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SENSOR INTEGRATION USING CONCURRENT COMPUTING
ON-BOARD THE ORNL MOBILE ROBOT"

R. C. Mann, J. P. Jones, M. Beckerman, C. W. Glover,
L. Farkas, J. R. Einstein

Advanced Computing and Integrated Sensor Systems
Center for Engineering Systems Advanced Research
Oak Ridge National Laboratory
P. O. Box 2008
Oak Ridge, TN 37831-6364
mnn@stc10.ctd.ornl.gov

Abstract

The mobile robot prototypes developed at the Center for Engineering Systems
Advanced Research (CESAR) at the Oak Ridge National Laboratory (ORNL) are equipped
with sonar sensors, CCD cameras and a laser range camera that are used to support
autonomous navigation and inspection tasks in an a priori unknown and unstructured
dynamic environment. This paper summarizes work directed at extracting information
from data collected with these sensors and integrating it, in order to produce reliable
descriptions of the robot's environment. The approach consists in studying different
world models and- mappings among them, sensor models and parallel algorithms for
sensor information processing, and appropriate integration startegies. Specifically, the
paper describes the integration of two-dimensional vision and sonar range information,
and the integration of laser range and luminance images.

1. Introduction

One of the prerequisites for intelligent behavior in robotic systems is the ability to
generate consistent, system-internal representations of the environment. In general,
this is impossible on the basis of any single sensor domain. Hence, robotic systems are
being equipped with an increasing number of different sensors that supply partly
redundant information. Multi-sensor integration (MSI) designates the task of combining
data and information from these various sensors so that a consistent world model, i.e., a
model free of contradiction, can be generated, on the basis of which decisions concerning

" This research was supported by the Office of Basic Energy Sciences, and the Office of
Nuclear Energy, Office of Technology Support Programs, U.S. Department of Energy,
under contract DE-AC05-840R21400 with Martin Marietta Energy Systems, Inc.



navigation, manipulation, etc., can be made. Our efforts in MSI are based on a framework
that consists of one or several worid models, sensor models, and appropriate integration
strategies.

A world model is a geometric representation of items in the robot's environment
along with spatial relationships among them. Simple representations can consist of 3-D
line segments‘, or points, edges, and surface patches.2 More elaborate world models can
consist of complete 3-D geometric databases.3 In any case, the world model also contains
any a priori information on the robot's environment that might be available. The
required complexity of the world model is determined by the robot's mission and
diversity of tasks to be accomplished. For navigation with a robot that is constrained to
move on the floor, a 2-D rectangular map can be considered appropriate. If that same
robot must perform even simple manipulation tasks, a 3-D world model is required.
Therefore, it is necessary to consider world models of different complexity and mappings
among them,

- Each sensor is capable of providing an estimate of some feature, e.g. range,
orientation, intensity, of some of the items in the world model. It is necessary to
-quantify - this capability so that the quality of the individual sensor estimates and the
resulting overall estimates can be assessed. Therefore, models for each individual sensor
are needed that describe how reliably a sensor is capable of providing a piece of
information from the collected data. One way to specify the sensor model is through
likelihood functions that give the probabilities for the observed data if certain features
are present in the environment. Sensor models can also include rules that determine
under which environmental conditions a sensor can be relied upon, e.g. maximum range
and accuracy specifications for ultrasonic transducers.

Integration strategies are required to combine the individual sensor estimates. Such
strategies must accomplish the removal of both random and systematic errors. They can
be based on standard statistical criteria, e.g., maximum a posteriori (MAP), minimum
square error (MSE), maximum likelihood (ML) estimators, or can include the solution
of consistent labeling problems, and can also involve a set of rules that determine when
to discard certain sensor estimates. MAP integration methods have recently been
receiving much interest in the context of integrating different visual information based



on Markov Random Field prior models4:5 and powerful stochastic optimization
algorithms6 as well as deterministic variants thereof’.

This paper is organized as follows. In section 2 we give a brief description of the
ORNL mobile robot HERMIES-HIB, which we have been using as a testbed for our
research. In section 3 we present results from our work on 2-D robot vision using the
on-board hypercube multi-processor, and sonar range data processing, and describe the
method we use to integrate 2-D vision and sonar into a 2-D world map and into a
vertical edge database generated from vision data. The section also contains a brief
description of the integration of registered luminance and laser range images based on
Markov Random Field image models.

2. The ORNL Mobile Robot

HERMIES-IIB is one of a series of research robot prototypes designed at ORNL/CESAR
for autonomous operation in unknown and possibly hazardous environments.8 The robot
stands 1 m high and weighs 91 kg. Rechargeable batteries supply 20 W power, allowing
for 1 h of untethered operating time. Peak movement speed is 0.7 m/s. Sensors include
-two Sony CCD cameras and an array of Polaroid sonar transceivers mounted on a
rotatable turret. The computer architecture (see Fig. 1) consists of a VME rack housing
a variety of 1/0 boards interfaced via a BIT-3 communication link to an NCUBE
hypercube computer (NCUBE Corp., Beaverton OR.) featuring 16 nodes with 512 Kbyte
RAM memory for each node and an Intel 80286-based 1/O processor, which also serves
as a host for the hypercube. Each node is a 32-bit microcomputer with on-chip floating
point and communications hardware. This gives HERMIES-IIB a computing power of
approximately 32 MIPS in the on-board hypercube.

3. Sensor Integration

Our research in intelligent sensor systems at ORNL/CESAR makes use of a unique
parallel computing environment built around a 64-node NCUBE hypercube
supercomputer with a high-speed parallel interface to a VME-based Motorola 68020
system for fast sensor data acquisition and transfer to the hypercube. Algorithms
implemented on this system are extensively tested and then ported to and integrated into



the data processing system on-board HERMIES-1IB. In this section we summarize
results of our work in robot vision and sonar information processing, and describe the
integration of 2-D vision and sonar range information in order to support robot
navigation.

3.1 Robot Vision

A 2-D robot vision system has been developed that integrates a series of low- ,
medium-, and high-level functions executed in parallel on the hypercube®:10,11 that
enable the robot to analyze image frames during navigation as well as to recognize an
object of interest (e.g. a control panel) and perform simple inspection tasks (e.g.
reading analog gauges).&9 The system uses two calibrated cameras. Images used during
robot navigation are acquired through a camera with a wide angle lens (4.8 mm), images
used for close inspection are acquired through a longer lens (16 mm). For the MSI task
- discussed here, we use modules of this vision system that detect vertical edges, and
generate a list of labeled connected vertical edges and their locations in image

. .coordinates. This database takes the form of a linked distributed list. Each record in the

.- list contains information about a vertical edge (its length, location, orientation, and

' type; e.g.-roof edge, step edge), plus the addresses of records and hypercube nodes
containing information on neighboring edges. This information is passed on to the
integration module described below. The use of vertical line segments as geometrical
primitives is appropriate since the laboratory environment in which HERMIES-IIB
navigates contains only box-shaped obstacles that are 1-2 ft wide and 3-4 ft high (see
Fig. 2 (a)).

3.2 Ultrasonic Sensing

Ultrasonic sensing for robot navigation has been studied extensively using the
HERMIES IIB robot. In this active sensing process ultrasonic beams are sent out from an
array of sensors mounted on the robot, and the range to the nearest object intercepted by
each sonar beam is determined from the overall time-of-flight of the corresponding
returned signal. The ultrasonic beam is approximately 18 degrees wide. It provides a
highly efficient means of scanning for empty spaces in which to navigate. However, the



data are somewhat sparse, and in many real-world situations they are difficult to
interpret correctly (see Fig 2 (c) for a typical sonar scan).

We have described a solution to the problem of how to treat systematic errors which
arise in the processing of sparse sonar data.12 In our methodology, pixels of the world
model (a 2-D map of the robot's environment) are assigned one of several labels during
the initial processing. One of the labels flags conflict among interpretations from two or
more sensor measurements. This happens whenever there are erroneous interpretations
of the data. The data are then reinterpreted, making use of pattern analyses and
consistent-labeling operations to effect the removal of errors. In their study of sonar
mapping and navigation, Elfes and Moravec!3.14 introduce 2-D maps which they call
“certainty grids". The contents of our maps differ from those of Elfes and Moravec.
Moreover, our methodology is explicitly non-local whereas theirs is local.

3.3 Integrating Sonar and 2-D Vision

... = Initially, the 2-D map is generated from sonar data and the vertical edge database is
. built from vision data. We obtain information in polar coordinates (r, theta), with the
robot at the origin of the coordinate system, from the sonar sensor (see Fig. 2 (c)}, and
(theta, phi) information, where phi is the azimuth angle, from the vision sensor. The
overlap in theta allows us to establish a correspondence between object features in the
two disparate sensor domains. The range information (r) is passed to the vision
processing software which uses it to provide an absolute scale for the image coordinates,
and to match different edges of an object. Once a set of labeled edge segments is identified
as possibly belonging to the same object a weighted least squares linear fit and chi-
squared analysis are performed to determine acceptability of the assignment. The range
information and chi-square evaluations are used to refine the edge assignment. Sets of
edges are then extracted and stored as delineating an object's surfaces in a second linked
list. These results are also returned to the sonar processing software. They are combined
with existing sonar data, and used to correct and more precisely delineate object
boundaries in the 2-D navigation map. Figure 3 shows a block diagram of the operations
involved in the integration process. At the end of the integration process, information
from both the vision and ultrasonic sensing domains appears in each representation.



3.4 Integrating Luminance and Laser Range Images

The range sensor used in our laboratory is a time-of-flight sensor manufactured by
Odetics (Odetics Corp., Anaheim, CA). It returns the distance from the sensor point to the
surface being observed as well as measuring the brightness of the returned beam. The
range data is coarsely quantized, with a depth resolution of just under one inch per pixel.
The brightness data provides a much smoother representation of surfaces, but is
corrupted by both random and correlated (scan line artifacts) noise. We are studying an
approach which consists in assuming that the underlying surface geometry is correct,
and in determining an estimate of that surface by maximizing the a-posteriori
probability (MAP restoration) of the particular surface, given the measurements.

The restoration process consists in defining an objective function which describes
the problem, and then in minimizing that objective function. Experiments are still being
performed to determine the best such function, however, the following approach has
given promising results in initial testsd:

H=Hz + Hp + Hf

where
Hz = Zj(zi- 200)2/2sz
i.e., the restored range image z should resemble the measured zq;
Hb = Xj(bi- boi)2/ 2 sb
i.e., the restored brightness image b should resemble the measured bg;

Hf = 1/ (T)1/2 Z;j exp ( -(bi - R(zi))2 /T)

i.e., the restored brightness b, should agree with the reflectivity model R, applied to the
restored range values.

In addition, either Hz or Hp may be augmented with a term which incorporates a
priori information concerning the local smoothness of surfaces.



4. Summary

The ability to construct accurate, consistent representations of its operational
environment from multiple sensors is a key requirement for a mobile robot with
advanced autonomous capabilities. We have described a method for integrating sonar
range and vision information to support robot navigation. The methodology is based on a
framework for MSI that consists of multiple, distributed world models and appropriate
mappings among them; sensor models including appropriate, sensor-specific signal and
information processing algorithms; and integration strategies. For the specific case
presented here, we used a linked list of geometrical features extracted from intensity
images as the 2-D vision sensor world model, and a 2-D world map for the sonar sensor
domain. Information from both sensors was used to update elements in both world
models. The method is implemented on a multi-processor computer architecture on-
board the ORNL/CESAR mobile robot HERMIES-IIB.

We briefly outlined our approach to integration of laser range and luminance data in
-section-3.4. This method is currently undergoing testing with data collected with the
Odetics laser camera in order to address some of the issues that can affect the integration
in a critical way, e.g., the scene reflectivity model R(z) and the model for noise in the
range data (Hz).

Future MSI systems will be used not only for robot navigation but also to provide the
intelligent sensing capabilities required for complex robot manipulation tasks.
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data.
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