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METHODS FOR NUMERICAL CONFORMAL MAPPING

by

Ralph Menikoff and Charles Zemach

ABSTRACT

Nonlinear integral equations for the boundary 
functions that determine conformal transforma­
tions in two dimensions are developed and analyzed.
One of these equations has a nonsingular logarithmic 
kernel and is especially well suited for numerical 
computations of conformal maps including those that 
deal with regions having highly distorted boundaries. 
Numerical procedures based on interspersed Gaussian 
quadrature for approximating the integrals and a 
Newton-Raphson technique to solve the resulting 
nonlinear algebraic equations are described. The 
Newton-Raphson iteration converges reliably with 
very crude initial approximations. Numerical 
examples are given for the mapping of a half-infinite 
region with periodic boundary onto a half plane, 
with up to 9-figure accuracy for values of the map 
function on the boundary and for its first derivatives. 
The examples include regions bounded by "spike" 
curves characteristic of Rayleigh-Taylor instability 
phenomena. A differential equation is derived that 
relates changes in the map function to changes of 
the boundary. This is relevant to potential problems 
for regions with time-dependent boundaries. Further 
nonsingular integral formulas are derived for con­
formal mapping in a variety of geometries and for 
application to the boundary value problems of poten­
tial theory.

I. INTRODUCTION
In many physical problems, a function that is harmonic in a specified 

region must be determined from its values or normal derivatives on the boundary. 
In an important subclass of such problems, the main objective is to calculate 
the boundary values of the function from the boundary normal derivatives, or
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vice versa. When the region is two-dimensional, it can be identified with a
region R of the complex z plane and complex variable theory can be applied, z
The harmonic function can be identified with the real or imaginary part of a 
complex function f(z), analytic in R^. Because the Laplace equation is con­
formally invariant, if the conformal mapping of R^ onto a region R^ is known 
then the solution of the boundary value problem in Rz can be inferred from that 
in R^. The conformal map may have to be determined by numerical rather than 
analytic means and when the boundary of Rz is specified by discrete numerical 
data, this is necessarily so.

The current state of the art in numerical conformal mapping is still largely
1 2 summarized by the book of Gram. Some further developments are given by Ives3

and Hayes, et al. As described in these references, the techniques for numeri­
cal solution of the equations defining the mapping function work best, if at 
all, when the shapes of Rz and R^ are similar. If this is not the case, pre­
liminary analytic mappings must be applied to bring Rz into suitable shape 
before the numerical work is undertaken. For example, if an airfoil is to be 
mapped onto a circle, the airfoil must first be "pre-mapped" onto an approxi­
mately circular region by a device such as the von Katman-Trefftz transformation, 
or even a series of such devices.

The present work was motivated by the authors' study of the Rayleigh-Taylor 
instability of the interface between two irrotational incompressible fluids.
The fluid flow is governed by velocity potentials determined from data on the 
fluid interface. The velocity potentials are harmonic functions. Because the 
interface changes in time, the potential problem must be recalculated at each 
time step in the the evolution of the system. The interface may become quite 
distorted in shape. Moreover, a small fluctuation in the shape of the interface 
can grow quite rapidly. Rapid growth of such fluctuations may appear in a 
numerical calculation regardless of whether they are due to physical assumption 
or mathematical inaccuracy. Thus, whatever technique is applied to the potential 
problem for hydrodynamic systems of this character faces severe tests with 
regard to accuracy, computer speed, and applicability to distorted regions.*

*For an alternative approach to numerical potential theory dealing directly with 
Green's integral equations, see Ref. 4.
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II. FORMULATIONS
The questions addressed in this paper can be grouped in three categories:

(1) Firstly, suppose F(w) is a function of the complex variable w, w = u + iv,
and is analytic in a region of the w plane. Let its real and imaginary
parts be F^Cujv) and FT(u,v). If R is unbounded, suppose also that as K i W
w -*■ oo within the region 

F(w) ->■ F(oo) + 0(|w| ^),

where F(oo) = F_(o°) + iFT(«>) is a constant, not necessarily equal to zero.K X
One may ask how to determine the function F(w) in R if either F- or FT isw R I
specified along its boundary. One approach is to use Cauchy's formula to 
express F(w) as an integral over the boundary. If the integrand is prop­
erly chosen, boundary values of either F- or FT (but not both) will contrib-
ute. As a limiting case, the values of F., (or FT) on the boundary areK 1
given in terms of a boundary integral depending on FT (or F-). The inte- 
grand has a pole singularity and the integration is of the principal value 
type. An integration by parts can transform this into an integral with a 
logarithmic singularity in the integrand. An alternative is to apply one 
of Green's theorems to the harmonic functions F^ or F^, in conjunction with 
a Green's function for R^. This leads to integrals along the boundary with 
logarithmically singular integrands, from which the principal value inte­
grals can be obtained by integration by parts.

(2) Secondly, suppose a region R^ in the complex z plane, z = x + iy, is given
and an analytic function z = z(w) (or perhaps w = w(z)) is sought which
maps R conformally onto R . This can be regarded as an application of w z
(1). A variety of nonlinear integral equations relating the boundary 
values of x(u,v), y(u,v) (or u(x,y), v(x,y)) can be developed. With regard 
to the applications we have studied, the most useful equations seem to be 
those carrying the logarithmic singularities. The most practical method 
for evaluating these integrals seems to be a combination of quadrature 
rules of the Gaussian type (open rules) and of the Gauss-Lobatto type 
(closed rules). We shall refer to this as the technique of "interspersed 
Gaussian quadrature." It leads to nonlinear algebraic equations which can
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be solved by the Newton-Raphson method. The main task of the present paper 
is to explain these procedures.

(3) Thirdly, let f(x,y) be a harmonic function defined an the region Rz. One 
may ask how to determine f(x,y) from values of f or values of the normal 
derivatives 3f/3n on the boundary, and also, how the boundary values of f 
and 3f/3n co-determine each other. These questions can be answered by 
application of (1) and (2) above.
The remainder of this paper is divided into two parts. In Part A, we

analyze the three cited questions in a context which we call even-periodic
geometry. This refers to functions F(w) such that F^(u,v) is periodic and even
in the u-variable. It also refers to regions R with boundary specified by y =z
y(x), where y(x) is periodic and even in x. For the purposes of this paper, a 
periodic function will always have period 2n. This was the class of problem 
encountered first in our Rayleigh-Taylor study. Accordingly, we develop here a 
structure of theoretical formulas and numerical analysis for which a fair quan­
tity of illustrative numerical results can also be reported.

In Part B, we seek to round out the discussion by extending the results to 
other geometries closely related to even-periodic geometry. This permits contact 
with existing formalisms, e.g., those that map a closed region onto a circle.
This context will be called circle geometry. No numerical experiments are 
described for these cases. However, the analogy to Part A is quite close and we 
believe the methods applied there should be equally effective in the geometries 
of Part B.

In Section III, a set of integral formulas is obtained interrelating F^ and 
Fj on the relevant boundary of R^ for even-periodic geometry; this is the inter­
val 0 < u < 7t of the u-axis. Three nonlinear integral equations defining the 
conformal mapping problem in this setting are obtained, both in singular and in 
nonsingular form. Formulas for solving the boundary value problem for harmonic 
functions are also given.

In Section IV, the technique for solving the third of these integral equa­
tions for the mapping problem in terms of interspersed Gaussian quadrature rules 
is described in detail. In Section V, accuracy and rates of convergence of the 
method are discussed in terms of specific examples.

In section VI, a differential approach to the mapping problem is under­
taken. This provides a linear relation between a small change in the boundary 
and the resultant small change in the mapping function. When the boundaries of a



physical system change in time, the consequent changes in the mapping function 
can be inferred from a set of differential equations in the time variable.

In Sections VII and VIII (in Part B), analogs of these results are obtained 
for periodic and circle geometries. One of the variants that emerges is the 
already well-known equation of Theodorsen and Garrick.^ The key equations 

when the region Rw of interest is a half plane (linear geometry) are briefly 

noted in Section IX.
Depending on the geometry under consideration, the regions will be taken 

as upper-half planes (rather than lower), or exteriors of circles (rather than 

interiors). The transformation F(w) -*■ F*(w*) carries a function analytic in a 
portion of the upper-half plane into a function analytic in corresponding por­
tion of the lower-half plane. The transformation F(w) -*■ F*(l/w*) carries a 
function analytic in the exterior of the unit circle into a function analytic in 
the interior. On the boundaries of their respective domains, these transforma­
tion carry F^ into +F^ and F^ into "F^. By these rules, any equations explicitly 
treated in this paper can be easily replaced by equations applicable to the 
complementary regions.

Lastly, we note that the mapping of certain types of irregular regions has 
not been addressed in this paper. For example, the boundary curve y = y(x) 
referred to above will be understood to be single-valued. If, in fact, the 
boundary "doubles back" on itself several resorts are possible. One could base 
the parametrization of the boundary and the quadrature rules on a more convenient 
parameter such as arc length, or one could introduce a suitable pre-map. The 
relative merits of such alternatives may vary from case to case, and their 
appraisal is left for another study. In our examples, y(x) is also differentia­
ble, but this is not an essential limitation to the method.

PART A

III. EVEN-PERIODIC GEOMETRY

1. Preliminaries
Let Rw denote the upper-half strip of the w plane defined by 0 < u < 7t, 0 <

v < oo. Let F(w) be analytic in the upper-half w plane (and, in particular, in
the interior of R ). As already prescribed in Section II, we denote its real
and imaginary parts as Ft((u,v) and FT(u,v), and assume that as w -» <» in R , F(w)K 1 W
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approaches a constant F(<») to order |w| F(w) will be called an even-periodic
function if it satisfies two conditions:

F(w) = F*(-w*), (3.1a)

F(w) = F(w + 2ti) . (3.1b)

The first condition implies

Fr(u,v) = VU’V)’

Fj(u,v) = -F];(-u,v) ,

F(») = F^(o°) = real.

Moreover, both FT and 3F_/3u vanish at u = 0 and u = 7t.1 K
Under suitable regularity conditions, F- and FT have the FourierK X

expansions

00

Fd(u,v) = Ft,(t») + I a e nV cos nu,
K K , nn=l

00
T7 i- \ - t- -nvFj(u,v) = Z a e sm nu,

n=l

where the coefficients {an} are real. This indicates that F(w) should be com­
pletely determined by specifying F_ for v = 0, or by specifying FT for v = 0K 1
and Fr(o°) .

Let w and w' be restricted to the interior of R . Then (cos w - cos w')w
vanishes only at w = w', and (cos w* - cos w') cannot vanish. By 
Cauchy's theorem,

F(w) sin w 
27ti

F(w’)
cos w - cos w dw'

C

(3.2a)
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and

0 r(w’)
cos w * - cos w' dw' ,

C

(3.2b)

where C is any closed contour in R which encircles w counterclockwise. Take 
3 w

C along the boundary of R^. The upper horizontal part of C is along v = v^, 
with the understanding that the limit -> ® will be taken. We can also write

F(w) 1
27Ti

sin w' .F(wdw, 
cos w - cos w' (3.3a)

C
and

0 sin w1 F(w') 
cos w* - cos w' dw' . (3.3b)

C

In the next subsection, we encounter integrals over the interval 0 < u < n 
whose integrands become singular when the parameter w approaches a real value u. 
A basic rule for this situation is expressed by

lim
£-»0

1
u - u' + i£ p.v. - Tti S(u - u') sign (s)

where p.v. stands for principal value and 6(u - u') denotes the Dirac delta 
function. The relation is to be applied under an integral sign.

Then if w approaches the real value u from the interior of R^ and 
0 < u' < 7t, we find

lim
w-»u

sm w 
cos w - cos u' p.v. sin u

cos u - cos u' + Tti 6(u - u' ) (3.4a)

and, similarly,
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lim
w-»u

sin u' = p.v. sin u (3.4b)
cos w - cos u cos u - cos u- + Tti 6(u - u' )

There are companion rules for differentiation under an integral sign:

log | cos u - cos u' = p.v. sm u
cos u - cos u

d -■ , sin ^(u-u' ) | _dF 108 'HiTWiv)1 ' p v- sin u
cos u - cos u ' 9

(3.5a)

(3.5b)

where it is noted that the arguments of the (natural) logarithms are absolute 

values.

2. Representations of F(w) in terms of boundary values
Combining (3.2a) and (3.2b), we get

F (w' ) dw' 
cos w - cos w'

The upper horizontal part of the contour C is now allowed to recede to infinity 
while the other parts approach the boundaries of R^. We find

F(w1) dw1
COS W'j cos w

n

F(w) = - i sin "I Fr (u’,0)
cos w - cos u'

du' (3.6a)

Proceeding in a similary way from (3.3a) and (3.3b), we have

f

r(») = si < sin w1 F(w')dw' 
cos w - cos w'

sin w1 F(w')dw' 
cos w * - cos w'

whence
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n

(3.6b)F(w) = Fr(») +
sin u' Fj(u1,0) du, 
cos w - cos u' 71

0

Equations (3.6a) and (3.6b) are the desired relations. They show how over 
the whole of R , F(w) can be determined from knowledge either of F_,(u,0) or of

W K
F,(u,0) and the (real) constant FD(»).1 i\

Also, if we let Im(w) -» + °° in (3.6a), we get

V“)
7t
I Fr(u’,0) du*

7t
0

(3.7)

3. Integral relations among boundary values
For u real and 0 < u < 7t, we can relate Fj(u,0) to Fr(u,0) by taking 

the limit w -» u and applying (3.4a). The real part of the resulting 
equation is an identity; the imaginary part reads:

Fj(u,0) -sin u p.v.
Fr(u',0) 

cos u - cos u'
du1
7t

0

(3.8a)

Conversely, we can relate Fd(u,0) to FT(u,0) by using (3.6b) and (3.4b).K 1
This gives

Fr(u,0) = Fr(°°) + p.v.

71
sin u' F].(u' ,0) du, 
cos u - cos u' 7T

0

(3.8b)

The Eqs. (3.8a) and (3.8b) are sometimes called finite Hilbert transforms. 
If these integrals are integrated by parts with the aid of (3.5), the contribu­

tions at the end points vanish and we have
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FjCu.O) (3.9a)sin ^(u - u1) 
sin ^(u + u')

3FH(u''0) du 
3u' 71

Fr(u,0) = Fr(«>) |cos u - cos u' I
9Fi(u,>0) du:

3u' 71 (3.9b)

A large family of definite integral formulas can be generated from (3.8a) 
and (3.8b) by choosing suitable functions F(w). Here, we only note two conse­
quences of choosing F(w) =1.

Firstly, Eq. (3.8a) yields the (well-known) result

sin u p.v. 1
cos u'

du’
7T 0. (3.10)

Secondly, from Eq. (3.6a),

sin w1____  du1
cos w - cos u' 71

Integrating this with respect to w from w^^ to w^, and then letting Im^) -» », 
we have

7T
/ log(cos w1 - cos u') du'

7t = i (w„ Wf)
/l

f log(cos cos u') du1
n

^ -iWj - log 2 (3.11)

after the limit on is taken. Finally, letting w^ -> u = real and taking the 
real part, we get the curious but useful formula

10



log I cos u - cos u' | = -log 2. (3.12)l
4. Integral equations for conformal mapping

Let there be a curve in the complex z plane defined by y = y(x).

Suppose that for all x, y(x + 2n) = y(x) and y(- x) = y(x). Then dy/dx will 
vanish when x is any integral multiple of n. A real function y(x) with 

these properties will also be termed even periodic.
Let z = z(w) be a function analytic in the upper half w plane which 

conformally maps this upper half plane into the portion of the z plane above 
y = y(x) and carries w = i«> into z = i<». Let this mapping be standardized 
by setting z(0) = 0, and z(n) = 7T. The mapping can be represented as

z = z(w) = w + i F(w) (3.13)

where F(w) is an even-periodic analytic function in the upper-half w plane. Then

x = x(u,v) = u - Fj(u,v), (3.13a)

y = y(u,v) = v + Fr(u,v). (3.13b)

We shall abbreviate x(u,0) and y(u,0) to x(u) and y(u), respectively, 
and write u(x) for the function inverse to x(u). These expressions will 
maintain these meanings throughout the paper. Then for v = 0, we have

x = x(u) = u - FI(u,0), (3.14a)

y = y(u) = Fr(u,0), (3.14b)

as parametric equations, with parameter u, of y = y(x). To study these func­
tions, it is sufficient to restrict our attention to the region R of the w planew
and the image region of the z plane. The equations of the previous subsec­
tion are applicable with Fr(u,0) = y(u), Fj(u,0) = - [x(u) - u]. Let 
lim^^ Fr(u,v), previously called F(«>), be here denoted by y^. Then

11



(3.15)x(u) = u + sin u p.v. I y(u')
cos u - cos u'

du'
71

and

y(u) = Yo, p.v l sin u1[x(u') - u1] 
cos u - cos u'

du'
71 (3.16)

With the function y(x) specified as the input, and taking account that

y(u) = y(x(u)), (3.17)

either of the equations (3.15) or (3.16) constitutes a nonlinear integral equa­
tion for the unknown function x(u). If (3.16) is the equation employed, y^ is 
also unknown, but can be expressed in terms of x(u) by evaluating (3.16) either 
at x = u = 0 or at x = u = 7t; e.g. ,

7t
sin u1[x(u') - u'] du'

1 - cos u' 71

In (3.18), the integrand is not singular at u' =0 but reduces to 
(2/7t)(dx/du - l)u_0-

An alternate equation can be derived starting with Eq. (3.9b)

y(o) = y„ ■ (3.18)

7t

y(u) = Vos + J log I cos u - cos U* | (d*^f ^ - 1) .
Jo

The integral here is seen to separate into two terms. In the first term, it 
is more convenient to take the x variable as the independent variable, 
writing u' = u(x'), u = u(x), and replacing y(u) by the equivalent y(x). In 
the second term, Eq. (3.12) applies. We find that

12



yOO = Yo, + log 2 +

n

(3.19)/0 dx *log|cos u(x) - cos u(x')| ——-

which is a nonlinear integral equation for the unknown function u(x) and 
the unknown constant when y(x) is specified. The constant y^ can be 
eliminated by, e.g., subtracting from (3.28) the same equation evaluated 
at x = u(x) = 0:

Tt
y(x) = y(0) + I (3.20)

However, we prefer to retain y^ explicitly up to the stage of numerical computa­

tion.
Eq. (3.19) must be supplemented with the conditions u(0) = 0 and u(7t) = 71 

in order to define a unique solution. Otherwise, the transformations 
cos u(x) a cos u(x) + b, Y^ Y^ " l°g a would generate a multiplicity of 
solutions.

For the numerical solution of the integral equations (3.15), (3.16), or 
(3.19), some rule for approximate evaluation of the integral will be required; 
to this end, it is desirable to reexpress the integrals in nonsingular form. 
Referring to Eq. (3.10) and again to Eq. (3.12), we see that the three integral 
equations can be regularized as follows:

71
x(u) = u + sin u (3.21)

7T
y(u) = Yo,

sin u'[x(u') - u1] - sin (u)[x(u) - u] du (3.22)cos u - cos u' Tt

7t
(3.23)

0 13



y(x) - y0(x) = y^

This can be regarded as comparing the conformal map for the curve y(x) to 
that of Yq(x). Equation (3.23) corresponds to the special case in which 
Y0(x) = (Yq)*, = 0 and u0(x) = x.

The key theoretical result of the present section is the third integral 
equation of this list, Eq. (3.23). This is the one that yielded the most satis­
factory results, by procedures that will be detailed in the next section. The 
first two equations also yielded good results, provided the amplitude of the y(x) 
curve and its maximum slope are not too large.

Hereafter, the function u(x) will be called the boundary map function asso­
ciated with the conformal transformation z = z(w) defined by y(x). Further, its 
inverse x(u) will be called the inverse boundary map function. The determination 
of u(x) is the key to the determination of all other features of the conformal 
map.

An additional integral equation can be inferred from (3.9a); this one would 
suggest use of y as the independent variable. We have not investigated this 
equation.

5. Relations among harmonic functions, their boundary values and boundary
normal derivatives
Suppose that f(x,y) satisfies the Laplace equation

(92 + a2) f(x,y) = 0 
x y

in the region of the z plane lying above the boundary curve y = y(x), where
y(x) is even-periodic. Suppose f(x,y) is even-periodic in the x variable.
Then 3 f(x,y) = 0 for x = 0,7t. Let f(x), f (x) and f (x) represent the x s n
function and its tangential and normal derivatives along the boundary.

There is a more general method of regularizing Eq. (3.19). Suppose that for
the curve y = Yq(x), the solution (Uq(x), (Yq)^ to (3.19) is known. Then by

comparing the equations for each case, we obtain

(Vn)0 »

/lI logl cos u(x) - cos u(x') . dx'
cos u0U) cos u0(x') n

14



The tangential derivative is taken in the direction of increasing x and the 
normal derivative is taken into the region of definition. Then

f(x) = f(x, y(x)) (3.24)

fs(x) 9f(x,y)
8x

9f(x,y)
3y y=y(x)

Vl + (dy/dx)^ (3.25a)

fn(X) dy(x) 9f(x,y) 9f(x,y)
dx 9x 9y y=y(x)

Vl + (dy/dx)11 (3.25b)

It is also useful to define a modified normal derivative f (x) bynsq ' J

fnsq (x) _ d£9f +
dx 9x 9y y=y(x)

= fn(x) Vl + (dy’^/dx)^ (3.26a)

A companion equation to this one is given by differentiating f:

df (x) 
dx

dy 9f 
dx 9y y=y(x)

= fg(x) Vl + (dy/dx)^ (3.26b)

We seek integral equations interrelating f(x), f (x), f (x), or equivalently,S IX
f(x), df(x)/dx, f (x) and expressions for f(x,y) in terms of them. The first 

step is to reformulate the problem in the w plane.
Let z = z(w) be the conformal map which carries the upper-half w plane into 

the z plane above y = y(x) as detailed in the previous subsection. Let f(u,v) 
be the transform of f(x,y) as defined by

f(u,v) = f(x(u,v), y(u,v)). (3.27)

Then f(u,v) is a harmonic function, and satisfies the Laplace equation

(9^ + 9^) f(u,v) = 0 . 
u v ’

15



We define the boundary functions f(u), fs(u), fn(u) by 

f(u) = f(u,0) ,

fs(u) = 9f(u,0)
9u

9f(u,v)

(3.28)

(3.29a)

(3.29b)

It follows that, with the map of the boundary specified as above by 

x = x(u), or inversely, by u = u(x),

f(u) = f(x),

fs(u) df(x) /du(x) 
dx dx

(3.30)

(3.31a)

fn (x) du(x)
dx (3.31b)

Consider the function F(w) defined by

Tt
F(w) = -i sinin w f(u’)

cos w
du'

COS U 7X
(3.32)

Then F(w) is verified to be an even-periodic analytic function in the upper-half 

w plane. Taking the limit v -» <», we have

F(oo)
0

16



The considerations of subsection III.2 follow. The function f(u,v) solving the 
Laplace equation in the w plane and having f(u) as a boundary value is identified 
as Fd(u,v). Moreover, the function i dF(w)/dw is even periodic when F(w) is.

Its boundary value is

i dF (w) 
dw v=0

3Fj(u,0) 3Fr(u,0)
8u + ^ 3u fn(u) + i fs(u) (3.33)

By (3.32),

lim i
\r -> Co

dF (w) 
dw

0.

Applying Eq. (3.9b) to F(w), applying (3.8) to i dF(w)/dw, and converting via 
(3.31) and du' = (du(x,)/dx') dx' to integrations in the z plane, we get the list 
of boundary equations:

Tt

f(x) = f + I loglcos u(x) - cos u(x')| nsq
dx'
71 (3.34)

Tt

df (x) 
dx

du(x)
dx sin u(x) p.v.

fnsq 
cos u(x)

(x’)
- cos u(x')

dx’
Tt (3.35a)

0

fnsq (x) du(x)
dx p.v.

sin u(x') 
cos u(x)

df(x')
dx'

- cos u(x')
dx'

Tt
0

(3.35b)

Here, f^ = lim f(x,y)
y^OO / j... s du(x) dx f (x) —— dx Tt (3.36)
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In view of (3.10) and (3.19), the singular integrals can be regularized as follows

f(x) = foo + logl cos u(x) cos u(x')|[f (x') nsq
f (x)]^ 
nsq 71 (3.37)

+ fnsq(x)(^(x) " yoo ” lo8 2) »

df (x) 
dx

TT

sin u(x)
0

du(x)
dx f (x') nsq

cos u(x)

du(x') f 
dx1 nsq

cos u(x')
(x) dx'

TT (3.38a)

fnsq(x) /
du(x)
dx sin u(x') df(x’)

dx'
cos u(x) -

du(x')
dx'

cos u(x')
sin u(x) df (x) 

dx dx'
TT (3.38b)

These are the three basic equations for interrelating boundary values and deriva­
tives of even-periodic harmonic functions. The logarithm and denominator coeffi­
cients are essentially the Green's function and Green's function normal deriva­
tive for this geometry. The complexity of the Green's function for the arbitrary 
bounding curve y = y(x) is encompassed by a single function u(x) of one variable, 
which must be determined in a preliminary calculation. When u(x) and du/dx are 
known, the above integrals may be calculated by interspersed Gaussian quadrature, 
as described in the next section.

IV. NUMERICAL SOLUTION OF THE CONFORMAL MAP EQUATIONS IN EVEN-PERIODIC GEOMETRY 
In this section, an efficient numerical procedure is described for finding 

the boundary map function u(x), and hence the entire conformal map.

1. The Crowding Phenomenon
As already noted, References (1) and (2) provide a variety of numerical con­

formal map procedures. They succeed by iterative and perturbation techniques 
when the boundary already approximates the one onto which it is to be mapped. 
When, however, the mapping requires a significant distortion of the original 
boundary, there is an underlying mathematical phenomenon to be confronted which
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we shall call "crowding." Its impact can be indicated by some numerical examples. 
Figure la shows the region Rz of the z plane with the lower boundary

y = y(x) = - D cos x (4.1)

for the case D = 5. Figure lb shows the region Rw onto which it is conformally 
mapped with (4.1) going into v = 0. The grid of curves in Rz is the image under 
the mapping of the rectangular grid in Rw- For portions of Rz remote from 
y = y(x), the image mesh becomes approximately rectangular, and in fact,

x(u,v) -» u, (4.2a)

y(u,v) v + y^ (4.2b)

as v o° (and y “O .
Near y = y(x), however, the grid geometry is dominated by the requirement

that the images of u = constant must be orthogonal to the boundary. This
implies, as seen in Figure la, that proceeding from y = y(x), the images of
u = constant on the left side of the boundary must veer left and are crowded
against x = 0 before eventually straightening out and going vertical. It follows
that in the correspondence of boundary points defined by u = u(x), any interval
Ax on the left side of the boundary of Rz will be crowded into a smaller interval
Au on the u-axis in R . Because the whole interval 0 < x < 71 is mapped onto thew - —
whole interval 0 < u < Tt, there must be a compensating spreading of intervals 
Ax on the right side of Rz. We take du(x)/dx as a numerical measure of this 
effect with du/dx < 1 signifying crowding and du/dx > 1 signifying inverse 
crowding, i.e., spreading.

For curves of the class y(x) = - D cos x with D > 0, maximum crowding is at
x = 0 and maximum spreading is at x = Tt. Table III gives the values of du/dx
at x = 0 and x = Tt for D = 1, 5, 10, 100, as calculated by the techniques to be 
described in the next subsection. The magnitudes of crowding and spreading, as 
measured by du/dx, are seen to be of entirely different character for D > 1.
The spreading in this class of examples increases slowly with D, while the 
crowding increases exponentially with D, that is, du/dx goes down exponentially.
If a numerical calculation of the map proceeds without recognition of the 
possibility of extreme crowding, there will be a danger of significant, or total,
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loss of accuracy, particularly with regard to the trough region of the boundary 
curve.

Suppose, for example, one seeks to map v = 0 onto y = -10 cos x by solving 
either of the two integral equations (3.21) or (3.22). Suppose, also, that one 
seeks to approximate the u-integral in either of these equations by a quadrature 
rule based on 100 equally spaced points in the interval of integration. Then, 
as may be inferred from Table I, none of these u-points, except u = 0, corres­
ponds to the negative half of the y(x) curve. And for D = 5, only one such 
u-point corresponds to the negative half. The variation with x of the crowding
is shown for this case by the logarithmic plot of du/dx in Fig. 2. In the
trough region, the crowding is approximately exponential.

The equation for conformal mapping given most prominent attention in the 
literature is the Theodorsen-Garrick equation, which (see Section VIII.3) is 
essentially equation (3.21) in a different guise. This discussion of crowding 
points up the inadequacy of the Theodorsen-Garrick equation when applied to a 
highly distorted region, regardless of the technique of solution.

We shall turn, then, to the third integral equation, Eq. (3.23) where the 
natural variable of integration is x rather than u. This equation has the 
additional advantage that the logarithmic integrand is a smoother function than 
the integrands in Eqs. (3.21) and (3.22). As a result its integral can be
better approximated by a quadrature rule. The question of how best to approxi­
mate the integral is discussed next.

2. Gaussian Quadrature Methods
Let the N solutions of the equation

cos Nx = 0 (4.3)

in the interval 0 < x < n be labeled x., 1 < i < N and let the N + 1 solutions- - i’ — —

of

sin Nx = 0

in this interval be labelled x., 0 < i < N. Thus
i - -

(4.4)
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 (i - h)n
N x.i

in
N

(4.5)

Let f(cos x) be a function with at least 2N continuous derivatives with respect 
to cos x. Then the Gauss-Chebyshev quadrature formula reads

nJ f(cos x) ~ 
0

1 N
jj I f (cos x^) + E(N) ,

where the error term E(N) can be estimated from

E(N) =
f(2N+1) (cos

N!
11 o < 4 < 71

(4.6)

For brevity, Eq. (4.6) without the error term will be called the C-rule of order 
2N. The C-rule is exact if f(cos x) is a polynomial in cos x of degree 2N or 
less, or equivalently if f(cos x) represents a finite fourier-cosine series not 
extending past the cos(2N x) term. The x^ will be called C-points.

An alternative to (4.6) is the Gauss-Chebyshev-Lobatto formula which
reads

•c/- dxf(.cos x) — 1
N

N
Z £. f(cos x.) - E(N), 
i=0 1 1

(4.7)

where e. = h for i = 0 or i = N, and £. = 1, otherwise. When the error term is 
dropped, this will be termed the L-rule of order 2N and the x^ will be called 
L-points. Equation (4.7) has the same form of error term as Eq. (4.6) but with 
opposite sign. This is consistent with the fact that the average of (4.6) and 
(4.7) produces an L-rule of order 4N.

In some standard texts, equivalent rules are given in terms of Tn(t) and 
Un(t), the Chebyshev polynomials of the first and second kind. The transition 
to trigonometric form is effected by setting t = cos x and
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T (t) = cos n x, U (t) = sin n x/sin x. n 7 n

Now consider the application of these rules to an integral of the type

J(x) =j log |

0

cos u(x)
COS X

cos u(x')■ dx1 
cos x' 7T (4.8)

which occurs in the third integral equation. Let and Jjj(x) t)e t^ie approxi-
rule and L-rule to J(x). Let x^. b

L-point. We have:

mations by the C-rule and L-rule to J(x). Let x^ be a C-point and x^ be an

1 N .

J (x.) = ^ log I cos u(x.) - cos u(x.) | - Ir(x ) ,
O J iM i = 1 J 1 O J

(4.8a)

1 N
JT(x.) = r: 2 £ . log I COS u(x.) - COS u(x.)| - IT (x . ) ,L J N . _ i & j i L jJ _Q J J

(4.8b)

where

1 N
Ir(x.) = ^ 2 log |cos x. - cos x.| ,

j 1_1 j
(4.9a)

1 N
IT(x.) = - 2 £. log I cos x. - cos x.l L J N i_0 1 J i (4.9b)

The expressions for and 1^ can be simplified by using the identities

FI (cos x - cos x.) = 2 ^ ' cos N x ,
i=l 1

N-l
FI (cos x - cox x. ) = 2 
i=l 1

(N-l) sin Nx/sin x .
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These hold because (a) in each case, both sides of the equation represent poly­
nomials in cos x with the same zeros and (b) an analytic continuation of x into 
the complex z plane with Im z yields the overall coefficient. Since the sum 
of logarithms is the logarithm of the product, we have

Ic(x) = - log 2 + i {log 2 + log |cos Nx|} , (4.10a)

IL(X) = - log 2 + ^ {log 2 + log |sin Nx|} (4.10b)

Inserting Eqs. (4.10) into Eqs. (4.8) we obtain

Jc(v =
i i N

- (1 “jr ) log 2 + rr I log I COS U (x ) - COS u(x )| ,i_l J (4.11a)

Jl(x4 ) = “ t1 - jjp lo8 2 + | 2 £i log *cos u^xi^ " cos u(xi)l- (4.11b)
J i=0 J

These rules are next applied to solve the third integral equation.

3. Calculational Procedure
We are given a function y(x) which is even-periodic and single—valued. We 

seek an unknown function u(x) which will also be even-periodic and single-valued; 
moreover, u(0) = 0 and u(tt) = 7t. The equation to be solved is

71
y(x) = yoo + log cos u(x)

COS X
cos u(x*)■ 
cos x'

dx'
7t

0

(4.12)

We consider the sequences {x^}, {x^} as defined in (4.5). The two sequences 
interlace and taken together, comprise 2N + 1 points on the interval 0 < x < 7t 
including the end points x^ = 0, x^ = 7t. Corresponding y and u sequences are 
specified by

yi = yCx^, y± = y(xi), (4.13)
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and

u. = u(x.), u. = u(x.). (4.14)
1111

Because = 0, = 7t, a total of 2N - 1 subscripted u's are unknown.
We now apply the C-rule to (4.12) to evaluate y(x) when x is an L-point 

and apply the L-rule for evaluation when x is a C-point. For x = 0, we 
have, by (4.11a),

yo = - O - jj) log 2 +
i ”
N i=i log 1 - cos u.I 

1
(4.15)

which serves to express y^ in terms of the u's at C-points. Further, for 
1 < j < N,

1 1 N
Yj = Yoo - (1 - jj) log 2 + ^ ei log |cos u^ - cos uj

so that

N N
yi " y0 " N 1 £i 108 ^C0S ui " cos uil + N 1 108 I1 _ cos uil = 0
J i=0 J i=l

for 1 < j < N. (4.16)

Similarly,

yj
1 N
jj I {log I cos u 

i=l J
cos u.I

i
log |1 - cos u^|} = 0

for 1 < j < N - 1. (4.17)

Equations (4.16) and (4.17) constitute a set of 2N - 1 nonlinear algebraic equa­
tions for 2N - 1 unknowns which are the u., 1 < i < N, and u.,l<i<N-l.i — — i* — —

24



The integrand of (4.12) will have derivatives with respect to cos x' to the 
same order as u(x') for x ^ x', and to one order less for x = x'. Thus, for 
sufficiently smooth u(x), the quadrature rules applied to (4.12) should have 
high accuracy for moderate values of N. Because we have not sought to evaluate, 
say, y(x) at C-points by using the C-rule, we by-pass the question of how to 
evaluate integrands at x = x', that is, of how to calculate (du/dx) before we 
have determined u(x). Note that we have taken the boundary conditions u(0) = 0 
and u(tt) = rt into account by using a closed quadrature rule (L-rule). Also, 
note that Eq. (4.17) has the same form that would result from naively applying 
the Gauss-Chebyshev quadrature rule to Eq. (3.19) with no concern for the loga­
rithmic singularities. However, it is only valid when x. is an L-point. This 
process of evaluating integrals by the C-rule to avoid calculating derivatives 
at L-points, and vice versa, may be referred to as "interspersed Gaussian quad­
rature." It is equivalent to evaluating the integrand at x = x' by interpola­
tion based on a Fourier-cosine representation of 2N + 1 terms and then using 
the L-rule of order 4N. The interpolation limits the accuracy to order 2N.

Let Fj(u,u) and I\(u,u) denote, respectively, the left-hand sides of Eqs. 
(4.16) and (4.17), with the sets of variables {u^} and {u^} denoted respectively 

by u and u. Then the system of equations to be solved for u and u is

= °> 1 < j < N - 1, (4.18a)

and

Fj(u, u) = 0, 1 < j < N. (4.18b)

This is best done by a Newton-Raphson technique.
Suppose that u.^n^ and u^n^ represent the nth stage of an approximation 

to the solution to (4.18a), (4.18b). Let u,u denote the exact solution and 
let

u = u(n) + Au, u = u Au

with Au and Au presumed small.
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Then, if second order terms in Au, Au are dropped,

and

N 9F. N-l 3F.F. + I k-1 Au. + I —J- Au = 0
j . , 8u. k mJ k=l k m=l 3u

m

(4.19a)

N 3F. N-l 3F.
F. + I x-J- Au. + I —^ Au 
j . 3u, k mk=l k m=l 3u m

= o, (4.19b)

where the F's and their partial derivatives are evaluated for u^n\ u^n^ 

By (4.17),

3F.

3um
= 0 if j ^ m. (4.20)

Hence, from (4.19b)

N 3F
Au = - (F + I ,m m 3u^ k mmAu. )/(3F /3u ) (4.21)

Substituting (4.21) into (4.19a), we get

F. - 
J

where the

N-l 3F. F N
I -J- ---- -----  + I Q Au = 0 ,

m=l 3u (3F /3u ) k=l •]K 
m mm

NxN matrix is given by

3F. N-l 3F. , 3F
^ __2 1 __m

m=l 3u (3F /3u ) 9uk 
m mm

(4.22)

(4.23)
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The procedure is then the following: Given an approximate solution of
Eqs. (4.16), (4.17) one calculates the approximate correction Au by solving the 
linear Eq. (4.22). Then Au is calculated from (4.21) and the next approximation 
to (4.16), (4.17) is given by

u (n+1) + Au, -(n+1) -(n)=u+Au.

The approximation procedure is iterated until convergence to the desired
numerical accuracy is obtained. The problem of finding a reasonable initial

, . (0) -(0) . s (n) -(n)^ , . ,approximation u , u to generate a sequence {u^ > 1 which converges
to the correct answer is not as hard as it looks; guidelines for this will be
set forth in subsection (V.2). Then y^ can be calculated from (4.15).

The net result is to produce an evaluation of the function u(x) at 2N + 1
equally spaced data points on the interval 0 < x < 7t. Each stage of the Newton-
Raphson iteration requires inversion of an NxN matrix.

As is made plain by the formulas of (III.5), applications of the conformal
map procedure may require knowledge of du(x)/dx as well as u(x). A feasible
method, and perhaps the most accurate one in this scheme of calculation, is to
go back to (4.12) and apply the C-rule when x is a C-point, and the L-rule when
x is an L-point.

Specifically, the C-rule applied for x = x^ yields

1 N
yi = y«> + N 1 108 |C°S Ui
J i=l, J

cos u.| + Kp(x.) 
i ^ J

(4.24a)

where

Kp(x.) = lim
J x-»x.

J

cos u(x) - cos u.
w log I-----------------N cos x - cos x.

^1 + ^ log I cos x - cos x.| - Ir(x) 
N J

sin u.
log 2 + ^ log I 2N 0 du

dx (4.24b)
x=x. 

J
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Further, the L-rule applied for x = x. 
J

yields

N
yj yoo + N 1 £i 108 |cOS ui

i=0, J
cos u.| + KT(x . ) i L j

(4.25a)

For the cases x. ^0, x. ^ 7t, the calculation of KT has the same form and the J J L
same result as for K^:

sm u. 1log * 2 + ^ log I—2jj — I IdxU.
J

(4.25b)

For x. = 0 or x. = 7T, sin u. = 0 and 
J J J

KT (x .) = lim
J x->x.

J
2N log |

cos u(x) - cos u.

cos x - COS X .
J

^-1+2! log | cos x - cos Xj | - IL(x)

log 2 + | log I—^
N 2NV2 \ yx=x. I- (4.25c)

Then (4.24) and (4.25) permit calculation of du/dx at the data points in terms 
of the already calculated values of y^ and u(x) at these points, and provide a 
certain consistency between the C-rule and L-rule calculations. This method for 
calculating du/dx works well even when du/dx varies over many orders of magnitude 
due to the crowding phenomenon.

4. Additional Calculational Considerations
For the programming of the map calculation on a computer, the following 

points may be noted:
(a) In general, the sum of logarithms should be replaced by the logarithm

of a product, so that the number of logarithms to be computed per Newton-Raphson
2step is of the order of 2N rather than 4N . However, in cases of severe crowding 

and large N, the accumulated product of factors like (cos u^ - cos u^) can go off
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scale, i.e., become less than 10 and some adjustment of the product calcula­
tion should be made. Since most of the computer time is used to solve the linear 

equations, this is a small effect.
(b) The coordinates for the mapping problem should, if possible, be set up 

so that the crowding is in the neighborhood of u = 0, rather than
u = rt. This has been done in our numerical illustrations. Otherwise, a set of 
u-values may differ from rt by very small amounts, complicating the task of pre­

serving significant figures.
(c) When there is significant crowding of the u-data near u = 0, the cal­

culation of (cos u^ - cos u.) by the difference of the cosines will lose signifi­
cant figures. One remedy is to put

cos u. - cos u. 
i J

= - 2 sin ^(u. u.) sin ^(u. + u.) 
J 1 J

(4.26)

A simpler and usually adequate method is to rephrase the formulas in terms 
of the versine function ver(u). Thus

cos u. - cos u. = ver(u.) - ver(u.) , i .1 .1 v r' ’ (4.27)

where the versine is defined by ver u = 1 - cos u and calculated by

ver(u) = 2 sin^(u/2). (4.28)

(d) Equation (4.12) makes reference to cos u(x), but not to u(x) directly. 
If cos u(x) or ver u(x) is taken as the unknown function for the purposes of the 
Newton-Raphson iteration, the repeated calculation of the cosines and sines of 
u-data can be avoided. However, this is not necessarily a timesaver in the 
calculation; in some of our numerical experiments, the number of Newton-Raphson 
steps to reach a desired accuracy was increased (by one) when {ver u^} and
{ver u.) were taken as the unknown variables, rather than {u.} and {u.}.

1 (0} _ {o') 1 ^
(e) The terms of the series {u) {u^ J} which are taken as the initial

approximation to the u-data should lie in the interval (0, rt), and be monotonic 
and interspersed, i.e., u^ < < u£+p etc.
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If the initial data are not close enough to the solution, the Newton-Raphson 
step may overshoot resulting in output u-data which do not have these properties. 
In our calculations, when any output u-datum lay outside (0,7t), its value was 
redefined so that its distance from the nearest end point of the interval was 
adjusted to be a certain fraction f, f < 1, of its original distance, and the 
u-data were relabeled so as to make the u and u series monotonic and inter-

anticipated crowding. This has no effect if the input u-data are a good approxi­
mation to the solution. But it greatly expands the range of initial data assump­
tions for which the iteration scheme converges.

(f) Some simple bounds can be placed on y^ in advance of the calculation.
By Eq. (3.7) and the definition of y , we have

(4.29)

and y be the minimum and maximum values assumed by y(x). Then Jmax j jv /

y . mm < Y < Y - J'oo _ J|max (4.30)

Note also that for any u, u’,

| cos u - cos u11 <2

and so

log |cos u - cos u'| < log 2.

Then from Eq. (3.19)

yOO 1 y^ + 2 log 2

for all y(x) and, in particular, for y 
bounds:

max This gives the more interesting
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(4.31)y■'max 2 log 2 < y < y— •’oo — ■'max

V. NUMERICAL EXAMPLES

1. Values of the boundary map function u(x) and its derivative
Tables I and II display computed values of u(x) and du/dx for 11 arguments 

as well as y for "cosine" curves■’oo

y(x) = - D cos x (5.1)

and for "spike" curves

y(x) = ^D(l + e^)(l - sinh ft
cosh p - cos x ) (5.2)

The spike curves are normalized so that

y(rt)

y(o)

^max ’

= = - D coth(^p),

and

nI y(x) ^ = 0.
J n

The spike curves reduce to cosine curves as p °o. They resemble curves that 
appear as Rayleigh-Taylor interfaces and so are logical subjects for numerical 
experiments. The spike curves for which Table II supplies conformal map data 
are illustrated in Fig. 3.

The calculations followed the prescriptions of Sec. IV. In an Nth-order
calculation, values of u(x) and du/dx are found for 2N + 1 equally spaced points
x, of which N are C-points and N+1 are L-points. An initial approximation

lO) (0)(u^ j = {u '(x. )} is iterated by the Newton-Raphson method to yield a se-K x -v K
quence {u }, n= 1, 2, 3,..., until convergence to a desired accuracy level
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for the and the du(x^)/dx is obtained for the Nth order calculation. The 
main computing task at each Newton-Raphson step is the inversion of an N x N 
matrix. The calculation is repeated for a series of increasing values of N 
until the trend of data as a function of N converges to a desired accuracy.

The D = 1 case for the cosine curve is a comparatively benign case. The 
first and second integral equations were also applied to this case and worked 
well, but not with such high accuracy for such low N values. The same appraisal 
probably would apply to the methods enumerated in Refs. 1 and 2.

The cosine curves with D = 5, 10 and the spike curves with parameters as in 
Table II are typical of the boundary curves which motivated the present study of 
mapping techniques. They are characterized by severe crowding at the left end 
and even rough order-of-magnitude accuracy for mapping data on the crowded side 
poses a severe challenge to other currently known techniques.

The D = 100 cosine curve was included as a stunt to probe the limits of the 
third integral equation in conjunction with the prescribed interspersed quadra­
ture technique.

2. Choice of initial approximation and convergence of the Newton-Raphson
iteration.
Following the nth step of the iteration, one can form an error estimate 

E(n) by

E (n) Max
k

u (n-l)k (5.3)

If for some n, E(n) < 0.1, subsequent iterations in our experiments always
converged quadratically; that is, the series E(n + 1), E(n + 2), etc., decreased

-2 -4at least as fast as the series 10 ,10 , etc. Thus, after three iterations
following the E(n) < 0.1 level, the Nth order problem (for N held fixed) is 
solved to the 14-figure accuracy of a modern computer for the values u^. This 
behavior is, however, modified by accumulated round-off errors.

Let be the number of Newton-Raphson steps which, proceeding from the 
initial approximation, are done before reaching E(n) < 0.1. Then n^ is 
primarily a measure of the quality of the initial approximation for u(x). If 
the choice of the uj^is sufficiently poor, the iteration may diverge.
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We consider two alternatives for the initial approximation:
(A) The "Zero" Approximation.
This refers to the simplest choice of input, namely

u^^(x) = x for all x. (5.4)

As a representative example, consider cosine curves and calculations of order 
N = 30, with an adjustment factor as defined in (IV.4.e) of f = 10 ^. Then the

iteration process converges for all D at least up to D = 100. For D = 1, 5, 10,-3
100, we find nxro = 8, 12, 17, and 24, respectively. If, instead, f = 10 , then
for the same D-values, nXTt) = 6, 8, 10, and 51, respectively. In general, f =

510 is recommended for a first experiment; it leads to significantly faster 
convergence in extreme cases of crowding like D = 100, and to slightly slower 
convergence for smaller D-values.

The success of the trivial input assumption (5.4) is quite remarkable. For 
the D = 100 cosine curve, it means that 80% of the input u-values are wrong by 
from 5 to more than 100 orders of magnitude; yet the Newton-Raphson process 
converges to better than 10% relative accuracy for all u-values in as few as 25 
iterations and converges to computer round-off accuracy in 3 additional itera­
tions. This suggests that the combination of Newton-Raphson and adjustment 
procedures will suffice to solve the conformal map integral equation for a large 
class of boundary curves with little or no advance information about the charac­
ter of the function u(x) to be determined.

Now suppose that the zero approximation is adopted, but the adjustment 
process is not utilized. Then convergence is sensitive to whether y^ is elimi­
nated by (4.15) or by the analogous equations for y(7t), and the latter is better. 
Even so, the Newton-Raphson iteration will diverge for cosine curves with D of 
the order of one or more, the specific D-threshold for divergence depending on 
N. As a practical matter, the adjustment process or some equivalent to it is 
necessary for success of the method, except for cases of slight crowding.

(B) The "Shifted Circle" approximation.
The number of needed Newton-Raphson iterations can be substantially reduced 

by a better choice for u^^(x). Here, we define an elementary method for improve­

ment based on the correspondence between periodic geometry and circular geometry.
— iwAs noted in more detail in Sec. VIII, the mapping W = - e carries the real w 

axis into the circumference of the unit circle |W| = 1 in the complex W plane.
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Similarly, periodic curves y = y(x) are mapped into certain closed curves in the
~ izcomplex Z plane, Z = X + iY, by Z = -e and the original conformal map problem

may be reformulated in terms of a mapping from the W to the Z plane.
Figure 4 portrays, roughly, the image curve in the Z plane for a curve y = 

y(x) in the z plane of the general type we have been studying. The curve has an 
oval shape in the large, but may have more complex shape in the immediate neigh­
borhood of X = 0. Also shown in Fig. 4 is a circle drawn with the same hori­
zontal diameter as the image of y = y(x). The circle has a radius R and is 
centered at Z = Xq, where

R = %(Xmax - X . ) = mm
y(7t) ey(0)) (5.5a)

and

x0 = ha,max + X . ) = %(e min
yOO (5.5b)

The conformal map which carries the unit circle |W| =1 onto the circle of 
Fig. 4 is

Z = RW + Xq.

We now use this transformation, re-expressed in terms of the z and w planes, to 
define an initial approximation for u = u(x). Given a point (X,Y) on the image 
curve in the Z plane, with 0 and <)) denoting the polar angles of this point in 
the Z and W planes, respectively, the geometry of Fig. 4 leads to

cot 0 = cot <|) - Xq/Y.

Making the identifications 0 = n - x, <|> = 7t - u^^(x), Y = e^X^ sin x, we infer 

the desired replacement for Eq. (5.4):

u(0)(x) = tan"1 sm x
cos x + X0 /

(5.6)

Equation (5.6), with Xq given by (5.5b) will be termed the shifted circle approx­
imation for u(x).
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The cases D = 1, 5, and 10 in Tables I and III were computed with the-1 K
defined by Eq. (5.6) and an adjustment factor f = 10 . Use of a smaller f
would increase the n^-values cited in Table III in these cases by one or two.NR _5

The remainder of the data in Tables I-IV were computed with f = 10 . For
the lowest N-values cited for these cases, the shifted circle approximation was 
also used. Then for larger N-values, interpolations from the u(x) calculated 
for the next lower N's were used to define the u^\ accelerating the Newton- 

Raphson convergence somewhat. The resulting n^-values are listed in Tables III 
and IV. They are considerably smaller than those generated by the zero approxi­
mation.
3. Convergence with increasing N

The accuracy of the computed u(x) and du/dx must be inferred from the 
observed convergence trend in successive calculations with increasing N. The 
N-values listed in Tables I and II are sufficient to provide the data to the 
number of figures quoted and the approach to this level of accuracy is illus­
trated in Tables III and IV. We quote no more than 9 significant figures in any 
case to avoid round-off error problems and the maximum N attempted was N = 100. 
In cases where N = 100 was not sufficient for 9-figure accuracy, the trend in 
convergence (which was geometric) for N increasing up to 100 was used for a 
conservative extrapolation of the last significant figure. (E.g., compare the 
Table I datum for (du/dx) _n at D = 100 and the trend in this datum in Table 
III). In general du/dx converges less well with N than u(x) and the worst case 
for convergence is at x = 0 where the crowding is greatest. Thus, the conver­
gence of du/dx at x = 0 may be taken to indicate the minimum N needed to insure 
a definite level of relative accuracy for the data overall. The trend of du/dx 
values at x = 7t is illustrative of convergence rates for data in the uncrowded 
region, which is always much faster than the rate in the crowded region.

Equations (3.37), Eq. (3.38a), and Eq. (3.38b) exemplify the principal 
intended application of our map techniques to boundary value problems for har­
monic functions. They show that, in general, du/dx data are needed as well as 
u(x) data. If, for a case of severe crowding, accurate harmonic function data 
are needed near the trough region, then accurate values of u(x) and du/dx are 
also needed in this region because, although very small, they multiply loga­
rithms or denominators in the integrals which can be compensatingly large.

Suppose, however, that one deals with a class of problems where accurate 
harmonic function data are only required at the uncrowded end of the boundary or
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in the interior of the region not near to the trough of the boundary curve.
Then, for a case of severe crowding, the very small values of u(x) and du/dx at 
the trough end may be approximated by zero. For such problems a better (and 
much lower) estimate of the required N is given by the observed convergence of 
du/dx at x = 71, i.e., the uncrowded end.
4. Interpolation for intermediate x-values

The numerical procedure we have described computes u(x) and du/dx only at 
equally-spaced x points. The values of u(x) at additional points may be obtained 
by interpolation. Due to crowding du/dx may vary over many orders of magnitude. 
As a result, rather than interpolate u(x) directly, it is better to interpolate 
a slowly varying function of u. A suitable function is

g(cos x) = ^ log ( 1 1
cos u(x)N , y-sin h u(x)x-----^-) = log (--:-‘i -—)- cos x ° sm % x

At the end points,

g(l) = log (^) and g(-l) = 0. 
x=0

By interpolating the function based on cos x as the independent variable, addi­
tional values of u(x) may be obtained.

An alternate approach would be to go back to the original quadrature rules 
for approximating the third integral equation. We shall discuss this mainly to 
point out a certain pitfall. Suppose we approximate Eq. (3.23) by evaluating 
the integral with the C-rule of order 2N for arbitrary x. We get

y(x) = y«. + ^ 21 {log | cos u(x) - cos u. | - log |cos x - cos x.|}
® JM . 1 11

= + (! - ^) log 2 - i log |cos Nx| + | I log |cos u(x) - cos ^|.
i

(The summations over i refer only to those x^ which are C-points). This can be 

rewritten in the form
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L(x) = R(u), (5.7)

where

L(x) = ^ | cos N x|

R(u) = {FI | cos u - cos |}

1/N

1/N

ey(x)-yoo} (5.8)

(5.9)

The function R(u) has N zeros, one for each u = u^. In order for (5.7) to 
have a monotonically increasing solution u(x) the function L(x) must have zeros 
only at the N points x = x^ and the extrema of L(x) and R(u) must correspond.
In this case, between successive minima and maxima, (5.7) has a unique solution 
which can be used to assign values to u(x). In general, extrema of the L(x) and 
R(u) will differ by some small amount of the order of the error in the overall 
calculation. Therefore, (5.7) will fail to have a well-defined solution near 
the extrema.

Mitchell Feigenbaum of the Los Alamos Scientific Laboratory has found an 
alternative approach which avoids this difficulty. He would choose a set of x^ 
which are C-points and apply the C-rule to evaluate the integral at a set of 
points xm which are precisely the extrema of L(x) given by (5.8). The unknowns 
are the sets of u^ = u(x^) and um = u(xm). The sets of equations determining 
them are

L(x ) = R(u ) m m y 0 = (dR/du) u=um

Then the calculation produces an exact match at the extrema of L(x) and R(u).
The method fails if L(x) has more than one extremum between adjacent quadrature 
points; this can be avoided by making N, the order of the rule, large enough.
The details of this method will be described elsewhere by Feigenbaum.

Feigenbaum's method requires an analytic representation of y(x) in order to 
determine where the derivatives of L(x), as given by (5.8), vanish. The method 
seems inappropriate if y(x) is specified by a finite number of data points, for 
some interpolation scheme will then be needed to evaluate the zeros of dL/dx; 
this would probably be the source of largest error in the calculation.

ii
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5.
Expressions for an analytic function F(w) in the interior of R in terms of 

boundary values are given by (3.6a) and (3.6b). With the replacements of Eqs. 
(3.13), we get

Calculation of the map in the interior of the regions

z w + sin w
l yOi1)

cos w - cos u'
du'
n

and

-iz = y
Oo

1W

7T
■L sin u1 [x(u') - u1] du'

cos w - cos u

Integrating by parts and applying (3.11)

-xz y~ - iw +j no

71I log(cos w - cos u')( dx'n
du’

rt )

7T
= Yoo + log 2 +

For the calculation of z = z(w) when v = Im(w) is large, any of the above 
formulas, approximated by e.g., a C-rule or an L-rule, is serviceable. But for 
v 0, the imaginary parts of the integrands vary sharply within a small interval 
and are best avoided. Taking the real parts only, we have these alternatives 
(among others):

L log(cos w - cos u(x')) dx’
7T

x(u,v) = u + Re
7T

sin w J y(u' ) du'
COS W - COS U 7t (5.10)

38



(5.11)y(u,v) = yoo + v
rrc

sin u'[x(u') - u*]
cos w - cos u'

du1
n

Setting F(w) = 1 in Eq. (3.6a), we find

Re
n

sin w du’
cos w - cos u 7T = 0

This permits a subtraction in the integrands of (5.10), (5.11) to make the inte­
grals more regular for v 0:

x(u,v) u + Re sin w y(x’) - y(x(u)) du(x') dx^ 
cos w - cos u' dx' 7t (5.12)

y (u,v) = yoo + v sin u(x')[xt - u(x')] - sin w[x(u)
cos w - cos u'

u] du(x') dx1 
dx' n

(5.13)

Once u(x) and du/dx are determined at sufficiently many data points along
y = y(x), Eq. (5.12) and Eq. (5.13) suffice to determine the mapping from the
interior of R to the interior of R .w z

As an application, consider Fig. 1 which illustrates the map induced by 
y = - 5 cos x in terms of a rectangular grid in the w plane and the image grid of 
curves in the z plane. First, a set of equally spaced abscissas x^ = k/t/10,
0 < k < 10 was selected and the corresponding u^ determined by a map calculation. 
These are precisely the u^ listed in the D = 5 column of Table I. For the 
drawing of Fig. 1, a calculation of order N = 10 is sufficient. Then the are 
L-points and (5.12), (5.13) are to be approximated by the C-rule. The w-plane 
grid in Fig. lb consists of the lines u = u^, v = u^, 0 < k < 10. Because some 
u^ are very small, not all the rectangular grid lines are separately distinguish­
able in the figure. The image curves of this grid in Fig. la are, however, more
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or less evenly spaced in the area of Rz neighboring on y = - 5 cos x. In par­
ticular, the image curves of u = u ^ intersect y = - 5 cos x at x = x^. Notice 
that the shaded region of R in Fig. la, which occupies the whole of R below 
the x-axis, is the map of a nearly invisible square in the lower left corner of
R ; the side of this square has length 0.037. Also, note how rapidly the image w
curve of v = constant flattens out above ymax

VI. A DIFFERENTIAL APPROACH
Suppose the z-plane boundary curve depends continuously on a parameter t, 

that is, y = y(x,t). Then the conformal map transformation generalizes to

z = z(w,t). (6.1)

The boundary map function, its inverse, and the constant in the third integral 
equation will be denoted by u(x;t), x(u;t) and y^Ct), respectively.

The main purpose of this section is to derive the formula

ut(x;t) sin u(x;t)

71

0

(ux(x';t))2 
i + (yx(x\t))2

yt(x,t) - yt(x',t) ^ 
cos u(x;t) - cos u(x' ;t) 7t ’

(6.2)

where partial differentiation with respect to x and t is indicated by subscripts
This formulation may be useful for a potential problem with a moving bound­

ary. Let t represent the time variable. If y(x,t) is either specified in 
advance or determinable together with yt(x,t) from other data at time t, then 
(6.2) provides a time-differential equation for u(x;t). Integration of (6.2) is 
an alternative to mapping calculations, as prescribed in Section IV, which 
otherwise have to be repeated at each time step in a dynamical calculation.

An additional consideration is noteworthy when the boundary motion as de­
fined by y = y(x,t) is not specified beforehand but is to be determined con­
currently with other dynamical data. From (4.29), we have
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7T/
0

Differentiating with respect to t and integrating by parts in one of the result­
ing terms, we get

I
(6.3)dy0B(t)/dt =

0

Now when u(x;t) and y (t) are known, y(x,t) is determined from (3.23) and 
ux(x,t) from (4.24) and (4.25), all by quadratures. Thus, integraton of (6.2) 
together with (6.3) represents a substitute for the task of integrating time- 
differential equations for y(x,t), rather than an additional task.

To verify (6.2), we first ask how ut(x;t) can be related to the boundary 
value of an even-periodic function analytic in R^, so that the integral relations 
connecting the real and imaginary parts of such boundary values can be applied. 
Following (3.13), we have

z(w,t) = w + i F(w,t)

where F(w,t) is an even-periodic function and analytic in Rw- Then dz(w,t)/dw 
and izt(w,t) are likewise even-periodic. On the lower boundary of Rw, i.e., for 
v = 0, (6.1) becomes

x + iy(x,t) = z(u,t). (6.4)

It is understood that in boundary equations such as (6.4), the variables x and u 
are related by u = u(x;t). Then differentiation of (6.4) with respect to t, 

holding x constant, yields
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Furthermore,

dz(w,t)
dw v=0

dx(u;t) dy(x(u;t),t)
du du

= [1 + iyx(x,t)]/ux(x;t) .

It is now expedient to define a function G(w) by

G(w) = -i zt(w,t)(dz(w,t)/dw)

Then G(w) is even-periodic and analytic in R^. Moreover,

ux(x;t) yt(x,t)
1 + i yx(x,t) + i ut(x;t) .

Thus, u^Cxjt) enters into the imaginary part of G(w) on the boundary, but not
into the real part. We now apply Eq. (3.8a) to G-jCu.O) and Gt(u,0). After aK 1
change of integration variable by

du' = ux(x';t) dx',

the result is

ut(x;t)
u (x;t) y (x,t)

- sin u(x;t)
(ux(x';t))2 _____________  dxii

1 + (y (x1 ,t))2 cos u(x;t) - cos u(x' ;t) 7t

(6.5)
The coefficient of y (x,t) in (6.5) is the negative imaginary part of (dz/dw) ^

-i
at v = 0. Since (dz/dw) is also even-periodic and analytic, this coefficient 
can be replaced by an integral over the real part of (dz/dw) ^ at v = 0 by again
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applying Eq. (3.8a). When this is done, the result is Eq. (6.2), which was to 
be proved. For numerical purposes, (6.2) is preferable to (6.5) because the 
integral in (6.2) is nonsingular and can be evaluated by interspersed Gaussian 
quadrature.

As an alternative to variation through a parameter t, one may consider 
general functional variations:

y(x) -» y(x) + Sy(x), u(x) -» u(x) + 6u(x) .

Then the content of (6.5) can be reexpressed in terms of functional derivatives:

6u(x) u (x’ ) x
Sy(x') 1 + (yx(x'))z

u (x1) sin u(x)
y (x’) 6(x - x’) - ^

n cos u (x) - cos u(x’)

(6.6)

VII. PERIODIC GEOMETRY
PART B

In this section and the next two, the main formulas and methods developed 
for the even periodic case are extended to related geometries. In addition to 
providing a greater degree of completeness, this allows a more direct comparison 
of our methods with those developed for airfoils. Moreover, certain analytic 
and approximate techniques for the periodic situations appear more clearly and 
better motivated when viewed in the circle geometry.

1. Representations in terms of boundary values.
Let F(w) be a periodic analytic function in the upper-half w plane, but not 

necessarily even, and such that

F(w) -»■ F(«>) + 0 (y^y) as |w| -»■ ».

Then we redefine the region R^ to comprise the upper half strip -7T < u < 7t, 0 < 
v < o°. For w in the interior of R^, Eqs. (3.2a) and (3.3a) are valid. If the 
integration contours in these equations are extended to the boundaries of Rw, 
then
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n

F(w) = - i sin w F(u') du’
cos w - cos u' 2n

-n

and

n

F(w) = F(°°) - i sin u1 F(u') du1 
cos w - cos u' 2n

-71

(7.1)

(7.2)

because the integrals over the vertical boundaries u = - 7t and u = 7t cancel by 
periodicity. From (7.1), we infer

7T

F(oo) I F(u') du'
27t

-7t

(7.3)

Next, let w u from the interior of R and note that for u and u' restrict- ’ w
ed to the interval (-7T, Tt), (cos u - cos u') has zeros for u' = u and u' = -u.
The generalizations of (3.4) for this interval are

lim 
w u

sin w
cos w - cos u' p.v. sin u

cos u - cos u' + 7ti[6(u - u') + 6(u + u')]

(7.4a)

and

S(u + u')] .

(7.4b)

The useful combination of (7.4a) and (7.4b) is the one that cancels the S(u +u') 

term. Noting the trigonometric identity

,. sin ulim ---------------rcos w - cos ww u
= p.v. sin u

cos u - cos u + Tti [6(u - u' ) -
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sin w + sin u' (7.5)
cos w - cos u' = -cot ^(w - u' ) ,

we average (7.1) and (7.2) to get

n

F(w) = ^F(a>) + i / cot ^(w -

-n

u’) F(u') -du--
2n

(7.6a)

For w interior to R^, w* is outside, and so the same process yields

0 = ^F(oo) + | cot 3g(w* - u' ) F(u' ) du'
2n

(7.6b)

Thus, taking the sum and difference of (7.6a) with the complex conjugate of 
(7.6b), we have the two alternatives:

Tt

F(w) = Fr(oo) cot ^(w - u') Fj (u1 ,0) ,

-Tt

TT
du'F(w) = iFjCw) + i / cot ^(w - u') FR(u',0) 2n

-Tt

(7.7a)

(7.7b)

Adding (7.4a) and (7.4b), we get

lim cot ^(w - u') = p.v. cot Jg(u - u') - 2Tti 6(u - u'). 
w^-u

Hence, taking the limit w u in (7.7a) and (7.7b) we get

(7.7c)
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n

(7.8a)Fr(u,0) = Fr(o°) - p.v.

and

Tt

Fj (u,0) = Fj C00) + p.v.

-Tt

Adding (3.5a) and (3.5b), we have

-2 log | sin i&(u - u')| = cot ^(u - u').

Thus, integration by parts yields

cot J&(u - u') Fr(u',0)

du'cot 3g(u - u') Fj(u' ,0)

fR(u,o) = FrC00) - 2 log| sin 3g(u - u' ) |
dFi(u',°) du,

du' 2n

(7.8b)

(7.9)

(7.10)

and a similar representation for Fj(u,0). The end-point terms cancel because
F_(u,0) and Ft(u,0) are periodic.K 1

In the case where F(w) is even as well as periodic, these formulas reduce 
to those of Section III. Conversely, any periodic F(w) can be written as

F(w) = Fj(w) + i F2(w) (7.11)

where F^(w) and F2(w) are even-periodic. Then introduction of the representa­
tions of Section III for F^(w) and F2(w) in (7.11) leads to an alternate deriva­
tion of the formulas of the present section. The definitions of these even- 
periodic functions are
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FjCw) = [F(w) + F*(- w*)]/2 (7.12a)

F2(w) = [F(w) - F*(- w*)]/(2i) (7.12b)

2. Integral equations for conformal mapping
In analogy to the method and notation of Section III.4, we consider a curve 

y = y(x) in the z plane where y(x + 2tt) = y(x). Let

z = z(w) = w + i F(w) (7.13)

be a conformal mapping of the upper-half w plane onto the z-region above y = y(x) 

which carries w = i«> into z = i°°. Again we have,

x(u,v) = u - FI(u,v), y(u,v) = V + Fr(u,v), (7.14)

and x(u), y(u) defined by

x(u) = x(u,0) = u - Fj(u,0), y(u) = y(u,0) = Fr(u,0). (7.15)

And also, y(u) = y(x(u)).

The periodicity of F^ implies

x(tt) - x(-n) = 2n. (7.16)

Since addition of an imaginary constant to F(w) does not alter the nature 
of the map, we are at liberty to specify

x(7t) = 7i, x(-n) = -n . (7.17)

In the limit v °o, we have

x(u,v) ^ u + x^, y(u,v) ^ V + y^ , (7.18)

where x and y are identified with - FT(<»), FD(»), respectively.oo oo X x\
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Then equations (7.8) convert into

7t

x(u) = u + - p.v.

-n

and

cot ^(u - u’) y(u') du'
2n

y(u) = y*, + p-v- /
-TT

cot J&(u - u' ) [x(u' ) U'] du'
2n

(7.19a)

(7.19b)

These are the analogs of the first and second integral equations for the mapping 
problem derived in Section III. To obtain the analog of the third integral equa­
tion, we first evaluate the integral

n

I(u) = I log | sin 2g(u - u')| du'
2n

-rt

We have

Ku) =

Tt
= h J log | — 

-Tt

cos (u - u')| du'2 1 2n

h

n

-71

{log | 1 - cos u'| - log 2 } du'
2n

log 2, independent of u (7.20)

Thus, by (7.10) and (7.14),
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y(x) =700 + 2 log 2 + 2

TT

log | sin i&(u(x) - u(x')) dx'
2n (7.21)

-Tt

Setting F(w) = 1 in (7.8b), we infer

Tt
p.v. I cot ^(u - u') = 0

-Tt
(7.22)

With this and (7.18), the three integral equations can be expressed in non­
singular form as

x(u) = u + x^

Tt
cot Jfc(u - u')[y(u')

-Tt
y(u)] du'

2n ’ (7.23a)

y(u) = y +■'oo cot %(u - u')[(x(u') - u') - (x(u) - u)] du'
2n

sin ^(u(x) - u(xl)).dxt 
sin - x' ) 2Tt

(7.23b)

(7.23c)

The term x^ in (7.23a) can be removed by setting x(u) + x(u) - x^; this amounts 
to an adjustment of x(u,v) at the cost of giving up the specifications (7.17).

3. The Theodorsen form
The singularities of (7.19) can be removed in another way. Since both 

cot ^(u - u'), and y(u') are of period 2Tt in u', we can translate the integrals 
to get
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n TT

p.v cot Js(u - u') y(u') du' = - p.v. cot (J& u') y(u + u') du' ,

-TT -71

which shifts the singularities to the fixed point u' = 0. If we then apply the 

rule

I

-7T

f(t> is
I

f(t) + f(-t) dt 
2 Tt (7.24)

Equations (7.19) become

x(u) = u + x^ - ^ j cot u')[y(u - u') - y(u + u')] , (7.25a)

Tt
du'y(u) = + h j cot (% u')[x(u-u') - x(u + u') + 2u'] . (7.25b)

Apart from the dispensable constant x^, these are substantially the Theodorsen- 
Garrick forms of the conformal mapping equations, or at least will be if the 
appropriate transition is made to the more familiar case of circle geometry 
(see next section).

4. Numerical procedures
To apply our Gaussian quadrature methods to the solution of the family 

of integral equations (7.23), we first apply the rule (7.24). If this is 
done to (7.23a) after replacing the cotangent via (7.5), the result is

50



Tt
./-..'v , i I sin u[y(u’) + y(- u’) - 2y(u)] + sin u'[y(u') - y(-u')] du'
.(.uj - u + Xoo + cos u - cos u’ Tt

(7.26)

Similarly, from (7.23c), we get

Tt
y(x) = y + log |

0

2 sin 3g(u(x) - u(x')) sin ^(u(x) - u(-x')). dx'
cos x - cos x Tt (7.27)

These equations have the same general character as the equations worked 
out for the even-periodic case, to which they quickly reduce if one puts 
y(-u') = y(u') and u(-x') = - u(x'). Although we have not applied these equa­
tions to numerical test cases, we see no reason why the methods of interspersed 
Gaussian quadrature and Newton-Raphson iteration, as already described in detail 
for the even-periodic case, should not work equally well.

The Theodorsen form (7.25a) is probably of comparable utility to (7.26), but 
both of these have the limitation already noted in Section III in cases of sig­
nificant crowding. For most cases, the preferred equation is (7.27).

5. Harmonic functions and their boundary values
Consider a periodic harmonic function f(x,y) with its boundary value,

tangential derivative, and normal derivative along y = y(x) specified by
f(x) = f(x,y(x)), f (x), f (x). The procedure here follows that of Sections n
III.5. We consider the companion functions df(x)/dx, fnSq(x) as defined in 
that subsection. We consider the mapping from Rw as already prescribed and 
the function f(u) = f(x) with the related definitions

£ Cu) = f!fOO
s dx

du(x)
dx f (U) = f 00 ’ n nsq I dx

We define an analytic function F(w) in R^ by
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n

F(w) = +i cot %(w - u') f(u') du'
2n •

-Tt

Then we can identify, by comparison with Eq. (7.7b) and Section (III.5),

f(u) = Fr(u,0), £n(u)
- 3FjCu,0) 

8u

and

idF(w)
dw v=0

f (u) + i f (u). n s

Exploiting the representations already worked out, we get the relations between 
boundary values and boundary derivatives of f(x,y) in nonsingular integral 
representations as follows:

Tt
f(x) = f + 2 J log | sin ^(u(x) - u(x')) | [f (x') - f (x) ] dx'/(2Tt) 

^ » nsq nsq
-Tt

+ fnsq(x)ty(x) ‘ yoo " 2 lo8 21 »

with

(7.28a)

Tt

f00
ffvn du(x') dx'
K } dx' In

-Tt

(7.28b)

Also
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df(x)
dx

n

cot ^(u(x)

-Tt

u(x')) f (x') nsq
du(x)
dx fnsq (x) du(x')

dx'
dx’
2Tt

(7.29)
and

Tt

fnsq(x) = " J cot ^(u(x)
-Tt

u(x')) df(x1) du(x) 
dx' dx

df(x) du(x') dx' 
dx dx’ 2n *

(7.30)
VIII. CIRCLE GEOMETRY

The conformal map problem for the interior or exterior of a simply con­
nected bounded region has the same structure as that already treated for a half 
plane with periodic boundary. Here, we consider conformal maps onto the exterior 
of the unit circle. The formulas and methods already developed for periodic 
geometries can be directly transcribed to the circular case.

We continue to regard the z and w planes as the domains for periodic 
problems. We again let Rz denote the half strip above the curve y = y(x) with 

-Tt < x < tt and let Rw denote the upper half strip -tt<u<tt, 0<v<». Con­
sider also the Z and W complex planes with Z = X + iY, W = U + iV. Let r,0 be 
polar coordinates in the Z plane and p, <)> be polar coordinates in the W plane. 
Consider the transformations

Z = - e ■iz W = -e-iw (8.1)

In terms of coordinates, (8.1) implies

r = e^, 0 = TT - x and p = eV, <|> = TT-u. (8.2)

The transformation of z to Z maps R onto the region R„ exterior to the curveZ £i

r = r(0) =

Similarly, Rw is mapped onto the region R^ exterior to the unit circle.
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The vertical boundaries of R are both mapped onto the line, 1<U<00, V-0,w
and the points at °° correspond.

Suppose F(W) is an analytic function in the region and converging to 
F(«0 as |W| ■* ». From (7.8) and (8.2), we can write

2n

Fr(") + P-v- cot - (8.3a)

and

2n

Fjte1*) FI(00) f cot ^((() - <)>') FR(e1<^ ) (8.3b)

Let Z = Z(w) be the conformal map from R^ to R^ which maps the point |W| = oo 
onto the point |Z| = <». We denote the coordinate transformations by

r = r(p,<|)) and 0 = 0(p,(|)), (8.4)

and the boundary functions by

r(<|>) = r(l,<J)) and 0(<|)) = 0(1,<|)). (8.5)

Thus,

r (<(>) = r(0(<)))). (8.6)

Furthermore, we define r and 0 by 9 00 00 J

lim r(p,((>) = p + r
p-K»

(8.7a)

lim 0(p,<|)) = <t> +
p^oo

(8.7b)
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with 0^ implicitly determined by the standardization 0(0) = 0. The transforma­
tion of Eqs. (7.23) to circular geometry gives

0(<t)) = 4> + e*
2tt

cot %(<|> - (t)') log[r(())')/r(<{))] dtj)'
In

0

(8.8)

and

log r(<()) = log r^ + cot ~ <l),)[(0(<t>') " <t>') ~ (6(4.) - ♦)] 1^-

The third integral equation, in the form (7.27), becomes
(8.9)

Tt

log r(0) = log r^ + log ■ 2 sin %[(1)(8) ~ tKO')] sin ^[4>(8) - (^(-O1)]
cos 0 - cos 0'

dO’
Tt ‘

0
(8.10)

By (8.2), we have du/dx = d<|>/d0 relating the measures of crowding in the 

two schemes. Even if a problem is originally posed in the periodic framework, 
it may be easier to estimate the character of the mapping function by trans­
forming to the equivalent circle scheme. In circle geometry, the crowding is 
likely to be proportional to a ratio of the natural geometric parameters that 
characterize the curve, whereas, as is already suggested by (8.1), exponentials 
of the natural parameters (e.g., such as D for cosine curves in Section V) come 
into play in the periodic scheme. Thus, the shifted circle approximation of 
Sec. (V.2) was motivated by the circle-geometry analog.

A single-valued boundary curve in periodic geometry corresponds to a star­
shaped region about the origin when transformed to circle geometry. If the re­
gion is star-shaped about a point other than the origin, then after a translation 
W = W - Wq our conformal map procedure may be applied. This has application in 
hydrodynamics when an interface bends back on itself; e.g., the breaking of a 
surface (water) wave or the late stage of Kelvin-Helmholtz instability. More
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generally, a conformal map does not preserve the star-shaped property. As 
a result, a suitable choice of a pre-map may be used to extend the conformal 
map procedure to more general regions.

The conformal maps discussed in this paper carry the point at » into the 
point at «. It is worth noting, however, that more general maps may be con­
venient for certain potential problems, e.g., in even-periodic geometry when 
the potential or its normal derivative vanishes on the side boundaries and at °°. 
The additional generality can be introduced by considering transformations which 
leave the boundary of the region invariant. Their form can be inferred from 
the relation to circle geometry where, as is well-known, the general conformal 
map which takes the exterior of a circle onto itself (while shifting the point 
at w) is

W = elC,(W - p)/(l - p* W),

with a real and |p| < 1.

IX. LINEAR GEOMETRY
Lastly, we record the basic formulas for linear geometry which algebraically 

is the simplest of all.
Suppose F(w) is analytic in the upper-half w plane and tends to F(°o) as 

|w| in the region. Then the boundary relations are given by the well-known
Hilbert transforms:

Fr(u,0) = Fr(oo) P-v-
Tt

Fj(u*,0)
u - u du'

-00

(9.1)

+00

FjOi.O) = FjO*) + ^
Fr(u’,0)

u7 du' (9.2)

Let y = y(x) be a curve in the z plane with y(x) 0 as |x| ■* 
three nonsingular integral equations which specify the mapping z =

». Then the 
z(w) which
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carries the part of the z plane above y = y(x) onto the upper-half w plane, 

according to the scheme of the previous sections, are

x(u) = u + x - -oo n
y(u,) - y-(u) du-,

u - u

y(u) = 1 / xCu1) - u' - [x(u) - u]
Tt U - U du’ ,

and

00

-00

(9.3)

(9.4)

(9.5)

Again, (9.5) is expected to be the most generally useful of the three for 
numerical work.

X. SUMMARY
Complex-variable techniques have been used to derive a series of integral 

equations for the determination of conformal transformations in two dimensions. 
Three of these equations, Eqs. (3.21), (3.22), and (3.23) of the text, have been 
tested in extensive numerical experiments in the context of even-periodic 
geometry. The third equation on the list was the most successful, especially 
in mapping situations with severe crowding, although the first two were adequate 
for cases of lesser crowding and for calculation of the mapping in the interior 
of the region at a lesser level of accuracy. The numerical procedures have been 
explained in sufficient detail, it is hoped, to make them directly usable by 
other investigators. The qualitative characteristics of a conformal map in a 
case of substantial crowding are indicated by Fig. 1, and the quantitative 
results obtainable from the third integral equation, as regards accuracy, con­
vergence, and computer time have been represented in Tables I through IV. The
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differential equation for the map function derived in Section VI appears to be
a promising approach for problems with time-dependent boundaries as it avoids
the necessity for any matrix inversions or Newton-Raphson iterations; we have
not yet explored its feasibility, however, in a practical application.
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Fig. 1

The rectangular grid in region of 
the w plane (Fig. lb) is mapped into 
the grid of curves in region R of the 
z plane (Fig. la) under the conformal 
mapping z = z(w) which carries the u-axis 
of the w plane into y = -5 cos x. The 
small black square in the lower left 
corner of R is thereby mapped into the 
shaded region of Rz-
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<y>o

Fig. 2. .
The plot of du/dx for the case y = -5 cos x
shows an approximately exponential variation 
of the crowding with x in the trough region.

2

y -2

Spike Curwi 
— D= I, j8 » 1.0
-----0=1.0*05
-----0=1,0 = 0.35

x

Fig. 3.
These three spike curves define 
the lower boundaries of the regions 
R for which conformal map data are 
given in Tables II and IV.



Z plane

Circle

Image of y = y(x)
in z plant

° -izThe oval curve and superimposed circle in the Z plane, Z = -e * provide the basis for 
an initial approximation u (x) for the boundary map function generated by a boundary 
in the z plane. See Section V.2.



ON
fo Table I. Boundary map function u(x) and its derivative for cosine curves (Eq. 5.1).

D = 1 (N = 10) D = 5 (N = 30) D = 10 (N = 60) D = 100 (N = 100)
X u(x) du/dx u(x) du/dx u(x) du/dx u(x) du/dx

0 0 .2236 9558 9 0 1.1627 7824 x 10"5 0 1.2099 5705 X io'11 0 2.8 X io'124

. In .0734 0584 84 .2536 2509 0 8.6059 3926 X
10“6 6.7762 1730 x 10'5 5.2354 1694 X io-11 8.0993 7164 X io'10 1.795 X io-105 2.8 X io-103

.2n .1657 2663 9 .3443 8025 9 9.4166 8752 X io'5 6.9554 0964 x IO-4 6.0737 2218 X IO'9 8.9367 2965 X io'8 7.48 X io'85 1.1 X
io-82

.371 .2962 4531 2 .4966 2724 5 8.7694 7213 X 10-4 5.9499 1440 x 10‘3 5.1680 3585 X io"7 6.9795 4847 X io'6 1.398 X io'65 1.95 X io-63

An .4837 3523 7 .7055 1678 5 6.5574 6103 X IO'3 .0393 1682 93 2.8265 9276 X io-5 3.3676 2934 X io'4 3.1118 X io'48 3.70 X io'46

.5n .7439 4840 1 .9561 9009 8 .0373 8676 74 .1894 6437 1 8.9369 8586 X io“4 8.9668 0470 X io’3 2.8364 X io'33 2.84 X IO'31

.6ti 1.0862 8577 1.2234 4491 .1571 2708 8 .6391 2105 5 .0151 6837 20 .1209 4170 2 4.9731 X
IO*21 3.94 X io-19

. 7ti 1.5111 1779 1.4759 6673 .4828 6826 9 1.4941 2796 .1332 6193 4 .7819 4771 1.1166 43 X IO'11 6.454 X io-10

.871 2.0088 3315 1.6825 6048 1.1146 0230 2.5210 5348 .6169 1984 7 2.4347 0375 3.0666 3541 X io'5 1.1270 634 x io-3

.971 2.5607 7521 1.8175 9084 2.0413 4531 3.3106 3200 1.6755 4787 4.2012 0040 .1399 9205 7 2.4161 7340

71 71 1.8644 9953 71 3.5991 3060 Tt 4.9038 0596 n 14.5616 970

y* = .4126 1222 3 4 .0235 9218 8.9140 7088 98.7148 079

Table II. Boundary map function u(x) and its derivative for.spike curves (Eq. 5.2)

D = 1, p = 1 (N = 50) D = 1, p = .5 (N = 100) D = 1, p = .35 (N = 100)
X y(x) u(x) du/dx y(x) u(x) du/dx y(x) u(x) du/dx

0 -2.16 0 2.3114 5931 x io"3 -4.08 0 3.773 x io'10 -5.77 0 -191.4 x io ^
■ 0571 -2.07 5.9667 3729 x io"4 7.1288 6627 x nf3 -3.61 5.3793 3 x i(f8 2.9773 x io'6 -4.61 2.032 x io'11 2.552 x io~9
. In -1.83 3.2846 6508 x IO-3 .0326 8320 46 -2.58 6.1638 381 x i(f5 2.1250 38 x io"3 -2.69 1.4383 685 x IO*5 7.8571 6 x io-4
. 15n -1.49 .0135 8620 49 .1102 0331 7 -1.59 3.7166 1950 x io'3 .0707 0949 47 -1.32 4.2976 7545 x 103 .0980 7682 42
.2n -1.12 .0421 4807 55 .2671 6801 5 - .84 .0351 0230 54 .3685 7862 5 - .50 .0509 1244 40 .5383 2599 4
. 25n - .75 .1010 8636 6 .4909 2812 1 - .32 .1251 6150 6 .7729 6787 4 - .01 .1728 6799 2 .9831 0540 1
.3n - .43 .1973 7157 5 .7338 8429 7 .05 .2721 7612 8 1.0749 7658 .30 .3485 1148 1 1.2216 4970
. 4n .09 .4938 1044 7 1.1226 2841 .48 .6584 9325 1 1.3246 1563 .64 .7585 5515 3 1.3417.9211
.5n .44 .8832 7011 2 1.3304 1790 .71 1.0828 4640 1.3598 9620 .80 1.1780 1341 1.3209 0268
. 75n .89 1.9971 1992 1.4552 8205 .95 2.1306 1022 1.3043 6519 .97 2.1807 1845 1.2404 1048
n 1.00 71 1.4568 3154 1.00 n 1.2786 4476 1 .00 n 1.2151 4939

y» = .5704 3808 7 .6860 8057 2 .7385 1920 3
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fable III. Convergence of boundary map function derivatives for cosine
curves with increasing order N of the calculation. See Section 
(V.2) for definition of n^ and initial approximation for u(x).

N
(—) Mx'1

x=0
(—) '■dx'1 x=n "nr

Computer 
time per 
NR step 
(CDC-6600)

15 .2236 9558 9
10 .2236 9558 9
5 .2236 9564
2 .2244

1.8644 9953 0 
1.8644 9953 0 
1.8644 9953 0 
1.8651 0

.09 sec 

.04 

.01 
<■003

40 1.1627 7824 X 10-5 3.5991 3060 4 .87 sec
30 1.1627 7824 X 10-5 3.5991 3060 4 .43
20 1.1627 788 X 1°. 3.5991 3060 4 .16
10 1.164 X 1°J 3.5991 3060 4 .04
5 1.23 X 10 5 3.5988 4 .01

60 1.2099 5705 X io" I X
II
11
11
11

4.9038 0596 5 3.03
50 1.2099 5706 X 10~ 4.9038 0596 5 1.61
40 1.2099 576 X io" 4.9038 0596 5 .88
30 1.2099 8 X io' 4.9038 0596 5 .43
20 1.211 X io" 4.9038 0596 5 . 16
10 1.29 X io" 11 4.9038 03 5 .04

100 2.94
80 3.23
60 4.05
40 7.5
30 15.
20 75.

X 10“:,7 14.5616 970 9 
x IO,,; 14.5616 970 10 
x IO"!,? 14.5616 970 8 
x 10,,7 14.5616 971 8 
x 10,,7 14.5616 8 9 x 10 ^ 14.559 12

12.9 sec 
6.62 
3.03 
.89 
.43 
. 16

U>

Table IV. Convergence of boundary map function derivatives for spike 
curves with increasing order N. See Section (V.2) for 
definition of n^ and initial approximation for u(x). 
Computation times are sensitive only to N and are like those 
in Table III.

N
(—) ’■dx'1

x=0
(—)

“NR

50 2.3114 5931 X io:3 1.4568 3154 3
40 2.3114 5933 X 1°. 1.4568 3154 2
30 2.3114 61 X 10-3 1.4568 3154 3
20 2.3117 X 10-3 1.4568 3154 2
10 2.35 X 10 3 1.4568 36 8

100 3.7745 X 10
80 3.79 X 10'
60 3.82 X io‘

40 4.1 X 10'
20 6.7 X io‘

1.2786 4476 9 
1.2786 4476 8 
1.2786 4476 8 
1.2786 4476 8 
1.2786 6 8

100
80
60

1.51
1.70
2.2

X
X
X

<9
10- 9
10- 9
10- 9
10- 9
10

1.2151
1.2151
1.2151

4939
4939
4939

12
10
8

40 4.1 X 1.2151 4940 8
30 8.3 X 1.2151 6 9
20 35. X 1.219 8




