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Abstract

The mobile robot prototypes developed at the Center for Engineering Systems 

Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) are equipped 

with sonar sensors, CCD cameras and a laser range camera that are used to support 

autonomous navigation and inspection tasks in an a priori unknown and unstructured 

dynamic environment. This paper summarizes work directed at extracting information 

from data collected with these sensors and integrating it, in order to produce reliable 

descriptions of the robot's environment. The approach consists in studying different 

world models and mappings among them, sensor models and parallel algorithms for 

sensor information processing, and appropriate integration startegies. Specifically, the 

paper describes the integration of two-dimensional vision and sonar range information, 

and the integration of laser range and luminance images.

1. Introduction

One of the prerequisites for intelligent behavior in robotic systems is the ability to 

generate consistent, system-internal representations of the environment. In general, 

this is impossible on the basis of any single sensor domain. Hence, robotic systems are 

being equipped with an increasing number of different sensors that supply partly 

redundant information. Multi-sensor integration (MSI) designates the task of combining 

data and information from these various sensors so that a consistent world model, i.e., a 

model free of contradiction, can be generated, on the basis of which decisions concerning

* This research was supported by the Office of Basic Energy Sciences, and the Office of 
Nuclear Energy, Office of Technology Support Programs, U.S. Department of Energy, 
under contract DE-AC05-840R21400 with Martin Marietta Energy Systems, Inc.



navigation, manipulation, etc., can be made. Our efforts in MSI are based on a framework 

that consists of one or several world models, sensor models, and appropriate integration 

strategies.

A world model is a geometric representation of items in the robot's environment 

along with spatial relationships among them. Simple representations can consist of 3-D 

line segments1, or points, edges, and surface patches.2 More elaborate world models can 

consist of complete 3-D geometric databases.2 In any case, the world model also contains 

any a priori information on the robot's environment that might be available. The 

required complexity of the world model is determined by the robot's mission and 

diversity of tasks to be accomplished. For navigation with a robot that is constrained to 

move on the floor, a 2-D rectangular map can be considered appropriate. If that same 

robot must perform even simple manipulation tasks, a 3-D world model is required. 

Therefore, it is necessary to consider world models of different complexity and mappings 

among them.

Each sensor is capable of providing an estimate of some feature, e.g. range, 

orientation, intensity, of some of the items in the world model. It is necessary to 

quantify this capability so that the quality of the individual sensor estimates and the 

resulting overall estimates can be assessed. Therefore, models for each individual sensor 

are needed that describe how reliably a sensor is capable of providing a piece of 

information from the collected data. One way to specify the sensor model is through 

likelihood functions that give the probabilities for the observed data if certain features 

are present in the environment. Sensor models can also include rules that determine 

under which environmental conditions a sensor can be relied upon, e.g. maximum range 

and accuracy specifications for ultrasonic transducers.

Integration strategies are required to combine the individual sensor estimates. Such 

strategies must accomplish the removal of both random and systematic errors. They can 

be based on standard statistical criteria, e.g., maximum a posteriori (MAP), minimum 

square error (MSE), maximum likelihood (ML) estimators, or can include the solution 

of consistent labeling problems, and can also involve a set of rules that determine when 

to discard certain sensor estimates. MAP integration methods have recently been 

receiving much interest in the context of integrating different visual information based



on Markov Random Field prior models3 4 *-^ and powerful stochastic optimization 

algorithms6 as well as deterministic variants thereof7.

This paper is organized as follows. In section 2 we give a brief description of the 

ORNL mobile robot HERMIES-IIB, which we have been using as a testbed for our 

research. In section 3 we present results from our work on 2-D robot vision using the 

on-board hypercube multi-processor, and sonar range data processing, and describe the 

method we use to integrate 2-D vision and sonar into a 2-D world map and into a 

vertical edge database generated from vision data. The section also contains a brief 

description of the integration of registered luminance and laser range images based on 

Markov Random Field image models.

2. The ORNL Mobile Robot

HERMIES-IIB is one of a series of research robot prototypes designed at ORNL/CESAR 

for autonomous operation in unknown and possibly hazardous environments.6 The robot 

stands 1 m high and weighs 91 kg. Rechargeable batteries supply 20 W power, allowing 

for 1 h of untethered operating time. Peak movement speed is 0.7 m/s. Sensors include 

two Sony CCD cameras and an array of Polaroid sonar transceivers mounted on a 

rotatable turret. The computer architecture (see Fig. 1) consists of a VME rack housing 

a variety of I/O boards interfaced via a BIT-3 communication link to an NCUBE 

hypercube computer (NCUBE Corp., Beaverton OR.) featuring 16 nodes with 512 Kbyte 

RAM memory for each node and an Intel 80286-based I/O processor, which also serves 

as a host for the hypercube. Each node is a 32-bit microcomputer with on-chip floating 

point and communications hardware. This gives HERMIES-IIB a computing power of 

approximately 32 MIPS in the on-board hypercube.

3. Sensor Integration

Our research in intelligent sensor systems at ORNL7CESAR makes use of a unique

parallel computing environment built around a 64-node NCUBE hypercube

supercomputer with a high-speed parallel interface to a VME-based Motorola 68020 

system for fast sensor data acquisition and transfer to the hypercube. Algorithms

implemented on this system are extensively tested and then ported to and integrated into



the data processing system on-board HERMIES-IIB. In this section we summarize 

results of our work in robot vision and sonar information processing, and describe the 

integration of 2-D vision and sonar range information in order to support robot 

navigation.

3.1 Robot Vision

A 2-D robot vision system has been developed that integrates a series of low- , 

medium-, and high-level functions executed in parallel on the hypercube9’1 ®>11 that 

enable the robot to analyze image frames during navigation as well as to recognize an 

object of interest (e.g. a control panel) and perform simple inspection tasks (e.g. 

reading analog gauges).®-9 The system uses two calibrated cameras. Images used during 

robot navigation are acquired through a camera with a wide angle lens (4.8 mm), images 

used for close inspection are acquired through a longer lens (16 mm). For the MSI task 

discussed here, we use modules of this vision system that detect vertical edges, and 

generate a list of labeled connected vertical edges and their locations in image 

coordinates. This database takes the form of a linked distributed list. Each record in the 

list contains information about a vertical edge (its length, location, orientation, and 

type; e.g. roof edge, step edge), plus the addresses of records and hypercube nodes 

containing information on neighboring edges. This information is passed on to the 

integration module described below. The use of vertical line segments as geometrical 

primitives is appropriate since the laboratory environment in which HERMIES-IIB 

navigates contains only box-shaped obstacles that are 1-2 ft wide and 3-4 ft high (see 

Fig. 2 (a)).

3.2 Ultrasonic Sensing

Ultrasonic sensing for robot navigation has been studied extensively using the 

HERMIES IIB robot. In this active sensing process ultrasonic beams are sent out from an 

array of sensors mounted on the robot, and the range to the nearest object intercepted by 

each sonar beam is determined from the overall time-of-flight of the corresponding 

returned signal. The ultrasonic beam is approximately 18 degrees wide. It provides a 

highly efficient means of scanning for empty spaces in which to navigate. However, the



data are somewhat sparse, and in many real-world situations they are difficult to 

interpret correctly (see Fig 2 (c) for a typical sonar scan).

We have described a solution to the problem of how to treat systematic errors which 

arise in the processing of sparse sonar data.12 in our methodology, pixels of the world 

model (a 2-D map of the robot's environment) are assigned one of several labels during 

the initial processing. One of the labels flags conflict among interpretations from two or 

more sensor measurements. This happens whenever there are erroneous interpretations 

of the data. The data are then reinterpreted, making use of pattern analyses and 

consistent-labeling operations to effect the removal of errors. In their study of sonar 

mapping and navigation, Elfes and Moravec1^.14 introduce 2-D maps which they call 

"certainty grids". The contents of our maps differ from those of Elfes and Moravec. 

Moreover, our methodology is explicitly non-local whereas theirs is local.

3.3 Integrating Sonar and 2-D Vision

Initially, the 2-D map is generated from sonar data and the vertical edge database is 

built from vision data. We obtain information in polar coordinates (r, theta), with the 

robot at the origin of the coordinate system, from the sonar sensor (see Fig. 2 (c)), and 

(theta, phi) information, where phi is the azimuth angle, from the vision sensor. The 

overlap in theta allows us to establish a correspondence between object features in the 

two disparate sensor domains. The range information (r) is passed to the vision 

processing software which uses it to provide an absolute scale for the image coordinates, 

and to match different edges of an object. Once a set of labeled edge segments is identified 

as possibly belonging to the same object a weighted least squares linear fit and chi- 

squared analysis are performed to determine acceptability of the assignment. The range 

information and chi-square evaluations are used to refine the edge assignment. Sets of 

edges are then extracted and stored as delineating an object's surfaces in a second linked 

list. These results are also returned to the sonar processing software. They are combined 

with existing sonar data, and used to correct and more precisely delineate object 

boundaries in the 2-D navigation map. Figure 3 shows a block diagram of the operations 

involved in the integration process. At the end of the integration process, information 

from both the vision and ultrasonic sensing domains appears in each representation.



3.4 Integrating Luminance and Laser Range Images

The range sensor used in our laboratory is a time-of-flight sensor manufactured by 

Odetics (Odetics Corp., Anaheim, CA). It returns the distance from the sensor point to the 

surface being observed as well as measuring the brightness of the returned beam. The 

range data is coarsely quantized, with a depth resolution of just under one inch per pixel. 

The brightness data provides a much smoother representation of surfaces, but is 

corrupted by both random and correlated (scan line artifacts) noise. We are studying an 

approach which consists in assuming that the underlying surface geometry is correct, 

and in determining an estimate of that surface by maximizing the a-posteriori 

probability (MAP restoration) of the particular surface, given the measurements.

The restoration process consists in defining an objective function which describes 

the problem, and then in minimizing that objective function. Experiments are still being 

performed to determine the best such function, however, the following approach has 

given promising results in initial tests®:

H = Hz + Hb + Hf

where

Hz = Zj(z| - zoi)^ / 2 sz

i.e., the restored range image z should resemble the measured z0;

Hb = £j(bj - boi)2 / 2 sb

i.e., the restored brightness image b should resemble the measured b0;

Hf = 1/ (T)1/2 Sj exp ( -(bi - R(zi))2 /T)

i.e., the restored brightness b, should agree with the reflectivity model R, applied to the 

restored range values.

In addition, either Hz or Hb may be augmented with a term which incorporates a 

priori information concerning the local smoothness of surfaces.



4. Summary

The ability to construct accurate, consistent representations of its operational 

environment from multiple sensors is a key requirement for a mobile robot with 

advanced autonomous capabilities. We have described a method for integrating sonar 

range and vision information to support robot navigation. The methodology is based on a 

framework for MSI that consists of multiple, distributed world models and appropriate 

mappings among them; sensor models including appropriate, sensor-specific signal and 

information processing algorithms; and integration strategies. For the specific case 

presented here, we used a linked list of geometrical features extracted from intensity 

images as the 2-D vision sensor world model, and a 2-D world map for the sonar sensor 

domain. Information from both sensors was used to update elements in both world 

models. The method is implemented on a multi-processor computer architecture on­

board the ORNUCESAR mobile robot HERMIES-IIB.

We briefly outlined our approach to integration of laser range and luminance data in 

section 3.4. This method is currently undergoing testing with data collected with the 

Odetics laser camera in order to address some of the issues that can affect the integration 

in a critical way, e.g., the scene reflectivity model R(z) and the model for noise in the 
range data (Hz).

Future MSI systems will be used not only for robot navigation but also to provide the 

intelligent sensing capabilities required for complex robot manipulation tasks.
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Figure 2: (a) Picture taken 
with camera on-board the 
robot; (b) vertical edges; 
(c) corresponding 360 deg. 
sonar scan, unprocessed 
data.
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