­

tion, such as equation (ID.l) above. Here e is the electron charge, and E(r, () is the 

electric field of the optical wave. The equation of motion resulting from inserting 

this new potential in Schrodinger's equation, (II. 1), can be solved by time dependant 

perturbation theory,l15l where the er • E(r, t) term is the perturbation. Now assume 

the electric field is given by $(?,«) = 20exp(t"*p -f-iut) The important parameter for 

the optical transition between two quantum mechanical states becomes the dipole 

matrix element between the two states of the perturbating potential. This matrix 

element, p, for the optical transition is given by 
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where V/ and Vv are the final and initial quantum states of the optical transition. 

The final and initial states for the QWEST will be ^ 4 * 4 , fty, m) and il>mv(kx, ky, n), 

respectively. 

We now evaluate this dipole for the QWEST in the above approximations of 

infinite barriers and parabolic energy bands. From equation (III. 1) we have the 

wavefunction of the two states. In performing the integral of equation (III.3) we find 

the integral is separable into three parts, labeled X,Y, and Z, which are different 

for each of the three vector components. We first consider the z component of the 

dipole matrix element. We find 

where 

Ht = eXYZ, (HIAa) 

X=j- J ' e-<h''xeik"xeik'x dz, (UlAb) 

y = -L / " raW^e*'*!* dy, (inAc) 
Ly JO 

and 

Z=~ LLsmm^-{z + Lil2)eik'"zzsmn^-(z+Lz/2)dz. (IllAd) 

The values of kxLx and kvLy for cases of interest here are in the range of 106 to 

108. It is seen that the integrals of equations (10.4b) and (01.4c) are then very small 

and equal to the inverse of the previously stated values unless k'x = kpx + kx and 
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k'y = kpy + kv, in which case they are equal to unity. As such, the transition will 

invariably satisfy these conditions. We next look at equation (IU.4d), which contains 

the z component of the dipole. We first note that the quantum wells of interest 

will generally have dimensions, Lz, less than 10 nanometers. The energies of the 

transition, to be determined from equation (ID.2), will generally require resonances 

with infrared beams from 4 to 10 micrometers in wavelength, X. The term in the 

exponent in equation (III.4d) will vary from 0 to kptLt = 2itLz/\, which is seen 

to have a maximum value of 0.015, and is generally less. The exponential will 

therefore be very close to unity throughout the integral and can be ignored. The 

dipole integral of equation (III.4a) is now seen to reduce to 

where 
rL, 

e(\l>r\i\^;)z = e I sin(m — z) z sin(n — z) dz. (///.5) 
1 JO Liz LZ 

Note a change in the origin of the coordinate z has been made. The integrals in x 

and y coordinates were seen above to drop out with the creation of a selection rule 

on the transverse wavevector of the final state, in terms of the transverse wavevector 

of the initial state and the electric field. 

The dipole matrix element, /**> of equation (ID.5) will now be solved. We first 

note the comutation relation for the position operator, z, with the Hamiltonion 

operator, H0, is given by the position operator: 

m 

where 
ft2 s 2 

tf„ = - — — (///.66) 
2m* dz2 
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and 

».=?£• <"'•* 
Similar relations can be found for the coordinates x and y. This relation can now 

be used in the expression III.5 to give 

{*/IM*.-)=f-{*/l(ff.,«ll*i) 
= ^ ( £ m - £ „ ) ( ^ | 2 | 0 l > ill 1.7) 

= ^ ( m 2 - n ' ) < W t ) , 

where use has been made of equations (II. 1) through (II.6). The evaluation of (pt) 

is straightforward. The sines in equation (III.5) are first converted into sums of 

complex exponentials. The operator p, is then an eigenvalue of these exponentials. 

The resulting combinations of exponents must then be gathered and integrated over 

the integer number of half cycles. The result of this integration is 

4i'ft nm „ , , 
Par\n + m). 

(II1.8) 

We have defined a function Por(n) as a function of any integer n which takes on the 

values 
f 0, if n = 

(«) = 
U, i fn : 

: =even; 
Par{n) = { (iff.Q) 

• =odd. 
Using equations (III.7) and (III.8) we finally obtain an expression for the dipole for 

an arbitrary quantum well envelope state transition: 

«*/|*W = -O, ~ T~i-— M » + m). {111.10) 
** (m* - n2)2 

This dipole is seen to exist, as expected, only for transitions between envelope states 

of opposite parity. The transition receiving most of our attention will be between 
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states m=2 and n = l , or between the two lowest energy states. For this transition, 

the dipole is seen to be 

e{2\z\l) =-eL, — w-0.18eL* (III.U) 
9JT2 

for a well of thickness Lz. 

We now look at the other components of the dipole matrix element in the x and 

y direction. Note first that the above matrix element made no assumptions about 

the size of Lz. Thus equation (ID. 10) applies to the other directions x and y simply 

by substitution of the appropiate dimension, x or y, for z in the equation. The 

principle observable differences arise from Lx and Ly being about 106 times larger 

than Lz for the samples of interest. From equation (III.2), the energy of a transition 

is lowered by the square of this well width and thus is about 10 1 2 times smaller. 

These energies are not of interest and too easily broadened to be observable. In 

order for a n = l to m transition to have sufficient energy to be comparable with the 

quantum well energies, m must be as high as Lx/Lz ~ 108. But we see from equation 

(III. 10) that the dipole matrix element is reduced to about eLx/l01B or ei 2 /10 1 2 and 

thus is effectively ?ero at the energies of observation. The dipole matrix element 

for the QWEST is therfore polarized in the z direction with zero components in the 

other two directions. 

C.The QWEST Energy 

The energy of the envelope states is given in equation (III.2). In the previous 

section we found that dipole matrix element gave strong enhancement to final 

states with transverse wavevectors which are the vector sum of the initial envelope 

state transverse wavevector and the photon's transverse momentum vector. Using 

this selection rule, we find the transition energy from state il>mv{kx,kv,n) to state 

*/>cnv(kx, ftj,, m) as 
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AE(m, *{; «, kt) =- -^-[(m 2 - K 2 )* 2 + *? - A?] 
2m *!• J 

= A [ ( m 2 .. n2)fc2 + kpf. fc( + fc2 1 ( / j ; 1 2 ) 

where kpt is the component of the photon wavevector in the plane of the quantum 

well. As remarked previously, the value of kp is about a thousand times smaller 

than either kq or kt. The above energy reduces to 

ft2*2 

AE(m,fc' (;n,fc t)=—Hro 2"" 2) 

= ——(m' - n') 
2m*Z,2 

and becomes independent of the initial wavevector. This very important result 

indicates the density of states for the transtition is a delta function and has an 

infinitely narrow linewidth. This result is in stark contrast to the conduction-to-

valance band transitions in which the transition density of states increases as the 

square root of E - Eg for three dimensional crystals or a step function for two 

dimensional crystals as shown in section II.E.. 

D. The QWEST Oscillator Strength 

We define an oscillator strength, f, for the transition between quantum well 

states m and n by the formula, 

f^P^M2 (m.u) 

where m« is the free electron mass, w is equal to the energy difference between 

the states divided by A, and (z) is the dipole between the states as defined in 

equation (III. 10) for the potential under consideration here. The above definition 

of the oscillator strength is based on the relative dielectric response of a quantum 
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mechanical electron to a classical bound electronl10l and is thus very general and 

will be used later in a more accurate theory of the QWEST in (AlGa)As quantum 

wells. This oscillator strength also obeys a sum rulel18) which for a single electron 

transition is given by 

£ / . * = ! ("7.15) 

k 

where the sum is over all transitions which start from state s to any and all other 

states, labeled k. The oscillator strength is positive when coupling to energies above 

E, and negative when coupling to lower energies. We observe that the derivation 

of this sum rule is sufficiently fundamental and general so as to also apply to our 

system. The derivation relys only on the comutation relations \z,pz] = ih and 

[H, Z] = -ittpz which apply to all quantum mechanical systems. If we use the energy 

of a envelope state transition from equation (ID.13) and the transition dipole from 

equation (ID. 10), we obtain an oscillator strength for a transition between quantum 

well states m and n given by 

fnm = ?±** m 2 " 2 . (7//.18) 
m jr2 (m2 - n 2 ) 3 

The oscillator strength has the interesting property of increasing linearly with m 

for a (m -» m +1) transition. For a (*i -* ¥2) transition, / = 0.96me/m*. For a 

(*2 -* *s) transition, / = 1.87me/m\ For GaAs me/m* as 15. 

The sum of QWEST oscillator strengths between a given quantum state and all 

other states can be found by creating an artificial hamiltonian as we have done in the 

previous sections and deriving the sum rule using the effective mass of this system. 

The oscillator strengths must, as before, sum to unity. But if we renormalize the 

oscillator strengths to the free electron, we find that for the QWEST, £ m /mn = 
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me/m . But in a real system, we know that the sum must continue to equal unity. 

Obviously, there are other transitions which must be included in a real system in 

the sum rule. We will see how this occurs in detail at the end of the next chapter. 
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IV. Quantum Wells in (AlGa)As Crystals 

This chapter is concerned with the structure of the QWEST in a real crystal 

such as the (GaAl)As compounds. A single quantum well would consist of a planer 

well region of GaAs with a thickness Lw of about 100 A covered on both sides by 

infinite sheets of Gaj_xAlxAs (see Fig. IV. 1). Throughout this chapter, we will take 

the zero of the z coordinate at the center of the well, so the boundaries occur at z= 

iZ.s/2. We make this change so as to more easily take advantage of the symmetry 

properties of these wells. We placed the zero at the edge of boundary throughout 

the previous chapter because the infinite barrier caused the wavefunction to go to 

zero at the boundaries and allowed us to describe all envelope states by sine wave 

functions. By taking the zero at the center of the well, we have the additional 

complication of having to use cosine functions for ev«n symmetry states and sine 

functions for odd symmetry states. We begin by looking at the properties of GaAs 

and their effects on the QWEST. 

Ga As 

# 1 

- 8 0 A -

• 243 meV 

• 54 meV 
0 meV 

-243 meV 

-184meV 

-OmeV 

Figure IV, 1: A diagram of an actual quantum well in (AlGa)As materials. The 

potentials and two lowest envelope wavefunctions are illustrated. 
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A. Band Structure in Ga. is 

In the previous chapter the states were labeled envelope states and the wavefuc-

tions were labeled envelope wavefuctions. This distinction was made because the 

full condunction band electron wavefunction in (AlGa)As compounds is generally a 

product of this wavefunction and the Bloch wavefunction. The Bloch wavefunction 

describes the part which is periodic from one crystal unit cell to another. The en­

velope wavefunction describes the nonperiodic behavior. In contemporary solid state 

theory, the full wavefunction is taken to be a product of these two wavefuctions. 

This approximation will be seen to need modification for the quantum well states. 

However, within this approximation, the electron behavior can be well described by 

the envelope with its kinetic energy based on a. lower effective mass as done in the 

previous chapter. In this chapter, we look more at the complete wavefuction and 

energy. 

The important behavior of the GaAs conduction band, which is where the 

QWEST occurs in entirety, can be adequately described by ftp theory.!20! The ftp 

theory is an expansion in ft • p around any ft. Fortunately, the region of interest for 

our experiments is a small region in ft space about ft = 0. Because we will need 

much of the results and use many parts of the ftp theory in our development, we 

will sketch the major points in a relatively quick derivation. 

We first note that solid state theorists generally use a wavefunction of the form 

*(r) = * e n „(r )u(r ) ( /V. l ) 

where u(r) is the Bloch wavefuction and is periodic with the lattice spacing. The 

envelope wavefunction, *en«(r), describes the nonperiodic extended behavior of the 

electron wavefuction. For periodic boundry conditions in uniform crystals, ¥«,„ is 

generally shown to take on the form 
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*«,„ = £*. (IV.2) 

The value of k is quantized by the periodic boundry conditions into taking on the 

values only of 

k = n—x + m—y + pj-a, (W*) 
Lx Ly Liz 

where n,m, and p are positive and negative integers and LXt Lv, and Lz are the 

crystal's dimensions in the x,y, and z direction. If we now apply Schrodinger's 

equati n to the wavefunction as given by equations (IV. 1) and (FV.2), we find the 

Schrodinger equation for the Bloch state wavefunction becomes 

{p2/2m + V +(fi/m)k • f + (ft/4m2e2)[VV x ?] • o 
+ {n2/4m2c2)\VV X k) • o)uk{r) (IV A) 
= {E t-(» 2/2m)fc 2} U j t(r), 

where V is the potential and ? is the momentum operator. We have used the product 

rule for derivitives and applied the operators the full wavefunction and afterwards 

divided out the exponential envelope wavefunction. We now assume knowledge of 

the solution of the k = 0 Bloch state wavefunction and energy. From group theory, 

the conduction band Bloch wavefunction is shown to have symmetry properties 

similar to the atomic s state and is therefore labeled S. The valance band Bloch 

functions are shown to have symmetries similar to the atomic p wavefunctions, 

have three-fold degeneracy and are labeled X, Y, and Z, depending on which is 

antisymmetric in the x, y, or z direction, respectively. Each of these states are 

twofold degenerate depending on electron spin. Thus we have assumed an exact 

solution to the above first two terms in the Schrodinger's equation (IV.4). The last 

spin-o bit term in terms of % is neglected relative to the fourth term, which gives 

the spin-orbit in terms of the much larger f. The third % • ? term and the fourth, 
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spin-orbit, term are then treated as a perturbation. The % • ]J term will be seen to 

lead to the small effective mass of GaAs and the spin-orbit term will be seen to lead 

to the split-off valance band. We now let ft be in the z direction, ifc = kz'z. The two 

perturbing terms can be shown to couple only four of the above eight states if they 

are normalized in the basis SJ, Zj, (X-iY)f, (X+iY)f, where the arrow indicates the 

direction of the electron spin. The other four states, with spins in each of the states 

opposite to those here, are independant of the first four but interact in the same 

manner. In this basis, the perturbing terms become off-diagonal matrix elements in 

the Hamiltonian and can be solved exactly to all orders. The Hamiltonian becomes 

tf = 

E. iktPz 0 C 

-ikzPz Ep =^A 0 

0 ^ A Ep-§ 0 

0 0 0 E P + T 

(/V.5) 

The energies E, and Ep refer to the conduction band and valence band energies, 

respectively. The quantities Pz and A are defined by 

Pz = ~{S\PZ\Z) m (IV.6) 

and 

A = 3ift 
4m2c2 <*l dV dV 

dxv»--ajp* Y) (IV.7) 

Note that both Pz and A are real and A is positive. If we now let Ef = E- ff*2. 

then the solutions of H u = Efu give eigenvalues for Ef solved by 

# = 0 
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&(& - EG)(£f + A) - k2P2(E> + 2A/3) = 0 {IV.8) 

for the energies of the four states, where EG = E,-EP- A/3. We label the states 

4>e, #«i> *«2i a n c > <i>v3- If w e expand the above solution to the first power of k2P2

z, we 

obtain the zero order solutions for the Bloch wavefunctions as 

^ i = [ ( A ' + «r)t|/v /2 

and with associated energies of 

E e = E G + -= (- —=— j = - H I 
2m 3 \EG EG + A) 

A 2 * 2 

E «" = -2^r 
_ f t 2 f c 2 2P2k2 

E"2~'2^~'3EG~ 
. , ft2*:2 P2k2 

Ev3 = -A + 

(IV. 10) 

2 m 3(EG + A)' 
We notice the conduction band has a positive effective mass and the valance bands 

have a negative effective mass, except 0„i, which is unaffected to this approximation. 

Coupling to other bands does make the effective mass of #„i go negative, but not 

strongly so because of their weaker coupling. The t ? theory is thus seen to explain 

the small positive effective mass of the conduction band and the three valence bands. 

Two valence bands are predicted to be degenerate at k = 0, one with a heavy 

negative mass and the other with a light negative mass. A split-off valence band 

is also predicted with a energy below the other two and a small negative effective 

mass. 

The equation for the energy of the conduction band is quadratic in the momen­

tum wavevector, k. This dependance allows us to describe the nature of the band 
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near the band edge by the use of an effective mass, m*, defined by 

£ c s £ S + - . (IV.U) 
2m' 

We now define for future convenience the value of a dipole coupling energy, Ep, by 

Ef^p\ = ̂ s\Pi\zf. (iv.n) 

The effective mass can now be found from equation (IV. 10) as 

± - J _ [ l + & ( * + _ » _ ) ] . (/K.1.3) 
m . m.[ 3\EG EG + A)\ 

It can be seen that if A = 0, then mt/me = 1 + EPJEG. The effective mass and the 

bandgap energy, of GaAs at T = 0 K is foundl22! to be m'/me = 0.067 and EG — 

1.52 eV, which from equation (IV.13) gives Ep = 22.54 eV. At 300 K, Ea = 1.423 

eV and m*Jme = 0.063, giving Ep = 22.62 eV 

We are primarily interested in the conduction band properties in the analysis of 

the QWEST. It is noticed that the spin-orbit coupling does not directly couple the 

conduction band with any other state. The spin-orbit only effects the conduction 

band through the mixing of valence band states, which is a higher order effect. Thus 

we can often approximate the above Hamiltonian in equation (IV.5) by its reduced 

two-by-two Hamiltonian coupling only the S and Z states via the ktPz terms. Either 

by solving; for the eigenvalues of this reduced Hamiltonian or by solving for equation 

(IV.8) with A = 0, we find the quantum energies of the two states from a quadratic 

equation with solutions of 

E=%±J(*gf^~f (iv.u) 
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where the plus gives the conduction band energy and the minus gives the valence 

band energy. For small (ktPz)2, the above equation reduces to 

* = f*(* + ^ ) ,""5) 

where as before the plus gives the conduction band energy and the minus is the 

valence band energy. Notice the conduction band energy is the same as in equation 

(IV.10) with A = 0. However the valence band energy cannot be similarly obtained. 

The two-by-two Hamiltonian with the above energy is solved by wavefunctions 

which can easily be expanded to first order in kzPt to be 

4,c = s I -<(*,#»,/£&)* 1 ( / y 1 6 ) 

<t>v = -i(kzPz/EG)Sl+Zl 

with the normalization of the wavefunction not included. The value of kgPg/Eg can 

is evaluated as follows. We first notice k\p\ = EfEp where Ey = H2k2/2me is the 

free electron energy. But the energy of an electron in the conduction band is given 

in the effective mass approximation by Ee(k) = me/m*Ef and we saw previously 

that Ep = (me/mt - 1)EQ ^ mt/m*e EQ. Using these observations, we find 

EG EG \ EG • y' l'> 
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B. GaAs Quantum Well Energy 

We now use the above analysis to derive formulations for the band energy of 

the GaAs quantum well and various related quantities such as QWEST density of 

states and Bloch functions. We are first concerned with the energy of the QWEST. 

We found previously that the density of states for the transition would be a delta 

function, or with zero bandwidth. But this result, as indicated in equation (111.12), 

is based on the energy being quadratic in the momentum vector, or the effective 

mass approximation. Since we are interested in finding the density of states for 

the transition at least to first order, we must retain the higher order terms in 

equation (IV.8) for the energy eigenvalues. It can also be noted that inclusion of 

the nonquadratic terms must be used simply to calculate the quantum well energies 

with any accuracy for smaller well widths where the energy of the momentum 

state begins to extend into the linear part of the band diagram and the effective 

mass approximation is no longer valid. The effective mass approximation must be 

adjusted for two effects. The first has been illustrated above. The solution to the 

quadratic equation, (IV. 14), for the band energy in ftp theory is not quadratic in 

kz for large values of kzPz. Next, the spin-orbit coupling also affects the bands. But 

this latter effect is lower for the conduction bands since the spin-orbit coupling does 

not directly connect the conduction band to any other band in the Hamiltonian. 

Our approach will solve equation (IV.8) without mathematical approximation with 

the aid of a computer. But this does not imply our solutions will be particularly 

accurate. In the derivation of equation (IV.8), we neglected the coupling to the other 

bands by ftp theory. This additional coupling is given by second order perturbation 

theory in quantum mechanics, neglecting spin- orbit coupling, asl21l 
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where we see the coupling of band "i" with the other bands " j " through the kp term. 

This expression reduces to that of equation (IV. 15) when the sum only includes two 

bands. This extension of the k-p coupling to the other bands is critical for the heavy 

valence band as it is seen to be totally unaffected by the coupling to the conduction 

band. As a measure of the accuracy of the kp theory, we can calculate the value of 

m* independently for the three bands that are affected by ftp theory and checking 

for consistency. We use the relations of equation (IV. 10) and room temperature 

values for EQ and Ep of 1.423 eV and 22.62 eV. This value of Ep was derived from 

the conduction band effective mass and will return the original number used for this 

mass. We let the spin-orbit splitting be 0.341 eVN. From equation (IV.10) we find 

the effective masses of the bands to be m* = 0.063, m'vi = 1.0, m*2 = -0.104, and 

m*3 = -0.305. In comparison, the experimental values are found to belMl mc* = 

0 063, m*! = -0.50, m*2 = -0.076, and m*3 = -0.145. 

The valence band masses are seen to have different degrees of accuracy. The 

most likely cause of errors is the neglect of the coupling to all other bands as 

indicated in equation (IV.18). A clear measure of the effect of the other bands is 

seen from the calculation of m*vX. This valence band is not affected at all by k p 

theory in the two-band approximation, and in fact bends in the wrong direction. An 

examination of a GaAs band diagram!48] indicates that bands exist at energies 4.55, 

1.51, 0, -0.35, and -12.55 eV above and below the valence band edge, respectively. 

The energies at 1.51 and -0.35 correspond to conduction and split-off valence bands, 

already descriped by kp theory in the two-band model. The next closest band is at 

4.55 eV, about 3 eV above the conduction band. It can be seen from equation (IV.18) 

that this band will reduce the inverse effective mass. The value of the reduction of 

me/m*vl from the two-band value of 1.0 to the emperical value of -2.0 is equal to -3. If 

we assume the other valence band inverse effective masses calculated in the two-band 
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model are reduced by a similar amount, we find new values of m* of m*2 = -0.079 

and m*3 = -.159, in much better agreement with theory. We measure the strength 

of a band coupling in equation (IV. 18) by dividing by the electron free energy to 

obtain units of me/m*. This unit will be seen later, in equations (IV.53) and (IV.54), 

to be related to the oscillator strength. In this unit the strength of the two-band 

coupling is about 12 for the conduction band coupling to the valence band and 

about 3 for coupling to the other bands. The two-band model is therefore considered 

to be accurate only to about 25%. Nevertheless, the energy of the quantum well 

wavsfunctions within the well region can be obtained to first order accurately using 

this analysis by simply matching the quadratic expansion of the solution to equation 

(1V.8) to the known electron effective mass in the conduction band, since this is 

the the only band of interest. The only energy approximation remaining is for 

the deviations of the energy from quadratic dependance on momentum wavevector. 

Our calculations indicate that for the small k vectors, relative to the reciprocal 

lattice vector, of interest here, the deviation from the effective mass approximation 

changes the energy of the QWEST by only about 15 meV for the higher energy 

transitions. Also, deviation of the band energy from quadratic dependence on the 

k vector only causes the density of states to increase to about 5 meV at room 

temperature and much less at lower temperatures. Furthermore, even if we had 

perfectly accurate band energies, the quantum well energies can be off by as much 

as 10 meV or more because of the great difficulties in treating the well boundary 

conditions. The broadening of the states by the band nonparabolicity is not the 

dominant broadening mechanism. Thus the approximation of using the two-band 

Jfc • p theory seems well justified for cases of interest here. 

The envelope approximation for the behavior of the electron assumes the electron 

remains in a similar environment, such as the conduction band of a GaAs 
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crystal. We now attempt to describe the behavior of an electron in the inhomogeneous 

medium of a quantum well (see Fig. IV.l). We first note our quantum wells 

are piecewise continuous, with the well defining one region and the barriers defining 

another two regions. The crystals used in the experiments to be described usually 

contain more than one well, but we separate the wells sufficiently to prevent any cou­

pling or interaction between wells. Since we are concerned with only three regions, 

the most practical approach seems to be one of describing the behavior in each of 

the regions as described above and then trying to define what happens at the bound­

ary. This boundary condition determines much of the properties of the quantum 

well states. Yet it will be seen to be the most difficult to describe for a large number 

of reasons. The boundary condition for an electron at a potential barrier is normally 

simply taken to be continuity of the wavefunction and its derivitive normal to the 

boundary. This boundary condition is a direct result of first and second integrations 

of Schrodinger's equation across the boundary in the absence of delta function or 

infinite potentials. However, the boundary condition for our electron is more difficult 

because the envelope wavefunction is not the full wavefunction of the electron. 

One of the first modifications of the boundary is to the concept of a Bloch state 

which remains constant from one cell to another, and the assumptions of equations 

(rV.l), (IV.2), and (IV.3) do not hold and need to be changed. The separation 

of the electron wavefunction into a product, as in equation (IV.l), is permitted 

in band theory because of translational invariance of the potential terms. The 

usual treatment of the wavefunction uses periodic boundary conditions to require 

the envelope take the form given in equations (IV.2) and (IV.3). This treatment is 

improper for real crystals. First we note that the crystal is not infinite, translational 

symmetry does not hold, and thus not allowing a separation of the envelope and 

Bloch states as simple as stated in equation (IV.l). We also note that periodic 
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boundary conditions are improper and instead one should use boundary conditions 

which allow the wavefunction to go to zero at the edge of the crystal. If we assume 

equation (IV. 1) to be correct momentarily, then * = 0 boundary conditions give 

envelopes which are sine functions instead of exponentials and allow k to take values 

half that of equation (IV.3). Negative values of A are no longer valid as they describe 

the same exact state which has already been described by the positive values of fc. 

Thus the number density of states per unit energy is the same as under the usual 

band theory. The states missing by not allowing negative values of E are made up 

in the density count by allowing half integer values of 2n/L for k in addition to the 

normal full integer values. The improper treatment usually makes little difference 

for large crystals involving averages over large numbers of states, but for quantum 

wells in which only one state is being described, the differences are critical. 

We now attempt a simple description of how the states are modified to ac­

count for the differences. We first note that for • = 0 boundary conditions, the 

wavefunction must be symmetric about the center of the well. This is also true for 

our quantum well with a finite barrier on both sides which is also symmetric about 

its center. A solution we might look for is one which is sinusoid and symmetric or 

antisymmetric about the crystal center. We first investigate, using k • p theory, a 

sinusoid envelope. The solution can be found with the simple observation that the 

energies resulting from the kp theory are independent of the sign of kt, as illustrated 

in equation (IV.8). This degeneracy of the positive and negative kz states allows 

us to renormalize the states by any linear combination of the two wavefunctions 

of the degenerate states. For this discussion we use the simple wavefunctions of 

equation (IV.16), when combined with the exponential envelope of equation (IV.2) 

as in equation (IV. 1). We notice that equation (IV. 16) is not independant of the 

sign of kz and thus the periodicity of the Bloch state wavefunction from one lattice 
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cell to another breaks down as expected. The linear combinations of interest are 

*(*?) = [«**'*(*?) + (-l) n- 1e- , ' f c?*M?))/2 (IV. 19) 

which, with the aid of equation (IV. 16), becomes 

«(*?) = (O--1 M*J.-J(n - 1))SW + ̂  sin;-,«-;(«-l))^J |. (/V.20) 

We have superscripted the Bloch states S and Z because the well and barrier regions 

consist of similar but different materials and their Bloch states may have different 

wavefunctions. For an infinite well, fc? = nfc? = n£-. The value of ktPt/EG was 

found in equation (IV. 17) to be equal to the square root of the ratio of the quantum 

well energy to the band gap energy. This quantity takes on a maximum value of 

about 0.3 or less for quantum states to be discussed. We see that this form still does 

not go entirely to zero at the boundary of an infinite well since, for a finite kz, a 

small component of the Z Bloch state remains because the sine term has a maximum 

magnitude where the cosine term is zero. Also note that we have assumed here that 

the zero of the z coordinate is at the center of the well. This assumption is used 

throughout the remainder of this chapter. In contrast, the zero of the z coordinate 

was taken at the edge of the well throughout chapter HI. 

A similar analysis to that above may be done for the barrier region. Only 

the confined states are of interest here so the electron will have a wavefunction 

which decays as it penetrates the barrier. We try to find such a state in GaAs by 

replacing kz with «7 in equations (IV.l) through (IV.18). The envelope equation, 

(IV.2), becomes 

*&„ = «~ 1 ' . {IV.21) 
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As before, we find that equation (IV. 16) in combination with equation (IV.21) above 

for the envelope gives a full wavefunction of 

*Z?(7n) = rlz[sB + (IPI/EG)ZB] | . (/v.22) 

The superscript on 7 refers to the n'th state of the quantum well. The value of 7 

for this quantum state depends on the energy of the state. If we use the expression 

for the energy of two bands in equation (IV.15) and replace kt by 17 we obtain 

This is equivalent to use of the effective mass approximation with the energy below 

the conduction band edge being given by R272/2m*. This barrier region is made 

of Gaj_xAlxAs (0 <x< 1). The bandgap of Gaj_xAlxAs is given by EQ = 1.424 + 

1.247x for x< 0.4ft. For 0.45 < x < 1.0, the bandgap is indirect and the value of 

the direct bandgap varies as EG = 1.424+ l,247x+1.147(x2 in this region, to a 

maximum of 3.018 eV for AlAs. However the minimum gap of AlAs is indirect and 

has a much lower value of 2.168 eV. Since we are interested only in bound states, 

the effect of the electron band structure in the barrier region is not very critical 

and we describe the behavior of the electron in this region by an electron effective 

mass ofl8l m*B = 0.067 + 0.083x for a barrier with Al fraction of x. 

The question now is how the difference in the energy gap between the GaAs 

and the Ga|_xAlxAs, or AEQ, is divided between the conduction and valence bands 

at the interface of the two materials, a much more difficult parameter to measure. 

For many years it was felt that the conduction band discontinuity was 85% of 

AE G . However, very recent measurements!28! are consistent in pointing towards 

a different value of about 65% AEQ for the conduction band discontinuity, and 
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this is the value we use for the barrier height of the electron in the conduction 

band quantum well. Then for an Al fraction x less than 0.45 we find a potential 

barrier height of VB = 0.81 lx eV. For 0.45 < x < 1.0, the barrier potential is taken 

to be VB — 0.811x+0.746(x-0.45)2. This barrier height for x> 0.45 assumes that 

an electron in the well region couples to the same symmetry Bloch state into the 

barrier region. This assumption is arbitrary and may need modification in light of 

the future accuracy of its predictions. A possible alternative assumption allows the 

well region electron, at the lowest energy point with T symmetry, to have a smaller 

barrier height by coupling to the X symmetry Bloch state. This is because the bands 

become indirect for x greater than 45% with the X symmetry state becoming the 

lowest energy state in the conduction band and the T point remaining the energy 

maximum for the valence band for D.11 values of x. But this lower barrier height 

would only occur for a change in symmetry of the Blcch state across the boundary, 

and is considered to be a lower probability assumption. 

The quantum well eigenvalues can now be solved with the above assumptions 

by first assuming an energy for the state. Then from equation (IV.8) we know the 

value of kz for that energy and from equation (IV.20) the wavefunction in the well 

region of that energy. From the barrier height given above we can determine how 

far the quantum energy is below the band edge in the barrier region. Then from 

equation (IV.23) we determine the value of 7 for the state and from equation (rV.22) 

the wavefunction of the state in the barrier region. These calculations can be done 

for any energy and do not yet determine which energies are allowed quantum states. 

This quantization is performed by the boundary conditions at the boundary between 

the well and the barrier. Unfortunately, this boundary condition is one of the most 

difficult conditions to determine. 

The boundary conditions for a full Hamiltonian can easily be found by a simple 
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integration of the Hamiltonian across the boundary, and are given by continuity 

of the wavefunction, • , and its derivative, d*9/dz, at the boundary of the two 

regions.!1-2! However, this approach fails for the envelope approximation. The en­

velope cannot be assumed to have a continuous wavefunction and derivitive at the 

boundary. The reason is that the envelope wavefunction is not the full wavefunction 

of the conduction band electron. The full wavefunction is given by such expression 

as equations (IV.16), (IV.20), and (IV.22), where the Bloch states S and Z are strong 

functions of position of the electron. Some attempts have been made to create 

a new Hamiltonian based on the envelope states!24-25!, with this new Hamiltonian 

being given simply by an effective mass approximation or better as in the k • p 

approximation. This attempt typically leads to a requirement that the envelope 

wavefunction, • , and the inverse effective mass times its derivitive, {l/m^dV/dz, 

remain constant across the boundary. Unfortunately, this approach of assuming a 

new Hamiltonian for the envelope states, although strictly valid for the envelopes 

within a uniform region, has problems in being valid across a boundary because 

the basis states (the Bloch states, in this instance) which are used are no longer 

constant across the boundary. An analysis by Bastardl24l explicitly assumes that 

the Bloch states remain constant across the boundary and that they couple to the 

other S and Z Bloch states across the boundary in the same relative ratio. Both of 

these assumptions are arbitrary and not necessarily correct. This assumption will be 

compared with others in relation to experimental evidence in the next chapter. We 

first look at what is believed to be the proper boundary conditions. We assume that 

that the continuity of the full wavefunction and its derivitive holds. One then has, 

irom equations (IV.20) and (IV.22), the following relation at the boundary ±Lz/2 

cos(fln) sw + - ^ sin(y„) Zv = Be-VW 2 

EG 
(/V.24) 
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from the continuity of the wavefunction across the boundary and 

Ak" -sin((?n).Svv + k-j^-cos(K)Zw\ + A ,. ,dSw , kzPt . , . ,dZw 

cos(f,)-g r + ^ s i n ( f l n ) ^ r 

— ..g^ne(—l"lz/2) + B e { - r " ^ / 2 ) gsB y > P j QZB' 
(7V.25) dz EQ dz 

from the continuity of the derivitive across the boundary. The value of $ is defined 

by 

0 n = * ? W 2 - g ( n - l ) . {rv.26) 

These boundary conditions are the proper form to achieve accurate quantum well 

energies. The problem is that they require knowledge of the wavefunctioh of 

the Bloch states, which has not been required up until now. However, from the 

symmetry properties of the Bloch states, the above can be reduced slightly. For 

instance, assume the boundary ocurrs at the edge of a primitive lattice cell. Then 

from the symmetry of the S Bloch state, we know it must have a derivitive which 

goes to zero at the boundary. Similarly, we know that the wavefunction of the Z 

Bloch state must go to zero at the boundary. The above equation then simplifies 

by a factor of two. Using these symmetry assumptions, the above equations reduce 

to 

Acos{en)SW = Be-lnL*/2SB (rv.27) 

and 

Ak?\-sm{e„)sw +A kzPz sin(M^] = - B 7 " e ( - l " ^ / 2 ) SB ! + f l e (~»»va) I'jl Pz dZB 

G S z 

{IV.28) 
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It is noticed that equation (IV.27) reduces simply to continuity of the envelope 

wavef unction if we assume the Bloch wavefunction of the well region is similar to 

the Bloch wavefunction of the barrier region. However, equation (IV.28) is much 

more complicated and cannot be solved without detailed knowledge of the Bloch 

state wavefunctions. If we alter equation (IV.17) slightly, we find that tPz/Eg is 

approximated by \J&E/EG, where AE is the energy of the state below the bandgap. 

It is easy o see this value is about 0.4 for the GaAs bandgap of 1.43 eV and barrier 

heights of about 300 meV. Assume momentarily that the derivitive of the Z Bloch 

state is smaller than the value of the S Bloch state multiplied by kz or 7 (this is a 

poor assumption since one expects the Bloch state to vary much more rapidly than 

the envelope). In this approximation one sees that the second terms on each side of 

equation (IV.27) drop out. Then the ratio of (IV.28) to (IV.27) reduces simply to 

*Jts.n(ffn) = 7 n (/V.29) 

which is the expected boundary condition if we were to assume continuity of the 

• envelope wavefunction and its derivitive for the 5 Bloch state alone. Note the Bloch 

function drops out in this ratio automatically with no further assumption. 

We nre still faced with the unsolved problem of the boundary conditions for the 

quantum wells. Inspection of the past literature!*! indicates that good agreement 

was found in the envelope approximation simply with the use of equation (IV.29). 

Unfortunately these energies were calculated in the past when the energy barriers 

were thought to be 85% of the bandgap discontinuity instead of the now known 65%. 

A common assumption currently made in the calculation of quantum well energies 

[24,25] jg that the envelope remains continuous as before but that the derivitive of the 

envelope must be multiplied by the inverse effective mass to be continuous across 

the boundary. If we ignore the Z Bloch state and only look at the 5 state envelope, 
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this boundary condition reduces simply to 

(4-1 *"(*)= 4" (,y.30) 
\mwJ mB 

for effective masses in the well and barrier of mw and mB, respectively. This 

boundary condition is one of the most commonly used relations in the calculation 

of the quantum well states. However as discussed previously, these assumptions 

are not necessarily any more accurate then the ones here. Yet further problems 

occur because the boundary between, for instance, GaAs and Al.3Ga.7As is further 

complicated because the Al atoms are not uniform thoughout the boundary. Thus 

even if the Bloch wavefunctions were known accurately, one would need to somehow 

perform the proper averaging technique to get the proper boundary conditions. 

Ultimately we must judge the merit of which assumptions by which ones agree best 

with observation. Fortunately, the very simple boundary conditions of equation 

(IV.30) when combined with the new barrier height assumption of 65% gives nearly 

perfect agreement with experimental observations. Several effects will be discussed 

soon which have been observed to shift the quantum well energies, but these en' ^y 

shifts are only 2 or 3 meV in magnitude. 

The energies of the quantum wells are nov calculated using the above assump­

tions. We calculate the transition energies for both assumptions of continuity of 

the envelope derivitive, with equation (IV.29) above, and with this derivative multi­

plied by the inverse effective mass, using equation (IV.30) above. We then compare 

these two results with the experimental results for best agreement. The envelope 

wavefunction within the well is assumed to be entirely the envelope part of equation 

(IV.20) for the S Bloch state with the Z part ignored. Similarly, we use only the 

envelope part of equation (IV. 22) which belongs to the S state. These assumptions 

were implicit in the form of equations (IV.29) and (IV.30). We connect the quantum 
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well energy with kz by use of equation (IV.8) and the room temperature valuesi22! 

of m* = 0.063me, EG = 1.423 eV, and A = 0.341 eV. We can use these values and 

equation (IV. 13) to derive a value of Ep equal to 22.62 eV, which is used in the 

solution to equation (IV.8). The energy in the barrier region is related to 7 by use 

of the effective mass approximation as shown in equation (IV.23). Equation (IV.23) 

can be made simpler by use of the effective mass definition to give the result 

(/V.31) 

where Vg and mg* are the barrier height and the effective mass of the AljjGa^As 

barrier, respectively. The values of Vg and mB* used were given previously. 
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Figure IV.2: A plot of the calculated QWEST energies using the m* and 

normal boundary conditions with the experimental observations also indicated. 
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A plot of the calculated QWEST energies as a function of well thickness is 

given in Fig. IV.2 for both assumptions of boundary conditions and a barrier of 

Al.3Ga.7As. Also plotted is the QWEST energies for the three observed transitions. 

It can be seen that a much better fit to the observations is obtained with the 1/m* 

boundary conditions of equation (IV.30). Thus these conditions are used for al! 

future discussions and analysis. 
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C. GaAs QWEST Dipole and Oscillator Strength 

GaAs QWEST Dipok 

In chapter HI., we described the envelope states and the dipole between them. 

Quantum states in GaAs have much more structure than presented by the envelopes 

and in this chapter we describe how the dipole must be modified. It will be seen 

that the envelope approximation is very good. 

The dipole between two quantum well states can be written down directly with 

the use of equations (IV.20) and (IV.22) for their full wavefunctions. A dipole, vmn 

between an upper state with envelope quantum number of m and a lower state with 

an envelope quantum number of n is given by 

/
oo 

•00 

= « / ^ {cos(A^ - J(m - 1)) ST + S ^ sin(*r* - \(m - 1)) ZT} * 

X {«*{*?* - J(n - 1))Sf + S^'sin(*;« - J(n - 1)) zf \dz 

The subscripts 1 and u refer the lower and upper quantum well states with envelope 

quantum numbers of n and m, respectively. The constant C is the product of the 

amplitude of the barrier wavefunctions, found as stated in the previous section by 

continuity of the envelope at the boundary. We have made use of the assumptions 

of symmetry of the quantum well about z=0 to simplify the integral of the barrier 

wavefunction. As noted before we are interested in transitions between envelope 

states which are of opposite parity, or equivalently, m and n must be of opposite 

parity. For example, we are most interested in the • ] -• * 2 transition. In this 

case the lower state has an 5 Bloch state multiplied by a cosine function and a Z 

Bloch state multiplied by a sine function. The upper state has an 5 Bloch state 
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multiplied by a sine function of approximately twice the lower state frequency and 

a Z Bloch state multiplied by a cosine function of approximately twice the lower 

state frequency. 

We now wish to integrate equation (IV.32). We first note that the Bloch states, 

although strong functions of position, are periodic in the lattice spacing. The 

envelope wavefunction, however is a slowly varying function and changes very little 

across a given lattice spacing. The size of the FCC lattice cell of GaAs is about 

5.642 A on a side!22! and we are interested in quantum wells with thicknesses in 

the range of 60 to 100 A. Because the envelope varies slowly over a unit cell, we 

can approximate the above integral over a unit cell by the integral of the Bloch 

functions times the value of the envelope at the center of that unit cell. The value 

of the Bloch state integral over the unit cell is the same for each cell. The overall 

integral then reduces to a sum over all values of the envelope at the center of each 

cell times the overlap integral of the Bioch states. The sum over the values of the 

envelope can then be reduced to an integral of the envelope over the entire quantum 

well. For simplicity, we label the independent variables in the cosines and sines of 

equation (IV.32) by 9m[z) and 6„(z). Equation (rV.32) now reduces to 

limn = e{¥ u |j |*,) = / * u z * , d * 

= e / _ W 2 «»M*) )* cos(0„(z)) { ^ I Sf) 

+ (^^)™(M») )« <*»(«»(•)) (z* \ zf) 
+ ^Acos(*m( s))sin(M*)) V%\A*Y) 

+ *|^sin(M*))cos(0n(;O) {Z?\*\sF) dz 

+ 2eC £ ° / 2 , «-<*+•»)* dz{{S» I 5f) + 2 £ 3j£ (Z* I Zf)\ (/V.33) 

We have taken the values of (S \ Z) to be zero. Note that the dipole integral has 
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now reduced to four terms in the well region and one term in the barrier region. 

The barrier integral is simply the product of the envelope dipole part and the Bloch 

state overlap. The principle term in the well region is the first term, which accounts 

for over 90% of the dipole. For allowed transitions of opposite parity, then one of 

the envelope states will change all of its cosine functions into sine functions and 

sine functions into cosine functions because of the ir/2(m- 1) term in 6m{z). The 

first term in the well region integral is seen to be the dipole as calculated from the 

envelope wavefunctions multiplied by the overlap of the two S Bloch states. The 

integral can be transformed into the form of equation (III.5) by letting kf = mkq = 

mufti and changing the origin of z by substitution. We then have for an infinite 

barrier 

e I cos(0m(z))z cos(6„(n))dz 
J—Lg/2 

= (_l)"»+n l Sm{mkqz)zsin(nkgz)dz 

«»(mS-n»)» 

where use has been made of equation (III.10). 

The second term is more complicated since it occurs out of phase with the 

envelope wavefunction normally multipling the 5 Bloch state. This term has a 

maximum at the well boundary. We relate this envelope integral to the envelope 

integral of the first term by integrating by parts. For simplicity of this calculation, 

we use the envelope wavefunctions of the infinite well. It will be assumed that for 

the finite well the two integrals will extend into the barrier by a similar amount since 

they are integrated over wavefunctions with identically the same fcj? values, but with 

a different phase. Therefore the ratio of the integrals for the infinite well should 

remain reasonably accurate for the finite well. Also this second term contributes less 
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than 10% to the dipole strength so this approximation is quite adequate to achieve 

answers accurate to better than 1% . We first transform the second integral to 

a form with the zero at the boundary edge using the infinite barrier solutions of 

k™ = mit/Lz with the result 

J sin(«m(s))*sin(0„(z))(iz 

= ( - l ) m + n / cos(mA?«)*cos(n*7«)d* 
T rLt /•£« | 

= ( - l ) m + n / — sin(m*,*)2 sin(nkqs)de- I ——sm(mk<lz)cos(nkqi)di (/V.35) 

where we note the first term in the last equation contains the dipole integral of 

equation (IV.34). The second term is integrated by the use of trigonometric relations 

with the result 

1 f —r- I smlmkaz)coa(nknz)dz nkqh » » ' \ * i 

1 f^" 1 
= mk~ Jo 2 ^ s i n ^ m + " ^ + S ' n ^ m ~ "^"^ d" 

m f c 2 2V"i + n m-nj 
4t, 1 (fV.36) 
Jr2 rrfi - n* 

where the parity properties of the allowed m and n values are used and note the 

normalizing constant 2/% has been multiplied in the last step. We now can find 

the value of the integral of equation (IV.35) as 

fLz/2 
sin(0m(*))*sin(0„(j))d2 

= f_ll"»+n = (-1) -81* 4t, 
* z (m2-«2)2 * z rrfi-rfi\ 

1 ' V »« hnfi-tfiV' 
(/V.37) 
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This integral is now ratioed with the integral of equation (IV.34) to find the ratio 

of the integrals, R, is given by 

ff=aJl2!±i?. (/y.38) 
2 mn 

Although derived for an infinite barrier, this ratio is assumed to be valid for any 

barrier height as discussed above. 

The two remaining terms are treated the same as the second term. We calculate 

the ratio of this term to the first term for the infinite well and assume the ratio 

remains constant for any barrier height. As before, we begin by converting the 

integral to a form with the zero at the edge of the boundary. This gives 

rU/2 
/ cos(Om(z))sia{e„(z))dz 
J — Lz/2 

= ( - l ) m + n + 1 / sm(mkqz)cos(nkqz)iz 

= ( - l ) m W ' - m . (/V.39) 
* m2 - n 2 

A similar term for the last integral in the well region can be solved by a simple 

exchange of the variables m and n. These last two terms take their dipoles between 

the Bloch states instead of between the envelopes. The magnitude of this dipole 

can be determined from the earlier * • p theory. We do not know the sign of this 

dipole but we can nevertheless determine the sign of this term, important because 

this term can subtract or add to the other terms, by relation to the value of Pz. 

Using the relations (IV.6) and the commutation relations of (HI.6) and (III.7) with 

the free electron mass instead of the effective mass, we obtain 

Pz = EG(S\z\Z). {IV. 40) 
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With the aid of equations (IV.39) and (IV.40) the third term of equation (IV.33) 

becomes 

S-Ll ^ c o s ( M * ) ) s i n ( M * ) ) (S*\z\zY) dz 

= ^{_l)m+n+li_mn { I V M ) 

We have used fc? = nkq. The fourth term is identical to the above term with the 

exchange of variables n and m. It is then seen that the fourth term is identical in 

all respects to the third term except that the sign is opposite. Thus these two terms 

cancel one another and drop from the integral for the dipole. 

The remaining terms contain an overlap integral, such as {Su | Sj) or (Zu | Z(). 

The 5 and Z Bloch states are based on the atomic potential, as discussed in the 

section on * • p theory, and are the same for all k vectors. The overlap integral is 

not necessarily unity, however, because the reference frames of the two states can 

be rotated from one another. The rotational properties of these states are given by 

E. O. KaneN. The S Bloch state is rotationaly symmetric and indeed has a unity 

overlap. The Z Bloch state rotates as the crystal axis, giving their overlap equal to 

the cosine of the angle between the lower and upper quantum state k vector, or 

(Za | Z,) = "z *z + « t \ ^ = . { r v A 2 ) 
yjk<p1 + k^^/kf + kf 

For low denstities and temperatures, the value of the overlap is close to unity as 

both the upper and lower states are have a very small transverse kt component and 

both k vectors point normal to the boundary surface. As estimate of the above 

overlap can be found from effective mass theory, where we take the value of kz 
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to be proportional to the square root of the quantum energy of the state and the 

value of Jfcj to be a distribution from zero to the square root of the thermal energy, 

with the same proportionality constant. The minimum overlap integral can now be 

estimated by 

where Et, Ei, and Eth are the lower quantum state energy, the upper quantum state 

energy, and the thermal energy, respectively. Taking the values of E\, £;, and E,;, to 

be 50, 180, and 25 meV respectively, the minimum value of (Zn \ Zft becomes 0.967. 

For a given transition, we must evaluate this term by using a thermally weighted 

average over all possible transverse k vectors for a given temperature. 

The second term is also multiplied by a term of HTk^P\/EG. This term can be 

seen with the aid of equation (FV.17) to reduce to ^E(EU/E(}. This term will take 

on the value of 0.066 using as values of Et and Eu and EG the energies 0.05, 0.180, 

and 1.43 eV, respectively. We saw earlier from equation (IV.38) that the envelope 

dipole of this second term was about 5/4 times the value of the first terms envelope 

dipole for a 1 -+ 2 transition. Thus this second term contributes less than 10% to 

the dipole. Because of the small contribution of this term, we can approximate the 

Bloch state overlap factor of equation (IV.43) by unity with good accuracy. This 

approximation is consistent with the other approximations in terms of accuracy and 

eliminates the difficulty of having a dipole that has a dependance on density and 

temperature. 

The approximations for the overlap of the Bloch states also apply to the barrier 

region with similar results. However, equation (IV. 17) must be modified with the 

aid of equation (IV.23) to give 
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E% EG

 y " ' 

where Vg is the barrier height given earlier. 

The dipole integral of equation (IV.33) now reduces to a much simpler form 

given by 

ta» = e{*„|5|*,) = / *u*¥,<fc 
J-oo 

=.lun'«»(*r.-5(-.-i))'«»(*ff.-}(.-i))*x - i i J t ab^ /^= 
3-L'l2 2 2 Jl + Ev/Eajl+Ei/Ea 

+ 2eC f , .-(*+*)•* X l + V ^ ^ V ^ F ^ / g G ( / y . 4 5 ) 

}L''2 y/l + [VB - EJlBgyJl + (VB - E,)/BG 

where we have included the Bloch state normalization factor in the denominator. 

For convenience, we will define the quantities fljy and RB by 

„2a.„2 

Jl + Eu/Ecjl + Et/Ea 

and 

Jl + (VB - Eu )lBQyJl + (VB - E^/EQ 

Using these definitions the dipole can be written in a yet simpler form of 

f°° • 
Mmr. = «{*uM*/) = / * u **/<** 

J-oo 
[Lz/2 

= ej COs(fcf z - ^(m - 1)) z COs(A?z - g(n - l))dz X R\y 
/ •OO 

+ 2eC / J e-h'+T')* dz X % (IV.47). 
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The dipole integral is now very similar to the integral expected simply from the 

envelope of the S Bloch state solved for the finite barrier, but with some reduction 

given by the factors R\y and Rg. As an example, using values for Eu, Et, EQ, and 

Vjn of .180, .050, 1.43 and .243 eV, respectively, we find that Rw and RB equal 1.003 

and .0895, respectively, or 1.00 to the degree of approximation valid here. 

GaAs QWEST Oscillator Strength 

In chapter HI. we defined an oscillator strength, f, of an optical dipole transition 

between two quantum states by equation (IIM4), which we repeat here as 

fmp*L{t)% ( / v 4 8 ) 

ft 

where me is the free electron mass, u is equal to the energy difference between the 

states divided by ft, and e(z) is the dipole between the states .s defined in equation 

(IV.32) for the wavefunctions under consideration here. This form of the oscillator 

strength is fundamentally derived using the quantum mechanical formula for the 

dipole interaction of two quantum states with an electric fieldllsl and comparing 

with the definition based on the classical response!18! of a bound electron. 

The oscillator strength of a GaAs QWEST is ca1 ulated using the energies of 

the states as solved by the method of section B and with the dipole solved as 

indicated in equation (IV.47). The factors R\y and Rg are taken to be unity with 

1% accuracy. The oscillator strengths of a well with Al.3Ga.7As barriers and GaAs 

well thicknesses of 65, 82, and 92 A are found to be 12.1, 13.2, and 13.7, respectively. 

In contrast to the quantum well energies and dipole, the oscillator strength is a slow 

function of well width. In chapter HI, the oscillator strength for an infinite well 

was found in equation (HI. 16) to be O.Q6me/m* or about 15.2 at room temperature, 

and independent of well width. Quantum wells with finite barriers will have smaller 

oscillator strengths because the envelope wavefunctions of the two states involved 
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in the transition will extend into the barriers different distances, lowering dipole 

integral. Some insensitivity of the oscillator strength to the well width nevertheless 

remains because as the energies of the quantum well states are lowered substantially 

by extension of the envelope wavefunctions into the barrier, the dipole is increased 

similarly to compensate in the expression for the oscillator strength. 

The oscillator strength also obeys a sum rulel|8l known as the Tbomas-Reiche-

Kuhn sum rule. This sum rule is derived in the quantum mechanics textl18l by E. 

Merzbacher, among others, and for a single electron transition is given by 

E / * . = l. (/V.49) 

it 

based on the definition of the oscillator strength, f^, similar to tfiat above and 

given by 

h^p^izktf. ( / v .5o) 

Note this oscillator strength need not necessarially be equal to the above definition 

since this quantity is simply an element occuring in a sum over states after some 

manipulation. However it happens to be identical. The sum in equation (IV.49) 

must be over all states, both bound and unbound. The quantities u/., and (^.„)2 are 

defined by 

Uk.miBt -£,)/* (/V.51) 

and 

<**.)»» |/*;**.rf*|a. (/V.52) 
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The oscillator strength is positive when coupling to energies above E, and negative 

when coupling to lower energies. We observe that the derivation of this sum rule 

is sufficiently fundamental and general so as to also apply to our system. The 

derivation relys only on the comutation relations [z,pe] — ifi and [//, z] = - | | p 2 

which apply to all quantum mechanical systems. The sum rule includes both positive 

and negative values and includes all dipole couplings, even to nonbound states. Thus 

the sum rule is useful for giving limits on the strength of a given oscillator strength 

only for transitions from the lowest energy state, where all terms in the sum rule are 

positive. The QWEST does not occur between a ground state. The sum rule still 

applies, but does not directly tell us anything about the QWEST oscillator strength 

from fundamental principles. 

Some properties of the oscillator strength of the QWEST can be developed, 

however. To see in detail how the oscillator strength applies to GaAs quantum wells 

and their transitions, we first look at the results of Ridleyl21!. Ridley's expression 

for the energy bands of GaAs was given by ftp theory in equation (IV. 18). This 

equation is reduced to give the effective mass, m*, of the electron as 

where Ei0 are the k=0 Bloch „tate energies and the dipoles are between the Bloch 

states. We now note with the use of equation (III.7), the oscillator strength can be 

written as 

me E^-E, l ' 

Comparing equations (IV.53) and (IV.54), we see that 
67 



Ĵ = !-£/,.,. (/v.55) 

where the sum is over all Bloch states. From the conduction band oscillator strength 

of 0.067, we find that the oscillator sum is equal to 1 - me/m* or about -14. 

Whereas the conduction band summation of interband oscillator strengths is large 

and negative, t> * valence band has a large positive sum. 

It might appear that the TJiomas-fieiciie-Kuhn sum rule either implies all effective 

masses must be infinite for all bands or else is invalid. However the sum in equa­

tion has not included all possible dipole transitions. The sum was over inter-

band transitions which have their dipole between the Bloch states and the en­

velope states remain nearly constant. But we must rum over all transitions for 

the sum rule to apply. Thus we must include all possible intraband dipole transi­

tions between the envelope states (such as the QWEST) between each state and 

its neighbor in the band. This sum can be found either by summing equation 

(ID. 16) (which is independant of well width even up to large crystals) or not­

ing that an artificial Hamiltonian can be created for the conduction band electron 

with a smaller effective mass which will yield a sum rule equal to unity in terms 

of its effective mass which will be equal to m/m when normalized to the free 

electron mass. Similarly, the valence band will have a large negative sum of 

oscillator strengths over its intraband envelope state transitions. Thus we see 

the sum of equation (IV.55) plus the envelope state transition oscillator strengths 

does indeed sum to unity and the Thomas-Reich-Kuhn sum rule continues to apply. 

The k • P theory shows us that the coupling between the envelope states and 

Bloch states causes the sum of oscillator strengths to separate into two large groups 

of opposite sign, with the interband conduction band transitions between Bloch 

states having a large negative sum of 1 - m/m* and the intraband conduction band 
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transitions between envelope states having a large positive sum of m/m*. The 

reciprocity of the two systems, the envelope states apd the Bloch states is deep 

and each system gains greatly from the other by the their coupling from the A p 

perturbation. For instance, the energy of the Bloch states is easy to understand 

from the nature of the atomic energy states, but it is difficult to understand why 

these atomic Bloch states would have a dipole between them of nearly 7 e-A. (The 

size of a primitive cell is about 2 A and the dipole size is usually a small fraction 

of the physical size, but the GaAs atomic dipole is bigger than the atoms!). On the 

other hand the dipole of envelope state transitions is readily understandable from 

the size of the wavefunctions, but it is hard to understand why the energy should 

be so high. Obvious^ the k • p perturbation has allowed a highly favorable trade to 

take place between the two systems and the measure of that trade is given by the 

oscillator strength splitting and therefore the inverse effective mass. The intricacies 

of the interaction are very interesting!20,81!, but beyond the scope of this thesis. 
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D. Energy Broadening Mechanisms 

In chapter III. the optical absorption of the QWEST was shown to have zero 

bandwidth. In this section we attempt to determine the mechanisms which lead to 

a finite absorption bandwidth. 

Several mechanisms are important. First the density of states for the QWEST 

was seen in chapter III. to be infinitely narrow only for parabolic bands and con­

servation of the transverse momentum during a transition in an infinite well. Real 

bands and transitions depart from this ideal. Second, the transition has a finite 

lifetime which leads to some linewidth. Third, the energy of the transition depends 

on the well width. If some variations occur in the width of the well from one location 

to another, then the QWEST energy is inhomogeneously broadened by this effect. 

An attempt is made to determine the magnitude of each of these effects and offer 

in explaination of the observed linewidths. All of these broadening effects contain 

large uncertainties at this time, thus no definitive conclusions can truly be made 

here, instead only a qualitative indication. 

Density of QWEST states 

Two effects give a finite bandwidth to the density of states. One is deviation 

of the energy bands from parabolic dependence on the wavevector. The second 

is the dependence of the effective electron barrier height on transverse momentum 

wavevector. These two effects are very nearly equal for quantum wells with our 

parameters. 

The calculation begins by solving for the quantum well energies as a function of 

the transverse k vector. We continue to use the material poperties as described in 

sections A. and B., and the boundary condition (IV.30) does not change. However, 

the equations relating the energy and the propogation vectors in the two regions are 

changed to include the transverse energy. The energy in the well region is described 
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in equation (IV.8) and now becomes 

E?(E* - EG){E> + A) - (if + *?H(£* + 2A/3) = 0 (rv.56) 

where kt is the transverse wavevector. Similarly, we modify equation (IV.31) for the 

barrier region to give 

2mB 2mB 

From continuity of the wavefunction across the boundary, the transverse wavevector 

is taken to be the same in both the barrier and well region. The additional kinetic 

energy from this transverse momentum is not equal in the two regions, however. 

This energy difference can be described with parabolic bands in the effective mass 

approximation. The transverse kinetic energy of the well region is t?k^/2m*w but 

in the barrier region is t 2ij/mg. The effective mass in the well region at room 

temperature is 0.063me and that of the Al.3Ga.7As barrier is approximately 0.088me. 

Thus an electron at room temperature with a transverse kinetic energy in the lower 

quantum state of 25 meV has a transverse kinetic energy in the barrier region 

about 30% lower. This energy difference is equivalent to a reduction of the barrier 

height, in the one dimensional calculation, by the same energy difference or about 

7 meV. This effective lowering of the barrier height depends on the magnitude of 

the transverse momentum and thus gives some bandwidth to the density of states. 

The finite bandwidth of the QWEST thus arises from both the nonparabolic part 

of equation (IV.56) and the change in effective barrier height. 
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Figure IV.3: a.) A plot of the quantum well energies versus transverse k vector 

for the two lowest energy quantum well states, b.) A plot of the the magnitude of 

QWEST energy reduction from the k<=0 value as a function of k(. 

The solution of the transverse band energies including both effects is given in 

Fig. IV.3a for a 65 A thick well of GaAs with a barrier of AljGa.yAs. In Fig. 

IV.3b the reduction in the QWEST energy as the transverse wavevector increases 

is plotted. It can be seen that as the thermal energy of the electrons in the lower 

state increases towards 25 meV above the *( = 0 edge, the transverse wavevector 

takes on values of about 0.022 A - 1 . At this transverse wavevector, this reduction 

in QWEST energy is about 4 meV. The relative importance of the reduction of 

the effective barrier height is found by letting the bands be perfectly parabolic in a 

similar calculation. The reduction in QWEST energy with transverse momentum 

is very similar in form with very close to half the QWEST energy reduction found 

with both effects included. The two effects are thus very nearly equal for quantum 

wells with the parameters we use. 

The density of states for the QWEST is now derived in terms of the band 

energies of the lower and upper quantum states, Ok £j(*f) and E„(kt), respectively. 
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The QWEST energy, Eq(kt), is defined in terms of quantum well energies by 

EQ(kt) = Eu{kt)-El(kt). (/V.58) 

We first calculate the density of states for the lower quantum well state assuming 

the bands are spherically symmetric in the direction of the k vector. If we rederive 

the density of states equation (11.11) without assuming Ei(kt) to be quadratic as we 

did in equations (D.fl) and (II. 10), then the density of states can be written 

«{E>)dE'=£lE^<dEl- (rV™] 

This equation is solved numerically to give a solution very similar to that illustrated 

in Fig. II.l, with the differenct f'om the nonparabolic nature of the bands only 

barely observable. 

The QWEST energy density of states depends on the population distribution in 

the lower state. The spread of electrons among the transverse momentum states is 

dependent on both doping density and temperature. Furthermore, both broadening 

effects are very dependent on the thickness of the quantum well region. The 

probability of any of the lower states being occupied is given by the Fermi factor, 

F(Ei), which is given by 

F(E)= (IV.SO) 
1 + lE-^/kT 

where , is the Fermi energy of the electron. The Fermi level determines the electron 

density from the integral over all states to the probability of an electron being in 

that state. If we label the surface density as p„ then the surface density of electrons 

per well is given by 
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P. = |p(£;,)F(£,)<fE,. (IV .61) 

Only the lower quantum state is included in the above integral over transverse 

states. The upper quantum states are assumed to be sufficiently high in energy so 

as to not be populated. This assumption is valid because the QWEST energies are 

over 100 meV but the experimental temperatures are 25 meV and below. 

The density of QWEST states is now calculated for a given Fermi level and 

temperature. The density of QWEST states is expected to have the narrowest 

linewidth for low Fermi energies and low temperatures, since the electrons would 

then be concentrated in the low energy parabolic region of the lower state where 

we would expect zero bandwidth. However if either the doping is high, requiring 

the Fermi level at zero temperature to move up into the nonparabolic region of the 

band, or the temperature is high, allowing the electron the freedom to move into 

the upper part of the transverse band, the QWEST density of states will broaden. 

This QWEST density of states, pq(Eq), is found from the equation 

Pq(Eq)dEq = Pl(Et)F(E,)^- iEQ. (/V.62) 

We calcuate the QWEST density of states for some of the conditions under which 

experiments are performed. The calculation is performed for several different Fermi 

levels. The Fernr \evel also determines the surface density of states, and the Fermi 

level chosen is that which corresponds best with the actual surface density of the 

well. All the wells used in our experiments were doped to have a surface density 

of 4 x 10 u /cm 2 . The actual doping varied somewhat as will be discussed in the 

next chapter. The density of states at room temperature varied very little with 

the surface charge density, and the low temperature density of states varied slowly 

but was almost negligable in comparison with the other broadening mechanisms. 
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Therefore small differences in surface charge density do not change the density of 

states significantly. Illustrated in Fig. IV.4a is the calculated QWEST density 

of states for the 65 A thick well with an electron thermal energy of 3 meV or a 

temperature of about 35 K. The Fermi energy for this calculation was at 70 meV, 

or 15 meV above the 55 meV energy of the kt = 0 band edge of the lower state 

(all energies are measured relative to the band edge in bulk GaAs). The surface 

density, p, at this Fermi level is 4.32 x 10"/cm 2. The FWHM of the distribution 

of energies is seen to be about 2.4 meV for this temperature. As the temperature is 

increased to room temperature with 25 meV thermal energies, the density of states 

broadens as illustrated in Fig. IV.4b. The Fermi level at this temperature decreases 

to about 45 meV or 10 meV below the lowest energy quantum state, for a surface 

density of 3.76 x 10"/cm 2. It can be seen that the FWHM has now increased to 

about 7.4 meV at room temperature. 

The QWEST density of states linewidth is also a function of the well thickness. 

A larger thickness well has a smaller wavevector in the z direction and does not place 

the electron as far into the nonparabolic region as does the thinner well. Thus a 

larger thickness well has a much reduced linewidth in its density of QWEST states. 

We illustrate the QWEST density of states for an 82 A thick well in Fig. IV.4c. 

This calculation is at room temperature (25 meV) with a Fermi energy of 31 meV, 

which is 10 meV below the lowest energy quantum state at 41 meV. This Fermi 

level corresponds to a surface electron density of 3.68 x 10"/cm 2. This density of 

states can be seen to have a FWHM of 6.3 meV. This linewidth is 0.9 meV below 

that of the 65 A thick well at room temperature. 
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Figure IV.4: a.) A plot of QWEST density of states for 65 A well at 35 K. b.) 

QWEST density of states for a 65 A well at 300 K. c.) QWEST density of states 

for an 82 A well at 300 K. 
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It must be noted that some serious uncertainties as to the validity of this 

calculation exists. Most all of the uncertaintity concerns the degree to which real 

GaAs bands are nonparabolic. Of the many parameters used to calculate the 

properties of the QWEST, this parameter is one of the few which has no emperical 

verification. This term instead was derived based on the k • p theory between two 

bands and is subject to the limitations both of the theory and limited number of 

bands used. In the begining of section B., the accuracy of fc • p theory was shown 

to be imperfect at predicting the effective masses of both conduction and valence 

bands simultaneously, with indications that the imperfections arose from the limited 

number of bands incorporated into the theory. The coupling to other bands was 

shown to have as much as a 30% elfect. The theory works well at predicting 

energies because the major part of this energy term can be found emperically from 

the effective mass. Whereas the error in the energy terms might only be 10 %, the 

error in the bandwidth of the QWEST density of states is only accurate to 30%. 
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Lifetime Broadening 

The upper state can relax back to the lower state elastically simply by rotating 

its momentum vector so as to convert some of its momentum perpendicular to the 

barrier to momentum transverse to this direction (see Fig. IV.5). This effect allows 

the electron to return to the lower state via an inelastic collision and thus gives the 

relaxation a very high speed. For sufficiently high excitation of this electron gas, 

the inelastic scattering among the electrons heats the electron gas relative to the 

lattice temperature. The QWEST absorption and refractive index would thereby 

lower since the QWEST energy would then be a smaller multiple of the temperature 

times Boltzmann's constant, and the electron gas would quickly reach equilibrium 

( in a time suspected to be much less than a picosecond). The relaxation of the 

electron gas temperature to the lattice temperature is much slower and has been 

measured to be several picoseconds,lS7l 

n = 3 

n = 1 

n = 0 

, / . 

^ ^ . 
/ ~~1 

Figure IV.5: A diagram of the electron path during its relaxation from the 

upper quantum well state. The initial process is an elastic scattering to the lower 

band, followed by a slower inelastic decay to the lattice temperature. The plot on 

the left is of the allowed wavevectors of a quantum well. The transverse wavevectors 

are sufficiently close to be drawn as a line. Note the lowest energy quantum well 

is the n = l state. A constant energy surface is also indicated. The plot on the 

right illustrates the energy of the two lowest quantum well states as a function of 

transverse wavevector. 
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The process by which an electron looses momentum is similar to the electron 

processes which determine the mobility of an electron in the conduction band of 

GaAs. An estimate of the speed of this process might be deduced from the measured 

mobility of the quantum well. The mobility, ite, is related to the scattering time, r 

of an electron by the expressionl28! 

» = —t. (IV.63) 

A typical room temperature mobility for a quantum well sample is about 7,000 cm2/V-

sec, which increases to50,000c»7i2/v-»ecas the temperature is reduced to 77 K. The 

scattering time, as given by the above formula, is found to be about 0.25 picoseconds 

for the room temperature sample and about 1.9 picoseconds for the low tem­

perature sample. If the decay of the upper state is assumed to be exponential then 

the lifetime will lead to a broadening with a Lorentzian lineshape and a FVVHM of 

h/itr. The linewidth increase for a room temperature sample due to lifetime is about 

5.3 meV. The low temperature increase is about 0.69 meV by the same calculation. 

Unfortunately, the mobility lifetime is only loosly related to the '•fetimc of 

the upper quantum well state. The two relaxation processes are related in that 

they both involve a scattering of a conduction band electrcj. The similarity ends 

here and the differences are many. The mobility is determined by the relaxation 

of the average momentum of an electron distribution back to the rest frame of the 

crystal, which requires inelastic scattering. Furthermore, the mobility of a quantum 

well is increased by the tendancy of a conduction band elect; -.\ not to scatter 

between quantum well states, but instead scatter only within the plane of a single 

quantum state. But the scattering rate which determines the QWEST lifetime is 

probably an elastic transition between quantum well states, in contrast to both 

of the processes determining the mobility lifetime. Elastic scattering is generally 
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much faster than inelastic scattering, and thus the mobilty determined rate is too 

slow on this grounds. But the scattering rate between quantum well states, which 

determines the QWEST lifetime, is slower than the scattering rate within the plane 

of single quantum well state, which determines the mobility lifetime. So the mobilty 

lifetime could easily be many times larger or smaller than the QWEST lifetime. 

Attempts have been made to measure this lifetime in quantum wells with the 

newly developed femtosecond lasers.i27-'0! Unfortunatly, these experiments, in spite 

of their resolution and sophistication, do not quite measure the quantities of interest 

to the QWEST. The highest resolution study performed of these references is that 

of D. J. Erskine, A. J. Taylor, and C. L. Tangl28!, in which relaxation times as small 

as 30 femtoseconds are measured for the quantum well samples. But they used a 

2.0 eV photon as as the excitation of the upper states, leaving the electron with an 

excess energy of about 0.5 eV for the room temperature measurement. An electron 

at this high an energy can elastically scatter from the T symmetry point in the band 

diagram to the L symmetry states, which have a band edge about 310 meV above 

the direct band edge at the T symmetry point. Since our quantum well energies 

are less than 310 meV above the band edge, this scattering does not occur in our 

quantum wells. The optical phonon scattering was calculated in the same paper'20) 

have about an order of magnitude lower scattering rate, which would give a number 

similar to the numbers based on the mobility, but this rate was not measured. 

An excellent measurement of the relaxation time of the electron gas temperature 

to the lattice temperature over many picoseconds under various exciatations and 

temperatures has been made by two groups. The first is that of C. V. Shank, R. 

L. Fork, R. Yen, J. Shah, B. I. Green, A. C. Gossard, and C. Weisbuch at Bell 

Laboratories. I27! The second is Z. Y. Xu and C. L. Tang at Cornell University. But 

of interest to the QWEST upper state lifetime is a different quantity, that of the 
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relaxation time of the electrons among themselves, known to be a much faster 

phenomena.!27! 

One of the measurements of D. J. Erskine, A. J. Taylor, and C. L. Tang,l3°l 

is of special interest since this experiment does measure the relaxation time of the 

electrons among themselves by viewing how quickly electrons excited at 0.5 eV above 

the band edge return to the band edge. ThL measurement has the same problems as 

that of reference 29 in that at this high an excitation energy, the electron's dominant 

scattering mechanism is the F-L intervalley scattering mentioned above. But unlike 

the measurement of reference 29, this!30! experiment is looking at the lower energy 

states as it excites the upper states. So the electrons, which may initially scatter 

to other valleys, eventually must return to the T valley as they cool. The rate of 

intervalley scattering is found!20! to be in the 30 to 60 femtosecond time scale. Thus 

we expect this measurement to be of some utility since the electrons quickly return 

to the valley of interest. The relaxation time measured for the quantum wells at 

room temperature was about 1 picosecond. However this measurement was made 

with an excitation density of 2 x 10 , 8/cm 2 and our quantum wells are doped to a 

density of 4 x 10 1 7/cm 2. Furthermore the electrons excited via the QWEST are 

only about 130 meV above the lowest energy state, whereas the measurement!30! is 

from electrons which start about 500 meV above the lowest energy state. As such 

the QWEST lifetime could be significantly different. 

In view of the uncertainties of the above description and measurements and 

their relation to the upper quantum well relaxation time, little can be definitively 

said about the QWEST lifetime. However the above observations lead us to expect 

a relaxation time between 0.2 and 1.0 picoseconds for the quantum well at room 

temperature. This would lead to a linewidth broadening between 1 and 6 meV. 

The scaling to lower temperatures is not known. If the scattering is primarily 
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determined by phonon scattering, then the QWEST would almost certainly have 

a longer lifetime and smaller broadening as the temperature is reduced. However, 

if the scattering is determined by free electron scattering or scattering off of the 

walls, ions or other fixed source, then the scattering rate for the upper state will 

probably remain constant with temperature reduction. The latter case is suspected 

to be much more probable. 

Weil width inhomogeniety 

A variation in the width of the well can lead to a change in the energy of the 

quantum well states. As an example we see in Fig. IV.2 that the variation in 

QWEST energy with well thickness is roughly linear with a slope of 1.1 meV per A 

of well width. Fortunately, this well width variation can be measured directly from 

its broadening of a two-dimensional exciton energy (see chapter II., section D.). This 

measurement has been made as a function of the substrate growth temperature in 

the Molecular Beam Epitaxy chamberl"! and found to have a minimum width of 

1.0 meV at a growth temperature of about 690° C (see Fig. IV.6). Our samples 

were grown at a temperature of about 660° C. The linewidths of the exciton at this 

temperature are about 1.4 meV. Since the well thickness used in this measurement!31! 

is 200 A, the linewidth of our 65 to 100 A wells with the same size variation in 

thickness is about 1.6 meV. 
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Figure IV.6: A plot of the 2-D exciton Iinewidth of various quantum well 

samples as a function of substrate growth temperature (from Ref. [31]). 

In addition to perturbations on a microscopic scale, one can also have syste:. atic 

gradients in well thickness across the surface of a quantum well sample. These 

usually arise from a gradient in the rate of the molecular flux on the surface of 

the sample since the molecular sources are usually off axis from the center of the 

sample. The variation in fiux rate is about 20 to 30 % across the diameter of a 2 inch 

wafer. The wafer is sometimes rotated to average out these variations. This was 

not done for the quantum wells grown since the maximum rotation rate possible for 

the growth apparatus did not permit several rotations during the 30 seconds needed 

to grow a single well of 65 A. It will be shown later that the infrared beam probing 

the QWEST has a dimension of 3 by 11 mm. The variation in thickness will then 

be that of the wafer times 3/51 or 11/51, depending on the direction scanned. For 

a 30 % variation in thickness across the wafer, the variation in thickness across 

the beam pattern is about 1.8 to 6.5 % of the thickness grown. We note this 
83 

1 ' 1 

j 

1 1 1 1 • 1 

I -
- 5 a 

* * , 

I " 

o 
X 

Ui 



variation corresponds to a variation in thickness of about 1.1 to 4.2 A for a 65 A 

well. This in turn gives a linewidth increase oi about 1.2 to 4.6 meV, depending 

on the orientation of the crystal thickness gradient to the infrared beam pattern. 

If we add this inhomogeneous term to that above, the inhomogeneous broadening 

is anticipated to be in the range of 2.8 to 6.2 meV. The crystal is oriented so as to 

acheive the narrowest linewidth so the smaller number will be used. The variation 

of linewidth with crystal orientation will be examined later. 

One of the quantum wells we tested was inadvertantly rotated at a very slow 

speed during growth, so each section of the sample received a distribution of well 

widths within the 50 quantum well stack which was grown. The measured spectra 

was seen to be broadened about an additional 10 meV, corresponding to a thickness 

variation of about 10 to 15 % among the wells. The spectra also became very 

strongly dependent on the beam pattern on the surface. This sample, B-331, will 

be discussed in some detail in the next chapter. 

Sum of the broadening effects 

The suspected broadening terms of the QWEST linewidth are tabulated for a 

65 A well at room temperature in Table IV. 1. 

Table IV.l 

Broadening effects for a 65 A quantum well at 300 K. 

Density of QWEST states 7.5 ±2.0 meV 

Lifetime broadening 3.0 ±3.0 meV 

Inhomogeneous well width 3.0 ±1.5 meV 

Total 8.7 ±3.3 meV 

The total assumes the linewidths add as the square root of the sum of squares 

of the individual linewidths. If we reduce the temperature of a 65 A well to 35 K, 
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the broadening terms change as shown in Table IV.2. 

Table IV.2 

Broadening effects for a 65 A quantum well at 35 K. 

Density of QWEST states 2.4 ±0.6 meV 

Lifetime broadening 3.0 ±3.0 meV 

Inhomogeneous well width 3.0±1.5meV 

Total 4.9 ±3.0 meV 

The bandwidth can be seen to have large uncertainties as to the mechanisms 

involved, particuarly in the lifetime. The 82 A well is clearly broadened by an 

inadvertant variation of weil thickness from well to well during growth of this sample 

as will be discussed later. Precise measurements of lifetime, exciton linewidths, 

and quantum well energies as a function of well thickness (to determine band 

nonparabolicity ) may eventually lead to a better understanding of the precise role 

of each of these mechanisms. 
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E. Energy Shift Mechanisms 

The energy of the quantum well states was calculated in section B. from the 

potential of the crystal in which it was contained. However this calculation neglected 

any external fields and the coulomb potential arising from the electrons themselves. 

An external field can be shown to have only a small effect on the QWEST energy and 

is not discussed. In contrast, the electron self-repulsion can have a noticable effect 

on the quantum well energy. This effect is dependent on electron density and lowers 

the QWEST energy by about 2 meV at the densities we use of 4x 10"/cm 2. Another 

mechanism which shifts the observed energy spectrum is the dynamic interaction 

of the probing field with the electron plasma of the quantum well. This causes 

the absorption peak to appear at a higher energy than the true quantum energy 

difference of the states. For the density of electrons and well thicknesses we use, the 

observed energy absorption peak is about 3 meV above the quantum well energy 

difference. 

Coulomb interaction 

The electrons within the well region create an electrostatic potential, $, which 

interacts with both upper and lower quantum well states. This potential can be 

found from Maxwell's equations in one dimension; 

We can use the solut'on to the wavefunctions in section B to find the electron 

distribution as a function of z. This probability distribution is integrated twice 

to find the potential using equation (IV.64). The effect of this potential on the 

quantum well states is found from first order perturbation theory. 

The integrations over the wavefunctions of section B and the subsequent per­

turbation calculations are very lengthy and fairly tedious. But all understanding 
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and a fairly good estimate of the effect can be found by using infinite well envelope 

states. This estimate calculation is presented here and later compared with the 

results of the accurate calculation. 

The wavefunctions of the lower and upper envelope states for the infinite well 

are given by 

* ' - ^ c -COs(V) (IV. 65a) 
y «* 

and 

v£ ^ = J-~sin{2kqi) (/V.65t) 

respectively, where the origin of the well is taken at the center of the well and as 

before, kq = x/Lz and the edges of the well are at ±Lz/2. The electrons are assumed 

to all reside in the lower energy state. The electron surface density is taken to be 

p,. The density distribution, p(z) then becomes 

p ( J ) = ? ^ c o s 2 ( V ) - {IV.66) 

Insertion of this density into equation (IV.64) yields after the first integration the 

result 

d A— P><? 2 [g sin(2y) 
dz t Lt[2 4fc? 

~Bo (IV. 67) 

where £Q is the constant of integation and is equal to the electric field at z=0. 

ID the absence of an external field, this term can be seen to be equal to zero by 

reason of symmetry. Note that even if this term were nonzero, by application of an 

external field or by absence of symmetry, the effect on the quantum well energies 
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can be seen to cancel to first order. If we let En be zero, the integral of equation 

(IV.67) gives an expression for the potential of 

d>— fre2 2 [ z2 cos{2kqz) 
8fc2 (IV.68) 

where we have taken the arbitrary constant of the potential to be zero. 

Using the above expression for the electrostatic potential of the quantum well, 

the energy shift of the two quantum well states can now be calculated using first 

order perturbation theory. Perturbation theory gives the first order correction to 

the energy of the states, A/? as 

= / V $il>dz. 
J-U/2 W 

The energy shift of the lower envelope state now becomes 

(/V.69) 

tL'l2

 n.J( 9 \2f,2 
A F _ r " P.eV 2 f *2 cos(2y) 
• * * ' - Luft c {LJ[4 8ft2 

Pee2 Lz . 

COS2(fc,z) dz 

i 2* 3 
(/V.70) 

where 
r*/2 r 1 
/ 202-cos(2«) cos2(e)rf« (/V.71) 

The integral /j is evaluated in Appendix A, part 1. The perturbation energy now 

becomes 

A £ , = 
e 2 r » [ 1 2 T 

_Pl£_Lz\l 31 (/y.72) 
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The upper state energy shift is calculated similarly. Tue energy shift of the 

upper state is found from first order perturbation theory as 

A ,, (L'12 P.e2( 2 \*\i* cos(2V)l • 2, 0 l . ^, 

_ Pe£ *LZ 

t 2*3 

where the integral / 2 is equal to 

(/V.73) 

ff/2 
/

*/« r 
2«2-cos(2«) 

• f /2 L 
sin2(20)<tf (/V.74) 

and is evaluated in Appendix A, part 2. The upper state energy is then shifted by 

an amount 

AEU = - « 2*3 [12 " 8 

« 8 l 3 2r 2*2 
(/V.75) 

The energy shift of the QWEST, bEq can now be calculated from the above 

two expressions; 

ilEq = &E„ - AEj 
_ P . e 2 f,j 

E 2 
fzl + i 
I2*2 ,2 

5 
16*2 

(/V.76) 

This energy shift is seen to be proportional to product of the well thickness 

and the surface charge density. If we let Lt and p, be 80 A and 4 x 10 n /cm 2 and 

use e = 13ep, then AEq = -1.4 meV. A more extensive derivation including the 

envelope tunneling into the barrier and the solutions for kt gives an energy shift 
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of -2.1 n?eV. The larger number is expected for the larger wavefunction of the true 

envelope states relative to those for the infinite well. The energy shift of other size 

wells sca'e proportionally so a 65 A thick well would have an energy shift of -1.7 

meV. 

Dynamic interaction with the free electron plasma 

The effect of an external electric field on the quantum well states is described 

by its value at the location of the well. But the potential at the location of the 

electron in the quantum well is not neccesarialy that determined from an external 

field, depending on the shielding caused by the electron gas. This shielding has 

been shown to cancel the peak absorption resonance at what would be expected to 

be absorption energy of the transition!'2-84!. The effect was first described by Chen, 

Chen, and Bursteinl34) and then formulated in a readily understandable quantum 

argument by Allen, Tsui, and Vinterl*2!. The quantum argument was then further 

developed by Dahl and Sham.!3'! The validity of this effect was confirmed by inelastic 

light scattering!19! in GaAs quantum wells as discussed in chapter II, section F. 

A simple explaination in classical terms for this effect can be given as follows. 

Suppose the quantum well is placed in an external electric field of frequency w. Then 

the dielectric constant of the medium near a strong resonance at WQ can be written 

as 

n 2 r 
t(«) = cm + 2 " ; ' , (/V.77) 

where ft2, = n^/mee is the plasma frequency squared, 7 is a resistive loss term of 

the resonance, n is the three dimensional electron density, and / is the oscillator 

strength. The dielectric strength from all other transitions are assumed to be slowly 

varying for this description near u>0, and are included by the constant tm. The power 

absorbed per unit volume, PA, is now given byl18) 
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PA = ^\Ei\2u>Im(-t(w)) (fV.78) 

where £,• is the internal field of the crystal. Using this formula we usually expect, a 

maximum absorption peak at the resonant frequency of U/Q, as occurs from simple 

substitution of equation (IV.77) into equation (IV.78). But for strong resonances, 

this expression must allow for the differences between the external and internal field 

which varies as a function of frequency. For instance, the field which interacts with 

the QWEST is normal to the surface of the quantum well. Thus the boundary 

condition gives the relation £,• = Ee/i(u), where £,• and Ee are the internal and 

external electric fields, respectively. From equation (IV.77), we see that 

A_ _ j__M^f+a^ .... ( I V . W ) 

The plasma frequency term can be written as ftp/Am = Hp2, where Qp2 is the 

effective plasma frequency obtained by using the crystal dielectric strength and 

effective mass in the above expression for plasma frequency. The numerator of 

equation (IV.79) can be seen to cancel the denominator of the imaginary part of 

e(w) as given in equation (IV.77). The power absorbed then becomes 

PA = I a ^ n * ? 7 ? ^ 22 o^l^ l 2 f^- 8 0) 
(wg + lip'' - a;-*)2 + i 2 w 2 24, 

and now is maximized at a different resonant frequency of wj, given by 

uo2=<4 + n7> (IV.81) 

as stated earlier in equation (11.20). The theory of Allen, Tsui, and VinterN 

develops an expression from the quantum dynamics of the interaction and has the 

following result for the power absorbed per unit area; 
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PAS, gg <Hfff f i ^ (/y.82) 
««0 (wg + wg - w z ) z + w z 7 z 

where 

w| = ^ ^ u , 0 S 2 2 ; (/V.83«) 

% = /^o o[/.o o^2(*')0j(«')<'s /] <*« (/K.83t) 

where Vn is the envelope wavefunction of the n'th envelope state and p, is the 

electron density per unit area. If we let the plasma frequency be the same, then 

the two expressions (IV.80) and (IV.8S!) are identical with the aid of the definition 

of oscillator strength in equation (10.14) and letting PAS, the absorption per unit 

area, be converted to an absorption per unit volume by the ratio of n to />,. 

The expression for uj in equation (IV.83) can be related to a three dimen­

sional plasma frequency if we use the infinite barrier envelope states of chapter 

III.. The frequency w0 becomes UQ = 3ftfc|/2m* and the integral S22 becomes 

Si? = (5/OJT2)L z = 0.0563Lz. The plasma frequency squared then becomes w2, = 

(Ng/L^/tm* x 5/3. This expression shows qualitatively how the expression of 

equation (IV.83) is about 5/3 times the three dimensional plasma frequency. 

The energy shift is calculated using the expression for the plasma frequency 

in equation (IV.83). The value of % *s found empericallyt18! to be about 0.072£*. 

This is larger than the value of 0.0561.* found for an infinite well, as expected, 

since the wavefunctions for a finite barrier extend further into the barrier region. 

We now calculate the energy shift for several wells for a doping concentration of 

4 x 1 0 n / o n 2 . The energy used in equation (IV.83) is that calculated in section B 

with the assumption of continuity of the envelope derivitive at the well boundary 
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and labeled EQQ- The shifted energy is labeled EQ and the plasma frequency times 

H is labeled £ pj. Note the infinite well expression gives a value of Ept of 51 meV for a 

65 A quantum well. On the other hand, equation (IV.83) gives a value of 28.5 meV 

for Epl. The infinite well thus gives a poor approximation for the plasma frequency 

of the two-dimensional well. 

The calculated energies and shifts are now tabulated in Table IV.3 for three well 

thicknesses of interest. The theoretical absorption resonance energy, EA, is found 

by adding the coulomb energy shift of the previous part to E'Q. 

Table IV.3 

The QWEST energy and energy shifts for quantum wells with thicknesses of 

65, 82 and 92 A. Energies are in units of meV. 

Thickness EQQ Ept E*Q &EQ EA 

65 A 141 29.9 144.1 -1.7 142.4 

82 A 116 30.5 119.9 -2.1 117.8 

92 A 103 30.4 107.4 -2.4 105.0 

The dynamic electron plasma interaction is seen to nearly cancel the electros­

tatic coulomb interaction, anc' ihe net energy shift is about 1.0 meV upward for the 

well widths and doping densities used here. This small an energy shift is below the 

accuracy of the initial quantum well energies. 
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F. Optical Properties 

The optical properties of the QWEST are of special interest because of the 

transition's high oscillator strength, narrow bandwidth, and fast decay time. In 

this section, several optical properties are calculated for the QWEST. These include 

the index of refraction, the absorption rate, and the nonlinear index of refraction, 

usually called n^. 

Index of refraction 

The electric susceptibility of a dielectric medium, x> is defined by P = IQXE 

where P and E are the polarization of the medium and the applied electric field, 

respectively. The electric susceptibility for an dipole transition between two quan­

tum states is given by YarivMI as 

Jlu\ - " 2 r2A j V<> (wp-tffo ( l v g 4 x 
* {"> <0h l + tw-woprj + ffi'lir' ( ' V , 8 4 0 ) 

x > ) = &3*!k 1 , ( | V.84») 
«0» l + (o>-u;o)2r| + 4n2r 2r 

where the dielectric response has been seperated into real and imaginary parts, 

where y = %' + »x*- The linear and nonlinear index of refraction is determined 

from x' and the absorption of light and its saturation are determined by x". The 

time for the upper and lower quantum states to loose phase coherence from one 

another is called TV The relaxation time for the quantum states to return to 

their equilibrium distribution between the lower and upper states is called r. The 

"precession" frequency Q is defined by Q m p£b/2ft where EQ is the amplitude of 

the driving field at a frequency w. The equilibrium population difference, A/VQ, 

between the upper and lower states is taken to be the doping density since at the 

energies and temperatures we use, only a small fraction of electrons are in the upper 
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otate. The polarization obtained from the use of a surface density must be averaged 

over the distance between wells to obtain the average polarization. Therefore, one 

can generally use an averaged density for ANo- The dipole, /», is the same dipole 

calculated previously in section C. The resonant frequency, ui0, is equal to the energy 

difference of the two quantum states over *. 

The index of refraction of the medium is determined from square root of the 

dielectric constant, e, which is related to x by e = em + eox, where em is the dielectric 

constant of ail other transitions in the frequency domain of interest. The refractive 

index of the media from all other trasitions, n0, is given by no = ^H. The index 

of refraction change, An due to the transition at w0 is then given by 

A n = ^ . (/V.85) 

If we assume that the dipole is 17 e-A and T% is equal to 0.2 picoseconds, then 

An = 2.5 x 10 - 1 8cm 3 ANQ g(u), where j(u) is the lineshape factor, 

Nonlinear refraction 

A nonlinear refraction index, n 2, is defined by 

n as n 0 + n2l (/V.87) 

where n% is seen to be the linear constant between the ladex of refraction and 

the incident optical intensity, /. The expression for this term can be found from 

equation (IV.84a) by expanding the Q 2 term in the denominator to first order in 

this term. This first order term of x* in ft2 is labeled x ' 3 ^§ since the polarization 

is now proportional to E\ instead of £Q. Expansion of equation (IV.84a) now gives 
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where i?0 = \ffo/€o <** 377oAm and po is t n e magnetic permeability of free space. 

This nonlinear coefficient can be related to the nonlinear index of refraction by first 

using the relation between the amplitude of an oscillating electric field in a dielectric 

medium and the optical intensity in the medium; 

2t,0 ' 

Now using equations (IV.86) through (IV.89) we obtain 

(/V.89) 

_ XW(u)El _ eH*)* T-2 r A/VQ (a, - u0)T2 . . 

where the dipole n has been set equal to e(z). We now define the lineshape factor on 

the right by gW{w), given by 

If we now take {z) = 17 A, A/V0 = 4 x 101 7/cm3, n0 = 3.27, r = 4 picoseconds, and 

T2 = 0.5 picoseconds we then obtain 

n2 = 0.06 X 10" 4 ^ j(3)(W). (IV.92) 

The magnitude of the nonlinear coefficient depends on how close the light is to the 

resonance. We find the maximum occurs when (w-wo)^ equals 1/VS, at which 

point j'3)(w) = 0.325. The nonlinear coefficient then has a maximum value of 3.11 x 

1 0 - 5 cm2/Watt. 
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Absorption rate 

The absorption rate, i(w), for a collection of dipole oscillators E. the rate at 

which light of a given intensity / wili decay exponentially into a medium. This rate 

is given by Yarivl'*! as 

M = ~~- CV.93) 

where *o is the free space wavevector of the light. This equation becomes with the 

aid of equation (IV.84b), 

where X0 is the free space wavelength and the absorption lineshape factor, s'(w) is 

defined by 

/ ( u ) = J . (/V.95) 

This absorption constant can be put into a simpler form with the aid of the oscillator 

strength, / . Using the oscillator strength definition of equation (III. 14), one obtains 

We now take value of Xo as 8.15 microns, which is the wavelength of a photon with 

energy of 0.152 meV. We also let p — 17 e-A, n 0 = 3.27, T2 = 0.5 picoseconds, 

and &NQ = 4 x 10 1 7 cm~l J absorption constant then becomes ~i{v) = 3.8 x 

104 cm-1 s'(w). The cross section, a, defined as the ratio of the absorption constant 

to the population difference, is approximately a = 1 x 10" 1 3 . 

We remark that the all of the above optical properties are proportional to 

AN0, the average dopant density. In our numerical estimates we used a value of 
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4 x 101 7 em - 3 for this quantity. In the next chapter we will see that this doping 

density only exists within a 100 A region, with the average undoped spacing between 

each of the doped regions being from 400 to 100 A, depending on whether buffer 

layers are inserted or not. Thus the lower state density, when averaged over the 

entire region, will become equal to 20 to 50 % of the doping density in the doped 

region. If we wish for the above numerical estimates, which are linear in lower state 

density, to apply we must multiply them by .2 to .5 respectively. These optical 

quantities also only apply to optical rays propagating entirely within the epitaxial 

region containing the quantum wells in a regular array. Obviously, outside the 

region containing the quantum wells no QWEST optical effects can occur. Also, 

the QWEST has a nonzero dipole only for one polarization of the electric field. 

The interaction of infrared light of other polarizations with the QWEST must be 

reduced by a factor including the inner product of this polarization with Ue QWEST 

dipole, usually taken to be in the z direction. The effect of this lower coupling is 

equivilent to lowering the dipole in the above optical quantities by the cosine of the 

angle between the infrared polarization and the QWEST dipole. The next chapter 

will show how the above optical properties are to be modified when the optical 

beam is propagating at an angle to a number of quantum wells, as occurs for our 

measurements. 
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V.QWEST Absorption Experiments 

In this chapter we describe the experiments performed to observe the QWEST. 

We present the results of those experiments and compare these results with the 

theory of chapter IV. 

A. Mechanics of the Optical Probe 

The optical experiments were oriented towards observing absorption of infrared 

radiation by the QWEST. The primary goal was simply to prove that a dipole 

transition between the envelope states truly exists in a real material. It required 

years of effort to see this effect, during which many serious questions arose about 

both its theoretical existence and how close real quantum wells approximated a 

theoretical two dimensional system. For instance, if the quantum well walls were 

sufficiently rough then scattering could destroy the effect either by increased lifetime 

broadening or by lack of conservation of transverse momentum wavevector. As will 

be shown, neither is the case. The primary difficulty in the observation of the effect 

was found to simply be a trapping of all free electrons by deep energy states, most 

likely at the interfaces. 

The second goal was to measure the energy of the QWEST. These energies could 

then be cc <pared with the theoretical predictions as a measure of understanding 

of the quantum well states. A third goal was to prove that the oscillator strength 

of the transition was as large as theory predicted and to obtain good agreement 

between the two. And filially, a measure of the hnewidth would indicate if k vector 

conservation truly occured. 

The lower quantum well state could be populated by either photopumping the 

state from the valence band or by doping the conduction band. The advantage of 

photopumping is the capability to vary the electron surface density by adjusting 

the pump power. The disadvantage is spatial inhomogeneity of the lower state 
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population, transversly because of the laser beam profile and in depth because of 

attenuation of the optical beam. These variations would make an accurate measure­

ment of oscillator strength very difficult. Also, it would require approximately 1 

kilowatt of optical power to maintain an inversion density of 4 x 10 1 1 c m - 2 per 

well, and this inversion is desired to be continous. 

The infrared absorption measurement could use either an infrared laser or a 

spectrometer. The laser has the advantage in that it could be focused into a 

waveguide on the surface to couple to the QWEST with the proper polarization. 

In addition it could be pulsed to allow photopumping as a method of populating 

the lower state. The problem with using a laser is that it is not very tunable. A 

CO2 laser can be tuned from 9 to 11 micron wavelength and would be an ideal 

source for the absorption measurement if a QWEST resonance could be placed 

in the vicinity of the lasing tunability. However, it was felt that the chance of a 

successful measureinent would be much better if a broad absorption spectrum could 

be observed. Not only would less demands be placed on the precision of the crystal 

growth and theory, but a surrounding spectrum could be observed as an example 

of types of phenomena which occur in the energy region. This approach proved 

invaluable. 

Once it was felt a spectrometer measurement was advantageous, the choice of 

instuments eventually narrowed to a Fourier Transform Infrared Radiation (FTIR) 

spectrometer. These spectrometers are commonly used by chemists and readily 

available. Furthermore, the FTIR spectrometers are capable of measuring low 

absorption values with low noise and large spectral regions with fundamentally 

accurate calibration of frequencies. 

The spectrometer used for these measurements was a Nicolet 7199 which incor­

porates its own 20 bit computer. The optical layout of the 7199 FTIR spectrometer 
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is illustrated in Fig. V.l. 

*z%-M18 M19 

D2 

Sample compartment 

- Focal point 

Figure V.l: Nicolet spectrometer configuration. 

The legend is as follows: 
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Si -Infrared Source M12 

Ml -Spherical mirror M13 

Al -Aperture and chopper M14 

M2 -Spherical mirror, 9.0" E.F.L. M15 

M3 -Flat mirror M18 

BSl -Beamsplitter M19 

BS2 -White light beamsplitter LI 

M4 -Fixed mirror L2 

M5 -White light mirror M20 

PI -Centerline laser prism WS1 

M6 -4-position flat mirror WDl 

M16 -2-position flat mirror BEl 

M17 -2-position flat mirror D2 

-OfF-axis parabolic mirror, 9.3" E.F.L. 

-Off-axis parabolic mirror, 9.3" E.F.L. 

-Off-axis parabolic mirror, 9.3" E.F.L. 

-Off-axis parabolic mirror, 9.3" E.F.L. 

-Flat mirror 

-Off-axis parabolic mirror, 9.3" E.F.L. 

-Alignment laser 

-Centerline laser 

-Flat mirror 

-White light source 

-White light detector 

-Beam expander 

-HgCdTe detector and LN2 dewer 

The interferometer operates as follows. Infrared light is emitted by source 

SI and is then apertured by Al. The infrared light then enters a Michelson 

interferometer formed by beamsplitter BSl and the two mirrors, M4 and a second 

movable mirror on an air bearing. The movable mirror slides back and forth on its 

mount, so that a given wavelength will have a sinusoidal variation in its intensity on 

the output of the interferometer at mirror M6. Each wavelength will have a different 

periodicity, so by looking at how each frequency component of an infrared beam 

differs on being transmitted through a sample or not, the absorption spectrum is 

obtained. The fourier transform needed to convprt the detected interferogram into 

a spectral curve is done digitally. The position of the moving mirror assembly is 

detected by laser L2, the centerline laser, which is also sent through the Michelson 

interferometer by a small prism which protrudes into the infrared beam path. The 

wavelength of the infrared light is ratioed to the HeNe laser wavelength of laser L2 by 
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simply comparing the relative ratio of cycles in the interferogram. Thus the infrared 

frequency calibration is very good and always within the frequency resolution of the 

measurement. The zero point of interferometer is found from a white light source, 

WS1, with its own interferometer formed by BS2 and detected by WDl. The 

resolution of a given measurement is determined by how far the moving mirror of 

the interferometer moves. The farther the slide moves, the more periods per cycle, 

and the better seperation between two close periods. Our experiments are typically 

performed with 4 c m - 1 resolution, which corresponds to about a half centimeter 

movement of the interferometer mirror per scan. The minimum sensitivity of the 

system is limited by the detector noise. The single scan noise at 4 c m - 1 resolution 

is at about the 2 x 10~3 level. By averaging of 1000 to 2000 scans, the noise level 

can be reduced to under the 1 x 10 - 4 level. Reduction of noise much below this level 

is limited by the 15 bit resolution of the analog to digital converter at the output 

of the infrared detector. A single scan at 4 c m - 1 resolution takes 0.5 seconds. A 

2000 scan experiment then takes about 20 minutes of run time. The optical system 

is totally enclosed and flushed with argon to eliminate infrared absorption from 

atmospheric H2O and more importantly, CO2. After rapidly placing a sample in 

the chamber, while holding one's breath, another 20 minutes of wait was required 

to bring the C 0 2 absorption to an acceptably low level by purging with argon. The 

argon had the unfortunate problem of short circuiting the HeNe laser high voltage 

power supply in spite of podding of the lasers in insulative material. Frequent 

replacement of these lasers was required and thus only the centerline laser, L2, was 

generally used. 
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Figure V.2: Sketch (a) shows the polarization and angle of the 3 mm diameter 

infrared beam with respect to the sample. Note the internal electric field has only 

a small component perpendicular to the surface because of the strong refraction. 

Sketch (b) shows the elliptical beam pattern on the surface when the sample is at 

Brewster's angle (fl = 73°). The angle between the major axis of the ellipse and an 

arbitrary axis in the crystal plane is shown as <t>. 

The quantum well crystal was placed in the sample chamber at the 3 mm 

diameter focus of the infrared beam. A polarizer and sample holder were placed 

on a translation mount and adjusted to place the sample exactly at the center of 

the infrared beam. Centering of the sample was particularly important since at 

Brewster's angle the 15 mm square samples only presented a 4.4 mm wide target to 

the 3 mm diameter infrared beam. The infrared beam was polarized horizontally 

by a KRS-5 window with a lithographically produced 0.4 nm period metal grating 

on the surface. As shown in Pig. V.2, the sample was then rotated an angle 6 

about a vertical axis within the plane of the wafer. Because of the high index of 

refraction of GaAs, about 3.27 in the infrared region, Fresnel reflection off each 

surface of the wafer at normal incidence is about 28%. These two surfaces form a 

Fabry-Perot cavity with a length of the wafer thickness and thus lead to very strong 
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transmission oscillations as the frequency is scanned. A GaAs wafer of thickness T 

will have a spacing between maximum cavity transmissions, AI>, of l/2n0T, where 

no is the index of refraction. A 400 nm thick substrate will have a frequency 

spacing between resonances of 3.8 cm" 1. The scans are typically taken at 4 c m - 1 

resolution so as to filter out these strong oscillations in frequency. Otherwise, these 

Fabry-Perot oscillations, with a peak-to-peak oscillation height of about 3095 of the 

transmission, make observation of the QWEST with a 2% absorption impossible. 

A further reduction in these oscillations is found by operating at Brewster's angle. 

Brewster's angle, eg, is defined by 

tan(»fl) = rt0 (V.l) 

and is found to be about 73° for the refractive index of 3.27. At Brewster's angle 

our horizontally polarized infrared beam is transmitted entirely without reflection 

at either surface and the cavity resonance disappears. A second Fabry-Perot cavity 

is formed with reflection at the top surface of the epitaxial growth forming one 

mirror of the cavity and the interface between the eptaxial layers, consisting mostly 

of Al.3Ga.7As, and the GaAs substrate forming the other mirror of the cavity. This 

Fabry-Perot cavity can be shown to have a transmission peak-to-peak height of 

about 4%. The periodicity of this resonance is found, as before, from the equation 

AP = l/2n0rep,-. A typical value of the epitaxial thickness is about 3 pm and 

using this value for T^, the spacing between resonaces becomes about 520 cm - 1 . 

This large a frequency spacing cannot be spectrally filtered, but because of the 

small amplitude of this oscillation, it can be eliminated in entirety at Brewster's 

angle. This resonance was extremely useful in calibrating the thickness of the 

overall epitaxial growth. This calibration was then used to calibrate the quantum 

well thickness. The procedure involved first deducing the overall epitaxial thickness 
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from the Fabry-Perot oscillations with the infrared beam at normal incidence to 

the surface of the wafer. The ratio of the actual overall thickness to the overall 

design thickness is asummed constant throughout the epitaxial growth and thus 

the wells are multiplied by the same proportion. This assumption is not necessarily 

valid since the wells consist of a diiferent material, GaAs, than the majority of 

the epitaxial growth, which consists mostly of Al.3Ga.7As. However, Transmission 

Electron Microscope (TEM) data indicate this assumption may be valid. This TEM 

data is discussed in the next section. 

Sample orientation at large angles such as Brewster's angle is important to 

see the QWEST absorption. This is because the QWEST dipole is normal to the 

surface and so the electric field of the infrared beam must have as large a component 

as possible normal to the surface to maximize the absorption. Unfortunately the 

beam is strongly refracted upon entering the sample and the electric field has only 

a small component in the desired direction (See Fig. V.2). The angle 6 must be 

maximized if we wish to have any coupling to the QWEST dipole. If $ is small or 

zero, the QWEST absorption would disappear. But as $ becomes very close to 90°, 

the projected area of the wafer to the infrared beam becomes very small and the 3 

mm diameter infrared beam could intercept only a fraction of the wafer. Use of 6 at 

Brewster's angle provides near maximum possible coupling of the infrared field to 

the QWEST dipole by a beam incident on the surface and yet projects a resonable 

cross section to the infrared beam. It also has the advantage of eliminating the 

Fabry-Perot resonances mentioned abo;*e. Thus this angle is generally used for the 

QWEST absorption measurements. 

We now need to calculate the absorption strength of a quantum well sample at 

Brewster's angle. This calculation is complicated by the two-dimensional nature of 

the states and propogation of an infrared beam at an angle to these states. The 
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technique to calculate this absorption is thus based on energy conservation, which 

allows a simple but accurate derivation from fundamental principles. We calculate 

the power absorbed by the quantum wells from the infrared beam from the quantum 

mechanics of these states in the presence of an infrared beam. This power is then 

normalized by the incident beam power to deduce the absorption fraction. We begin 

by noting that the power absorbed per unit volume, PA, is given byl'M 

PA=^'x"{u)\E1f. (V.2) 

TLa power absorption per unit surface, PAS, can be found by substitution of p, for 

A/Vo in equation (IV.84b) and using this expression for x"(w) " n equation (V.2) to 

obtain 

PAS = " » % » 1 |g,|». (V.3) 

This expression was found without inclusion of the plasma interaction described in 

chapter IV, sectior E.. This interaction was found to shift the absorption maximum 

from wo to w0, where 

<"O2 = WO + W P C-4) 

and up is the plasma frequency defined for a quantum well by equation (IV. ?3). 

The power absorption ppr unit area in the presence of this energy shift was given 

in equation (IV.82). The expression for x in equation (IV.84) was derived in the 

rotating wave approximation. If we apply a similar assumption (wj + w *=» 2w*0) to 

equation (IV.82), it becomes identical to equation (V.5) but multiplied by w0/u>J, so 

PAS become" 
107 



PAS = W2?*" I 1^(2. (V.5) 
2W;» l + ^ - ^ r i 

This absorption per area must be multiplied by the number of wells excited, W, to 

determine the total absorption. 

The component of the electric field in the z direction squared, |E»|2, must now 

be related to the incident power, PQ. This relation is calculated for Brewster's angle, 

0g. We first note that at Brewster's angle, the power incident on the wafer surface 

is fully transmitted into the wafer. We also use the relation between the infrared 

intensity, I, and the electric field; 

where no is the refractive index and no equals 377 ohms. Using power conservation, 

we have a relation between Po and the magnitude of the electric field inside the 

wafer, Ew, 

where the integral is over a surface normal to the direction of propogation inside 

the wafer. The internal infrared beam is found to propagate at an angle e{ to the 

normal to the surface. From Snell's law, we know sin(*,) = iin{8g)/n0 = I/yn§ + l, 

where we assume the infrared beam is incident at Brewster's angle, ig, and note 

that tan(0g) = no by definition. The component of the internal field perpendicular 

to the surface, EZl is equal to £u,sin(fl,-) = Ew/Jn$ +1. The total absorbed power, 

AP, is equal to 
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- / AP = J PAS dS 
= « W * 2 * 1 [{E42 d $ 

2wjft l + (u;-w 0)2r^ y 

2w0» i + ( w - w 0 )2r | y 

where the integral of the electric field squared is over the two dimensional quantum 

well surface. This integral is otherwise identical to the integral of equation (V.7). 

The surfaces are related by the projection formula dS„ = dScos(tf,) = dSno/y/nf+1. 

Equation (V.8) now becomes 

jp _ WQ^TJPIW 1 2t)0Po 
2wS* l + l w - w o ^ n g v / ^ + T 

(V.9) _ lis H2T2p,W 1 u»0 PQ 
n0X0 <* l + iw-woMulnoy/tf+l 

where we have multiplied the absorbed power by the number of wells, W. If we let 

p,w equal the integral of the averaged three dimensional lower state density, AiVo, 

over z, than it is noticed that equation (V.9) is very similar to the integral of 7(01) 

as given in equation (IV.94). In particular, AP = / i(w) d*(ui0/wJ)/no\jng + 1 . The 

division by the no terms is a result of the component of the field perpedicular to 

the surface being reduced by a factor of approximately «o upon refraction at that 

surface. The absorption fraction, AF, is found by dividing AP by PQ. We also use 

the definition of oscillator strength to find 

AF = * ^ f p , W T* (v 101 
2t°m'c 4 4fifhl l + ("-"o)2rl 

where the first term is seen to contain only fundamental constants, the second term, 

which is a measure of the effect of the plasma shift, is nearly unity, the third term 
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contains the product of the oscillator strength and the number of oscillators, divided 

by the refractive power of the wafer approximately to the cube, all of which are 

material parameters, and the iast term is simply a lineshape factor. Because the 

lineshape will be hard to predict and we wish to obtain a relation for the oscillator 

strength independent of lineshape, we integrate the absorption fraction over the 

lineshape to obtain an integrated absorption fraction, IAF, given by 

lAFs \ f AF{w)d(tu) 
e^k too j ^ ^h 'OS. tl»w IV.U) 

This expression is evaluated using W = 50 and p, = 4 x 10 n cm - 2 , and wo/wo = 

0.975 to obtain IAF = 0.062 /meV. The infrared spectrometer uses units of Absorbance 

to measure absorption. The Absorbance (Abs) is defined by Abs=-logio( Transmission). 

If the transmission is close to unity then Abs=Absorption/ln (10) where Absorptions-

Transmission. For instance, a 1% absorption will give an absorbance of 0.01/ln(10)=4.34 

mAbs, where mAbs=10 - 3Abs. The frequency, p, is measured in units of in­

verse centimeters and is related to the photon energy, E, in eV by E = hcv = 

1.24 x 10~41>. For example, a 1000 c m - 1 frequency corresponds to an energy 

of 124 meV. The integrated linestrength becomes, in units of the spectrometer, 

IAF = 0.218 / Abs-cm - 1. This expression is used to measure the oscillator strength 

of each of the quantum wells. 
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B. (AlGa)As QW Crystal Development 

The quantum well crystal growth evolved over the course of several years of 

development. The type of structures made and the manner in which they were 

made were both critical to the proper observation of the QWEST. In fact, it was 

not until a few months ago that this growth procedure became sufficiently refined to 

see any significant effect. However, once the proper technique for growth was found, 

the QWEST appeared in full strength with near perfect agreement with theory. 

The crystal growth was performed with the aid of Steve Eglash, a Stanford 

graduate student, using the Molecular Beam Epitaxy (MBE) apparatus at Hewlett-

Packard. Hewlett-Packard generously agreed to cooperate by providing these samples, 

One of the problems was that Hewlett-Packard had not, previous to my request, 

grown quantum well crystals. However, they had grown heterojunctions of (AlGa)As 

on GaAs. These surfaces are capable of quantizing an electron in the direction 

perpendicular to the surface and were used to make high mobility transistors. 

These heterojunctions were well characterized and it was felt that quantum wells, 

which merely required another hetroj unction on the other side, would be a simple 

step beyond the known crystal growth procedure. This turned out not to be 

the case. First, the previous crystal growing procedures had some errors in many 

of the growth parameters. Second, it is now known that it is much easier to 

grow (AlGa)As on GaAs and obtain a good interface than it is to grow GaAs 

on (AlGa)As. The reasons are still not well understood, but appears to be re­

lated to how impurities are incorporated into the two materials. I>s-Ml 

The first samples grown, in May of 1982, were a set of three crystals, with one 

well each of a single quantum well of GaAs with AljGa As barriers. One well was 

grown in each sample of 0, 80, and 100 A thickness, respectively. The Al.3Ga •;' <? 

barriers were 100 A thick. The doping was in the GaAs well region with a Si 
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donor density of 4 x 10 1 7 cm~3 The absorption spectra for these samples had little 

absorption at the higher energies and quickly went to infinite absorption for energies 

around 1200 c m - 1 (or ~150 meV) and below. It was quickly realized that the 

substates were not insulating. The observed absorption spectra matched perfectly 

with that expected from a Drude model with a doping density of 5 x 10 1 8 em - 3 , a 

scattering time of 0.2 picoseconds (from the mobility) and a substrate thickness of 

0.34 mm. Hewlett-Packard confirmed these substrate properties. 

2770 1950 
Wavenumbers 

Figure V.3: An example of a typical infrared absorption spectra of a GaAs 

substrate with epitaxial growth of (AlGa)As quantum wells. This sample, A-516, 

failed to show any QWEST resonances, but exhibites the two small phonon abosrp-

tion peaks at 709 and 770 c m - 1 seen on ail of the later samples. Note that (AlGa)As 

materials have very little absorption in a broad region of the infrared from 2 to 20 

micron wavelengths. (Absorbance=-log10(tr<m«mi'j«ion)) 
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The next set of three samples were grown as before but on insulating substrates. 

The spectra is flat except for a strong absorption band which occurs for wavenum-

bers below about 500 cm - ' from optical phonon absorption. I42) On these samples is 

also observed a small peak at 770 c m - 1 (95.5 meV) with a height of about 5 mAbs 

and a width of 5 meV. This peak was the same on all samples and independent of 

polarization of the infrared beam. No other absorptions were observable. A typical 

infrared spectra of a GaAs substrate with epitaxial growth is shown in Pig. V.3, 

which is the spectra of a later sample, A-516, which shows an absorption at both 

770 c m - 1 and 709 cm - 1 . 

During the months of October and November, 1082, several different samples 

were investigated to better understand the infrared spectra of GaAs and its epitaxial 

growth. Four samples were provided by Steve Eglash of Hewlett-Packard as ex­

emplary of various types of substrates and epitaxial growth. The first of these 

samples, G-718, is a GaAs insulating substrate doped with Cr and Te, which have 

midgap bound energy states, to insure the Fermi level is pinned at midgap. This 

substrate is the most commonly used form of insulating substrates. A second pure 

GaAs substrate, without any doping at all, G-730, was also provided. Two samples 

with epitaxial growth were also examined. Both samples had 4.5 pm of Al xGaj. xAs 

grown eptiaxially by Hewlett-Packard's MBE machine. The first 0.9 |im of growth 

was undoped and the latter 3.6 //m was grown with about 8 x 10 1 7 Si donors. For 

one of these samples, A-388, the Al fraction, x, is 0.18. For the other sample, A-

399, the Al fraction, x, is 0.28. The samples G-739 and G-718 exhibit no narrow 

absorption peaks above the 500 cm ' 1 phonon absorption edge and have a noise 

level of 0.6 mAbs (=0.014% absorption). In particular, neither of these substrate 

materials exhibit either the 709 or 770 c m - 1 resonances. Also sven are shallow 

maxima, slowly varying over 100's of wavenumbers (10's of meV), with amplitudes 
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of about 2 mAbs. These are common throughout the spectrum and are believed 

to be noise. Both samples A-388 and A-399 have similar spectra but with an ab­

sorption observable at 70f cm - 1 . This resonance has a height of 5.3 mAbs for 

sample A-388 and 11.8 for sample A-399. The 770 c m - 1 resonance is not seen on 

any of these samples. However, for all samples measured after this set, the 770 

c m - 1 resonance is observed. On a later set of samples, we fir.d that the substrate, 

F620ES, has an absorption at 770 cm" 1 but not at 709 cm" 1. The samples B-133 

and B-134, with a few microns of epitaxial growth on the same substrate material 

as F620ES, subsequently exhibit an additional line resonance at 709 cm" 1. The 

absorption peak at 770 c m - 1 has been previously reported to be a third order op­

tical phonon absorption in GaAsH*!. This third harmonic absorption is probably 

enhanced by various crystal defects or impurities. This peak was not seen on any 

of the older samples, including those with epitaxial growth. However, it is seen 

on all of the newer samples, including those with no epitaxial growth. ( Hewlett-

Packard changed their crystal suppliers about the time of the change.) In addition 

to this resonance at 770 cm - 1 , another very similar resonance appears at 709 c m - 1 

(87.9 meV) only for those samples with over a micron of epitaxial growth. Tests 

on wafers both before and after growth indicate that the 709 cm"1 absorption is 

generated by the epitaxial growth. The 709 cm - 1 absorption is suspected to be the 

same phenomena as the 770 cm" 1 absorption, only occuring in (AlGa)As instead 

of GaAs. Note the energy of this 709 cm" 1 line is observed at exactly the same 

frequency for both Al.i8Ga.82As and Al^Ga^As epitaxial growths, but with about 

twice as large an absorption for the latter. Thus this absorption is more related 

to the presence of Al than the properties of (AlGa)As. Other than these phonon 

resonances, no other peak which could be confused with a QWEST was observed 

on any sample. 
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The absorption experiments with the above set of samples allowed a calibration 

of the minimum noise of the spectrometer. This is found to be equivilent to about 

10~4 absorption strength. But depending on such factors as the CO2 content of the 

spectrometer and the surface quality of the wafer, the noise of transmission through 

a GaAs wafer is variable but often several times 10 - 4 . A single quantum well 

doped in the well region with a 10 meV linewidth is calculated to have ove* a 1 0 - 4 

absorption. However, caution and the lack of observation of a QWEST at this level 

indicated further samples should be grown with 50 wells to increase the absorption 

signal. The doping was also changed from the well region to the barrier region. 

The electrons would then diffuse into the well and populate the lowest quantum 

well. Two advantages are seen for doping in the barrier region. The first is that the 

lower energy quantum well state is fully populated by the donor electrons and this 

population density is independent of temperature. As the lower quantum well energy 

tends to be more than 50 meV above the GaAs band edge, which is the location of 

the Si donor energy with doping in the well region, only 10% of the donor electrons 

populate the lower state at room temperature and much less at lower temperatures. 

In contrast, the Si donors in the Al.3Ga.7A8 barrier have a donor energy only a 

few meV below the barrier band edge, but 100's of msV above the GaAs quantum 

well states, thus the electrons fully ionize into the lowest quantum well states for 

all temperatures. The electrostatic energy between fully ionized donors and free 

electrons in the well for a surface density of 4 x 10" c m - 2 is easily shown to be 

only about 30 meV for 100 A wells and doping regions. Since the barrier is about 

260 meV high, the relatively weak electrostatic forces allow full donor ionization 

into the well region. The effect of the electrostatic forces on the quantum well 

energies was already covered in chapter IV, section E. This change increases the 

room temperature population of the quantum wells, and therefore the absorption 
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strength, by a factor of about 10 for the same doping density. So this increase, 

in combination with the growth of 50 wells, increases the absorption strength by 

a factor of about 500 to about 5 x 1 0 - 2 or 5%. This absorption strength is very 

clearly observable with the FTIR spectrometer with a signal to noise ratio of over 

30. A second advantage to doping in the barrier region is the isolation of the ionized 

donors from the free electrons, which would undoubtedly help to conserve matching 

of the transverse k vector (because of reduced impurity scattering), essential for a 

QWEST linewidth sufficiently small to see the absorption and for the transition to 

be useftll once seen. 

Layer Thickness Material Doping 

Oxidation cap 500A GaAs Undoped 

Buffer region 1.0 n AljGajAs Undoped 

Barrier 50A AI 3 Ga 7 As N D - 4 X 10 1 7 /cm 3 

| Well L w GaAs Undoped 
1 Barrier 100A AI 3 Ga 7 As N D = 4 X 10 1 7 /cm 3 

I We" Lw GaAs " Undoped 
1 Barrier 100 A Al jGa 7 As N D = 4 X 10 1 7 /cm 3 

' 
| Well 

N ; Lw GaAs Undoped 
j Barrier 100 A Al jGa 7 As N D - 4 X 10 1 7 / cm 3 

Well L w GaAs 
Barrier 50A AI 3 Ga 7 As N D = 4 X 10 1 7 / cm 3 

Buffer region 1.0 M AljGajAs Undoped 

GaAs substrate undoped 

Figure V.4: Layer structure of the epitaxial quantum well growth for the earlier 

samples. 
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Figure V.5: Infrared absorption spectra of quantum well samples at 9 = 73° 

(except where indicated) and at room temperature, a.) Sample A-494, b.) Sample 

A-495, c.) Difference spectra of samples A-495 and A-494, d.) Sample A-495, two 

days after spectra b.) was taken (note the differences), e.) Sample A-495 at normal 

incidence (6 = 0), f.) Sample A-495 two months after spectra b. above (note the 

energy shift of one peak). 
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Samples A-494 and A-495 were then grown, as shown in Fig. V.4, on January 

3, 1983. The two samples, A-494 and A-495, were grown with 50 wells and were 

specified to have well thicknesses, Lu,, of 80 A and 65 A, respectively. The epitaxial 

growth was performed with a constant substrate temperature of 580° C for both the 

(AlGa)As and GaAs regions. No sample was grown with Lu, equal to zero since the 

infrared spectra of the epitaxial growth had become sufficiently well understood to 

not require this sample. Furthermore the epitaxial growth was becoming sufficiently 

thick, about 3pm, that it took 4 hours to grow a single sample, and a full day at 

a time seemed near the limits of Hewlett-Packard's generosity. This meant two 

samples. These samples were polished on the back side and probed within 2 days of 

their growth. Unexpectedly, this rapid response was critical to the first observation 

of the QWEST. The spectra of these samples are shown in Fig. V.5. As indicated 

above and in equation (V.ll), a 10 meV linewidth transition is expected to have a 

30 mAbs absorption strength. The spectrum of sample A-494 is seen in Fig. V.5a 

to have the commonly observed phonon peaks at 709 and 770 c m - 1 but no other 

transitions indicative of a QWEST. Sample A-494 was specified to have 80 A thick 

wells and thus should have a QWEST frequency of about 1000 c m - i . The spectrum 

of sample A-495 taken on January 5, 1983, is illustrated in Fig. V.5b. This sample 

with 65 A thick wells should have a resonance at about 1220 cm - 1 . No resonance 

is seen at this energy, but it is noticed that a new absorption peak, never observed 

before on any of the previously measured samples, is seen at 835 cm - 1 (or 104 

meV). This new resonance is made clear by the subtraction of the two quantum 

well samples in Fig. V.5c. This transition has a linewidth of 10 meV and a peak 

height of about 8 mAbs. This gives a linestrength about a factor of 3 below that 

predicted. Two days later, on January 7, 1983, the spectrum of Fig. V.5d was 

taken. The anomalous resonance is seen to have shifted about 0.3 meV, broadened 
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slightly, and most significantly, decreased in peak height by about a factor of two. 

A few days later it disappeared altogether. The spectrum of this sample at normal 

incidence, taken on January 7, 1083, is shown in Fig. V.5e. It is noticed that the 

absorption peak height has decreased by about a factor of 2 or 3 but does not go 

to zero, as it should do if it were a QWEST. Yet another anomaly appeared two 

months later after sample A-495 had been heated to 450° C. for approximately 

45 minutes (in an attempt to diffuse in some In) and re-examined. The QWEST 

resonance is seen in Fig. IV.5f to reappear, but shifted by an energy of 6.6 meV. 

This spectra will be discussed later. 

The above observations of samples A-494 and A-495 in early January, 1983, 

brought up many questions. One problem was that if this transition was a QWEST, 

then why is its energy so far from prediction? The answer is that the wells were 

not the specified thickness. This problem had already been indicated in samples 

A-388 and A-399. The infrared spectrum of these samples at normal incidence 

allowed determination of the epitaxial thickness from the Fabry-Perot resonance 

of this thin optical cavity. Using an index of refraction of 3.2 for the (AlGa)As 

epitaxial growth,!*3! the resonant peak spacing indicated the epitaxial thickness of 

the two samples, A-388 and A-399, were 5.7 and 6.6 /*m, respectively. This is 

contrasted with the specified thickness of 4.5 /im for both the samples. A SEM 

scan of the edge of the wafer indicated the thickness of the two samples were much 

larger than 4.5 ^m, but the SEM calibration was not correct to better than 10% 

and could not give an independent accurate measurement. These SEM photos did 

indicate, however, that the two samples were not of the same thickness and that 

A-399 has an epitaxial thickness about 15% larger than that of A-388. Hewlett-

Packard revealed that their method for calibration the epitaxial thickness relied on 

an optical microscope with about the same z olution as the vm growths, so their 
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accuracy was in question. But the accuracy of the infrared cavity measurements 

had not been truly verified. The distance between the cavity resonance peaks 

could usually be determined with an accuracy of about 3%. But the accuracy 

of the index of refraction was in doubt. The refractive index of GaAs at 10 /*m 

wavelengths was found to have numbers as different as 3.095 and 3.309. M Our 

calculations indicated that GaAs should b<"'e an index of refraction of 3.30 at 10 

/tm wavelengths.!"! An attempt was made to determine the refractive index by 

increasing the resolution of the spectrometer sufficiently to see the interference 

resonances of the entire wafer. This measurement gave the results of 3.13 and 3.25. 

The limitation of this determination of index was the difficulty in measuring the 

thickness of a 0.011 inch thick wafer with an accuracy better than 0.0003 inches 

with the tools immediately available (one problem is that the samples appear to 

have a wedge and other spatial nonuuiformities at this scale). An analysis of the 

literature gave s strong indication that the index of refraction was in the range of 

3.27 to 3.30, within 1% of the theoretical derivation.!**! The theoretical model!43! 

also predicted an index of refraction of 3.16 for Al.3Ga.7As. These became the two 

values used for GaAs and the epitaxial growth, respectively, and are suspected to 

be accurate within 1%. The accuracy of the epitaxial growth then became that of 

determining the resonance period in the proper frequency region. This measurement 

is usually accurate to within about 3% and thuj limited the overall accuracy of the 

epitaxial thickness measurement to a similar amount. But this accuracy is quite 

adequate to conclude the epitaxial growths were significantly larger than predicted. 

But the variation in the thickness of samples A-388 and A-399 was a mystery, since 

even if the calibration of the growth rate was wrong, it should be repeatable. One 

possiblity is that the additional 10% Al added to the molecular beam could have 

increased the growth of sample A-399 by 20% over that of sample A-388. Another 
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possibility is that the samples simply came from different parts of the 2 inch wafer. 

Evidence will be shown later that variations in thicknesr >ver the wafer can be 

over 10%. In light of these uncertainties, Hewlett-Packard decided to rely on their 

previous calibrations when growing samples A-494 and A-495. 

The period of the oscillations in Fig. V.5e was found to be 390 cm" 1. Using 

no = 3.16, T = l/2«oAf = 4.06pm. But the sum of the layers in Fig. V.4 add up to 

2.875 pm using Uu = 65 A. If we assume the GaAs well has grown by the same ratio 

as the overall epitaxial thickness, then we find the well thickness is actually 1.411 

times larger than 65 A, or about 92 A. A similar expansion exists for sample A-

494. This increase in the well width gives a theoretical resonance frequency lor the 

QWEST of 911 c m - 1 for sample A-495, now in the neighborhood of the anomalous 

resonance peak. The resonance energy of sample A-494 is similarly increased and 

predicted to be at about 720 cm - 1 . Although this resonance energy should be 

observable, it could be lost in the phonon spectra. The increased well thickness, 

if it occurs, offers some explainations to the observations to samples A-494 and A-

495. But it was still not absolutely certain that the infrared technique for epitaxial 

thickness was valid. Even should the overall thickness prove to be as accurate as 

expected, the well is grown with a different material, GaAs, from *he bulk of the 

epitaxial growth, which was Al^GajAs, and the excess growth need not have the 

same ratio in the two. Fortunately, both problems were answere-: co usively in a 

highly sophisticated probe. 

During this time period, Fernando Ponce of Hewlett-Packard was developing a 

highly sophisticated Transmission Electron Microscope. He asked Steve Eglash if 

he had ar.y interesting samples to observe and Steve happened to give Fernando a 

piece of sample A-495 to work with. In addition to resolving the well and barrier 

regions, Fernando found that by orienting the surfaces in the [110] direction and 
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thinning the samples to about 50 atoms thick, he could resolve individual Ga-As 

atom pairs in the quantum well layers (see Figs. V.6 and V.7). From this photo 

of the structure, several conclusions can be made about the quantum well layers. 

First, a direct ratio of the barrier width to the well width shows that indeed the 

65 to 100 ratio is maintained in the growth. In addition an absolute calibration 

of the well width can be found by counting the number of GaAs unit cells in the 

height of the well. This number, depending on which plane the count start and 

stops, appears to be about 33±1 half-unit-cell layers. The lattice spacing of GaAs is 

known from X-ray diffraction measurements to beN 5.65315 A, making a 33 layers 

of atoms equal to about 03.277 A. This dimension is in good agreement with that 

based on the epitaxial cavity resonances and gave us confidence in this technique 

for calibration of the epitaxial thickness. (This is probably one of the more unusual 

methods used to calibrate the index of refraction of a material.) 
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Figure V.6: A very high resolution TEM photograph of sample A-495 in 

the [Oil] direction, showing atomic resolution of the well and barrier regions and 

indicating a high quality interface has been created. The 10 nm marker is slightly 

incorrect, the thickness of the black well region is actually about 33 half cells of 

the FCC lattice, or 93.277 A. (Photograph courtesy of F. Ponce at Hewlett-Packard 

Laboratories) 
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Figure V.7: A lower magnification of Fig. V.6 showing several of the 50 

quantum wells grown for sample A-495. 
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The observation of samples A-494 and A-405 could then have a simple explana­

tion. The resonances of both samples were shifted into the infrared because the 

wells were excessively large. One resonance, of sample A-405 was observed, but that 

of sample A-494 was lost in the infrared or else disappeared in a similar fashion to 

the resonance of A-405, only on a faster time scale. A sample of the same layer 

structure as these two, but with a smaller well, was grown in an effort to see a 

second resonance with a higher energy. This sample, A-516, was grown on January 

19, 1083 and observed on the same day as its growth. The well width was grown 

to be 7/0 of the one in sample A-405, or about 70 A. Unfortunately, this sample 

showed no additional resonances other than those commonly observed at 770 and 

700 cm - 1 . This sample was exhibited in Fig. V.3. 

The lack of observation of a QWEST on these samples is in direct conflict with 

theory. The theory of how a transition between states occurs was examined further 

in an attempt to find effects which might destroy or counteract such a transition. 

None were found. The samples were then examined further to see how they might. 

have failed. One of the more suggestive failure modes is the leakage of the electrons 

out of the lowest quantum well states into lower energy bound states. These bound 

states could either arise from impurities in the system or interface states somehow 

being created. Hewlett-Packard had years of experience with the crystal growth and 

had reduced the impurity levels to less than 10 1 5 c m - 3 in the bulk structures they 

had grown. Our quantum wells are doped with 4 x 10 1 7 c m - 3 electrons so that it 

was hard to see the electrons going into bulk impurity states. The other possibility 

was interface states. These interface states could arise either from impurities being 

concentrated on the interface or else from poor interfaces having large numbers of 

dislocated bonds or other surface states which could destroy the effect. A test of tho 

lower state population can be made simply by measurement of the Hall resistance of 
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the sample. Unfortunately, connecting to these quantum wells in our thick samples 

was difficult. Normally the test is performed by diffusing In into the sample to make 

ohmic contact. But with our samples so thick this connection could not be assured. 

When a sample with such a contact was measured, the readings would tend to have 

very high resistances and give unphysical results. Electrical experiments performed 

at Hewlett-Packard indicated that sample A-495 had about one half of the expected 

doping and the other two samples gave ambiguous results. Steve Eglash claimed 

that the ambiguous results are consistent with no electrons in the sample. I initially 

attempted to test sample A-495 by diffusing In into the 3ample by placing four dots 

of In on the edges of the wafer and heating the sample in an oven for 30 minutes at 

400° C. Because the In did not appear to be melted (later found to be an illusion 

created by an exterior crust formation), the sample was heated for an additional 

45 minutes at 450° C. This test of conductivity exhibited high resistances and 

ambiguous results. The problems with these measurements is believed to arise from 

the difficulty of In diffusion through many microns of semiconductor and making 

connection with 50 wells simultaneously, all separated by insulating material. I 

then tried a new technique to make contact on a seperate piece of sample A-495 by 

performing a selective etch to create holes with the edge of the hole slanted outwards 

to expose all 50 well regions. A Au-Ge alloy ohmic contact was then evaporated into 

the hole. Four holes were made in a row and the conductivity was measured with 

a four point probe. Assuming a mobility of 5,000 cm2/V-sec, an electron density of 

about half that of the doping level was found. 

The piece of sample A-495 which had been heated to 450° C. in an attempt to 

diffuse In into the edges was placed back into the spectrometer. The spectrum of 

Fig. V.5f was observed. The resonance is now seen to have returned, but shifted to 

£2 frequency of 888 c m - 1 or an increase in energy of 6.6 meV ! No explanation can 
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be found for this behavior. However, as will be shown later, all of the observations 

exhibit shifts over long periods of time in their resonant energy and line shape. 

In view of the results of sample A-495, sample A-516 was heated in an oven for 20 

minutes at 450° C. The spectrum was measured within 30 minutes of removal from 

the oven, but exhibited no change over its previous spectrum, with no observations 

of new transitions. 

At this time, Hewlett-Packard's MBE machine was taken out of service for about 

9 months for improvements and cleaning. I used this time to search the literature for 

the procedures and problems encountered by other groups in their MBE epitaxinl 

growth. Fortunately, several discoveries of importance to our growth were emerging. 

First, several reports indicated the surfaces of a quantum well are not equally high 

quality on both sides of the well.!36-35'*8! A conclusive demonstation of this is reported 

by Morkoc, et. a.1. in Ref. 46. They compare the mobilty of heterostructures with 

(AIGa)As grown on GaAs, called a "normal structure", with that of GaAs grown on 

(AlGa)As, called an "inverted structure", as a function of growth temperature of 

the substrate. The 78 K mobility for the normal structure is foundl46! to be about 

85,000 cm2/V-s for growth temperatures from 600 to 700° C. Above this growl li 

temperature, the 78 K mobility drops rapidly to 10,000 cm2/V-s at 750° C. Tin1 

inverted structure has an entirely different behavior. The inverted structure h:-> 

a very low 78 K mobility of about 1000 cm2/V-s for growth temperatures in the 

region of 600 to 660° C. The 78 K mobility then rapidly rises to a maximum of 8000 

cm2/V-s at a growth temperature of 700° C, after which it quickly drops again. 

The mobility is an indication of the interface quality, so these results suggest that 

the one side of the quantum well is a poor interface and its quality is critically 

dependent on growth temperature. The excition linewidth is also an indicator of 

interface quality as interface variations will vary the energy of the quantum well 
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states. This linewidth is given as function of energyl*1! in Fig. IV.6. This linewidth 

is much more sensitive to larger (~ 100 A or greater) lateral variations in well 

thickness.l«7l But both these measures of interface quality find the best interfaces 

occur at a substrate growth temperature of 680 to 700° C. 
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Figure V.8: A plot of the photoluminescence intensity of various quantum 

well samples as a function of the substrate growth temperature. Annealing of tho 

samples, at temperatures up to 750C for up to 4 hours, was found to increase tho 

photoluminescence intensity as shown (from Ref. [31]). 

The peak photoluminescence intensity of GaAs quantum wells with 200 A thick 

wells and 200 A thick barriers is also measured at 1.6 K as a function of substrate 

growth temperaturel*1! with the results shown in Fig. V.8. The photoluminescence 

intensity is seen to improve dramatically as the growth temperature is increased 

from 610 to 650° C. The photoluminescence intensity is felt to be an indication of 

the purity of the quantum wells. A low photolumicescence intensity is thought to 

be caused by the presence of electron traps with energies in the band gap which 

allow the conduction band electron to nonradiatively decay to the lower valence 
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band. If these traps exist, then they could also capture electrons which have been 

doped into the well region. This could explain the disappearance of our quantum 

well electrons. 

The problems with the interface structure are thought to be related to the way 

in which impurities such as carbon are incorporated into the epitaxial layers. A 

common viewlss>Ml is that the impurities do not easily incorporate themselves into 

the (AlGa)As material, but instead lie on the surface of the growth region until a 

GaAs layer is grown, at which point these impurities are deposited into the crystal. 

A test of this explanation is performed by growing a series of 10 A GaAs wells 

in the (AlGa)As barrier immediately before growing a test quantum well of larger 

thickness. These tests show an increase in photoluminescence efficiency by a factor 

of 7l36l and 160.I38! The tests also showed that the rapid periodic structures only 

enhanced the inverted interface and placing the structures on the normal interface 

did not improve the PL efficiency of the quantum well. 

Also during this period, I encountered Gottfried Dohler who was visiting Hewlett-

Packard from the Max-Planck-Institut in Germany. He was working on NIPI 

structures, which are alternating layers of n and p type materials seperated by 

insulating material in GaAs. These materials are similar to single heterojuction 

wells in that the confinement is electrostatic rather than from the crystal poten­

tial. These structures have an advantage of tunability of the quantum well energies 

by application of a voltage across the interface or by excition with a light source. 

We attempted to find an envelope state transition in these structures (NIPIEST?). 

No transition could be found, probably because of lack of sufficient population 

in the lower quantum well states. 

The design of the next epitaxial growth was to be decided. Further thought 

on the doping mechanism lead to the realization that the ionized donors have a 
129 



significant effect on the quantum well states. The potential terms discussed in 

chapter IV., section E., were assumed to be one-dimensional. But the spacing 

between donor ions for our doping density of 4 x 101 7 c m - 3 becomes, on average, 

about 135 A. This is larger than the thickness of the barrier region, and so the 

one-dimensional assumption is not quite valid. The electrostatic potential of a 

charge at a distance of r in GaAs is given by # = e2/4^er, which for a dielectric 

constant, e, equal to HCQ and a distance r = 100A is equal to 13 meV. This 

potential term is random and can possibly broaden the quantum well energies. The 

QWEST has a much smaller broadening since both lower and upper quantum well 

states shift by a similar amount, But the potential could possibly also perturb the 

envelope wavefunction in the transverse dimensions, thus destroying the polarization 

selectivity of the QWEST. Evidence for the broadening effects was found in the 

inelastic scattering experiments!17) in which the linewidth of the scattering intensity 

was found to reduce from 7.8 to 3.6 meV when a 150 A thick buffer layer of undoped 

(AlGa)As was inserted between the quantum well and the donor region. It was then 

decided to place a 150 A buffer layer on each side of the well, as shown in Fig. 

V.O. In addition to the reduction in broadening, it was also felt this buffer would 

prevent Si diffusion into the well region, which could also have lowered the electron 

density. No evidence for this diffusion is found, however, and is not expected to be 

an important mechanism. The evidence discussed above found that the quantum 

wells, because of the inverted interface, had their best mobility, photoluminescence 

efficiency and exciton linewidths for substrate growth temperatures between 670 

and 700° C. But Hewlett-Packard has clearly found that their best bulk material 

and heterostructures occurs for substrate growth temperatures of 580° C Also, if 

these results were dependent on impurities, then the best growth parameters could 

easily be different from one MBE machine to another. It was decided to grow this 
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next set of samples at 580° C. 

Layer 

Multiple quantum well of thickness L w 

Thickness Material Doping 

Oxidation cap 500A GaAs Undoped 
Buffer region 0.5M Al 3Ga ?As Undoped 
Barrier 50A Al 3Ga 7As N D = 4 X 10 1 7 /cm 3 

Dopant shield 150A AI 3 Ga 7 As Undoped 
Well L w 

GaAs Undoped 
Dopant shield 150A Al 3 Ga 7 As Undoped 
Barrier 100A Al 3 Ga 7 As N D - 4 X 10 1 7 /cm 3 

Dopant shield 150A Al 3 Ga ? As Undoped 
Well Lw GaAs ' indoped 
Dopant shield 150A Al 3 Ga ? As Undoped 
Barrier 100A Al 3Ga ?As N D 

r 4 X 10 1 7 /cm 3 

Dopant shield 150A At 3Ga 7As Undoped 

N-1 

•I 

Well L w 
GaAs Undoped 

Dopant shield 150A Al 3 Ga 7 As Undoped 
Barrier 100A Al 3 Ga ? As N D = 4 X 10 1 7 /cm 3 

Dopant shield 150A AI 3 Ga 7 As Undoped 
Well L w GaAs Undoped 
Dopant shield 150A Al 3 Ga ? As Undoped 
Barrier 50A Al 3 G a 7 As N D = 4 X 10 1 7 /cm 3 

Buffer region 0.5fi Al 3Ga 7As Undoped 

GaAs substrate undoped 

Figure V.9: Layer structure of the epitaxial quantum well growth for the later 

samples. 
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On Monday, January 23, 1984 two new samples were grown at a substrate 

temperature of 580° C. The layers structure is shown in Fig. V.9, with a thickness, 

Lm, of 75 and 85 A for each of the 50 wells of samples B-133 and B-134, respectively. 

The back side of the wafer was polished on January 24, 1984 and the infrared 

spectrum was measured on January 25. Other than the usual absorption lines at 

770 and 709 cm - 1 , the only other absorption seen is a narrow ( 1 meV wide) spike 

with an amplitude of 6 mAbs at a frequency of 956 cm - 1 ( = 118 meV). This spike 

is on both samples and remains at full absorption strength at normal incidence of 

the infrared beam. The narrowness of the spike is typical of molecular absorption 

and the spike is attributed to a contaminant. The difference of the spectrum B-133 

and B-134 showed no structure above the 1 mAbs level and the structure below this 

level had the appearance of noise. A sample of the substrate upon which these layers 

were grown, F620ES, was also scanned. The substrate exhibited the 770 cm - 1 line, 

but as discussed previously the 709 cm" 1 line was missing. The substrate was also 

missing the spike at S56 cm - 1 , so this contaminant must have been added later. 

From the photoluminescence spectra of Fig. V.8, it is noticed that the PL intesity is 

enhanced by about a factor of 10 by the annealing of the sample for 1 hour at 750° 

C. This improvement suggests that some of the deep level traps thought to exist 

were eliminated. A similar treatment was given to samples B-133 and B-134 in the 

hope that the deep traps would anneal out and the electrons would then repopulate 

the lower quantum state. The samples were sent, along with a piece of the substrate 

upon which the layers were g'own, to Jim Ewan at Aerotech General in Los Angeles, 

California. Jim Ewan first coated the samples with Sisty to prevent the arsenic 

from evaporating out of the GaAs wafers and then annealed the samples at 750° 

for one hour. The infrared spectra of these samples all had some new infrared 

structure, but upon subtraction of the substrate F620ES spectrum, the samples 
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B-133 and B-134 exhibited no discernable signal within the 5 mAbs level noise. 

The reason for the absence of a QWEST absorption signal on these samples was 

unknown. The possibilities included absence of electrons from the lower quantum 

state, excessive broadening of the transition by poor interface structure or lack of k 

vector conservation, or simply an error in the theory. Of these problems, an error 

in the theory could not be found and of the experimental problems, the lack of 

electrons in the lower state seemed to be the easiest to measure. However, problems 

had already been encountered in making contact to the wells for measurement of 

conductivity, and the present samples, in which buffer layers were added, were even 

thicker than the previous samples. A new technique was then tried. A photoresist 

mask was prepared with an array of Hall effect and van der Pauw geometries, as 

shown in Fig. V.10. The overall width of the mask as etched is about 11 mm. 

The mask was oriented so that one side of each contact pad is sloped out when 

etched into the wafer. A Au-Ge, Ni, Au layer ohmic contact was then evaporated 

over each of the six Hall geometry pads and each of the four corners of the van der 

Pauw geometry. The metalization is seen to make contact with the edge of each of 

the quantum well layers in Fig. V.ll. The impedance between the contacts is very 

high, over 10 Megaohm in some cases. A number of anamolous effects are seen in 

these measurements. For instance, a 100 Volt potential across the outer two pads of 

the Hall effect pattern will induce a current of 1 microamp. But when the sample 

is placed into a 1.3 kilogauss field, the current will drop to about 20 nanoamps, 

when the current should not have dropped at all. If these problems are ignored, a 

electron density per well layer for sample B-133 is found to have values of 4 x 104, 

4 x 107, and 3 x 106 c m - 2 with mobilities of 2,400, 3,000, and 95,000 cm2/V-s, 

for a van der Pauw and two Hall measurements, respectively. The mobilities are 

within a factor of 10 of the expected mobilities. But we expected surface densities 
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of 4 x 1 0 n cm~2 for each of the layers. The measured values are too low by 4 to 

7 orders of magnitude. The numerous ambiguities of these measurements did not 

make a convincing argument for the lack of electrons, howe- er. A better contact 

to the quantum wells is clearly needed. Fortunately, about this time Steve had 

mentioned our problems to Dan Tsui of Princeton. Dan Tsui had a microwave 

probe which could be used to measure the electron concentration by the magnitude 

of the electron cyclotron absorption in a magnetic field. Thus a contact free method 

could be used to measure the electron density. We sent Dan one wafe* each of 

samples 13-133 and B-134. Dan responded on May 26, 1084, with the statement 

"We did cyclotron resonance measurements on your samples B-133 and B-134. Our 

conclus: n is that there are no free carriers at all at 4.2 K," 

J34»E3£» 
~x y~ -'- ~£ y~ CD CD ~w~ 

-4- -$- -$" -$- "4" 
Figure V.10: Photoresist mask of Van der Pauw and Hall probe measurements 

to determine the electron density in the quantum well samples. The overall width 

of the entire pattern as etched was about 11 mm. Thus each probe pattern wus 

slightly over 1 mm. 
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Figure V. l l : An SEM photograph of the metalization overlay of a pad of a 

Hall probe etch in sample B-133. Note that the 7 micron deep etch clearly exposed 

the quantum well layers, seen as a darker coating about 3 microns deep, at an angle 

so as to provide some area of contact to the metalization for each of the 50 wells 

independently. Also note that some of the metalization over the pa.ls -xtended 

down the edge of the etched region from improper l;ftoff of this metal. A larger 

view shows the etched regions shows that the metal extension cuts off completely 

at several spots. Also, since the upper surface is insulating, the only effect of this 

extra metal would be to short contact pad to one another. This was not observed. 

With the above evidence, it was becoming increasingly clear 'chat the problem 

with the lack of observation of the QWEST was the lack o' electrons in the lower 

quantum well state. It was also becoming clear that tho reason for the disappearance 

of the electrons was because of a poor quality interface at the inverted, GaAs on 

(GaAl)As, heterojunct'^n. What is not clear is the reason for this poor interface, be 

it dislocations or impurities. It is also not knevrn what densities of deep level traps 

are generated or if their location is on the surface or in the bulk. But the evidence 

did indicate many improvements occured at this interface when the substrate growth 

temperature is increased from 580 to over 650° C. Steve Eglash then decided to 

grow a number of samples with only a few wells and without the undoped (AlGa)As 
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spacer layer between the well and doped region and a thin overcladding so as 

to facilitate measurement of the electron density by use of In diffusion into the 

thin layers. Hewlett-Packard also had recently installed a Reflection High Energy 

Electron Diffraction (RHEED) probe onto their MBE machine which could be used 

during the growth process, Steve then increased the growth temperature of the 

substrate as high as possible with the RHEED pattern continuing to indicate a good 

crystal structure. This temperature was about 660° C. All the test samples were 

grown with 85 A quantum wells. The samples were then doped to various levels 

as predicted by experience with bulk materials. Sample B-271 was grown with 10 

wells and Si donor density of 2.8 x 10 1 8 c m - 3 in a 100 A thick Al.3Ga.7As barrier 

region around each well. The electron density was measured to be 3.5 x 10 1 S cm - 2 , 

or 25% above the desired amount, and remained the same at both 300 and 77 K. A 

second sample B-272, was grown with pure AlAs barriers, each doped with 9.2 x 10' 8 

c m - 3 and a total of 10 wells. The electron density was found to be independent 

of temperature with a value of 5.5 x 101 S cm - 2 , or 62% of that predicted. Next, 

sample B-285 was grown with only 5 wells and a Si donor concentration of 5.6 x 10 1 7 

c m - 3 in a 100 A thick Al.3Ga.7As barrier region. This sample had the same density 

at 300 and 77 K of 3.3 x 10 1 2 c m - 2 or 18% above the predicted density. The last 

sample, 13-286, is identical to sample B-285 except that the wells new have 150 A of 

undoped Al.3Ga.7As spacer between the well and the doped region. The measured 

density remained the same, at 3.3 x 10 1 2 cm~2, as the previous sample. However, 

the 300 K mobility went from 4370 in sample B-285 to 6910 cm2/V-s in sample 

B-286. The 77 K mobility increased from 9720 to 52,000 cm2/V-s with the addition 

of the spacer layers in sample B-286. The spacer layers separating the donor ions 

from the quantum well states are thus seen to be of great benefit in reducing the 

electron scattering times. The 18% increase in electron density over that predicted 
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is of the same order as the typical overgrowth and could possibly be a result of a 

slighty larger doping region with the same donor concentration. 

With these results demonstrating that electron population of the lower quantum 

well states can be performed successfully, two samples were grown as above, at a 

temperature of about 660° C. The structure grown is that of Fig. V.9, but with 

the outer 0.5 tim thick buffer regions reduced to 0.29 nm and the GaAs cap reduced 

from 500 to 50 A. The samples B-331 and B-332 are grown with 50 wells of a 

design thickness of 85 and 75 A, respectively. After growth of these samples, it 

was noted that insufficient In had been applied on some regions of the back surface 

of the GaAs wafer. The lack of thermal contact with the temperature controlled 

Molybdenum block allows that region to have a temperature below the 660° C 

growth temperature. A large milky haze appeared over large parts of the sample. 

Furthermore, micron sized hills were seen to be covering the sample with a 2 to 10 

% areal density fraction in some regions of the 2 inch diameter wafer. Because of 

these defects, the samples were not expected to perform well. We carefully cleaved 

out two 1.5 cm square wafers in a section of the growth which appeared to have 

only a small fraction of defects. 

Samples B-331 and B-332 were grown on Thursday, September 6, 1984. Prior 

arrangements had been made with Joe Vrhel in the Applied Physics optics shop to 

polish the samples on Friday, September 7, and that evening the infrared spectrometer 

had finally been brought back to working order after weeks of problems. The 

infrared spectra of these samples is illustrated in Fig. V.12. A very large anomalous 

peak is observed on each sample and shifts to a higher energy for sample B-

322, the sample with the smaller well thickness. The height of the absorption 

peak is about 20 mAbs. The spectrum with the infrared beam at normal in­

cidence is shown in Fig. V.13. This anomalous peak disappears at normal 
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incidence for both samples. This is indeed the QWEST. 
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Figure V.12: Infrared absorption spectrum of sample B-331 and B-332 at 0 = 

73° and at room temperture. mAbs=-10 -3logio(Transmission). Spectrum (a) is 

of sample B-332, a 65 A quantum well, and was independent of rotation about $. 

Spectra (b) and (c) are both of sample B-331, a 82 A well on average, with <j> = 0° 

(b) and <!> = 90° (c), showing sample inhomogeneity with scan direction (see Fig. 

V.2). 
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Figure V.13: Absorption spectrum of sample B-332, a 65 A quantum well, at 

room temperature with (a), e = 73°, and (b), $ = 0°. Note the QWEST absorption 

peak disappears when the electric field vector of the infrared beam is rotated to 

lie completely in the sample plane, as expected. The shallow baseline slope is an 

artifact of the fourier transform process of the spectrometer in the presence of small 

jitter in the zero point of the interferogram, 
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C. Optical Observations of the QWEST 

The QWEST has been observed on samples B-331 and B-332. The anomalous 

peak seen on sample A-495 is now also believed to be a QWEST. The properties of 

this new effect are now to be carefully measured and compared with the theoretical 

values. 

Two wafers of each sample are observed, They are labeled B-331-A, B-331-B, 

B-332-A, and B-332-B. The last letter refers to the specific sample of each growth. 

The samples are identified by either one, for specimen A, or two, for specimen B, 

red dots marked on the upper right corner of the sample on the side with infrared 

light incident with # (see Fig. V.2) equal to zero. 

The well thickness of samples B-332-A is now calibrated using the infrared 

epitaxial cavity technique developed in the last chapter. The lowest frequency 

Fabry-Perot maximum occurs at 1203 cm" 1. This corresponds to a resonance with 

two waves in the epitaxial cavity. The thickness is found from this resonance and 

an index of refraction of 3.18 to be.2.63 pm. The sum of the specified layers should 

be 2.97 itm. The ratio of these two is 0.886 and the specified well thickness of 75 A 

ratios to an actual thickness of 66 A. The resonance has a peak at. 1231 cm-"1 ( or 

152.6 meV) with a peak height of 23 mAbs. The FWHM of the resonance is 13.4 

meV at $ = 0° and 14.1 meV at <t> — 90°. 

The sample B-332-B is taken from the edge of the 2 inch wafer and one side has 

a rounded smooth edge which is clearly the edge of the original wafer. The MBE 

machine is known to have a several percent variation in epitaxial growth rate across 

the wafer. This variation occurs because the molecular sources are not located on the 

axis of the sample and have flux variations across the surface from simple geometry 

considerations. In addition the edge of the crystal may have a different temperature 

during growth and other environmental differences which lead to a difference at the 
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edge. Some of the spatial inhomogenieties can be eliminated by rotation of the 

sample during growth. Hewlett-Packard had just added this capability during the 

9 months in which the MBE machine was down for improvements in 1983. The 

rotation rate of the sample holder was limited by the controlling electronics during 

its initial period of insertion into the chamber to a rate less than the speed of growth 

of a single quantum well. ( A single well typically takes about 20 to 30 seconds to 

grow.) Because of the inadequate spin rate of the holder, the motor was turned off 

for the measurement. Because of these effects the samples were expected to have 

a gradient in thickness. This effect was indeed observed in the edge piece. The 

well thickness at the center of the sample is calculated from the epitaxial cavity 

resonances to be 65.5 A. The thickness is found to vary 7.6±0.8 % across a 10 

mm distance perpendicular to the rounded edge, with the smallest growth occuring 

closest to the rounded crystal edge. A 7 % variation in thickness of a 65 A thiek 

well corresponds to a variation in thickness of the well of 5 A. From Fig. IV.2 this 

variation can be seen to correspond to a 5 meV increase in the linewidth when the 

infrared beam is oriented to have the major axis of the 3 by 11 mm beam pattern 

(see Fig. V.2) on the surface oriented in this direction (which for my label happens 

to occur for 4> = -90°). This increase is indeed seen to occur. At <£ = 0°, which 

corresponds to a scan parallel with the rounded edge of the wafer, the resonance 

occurs at an energy of 164 meV with a FWHM of 11.9 meV. The scan with 4> = 

-90° has a central resonance energy of 161 meV with a bandwidth of 18.7 meV. The 

bandwidth in this high gradient direction is thus seen to be 6.8 meV higher than 

the low gradient direction, in agreement with expectation based on energy change 

with well thickness. 

Hi 



Spectra as a function of rotation angle 
20 

15 

• i i i i 

-45° 

10 - A -ai n o ° z 
2 o 
a. 

J MA: 
• i i i i 

S 10 

• I - - | 1 — | — | — 
90° 

- /u -
5 7 W-0 J v v u 

Figure V.14: Infrared absorption spectra of B-331-B at room temperature and 

$ = 73° as function of rotation angle, <t>, with <t> indicated for each of the spectra. 

Samples B-331-A and B-331-B have very broad energy bands. The samples 

appear to have similar behavior so we only discuss sample B-331-B. A maximum in 

the epitaxial cavity resonance occurs at an frequency of 1088 cm - 1 . The epitaxial 

thickness then becomes 2.91 pm. The design layers add to 3.02 /im, If we scale the 

design 85 A well thickness by the same proportion, the actual well thickness becomes 

82 A. The spectra of this sample has very broad linewidths, as shown in Fig. V.12. 

Furthermore, as shown in Figs. V.12 and V.14, the spectra are highly sensitive to 

the scan angle, <f>. A hypothesis that this variation might be due to irregularities on 

the surface was investigated by scanning the thickness of the epitaxial layers over 

the surface. Suprisingly, the surface was found to be extremely flat with only a 2% 

variation in thickness found in one direction </> = 0° over a distance of 10 mm and 
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no gradient at all found in the orthogonal direction 4> = 90°. The spectra all show a 

central peak at 121 meV with a FWHM of 21 to 30 meV, depending on the rotation, 

<j>, of the sample. If approximately 10 meV of the broadening is assume'1 to occur 

even for perfectly uniform wells, then the excess broadening of these lines would be 

about 10 to 20 meV. From Fig. IV.2 it can be seen that a nonuniformity of up to 

20% would be required to explain the excess linewidth. But the epitaxial growth 

was found to be an order of magnitude more uniform. In fact the uniformity of the 

epitaxial layers of this sample, B-331-B, is several times better than that of sample 

B-332-B, which has a much narrower linewidth in spite of its larger gradient. The 

explaination to this phenomena was found when Steve recalled that he had stopped 

the rotation of the sample during growth differently for samples B-331 and B-332. 

For sample B-331 he simply turned the motor speed to zero, wheras for sample 

B-332 he turned off the power to the motor. It is known that the motor speed when 

turned to zero does not go exactly to zero, and some rotation of an unknown amount 

occurs during 4 hours of the epitaxial growth. However, if only one rotation or more 

occured during the 4 hour growth, then each region of the wafer got a selection of 

all possible well widths within the growth region. The sample B-332-B above, held 

stationary during the growth, has a thickness gradient of 7% per centimeter. If 

linearly extrapolated across the SO mm diameter wafer, then the wafer could have 

an edge to edge variation in thickness of 30%. Thus a region travelling around 

the chamber on an inner radius could easily have a 20% variation from one well 

width to another. The sample would also appear to have a better than normal 

uniformity of the overall surface because of the averaging effects of the rotation. 

This inadvertant rotation thus explains the contradictions of sample B-331. 

Low temperature experiments were performed in an attempt to better under­

stand the broadening mechanisms of the QWEST. Because the broadening of the 
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QWEST of sample B-331 was obviously determined primarily by inhomogeneities, 

the low temperature measurements focused on sample B-332-A. The sample B-332-

A is found to have a sightly reduced linewidth of 10.6 meV at room temperature 

when it is oriented at an angle of (f> = 45°, and this is the orientation used to probe 

the low temperature properties of this sample. The room temperature QWEST has 

a resonant energy of 152.3 meV and peak heigb' of 30 mAbs with a linewidth of 

10.6 meV. As the temperature is reduced to 34.5 K, the resonance energy of the 

QWEST increases to 156.2 meV, the peak increases to 43 mAbs, and the linewidth 

decreases to 7.2 meV. The small variation in these quantities as a function of tem­

perature is linear to within the accuracy of the measurement. Note the product 

of peak height and linewidth stay constant within 3% throughout the temperature 

region, indicating the electron density and oscillator strength remain constant with 

temperature. The spectra of the QWEST at several temperatures are shown in 

Fig. V.15. The 294 K QWEST resonance is compared to the 34.5 K spectra in an 

expanded plot in Fig. V.16. The full absorption spectra, from 4000 c m - 1 (or 2.5 /xm 

infrared wavelengths) to 400 cm-* ( 25 fim infrared wavelengths), is shown in Fig. 

IV. 17 for two temperatures for sample B-332-A. The two traces are untouched for 

the purpose of showing actual noise of the full spectrum. The high frequency fuzz 

at the higher wavelengths is unfiltered cavity resonances of the full GaAs wafer. 

This spectra can be compared to that of sample A-516 in Fig. V.3. 
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Figure V.15: Infrared absorption spectra of sample B-332-A at 6 = 73° and 

several temperatures. 

C$57 

0.445 

0.433 

§ 0.421 
ra 

J3 

° 0.409 
si 
< 

0.397 

0.385 h 

0.373 

I ' I ' I ' I • • • I 

-
34.5 K/ \ 

;N 

— 

/ / / / V \294K 

-

/ / 

i . i 

— « — 5 ^ 

1419 1321 1229 
Wavenumbers 

1125 1027 

Figure V.16: Infrared absorption spectra of B-332-A at 0 = 73° for 34 and 294 

K. 
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Figure V.17: Infrared absorption spectra of B-332-A at 6 = 73° for 280 and 

41 K. This spectra is not redrawn so as to retain the original noise of the GaAs 

substrate and epitaxial layers. Note that excep* for the QWEST, the spectrum is 

devoid of absorption peaks at this level. The noise present is from two sources. The 

first is residual C 0 2 in the spectrometer, which is the source of the broad bumps 

at 3000 c m - 1 for the 41 K plot and the numerous peaks around 1600 cm-1. The 

CO2 spectrum actually consists of numerous 1 cm - 1 wide peaks, but the spectra 

here are taken with too low a resolution to see the individual peaks. In addition, 

high frequency oscillations, from the cavity resonance formed by reflections of the 

outer wafer surfaces which are not quite removed at Brewster's angle, are seen at 

the higher wavenumbers. 

The oscillator strength can be found from equation (V.ll), which gave the 

oscillator strength from the integral of the line over optical frequency. It was found 
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that IAF = 0.218/ Abs-cm - 1. A computer integral of the QWEST of sample B-

332-A at 0 and 00 degrees rotation (<f> = 0,90°) found integrals of 2.754 and 2.715 

Abs-cm - 1, respectively. These integrals give an oscillator strength of 12.6 and 12.5 

for the two rotations. For sample B-332-B, the integral of the line shape is found 

to be 2.277 and 1.683 Abs-cm~l for rotation angles of 90 and 0 degrees. These 

integrals result in an oscillator strength of 10.4 and 7.7 for the two angles. It should 

be noted that the measurements assume the electron density per quantum well is 

4 x 10 n cm - 2 . However we saw that for sample B-286 the electron density had 18% 

extra electrons, and our samples could have similar inaccuracies. If the electron 

density is assumed to scale by the size of the doping region, the above numbers 

for the oscillator strength increase by 15% to as high as 14.5. The abnormally low 

oscillator strength of the second sample indicate some of the electrons are missing. 

The integral of the lineshape of sample B-331-B, as probed on October 31, 1984, 

at rotational angles of -45, 45, 0, and 90 degrees found oscillator strengths of 10.9, 

11.5, 11.6, and 11.4 respectively. It should be noted that three weeks earlier, on 

October 11, the same spectra was measured with a weaker lineshape. See Fig. V.18. 

On Oct. 11, the oscillator strength at rotation angles of 0 and 90 degrees was found 

to 7.16 and 8.91. The increase in the oscillator strength is probably because of 

an increase in the number of electrons in the lower quantum well state that were 

previously trapped elsewhere. Thus the larger numbers of Oct. 31 are probably the 

more accurate numbers, for the oscillator strength. The larger linestrength of Oct. 

31 also appears more consistent as a function of rotation angle. 
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Figure V.18: The infrared absorption spectrum of sample B-331-B at 6 = 73° 

and <p = 0° on two different dates. 

Other changes in lineshape are noticed in several spectra. In Fig. V.19, the 

spectrum of sample B-332-A on two different dates k noticed to have shifted 6 meV 

from 152 meV to 146 meV. At a later date, on Feb. 28, 1985, this resonance shifted 

back to the original position at 152.4 meV, but the oscillator strength changed from 

12.6 on Oct. 11, 1983 to 11.2 on Nov. 3, 1983 to 11.3 on Feb. 28, 1985. If we use 

the measurement of oscillator strength as an indication of electron density, under 

the assumption that the true oscillator strength remains constant, we find that the 

energy shift is unrelated to the changes in electron density. 
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Figure V.19: The infrared absorption spectrum of sample B-332-A at 6 = 73° 

and 0 = 0° on two different dates. 
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h. Analysis of Observations 

The infrared measurements of the QWEST yield three parameters for analysis. 

These are ihe QWEST energy, oscillator strength, and bandwidth. These parameters 

are measured both as functions of well width and sample temperature. One ob­

servation is also seen with different quantum well crystal structure. These ob­

servations are compared with the theoretical predictions of the previous chap­

ter and used for further analysis of the quantum well states. 

The first parameter measured is the QWEST energy. This energy was seen in 

chapter IV to be very nearly equal to the difference in energy of the two lowest 

energy conduction band quantum well states. Unlike exciton measurements, these 

energy measurements are independent of band gap and valance band quantum well 

energies. The predicted QWEST energies, from Table IV.3, are compared with the 

observed energies, given in the previous two sections, in Table V.l. 

Table V.l 

Comparison of observed QWEST energ.„3 with theoretical expectation. Energip 

are measured in meV. 

Sample Well Thickness Predicted Energy Observed Energy 

B-332-A 65 A 142.4 152 

B-331-A 82 A 117.8 124 

A-495 92 A 105.0 110 

The observed QWEST energy peak wandered over a range of about 6 meV 

within a several week time frame. This wandering of energy was associated with a 

change of absorption strength, but interestingly, the bandwidth of the QWEST did 

not change. This behavior of the QWEST currently has no explanation. Furthermore, 
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a shift in quantum well energies has never been reported by any of the many 

other types of probes as mentioned in chapter II. However, those interband measure­

ments include a large energy from the bandgap which changes rapidly with tem-

peraturel<sl (0.5 meV/°C). Thus it cannot be certain if the quantum well energies 

change over time and merely have not been noticed or else this energy wander 

is unique to the QWEST. The observed energies listed above are either the central 

energy or the most stable energy of the QWEST during the wander. The detailed 

behavior of this wander was presented in the previous two sections. 

The predicted energies in Table V.l are seen to be consistently about 5 to 10 

meV below the observed energies. The predicted energies in Table V.l were based on 

continuity of the derivative of the envelope wavefunction across the well boundary. 

If wa use the alternative boundary condition, with continuity of this derivitive 

multiplied by the inverse effective mass assumed, then the predicted energies are 

yet lower still. But then the change of QWEST energy with well thickness is in 

better agreement. The predicted energies under the two assumptions are both 

plotted in Fig. IV. 2, along with the experimental points. The approximately 5 

% error between the predicted and observed energies could have several causes. 

The largest theoretical problem is the treatement of envelope wavefunction at 

the boundary between the GaAs well and the (AlGa)As barrier. This boundary 

condition determines entirely how the quantum well states are quantized, and the 

QWEST energy depends highly on this treatement. Fortunately, the well and 

barrier materials are sufficiently similar that simple continuity conditions on the 

envelope and its derivitive have been found to give fair agreement with observations. 

1*1 Furthermore, the discrepencies between observed and predicted QWEST energies 

can be entirely explained by uncertainties in the input quantum well parameters. 

For instance, the height of a Al.3Ga.7As barrier to the GaAs well was only recently 
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discoveredP'l to be near 240 meV instead of 320 mev, as had been thought for many 

years.PI This difference in barrier height can change the QWEST energy by about 

20 meV, and the true height is still being refined. Also, the calculation of the band 

energy of a conduction band electron using fc • p theory neglected the higher order 

effects from other bands. Although the band energy could be renormalized to first 

order by use of the empirical effective mass of GaAs, the deviations of true bands 

from the effective mass approximation lowers the QWEST energy by about 10 meV. 

The error in this deviation is estimated to be about 30%, so this uncertainty could 

be the source of another 3 meV error. Finally, an unknown effect is causing the 

QWEST resonance to wander over a 6 meV range. Until this effect is understood, 

it is impossible to make a prediction with any greater accuracy than the magnitude 

of wander. Thus the theoretical treatment of the quantum wells used here provides 

values of the energy, oscillator strength, and bandwidth as accurate as possible with 

the present knowledge of the well structure. 

The QWEST energy was measured as a function of temperature for the sample 

B-332-A. The QWEST energy was found to increase from 152.3 to 156.2 meV as 

the temperature was reduced from 300 K to 35 K. Since the thermal expansion 

coefficient of GaAs is about 6.7 x 10 _ 6/°C, the well size only increases by about 

0.2 % or 0.1 A for a 270 K temperature rise. This small thickness change has a 

negligible effect on the quantum well energies. However, the inverse effective mass 

of GaAs drops from 15.9 to 14.9 (in units of l/m e) as the temperature drops from 

300 K to 35 K.t22) If the barrier height remains constant, this mass change predicts 

a 4 meV drop in the QWEST energy of sample B-332-A as the temperature is 

reduced from 300 K to 35 K. The barrier height does not remain constant, however. 

The band gap of Al^GajAs is found to increase at a greater rate than the band 

gap of GaAs as the temperature is reduced.!40) The increase of the barrier bandgap 
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over that of the well bandgap as the temperature is reduced from 300 K to 35 K 

is(40) about 20 meV. If the fraction of the band gap discontinuity which becomes 

a barrier to a conduction band electron remains constant at 65%, as reported in 

some observations,l2Sl then the increase in barrier height is only 13 meV. This small 

an increase in barrier height only increases the QWEST energy by about 2 mcV. 

If the effective mass change is included, the predicted net change is a QWEST 

energy reduction of 2 meV, in contrast with the observation of a 4 meV increase, 

as the temperature is lowered from 300 to 35 K, This QWEST energy temperature 

dependence can be explained by a 40 meV increase in the barrier height. However, 

this 40 meV increase in barrier height would require the fraction of the bandgap 

difference which is a barrier to the conduction band electron increase from 65% to 

70% as the temperature is reduced from 300 K to 35 K. Since this fraction is not 

known at any temperature to this 5% accuracy, a temperature dependence of this 

size cannot be deduced from present observations.!2'! 

The second parameter of interest is the QWEST bandwidth. The suspected 

effects of various broadening mechanisms are tabulated in Tables IV.l and IV.2 for 

a 65 A thick well at temperatures of 300 and 35 K respectively. The bandwidth 

was predicted to be about 8.7 ±3.3 meV at room temperature and reduce substan­

tially to 4.9 ± 3.0 meV at 35 K. The sample B-332-A, a 65 A quantum well, was 

observed to have a bandwidth of 10.6 and 7.2 meV at temperatures of 300 and 35 K, 

respectively. The behavior of these broadening mechanisms as a function of tem­

perature, as shown in Tables IV. 1 and IV.2, shows discrepencies between prediction 

and observation. In particular, a net broadening is predicted which is too smail by 

about 2 meV. If we look at the low temperature linewidth, the density of states of 

the QWEST, which is dominant at higher temperatures, becomes fairly small (2.6 

meV) and more accurate. The other two broadening effects were assumed to be 
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independent of temperature. The inhomogeneous broadening is mostly from trans­

verse variation of the well width with distance, which was measured, as described in 

the previous section, to be in agreement to the assumptions of Tables IV. 1 and IV.2. 

Thus this term is thought to be accurate. The last term, from lifetime broadening, 

has large theoretical uncertainties. Furthermore, the other terms are fairly accurate 

and are too small to come close to explaining the low temperature linewidth. The 

low temperature linewidth is therefore suspected to reflect the lifetime broadening, 

and results in a lifetime broadening of about 6 meV, near the maximum expected. 

This bandwidth corresponds to a lifetime of 0.2 picoseconds. If Tables IV. 1 and 

IV.2 are changed to reflect this interpretation, then they become as given in Tables 

V.2 and V.3. 

Table V.2 

A possible interpretation of the broadening effects for a 65 A quantum well at 

300 K, 

Density of QWEST states 7.5 ±2.0 meV 

Lifetime broadening 6.0 ±0.0 meV 

Inhomogeneous weH width 3.0 ±1.5 meV 

Total 10.1 ±2.0 meV 
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Table V.3 

A possible interpretation of the broadening effects for a 65 A quantum well at 

35 K. 

Density of QWEST states 2.4 ±0.6 meV 

Lifetime broadening 6.0 ±0.0 meV 

Inhomogeneous well width 3.0 ±1.5 meV 

Total 7.1 ±0.5 meV 

This explanation, which was found neccesary to properly describe the low tem­

perature data, is also seen to correctly describe the 300 K bandwidth. 

The bandwidth of sample B-331, with approximately 82 A thick wells, is not 

discussed since its bandwidth is clearly broadened by an inadvertant variation in 

well thickness from well to well during the growth of the 50 wells. This gave a 

bandwidth for this sample of over 20 meV and nearly 30 meV for some orientations 

of the wafer. 

The above bandwidth discussion assumed the ionized donors in the barrier 

region were sufficiently far away from the quantum well so as not to affect the 

envelope wavefunction and energy states. The growth of the above two samples, 

B-331 and B-332, had an undoped barrier region 150 A thick separating the ionized 

donors from the well region for this purpose. The effect of these ionized donors is 

found by examination of sample A-495. This sample had no undoped region in the 

barrier separating the well from the ionized Si donors. As discussed in the previous 

section, the fluctuation of this potential is of order 10 meV. However, the effect of 

this fluctuation on the QWEST bandwidth is anticipated to be much smaller for two 

reasons. First, the potential affects both lower and upper quantum well energies by 
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a similar amount. Second, the electrons will tend to concentrate in the lower energy 

regions, so regions observing the full fluctuation of the potential will not be equally 

populated. The latter point has another important consequence. If the electrons 

tend to concentrate in the lower energy regions of the two-dimensional surface, and 

the average distance between donors is 140 A, then the envelope wavefunction will 

have some structure in this transverse dimension with a similar size variation. Since 

this 140 A variation in envelope wavefunction is much smaller than the infrared 

wavelengths, this perturbation could easily lead to a small dipole in the transverse 

dimension. The QWEST would then have a nonzero absorption strength in the 

other two dimensions. 

The observations of sample A-495 saw a QWEST absorption with a 10.5 meV 

linewidth, similar to the sample B-332-A. But since sample A-495 contains 92 A 

wells, the density of QWEST energy has a predicted FWHM of 5.6 meV, which is 

2 meV smaller than that of sample B-332, seen to have a 7.5 meV density of states 

bandwidth. If the net bandwidth is taken as the sum of squares of the individual 

terms, and we take the other terms in Table V.2, besides the density of states, to 

be the same, then we find the ionized donors contribute an additional term with 6 

meV broadening. It should be emphasized that this value is obtained by taking the 

difference of the squares of large terms which are themselves uncertain, and should 

not be considered to be very accurate. The absorption strength was also observed to 

drop by a factor of about 3 when the polarization of the infrared beam was rotated 

to lie in the well plane by changing the incident angle of the beam from Brewster's 

angle to normal incidence. But theoretically, the absorption strength should have 

dropped to identically zero, as observed in samples B-331 and B-332. In section A of 

this chapter, the electric field of the infrared probe was shown to lie almost entirely 

in the plane of the quantum well. The coupling of the field to a dipole normal to 
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the well, as we expect the QWEST to be, is thus 10 times smaller than the coupling 

to a similar size dipole in the plane of the well. The factor of 3 reduction in the 

absorption strength for this polarization actually indicates a reduction of 30 in the 

oscillator strength in this direction when the fields are taken into account. The 

effect of placing the ionized donors in the vicinity of the well is therfore suspected 

to add a broadening term of about 6 meV and convert about 3% of the oscillator 

strength to a direction in the plane of the quantum well. 

The remaining optical parameter of interest is the oscillator strength of the 

QWEST. This strength was difficult to measure because the electron density in the 

well was difficult to obtain, measure, and maintain. Thus the absorption strength 

would vary significantly. The samples B-331 and B-332 were finally developed with 

some stability in this electron density. The problem with the electron density in 

the lower state was always found to be one of disappearance rather than an excess. 

This behavior is consistent with lower energy bound states being formed which can 

trap an electron from the lower quantum state. Because of this behavior, it was 

felt the maximum oscillator strength found for a given sample was probably the 

most accurate. The maximum value obtained for sample B-331 was found to be 

11.6 and that for sample B-332 was 12.6. The oscillator strength predicted for 

these two samples is 13.2 and 12.1, respectively. The experimental values, which 

are uncertain to about 10 % because of inaccuracies in doping density, are thus 

seen to be in excellent agreement with prediction. If the experimental values for 

the oscillator strength and energy are used with the aid of the definition of the 

oscillator strength in equation (TV.50), then the dipole matrix element is found to 

be 18.9 e-A and 17.8 e-A for samples B-331 and B-332, respectively. 

The optical parameters of the QWEST are seen to match well with prediction 

and good understanding of thier behavior has been found. Further work and more 
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samples is sure to refine this understanding. Some uncertainties still lie in the 

fabrication of samples without electron traps, numbers for well parameters such as 

barrier height, and the lifetime of the upper state, among others. These problems 

are also of current interest to those involved with quantum well samples and will 

undoubtedly be solved in the near future. 
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DC. Conclusion and Future Applications 

An infrared dipole transition between two envelope siates within the same band 

of a quantum well is predicted and observed. This transition is called a Quantum 

Well Envelope State Transition or QWEST. 

The QWEST is now very clearly shown to be realizable in the conduction band 

of a (AlGa)As quantum well. The observation of a QWEST is seen on three different 

samples with quantum well thicknesses 65, 82, and 92 A and resonant energies of 

152, 121, and 108 meV, respectively. The observed resonant energies are in good 

agreement with theory. The oscillator strength is found to have values of over 12, 

in good agreement with prediction. The linewidths arc seen as narrow as 10 meV 

at room temperature and 7 meV at low temperature, thus proving a narrow line 

resonance can indeed occur between transitions of free electrons. Techniques for the 

proper growth of these quantum well samples to enable observation of the QWEST 

have also been found using (AlGa)As compounds. 

The QWEST has a quantum dipole as large as 20 e-A. The transition also 

has a narrow bandwidth, an anomaly for transitions between free electrons. This 

large dipole and narrow bandwidth result in strong nonlinear optical properties. For 

instance, the ratio of index of refraction change to incident infrared intensity, n2, 

can be as high as 10~5 cm2/Watt. In addition, both the lower and upper quantum 

well states consist of free electrons in the same conduction band. An electron can 

thus relax from the upper to the lower energy state by an elastic scattering, requiring 

no energy transfer. This property enables the transition to have an extremely fast 

transition time, predicted to be subpicosecond. 

The motivation for the development of the QWEST was its application to the 

development of a digital computer based entirely on optics, with no electronics 

required. Advantages for an optical system over electronic are seen in both the 
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elimination of inductance-resistance-capacitance problems and in the elimination of 

electron transit times through small channels. A discussion of optical computing is 

given in Appendix B. 

The importance of the QWEST to the physical operation of a logic element lies 

in its large dipole, which gives it a very large nonlinear coeficient. Of interest to 

optical logic is the n 2 coefficient, which varies as the dipole to the fourth power 

(see chapter IV, section F). The dipole of the QWEST is 100 times larger than the 

dipole of an atomic state, giving an improvement in the nj coefficient by a factor 

of 108 over atomic systems. In addition, the currently proposed implementations 

of an optical logic element in the solid state are limited in speed by the relaxation 

rate of an electron from one band to another, with relaxation times in the 10's of 

nanoseconds.I51'S21 The QWEST has a subpicosecond relaxation time, much faster 

than any of today's nanosecond logic. 

In addition to the physical properties of the QWEST, which gives it a high 

nonlinearity and fast response time, the QWEST also has a number of properties 

which are extremely important to the engineering of integrated optical logic ele­

ments into a inexpensive system. (See Appendix B.) One of the properties of 

the QWEST important to optical logic is its tunabilty in the infrared. Infrared 

wavelengths are considered essential to integrated optics for several reasons. First, 

the larger wavelengths allow easy fabrication of integrated optical elements and 

waveguides by use of standard photolithographic processes. Second, many very 

inexpensive and very high efficiency lasers exist in the infrared. Two examples are 

the CO2 and CO lasers, with wavelengths of 10 and 5 microns, respectively, wall-

plug efficiencies as high as 30%, and prices as low as $50 per watt of output for 

high power lasers. Third, the GaAs materials are very transparent in the infrared. 

Furthermore, Germanium, a material which grows well on GaAs and is important to 
160 



the fabrication of integrated optical elements, only transmits light with wavelengths 

greater than 2 microns. 

The tunabilty of the QWEST is also important to optical logic. First, the 

transition can be tuned to match any laser in the infrared, allowing use of the best 

available laser source throughout the region. Second, as an optical computer is 

scaled to smaller sizes to achieve higher speeds, the scaling to a smaller wavelength, 

necessary to make smaller structures, is allowed by the QWEST. Third, the QWEST 

resonance can be placed on both sides of the laser frequency. A given logic element 

can then use ncnlinearities of both signs simultaneously. This extra freedom is 

important in fabrication of logic elements which present zero reflection to the input 

signals for all levels of output, for instance. 

In conclusion, the discovery of the QWEST in GaAs is a breakthrough in the 

construction of an all optical digital computer. The advantages offered by a logic 

element based on the QWEST are similar to those of the transistor when first 

developed, namely, a factor of 1000 in both speed and power simultaneously, for 

a million-fold reduction in the speed-time product. The break+hrough is not only 

because of the physical effect and all the properties such as nonlinearity and speed 

associated with it, but also the engineering properties of the JaAs QWEST, which 

allows construction of an optical logic element and associated interconnects and 

elements into a full optical digital computer system, all highly leveraged off of 

existing GaAs technology. My original goal, which lead to the discovery of the 

QWEST, was the development of an all optical computer. The developments are 

far surpassing what I thought, even with my wild ide?s, would be possible. However, 

the results presented in this thesis are only the opening through which the rapid 

advances towards optical logic can now proceed, which is the direction I am now 

taking. The QWEST has only begun. 

161 



References 

[1] L.I. Schiff, "Quantum Mechanics," McGraw Hill,(1068) 

[2] Gordon Baym, "Lectures on quantum mechanics," W. A. Benjamin, Inc., 

Advanced Book Program, Reading, Massachusetts (1060) 

[3] R. Dingle, "Confined carrier quantum states in ultrathin semiconductor 

heterostructures," in Festkorper Probleme XV (Advances in Solid State Physics), 

H.J. Queisser, Ed. New York: Pergamon, 1075, pp.21-48. 

[4] N. Holonyak, Jr., R. M. Kolbas, R. D. Dupuis, and P. D, Dapkus, "Quantum 

Well Heterostructure Lasers," IEEE J. Quantum Electron., QE-16, pp 170-186 

(1080) 

[5] D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A.C. Gossard, and 

W. T. Tsang, "Large room-temperature optical nonlinearity in GaAs/Gaj_xAlx As 

multiple quantum well structures,* Appl. Phys. Lett.. 41, pp 679-681 (i982) 

[6] C. Weisbuch, R. Dingle, A. C. Gossard, and W. Weigmann, "Optical characteriza­

tion of interface disorder in GaAs-Gaj.xAlxAs multi-quantum well structures," 

Solid State Commun., 38, pp 709-712 (1981) 

[7] H. L. Stormer, R. Dingle, A C. Gossard, W. Wiegmann, and R. A. 

Logan, "Ele''•onic properties of modulation-do^rd GaAs- Al xGaj. xAs superlat-

tices," Fourteenth International Conference on the Physics of Semiconductors, 

Edinburgh, 1978, B. L. H. Wilson, Editor, Inst. Phys. Conf. Ser. No. 43 (1979) 

pp 557-560 

[8] H. C. Casey, Jr., M B. Panish, "Heterostructure lasers, Part B: Materials 

and operating characteristics," Academic Press, 1078; H. Kressel, J. K. 

Butler, "Semiconductor lasers and heterojunction LEDs," Academic Press, 1977 
162 



[9] C. Lindstrom, R D. Burnham, and D. R. Scifres, "Visible ow single quantum 

well (AlGa)As diode lasers," Appl. Phys. Lett., 42, pp 134-136 (1983) 

[10] J. O. Dimmock, "Introduction to the theory of exciton states in semiconduc­

tors," in "Semiconductors and and semimetals," Editors R. K. Willardson z.nC 

A. C. Beer, Academic Press, 1967, pp. 259-320 

111] K. Cho, Ed., "Excitons," Springer-Verlag, 1979 

[12] H. I. Ralph, "The electronic absorption edge in layer type crystals," Solid State 

Commum., 3, pp 303-306 (1965) 

[13] R. C. Miller, D. A. Kleinman, O. Munteanu, and W. T. Tsang, "New transitions 

in the photoluminescence of GaAs quantum wells," Appl. Phys. Lett., 30, pp 

1-3(1981) 

[14] R. C. Miller, D. A. Kleinman, W. A. Nordland, and A. C. Gossard, 

"Luminescence studies of optically pumped quantum wells in GaAs-AlxGaj_xAs 

multilayer structures," Phys. Rev. B, 22, pp 863-871 (1980) 

[15] A. Yariv, "Quantum Electronics," John Wiley & Sons, Inc., 1975, Chapter 8 

[16] E. Burstein, A. Pinczuk, and D. L. Mills, "Inelastic light scattering by 

charge carrier excitations in two-dimensional plasmas: theoretical considera­

tions," Surface Sci. 08, pp 451-468 (1980) 

[17] A. Pinc»-uk and J. M. Worlock, "Light scattering mechanisms in two-

dimensional electron systems in semiconductors," Surface Sci. 113, pp 69-84 

(1982) 

[18] E. Merzbacher, "Quantum Mechanics," John Wiley & Sons, Inc., 1970, pp. 

457-458 

[19] J. D. Jackson, "Classical Electrcdynamics," 2nd Ed., John Wiley & Sons, (1975) 

[20] E. O. Kane, "Band structure of Indium Antimonide," J. Phys. Chem. Solids 
163 



1, pp 249-261 (1957); E. O. Kane, in "Semiconductors and Semimetals," Vol. 1, 

ed. Willardson and Beer, Academic Press, (1066) 

[21) B. K. Ridley, "Quantum processes in semiconductors," Oxford University Press, 

(1982) 

[22] J. S. Blakenv .e, "Semiconducting and other major properties of gallium ar­

senide," J. Appl. Phys. 53(10), pp. R123-R181, (Oct. 1982); and M. Nueberger, 

"III-V Semiconducting compounds," Handbook of Electonic Materials, Vol. 2, 

IFI/Plenum, New York, (1971) 

[23] D. Arnold, A. Ketterson, T. Henderson, J. Klem, and H. Morkoq, 

"Determination of the valence-band discontinuity between GaAs and (Al,Ga)As 

by the use of p+-GaAs-(Al,Ga)As-p~-GaAs capacitors," App. Phys. Lett. 45, 

pp. 1237-1239 U984) 

[24] G. Bastard, "Superlattice band structure in the envelope function approxima­

tion," Phys. Rev. B. 24, pp. 5603-5697 (1981) 

[25] T. Ando and S. Mori, "Effective-mass theory of semiconductor heterojunctions 

and superlattices," Surface Science 113, T>D. 124-130 (1982) 

[26] C. Kittel, "Introduction to solid state physics," Fourth Edition, John Wiley & 

Sons, New York (1971) 

[27] C. V. Shank, R. L. Fork, R. Yen, J. Shah, B. I. Greene, A. C. Gossard, and 

C, Weisbuch, "Picosecond dynamics of hot carrier relaxation in highly excited 

multi-quantum well structures," Solid State Comm. 47, pp. 981-983 (1983) 

[28] Z. Y. Xu and C. L. Tang, "Picosecond relaxation of hot carriers in highly 

photoexcited bulk GaAs and GaAs-AlGaAs multiple quantum multiple quantum 

wells," Appl. Phys. Lett. 44, pp. 692-694 (1984) 

[29] D. J. Erskine, A. J. Taylor, and C. L. Tang, "Femtosecond studies of in-

traband relaxation in GaAs, AlGaAs, and GaAs/AIGaAs multiple quantum well 
164 



• t. 

structures," Appl. Phys. Lett. 45, pp. 54-56 (1084); see also Erratum to this 

paper, Appl. Phys. Lett. 48, p. 814 (1985) 

[30] D. J. Erskine, A. J. Taylor, and C. L. Tang, "Dynamic Burstein- Moss shift in 

GaAs and GaAs/AlGaAs multiple quantum well structures," Appl. Phys. Lett. 

45, pp. 1200-1211 (1084) 

[31] C. Weisbuch, R. Dingle, P. M. Petroff, A. C. Gossard, and, W. Wiegmann, 

"Dependance of the structural and optical properties of GaAs-Gaj.xAlxAs 

multiquantum-well structures on growth temperature," Appl. Phys. Lett. 38, 

pp. 840-842 (198!) 

[32] S. J. Allen, Jr., D. C. Tsui, and B. Vinter, "On the absorption of infrared 

radiation by electrons in semiconductor inversion layers," Solid State Comm. 

20, pp 425-428, (1976) 

[33] D. A. Dahl, and L. J. Sham, "Electrodynamics of quasi-two-dimensional 

electrons," Phys. Rev. B 16, pp. 651-661 (1077) 

[34] W. P. Chen, Y. J. Chen, and E. Burstein, "The interface EM modes of a 'Surface 
Quantized' plasma layer on a semiconductor surface," Surface Science 58, pp. 

263-265 (1976) 

[35] P. M. Petroff, R. C. Miller, A. C. Goddard, and W. Wiegmann, "Impurity 

trapping, interface structure, and luminescence of GaAs quantum wells grown 

by molecular beam epitaxy," Appl. Phys. Lett. 44 pp. 217-219 (1984) 

[36] W. T. Masselink, M. V. Klein, Y. L. Sun, Y. C. Chang, R. Fischer, T. J. 

D P nimond, and H. Morkos, "Improved GaAs/AlGaAs single quantum wells 

through the use of thin supperlattice buffers," Appl. Phys. Lett. 44 pp. 435-437 

(1984) 

[37] F. Schaffler and F. Koch, "Subband spectroscopy at room temperature," Solid 

State Commun. 37, pp. 365-368 (1981) 
165 



[38] H. Reisinger and F. Koch, "Spectroscopy of InAs subbands," Solid State 

Commun. 37, pp. 429-431 (1981) 

[39] W. Beinvogi and J. F. Koch, "Spectroscopy of electron subband levels in an 

inversion layer on InSb," Solid State Commun. 24, pp. 687-690 (1977) 

[40] J. Scholz, F. Koch, H. Maier, and J. Ziegler, "Coupled subband-phonon 

resonances in the far-infrared reflection from Hgj.xCdxTe surfaces," Solid State 

Commun. 45, pp. 39-42 (1983) 

[41] P. Ruden and G. H. Dohler, "Electronicstructureof semiconductors with doping 

superlattices," Phys. Rev. B 27 pp. 3538-3546 (1983) 

[42] W. G. Spitzer, in Semiconductors and Semimet&ls, edited by R. K. Willardson 

and A. C. Beer, Academic Press, New York (1967) Vol. 3, pp. 43-48 

[43] Martin A. Afromowitz, "Refractive index of Ga|_xAlxAs," Solid State Comm. 

15 pp. 59-63 (1974) 

[44] B. O. Seraphin and H. E. Bennett, in Semiconductors and Semimet&ls, edited 

by R. K. Willardson and A. C. Beer, Academic Press, New York (1967) Vol. 3, 

pp. 499-543 

[45] Handbook of Chemistry and Physics, CRC Press, 63rd Edition (1982-1983) 

[46] H. MorkoQ, T. J. Drummond, and R. Fischer, "Interfaciai properties of 

(Al,Ga)As/GaAs structures: Effect of substrate temperature during growth by 

molecular beam epitaxy," J. Appl. Phys. 53, pp. 1030-1033 (1982) 

[47] Jasprit Singh, K. K. Bajaj, and S. Chaudhuri, "Theory of photoluminescence 

line shape due to interfaciai quality in quality quantum well structures," Appl. 

Phys. Lett. 44, pp. 805-807 (1984) 

[48] James R. Chelikowsky and Marvin Cohen, "Nonlocal Pseudopotential calcula­

tions for the electronic structure of eleven diamond and zinc-blend semiconduc­

tors," Phys. Rev. B. 14, pp. 556-575 (1976) 
166 



[49] F. M. Vorobkalo, K. D. Glinchuk, and V. F. Kovalenko, "Temperature depen­

dence of the width of a direct forbidden band of AlxGaj_xAs solid solutions," 

Sov. Phys. Semicond. 0, pp. 656-657 (1075) 

[50] C. A. Chang, W. K. Chu, E. E. Mendez, L. L. Chang, and L. Esaki, "Molecul.ir 

beam epitaxy of Ge-GaAs superlattices," J. Vac. Sci. Technol. 10, pp. 567-570 

(1981) 

[51] C. T. Seaton, S. D. Smith, F. A. P. Tooley, M. E. Prise, and M. R. Taghizadeh, 

"Realization of an InSb bistable device as an optical AND gate and its use to 

measure carrier recombination times," Appl. Phys. Lett. 42, pp. 131-133(1083) 

[52] D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. 

Gossard, and W. T. Tsang, "Large room-temperature optical nonlinearity in 

GaAs/Gaj.xAlxAs multiple quantum well structures," Appl. Phys. Lett. 41, 

pp. 670-681 (1982) 

[53] Optical computing is the subject of a special issue of the following two journals; 

Optical Engineering, 23, Jan./Feb. 1984 and Proceedings of the IEEE, 72, July 

1084 

[54] A. A. Sawchuk and T. C. Strand, "Digital optical computing," Proceedings of 

the IEEE, 723, p. 758 (1084) 

[55] Alan Huang, "Parallel algorithims for optical digital computers," 10th 

International Optical Computing Conference, Cambridge, Mass., April 6-8, 1083. 

[56] A. Ssoke, V. Daneu, J. Goldhar, and N. A. Kurnit, "Bistable optical element 

and its applications," App. Phys. Lett. 15, pp. 376-379 (1069) 

[57] H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, "Optical bistable devices: 

the basic components of all-optical systems?" Proceedings of the Society Photo-

optical Instrumentation Engineers, Integrated Optics, Vol. 269, pp. 75-80 (1081) 
167 



[581 "Topical Meeting on Optical Bistability," June 15-17, 1983, University of 

Rochester, Rochester, New York, Optical Society of America, Vol. 83.9 (1983) 

[59] "Optical Bistability," Edited by C. M. Bowden, M. Ciftan, and H. R. RobI, 

Plenum Press, New York (1981) 

[60] "Heat-transfer microstructures for integrated circuits," D. B. Tuckerman, Ph. 

D. thesis, Stanford University (1984) 

[61] F. A. P. Tooley, S. D. Smith, and C. T. Seaton, "High gain signal amplification 

in an InSb transphasor at 77 K," App. Phys. Lett. 43, pp. 807-809 (1983) 

[62] G. L. Harnagel, T. L. Paoli, ft. L. Thornton, R. D. Burnham, and D. L 

Smith, "Accelerated aging of 100-mW cw multiple-stripe GaAlAs lasers grown 

by metalorganic chemical vapor deposition," App. Phys. Lett. 46, pp. 118-120 

(1985) 

[63] D. D. Coon and R. P. G. Karunasiri, "New mode of IR detection using quantum 

wells," Appl. Phys. Lett. 45, pp. 649-651 (1984) 

[64] J. S. Smith, L. C. Chui, S. Margalit, A. Yariv, and A. Y. Cho, "A new mode 

infrared detector using electron emission from multiple quantum wells," J. Vac. 

Sci. Technol. Bl , pp. 376-378 (1983) 

168 



Appendix A: Evaluation of Coulomb Potential Integrals 

Part J 

The first integral, l u is given by equation (IV.71) and repeated here as 

rir/2 
|2fl 2-cos(20) cos2(fl)dfl. (Al) 

The evaluation of this integral is now illustrated. The integral is first separated 

into a sum of several integrals as follows. 

20 2-cos(20) cos2(«)d# 

fir/2 
= f [*2(1 + cos(, v -eos(2fi)(l + cos(2«))/2J M 

W 2 r i 1 
= y_ 0 2 + 0 2cos(20))-icos 2(2(?)-gCOs(2<?) d0. (A.2) 

The first integral over 92 is trivially integrated with a result of nljVZ. The 

second term is solved by integration by parts as 

e2 

J 9 2cos(2«))d0=2- s in(2tf) |* ' ) r / 2 - /_ 0sin20df). [A.3) 
-r/2 

/2 

The first term on the right hand side of equation (A.3) can be seen to be equal 

to zero. The second integral is again integrated by parts to obtain 

r / 2 * ,,/a i ri2 

- I , Bsm2SdO = 5 cos(2«)I* ' , , - s / , cos2fld« J-tr/2 2 ' "-ir/Z 2J-j/2 
1 ,tr/2 = g « « ( 2 « ) - i 8 i n ( » ) | ! . ^ 

2' 

The third term can be integrated as directly with the result 
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-iC/***™*=-5 O1+cos(ie))de 

:-\[9-\M*))\% 
it U-5) 

The last term is easily seen to integiate to zero. The integral /i in equation 

(A.l) can now be evaluated with the use of the above equations to find 

h = 12 2 4 12" 4 (A6) 

Part 2 

The second integral, / 2, is given by equation (IV.74) and repeated here as 

/•ir/2 r 
I2 —j o 2fl2-cos(20) 

f f / 2 

sin2(20)<W 

fl2( 1 - cos( 49)) - sin2( 20) cos(2fl) de 
-T/2 I 

The second term in the integral is evaluated by parts as 

(A.l) 

f/2 « fl2 .In 1 W 2 

J_n/^cos(4e)dB= ^sin(4fl)|^ 2

/ 2 -i/_ f f / 2flsin(40) 

= | cos(4^) - ^ sin(4«) H/% 
(A.8) 

The last integral in equation (A.7) is easily integrated as 

rir/2 
f sin2(2tf)cos(2s)(W=gSin3(2tf) \"J^2=0. (A.9) 
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The integral fy is now found with the use of the above equations to have the 

value 

*Hl3-gl- (^ 1 0 ) 
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Appendix B: Design of an Optical Digital Computer 

The primary motivation for an all optical digital computer is enhanced com­

putational power. Secondary benefits of reduced power and simpler fabrication 

over electronic approaches also appear possible. The advantages of optical logic 

primarily lie in the elimination of inductance-resistance- capacitance problems in­

herent in electronics. These problems often become the limit in the speed of an 

electronic system. In addition, the relatively slow speed of an electron across a gate, 

which can slow down an electronic logic element, requires very small lithographic 

regions to minimize this time. An optical gate does not have this problem and can 

be much larger for the same speed. Also, the interconnect is much easier to build 

optically than electrically at Terahertz frequencies. 

The approach: lenses vs. waveguides 

The approach to optical computing described here differs fundamentally from 

the more common approaches to optical computing under current investigation. 

The optical logic described here is designed for use in a system interconnected by 

integrated optical waveguides. In contrast, the more common research direction in 

optical computingl63! is based on the free space propagation of optical signals, with 

processing being performed in the image or fourier planes of an optical imaging 

system. In these imaging systems, lenses and other optical elements are used as 

conduits for information in an array (1000 by 1000 or so) transverse to the optical 

direction of propogation. Examples of optical systems of this type, which also show 

promise for performing the full set of logical operations neccasary for computing, 

are given by the works of HuangM and Sawchuck.l55! 

The two types of computer systems, which differ on the type of interconnection 

used, both have significant advantages depending on the type of computing which 

must be performed. An optical computer interconnected by free space propagation 
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is limited to a logic array in two dimensions since the third axis is used for transit 

of optical signals. Because a given logic element always has a minimum size, this 

limit to two dimensions severely limits the number of logic elements which can be 

placed within a given communication time of each other. In contrast, the system 

based on integrated optics can stack many logic boards, created in two dimensions 

by standard lithographic techniques, in a third dimension in a very similar manner 

to a current electronic computer. This difference is very important for a serial 

processor, with its speed limited by the time of transit of the signals between a 

large number of logic elements. But the difference is not significant for a parallel 

processor which does not rely on the speed of a given operation as much as the 

ability to perform operations simultaneously with a large number of logic elements 

at a very low cost per element. The integrated optical interconnect is thus seen 

to be advantageous for very fast serial processors and the free space interconnect 

advantageous for low cost parallel processors. 

The choice of interconnect has implications for the optical wavelength, the type 

of nonlinear media used in the logic element and the design of the logic gate itself. 

The wavelength of the light used for the integrated optical elements should allow 

fabrication of optical waveguides and integrated optical elements, to be described 

later, with simple lithographic techniques. For media with an index of refraction of 

3 and lithographic resolution of about 1 micron, the wavelength of the light should 

be about 10 microns. The wavelength of light for a free space interconnect system 

should be as small as possible since the resultant reduction in the resolvable pixel 

size reduces the optical power requirements and increases the logic element density 

on the surface of the array. The availability of high quality and inexpensive visible 

lenses and imaging system give stroug preference to this optical band for free space 

systems. Futher differences in the design of the two systems are in the geometry of 
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the logic element. A logic element the free space should have all inputs arriving from 

the axis of signal propogation whereas the integrated optical logic element should 

have all inputs arriving from within the plane of the given optical logic board in 

which it lies. This obvious condition complicates use of the QWEST in a free space 

system since its dipole is zero for all light incident perpendicular to the growth 

plane. Furthermore, a free space system is intrinsically slower than an integrated 

optical system because of the lower density of optical logic elements and the longer 

transit times between them. Thus a slower nonlinearity with a lower optical power 

requirement would be useful, suggesting the QWEST is not optimal for this type of 

system. 

The choice to develop integrated optical systems over free space systems was 

made for several reasons. First, not all computations of interest can be properly 

partitioned to be solved by a parallel processor. Second, if a parallel processor is 

desired, then it can be obtained by connecting together several serial processors. 

But the reverse approach is not possible, an intrinsically parallel machine makes a 

very poor serial processor. The fabrication of integrated optical elements is much 

more difficult than free space elements, but once the hardware is developed, a much 

superior system should be achieved. Furthermore, although the fabrication costs 

of a given logic element in a free space system are lower than a logic element in 

an integrated optical system, the lower speed of the free space system requires 

proportionally more logic elements in parallel to acheive the same throughput as 

an integrated optical system. For comparison, a free space system consisting of a 

1 mm square logic array connected by a series of lenses with a maximum optical 

path length of 1 cm will create a system compatable with a logic gate speed of 

under .00 picoseconds. An integrated optical computer consisting of a stack of 

20 boards in a 1 mm cube can take full advantage of the speed of a logic element 
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with a speed under 1 picosecond. This factor of 100 in speed ratio between the two 

systems requires the free space system have a cost, when divided by the number of 

logic elements, a factor of 100 below that of the integrated optical system simply 

to be comparable for processes capable of being effectively partitioned in a parallel 

processor. Unfortunately, the economics of these systems is unknown with any 

precision until further development. However, the fast serial processor is clearly 

only achievable by the integrated optical interconnect, and is clearly needed for 

some applications, independent of the performance of parallel systems. Research 

on this type of processor is justified for this reason alone, Furthermore, present 

analysis indicates that an integrated optical digital computer to be described is 

capable of improving the speed and lowering the power used both by a factor of 1000 

over current electronic computers. This improvement combined with fabrication by 

current semiconductor industry methods suggests that this technology may also find 

widespread utility within the computing demands of the future. 

The requirements of an optical logic element 

A digital computer consists of logic elements, their interconnection, and memory, 

all supported by a framework consisting of a power supply, cooling and connec­

tion to the outside world. A properly working computer demands Kilance and 

proper proportion among these components. But the speed and performance of 

a computer depends primarily on the logic element, not only because of its speed 

but its functionality and characteristics. Ten requirements for an optical digi­

tal logic element are now given which are essential to a working computer system. 
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Inversion function 
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Figure B.l: The desired transfer functions of a logical identity and inverter 

operation. 

The first requirement of a logic element is an output power as a function of the 

input power, or transfer function, with a proper form. Because the power of the 

optical signal varies significantly with location, the input is considered for purposes 

here to be the value of output of the previous logic element. This definition allows 

the transfer function to include the effects of the interconnection and beamsplitting. 
s 



If we momentarily take a logic element with only OP* "t, then this element will 

be either an identity or inversion operation. The tra oi«r function of the identity 

operation must cross the output=irput axis three times (see Fig. B.l). The lowest 

power point is a "low" signal and the highest power point is a "high" signal. Both 

the upper and lower power points must have a slope less than unity at the crossing 

point in order to be stable. The intermediate power point must have a slope greater 

than unity. A similar argument also applies to the inversion operation. The transfer 

function should have very little hysteresis and be single valued. The "low" power 

value should be sufficiently small so that several low inputs to a logic element do 

not combine to appear as a "high" and change the output of the gate. 

The second requirement is for gain of the signals from the input of a given logic 

element to its output. This gain is needed to allow sufficient power to drive many 

other logic elements and allow for losses in the interconnects. Gain rhould be a 

factor in the range of 4 to 10. 

The third requirement is to prevent random phase variations in the optical 

signals from affecting the function of the logic element. This requirement is unique 

to optical waves and has no parallel for electronic computers. The problem arises 

from the wave nature of light and the phase relationship among the signal inputs and 

the light power source. These waves must be present in the same physical location 

since they must interact through the same dielectric. But the effect of these waves 

on the media depends on the local intensity, which varies radically depending on 

the r e l a t e phase of the interacting light signals, even if their individual intensities 

remain constant. Furthermore, the signals arrive from different locations through 

long waveguides, which can change the phase of the light at a logic element via 

small changes in the refractive index. The great difficulties in predicting and and 

maintaining a precise phase relationship between all beams indicates tha' the logic 
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element should be designed to be independant of the phase relationship of the 

interacting sources. 

The fourth requirement is the provision of the complete logic family. In par­

ticular, an inverter operation is mandatory. In addition the OR or AND logic 

operation is also needed to provide the complete logic set. A very powerful logic 

element is the complementary NOR or NAND logic elements. These logic elements 

provide the OR or AND operation and its inverse simultaneously. This duality has 

many advantages. It can reduce the overall computer optical power requirements, 

logic element count, and number of gate delays per operation all by as much as a 

factor of 2. Furthermore, because an OR operation will turn into an AND operation 

upon inversion of all inputs and outputs, it entirely eliminates the need for both 

operations, thus the complete logic family can be accomplished with only one logic 

element. For these reasons, a complimentary NOR or NAND logic operation is 

strongly preferred. 

The fifth requirement is for a logic element which does not reflect the input 

signals (or be "impedence matched") for all possible states in which the logic element 

may exist. Reflection of the inputs can obviously affect the performance of the 

previous logic element and also can set up cavity resonances between the output 

of one element and the input of the next. These resonances depend critically on 

the length of the transmission line and can also affect the transmission efficiency 

randomly. 

A sixth requirement for the logic element is for multiple inputs. Although only 

two inputs are needed to create the entire logic family, actual computers can use 

many more with such great frequency that a gate with only two inputs could slow 

today's computers by a factor of over 2, while again doubling the logic gate count 

and overall power requirements. As such, a logic gate with at least 4 inputs is 
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generally preferred. Again recalling requirements three and five, thes> inputs should 

not interact with each other, except as needed for the logic operation, and not be 

reflected for any logic state. 

A seventh requirement for a logic element is the tolerence to variations in 

manufacture (dopant density, linewidth, etc. ) and environmental conditions 

(temperature changes and gradients, dust, etc. ). A 'R gic element which does not 

have a transfer function or other properties which are tolerent to these variations 

will fail. For instance, the temperature of a logic element could easily ^ ry by more 

than 10° C, yet this temperature change will cause the index of refraction of GaAs 

to change by 1.5 x 10~3 and the bandgap of GaAs by 5 meV. Neverthe: .ss, many 

designs are seen which are sensitive to an order of magnitude smaller variations 

with predictable results. 

An eighth requirement is for the logic element to be manufacturable The 

manufacture of the logic element (and its interconnections) should be suffi ?ntly 

inexpensive to be competitive with electronic logic and fabricatable in very iarge 

numbers with reasonable reliability and yields. 

A ninth requirement is for low output noise on the signal lines. Most optical 

logic tends to have low noise simply because of the very high frequency of the carrier 

signals and low numbers of optical modes involved. However, narrow bandwidth 

sensitivity and isolation of crosstalk will reduce this noise margin even further. 

The tenth requirement is that all obvious conditions bo satisfied. For instance, a 

logic family would not be able to make an optical computer if the output wavelengths 

did not match the required input wavelengths. Many other conditions of this 

type exist and must also be satisfied. 
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Examples of an optical logic element 

In a logic gate, the optical beams will interact through a nonlinear material. This 

interaction will be described by the dielectric constant of the material. The optical 

beams will have an effect on this dielectric constant and this dielectric constant 

will in turn describe the effect of the nonlinear material on the optical beams. The 

higher the nonlinearity of this material, the lower the optical power needed to create 

a given effect. The logic element can use either the refractive or absorptive part of 

the dielectric constant and often is a combination of both. 

A commonly used component of an optical logic element is a Fabry-Perot resonator 

formed by two mirrors with a nonlinear material in between. The frequency of 

the optical signals is tuned to be slightly off resonance of the nonlinear material 

so as be more affected by the change in refractive index rather than the change 

in absorption. The cavity will be resonant only when an integer number of half 

wavelengths is equal to the cavity length. But since this wavelength depends 

on the refractive index, and therefore the optical power within the cavity, the 

cavity will tend to transmit only a particular power, no matter what power is 

incident. Although if the incident optical power should drop too low the cavity 

will simply switch to no transmission. The behavior of these nonlinear cavities 

is described in several references.l5(-6gl A simple examplel"! of the form of the 

transfer function of this cavity is shown in Fig. B.2. The cavity can be biased so that 

the resonant phase occurs for any particular optical power for the first transmission 

step. However, all further cavity resonances must have sufficient power to shift the 

round trip phase of the cavity by multiples of 2*. Because the power of a nonlinear 

element must be kept at a minimum, a logic element will attempt to work with the 

first cavity resonance biased to occur with very little incident power. How small this 

bias can be made is dependent on the properties of the Fabry-Perot cavity. A cavity, 
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formed by mirrors with transmission T and single pass loss in optical intensity lower 

than a factor of T, will have an internal optical intensity increased by a factor of 

1/T over that incident when in resonance. This cavity will not significantly change 

its transmission factor until the optical phase has been shifted by an amount of 

order ^/T from the cavity resonance. This cavity property sets the minimum phase 

bias which is usable and therfore the mimimum optical power of an optical element. 

The limits on this resonant enhancement are set by such factors as the buildability 

of the high reflectivity mirrors, a sufficiently low unsaturable loss in the cavity, 

and ultimately, the optical cavity decay times, which rapidly become significant for 

high reflectivities and large cavities. Typical cavities used will have lengths of order 

1 to 10 microns with mirrorj of transmission between 1 to 10 %. The cavity decay 

times, for materials with a refactive index of 3, will be of order .1 to 10 picoseconds. 
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Figure B.2 An example of a transfer function of an optical cavity containing 

a nonlinear material (From Ref. 61). 

A nonlinear Fabry-Perot cavity does not in itself create a logic element which 

satisfies the previous requirements. An example is now presented which uses the 
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Fabry-Perot cavity, the QWEST and integrated optics to satisfy the earlier require­

ments. The fabricated structure is illustrated in Fig. B.3. This structure contains a 

number of features which aid in the physical behavior and manufacturability of the 

device. The integrated optical structure consists of the materials Ge, GaAs, ALAs, 

and ZnSe which are not only of similar lattice structure but have nearly identical 

lattice sizes. Furthermore, they have all been demonstrated to grow well upon one 

another epitaxially as a single crystal. The refractive index of these materials at 10 

micron wavelengths is 4.0, 3.3, 2.8, and 2.4 respectively. These materials are all very 

transparant for light with wavelengths from 2 microns (limited by the Ge bandgap) 

to well beyond 10 microns (limited by phonon absorption in several of the materials). 

Epitaxial growth of various low index (1.4) materials such as BaF2 and CaF 2 has 

been demonstated on GaAs and Ge substrates with sufficient quality to be a good 

cover material for these logic elements aad waveguides. A large index difference 

between the cover and waveguide material can be used to allow efficient control 

of the signals, as exhibited for instance in the right angle corners and waveguide 

cross-over (see Fig. B.3). Because of the ease of growth of Ge and the (AlGa)As 

compounds (which has even lead to alternating GaAs and Ge quantum wellsl50l), 

the less common ZnSe growth could be substituted entirely by waveguides made of 

Al xGai_ xAs with x being close to unity. 
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Figure B.3: An example of a complementary NOR optical logic gate, also 

illustrating several interconnection elements such as right angle corners and cross-

throughs. 
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There are several new integrated optical elements illustrated in Fig. B.3. One of 

the more important is the waveguide dielectric mirror. This mirror is an analogue of 

the dielectric mirrors used with lasers today. This mirror differs from a distributed 

feedback integrated optical mirror in that the alternating dielectric material extends 

fully across the waveguide instead of merely being a surface perturbation. This 

device is much easier to fabricate with today's technology for use in the infrared 

region than with visible light. A mirror with 90 to 99 % reflection can be made with 

3 to 5 quarter wave thick Ge slabs inserted into an AlAs wavequide. A second very 

important element is the corner reflector. The large refractive index of Ge and the 

small refractive index of the coating materia) allows the waveguides to make very 

abrupt bends, important for minimizing the space needed for interconnection. An 

abrupt waveguide bend is illustrated in Fig. B.3 which uses total internal reflection 

in a Ge prism to turn the light. Note that this prism does not appear to directly 

reflect rays from the center of one waveguide into the other. This is a result of the 

Goos-Hanchen shift, which makes the effective reflection surface appear behind the 

actual surface. The waveguide as shown is fairly inefficient, with losses of over 20 

% to diffraction away from the corner. However, more complicated designs may 

reduce this loss to under 5 %. Yet another important integrated optical element is 

the cross-through, also illustrated in Fig. B.3. This element allows two waveguides 

to cross through one another without any exchange of signals between them. This 

element allows the signals to remain in one plane if so desired. The reduction 

in signal planes greatly aids in fabrication and compactness of optical computer 

systems. The cross-through allows the waves to be continually confined as they 

transit through the higher index Ge block. The reflection off of each surface is 

about 3 % for the indices of refraction involved, but if the waveguides are made 

close to a half integer number of wavelengths wide, then the Ge block will be a 
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resonant cavity and allow the optical signals through without any reflection loss. 

Also illustrated in Fig. B.3 is a beam splitter based on the prism corner reaector. 

The beam splitter has an additional corner which catches the infrared radiation 

which is exponentially decaying away from the reflection surface. For the materials 

indicated in Fig. B.3 and 10 micron wavelengths, this gap will be about 1.5 microns 

for a 50 % coupling beamsplitter. 

With this understanding of the integrated optical elements and the nonlinear 

Fabry-Perot cavity, the operation of logic element presented in Fig. B.3, a com­

plementary NOR gate, can be explained. The infrared power to this logic element 

is supplied externally ( and quite possibly external to the computer in the form of 

bulk laser such as a CO or CO2) and applied to a power limiter. This power limiter 

is a nonlinear Fabry-Perot cavity biased to be resonant for the exact infrared power 

needed for the logic element. This limiter allows the external power to fluctuate 

from continous to Terahertz frequency with up to 50 %variation while still provid­

ing a constant output with only a few percent variation. The limiter operates by 

a similar mechanism used in the logic element. As such, the output is similarly 

dependent on such parameters as cavity length and quantum well doping density 

as the logic element. Thus the limiter also reduces requirements on the tolerances 

of these parameters to a m".ch easier relation between its cavity and that of the 

logic element a few microns away on the same substrate. After the power limiter, 

the beam splitter is used to properly proportion the infrared intensity between the 

two cross coupled logic cavities. The accuracy of this split is essential and must be 

within about 3 % for logic cavities with a 10 % transmission mirrors. This accuracy 

implies a beamsplitter gap tolerance of under 0.1 microns, which may be excessively 

difficult. The power limiter would then best be placed on each of the infrared paths 

after the beamsplitter as close as possible to the logic cavities instead of its present 
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location. 

The logic element consists of two Fabry-Perot cavities cross-coupled to one 

another, with one cavity greatly extended to provide areas for the inputs to couple. 

These logic cavities are biased such that, with no logic signal input, the shorter 

cavity transmits the infrared intensity incident and the longer cavity is close to 

resonance, but does not quite have sufficient infrared power incident to turn on. 

The infrared power incident on the longer cavity is greater than that incident on 

the shorter cavity. This greater power is needed because of the larger number of 

nonlinear absf rption regions in this cavity and the desire for this cavity, when on, 

to turn off the shorter cavity by driving it off resonance. The longer cavity is biased 

off resonance by a much larger factor than the smaller cavity because of the large 

number of nonlinear regions in this cavity. The input signals to the logic element 

saturate the nonlinear regions and cause the longer cavity to draw photons into 

it by both lowering the loss of this cavity and pulling it closer to resonance. The 

high intensity infrared field in the longer cavity shifts the cavity resonance of the 

smaller cavity sufficiently far off to not allow any transmission. Thus a sufficiently 

strong infrared signal on any of the input lines causes the longer cavity to change 

its output from a low intensity o a high intensity, or the OR operation, and the 

shorter cavity output from a low intensity to a high intensity, which is the NOR 

operation. The gain is given by the ratio of the output infrared intensity to the 

input signal required to switch it. The gain is directly proportional to the fan-out, 

or the number of logic elements a given output can drive. The gain is given by 

the ratio of the logic cavity transmission to the input cavity transmission. A large 

ratio indicates that the relatively smaller intensity of the signal builds up to a larger 

intensity inside the logic cavity and thus control it. Yet other factors relating to 

doping density and overall logic cavity absorption must also be satisfied to create 
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a good transfer function with high gain. However, the gain of the logic element 

shown is in the range of 5 to 10. 

The nonlinear interactions occur only at the antinodes of these cavities. A 

change in the dielectric constant at the node of the cavity has no effect on either the 

cavity resonance or absorption loss. Furthermore, the excitation of these antinodes 

is much higher than that of the nodes simply because of the greater infrared intensity 

at these points. The nonlinear interaction is therefore considered not to take place 

homogeneously, but rather at these cavity antinodes which are indicated in Fig. 

B.3 by black spots. A cavity with mirrors of transmission T requires a change in 

phase of about 2T to change the cavity from transmitting to blocking. We label 

the phase change required as $ 0- For a mirror transmission of 10 %, this phase 

change using the QWEST can be acheived with a power of about 2 milliwatts. 

However, several of these interaction regions, each of which are capable of this large 

a phase change, are seen to be required to create an operating logic element. These 

requirements, combined with the power losses in the limiter, lead to an overall logic 

gate power of about 50 milliwatts. The speed of this element is primarily limited by 

the approximately 3 to 5 picosecond time for the electron gas in the quantum wells 

to relax back to lattice temperature. Additionally, the longer logic cavity requires 

about 3 picoseconds to discharge its photons. Thus this logic element is anticipated 

to have a switch speed of under 10 picoseconds. 

The inputs to the logic gate can have an arbitrary phase relation w.th the other 

inputs and the power source since the relative phase depends on the location of the 

original source, its phase and the net phase shift after transversing a long path, all 

of which are difficult to predict and fluctuate with time and temperature. The logic 

gate is made insensitive to this phase relation by several means. The inputs are 

seperated physically from one another such that thier phase relation is not directly 
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significant. The phase relation between the inputs and the cavity fields directly 

affects the local infrared intensity at the nonlinear interaction points. This relation 

is compensated by allowing the input, which is a single transverse waveguide mode, 

to interact with two adjacent cavity antinodes. The adjacent antinodes are 180° out 

of phase with each other but the input signal does not change phase. If we let x be 

the cavity field at one antinode and -x the field at the other, then the effect of a signal 

with field y at both antinodes is proportiona' to the sum of the intensities at the two 

antinodes. This effect is thus proportional to (x+y)(x+y)*+(x-y)(x-y)'=2xx'+2yy* 

and phase relational xy* part drops out. 

This logic element based on the QWEST is also relatively independent to changes 

in temperature. The QWEST resonance has been measured to change by less 

than 0.16 meV for a 10° C change in temperature. For a signal biased about 

7 meV away from resonance this small change is negligable. The nonlinear effect 

of the QWEST can also be affected by a change in the decay or dephasing time 

with temperature. However, these quantities also appear to change very little 

over broad temperature ranges. 

The quantum well doping densities needed for the logic device of Fig. B.3 are 

in the range of 4 to 20 x 10 1 8 /cm 3. For proper operation of the logic element, this 

doping density should be accurate to about 3 %. The presence of the power limiter 

can reduce this accuracy requirement by a factor of af- least 3 to over 10 %. The 

limiter also reduces a requirement for a cavity length accuracy to 0.1 micron to a 

much easier requirement that the lengths of the limiter and logic element cavities 

be equal to within 0.1 microns. 

The largest fault of the logic element of Fig. B.3 is the lack of good impedence 

matching of inputs to the logic element. As the optical intensity of the logic 

cavities change, the reflectivities of the input cavities (used to assure high absorption 
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efficiency of the signals) change the reflected infrared signal intensity. A proper 

impedence match in this system is easiest obtained be placing a large waveguide 

attenuation in the path of the signal. This reduction in reflected signal also has 

the unfortunate consequence of requiring more power to the input and reducing the 

gain and fanout available. 

This logic element is felt to be capable of demonstrating all the properties needed 

for an optical logic element, but is certainly not an optimal device, The value 

of this device is considered to be proof of principle ( or a counterexample to the 

impossibility proofs ) in a readily ruanufacturable device. The relatively high power 

of this logic gate is compatabie with a room temperature computer with maximum 

dimensions of about 3 centimeters, cooled by demonstrated techniques. Suprisingly, 

a computer based on this germinal logic element could itself be a significant advance 

over current computational capabilities at a very reasonable cost. However, logic 

elements of this type are nevertheless considered an intermediate demonstration for 

yet much better performance devices to be designed. 

Logic element improvements 

The above coupling mechanisms were enhanced by an electromagnetic resonance 

of the Fabry-P^rot cavity, which aided in lowering the power requirements by 

a factor equal to the mirror transmission. This resonance has its limits, both 

because of the difficulty in obtaining a cavity with a loss lower than the mirror 

transmission and in the lifetime of the cavity, which increases as the inverse of the 

mirror transmission. These considerations limit use of this enhancement to mirror 

transmissions in the range of 0.01 and higher, for a maximum performance increase 

in the range of a factor of 100. However, improvements in fabrication technique 

could eventually increase this electromagnetic enhancement by another order of 

magnitude. 
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But other enhancements of the electromagnetic field are possible. One of the 

more interesting occurs in crystals much smaller than the wavelength of incident 

light. These small crystab have resonances for various negative ratios of the dielectric 

constant of the crystal with its surroundings, cP. For instance, the electric field 

inside a dielectric sphere, Eit in a uniform field, E$, is also uniform and given 

by E{ = 3£fl/(er + 2). A dielectric constant can be negative by several mechanisms. 

The most common occurs when the light oscillates below the plasma frequency 

of a metal, semimetal, or highly doped semiconductor. Another frequency band 

with a negative dielectric constant occurs in between the iongitudal and trans­

verse optical phonon frequencies of .in crystal, typically in the mid-infrared. The 

infrared wavelengths of interest are generally too small to be near the plarma 

frequencies of metals and too large to allow use of doped semiconductors. The 

semimetal of most interest is the As crystal, which has an electron density in 

the range of lO^/cm3. The electomagnctic resonance can be obtained by ad­

justing the shape of the crystal, the dielectric constant cf the surrounding material, 

the applied infrared frequency, and possibly the electon concentration of the plasma. 

The resonances of these small crystals only depend on the shape of the crystal, 

but not the size if they are much smaller than the wavelength of incident light. 

The small size of these crystals gives nearly instantaneous response, even for very 

large enhancements, unlike the Fabry-Perot resonance. The largest problem with 

the use of these crystals is the large Rayleigh scattering which also resonates with 

the enhancement of the crystal fields. Rayleigh scattering decreases with increasing 

wavelength to the fourth power and decreasing scatterer size to the sixth power. 

Thus, with infrared wavelengths this resonance scattering may be elimimated with 

particles of dimensions less than about 30 nanometers. 
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If the Rayieigh scattering of these crystals can be eliminated, then their ap­

plication to a logic device can be made simply by their implantation at the inter­

action antinodes of the previous logic element. The crystals lower the infrared 

power needed for the logic element by confining optical fields into small volumes of 

nonlinear materia', with the same excited state density required to create a given 

change in refractive index. Because of the difficulties of manufacturing these small 

crystals with good uniformity, new logic designs are being investigated which allow 

the scattering to occur. Two possible scattering-coupled integrated optical inter­

ferometer designs are illustrated in Fig. B.4. The logical operation of these devices 

depends on the scattered radiation being collected with good efficiency in another 

mode of the cavity. The switching can result from, as before, a change in refractive 

index of the coupled modes in a Fabry-Perot cavity, or more likely, from a change in 

the scattering coefficient itself as a result of the local infrared intensity. This local 

intensity in turn depends on the scattering-coupled modes and provide a feedback 

mechanism. The signal inputs can then change this'fcalance and cause a switching of 

the modes with gain. These interferometers need to use both first and second order 

waveguide modes at each of the four waveguides, for a total of eight interaction 

channels overall, in order to allow sufficient numbers of connections to the external 

elements. Other electromagnetic enhancements also exist, but are more difficult to 

use. All of those enhancements can theoretically be used in conjuction with one 

another and with the improvements multiplying. 
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Figure B.4: An example of a scattering-coupled interferometer. 

The limits to the enhancements are quickly approached from quantum noise 

statistics. If we allow a logic signal to be represented by only 300 quanta, and 

let these photon quanta have an energy as low as 0.1 eV (or voltages of .1 volt 

for electronic charge quanta), then the power in a picosecond signal is equal to 

5 microwatts. For an average gain of 3 (although some elements will have much 

higher gain) the average power to the logic elements must be about 3 times higher 

or about 15 microwatts. It can be seen that we only use a factor of about 3000 

in enhancements before we run into significant noise problems. Use of higher 
192 



energy photons ( or higher voltages for electronic logic) only increases the energy 

requirements proportionally. Incidentally, the power-time product of such a low 

power logic element would be about 0.015 femtojoules, and appears quite possible 

if proper logic function can be found utilizing these electromagnetic enhancements 

in a fabricatable element. 

Optical logic element packaging 

The optical logic element of Fig. B.3 must be placed into a computer system to 

operate properly. We first make the assumption that the logic element has a switch 

time of 10 picoseconds. This time is predicted by measurements of the relaxation 

time of the electron temperature to the lattice temperature and the decay time of 

the logic cavity. The computer is taken to be a size, by comparison with today's 

supercomputers, which allows the signals to propagate across in about 15 logic gate 

delays. If the waveguides have an effective index of refraction of 1.5, then the 

computer can be about 3 centimeters in maximum dimension. A possible physical 

structure of the computer is illustrated in Fig. B.5. This structure consists of 100 

boards, each of which is 300 micrometers thick and 3 centimeters square. The 

overall computer is anticipated to contain approximately 1 million logic structures, 

with 10,000 on each board, and an average distance between logic elements of about 

300 microns. Each board will consist of many chips, each with the most number 

of logic elements compatable with high yield and reliable fabrication. If we assume 

about 100 logic gates per c ; " en each board would have about 100 of these chips. 

The signals are routed within the chip on the same plane using cross-through devices 

shown in Fig. B.3. Th- signals couple to each other through a backplane directly 

above the chips and insisting of low index (1.5) waveguides. The chips couple 

the the backplane optically via a grating structure which produces a 50 micron 

diameter infrared beam perpendicular to ihe surface. A chip with 100 logic elements 
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would possibly have as many as 30 connections. This 50 micron infrared spot 

size greatly eases tolerances to dust and translation errors, and could be increased 

further if needed. An infrared beam of this diameter can propagate over 700 microns 

without diffracting, so a 50 micron gap between the signal backplane and the chips 

is allowed without change in overall system function. Board to board connection 

is accomplished by another backplane at the edges of the logic boards. Electronic 

computer backplanes connecting similar densites of chips with multilevel printed 

circuit boards will have between 6 and 12 levels. The ability to cross waveguides 

through one another is expected to reduce this number of signal planes significantly. 

Optial computw 

logic board 

Figure B.5: A possible optical computer physical layout. 
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The logic elements will be powered by a CC>2 laser outside the computer and 

beamsp'it to couple into the various boards. If the computer consists of 1 million 

logic elements, each of which consume 50 milliwatts of infrared power, then the 

C 0 2 laser must emit 50 kilowatts of infrared light. (This high an infrared power 

will probably never be needed since improvements will be rrade in the logic element 

before buiding to this scale.) This infrared laser is anticipated to be the most 

expensive component of the optical computer and cost around $2,000,000 if this 

much power were actually needed. (Future development of the logic element as 

indicated in the previous section may lead to 10 microwatt logic elements, or an 

overall computer requirement of only 10 Watts of infrared power, which can be 

purchased for about $8,000.) 

The waste heat generated in the logic elements will be dissipated in cooling 

channels under each board. Each 3 centimeter board will generate about 500 watts 

of heat. Cooling channels at 50 psi water pressure with 50 micron channels and 50 

micron fins have been demonstrated to be able to dissipate 790 Watts/cm2 with a 

thermal resistance of 0.090 cm2-°C/Watt.lMl A similar cooling on the optical logic 

boards with 50 milliwatt logic elements will have only a 5° temperature rise. Future 

low power logic elements will have temperature rises lower by yet another factor 

of 3000. Contrary to conventional wisdom, no valid thermal argument against 

optical logic exists. Rather, it is not clear if terahertz room temperature electronic 

structrures will ever obtain subfemtojoule switching energies (or even can reach 

such speeds in a computer system). 
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