Cﬂ,\{)_ A 0316 -~

LBL-30678

¥ Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA

Information and Computing Repnivr..o
Sciences Division

To be presented at the 10th International Conference on the Entity
Relationship Approach, San Mateo, CA, October 23-25, 1991,
and to be published in the Proceedings

TOODM — A Temporal Object-Oriented Data
Model with Temporal Constraints

E. Rose and A. Segev

April 1991

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098

DISCLAIMER

This document was prepared as an account of work sponsored
by the United States Government. Neither the United States
Government nor any agency thereof, nor The Regents of the
University of California, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial products process, or
service by its trade name, trademark, manufacturer, or other-
wise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government
or any agency thereof, or The Regents of the University of Cali-
fornia. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States
Government or any agency thereof or The Regents of the
University of California and shall not be used for advertising or
product endorsement purposes.

Lawrence Berkeley Laboratory is an equal opportunity employer.

LBL--30678

DE92 00528]

TOODM - A Temporal Object-Oriented Data
Model with Temporal Constraints

Ellen Rose & Arie Segev
Information & Computing Sciences Division
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

April 1991

This work was supported by the Applied Mathematical Sciences Research Program of the
Office of Energy Research of the U.S. Department of Energy under Contract No. DE-AC03;,

76SF00098. RAE Y

Geoah %
Suwt PE

<b

TOODM - A Temporal Object-Oriented Data Model with
Temporal Constraints

Ellen Rose and Arie Segev

Walter A. Haas School of Business
The Unisversity of California and
Information and Computing Sciences Diviston
Lawrence Berkeley Laboratory
Berkeley, California 94720

ABSTRACT

A static Entity-Relationship (ER) or static Extended ER (EER) data model is not sufficient for represent-
ing the underlying time component of the data, more complex data types as found in planning, design and office
automation applications or the operations required for this complex data. The decreasing cost of mass storage
devices accompanied by an increased need for real-time systems and easier access to historical and planning data
has made the study of the temporal aspects of data models more interesting both theoretically and practically.
Furthermore, the ER-based data models can capture relationships between classes but they do not understand
the object-oriented paradigm since they treat application-specific relationships and paradigm-specific relation-
ships such as inheritance in the same manner. This shortcoming accompanied by a lack of support for the time
dimension results in the specification of temporal relationships and constraints at the application level and often
leads to inconsistencies in the data. In this paper, we extend the object-based ER mode] into a temporal,
object-criented model, incorporate temporal structures and constraints in the data model and propose a tem-
poral, object-oriented query language for the model.

This work was supported by the Applied Mathematical Sciences Research Program of the Office of Energy Research, U.S. Department
of Energy under Contract DE-AC03-76SF00098.

1. Introduction

Most of the work in data modeling has either ignored the need for representing the time dimension or
assumed that its relevance is self-evident. With databases becoming more complex in terms of the types of data
which need to be represented, the types of manipulation operations needed and the information that needs to be
extracted from the data, the requirements for richer data models have greatly increased. It is important that
these modeling efforts address business and scientific application needs and requirements including the need for

representing the time dimension.

A conceptual data model should serve as a common frame of reference for analysts, users and implemen-
tors throughout the database life cycle. It should provide a long-run, time-unrestricted view of those aspects of
the real world scenario which are relevant to the application problem of concern [Bubenko 77]. The conceptual
model should support and integrate structural, behavioral and temporal abstractions of object properties and

provide a language for accessing information from the model.

A conceptual data model which incorporates past, present and future temporal semantics can be used as a
building block to create a system which enables the user to schedule business events, formulate alternative plans,
or request information about past events and planned products. Planning is based on future states of the real
world and therefore can’t be supported by existing static models which exclude temporal semantics. In this
paper, we extend the object-based ER model into an object-oriented model and incorporate temporal structures
and constraints in the data model. Our data model, TOODM, provides abstractions to capture the evolution of

the schema and its instances and a means of expressing constraints on both of them.

The paper is organized as follows: related work is discussed in section 2, motivation and objectives are del-
ineated in section 3, section 4 presents a preliminary model, section 5 discusses a temporal, object-oriented ver-
sion of SQL (TOSQL), section 6 outlines implementation alternatives and section 7 concludes the paper with a

discussion of future work.

2. Related Work

Only one study, [Ariav 87], of business and management application requirements for temporal data was
found. This study suggests a need to support effective graphical representation, representation of states and
multiple temporal orderings and support for differing user needs. Temporal properties including the merits of
relative versus absolute time, the ability to identify an object as it evolves and the differences between events
and states are discussed in [Bolour & Dekeyser 83]. Other properties such as precedence/succession relationships,
intrinsic versus extrinsic time, granularity and lifespans [Segev & Shoshani 87] and types of time [Snodgrass &

Ahn 85] have also been covered.

The bulk of the literature proposes adding temporal semantics at the logical level by extending the record-
based relational model through tuple or attribute versioning. Research in this direction includes: [Clifford &
Warren 83], [Navathe & Ahmed 86|, [Abbod, etal. 87] and [Segev & Shoshani 88]. Generalized logical temporal
models have recently been proposed by [Ariav 86] and [Segev & Shoshani 87]. A comprehensive bibliography on
temporal databases and references to three previous bibliographies can be found in [Soo 91]. Several versions of

temporal SQL’s including [Fishman etal 87] can also be found in the literature.

Over the past decade, several researchers including [Klopprogge & Lockemann 83], [Ferg 85), and [Elmasri
& Wuu 90] have proposed incorporating time into the object-based ER model as an entity or attribute. [Olen
85] and [Dogac, etal. 85] discuss alternative ways of classifying constraints for the ER mod=] but make no men-
tion of handling constraints on historical data. [Navathe & Pillalamarri 89] propose structural objectification of
the ER model into their OOER model by adding the abstractions of generalization and classification. The
OOER model is operationally object-oriented in the sense that generic operations in the data model can deal
with complex objects. The OOER, however, is not behaviorally object-oriented in that it does not deal with the
concepts of abstract data types, encapsulation, operator overloading and message passing. The concepts of

schema and instance evolution are also not considered in the OOER model.

The literature search indicates that there is no single theory on how to treat time in a data model. Furth-
‘ermore, no uniform means for expressing and enforcing temporal constraints was found. Issues such as how to
provide for the database’s evolution in terms of constraints, evolution of metadata, how to manage and group a
large number of constraints, how to handle inconsistencies and how to handle exceptions to constraints remain

open.

3. Motivation and Objectives

The object based entity-relationship model is well-known for its simplicity and clean, graphical notation
[Mylopolous & Brodie 89]. As such, it has become the de facto standard for conceptual data base design in prac-
tice. Furthermore, the trend towards end-user development and the proliferation of data models brings the issue
of usability into focus. A recent study by [Batra, etal 80] compares the usability of the record-based relational
and object-based EER models. The study found that the EER model outperformed the relational model in all
cases except the representation of unary relationships. The EER model was found to lead to better performance,
but was not perceived by the users as being significantly easier to use than the relational model.

An increase in end-user development combined with the need for handling more complex objects and

rapidly changing environments suggests a need for a more generalized data model such as an OODM which

encapsulates both structural representation and behavioral abstractions. These trends lead to the main

motivation behind the design of a temporal object-oriented data model which provides a means of expressing
and enforcing constraints in the data definition process and a means for allowing the data model to evolve to
meet changes in organizational data and application needs. Furthermore, in current data models, changes in the
problem domain are not easily transcribed into changes in the database solution domain due to the use of multi-
ple paradigms in the development of the database. For example, in translating a graphical ER model represen-
tation into a tabular relational model, information is sometimes lost if it can’t be represented with the structures
provided in both paradigms. In the case of an OODM, the same paradigm is used in both the conceptual model-

ing and logical modeling phases thereby avoiding this problem.

As a first step in satisfying our objectives, a temporal object-oriented data model is developed to support

the following functionality:

1) specification and enforcement of temporal constraints in the data model
2) support for past, present and future time points
3) support of type and instance evolution through the time sequence type, TS|T)
4) support for different user views of the same object using metadata
5) support for retro/proactive updates and queries through the design of a tempora!, objected-oriented SQL data
manipulation language
6) support for multiple time lines and corrections
To satisfy these objectives, abstractions to represent the structural and temporal properties of the data will

be developed in the following section.

4. Model

In this section, a temporal object-oriented data model (TOODM) is developed. TOODM incorporates some
of the functionality of the TEER model of [Elmasri & Wuu 90} and the generalized model of time sequences
(TS’s) of [Segev & Shoshani 87]. The basic assumptions, structures, representation of constraints and temporal

operators of the model follow.

4.1. Assumptions

Since there is no single defining standard for an object-oriented data model (OODM), we specify the pro-
perties included in TOODM to be as follows:
1) multiple inheritance

2) encapsulation

3) object identity

Time in TOODM, is viewed as continuous and independent of events which are defined as durationless
happenings in the real world that cause an object in the model to change state. We adopt the taxonomy of time
terminology given in [Snodgrass & Ahn 85] for valid time (vt) and record time (rt). We also add event time (et)
to represent the time when an event occurs. The state of an object persists over some duration of time and is
represented by the values held by the instance variables of the object for this duration of time. The time inter-
val over which a state holds is referred to as the valid time. The record time refers to when an object was

recorded in the data model.

4.2, Structures

The concept of abstraction is used to stress the common properties and suppress unnecessary details. The
main abstraction processes found in existing data models are generalization/specialization, association, aggrega-
tion, classification and identification. Figure 1 compares the EER and Object-Oriented data models in terms of
the abstractions each can handle. For example, the association abstraction is represented as a relationship in the
EER model and as an instance variable of type Class in each of the participating classes in the object-oriented
model. The remainder of the notations are self-explanatory except for Ptype which is explained later on and can
be viewed as a set of primitive values such as Integers. The OO-Model extends the EER model in that it also
allows users to model behavior in terms of allowable operations on data associated with a particular type and

the specification of explicit constraints in the data definition process.

Figure 1 - A Comparison of Abstractions in the EER and OO-Models

Abstraction EER Model 00-Model

Classification Entity Type Object Class

Aggregation Aggregation Construct Object instance
in EER only; Entity tn ER

Association Relattonship Instance var: Class

Atomic Aggregate Attribute instance Var: Ptype

Generalizatton Generalization tn EER Super/Sub-Class Hierarchy
Only

Igentity Primary Key Values Object !dentity

Our basic object-oriented data model includes the following primary constructors: objects, classes, types,
methods, messages and collections. Every object has a type which is a template describing the structural and

behavioral aspects of it’s instances.

A basic OODM type-lattice of system-defined types is extended with new features in Figure 2. The type-
lattice is a directed, acyclic graph (DAG) in which the nodes are type definitions and the edges are is_a links
directed from the supertype towards its subtypes. OBJECT is the root node of the type-lattice. It is a lattice

since subtypes may have more than one supertype. We discuss the new features in the remainder of this section.

Two new classes: V-CLASS and NV-CLASS represeut versionable and non-versionable classes. A user-
defined type can be a subclass of either. If the components (set of instance variables, messagcs/methods and
constraints) of the type definition are allowed to change, the type should be defined as a subtype of V-CLASS as
in Figure 3. The motivation behind the differentiation of versionable and non-versionable classes is to provide a
mechanism for supporting both types of data since the non-versionable type components do not have a history
as do those of the versionable type. This may have implications for storage management of the two types of

data classes.

Figure 2 - New Types in the System Type-Lattice

= New Features

Figure 4 illustrates the definition of instance variables and messages for user-defined types. The type’s
instance variables are specified by (variable_pame:domain) pairs. T’ : domain can be a primitive type such as
integer, a class or a collection. Each message has a target object from a particular domain to which the message
is to be sent and an optional list of parameters. Parameters may represent inputs the user must supply to the
message or variables to hold a return value for the message. Messages have the following format:

Message_name(Target; p-list) where p-list is a list of parameters

Figure 3 - Sales Office Example of User-Defined Classes

Define SalesPerson as subciass of Employee

surr: OID
: TS {SaleQry)
c_rate-h: TS {c_rate)

Add_
Chg_C-Rate(largei:Salesperson; p-lst)

The parameters are given as parameter=value when they act as inputs to the message and as parameter when
they hold outputs or serve as a variable input parameter in a query. Messages are sent by the objects who own
them and must be recognizable by the recipient, target object. This visibility is determined by instance vari-
ables which represent relationships with other objects. The value of such an instance variable is referred to as a
shared value and is really a reference to another object. This reference provides a logical access path to the

related object.

These type definitions reference the TS|T] type which is explained later in this section. Messages can only
be used to refer to the states of object instances in their defining type. Temporal predicates can be attached to
messages to specify which version of the type definition is needed in a request so the user can ask for the infor-

mation as it existed in the database as of some point in time from any other point in time. This will be

illustrated in section 5 in the discussion of TOSQL.

Figure 5 - Example Instances of the SalesPerson Type

SalesPerson TSiSalary] where history := [<old,salary,vt, re.et>)

0ID | name | sslary=-h] manager-h salesqty=h 01D nistory corrections
Et| Mary | SHI MH! SQH1 sH1 | ((s1,20%, [1,4L1,1), (82,25K,[5,now<1.4,3)) ((s1,22k,(1,4),4,1))
E2| Jones| SH2 MH2 SQH2 sH2 | (($10,18K,[1,61,1,1), (811,20K,17,10),8,5)}

TS(SalesQty] where history := { <oid,qty,vt, rtet>)

01D history corrections

SOH

{(q1,100K,1,2,1), (02,50K,6,6,5), (Q3,70K,8,4,8)}

soHz | ((a11,90K,1,4,1), (q12,100K,2,4,2), (q13,30K,10,7,9))

Figure 5 shows some instances of the SalesPerson and two time sequence types. The values E1, SH1, MH],
ql, sl, etc. represent object id’s (0id’s) which serve as pointers to other objects defined in the system. All TS|T)
types have a history instance variable which is a time ordered sequence of tuple values where the meaning of

each position in the tuple is defined in the TS[T] type and its subtypes. Each member of the history set has an

OID so it can be referenced.

Figure 6 - Meta-Objects and the Meta-Type Definition

Q>
o cies
I CEDRCEDRCEY

Define m'gpn as subciass of Mete-Class
: Of
typ-name: TS [Suing)
superciasses: TS [Set [Meta-Types] |
vardist: TS [Set [Meta-Vars])
meg-iist: T5 [Set [Meta-Mags))
creator: T8{UseriD]
constralnis: TS| Set (BOOL)]

Some of the instance variables (ex. salary) are of type TS[T] so each instance contains a value and associ-
ated time intervals or time points which are explained later in this section. Meta-class definitions can’t be

changed so they are subtypes of NV_CLASS as in Figure 6. The meta-data are timestamped with a record-

timestamp (rt) and include the user-id or group-id of the users who created the definition. Treating meta-data
values as time sequences of values with user-group ids allows us to assign different names to the same object for

different groups at different times.

Figure 7 - Instances of Meta-Types and Meta-Vars
Meta-Type instances

(o]0} name(string.creator,rt .vt)
T {Employess, all, 1, {1, nows])
T2 (Salespersons, all, 2, [2,n0w+]){Salespeopie, jons+++8, 4, [4,now])

Meta- Variable instances

OID | Vvar_Name(string,creator,rt,vt) var_Type(Meta-Type,creator,rt,vt)
\d {name, &ii, 1, [1,now+]) (string, all,1, [1,now+])
v2 {ackiress, all, 1, [1,now+)) {string.all,1, [1,now+])
v (phone, &, 1, [1.nowe] (integer.all,1, [1,now]), (phone jones. 9, [9.now+])
va (saiaryh, &, 1, [1.nows]) (TS{Salary], all, 1, [1.nowa))

Figure 8 - TS[T] Type and the Time Primitive Type

Defire TS {T] a8 subciass of Sequence [T) @
surr: OID
history: {< ATL >} where A = list of attridutes
TL = list of imelincs Flypes
ond data-type (a in A) : {SWC, Event, CONT, User}
and gren (U in TL) : CalendarSet v
and imer-i(a In A): Functions

Figure 7 gives examples of instances of the Meta-Type and Meta-Vars definitions. Two names for the
SalesPerson type: SalesPerson and SalesPeople exist. Each name refers to the same object type and each was
created by a different user at a different time. The user-id called “all’’ is the default. If user “jones’ sends the
Add_Salesperson() message to the object Salesperson using either name, the correct object can be found using
the meta-data in the meta-types object which allows different users to view the same object in different ways.

Primitive types, PTypes, represent objects which do not have instance variables. Ptypes usually serve as a

simple domain for the instance variables of other objects. Tlke TIME ptype can be specialized into subtypes as
shown in Figure 8 where the time points can have different calendar granularities. Translation between calendar
granularities in operations involving multiple time lines wiil be provided automatically with the default being to

transiate to the greater granularity. TP represents time point and TI represents a time interval in Figure 8.

The COLLECTION type has three pre-defined subtypes: SET|T], TUPLE, and SEQUENCE[T]. A setisa
collection of unordered, homogeneous objects that doesn’t contain any duplicates. A tuple is a collection of
heterogeneous objects ordered by object name as found in the relational model. A sequence is an ordered collec-

tion of objects with a pre-defined subclass called time sequence (TS[T]) which is ordered on time.

Figure 9 - TS[Salary] Type Definition

M-'rstsum--mui'ém

history: {< ATL >} where A = salary:integer
TL = VT, TP, ot:TP
and data-type (salary) » SWC
and gran (vt) = day
and gran (1) = day
o gran (it) = day

anc inter-i{salery) = Fi

TS(T] is a parameterized type where the parameter T refers to the user-defined or system-defined type
upon which we are collecting a time sequence of information. The TS|T] subclass can be used to represent the
concept of a time sequence as defined in [Segev & Shoshani 87]. Figure 9, the TS[Salary] type definition, defines
the data-type of the salary attribute of the history and the granularity of the timelines. The predicates data-
type(x) and gran(x) are used to define constraints on the attributes and timelines in the history. These predi-

cates are inherited from the generic TS[T] type.

The evolution of an object is represented by time sequences of the values the object’s instance variables
have held. For example, in Figure 9 each salary value that an employee has hzld in the past, present or future
is associated with three t'melines: a record time (rt), a valid time (vt), and an event-time (et). This ability to

represent multiple timelines allows us to get information from the data model as it existed at some point in the

past or as it will exist in the future based on the information available at some particular time point in the
model. Missing data points can be interpolated using the data-type information and an interpolation function.
For example, a particular employee may have been given a raise on March 1, 1989 (et) which becomes effective
on April 1, 1989 (vt) or is even valid retroactively on January 1, 1989 (vt). This fact may not be recorded in the
database until March 5, 1989 (rt). Other timelines could be formed by providing other interpretations to time
values such as correction times. (Note: In the figures, ordinal numbers versus actual dates are used for simpli-
city.)

The following section discusses the constraints which control how the model evolves. A brief general dis-

cussion of the types of constraints to be included in the model precedes the discussion of temporal constraints.

4.3. Constraints

Constraints are logical restrictions on data and operations on that data. A constraint may be inherent in
the structure, explicitly specified or implied. Inherent constraints are application-independent constraints and
explicit constraints are application-dependent constraints specified by the user. In TOODM, application-
dependent constraints will be defined in the type descriptions of user-defined types and inherent constraints in
the system-defined types of Figure 2. Constraints are timestamped and restricted in scope since it would not be
valid to use a current set of constraints to control a correction on old data and user-defined rules may change
over time as the business changes. The property of encapsulation provides a natural means of restricting scope

and of separating user-defined and system-defined constraints.

The constraints in TOODM can be grouped into static, dynamic and temporal restrictions based on the
states that need to be considered when determining whether or not the constraints hold. In this paper, we focus
on the temporal constraints but we briefly distinguish between the three groupings as follows. A constraint is
static if it imposes restrictions on moving to the next state without concern for any other states. Therefore, in
the case of a temporal database, a static constraint refers to conditions that must be true on any snapshot of the
database. Dynamic constraints are specifications of allowable changes that move a database to the next state
taking both the previous and next states into consideration. These constraints have a set of pre-conditions that
indicate certain propositions which must hold true in order to initiate a state change and a set of post-conditions
which must hold true for the new state to be created. Dynamic constraints only refer to changes from the
current state to a new state and do not reference historical or future states. Temporal constraints including

time-related static constraints will be discussed in the following section.

10

4.3.1. Temporal Constraints

Temporal constraints can be thought of as rules for providing a tcmporal ordering and as rules for estab-
lishing precedence/succession relationships on sequences of constraint and object states or on non-adjacent
states. Specifying when constraints and objects are valid allows us to create a ‘‘time filter’” to prevent the user
from viewing inconsistent data. The time filter is needed because we allow the addition of inconsistent facts to
the model as long as the facts do not exist at the same time. For example, an employee may be a manager at
some point in time recorded in the database and he may not be one at some other point in time recorded in the

database. We classify temporal constraints as follows:

10 Time-Related Static Constraints
2.0 Constraints on Sequences of States and Non-Adjacent States
3.0 Constraints on Relationships between Time Sequences

4.0 Constraints between States in a Time Sequence

Category 1.0 constraints help to avoid confusion as to which properties and operations can be associated with an

object instance at any point in time.

EX: Every object has a non-null system assigned timestamp of type record time which indicates when the

information was recorded in the database.

EX: Every component of a type which is a subtype of V-Class has an associated time-interval of type

VALID TIME which the system will prompt the user for when the type information is updated or recorded.

These constraints imply that variables which are time invariant may not require a valid-timestamp but they do
require a record-timestamp since they are subject to corrections. The record-timestamp can be used to eliminate
corrections that did not exist when viewing the state of the data base at some point in time prior to when the

correction was made. Inherent constraints on lifespans would also fall under category 1.0.

Since object types can be versioned, all past and planned definitions for an object type can be stored. In
TOODM, this is done by timestamping the properties of the type definition with valid and record times. The
valid timestamp may be a specific time interval or one of the temporal modifiers below. Each method can also
be labeled with a temporal modifier which indicates the time period over which it is assumed to be valid. The
first eight of the following modifiers were specified in a first order logic model presented in [Kung 84]. These
modifiers can be used in specifying allowable sequences in category 2.0 constraints.

TM1: always in the past, [p-now]

11

TM2: always in the past & present, [p+now]

TM3: sometime in the past, [sp-now]

TM4: sometime in the past or present, [sp+now]

TMS5: always in the future, [f-now]

TM6: always in the future & present, [f+now]

TM7: sometime in the future, [sf-now]

TMB8: sometime in the future or present, [sf+now]

TMS: in window = [now - k, now|]: where k is some number of time units
TM10: in window = [now, now + k]

TMI11: in window = [t1,t1 + k] where t1 is some reference point other than now
TMI12: always in the past, present & future, [pf+now]

TM13: sometime in the past, present or future, {spf+now]

An explicit example of a category 2.0 constraint is “An employee can’t be rehired.” This constraint refers to
non-adjacent states and means attaching TM’s to the add_employee message’s definition in type Employee.
This constrains the value of Employee to be someone who was not an employee sometime in the past including
the present as shown below:

Assert constraint_id:

ON: add_employee(Employee)

Condition: Employee.oid not in Employee [sp+now)

An example of a category 3.0 temporal constraint between TS’s is: “A salesperson’s commission rate his-
tory must start 1 year after their base pay history.” This might be expressed as follows:

Assert constraint_id:

ON: Employee.salary-h, Salesperson.c_rate-h

Condition: lifespan.start(salary-h.history) 1 year before lifespan.start(c_rate-h.history)

An example of a category 4.0 temporal constraint between instances of a TS is: “John’s salary history is
contained in the history of his work relationship with the company.” This might be expressed as follows:

Assert constraint_id:

ON: Employee Instance John

Condition: lifespan(John salary-h.history) always during lifespan(John.worksIn)

where salary-h and worksIn are instance variables of instance John of type Employee and lifespan is a predicate

defined in the TS[T] type which refers to the union of the valid time intervals for the instance variable under

12

consideration.

4.4. Operators

Support for schema evolution, a primitive time type and time variant attributes of objects requires the
development of new operators and changes the semantics of some existing operators such as deletion. Since a
query can include any collection of user-defined operations (messages) from user-defined types, it may be more
difficult to find equivalence preserving transforms in an OODM. The addition of each new class or type intro-
duces new operators which leads to a new algebra whose operators are not known to the optimizer due to the

encapsulation property of OODM’s.

Messages (operators) can perform update, correction or retrieval operations on the values of the instance
variables of objects. Update messages perform the insertion of new values as well as deletion and change opera-
tions to existing values, object classes and their instances. The semantics of the delete and change operations
differ from those of a static data model. A deletion implies the end of an object’s lifespan without the removal of
the information from the database and that the object can’t be referenced by any other objects from the time of
deletion forward until the time if any that the object re-enters the system.! A change to existing values or type
definitions implies ending its valid time interval at the time of the change say t-1 time units and starting the
valid time interval of the new value or definition at time t. The endpoint of the new value’s valid time interval
could be a specific time point or now+ if it is assumed to hold in the fuiure and present. These messages should
be defined in the type OBJECT of Figure 2. Messages can be refined and constrained to express the semantics
of the application in the subtype definitions. Since all user-defined classes are instances of CLASS it defines

operations (messages + methods) to:

-add, drop and rename classes, messages and instance variables
-add or drop a superclass
-expand the domain of variables or change their parent or default

~change a message’s origin or the method it attaches to

Methods need to be defined for each of the system-defined classes in the type-lattice of Figure 2. Each
level down in the lattice will add new methods specific to objects of its type. The system will automatically

create a class object which is a SET[Type] object when a new type is added to the lattice in order to facilitate

query processing.

1 The historical information of the ‘“‘deleted” object can still be queried since the history of the object’s past states prior to the deletion
still exists in the database.

13

Temporal operators are messages and special predicates that reference the temporal ordering of time
sequences or the time values held by objects in those sequences. These operators are defined in the TS[T] class
and refined in its subclasses to accommodate user-defined temporal operators or different semantics for inherited

operators. Several possible temporal operators are illustrated in the following section in sample queries.

5. A Temporal Object-Oriented Query Language - TOSQL

Since messages are used to address one instance at a time of a particular type in which the message is
defined we need a means of getting information abovt groups of objects that meet specified conditions. This can
be done using one of the higher-level navigational languages associated with ER and object-oriented models or
by using a modified declarative high level language such as SQL. SQL is chosen here since it is endorsed by
most major developers of the relational model which is the current standard. Furthermore, SQL is the only rela-
tional language for which a standard has been developed and it is also being promoted as the interface language

of choice for databases.

SQL can be made object-oriented by allowing messages to appear in the WHERE and SELECT clauses
and by using direct references to objects as opposed to primary key values. Several Object-Oriented SQLs have
been proposed in the literature including OSQL used in IRIS where the SELECT clause contains nested func-
tions [Fishman, etal 87]. Our TOSQL differs from these SQLs in its inclusion of temporal operators and clauses
and the use of nested messages versus functions where the result of the innermost message is an input to the

next innermost message etc.

Temporal extensions to SQL include the addition of a WHEN clause, a TIME-SLICE clause and a
MOVING-WINDOW clause. Timestamps or intervals may also be associated with instance-variables in the
SELECT clause and with variables or messages in the WHERE clause. Temporal predicates such as DURING,
BEFORE, AFTER, etc. as defined in several previous works including [Navathe & Ahmed 86] [Snodgrass 87] can
also be used in comparing time intervals within a query. References to the inherent temporal ordering in a
time-sequence through predicates such as FIRST, LAST, T-LAST, T-NEXT, V-LAST and V-NEXT? as found in

[Segev & Shoshani 87] can also be used to answer queries which are not possible in static data models.

The general form of a TOSQL query follows where [] indicates optional clauses, | indicates “‘or” and { }

indicates that the group can repeat in a list. A detailed BNF Grammar of the syntax appears in the appendix.

2 These predicates may appear in a GROUP TO clause as in GROUP TO V-LAST 3, where each value in the original sequence is re-
placed by the sum of itself and the two numbers before it. In the case of V-NEXT each value is replaced by itself and the specified n-1
values which follow it in the original sequence. T-LAST/NEXT are similar predicates except we refer to time points versus value points.
Value points have actual recorded values associated with them whereas time points are all potential points (based on the specified granulari-
ty) that could bave values.

14

SELECT [tem-seq] msg-exp-list

[FOR EACH class-name variable-name)]
[WHERE clause]

[WHEN clause]

[GROUP-TO temporal-pred ON timeline]
[MOVING WINDOW clause]
[TIME-SLICE clause]

The FOR EACH clause is similar to the FROM clause in standard SQL. Since some queries may refer to a par-
ticular object and each object has a unique oid we don’t need to specify which class (relation) the object is from

unless we want to iterate over all members of the class in the query.

The following two queries show the use of the WHEN clause and direct access through the object-id (oid)
which is represented by the Employees Name for simplicity.
Q1: What was Mary’s salary on January 10,1990?
SELECT Get_salary(Mary.salary-h.history; salary)
WHEN 01/10/1990’ DURING historyt.vt

Q2: Who was Mary’s manager after Rachel was her manager and when was the change made?
SELECT Get_manager(Mary.mgr-h.history; mgr, et)
WHERE PREYV history.mgr = Rachel
WHEN history.vt FOLLOWS Rachel.vt
In Q2, the predicate PREV refers to the object in the history set of Mary’s manager history object which con-
tains the value of Rachel in the mgr attribute. Since Rachel may have acted as Mary’s manager more than once

this query would only find the first occurrence.

The following queries make use of the inherent temporal ordering of a time-sequence. Since we allow for
multiple timelines we will need to create indexes for each in order to effect differént temporal orderings for these
queries. The default ordering is by record time since we have an append only data model.

Q3: Find the third change of manager for Mary and the duration over which he/she was Mary’s manager.

SELECT 4th Get_manager(Mary.mgr-h.history; mgr, DURATION vt)

Q4: List the names and salaries of all employees who started with a first salary of at least 30K.
SELECT Get_name(e: name), Get_salary(e.sal-h.history; salary)

FOR EACH Employee e

15

WHERE FIRST e.sal-h.history .salary > 30K

The following query illustrates the use of the TIME-SLICE clause which selects only those objects which
were valid during the given time period specified in the clause.
Q5: List the manager history of all employees who were employed sometime during the last 4 years.
SELECT Get_manager{e.mgr-h.history; mgr, vt, et, rt)
FOR EACH Employee e
TIME-SLICE year e.mgr-h.history.vt:[now - 4,now]

The next query makes use of aggregation over time intervals using the predicate DURATION to get the
length of each time interval that meets the specified conditions. Aggregate operations include MAX, MIN, SUM
and COUNT. These aggregation operators map a set of points that fall into a given time interval into one point
in the result set.

Q6: How long did Mary work for Rachel?

SELECT SUM(Get_manager(e.mgr-h.history; DURATION vt))
FOR EACH Employee e
WHERE e.mgr-h.history.mgr = 'Rachel’

The following query involves accumulation of time points to produce another set of time points as in
[Segev & Shoshani 87]. The special predicate T-LAST 7 appears in the GROUP TO clause and vt (valid time)
is the timeline of interest as indicated in the ON part of this clause. The granularity of valid time is specified in
the type definition of TS[Salary] and will be used to determine the time points. A new time sequence of average
salary values where each value in the sequence is in 1 to 1 correspondence with each time point in the lifespan of
the original sequence is produced in the result. The values of the time points in the new sequence are equal to
the average of the original value and the 6 actual or interpolated values that precede it.

Q7: Produce a 7-day moving average of sales.

SELECT AVG(Get_gty(e.saleqty-h.history; qty))
FOR EACH Employee e
GRGUP TO T-LAST 7 ON e.saleqty-h.history.vt

A MOVING WINDOW clause is used in the following query where only the length of a time interval is
known. Moving windows allow us to obtain aggregate information about the moving time interval over the
lifespan of the object specified in the query. The granularity of the timeline in the ON part of the MOVING
WINDOW clause specifies the granularity of the timeline selected, the “5’’ indicates the length of the window
and “years” the granularity of the window. We begin with the first data point in the sequence of prices ordered

on valid time. The start time point of the valid time interval of the first object in the TS[Price] object extension

16

is used to calculate the first window which is the time start plus 5 years. Next the aggregate operator, MAX is
applied to the group of price values associated with the data points in s that fall in this window. The time start
of the vt interval of the next object in the sequence s is then used to determine the next window and so forth
until the last point in the lifespan is reached.
Q8: Find the 5 year period where price increased the most.

SELECT MAX(Get_price(s.price; price))

FOR EACH TS|SalePrice] s

MOVING WINDOW 5 years ON s.price.vt

Figure 10 - Multiple Timelines and Corrections

vt-line: (31,30K12,50),(82,35K.[6,100),(33,40K11 1,161),(84,42K116,n0w+])
ri-line: ($1,30K,0,(2,35K,5),(33,40K, 13),(94,42K,14)
et-line; ($1,30K,1),(32,35K,3),(53,40K,9),(34,42K, 12)
ct-line: ($2,33K.8) .
Record
Time
33K Correction
Event
Time]
Sslary 30K Valid #
M\ -
Naw Time
cunum

Update and correction messages can be defined in a similar manner such as in the following correction.
This results in the addition of a pointer to a correction time-sequence for each object in the time sequence. A
built-in constraint would be that the correction sequence’s record time must be greater than the record time of
the base sequence.
C1: Correct the salary amounts of all employees to be 10% more than previously recorded.
INSERT INTO TS[Sal-Corr]
VALUES (salary=1.10*salary, vt=vt, rt="time corrected’, et=et)
FOR EACH TS|Salary].history. LAST
where the ’time corrected’ refers to the time when the correction is made and LAST refers to the last element of
each object’s history sequence. Figure 10 illustrates making a correction to one value in the time sequence of a
particular employee’s salary history. If we ask what the salary was as of time t1 we would get 35K whereas if

we asked what the salary was as of t2 we would get 33K since the correction didn’t exist at time point t1. Also

17

note that 42K is a future salary value since its valid time exceeds the current time NOW.

8. Implementation

Viable approaches for implementing this system include the following:

1) build from scratch using an OOPL
2) build from scratch using an extended language such as C++
3) build on top of an existing DBMS

A major disadvantage of the build from scratch approaches is the need to build all the database capabili-
ties into the system. A disadvantage of using conventional languages and their extensions is the possibility that
knowledgeable programmers will use their programming skills to ignore the encapsulation built-in by the
system-designers. An advantage of using an existing DBMS is that it provides support for database capabilities
such as persistence, transactions, concurrency control, querying and recovery. We are using the third option,
building on top of the extended relational database management system, Postgres. This option was advanta-
geous to us for the aforementioned reasons and the source code for the system is available. Postgres also
includes some object-oriented features such as support for oid’s and temporal features such as using an append-
only storage format where updates are actually insertions. When a change is made to an object, the current end
point of the object’s valid time is set to the change time and the new version of the object is inserted with a

valid start time of the change time plus one time unit.

Our database system will be split into two subsystems: an interpreter and a storage manager. The inter-
preter will provide the operational semantics of TOODM. It will enforce encapsulation and execution of
methods and will call the Postgres storage manager to perform physical data access and manipulation. The
Postgres storage manager will provide secondary storage of objects and will be responsible for moving data back
and forth between main memory and secondary storage. The storage manager is also responsible for creating
new objects, concurrency control, recovery and indexing. New indexes for the management of temporal data
will need to be added to the Postgres storage system. Which indexes are necessary will depend on the access
patterns of the applications using the database.

The Postgres storage manager can be outlined as follows. Postgres stores the state of objects as an anchor
tuple with a pointer to the delta tuple which represents the next change. This means the object is stored apart
from its component objects which will mean better performance for queries that range over all versions of an

object and worse performance for those that require all subcomponents of the object. The decision of how to

18

cluster objects on secondary storage pages is really dependent on access patterns for the applications using the
system since objects can only be stored in one way unless redundancy is introduced but this will have update
penalties. Trying ‘o cluster an object with all the objects it references is also difficult since the object may be
referenced by many . ther objects. Postgres uses a standard two-phase locking policy for concurrency control and
can recover instantly from crashes since there is no recovery code to run. Instead, each record has an additional
eight fields which consist of the oid, the transaction identifier of the interaction that inserts the record (Xmin),
the commit time of Xmin (Tmin), the command identifier of the interaction inserting the record (Cmin), the
transaction identifier of the interaction deleting the record (Xmax), the commit time of Xmax when the record
becomes invalid (Tmax), the command identifier of the interaction which deletes the record (Cmax) and the
pointer (PTR) to the changed data (delta). If the storage manager knew very little about the data model it
could support several front ends but it must know something about interobject references in order to support

index maintenance and constraint enforcement on objects.

The TOODM itself will be implemented in the interpreter subsystem as previously mentioned. The inter-
preter is essentially a frontend system for the storage manager that implements our model. Our interpreter will
contain a parser to generate a parse-tree from user supplied queries in TOSQL. The query-rewrite rule system of
the parser will be used to enforce constrain“s on objects of the target class(s) of the query by adding the
constraint(s) to the query. The architecture of Postgres is modularized to allow the addition of other parsers
which facilitates this aspect of the design. In addition an optimizer module will convert the parse-tree into an
execution plan. The execution module will be invoked by the optimizer and will initialize access methods and a

constraint-enforcement system to run the execution plan.

7. Conclusions and Future Work

Some of the basic features of our TOODM have been outlined. These features include support for model-
ing changing type definitions, addition/deletion of types and recording changes in the state of instances. Sup-
port for these features requires the definition of static, dynamic and temporal constraints both by the system and
user-defined types. We have focused on the temporal features in this paper leaving discussion of the other con-
straint categories for another paper. Addition of temporal and dynamic features results in an active data model
which provides better support to the changing problem-domain that characterizes most CAD, OIS and Business
applications. Tke inclusion of past, preseat and planned informa.ion and alternate ways of describing objects in

different time periods provides support for planning and decision-support applications.

We have provided some of the capabilities needed to support objective six by adding valid time, record

time and user-defined time as possible interpretations to the time component of objects of type TS|T).

19

Objectives one, two and five are partially satisfied by incorporating valid and record time-lines for instance vari-
able values that vary with time. Future values are represented by valid times greater than now, the present
with a valid time of now and the past by valid times prior to now. Objective three is partially satisfied in the
development of temporal constraints on the TS[T] type. The incorporatica of the meta-data into meta-class
objects also aids in satisfying our fourth objective of allowing different user views of the same object. A set of
meta-rules to check new constraints against existing constraints is also needed. Preliminary development of a

temporal, object-oriented extension to SQL has also been discussed.

Some of the constraints and operators which must be supplied by this model have been outlined. Future
work will include defining operators that allow for the merging of alternate versions into a final version, rules for
conflict resolution in the cases of multiple inheritance of properties and ways to evolve messages without necessi-

tating major rewrites to their methods.

We also need to explore the issue of defining relationships between objects that do not exist at the same
time such as the relationship between sales forecasts over different time periods or between an employee and the
disbursement of his/her death benefits. Efficiency issues involving the definition of indexes and storage methods
and design of a query optimizer which utilizes semantic query optimization based on constraints for an imple-

mented version of the model also remain open for future exploration.

20

Appendix

We include only the temporal and object-oriented extensions to SC,L in this BNF based on the one found in
[Navathe & Ahmed 86]. Standard SQL is assumed for other operations excluded from this grammar such as the
GROUP BY clause. Expressions for CREATE, INSERT, DELETE, etc are not yet included.

query := query-exp [ORDER BY order-by-list]
query-exp := query-block
| query-exp query-block
| query-exp
query-block :== select-clause
|[FOR EACH class-name variable-name)
[WHERE clause]
[WHEN clause]
[GROUP TO t-seq-pred ON t-line]
[MOVING WINDOW clause|
[TIME SLICE clause]
order-by-list := message | order-by-list, message
| nested-messages | order-by-list, nested-messages

select-clause := SELECT [tem-seq] msg-exp-list
msg-exp-list := msg-exp | msg-exp-list, msg-exp
msg-exp := message | nested-messages | t-agg-term
t-agg-term := agg-fn(msg-exp)

agg-fn := COUNT | MAX | MIN | AVG | SUM

WHERE clause := WHERE booleanl

booleanl := bool-terml | bouieanl OR bool-term1

bool-term1 := bool-term! AND bool-facl | bool-facl

bool-facl := [NOT] bool-prim1

bool-priml := predl | booleanl

predl := expl comparison expl

| @-spec comparison g-spec
g-spec := query-block | query-exp | [tem-seq]
msg_result | constant

expl := arith-term | expl add-op arith-term

arith-term := arith-fac | arith-term mult-op arith-fac

arith-fac := [add-op) primaryl

primaryl := agg-fn(expl | DURATION) | COUNT (*)
| constant | {expl} | obj-des

obj-des := tem-seq msg_result [bf-af tem-seq BREAK]
| [tem-seq] msg_result

tem-seq := PREV | NEXT | FIRST | SECOND | THIRD | Nth | LAST

comparison := comp-op | IN | NOT IN | CONTAINS
| NOT CONTAINS

comp-op == > | < | >=| <= |=|!=

add-op := + | -

mult-op :=* | /

constant := quoted-string | number

21

WHEN clause := WHEN boolean2
boolean? := bool-term2 | boolean2 OR bool-term2
bool-term?2 := bool-fac2 | bool-term2 AND bool-fac2
bool-fac2 := [NOT] bool-prim2
bool-prim2 := pred2 | boolean2
pred2 := exp2 t-comp-op exp2
exp2 := tem-seq ts-var |bf-af tem-seq BREAK]
| [tem-seq] ts-var
| tem-constant
tem-constant := t-term | "["t-term,t-term”]” | path.vt
t-term := t-fac add-op number
t-fac := t-point | NOW | TM | number granularity
tem-comp-op := BEFORE | AFTER | DURING | OVERLAPS | MEETS
| EQUIVALENT | ADJACENT | FOLLOWS | PRECEDES

bf-af:= BEFORE | AFTER
t-seq-pred := LAST | FIRST | T-LAST n | V-LAST n | T-NEXT n | V-NEXT n

t-point := date | path.rt | path.et | path.user-def-t-line
t-line := path.vt | path.rt | path.et | path.user-def-t-line

MOVING WINDOW clause := MOVING WINDOW length granularity ON t-line
TIME SLICE clause := TIME SLICE granularity t-message: t-interval

t-message := {message that returns a t-line)
granularity := years | months | weeks | days | hours | minutes | seconds

22

Bibliography

[Abbod, etal. 87] Abbod, T., Brown, K. and Noble, H., Providing Time-Related Constraints for Conventional
Database Systems, Proceedings of the 18th International Conference on VLDB, Brighton, 1987, pp.167-175.

[Ariav 86] Ariav, G., A Temporally Oriented Data Model, ACM Transactions on Database Systems, V. 11, N. 4,
December 1986, pp. 499-527.

[Ariav 87] Ariav, G., Design Requirements for Temporally Oriented Information Systems, TAIS Conference,
May 1987, pp. 3-16.

[Banerjee etal 87| Banerjee,J., Chou, H., Garza,G., Kim, W., Woelk,D. and Ballou, N., Data Mode! Issues for
Object-Oriented Applications, ACM Transactions on Office Information Systems, V. 5, N. 1, 1987.

[Bolour & Dekeyser 83] Bolour, A. and Dekeyser, L.J., Abstractions in Temporal Information, Information Sys-
tems, V. 8 N. 1, 1983, pp. 41-49.

[Clifiord & Warren 83] Clifford, J. and Warren, D.S., Formal Semantics for Time in Databases, ACM Trenaac-
tions on Database Systems, V.8, N. 2, June 1983, pp. 214-254.

[Elmasri & Wuu 90| Elmasri, R. and Wuu, G.T.J., A Temporal Model and Query Language for ER Databases,
Proreedings of the International Conference on Data Engineering, May 1990, pp. 76-83.

[Ferg 85] Ferg, S., Modelling the Time Dimension in an Entity-Relationship Diagram, Proceedings of the 4th
International Conference on the ER Approach, In Entity-Relationship Anproach, Ed. Chen, P.P.S., Elsevier
Science Publishers B.V. North-Holland, 1985, pp. 280-286.)

[Fishman etal 87] Fishman, D.H., etal., IRIS: An Object-Oriented Database Management System, ACM Transac-
tions on Office Information Systems, V. 5, N. 1, 1987.

[Kappel & Schrefl 88] Kappel, G. and Schrefl, M., A Behavior Integrated Entity-Relationship Approach for the
Design of Object-Oriented Databases, Proceedings of the 7th International Conference on the ER Approach,
In Entitu-Relationship Approach, Ed. Batini, C., Elsevier Science Publishers B.V. North-Holland, 1989, pp.
311-328.)

[Klopproge & Lockemann 83] Klopprogge, M.R., Lockemann, P.C., Modelling Information Preserving Databases:
Consequences of the Concept of Time, Proceedings of the 9th International Conference on VLDB, Florence,
Italy, 1983, pp.399-416.

[Kung 84] Kung, C.H., A Temporal Framework for Database Specification and Verification, Proceedings of the
10th International Conference on VLDB, Singapore, pp. 91-99, 1984,

[Manola & Dayal &) Manola, F. and Dayal, U., PDM: An Object-Oriented Data Model, International Workshop
on Objeet-Oriented Database Systems, Pacific Grove, CA, September, 1986.

Mylopolous & Brodie 83] Mylopolous, J. and Brodie, M., Introduction in: Readings in Artificial Intelligence and
Databases Morgan Kaufman Publishers, Inc., 1989.

[Navathe & Ahmed 86] Navathe, S.B. and Ahmed, R., A Temporal Relational Model and Query Language,
Information Sciences, 49 1989, pp. 147-175.

[Navathe & Pillalamarri 89] Navathe, S.B., and Pillalamarri, M.K., OOER: Toward Making the E-R Approach
Object-Oriented, Proceedings of the 7th International Conference on the ER Approach, In Entity-
Relationship Approach, Ed. Batini, C., Elsevier Science Publishers B.V. North-Holland, 1989, pp. 185-206.)

[Olen 85] Olen, O., Integrity Constraints in the Conceptual Schema SYSDOC, Proceedings of the 4th Interna-
tional Conference on the Entity-Relationship Approach, Chicago, Il, Oct 28-30, 1985, pp.288-294.

[Segev & Shoshani 87] Segev, A. and Shoshani, A., Logical Modelling of Temporal Databases, Proceedings of
ACM SIGMOD International Conference on the Management of Data, May 1987, 454-466.

[Segev & Shoshani 88| Segev, A. and Shoshani, A., The Representation of a Temporal Data Model in The Rela-
tional Environment, An Invited Paper to the 4th International Conference on Statistical and Scientific
Database Management, LBL-25461, August 1988.

[Soo 91] Soo, M.D., Bibliography on Temporal Databases, SIGMOD Record, V. 20, N. 1, March 1991, pp. 14-23.

23

[Snodgrass & Ahn 85] Snodgrass, R. and Ahn, I, A Taxonomy of Time in Databases, Proceedings of ACM SIG-
MOD International Conference on the Management of Data, May 1985, pp. 236-246.

[Snodgrass 87] Snodgrass, R., The Temporal Query Language TQUEL, ACM Transactions on Database Systems,
June 1987, pp. 247-298.

[Stonebraker & Rowe 87] Stonebraker, M. and Rowe, L., The POSTGRES Data Model, Procecdings of the 13th
VLDB Conference, Brighton, pp. 83-94, 1987.

24

DATE
- FILMED

2]19] 9%

}

