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The g i a n t  d i p o l e  resonance i s  one of t h e  simplest  and most b a s i c  

featurds of nuclear  matter .  it was discovered i n  t h e  e a r l i e s t  days of 

nuc lea r  physics  and s i n c e  has been s tudied  i n  t h e  g r e a t e s t  d e t a i l .  We 

know. many of i t s  f e a t u r e s  wi th  some p rec i s ion  but  t h e r e  a r e  s t i l l  b a s i c  

a s p e c t s  of i ts charac te r  which a r e  poorly understood. One of t h e s e  i s  t h e  

coupling between t h e  b a s i c  'd ipole  o s c i l l a t i o n  and o the r  nuclear  c o l l e c t i v e  

degrees of freedom such a s  surfaced v i b r a t i o n s  and r o t a t i o n s .  E l a s t i c  

and i n e l a s t i c  p h o t o n . s c a t t e r i n g  i s  an i d e a l  probe f o r  s tudying 

t h i s  f e a t u r e  of t h e  g ian t  d ipo le  resonance. The b a s i c  photon i n t e r a c t i o n  i s  

we l l  known and one can use d i spe r s ion  r e l a t i o n s  t o  connect e l a s t i c  s c a t t e r i n g  

and photo absorpt ion  c ross  sec t ions .  A s  w e  w i l l  s ee ,  t h e  s t r e n g t h  of 

i n e l a s t i c  s c a t t e r i n g  g ives  a  d i r e c t  measure of t h e  coupling t o  c o l l e c t i v e  

degrees of freedom such a s  su r face  v i b r a t i o n s .  , 

We know i n  t h e  simple hydrodynamic model1 t h a t  ;he energy of t h e  

d ipo le  resonance i s  inverse ly  p ropor t iona l  t o  t h e  nucleus radius :  

However, i n  a  s p h e r i c a l  nucleus:  

The kurf'ace undergoes a deformation which v a r i e s  i n  t i m e  according t o  t h e  

equation : 



t h a t  i s , .  t h e  n u c l e a r  s u r f a c e  undergoes dynamic coP lec t ive  quadrupole 

v i b r a t i o n s .  A s  a r e s u l t ,  one expec t s  a . . coupl ing  t o  e x i s t  between t h e  g i a n t  

. d i p o l e  resonance and s u r f a c e  v i b r a t i o n s  i n  s p h e r i c a l  n u c l e i .  , I n  t h e  absence 

of t h i s  coupl ing ,  photon s c a t t e r i n g  through t h e  g i a n t  d i p o l e  resonance would 

be  pu re ly  e l a s t i c .  The presence  of such coupl ing  produces i n e l a s t i c  s c a t t e r i n g  

t o  low-lying e x c i t e d  s t a t e s  and t h e  photon s c a t t e r i n g  should provide  one of 

t h e  most s e n s i t i v e  means of observ ing  t h i s  coupl ing.  The model most f r e q u e n t l y  

used t o  es imate  t h e  s t r e n g t h  of t h i s  coupl ing  is' t h e  dynamic c o l l e c t i v e  

2 
model . For s p h e r i c a l  n u c l e i  i n  t h e  mass 60 range t h e ' t h e o r y  t y p i c a l l y  

p r e d i c t s  an i n e l a s t i c  s c a t t e r i n g  component about  0.3 of t h e  e l a s t i c  s c a t t e r i n g  

c r o s s  s e c t i o n .  

I n  t h e  ,dynamic c o l l e c t i v e  model, t h e  g i a n t  d i p o l e  resonance i s  t r e a t e d  

a s  a c o l l e c t i v e  d e n s i t y  o s c i l l a t i o n  of pro ton  f l u i d s  a g a i n s t  neu t ron  f l u i d s  

as i n  t h e  hydrodynamic.mode1. Quadrupole s u r f a c e  v i b r a t i o n s  a r e  t r e a t e d  i n  

t h e  u s u a l  harmonic c o l l e c t i v e  model. A harmonic approximation i s  used and 

e x c i t a t i o n s  a r e  t r e a t e d  a s  coupled o s c i l l a t o r s  fo l lowing  a Hamiltonian of 

t h e  form: 



It i s  noted  t h a t  t h e  c h a r a c t e r i s t i c  per iod  f o r  s u r f a c e  v i b r a t i o n s  i s  

about +ill MeV whi l e  t h e  c h a r a c t e r i s t i c  per iod  f o r  t h e  g i a n t  d i p o l e  

state is  . %I15 MeV . . i n d i c a t i n g  t h a t  t h e  quadrupole v i b r a t i o n s  a r e  

v e r y  much s lower than  t h e  g i a n t  d i p o l e  o s c i l l a t i o n s .  Consequently,  t h e  

a d i a b a t i c  approximation can b e  .used t o  e v a l u a t e  t h e  coupl ing  c o n s t a n t s  i n  . " 

t h e  coupl ing  term i n  t h e  Hamiltonian. These coupl ing  c o n s t a n t s  a r e  then  

used i n  a  Hamiltonian which i s  d i agona l i zed  i n  t h e  b a s i s  of  t h e  s t a t e s  

a p p r o p r i a t e  t o  t h e  uncoupled Hamiltonian. The t h e o r y  p r e d i c t s  two p h y s i c a l  

e f f e c t s :  f i r s t  a  broadening of  t h e  abso rp t ion  c r o s s  s e c t i o n .  

To d a t e  i t  h a s  been t h i s  f e a t u r e  of t h e  abso rp t ion  c r o s s  s e c t i o n  which has been 

used t o  estimate t h e  s t r e n g t h  of t h e  coupl ing  between t h e  g i a n t  d i p o l e  resonance 

and o t h e r  e x c i t a t i o n s .  However, because of t h e  i n t r i n s i c  wid th  of t h e  d i p o l e  

state, i n t e r p r e t a t i o n s  of  t h e  broadening a r e  r e l a t i v e l y  d i f f i c u l t .  The 

second e f f e c t  p red ic t ed  by t h e  dynamic c o l l e c t i v e  mddel 'is a  non-zero n u c l e a r  

t e n s o r  p o l a r i z a b i l i t y  which g i v e s  rise t o  i n e l a s t i c  s c a t t e r i n g  t o  t h e  low- 

+ + 
l y i n g  v i b r a t i o n a l  s t a t e s ,  0 and 2 s t a t e s  i n  even-even t a r g e t s .  

Experimental obse rva t ion  of t h i s  i n e l a s t i c  s c a t t e r i n g  h a s  been 

hampered by l a c k  of i n t e n s e  monochromatic photon beams. Previous  measurements 

w i th  monochromatic photons have been l i m i t e d  t o  lower energy r e g i o n s  

3 a c c e s s i b l e  w i t h  reac tor -genera ted  photon beams . Two developments have 

made new measurements poss ib l e .  The development of l a r g e  volume h igh  

r e s o l u t i o n . N a I ( t 2 )  spec t rometers  h a s  made p o s s i b l e  t h e  r e s o l u t i o n  of 

e l a s t i c  and i n e l a s t i c  s c a t t e r i n g  f o r  monochromatic i n c i d e n t .  photons. 

The a v a i l a b i l i t y  of  monochromatic photons from t h e  tagged photon sou rce  
4 

of t h e  Un ive r s i t y  of I l l i n o i s  micro t ron  has  made p o s s i b l e  measurements w i th  

i n c i d e n t  beams of quasi-monochromatic photons. The exper imenta l  arrangement 

f o r  our  measurements a r e  shown i n  F i g . . l .  A beam of e l e c t r o n s  from t h e  



. . I l l i n o i s  superconduct ing micro t ron  s t r i k e  an  aluminum conve r t e r .  The 

brcmss&ahlung produced i r r n d i o t c s  a  200 gram sample of 60~i.. PI io to i l~  

are observed i n  a l a r g e  volume . ~ a I ( t % )  spec t rometer  i n  co inc idence  

w i t h  t h e  r e s i d u a l  e l e c t r o n s  which a r e  magne t i ca l ly  analyzed wi th  t h e  r e s o l u t i o n  

. .. 
of  150 keV: The e l e c t r o n  spec t rometer  c o n t a i n s  an  a r r a y  of 12 d e t e c t o r s  

p e r m i t t i n g  s imultaneous measurements of a band of photon e n e r g i e s  t y p i c a l l y  

of about  4 MeV. 

Measurements w e r e  made over  t h e  range  of 15-22 MeV. For each 

energy, t h e  e l a s t i c  and i n e l a s t i c  s c a t t e r i n g  t o  t h e  ground s t a t e s  and low- 

l y i n g  e x c i t e d  s t a t e s  w a s  ob ta ined  b y  f i t t i n g  t h e  s p e c t r a  of s c a t t e r e d  photons 

wi th  measured l i n e  shapes.  F igu re  2  shows t h e  s c a t t e r e d  

phoion spectrum observed f o r  a  6 0 ~ i  t a r g e t  a t  a photon s c a t t e r i n g  a n g l e  

of 120° and an i n c i d e n t  photon energy of 19.8 MeV. I n  gene ra l  w e  s e e  no 

s c a t t e r i n g  t o  t h e  h ighe r  e x c i t e d  s t a t e s  and t h e  i n e l a s t i c  s c a t t e r i n g  t o  t h e  

+ 
f i r s t  e x c i t e d  2  state i s  v e r y  weak. 

F igu re  3  shows t h e  r e s u l t s  of ou r  f i r s t  measurements of 60~i .  P l o t t e d  

is  t h e  e l a s t i c  c r o s s  s e c t i o n  as w e l l  a s  t h e  t o t a l  i n e l a s t i c  c r o s s  s e c t i o n  f o r  

a s c a t t e r i n g  ang le  of 120'. The s o l i d  curve  and t h e  d o t t e d  curves  bound 

t h e  reg ion  on which t h e  s c a t t e r i n g  c r o s s  s e c t i o n  w a s  es t imated  t d  l i e  on t h e  

b a s i s  of  in format ion  a v a i l a b l e  on t h e  t o t a l  abso rp t ion  c r o s s  s e c t i o n  i n  60~i.  

The i n e l a s t i c  s c a t t e r i n g  w a s  found t o  be  s u r p r i s i n g l y  weak. Over t h e  f u l l  

energy i n t e r v a l  of 15-22 MeV, t h e  r a t i o  w a s  rough ly . cons t an t  a t  a v a l u e  of 

about 15%. This  i s  i n  c o n t r a s t  t o  ou r  expec ta t ion  t h a t  t h e  i n e l a s t i c  s c a t t e r i n g  

would be  about  30% of t h e  e l a s t i c  s c a t t e r i n g .  

I n  i n t e r p r e t i n g  t h e  e l a s t i c  s c a t t e r i n g  c r o s s  s e c t i o n s ,  i t  i s  important  

t o  remember t h a t  t h e  n u c l e a r  resonance e l a s t i c  s c a t t e r i n g  is  coherent  w i t h  

Thomson s c a t t e r i n g  and t h a t  t h e r e  i s  a  s t r o n g  i n t e r f e r e n c e  asymmetry induced 



. . 
.. . . . 5 

by t h i s  i n t e r f e r e n c e .  F igu re  4 i n d i c a t e s  t h e  e f f e c t  of t h e  Thomson s c a t t e r i n g  

i n t e r f 4 r e n c e .  Shown a r e  curves  which f i t  t h e  observed e l a s t i c  s c a t t e r i n g  c r o s s  
I 

s e c t i o n  and those  same c r o s s  s e c t i o n s  w i t h  t h e  Thomson s c a t t e r i n g  ampl i tude  

removed. It i s  ev iden t  t h a t  t h e  e f f e c t  of Thomson s c a t t e r i n g  i s  by no 

means neg l ig ib . l e .  Unfor tuna te ly  many of t h e  c a l c u l a t i o n s  of  e l a s t i c  and 

i n e l a s t i c  s c a t t e r i n g  i n  t h e  l i t e r a t u r e  are made wi thout  t h e  i n c l u s i o n  of 

Thomson s c a t t e r i n g .  And s o  i n  t h e  a n a l y s i s ,  i t  i s  neces sa ry  t o  remove t h e  

e f f e c t .  

Although we know in gene ra l  t h a t  i t , w i l l  n o t . b e  adequate ,  f o r  t h e  

purposes of d a t a  a n a l y s i s  we have assumed t h a t  t h e  giant .  d i p o l e  s t a t e  i n  

n u c l e i  under s tudy  can be desc r ibed  i n  terms of a  s u p e r p o s i t i o n  of two 

Lorentz ian  peaks. A two-Lorentzian model o f f e r s  two advantages.  F i r s t ,  

i t  pe rmi t s  a d i r e c t  comparison w i t h  t h e  p r e d i c t i o n s  of  a  t h e o r y  due t o  

5 Kerman and Quang which was in t roduced  as a f i r s t  a t tempt  t o  d e s c r i b e  t h e  

coupl ing  of t h e  g i a n t  d i p o l e  resonance t o  s u r f a c e  v i b r a t i o n s .  This  t heo ry  

p r e d i c t s  t h a t  t h e  e l a s t i c  and i n e l a s t i c '  s c a t t e r i n g  w i l l  r e s u l t  from a ' .  

supe rpos i t i on  of a t  most t h r e e  Lorentz ian  s c a t t e r i n g  ampli tudes.  Secondly, 

t h e  two-Lorentzian formalism o f f e r s  a convenient  way of making a q u a l i t a t i v e  

comparison wi th  t h e  DC c o l l e c t i v e  model p a r t i c u l a r l y  s i n c e  i t  o f f e r s  a  

convenient  way of removing t h e  e f f e c t  of Thomson s c a t t e r i n g  from t h e  

I 
measured c r o s s  s e c t i o n s .  F igure  5 shows our  d a t a  f o r  e l a s t i c  and i n e l a s t i c  

s c a t t e r i n g  by 6 0 ~ i  f i t  u s ing  t h i s  two Lorentz ian  a n a l y s i s .  The curves  

r e p r e s e n t  t h e  b e s t  f i t  t o  t h e  e l a s t i c  s c a t t e r i n g  d a t a  and a b e s t  f i t  f o r  

t h e  i n e l a s t i c  s c a t t e r i n g  which uses  t h e  resonance parameters  w h i c h . r e s u l t  

from t h e  f i t  t o  t h e  e l a s t i c  s c a t t e r i n g  t o g e t h e r  wi th  energy-independent 

branching r a t i o s  f o r  each Lorentzian.  The b e s t  f i t  Lorentz ian  parameters  a r e  

shown i n  Table I. The branching r a t i o  determined f o r  t h e  i n e l a s t i c  s c a t t e r i n g  

o a s  observed t o  be  0.14 f o r  t h e  lower Lorentz ian  and 0.30 f o r  t h e  upper Lorentzian.  



.F igu re  6  shows a  comparison of  t h e  e l a s t i c  and i n e l a s t i c  s c a t t e r i n g  

i n f e r r g d  from our  Analys is  wi th  t h e  p r e d i c t i o n s  of t h e  dynamic c o l l e c t i v e  

model f o r  t h e  same t a r g e t .  I n  t h i s  ca se ,  t h e  observed Lorentz ian  parameters  

have been used t o  gene ra t e  t h e  c r o s s  s e c t i o n  a t  135O where t h e  t h e o r e t i c a l  

c a l c u l a t i o n s  were c a r r i e d  o u t .  Unfor tuna te ly ,  no c a l c u l a t i o n s  have been done 

f o r  6 0 ~ i a n d  s o  t h e  comparison made i s  between 58~ i  f o r  which c a l c u l a t i o n s  

6  e x i s t  and our  measurements f o r  60~ i .  However, i n  a s  much a s  

t h e  p r o p e r t i e s  of t h e  low-lying e x c i t a t i o n s . v e r y  similar i n  . 

. . 

58~i  a n d  60~i ,  we expect  t h e  behavior  of 5 8 ~ i  and 

6 0 ~ i  t o  b e  roughly t h e  same. It i s  evident  from t h e  spectrum t h a t  t h e  

exper imenta l  d a t a  i s  ve ry  d i f f e r e n t  i n  t r e n d  from t h o s e  obta ined  from t h e  

dynamic c o l l e c t i v e  model c a l c u l a t i o n s .  The e l a s t i c  s c a t t e r i n g  c r o s s  s e c t i o n  

does n o t  have t h e  shape p red ic t ed  t h e o r e t i c a l l y  and t h e  i n e l a s t i c  s c a t t e r i n g  

i s  observed t o  b e  ve ry  much weaker and l e s s  peaked than  t h e  model c a l c u l a t i o n s  

ind ica t ed .  

The second t a r g e t  s t u d i e d  i n  t h i s  mass r e g i o n  was 5 2 ~ r .  The c r o s s  

s e c t i o n s  measured a t  90' a r e  shown i n  Fig. 7 t o g e t h e r  w i t h  t h e  b e s t  f i t  w e  

w e r e  a b l e  t o  o b t a i n  u s i n g  t h e  two Lorentz ian  a n a l y s i s .  It i s  ev iden t  from 

an  examination of t h e  e l a s t i c  s c a t t e r i n g  c r o s s  s e c t i o n  t h a t  t h e r e  i s  s t r u c t u r e  

i n  t h e  e l a s t i c  s c a t t e r i n g  which cannot be reproduced i n  d e t a i l  by t h e  

a n a l y s i s .  ' Again, t h e  i n e l a s t i c  s c a t t e r i n g  is  observed t o  b e  

ve ry  weak. I n  t h i s  c a s e ,  w e  can make a d i r e c t  comparison between measurement 

and c a l c u l a t i o n 6  a s  i s  shown i n  Fig.  8. Again t h e  two-lorentzian decomposition 

of  d a t a  taken a t  90° has  been used t o  gene ra t e  t h e  s c a t t e r i n g  c r o s s  s e c t i o n s  

which a r e  a p p r o p r i a t e  t o  t h e  t h e o r e t i c a l  caPcu la t ions  c a r r i e d  ou t  a t  135O. 

Again t h e r e  i s  l i t t l e  s i m i l a r i t y  between t h e  experimental  shape f o r  t h e  e l a s t i c  

s c a t t e r i n g  and t h e  t h e o r e t i c a l l y  p red ic t ed  e l a s t i c  s c a t t e r i n g  c r o s s  s e c t i o n  and 



again  t h e  i n e l a s t i c  s c a t t e r i n g  i s  very  much weaker than t h e  s c a t t e r i n g  

prediceed t h e o r e t i c a l l y  and does n o t  show t h e  s t r u c t u r e  evident  i n  t h e  model 

c a l c u l a t i o n .  

I n  order  t o  be  c e r t a i n  t h a t  our f a i l u r e  t o . o b s e r v e  s i g n i f i c a n t  i n e l a s t i c  

s c a t t e r i n g  s t r e n g t h  was no t  a  r e s u l t  of an ins t rumenta l  problem. W e  searched 

f o r  a  nucleus i n  t h i s  mass ,region f o r  which i n e l a s t i c  s c a t t e r i n g  should be  

observable wi th  c e r t a i n t y .  5 6 ~ e  i s  known t o  be  a  r o t a t i o n a l  nucleus and i t  

is w e l l  e s t ab l i shed  from photon s c a t t e r i n g  measurements a t  lower energy t h a t  
I 

t h e r e  should be a  s t rong  i n e l a s t i c  s c a t t e r i n g  t o  low-lying r o t a t i o n a l  l e v e l s  

7 
i n  a  nuclear  r o t a t o r  . Figure 9 shows a  t y p i c a l  s c a t t e r e d  photon spectrum 

r e s u l t i n g  from our observat ions  of s c a t t e r i n g  i n  5 6 ~ e  a t  90°. W e  w e r e  

r e l i eved  t o  observe a  s t rong  i n e l a s t i c  s c a t t e r i n g  component i n  5 6 ~ e  wi th  a  

s t r e n g t h  c h a r a c t e r i s t i c  of a  r o t a t i o n a l  nucleus. The e l a s t i c  and i n e l a s t i c  
. . . . . . . . . - . 

s c a t t e r i n g  c r o s s  s e c t i o n s  a r e  shown i n  Fig. 10 together  k i t h  t h e  b e s t  l e a s t  

squares f i t s  w e  were a b l e  t o  obta in  us ing t h e  two Lorentzian ana lys i s .  It 

is evident  from inspect ion  of t h e  f i g u r e  t h a t  t h e  e l a s t i c  s c a t t e r i n g  shows 

s t r u c t u r e  which is  incompatable with a  two-Lorentzian c r o s s  sec t ion .  . The 

sharp peak i n  t h e  e l a s t i c  s c a t t e r i n g  was checked f o r  r e p r o d u c i b i l i t y  i n  a 

second s e r i e s  of measurements. The i n e l a s t i c  s c a t t e r i n g  was observed t o  be 

q u i t e ' l a r g e ,  p a r t i c u l a r l y  a t  lower ene rg ies  a s  i s  expected f o r  a  nuclear  

r o t a t o r .  This d a t a  g ives  us  confidence t h a t  i n  f a c t  w e  have t h e  s e n s i t i v i t y  

t o  i n e l a s t i c  s c a t t e r i n g  t h a t  our c a l i b r a t i o n s  of t h e  photon spectrometer would 

ind ica te .  

There have been suggest ions in t h e  l i t e r a t u r e  t h a t  t h e  mass 60 mass 

region may be too l i g h t  a  region f o r  t h e  dynamic c o l l e c t i v e  model t o  be 
. . 

appl icable .  In  p a r t i c u l a r  t h e  neutron s t r u c t u r e  of 5 2 ~ r  and t h e  proton 

s t r u c t u r e  of 6 0 ~ i  correspond t o  a  closed n  = 28 s h e l l .  In  add i t ion ,  one 

expects  t h a t  i sosp in  e f f e c t s  



may b e  s i g n i f i c a n t  i n  t h i s  mass reg ion .  Consequently, i n  o r d e r  t o  f i n d  targets 

t h a t  wduld h e  more a p p r g p r i a t e  t o  t h e  dynamic c o l l e c t i v e  model, we chose t o  

s tudy  n u c l e i  around mass 100. It w a s  found t h a t  9 2 ~ i  and 9 6 ~ o  o f f e r e d a  

r easonab le  t e s t  of t h e  q u a l i t a t i v e  p r e d i c t i o n s  of t h e  dynamic c o l l e c t i v e  

model, namely t h a t  t h e  i n e l a s t i c  s c a t t e r i n g  s t r e n g t h  should be  s t r o n g e r  f o r '  

a . n u c l e u s  which was .  s o f t  a g a i n s t  quadrupole v i b r a t i o n s .  Ca lcu la t ions  due t o  

9  2  ~ r e n h o v e l  and ~ a y w a r d ~  i n d i c a t e  t h a t  f o r  Mo, a  ve ry  s t i f f  r o t a t o r ,  i n e l a s t i c  

s c a t t e r i n g  should be  ve ry  weak whi le  9 6 ~ o ,  a  much s o f t e r  v i b r a t o r ,  would 
' 

show i n e l a s t i c  s c a t t e r i n g  t o  t h e  f i r s t  2+ s t a t e  

roughly 4-5 t i m e s  a s  s t rong .  F igure  11 shows ou r  

92 measurements a t  90° f o r  t h e  Mo t a r g e t  t o g e t h e r  w i t h  t h e  b e s t  two-Lorentzian f i t .  

Within e r r o r ,  no i n e l a s t i c  s c a t t e r i n g  w a s  ohserved for 9 2 ~ o .  The e l a s t i c  

s c a t t e r i n g  c r o s s  . s e c t i o n  w a s  f i t  by a  r ea sonab le  combination of resonance 

parameters  f o r  two Lorentz ians .  The d a t a  f o r  9 6 ~ o  i s  i n d i c a t e d  i n  Fig.  12 

toge the r  w i t h  a  s i n g l e  Lorentz ian  f i t  t o  t h e  e l a s t i c  s c a t t e r i n g  and a  

corresponding f i t  t o  t h e  i n e l a s t i c  s c a t t e r i n g .  A two Lorentz ian  f i t  d i d  

n o t  g ive  s i g n i f i c a n t  improvement over  t h e  one Lorentz ian  curve.  There are 

two f e a t u r e s  of t h e  i n e l a s t i c  s c a t t e r i n g  which a r e  noteworthy i n  9 6 ~ o .  F i r s t ,  

aga in  t h e  i n e l a s t i c  s c a t t e r i n g  appears  t o  be  weaker than  expected on t h e  

b a s i s  of t h e  t r e n d s  shown i n  t h e  c a l c u l a t i o n s  u s i n g  t h e  dynamic c o l l e c t i v e  

model. Secondly, t h e  i n e l a s t i c  s c a t t e r i n g  observed i s  more l o c a l i z e d  than  

a one Lorentz ian  f i t  would al low.  Thus, wh i l e  t h e  d a t a  on t h e  9 2 ~ o  and 9 6 ~ o  

are n o t  q u a n t i t a t i v e l y  i n  agreement w i t h  t h e  dynamic c o l l e c t i v e  model, t h e  

t r e n d s  do i n d i c a t e  t h a t  as t h e  v ib ra to r '  becomes s o f t e r  t h e  i n e l a s t i c  s c a t t e r i n g  

is  cor respondingly  s t r o n g e r  i n  agreement w i th  p r e d i c t i o n .  

I n  conclus ion ,  we have observed t h a t  coupl ing  t o  s u r f a c e  

v i b r a t i o n s  i n  t h e  g i a n t  d i p o l e  resonance i s  much weaker than  t h e  dynamic 



c o l l e c t i v e  model sugges ts .  Second, t h e  e l a s t i c  s c a t t e r i n g  c r o s s  s e c t i o n  i n  

a l l  targets b u t  6 0 ~ i  shows s t r u c t u r e  which i s  no t  ev iden t  i n  t h e  abso rp t ion  

c r o s s  s e c t i o n  measurement. It i s  ev iden t  t h a t  a s u b s t a n t i a l  t h e o r e t i c a l  

e f f o r t  w i l l  be  neces sa ry  t o  r e f i n e  models of t h e  i n t e r a c t i o n  i n  o rde r  t o  

e x p l a i n  t h e  p r e s e n t  r e s u l t s .  One p o s s i b i l i t y  w i l l  be  t o  .use dynamic 

c o l l e c t i v e  model codes perhaps wi th  more r e a l i s t i c  resonance parameters  

i n  o r d e r  t o  o b t a i n  s a t i s f a c t o r y  f i t s  t o  t h e  da t a .  A second p o s s i b i l i t y  w i l l  

be t o  cons ide r  more r e a l i s t i c  models f o r  gene ra t ing  t h e  g i a n t  d i p o l e  state 

i n  t h i s  mass r e g i o n  and t o  u s e  t h e s e  more r e a l i s t i c  approximations i n  ca l cu la -  

t i o n s  of t h e  coupl ing  t o  s u r f a c e  v i b r a t i o n s .  

This  r e s e a r c h  w a s  supported under the a u s p i c e s  of t h e  U. S. Department 

of Energy and t h e  Nat iona l  Sc ience  Foundation. 



TABLE I. Parameters obtained from a two Lorentzian ana lys i s  of photon s c a t t e r i n g  c r o s s  sec t ions .  

Nucleus . (mb) . (MeV) 

* 
Based on LLL parameters f o r  55Mn, UCXL-74546. 



TABLE 11. I n t e g r a t e d  absorp t ion  c r o s s  s e c t i o n s  corresponding 

t o  b e s t  f i t s  t o  photon e l a s t i c  s c a t t e r i n g .  

Nucleus 

(MeV-b ) 

s c a t t e r i n g  abso rp t ion  

a Adjusted parameters  f o r  55Mn taken from UCRL-74.546. , 
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