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ABSTRACT

A static Entity-Relationship (ER) or static Extended ER (EER) data model is not sufficient for represent-
ing the underlying time component of the data, more complex data types as found in planning, design and office
automation applications or the operations required for this complex data. The decreasing cost of mass storage
devices accompanied by an increased need for real-time systems and easier access to historical and planning data
has made the study of the temporal aspects of data models more interesting both theoretically and practically.
Furthermore, the ER-based data models can capture relationships between classes but they do not understand
the object-oriented paradigm since they treat application-specific relationships and paradigm-specific relation-
ships such as inheritance in the same manner. This shortcoming accompanied by a lack of support for the time
dimension results in the specification of temporal relationships and constraints at the application level and often
leads to inconsistencies in the data. In this paper, we extend the object-based ER model into a temporal,
object-oriented model, incorporate temporal structures and constraints in the data model and propose a tem-
poral, object-oriented query language for the model.
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I. Introduction

Most of the work in data modeling has eitherignoredthe need for representingthe time dimensionor

assumed thatitsrelevanceisself-evident.With databasesbecoming more complex interms ofthe typesof data

which need tobe represented,the typesofmanipulationoperationsneeded and the informationthatneedsto be

- extracted from the data, rbe requirements for richer data models have greatly increased, lt is important that

these modeling efforts address business and scientific application needs and requirements including the need for

representing the time dimension.

A conceptual data model should serve as a common frame of reference for analysts, users and implemen-

tors throughout the database life cycle. It should provide a long-run, time-unrestricted view of those aspects of

the real world scenario which are relevant to the application problem of concern [Bubenko 77]. The conceptual

model should support and integrate structural, behavioral and temporal abstractions of object properties and

provide a language for accessing information from the model.

A conceptual data model which incorporates past, present and future temporal semantics can be used as a

building block to create a system which enables the user to schedule business events, formulate alternative plans,

or request information about past events and planned products. Planning is based on future states of the real

world and therefore can't be supported by existing static models which exclude temporal semantics. In this

paper, we extend the object-based ER model into an object-oriented model and incorporate temporal structures

and constraints in the data model. Our data model, TOODM, provides abstractions to capture the evolution of

the schema and its instances and a means of expressing constraints on both of them.

The paper is organized as follows: related work is discussed in section 2, motivation and objectives are del-

bleated in section 3, section 4 presents a preliminary model, section 5 discusses a temporal, object-oriented ver-

sion of SQL (TOSQL), section 6 outlines implementation alternatives and section 7 concludes the paper with a

discussion of future work.

2. Related Work

Only one study, [Ariav 87], of business and management application requirements for temporal data was

found. This study suggests a need to support effective graphical representation, representation of states and

multiple temporal orderings and support for differing user needs. Temporal properties including the merits of

relative versus absolute time, the ability to identify an object as it evolves and the differences between events

and states are discussed in [Bolour & Dekeyser 831. Other properties such as precedence/succession relationships,

intrinsic versus extrinsic time, granularity and lifespans [Segev & Shoshani 871 and types of time [Snodgrass &

Ahn 851 have also been covered.



The bulk of the literature proposes adding temporal semantics at the logical level by extending the record-

based relational model through tuple or attribute versioning. Research in this direction includes: [Clifford &

Warren 83], [Navathe & Ahmed 86], [Abbod, eta]. 87] and [Segev & Shoshani 88]. Generalized logical temporal

models have recently been proposed by [Ariav 86] and [Segev & Shoshani 87]. A comprehensive bibliography on

temporal databases and references to three previous bibliographies can be found in [Soo 91]. Several versions of

temporal SQL's including [Fishman etal 87] can also be found in the literature.

Over the past decade, _everal researchers including [Klopprogge & Lockemann 83], [Ferg 85], and [Elmasri

& Wuu 90] have proposed incorporating time into the object-based ER model as an entity or attribute. [Olen

85] and [Dogac, etal. 85] discuss alternative ways of classifying constraints for the ER moc',_l but make no men-

tion of handling constraints on historical data. [Navathe & pillalamarri 89] propose structural objectification of

the ER model into their OOER model by adding the abstractions of generalization and classification. The

OOER model is operationally object-oriented in the sense that generic operations in the data model can deal

with complex objects. The OOER, however, is not behaviorally object-oriented in that it does not deal with the

concepts of abstract data types, encapsulation, operator overloading and message passing. The concepts of

schema and instance evolution are also not considered in the OOER model.

The literature search indicates that there is no single theory on how to treat time in a data model. Furth-

ermore, no uniform means for expressing and enforcing temporal constraints was found. Issues such as how to

provide for the database's evolution in terms of constraints, evolution of metadata, how to manage and group a

large number of constraints, how to handle inconsistencies and how to handle exceptions to constraints remain

open.

3. Motivation and Objectives

The object based entity-relationship model is well-known for its simplicity and clean, graphical notation

_VIylopolous & Brodie 89]. As such, it has become the de facto standard for conceptual data base design in prac-

tice. Furthermore, the trend towards end-user development and the proliferation of data models brings the issue

of usability into focus. A recent study by [Batra, eta] 90] compares the usability of the record-based relational

and object-based EER models. The study found that the EER model outperformed the relational model in all

cases except the representation of unary relationships. The EER model was found to lead to better performance,

but was not perceived by the users as being significantly easier to use than the relational model.

An increase in end-user development combined with the need for handling more complex objects and

rapidly changing environments suggests a need for a more generalized data model such as an OODM which

encapsulates both structural representation and behavioral abstractions. These trends lead to the main



motivationbehind the designof a temporal object-orienteddata model which providesa means of expressing

and enforcingconstraintsin the data definitionprocessand a means forallowingthe data model to evolveto

meet changesinorganizationaldataand applicationneeds.Furthermore,incurrentdata models,changesinthe

problem domain are not easilytranscribedintochangesinthe databasesolutiondomain due to the use ofmulti-

ple paradigms inthe developmentof the database.For example,in translatinga graphicalER model represen-

tationintoa tabularrelationalmodel,informationissometimeslostifitcan'tbe representedwith the structures

- providedin both paradigms. In the caseofan OODM, the same paradigm isusedin boththe conceptualmodel-

ing and logicalmodelingphasestherebyavoidingthisproblem.

As a firststepinsatisfyingour objectives,a temporalobject-orienteddata model isdevelopedto support

thefollowingfunctionality:

I)specificationand enforcementoftemporalconstraintsinthedata model

2)supportforpast,presentand futuretime points

3)supportoftypeand instanceevolutionthroughthe timesequencetype,TS[T]

4)supportfordifferentuserviewsofthe same objectusingmetadata

5)supportforretro/proactiveupdatesand queriesthroughthe designofa temporal,objected-orientedSQL data

manipulationlanguage

6)supportformultipletimelinesand corrections

To satisfytheseobjectives,abstractionsto representthestructuraland temporalpropertiesofthe datawill

be developedinthe followingsection.

4. Model

In thissection,a temporalobject-orienteddatamodel (TOODM) isdeveloped.TOODM incorporatessome

of the functionalityof the _'EER model of [Elmasri& Wuu 90] and the generalizedmodel of time sequences

(TS's)of [Segev& Shoshani87]. The basicassumptions,structures,representationof constraintsand temporal

operatorsofthe model follow.

4.1. AJmumpt|ona

Sincethereisno singledefiningstandardforan object-orienteddata model (OODM), we specifythe pro-

pertiesincludedin TOODM tobe as follows:

1)multipleinheritance

2)encapsulation



3) object identity

Time in TOODM, is viewed as continuous and independent of events which are defined as durationless

happenings in the real world that cause an object in the model to change state. We adopt the taxonomy of time

terminology given in [Snodgrass & Ahn 85] for valid time (vt) and record time (rt). We also add event time (et)

to represent the time when an event occurs. The state of an object persists over some duration of time and is

represented by the values held by the instance variables of the object for this duration of time. The time inter-

val over which a state holds is referred to as the valid time. The record time refers to when an object was

recorded in the data model.

4.2. Structures

The concept of abstraction is used to stress the common properties and suppress unnecessary details. The

main abstraction processes found in existing data models are generalization/specialization, association, aggrega-

tion, classification and identification. Figure 1 compares the EER and Object-Oriented data models in terms of

lh,: abstractions each can handle. For example, the association abstraction is represented as a relationship in the

F__R model and as an instance variable of type Class in each of the participating classes in the object-oriented

model. The remainder of the notations are self-explanatory except for Ptype which is explained later on and can

be viewed as a set of primitive values such as Integers. The OO-Model extends the EER model in that it also

a]lows users to model behavior in terms of allowable operations on data associated with a particular type and

the specification of explicit constraints in the data definition process.

Figure 1 - A Comparison of Abstractions in the EER and OO-Models

Abstraction EER Model O0-Model

classification Entity Type ODJectClass
i

Aggregation AggregationConstruct Object Instance
InEERonly;Entity inER

,,

AsSociation Relatlonsl_lp InstanceVar;Class
" i

AtOmiCAggregate Attribute InstanceVar:Ptype
, |1,

(}enerallzatlon GeneralizationInEER 5uper/Sub-Clas,_Hierarchy
Only

IOentlty PrimaryKeyValues Object IOentlty



Our basic object-oriented data model includes the following primary constructors: objects, classes, types,

methods, messages and collections. Every object has a type which is a template describing the structural and

behavioral aspects of it's instances.

A basic OODM type-lattice of system-defined types is extended with new features in Figure 2. The type-

lattice is a directed, acyclic graph (DAG) in which the nodes are type definitions and the edges are is_a links

directed from the supertype towards its subtypes. OBJECT is the root node of the type-lattice. It is a lattice

since subtypes may have more than one supertype. We discuss the new features in the remainder of this section.

Two new classes: V-CLASS and NV-CLASS represeut w..rsionable and non-versionable classes. A user-

defined type can be a subclass of either. If the components (set of instance variables, messages/methods and

constraints) of the type definition are allowed to change, the type should be defined as a subtype of V-CLASS as

in Figure 3. The motivation behind the differentiation of versionable and non-versionable classes is to provide a

mechanism for supporting both types of data since the non-versionable type components do not have a history

as do those of the versionable type. This may have implications for storage management of the two types of

data classes.

Figure 2 - New Types in the System Type-Lattice

• 000

=_-New Features

Figure 4 illustrates the definition of instance variables and messages for user-defined types. The type's

• instance variables are specified by (variable_name:domain) pairs. T!_ domain can be a primitive type such as

integer, a class or a collection. Each message has a target object from a particular domain to which the message

is to be sent and an optional list of parameters. Parameters may represent inputs the user must supply to the

message or variables to hold a return value for the message. Messages have the following format:

Message_name(Target; p-list) where p-list is a list of parameters



Figure 3 - Sale_ O_ce Example of User-Defined Cls._es

0 0

Figure 4 - Possible Type Definitions for Employee and SalesPerson
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The parameters axe given as paramete_value when they act as inputs to the message and as parameter when

they hold outputs or serve as a variable input parameter in a query. Messages are sent by the objects who own

them and must be recognizable by the recipient, target object. This visibility is determined by instance vari-

ables which represent relationships with other objects. The value of such an instance variable is referred to as a

shared value and is really a reference to another object. This reference provides a logical access path to the

related object.

These type definitions reference the TS[T] type which is explained later in this section. Messages can only

be used to refer to the states of object instances in their defining type. Temporal predicates can be attached to

messages to specify which version of the type definition is needed in a request so the user can ask for the infor-

mation as it existed in the database as of some point in time from any other point in time. This will be



illustratedin section5 inthe discussionofTOSQL.

Figure5 -Example Instancesof theSalesPersonType

SalesPerson TS[Salary]where history := [ <old,salary,vr, rt,et> }

OlD I_lme aliorF-h maneger-h sl|e|qty-h OlD history corrections:J
i i i

El _ SIll I"IHI SOHI SKI ((| 1,20K,(I,d],l,I), (S2,2SK.[S,_w*],4,3)) ((S1,22K.[1,4],4, I))
,. i,,.

E2 Jen, s! S4_2 MH2' _ SN2 i(s10.1SK.I1.61,1.1).(s11,20K,IT._Ol,e.S)]
i lllJ

TS[SolesOty] where history :- ( (old,qty,vt, rt,et) )
,.

correctionsoil) ,_Istory , . ,
SOHt I(ql.t00K.t,2.t).(a2,SOK,6.6,S).(q3,?0K,8.4,8)}

I(o!1,90K,1,4.I), (QI2,100K.2,4,2),(q13,30K,IO,?,g))

Figure5 shows some instancesofthe SalesPersonand two time sequencetypes.The valuesEl, SH1, MHI,

ql,sl,etc.representobjectid's(sid's)which serveas pointerstootherobjectsdefinedin the system. AllTS[TJ

typeshave a historyinstancevariablewhich isa time orderedsequenceof tuplevalueswhere the meaning of

each positionin the tupleisdefinedinthe TS[TJ type and itssubtypes.Each member ofthe historysethas an

O]I)so itcan be referenced.

Figure6 -Meta-Objectsand theMeta-Type Definition

Mem-Tyl_msi _ olMeti_CIs_

_rwne: TS[Smg]
m_lmm: TS[Set(_Typed ]
vw-_:TS[Set[Mere-vm|]

TS [Set(Meta-Ms_]]

• _: TS[Se![_-I l

Some of the instancevariable_(ex.salary)are of typeTS[TJ so each instancecontainsa valueand associ-

ated time intervalsor time pointswhich are explainedlaterin thissection.Meta-classdefinitionscan'tbe

changed so they are subtypesof NV_CLASS as in Figure6. The meta-data are timestamped with a record-



timestsmp (rt) and include the user-id or group-ld of the users who created the definition. Treating meta-data

values as time sequences of values with user-group ids allows us to assign different names to the same object for

different groups at different times.

Figure 7 - Instances of Meta-Types and Meta-Vars

Meta-T_, InsUmc_.

OlD name(strlnq_cr_ator,rt,vt} ,,,
T_ _ d, 1,[1,no_l)

'r'z (_ mm,=.I=_o_lRS=N==_se,Ion.._ 4,i4,nowl)
,,

Meta-Vau_ bllsancm

OlD Var_Na_ne(strlng,creator,rt,vt ) Var_Type(Meta-Type,¢reator,rt,vt )
' H mim ii

Vl (Mine.til 1.[1_]) . (=ano.d.1.[1.now+l) ,..

W (=m_ mm.I.P_=_l) (=0_.1. II.no_])
V= (l_=m.d. 1.[1_l) Onu_w_tl.lt_ow,]_(pho_aom_e.[=.now*I}

i,,

v4 _ mm,1,II_o_l)' CTS[Smryl,=, 1,[1,no.+])
l,

Figure 8 - TS[TJ Type and the Time Primitive Type

Figure 7 gives examples of instances of the Meta-Type and Meta-Vats definitions. Two names for the

SalesPerson type: SalesPerson and SalesPeople exist. Each name refers to the same object type and each was

created by a different user at a different time. The user-id called "all" is the default. If user "jones" sends the

Add._Salesperson 0 message to the object Salesperson using either name, the correct object can be found using

the meta-data in the meta-types object which allows different users to view the same object in different ways.

Primitive types, PTypes, represent objects which do not have instance variables. Ptypes usually serve as a



simple domain for the instance variables of other objects. The TIME ptype can be specialized into subtypes as

shown in Figure 8 where the time points can have different calendar _ranularities. Translation between calendar

granularities in operations involving multiple time lines wi]l he provided automatically with the default being to

translate to the greater granularity. TP represents time point and TI represents a time interval in Figure 8.

The COLLECTION type has three pre-defined sub_,ypes: SET[T], TUPLE, and SEQUENUE[T]. A set is a

collection of unordered, homogeneous objects that doesn't contain any duplicates. A tuple is a collection of

heterogeneous objects ordered by object name as found in the relational model. A sequence is an ordered collec-

tion of objects with a pre-defined subclass called time sequence (TS[TJ) which is ordered on time.

TS[TJ is a parameterized type where the parameter T refers to the user-defined or system-defined type

upon which we are collecting a _ime sequevce of information. The TS[TJ subc!ass can be used to represent the

concept of a time sequence as defined in [Segev & Shoshani 87]. Figure 9, the TS[Salary] type definition, defines

the data-type of the salary attribute of the history and the granularity of the timelines. The predicates data-

type(x) and bran(x) are used to define constraints on the attributes and timelines in the history. These predi-

cates are inherited from the gene_c TS[TJ type.

The evolution of an object is represented by time sequences of the values the object_s instance variables

have held. For example, in Figure 9 each salary value that an employee has held in the past, present or future

is associated with three t'melines: a record time (r_), a valid time (vt), and an event-time (et). This ability to

represent multiple timelines allows us to get information from the data model as it existed at some point in the

9
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past or as itwillexistin the futurebased on the informationavailableat some particulartime pointin the

model. Missingdata pointscan be interpolatedusingthe data-typeinformationand an interpolationfunction.

For example,a particularemployee may have been givena raiseon March I,1989 (ct)which becomes effective

on April1,1989 (vt)or isevenvalidretroactivelyon January I,1989 (vt).Thisfactmay not be recordedinthe

databaseuntilMarch 5, 1989 (rt).Other timelinescould be formed by providingotherinterpretationsto time

valuessuch as correctiontimes. (Note:In the figures,ordinalnumbers versusactualdatesare used forsimpli-

city.)

The following section discusses the constraints which control how the model evolves. A brief general dis-

cussion of the types of constraints to be included in the model precedes the discussion of temporal constraints.

4.3. Constraints

Constraints are logical restrictions on data and operations on that data. A constraint may be inherent in

the structure, explicitly specified or implied. Inherent constraints are application-independent constraints and

explicit constraints are application-dependent constraints specified by the user. In TOODM, application-

dependent constraints will be defined in the type descriptions of user-defined types and inherent constraints in

the system-defined types of Figure 2. Constraints are timestamped and restricted in scope since it would not be

valid to use a current set of constraints to control a correction on old data and user-defined rules may change

over time as the business changes. The property of encapsulation provides a natural means of restricting scope

and of separating user-defined and system-defined constraints.

The constraints in TOODM can be grouped into static, dynamic and temporal restrictions based on the

states that need to be considered when determining whether or not the constraints hold. In this paper, we focus

on the temporal constraints but we briefly distinguish between the three groupings as follows. A constraint is

static if it imposes restrictions on moving to the next state without concern for any other states. Therefore, in

the case of a temporal database, a static constraint refers to conditions that must be true on any snapshot of the

database. Dynamic constraints are specifications of allowable changes that move a database to the next state

taking both the previous and next states into consideration. These constraints have a set of pre-conditions that

indicate certain propositions which must hold true in order to initiate a state change and a set of post-conditions

which must hold true for the new state to be created. Dynamic constraints only refer to changes from the
o

current state to a new state and do not reference historical or future states. Temporal constraints including

time-related static constraints will be discussed in the following section.

10



4.3.1. Temporal Constraints

Temporal constraints can be thought of as rules for providing a tcmporal ordering and as rules for estab-

fishing precedence/succession relationships on sequences of constraint and object states or on non-adjacent

states. Specifying when constraints and objects are valid allows us to create a "time filter" to prevent the user

from viewing inconsistent data. The time filter is needed because we allow the addition of inconsistent facts to

the model as long as the facts do not exist at the same time. For example, an employee may be a manager at

• some point in time recorded in the database and he may not be one at some other point in time recorded in the

database. We classify temporal constraints as follows:

1.0 Time-Related Static Constraints

2.0 Constraints on Sequences of States and Non-Adjacent States

3.0 Constraints on Relationships between Time Sequences

4.0 Constraints between States in a Time Sequence

Category 1.0 constraints help to avoid confusion as to which properties and operations can be associated with an

object instance at any point in time.

EX: Every objecthas a non-nullsystem assignedtimestamp of typerecordtimewhich indicateswhen the

informationwas recordedinthe database.

EX: Every component of a type which is a subtype ofV-Class has an associatedtime-intervalof type

VALID TIME which the systemwillprompt theuserforwhen thetype informationisupdated or recorded.

These constraintsimply thatvariableswhich are time invariantmay not requirea valid-timestampbut they do

requirea record-timestampsincethey aresubjectto corrections.The record-timestampcan be usedto eliminate

correctionsthatdid not existwhen viewingthe stateof the data base at some pointin time priorto when the

correctionwas made. Inherentconstraintson lifespanswould alsofallunder category1.0.

Sinceobjecttypescan be versioned,allpastand planneddefinitionsforan objecttype can be stored.In

TOODM, thisisdone by timestampingthe propertiesof the type definitionwith validand recordtimes. The

valid timestamp may be a specific time interval or one of the temporal modifiers below. Each method can also

be labeled with a temporal modifier which indicates the time period over which it is assumed to be valid. The

first eight of the following modifiers were specified in a first order logic model presented in [Kung 84]. These

modifiers can be used in specifying allowable sequences in category 2.0 constraints.

TMI: always in the past, lp-now]

11



TM2: always in the past & present, [p+now]

TM3: sometime in the past, [sp-now]

TM4: sometime in the past or present, [sp+now]

TMS: always in the future, [f-now]

TM6: always in the future & present, If+now]

TMT: sometime in the future, Isr-now]

TM8: sometime in the future or present, [sf+now]

TMg: in window -- [now - k, now]: where k is some number of time units

T1VI10:in window -- [now, now + k]

TMII: in window ---_Irl,t1 + k] where tl is some reference point other than now

TM12: always in the past, present & future, [pf+now]

TM13: sometime in the past, present or future, [spr+now]

An explicit example of a category 2.0 constraint is "An employee can't be rehired." This constraint refers to

non-adjacent states and means attaching T]VI's to the add_employee message's definition in type Employee.

This constrains the value of Employee to be someone who was not an employee sometime in the past including

the present as shown below:

Assert constraintjd:

ON: add_employee(Employee)

Condition: Employee.old not in Employee [sp+now]

An example of a category 3.0 temporal constraint between TS's is: "A salesperson's commission rate his-

tory must start I year after their base pay history." This might be expressed as follows:

Assert constraintjd:

ON: Employee.salary-h, Salesperson.c_rate-h

Condition: lifespan.start(salary-h.history) 1 year before lifespan.start(c_rate-h.history)

An example of a category 4.0 temporal constraint between instances of a TS is: "John's salary history is

contained in the history of his work relationship with the company." This might be expressed as follows:

Assert constraintjd:
m

ON: Employee Instance John

Condition: lifespan(John.salary-h.history) always during lifespan(John.worksIn)

where salary-h and worksIn are instance variables of instance John of type Employee and lifespan is a predicate

defined in the TS[TJ type which refers to the union of the valid time intervals for the instance variable under

12



consideration.

4.4. Operators

Support for schema evolution, a primitive time type and time variant attributes of objects requires the

development of new operators and changes the semantics of some existing operators such as deletion. Since a

query can include any collection of user-defined operations (messages) from user-defined types, it may be more

. difficult to find equivalence preserving transforms in an OODM. The addition of each new class or type intro-

duces new operators which leads to a new algebra whose operators are not known to the optimizer due to the

encapsulation property of OODM's.

Messages (operators) can perform update, correction or retrieval operations on the values of the instance

variables of objects. Update messages perform the insertion of new values as well as deletion and change opera-

tions to existing values, object classes and their instances. The semantics of the delete and change operations

differ from those of a static data model. A deletion implies the end of an object's lifespan without the removal of

the information from the database and that the object can't be referenced by any other objects from the time of

deletion forward until the time if any that the object re-enters the system. 1 A change to existing values or type

definitions implies ending its valid time interval at the time of the change say t-1 time units and starting the

valid time interval of the new value or definition at time t. The endpoint of the new va]ue's valid time interval

could be a specific time point or now+ if it is assumed to hold in the fu_ure and present. These messages should

be defined in the type OBJECT of Figure 2. Messages can be refined and constrained to express the semantics

of the application in the subtype definitions. Since ali user-defined classes are instances of CLASS it defines

operations (messages + methods) to:

-add, drop and rename classes, messages and instance variables

-add or drop a superclass

-expand the domain of variables or change their parent or default

-change a message's origin or the method it attaches to

Methods need to be defined for each of the system-defined classes in the type-lattice of Figure 2. Each

level down in the lattice will add new methods specific to objects of its type. The system will automatically

create a class object which is a SET[Type] object when a new type is added to the lattice in order to facilitate

query processing.

I The historicalinformLtionof the "deleted" object can still be queriedsince the history of the object's past states priorto the deletion
still exists in the dLtabase.
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Temporal operators are messages and special predicates that reference the temporal ordering of time

sequences or the time values held by objects in those sequences. These operators are defined in the TS[T] class

and refined in its subclasses to accommodate user-defined temporal operators or different semantics for inherited

operators. Several possible temporal operators are illustrated in the following section in sample queries.

5. A Temporal Object-Orlented Query Language- TOSQL

Since messages are used to address one instance at a time of a particular type in which the message is

defined we need a means of getting information abol,'_ groups of objects that meet specified conditions. This can

be done using one of the higher-level navigational .languages associated with ER and object-oriented models or

by using a modified declarative high level language such as SQL. SQL is chosen here since it is endorsed by

most major developers of the relational model which is the current standard. Furthermore, SQL is the only rela-

tional language for which a standard has been developed and it is also being promoted as the interface language

of choice for databases.

SQL can be made object-oriented by allowing messages to appear in the W/-IERE and SELECT clauses

and by using direct references to objects as opposed to primary key values. Several Object-Oriented SQLs have

been proposed in the literature including OSQL used in IRIS where the SELECT clause contains nested func-

tions [Fishman, etal 87]. Our TOSQL differs from these SQLs in its inclusion of temporal operators and clauses

and the use of nested messages versus functions where the result of the innermost message is an input to the

next innermost message etc.

Temporal extensions to SQL inc!ude the addition of a WHEN clause, a TIME-SLICE clause and a

MOVING-WINDOW clause. Timestamps or intervals may also be associated with i_tance-variables in the

SELECT clause and with variables or messages in the WHERE clause. Temporal predicates such as DURING,

BEFORE, AFTER, etc. as defined in several previous works including [Navathe & Ahmed 86] [Snodgrass 87] can

also be used in comparing time intervals within a query. References to the inherent temporal ordering in a

time-sequence through predicates such as FIRST, LAST, T-LAST, T-NEXT, V-LAST and V-NEXT 2 as found in

[Segev & Shoshani 87] can also be used to answer queries which are not possible in static data models.

The general form of a TOSQL query follows where [] indicates optional clauses, { indicates "or" and { }

indicates that the group can repeat in a list. A detailed BNF Grammar of the syntax appears in the appendix.

These predicffitesmay appear in a GROUP TO clause as in GROUPTO V-LAST3, where each value in the originxlsequence is re-
placedby the sum of itself and the two numbers beforeit. In the case of V-NEXT each value is replaced by itself and the specifiedn-1
values which follow it in the original sequence. T-LAST/NEXT axe similar predicatesexcept we referto time points versus value points.
Value points have actual recordedvalues associatedwith them whereas time points are ali potential points (basedon the specifiedgranulari-
ty) that could have values.
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SELECT [tem-sec_msg-exp-list

[FOR EACH class-namevariable-name]

[WHERE clause]

[WHEN clause]

[GROUP-TO temporal-predON timeline]

[MOVING WINDOW clause]

, [TIME-SLICE clause]

The FOR EACH clauseissimilarto theFROM clausein standardSQL. Sincesome queriesmay referto a par-

ticularobjectand eachobjecthas a uniqueoldwe don'tneed to specifywhich class(relation)the objectisfrom

unlesswe want to iterateoverallmembers ofthe classinthe query.

The followingtwo queriesshow the use of the WHEN clauseand directaccessthroughthe object_id(old)

which isrepresentedby the Employees Name forsimplicity.

QI: What was Mary's salary on January 10,1990?

SELECT Get salary(Mary.salary-h.history;salary)

WHEN '01/10/1990'DURING historyt.vt

Q2: Who was Mary's manager afterRachelwas her manager and when was the cbange made?

SELECT Get_manager(Mary.mgr-h.history;mgr, et)

WHERE PREV history.mgr-- Rachel

WHEN history.vrFOLLOWS Rachel.vt

In Q2, the predicatePREV refersto the objectin the historysetofMary's manager historyobjectwhich con-

tainsthe valueofRachel inthe mgr attribute.SinceRachelmay have actedasMary's manager more than once

thisquerywould onlyfindthe firstoccurrence.

The followingqueriesmake use of the inherenttemporalorderingof a time-sequence.Sincewe allowfor

multipletimelineswe willneed to createindexesforeachinorderto effectdifferenttemporalorderingsforthese

queries.The defaultorderingisby recordtimesincewe have an append only datamodel.

Q3: Find the thirdchangeofmanager forMary and thedurationoverwhich he/shewas Mary'smanager.

SELECT 4th Get_manager(Mary.mgr-h.history;mgr,DURATION vr)

Q4: List the names and salaries of ali employees who started with a first salary of at least 30K.

SELECT Getname(e: name), Get_salary{e.sal-h.history; salary)

FOR EACH Employee e
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FIRST e.sal-h.history.salsry> 30K

The followingquery illustratesthe use oi'the TIME-SLICE clausewhich selectsonly thoseobjectswhich

werevalidduringthe giventimeperiodspecifiedinthe clause.

Qs: Listthe manager historyof allemployeeswho were employed sometime duringthe last4 years.

SELECT Get_manager(e.mgr-h.history;mgr, vr,et,rr)

FOR EACH Employee e

TIME-SLICE year e.mgr-h.history.vt:[now-4,now]

The next quer_,makes use of aggregationover time intervalsusingthe predicateDURATION to get the

lengthof eachtime intervalthatmeets the specifiedconditions.AggregateoperationsincludeMAX, MIN, SUM

and COUNT. These aggregationoperatorsmap a setofpointsthatfallintoa giventime intervalintoone point

inthe resultset.

Q6: How longdidMary work forRachel?

SELECT SUM(Get_manager(e.mgr-h.history;DURATION vt))

FOR EACH Employee e

WHERE e.mgr-h.history.mgr-- _Rachel'

The followingquery involvesaccumulationof time pointsto produce another set of time pointsas in

[Segev& Shoshani87]. The specialpredicateT-LAST 7 appearsinthe GROUP TO clauseand vt (validtime)

isthe timeli_eof interestas indicatedinthe ON partofthisclause.The granularityofvalidtime isspecifiedin

thetype definitionofTS[Salary]and willbe used todeterminethe timepoints.A new time sequenceof average

salaryvalueswhere eachvaluein thesequenceisin1 to 1 correspondencewitheach time pointinthe lifespanof

theoriginalsequenceisproduced in the result.The valuesofthe timepointsin the new sequenceareequalto

the averageofthe originalvalueand the6 actualorinterpolatedvaluesthatprecedeit.

Q7: Produce a 7-day moving averageofsales.

SELECT AVG(Get_qty(e.saleqty-h.history;qty))

FOR EACH Employee e

GRGUP TO T-LAST 7 ON e-saleqty-h.history.vt

A MOVING WINDOW clauseisused in the followingquerywhere only the lengthof a time intervalis

known. Moving windows allowus to obtainaggregateinformationabout the moving time intervalover the ,b

lifespanof the objectspecifiedin the query. The granularityof the timelinein the ON partof the MOVING

WINDOW clausespecifiesthe granularityof the timelineselected,the "5" indicatesthe lengthofthe window

and "years"the granularityofthe window. We beginwith the firstdatapointinthe sequenceof pricesordered

on validtime. The starttime pointofthe validtimeintervalof thefirstobjectinthe TS[Price]objectextension
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isused to calculatethe firstwindow which isthe time startplus5 years.Next the aggregateoperator,MAX is

appliedtothe group ofpricevaluesassociatedwith the datapointsins thatfallinthiswindow. The timestart

of the vt intervalof the nextobjectin the sequences isthen used to determinethe nextwindow and so forth

untilthe lastpointin thelifespanisreached.

Q8: Find the5 yearperiodwhere priceincreasedthe most.

SELECT MAX(Get..price(s.price; price))

FOR EACH TS[SalePrice] s

• MOVING WINDOW 5 yearsON s.price.vt

FigureI0- MultipleTimelinesand Corrections
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Update and correction messages can be defined in a similar manner such as in the following correction.

This results in the addition of a pointer to a correction time-sequence for each object in the time sequence. A

built-in constraint would be that the correction sequence's record time must be greater than the record time of

the base sequence.

C1: Correct the salary amounts of ali employees to be 10% more than previously recorded.

INSERT INTO TS[Sal-Corr]

VALUES (salary---l.lO*salary, vt--vt, rt--'time corrected', et--et)

" FOR EACH TS[Salary].history.LAST

where the 'time corrected' refers to the time when the correction is made and LAST refers to the last element of

each ohject's history sequence. Figure 10 illustrates making a correction to one value in the time sequence of a

particular employee's salary history. If we ask what the salary was as of time tl we would get 35K whereas if

we asked what the salary was as of t2 we would get 33K since the correction didn't exist at time point tl. Also
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note that 42K is a future salary value since its valid time exceeds the current time NOW.

ft. Implementation

Viable approaches for implementing this system include the following:

I) buildfrom scratchusingan OOPL

2) buildfrom scratchusingan extendedlanguagesuchas C++

3) build on top of an existing DBMS

A major disadvantage of the build from scratch approaches is the need to build ali the database capabili-

ties into the system. A disadvantage of using conventional languages and their extensions is the possibility that

knowledgeable programmers will use their programming skills to ignore the encapsulation built-in by the

system-designers. An advantage of using an existing DBMS is that it provides support for database capabilities

such as persistence, transactions, concurrency control, querying and recovery. We are using the third option,

building on top of the extended relational database management system, Postgres. This option waz advanta-

geous to us for the aforementioned reasons and the source code for the system is available. Postgres also

includes some object-oriented features such as support for oid's and temporal features such as using an append-

only storage format where updates are actually insertions. When a change is made to an object, the current end

point of the object's valid time is set to the change time and the new version of the object ic, inserted with a

valid start time of the change time plus one time unit.

Our database system will be split into two subsystems: an interpreter and a storage manager. The inter-

preter will provide the operational semantics of TOODM. lt will enforce encapsulation and execution of

methods and willcallthe Postgresstoragemanager to perform physicaldata accessand manipulation.The

Postgresstoragemanager willprovidesecondarystorageofobjectsand willbe responsibleformoving data back

and forthbetween main memory and secondarystorage.The storagemanager isalsoresponsibleforcreating

new objects,concurrencycontrol,recoveryand indexing.New indexesfor the management of temporal data

willneed to be added to the Postgresstoragesystem. Which indexesare necessarywilldepend on the access

patternsofthe applicationsusingthedatabase.

The Postgresstoragemanager can be outlinedas follows.Postgresstoresthe stateofobjectsas an anchor

tuplewith a pointerto the deltatuplewhich representsthe nextchange. This means the objectisstoredapart

from itscomponent objectswhich willmean betterperformanceforqueriesthat range over allve_slonsof an

objectand worse performancefor thosethat requireallsubcomponents of the object.The decisionof how to
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cluster objects on secondary storage pages is really dependent on access patterns for the applications using the

system since objects can only be stored in one way unless redundancy is introduced but this will have update

penalties. Trying _ cluster an object with ali the objects it references is also difficult since the object may be

referenced by many _ther objects. Postgres uses a standard two-phase locking policy for concurrency control and

can recover instantly from crashes since there is no recovery code to run. Instead, each record has sn additional

eight fields which consist of the old, the transaction identifier of the interaction that inserts the record (Xmin),

the commit time of Xmin (Train), the command identifier of the interaction inserting the record (Cmin), the

transaction identifier of the interaction deleting the record (Xma.x), the commit time of Xmax when the record

becomes invalid (Tmax), the command identifier of the interaction which deletes the record (Cmax) and the

pointer (PTR) to the changed data (delta). If the storage manager knew very little about the data model it

could support several front ends but it must know something about interobject references in order to support

index maintenance and constraint enforcement on objects.

The TOODM itself will be implemented in the interpreter subsystem as previously mentioned. The inter-

preter is essentially a frontend system for the storage manager that implements our model. Our interpreter will

contain a parser to generate a parse-tree from user supplied queries in TOSQL. The query-rewrite rule system of

the parser will he used to enforce constrain's on objects of the target class(s) of the query by adding the

constraint(s) to the query. The architecture _f Postgres is modularized to al!ow the addition of other parsers

which facilitates this aspect of the design. In addition an optimizer module will convert the parse-tree into an

execution plan. The execution module will be invoked by the optimizer and will initialize access methods and a

constraint_enforcement system to run the execution plan.

7. Conclusions and Future Work

Some of the basic features of our TOODM have been outlined. These features include support for model-

ing changing type definitions, addition/deletion of types and recording changes in the state of instances. Sup-

port for these features requires the definition of static, dynamic and temporal constraints both by the system and

user-defined types. We have focused on the temporal features in this paper leaving discussion of the other con-

straint categories for an_,ther paper. Addition of temporal and dynamic features results in an active data model

which provides better support to the changing problem-domain that characterizes most CAD, OIS and Business

applications. The inclusion of past, present and planned information and alternate ways of describing objects in

different time periods provides support for plmming and decision-suppor_ applications.

We have provided some of the capabilities needed to support objective six by adding valid time, record

time and user-defined time as possible interpretations to the time component of objects of type TS[TJ.
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Objectives one, two and five are partially satisfied by incorporating valid and record time-lines for instance vari-

able values that vary with time. Future values are represented by valid times greater than now, the present

with a valid time of now and the past by valid times prior to now. Objective three is partially satisfied in the

development of temporal constraints on the TS[TJ type. The incorporaticn of the meta-data into meta-class

objects also aids in satisfying our fourth objective of allowing different user view_ of the same object. A set of

meta-rules to check new constraints against existing constraints is also needed. Preliminary development of a

temporal, object-oriented extension to SQL has also been discussed.

Some of the constraints and operators which must be supplied by this model have been outlined. Future

work will include defining operators that allow for the merging of alternate versions into a final version, rules for

conflict resolution in the cases of multiple inheritance of properties and ways to evolve messages without necessi-

tating major rewrites to their methods.

We also need to explore the issue of defining relationships between objects that do not exist at the same

time such as the relationship between sal_ forecasts over different time periods or between an employee and the

disbursement of his/her death benefits. Efficiency issues involving the definition of indexes and storage methods

and designof a query optimizerwhich utilizessemantic query optimizationbased on constraintsforan imple-

mented versionofthe model alsoremainopen forfutureexploration.
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Appendix

We include only the temporal and object-oriented extensions to S_._L in this BNF based on the one found in

[Navathe & Ahmed 86]. Standard SQL is assumed for other operations excluded from this grammar such as the
GROUP BY clause. Expressions for CREATE, INSERT, DELETE, etc are not yet included.

query :--query-exp [ORDER BY order-by-list]
query-exp :_--query-block

I query-exp query-block
[ query-exp

query-block :-- select-clause
[FOR EACH class-name variable-name]
[WHERE clause]
[WHEN clause]
[GROUP TO t-seq-pred ON t-line]
[MOVING WINDOW clause]
[TIME SLICE clause]

order-by-list :--- message [order-by-list, message
[nested-messages [ order-by-list, nested-messages

select-clanse :--- SELECT [tem-seq] msg-exp-list
msg-exp-list :-- msg-exp [ msg-exp-list, msg-exp

msg-exp :_---message [nested-messages [ t-agg-term
t-agg-term :-----agg-fn(msg-exp)
agg-fn :_-'-COUNT [ MAX I M IN [AVG I SUM

WHERE clause :_---WHERE boolean1

boolean1 :-- bool-terml I bo_ieanl OR bool-terml
bool-terml := bool-term! AND bvol-facl I bool-facl
bool-facl :--- [NOT] bool-priml
bool-priml :-- predl [ boolean1
predl :-----expl comparison expl

I q-spec comparison q-spec
q-spec :---query-block I query-exp [ [tem-seq]

msg_result [constant
expl := arith-term I expl add-op arith-term
arith-term :-- arith-fac I arith-term mult-op arith-fac
arith-fac :_----[add-op] primary1
primaryl :-- agg-fn(expl ]DURATION )1 COUNT (*)

I constant I {expl } ] obj-des
obj-des :-- tem-seq msg_result [bf-sf tem-seq BREAK]

I [tem-seq] msg_.result
. tem-seq :-- PREV I NEXT I FIRST [SECOND [THIRD I Nth I LAST

comparison := comp-op [ IN I NOT IN I CONTAINS
I NOT CONTAINS

. comp-op :_--- > [ < ! >--I <"_ [-'-[!"-
add-op:--+ [-
mult-op :-----* [ /
constant :_- quoted-string [ number
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WHEN clause :_---WHEN boolean2

boolean2 :-- bool-term2 I boolean2 OR bool-term2
bool-term2 :-- bool-fac2 ] bool-term2 AND bool-fac2

bool-fac2 :-- [NOT] bool-prim2
bool-prim2 :-- pred2 [ boolean2
pred2 :-- exp2 t-comp-op exp2

exp2 :--- tem-seq ts-var [bf-af tem-seq BREAK]
[ [tem-seq] ts-var
I tem-constant

tem-constant :---- t-term [ _ [_t-term,t-term"I" [ path.vt
t-term :_---t-fac add-op number
t-fac :--- t-point J NOW [ TM J number granularity
tem-comp-op :-----BEFORE I AFTER [ DURING I OVERLAPS [MEETS

[EQUIVALENT [ADJACENT [FOLLOWS [PRECEDES

bf-d:-- BEFORE JAFTER

t-seq-pred :-----LAST I FIRST I T-LAST n IV-LAST n I T-NEXT n IV-NEXT n

t-point :_---date [ path.ft [ path.et I path.user-del-t-line
t-line :_-- path.vt [ path.rt [ path.et [ path.user-del-t-line

MOVING WINDOW clause :_---MOVING WINDOW length granularity ON t-line

TIME SLICE clause :_- TIME SLICE granularity t-message: t-interval

t-message :_- (message that returns a t-line)
granularity :_---years ]months I weeks I days I hours I minutes ]seconds
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