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The eigenmode equation describing ballooning

drift waves in toroidal plasmas is analyzed using
the WKB method. Two branches of eigenmodes are
identified. One is slab-like and the other is

a new branch induced by the finite toroidicity.
The slab-like eigenmodes correspond to unbounded
states and experience finite shear damping. The
toroidicity-induced eigenmedes, however, corre-
spond to local quasibounded states with negligible
shear damping. Both kranches of eigenmodes may
exist simultanecusly. Corresponding analytical

theories are also presented.

e Nty




CNTRODUCTION

Recently, there has been an active interest in the stability
vivorerties of drift-wave eigenmodes in sheared magnetic fields.
A crucial point to realize in the stability analysis is, in the
presence of finite magnetic shears, drift-wave eigenmodes in slab
geometries experience anti-well potential structures and, therefore,
finite damping due to energy convecting away from the mode-rationai
surface. The existence of this shear-induced convective damping
or, simply, shear damping was fifst pointed out by Pearlstein and
Berk.l Indeed, it is now well established that the shear damping

2-5 and the collisionai®

is so effective that both the collisionless
"universal" drift-wave eigenmodes are stabilized in slab geometries.
On the otherhand, as first emphasized by Taylor,7 the shear damping
mechanism may be modified significantly in toroidal plasmas, such
as tokamaks. The physical arguments are as follows. In toroidal
geometries, the mode-rational surfaces corresponding to different
poloidal mode numbers are closely packed. Due to toroidal effects,
such as curvature drifts, the neighboring poloidal modes are coupled.
The drift-wave eigenmode centered about one particular mode-rational
surface will be, therefore, affected by the wave energies which
convect away from the neighboring eigenmodes. In other words,
toroidal-coupling effects can modify the anti-well potential struc-
ture and, thereby, the shear damping mechanism.

In this work, we have employed the ballooning-mode fc>rrnalism7'8_]'0
and analyzed the effects of toroidal couplings on the shear damping
of drift-wave eigenmodes. The toroidal-coupling effects considered

here are those due to the usual ion ?B and curvature drifts.ll‘l3



The theoretical model and the corresponding drift-ballooning
eigenmode eguation are given in Sec. II. In Sec. III, we discuss
the relevant boundary conditions. Applying these boundary condi-
tions, the eigenmode eqguaticn is analyzed using the WKB methcd.lq’15
The results of WKB aralyses are presented in Sec. IV. Based on the
WKB results, we have developed corresponding analytical theories,
which are described in 3ec. V. Final conclusions and discussions
are given in Sec. VI.

The WKB method employed here, when comparing with the usual
numerical shooting schemes, has several advantages. (a) There is
no difficulty in dealing with eigensolutions which are asymptotically
divergent (see Sec. III). (b) Using the Stckes diagram,
one can readily identify the various branches of eigenmodes
and follow their evolutions as the parameters are changed. (c) With
the Stokes diagram, thie subdominant regions in the complex plane can
be located. WNumerical solutionscan then be dane in the complex plane
to compare with the WKB results. In this respect, this work not
only clarifies the results obtained elsewhere,lz'l3 but also contains

new findings as well as analytical theories.

II. THEORETICAL MODEL AND EIGENMODE EQUATION

Let us consider electrostatic drift waves in an axisymmetric,
large-aspect-ratio torus with concentric, circular magnetic surface.ll
We adopt the usual (r,8,f{) coordinates corresponding, respectively,
to the (minor) radial, poloidal and toroidal directions. The per-

turbed potential. can be express.d as



¢(r, 8, £) = ¢5(8) exp [i(m® + 38 - nE - wt)}, (1)
3
where 1j! <« imol, s = (r - ro)/ArS, r, is the reference mode-
1ti 1 f = - - =
rational surface mg nq(ro), ArS l/kSS, ke mo/r0 and
s = rq'/gat r = T, Following standard procedures,ll the two-
dimensional eigenmode equation can be straight forwardly derived

and is given by

(Lis, 3) + Qyls, 3) = ¢ T/Q0,(s) = O, (2)
where

L= by (s?a®/as® - 1), (3)

Q = 1/2 - 1+ [(s = ))/ngo1?, (a)
and wa(s) = ¢y, ((s) + 4y y(s) 45 ey L (s) -6 | (9],

22 " _ 1/2 -
Here, by = keps, Py = cs/mci, e, = (Te/Mi) P o= wuyg
= ani/2 - -1 _ .
ns = qba /En, En = rn/R, rrl = |dlnN/dr] and the remaider

notations are standard. 1In deriving Egs. (2)-(5), we have assumed
T o= Te/Ti >> 1  and made the small ion-Larmor-radius as well as fluid-
ion approximations. Furthermore, we have only kept the adiabatic
electron response and ignored any electron destabilizing,
temperature-gradient, or trapped-particle effects. We note that

T, as defined in Eq. (5), is the toroidal-coupling operator due



to ion VB and curvature drifts. We remark that we have suppressed
the destabilizing effects here in order to concentrate on the
shear damping mechanism in toroidal plasmas. However, it needs
to be emphasized that, (as stability analyses in slab geometries
have clearlyindicated,) modifications in the shear damping
mechanism will have direct implications to the stability
properties.

Since, typically, \mo\ ~ Int ~ 1rn/psl ~ O(lO2 - 103), we
may adopt the large~n ballooning-mode formali.':“.m.a—10 In the
zeroth order, we have, with z = s - j, gj(s) = ¢(z) and

¢j L 1(8) = 0z ¥ 1); i.e., the eigenmodes are composed of

identical structures centered at each mode-rational surfaces.

Equation (2) then reduces to a one-dimensional differential-

difference equation; i.e.,
[Ll + Ql(z) - chl/Q]¢(z) = 0, (6)

; where Ly = by(s?a®/az? - 1), 0(2) = 1/0-1 + 22/0%2,

anad

| _ qu>=¢(z+1)+¢(z-1)+;§§[¢(z-1)—a>(z+~ 1)1.

(7

|
i
!
;
i
}
i
i

Fouriar transforming Eg. (6), we then obtain

2 2 N
[a?/an? + nZe%0(2,m1 6 = 05 -« < o<, (&)




where
QG n) = b (1 + a2nd) + 1 - 1709 + (2e /9) E
(cos n + ;n sinn), (9)

and n can be regarded as the coordinate along the field lines.s_lo

Fquation (8) 1s the drift-ballooning eigenmode eguation to be
analyzed here. We note that Eg. (8) corresponds to perturbations
centerad at the outside of the torus and similar eguations also

have been derived by other ahthors}2'13'16 Equation (9) shows that f

toroidal~coupling effects intrduce modulations on the otherwise
anti-well potential structures. As mentionedearlier, we shall solve
Eg. (8) using the WKB method. Before proceeding with the WKB
analysis, however, we need to discuss the relevant boundary

conditions.

IIT. BOUNDARY CONDITIONS

. ~ n
As Inl + =, Q-*beszn2 and, for ¢ = exp [f i I kndn].
we have
1/2° (10
kn -+ Qnsbe sn, {10)

or

' ~ 2
v > exp [+ iﬂnsbé/zsn“/2). (11)
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For unstable eigenmodes {Im > 0), that ¢ must be spatially
decaying requires us to take the plus sign; i.e.,

; > exp (iQnsbé/zsnz/Z). (12)

Noting that

33?/3}(, Y (“Sbé-/zsn)"‘l’ (13)

the boundary condition, as given by Eg. (12), then corresponds

to outward wave energy propagaticn. On the other hand, there is
a difficulty in applying the outgoing-wave boundary condition,
Eq. (12), to the marginally stable and damped eigenmodes

{(Im 2 < 0): which will not asymptotically decay. This difficulty,
however, can be readily resolved by noting that, in the
original configuration (z} ceordinate, the outgoing-wave
boundary condition is equivalent to the asymptotically decaying
condition if the linear ion Landau damping term is included.l

One would, therefore, expect similar properties in the Fourier

transformed n coordinate.l2

Retaining the ion Landau damping term, it is easy to show
that the potential structure, Q, is modified to be

~ 2
Q=0+ it V7 £, exp (-L,), (14)

where . is an operator,ii= ﬁ/Z}/%SQ/Iid/dnt, and we have assumed

1l
b,y > 1, in deriving Eg. (14). Since :Ei! > 1, we may treat
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the icn Landau damping term perturbatively. Thus, as Inl -+ w,

the WKB wave number becomes

h . _ _2 X
k, >k (14 it /T E, exp (-Ei)/2beszn2], (15)

where k” is given by Eg. {10) and
—_ l 2 ~
e, = /at/ NG/ ik 1 > (t/2bg) % /sini. (16)

Meanwhile, we have

~ n -~
p(n) > exp (+ 1 ( kndn). (17)

Since fj > 0, the requirement that the solutions decay
asymptotically, again, lezds us to take the plus sign, i.e.,
the outgoing-wave boundary condition; Eg. (12). Indeed, from

Eqs. (15) and (16}, we may view even in the n coordinate, that

the boundary condition, Eg. (12), describes the wave energy being

propagated outward and absorbed by the ion Landau damping at
Inl = t=», Thus, Eq. (12) dictates that for damped eigen-
modes (Im @ < 0) the solutions be asymptotically divergent,
With the appropriate boundary conditions determined, the eigen-~

value problem as posed by Eq. (8) is thus completely specified.

<t i |



IV. RESULTS OF WKB ANALYSES

We present results of eigenmode analyses using the WKB
(phase-integral} method. The WKB analyses are carried out with
the interactive WKB code developed by White.l5 Detailed
descriptions of this code are given in Ref. 15 and will not be
repeated here.

In the present work, we have found that therc exists
twe branches of eigenmodes. One is slab-like:; i.e., this
branch represents the continuation of the slab eigenmodes into
the toroidal gecmetries. The corresponding Stokes diagram and
potential structure along the real n axis, ~Qr(ﬂ, N, are
shown in Pig. 1. We note that the complete Stokes structures
are rather complicated and, therefore, only those anti-Stokes
lines which are relevant in determining the eigenvalue condition
are shown. 2s shown in Fig. 1l(b}, the poiential structure is
an anti-well; as in the slab Jlimit. The wave energy, therefore,
can freely ceonvect outward and the eigenmodes are damped. The
boundary condition, Eg. (12), thus dicates regions (i) and (i)®
to be dominant and, hence, regiouns {ii) and (ii)' to be

subdominant. The corresponding WKB eigenvalue condition is then

P
ﬂnsj Ql/2d11 = (nh + 1/2)r, n=20, 1, ... (18)
-P

The other branch of eigenmodes is induced by the finite
torcidicity; i.e., it has no counterpart in the slab limit and,

in this sense, is a new branch of eigenmodes. The details of
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the eigenmodes, however, depend on the shear strength ; and

the toroidicity €n- Three cases have been identified: (a)

é -+ 1/2 and small € (b) ; > 1/2 and large €ne and (c) ; < 1/2.
The corresponding Stokes diagrams and potercial structures are
given in Figs. 2, 3, and 4, respectively. According to the
Stokes diagrams, we classify (a) as the weak toroidicity-induced
eigenmodes; and (b) as well as (c) as strong toroidicity-induced
eigenmodes. From Figs. 2-4 i1t is clear that these torcidicity-
induced eigenmcdes are characterized by eigenstates bounded by
local potential wells, which may be localized either about or
away from n = 0. Contrary to the slab-like branch with anti-
well potentials, the outward convection of the wave energy
occurs here opliy thiTtough the tanneling leakages. Therefore, we
mav expect the shenr damping rates to be significantly reduced.
In this respect, w2 may regard these esigenmodes to be quasi-
bounded states which are quasi-maryinally stable. Refering

to Figs. 2 and 3 the WKB eigenvalue conditions for the weak

and stroag toroidicity-~induced eigenmodes are, respectively,

T
ang| 2 @Y%an =+ 120w+ by, (19)
T,
and
Ty a2
Qns[ Q dn = (n + 1/2)71 + 52; for n =0, 1, ...
-T

1 (20)
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eakages and can be

where 61 and 62 correspond to tunneliﬁb;

readily calculated. 1In general, the eigenygiﬁéwésﬁditions,
Eqs. (18)-(2z0}, have to be solved numericéiiy;éhavﬁe may just as
well apply the numerical shooting schemes in the complex plane.
That is, with the Stokes diagrams given by the WKB results,
we can locate the subdominant regions and, perform numerical
shootings in a complex coordinate along which the solutions
decay asymptotically. The results presented in this work are
obtained by using this coupled WKB-numerical shooting scheme;
which automatically includes the tunneling effects.

We have examined the evélution of the two branches of
eigenmodes as the parameters, ; and g, are varied. Qnly the
n = 0 eigenstate, which is least shear damped, is studied here.

In the following resules, we have fixed b, = 0.1 and g = 1.

s

Figures 5, 6, and 7 plot the eigenfrequencies, o = Qr + iﬂl

versus e for s = 1, 2.3 and 5, respectively. For
comparision, the corresponding slab shear-damping rates are also

shown. Figure 5 shows that, for s = 1, only the slab-like branch

exists for small4gn,mcnr5f0,075.. As'en > 0,075, the weak

-

toroidicity;iﬁduéédﬁﬁfihCh'éppears, in addition, to the slak-
like branch, Aas €, is further increased, the slab-like branch

disappears for &/ f 0.1 and the weak toroidicity-induced eigen-

modes evolve into-the strong toroidicity-induced eigenmodes.
Regarding the shear damping rates, we note thav the slab branch is

further damped by the toroidicity. Meanwhile, for the toroidicity-

induced branch, the shear damping rates are negligibly small;

‘ _ -3 -4 N
typically, lHi\ - 0(10 - 10 7). 1In the weak shear (s = 0.3),
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case, Fig. 6 shows that the slak-like branch, which exists for

S 0.G2, is comnnected to the strong toroidicity-induced branch.

Thus, in this case, there exists only a single branch of eigen-
modes for a value of “ne Meanwhile, contrary to the é = 1 case,
the shear damping rates of the slab-like branch are somewhat
reduced by the toroidicity. The toroidicity-induced branch,
again, experiences negligible shear damping. The results of the
strong shear (é = 5) case, are shown in Fig. 7. While the
general properties are similar to the ; = 1 case, there are two
interesting differences. First, even with a strong shear,
toroidicity-induced branch starts appearing at rather small n

In fact, the critical value of € is about 0.05 which

3
cT’

is less than the s = 1 case; fop © 0.075. Second, the slab-

like branch persists throughout the range of entire “ni i.e., up

to ¢ = 0.5. Hence, both branches of eigenmodes exist for a

wide range of € Figure 8 shows the dependence of the eigen-

modes on the shear strength s for Ep = 0.1. For small s,

s < 0.6, only the strong toreoidicity-~induced eigenmodes exist;

~

which evolve into the weak toroidicity-induced eigenmodes as s
is increased. Meanwhile, the slab-like branch starts appearing
at s ~ 0.8, Both branches then persist throughout the entire
range of ;; up to ; = 10.

We now summarize the above results as follows:
(1) The slab-like branch exists when either, with ; fixed

A ~

: < with ¢ fixed, s = 5 __.
Ln ECS’ or, n ! cs

(2) The slab-like branch has basically anti-well potential

) e P e———— | 1"



structur s and, therefore, experiences finite shear damping.
Toroidicities further enhance (reduce) the shear damping rates

for moderate and strong (weak) shear.

(3} The toroidicity~induced branch exists when o gcT for a

fixved s and persists into regimes with s »> 1.
(4) The toroidicity-induced branch corresponds to eigenstates
quasi-bounded by local potential wells. Shear damping occurs

through tunneling leakages and is, in general, negligibly small.

{5) Finally, for ; > 1, both eigenmode branches may exist
simultanecusly.

The results described in this section provide useful insights
in develuping analytical theories: which not only, in turn,
explain these results but also, more importantly, generalize

the above results to a wider parameter space.

V. ANALYTICAL THEQRIES

(A) Slab-Like Eigoenmodes

For this branch of eigenmodes, the complex turning points
are located near n = 0; i.e., Pl < 1 (c. £. Fig. 1). Therefore,

we may assume Inl < 1 and approximate Q as

Q(,n)

14

0(R,0) + Q"(8,0)n%/2, (21)

.
el

e
it

1+ be - l/Q*—ZEn/Q, (22)
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and
Q" (,0) = 2{b s” + ra(2s — 1/al. (23)

bgquation (8) then becomes a standard Weber's equation and can
be veadily solved. Applving the outgoing-wave boundary

condition, we obtain the following dispersion relations

- e {2s - 1)41/2
2 n _
s + ___Bgﬁ____] ; n=20,1 . .. ,

1 - 2 (zn + e
I¥B, ~ ' g+ By) [

(24)

Since Qr - 0, Eg. (24) clearly shows that for é > 1/2 (é < 1/2)
the shear damping is further enchanced (reduced) by toroidal
couplings. We note the assumption Inl < 1 is identical to
Taylor's strong-coupling approximation.7 Furthermore, while the
eigyenmodes are localized about n = 0 in the complex plane, they
are extended along the 0. coordinate.

Since the slab-like branch requires that the potential
structures be anti-well, it will cease to exist if either of the

following two conditions occur

QL (@, 0 =0, (25)

and

(Q,n_ ) = 0, Q;(Q,no) > 0: at ng # 0. (26)
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In Egs. (25) and (25), we have assumed Qr >> lQil, which is
generally true. Equation (25) simply states that the anti-well
potential structure about n = 0 is absent. Eguation {26), on
the other hand, indicates the appearance of well structure,

which prohibits the wave energy from freely convecting outward.

For s < 1/2, the relevant condition is Eg. (25); from which

we obtain the cirtical value of Enr Fogt &S

— 2 ‘l‘\ "2
Ceg T bes /0(L + be)(l-hs) + 2bes 1. {27)
In Egq. (27), we have used the dispersion relation given by
Eq. (24). For be = 0.1 and s = 0.3, we find Eog = 0.02 in

good agreement with the WKB result {c.f. Fig. 6).

For s > 1/2, however, Eq. (2%) never occurs and, Eg. (26)
is the relevant condition. From Qé(Q,no) = 0, we have

y n . ~
st ng * (acs/Qr)((s - 1} sin N, * smn, cos no] = 0. [(28)

Assuming Inol > 1 and bes < Ecs/ﬂr’ Eq. (28) can be solved and

we obtain

n, = 3n/2 - besQr/ecs + (s - 1)2/37s, {29}

Using Eqs. {(24) and (29) in the condition Qr(Q,no) = 0 we obtain
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be(szn 2. 1)
Q
©s © 22 ' (30)
211 + bns N + sno(l + bO)]

and nn_ = 3n/2. For s =1 and b, = 0.1, we find ¢ = 0.13,

0 9 cs
which again, agrees well with the WKB result shown in Fig. 5.
Finally, from Egs. (24), (29), and (30), it can be easily

shown that the assumptions Ngr Ecs/ﬂrbes > 1 are justified.

(B) Toroidicity-Induced Eigenmodes

WKB results described in Sec. IV indicate that this eigen-

mode branch exists only for €n 2 €omp- For s < 1/2, we have

Eor = fog with €ng Fiven by Eg. (27). 1In the following, we

shall derive the analytical expression of ¢ for s > 1/2. At

cT

€. = ¢ the weak toroidicity-induced eigenmode branch appears

n cT’

and the corresponding potential structure, —Qr(Q,nr), is shown

in Fig. 9. From Fig. 9, we have the following five conditions

Q,(2,m,) =0, (31)
QL(R,n,) = 0, (32)
Ql(@,ny) = 0, (33)
0.(2,ng) = 0, (34)
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and

[ 2 Ql“‘/z dy = {n 4+ Y1/2)n, n=0,131, . . . {39)

(98]

for the five unknowns; nl, Nayr Ngr EcT and Q= QCT' Note in
Eq. (35), we have neglected the tunneling leakage and, there-
fore, e is purely real. Since analytical expressions for
Fq. (35) is generallv difficult to obtain, we approximate the
potential weil about ny to be parabolic. Thus, in replacement
of Eqs. (34) and (35), we have for the n = 0 eigenstate,

the following condition
Q_(2 n,) = [-Q"(Q .o ) /b 11/2(E/QQ) {36)
r cT’ 1 rierT’ 'l a “leT”

To make further analytical progresses, we shall solve
Eqs. (31), (32), (33), and (36) by successive approximations.
That is, we assume Ny and n, are sufficiently close to Ny’ where

YWy = v = - = i
Qr(nn) f. We thus, let Ny "o 61 and n, = n_ + §., with

o) 2
61, 62 < 1. Correspondingly, we let €ar = €4 + El and
Qup = @, + @3 such that le,/e 1, 19,/0 1 < 1. We then have

Q. = Q0 + Ql’ where

A2 ~
Qo =1 + be(l + s nz) - 1/9o + (2e/n)o(cosvn+ s n sinn),

(37)
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and
2 - .

Ql = Ql/n0 + 2(E/Q)OB (cosn+ snsinn), (38)
with

B2 = e /e - 9./ (39)

17 7o 170"

In the zeroth order, we have

QO(QO,nO) 2 Q, = o, (40)
=, _ "2 ! - - . n . -
Q) = Z{bes ng * (E/Q)O[(S 1l)sin n, * sn cos nO]) 0,

(41)

and

1" —_— A2 - - - ~ . =
Q% = 2{bys® + (e/Q) 1(2s - 1) cosn - sn sinn 1} 0. (42)
Equations (40)-(42) can be readily solved by assuming

ngy - -
!bes + (E/Q)O(ZS - 1) cos nol < l(E/Q)osnOl. From Eq. (42), we

obtain

n =u1-468, {43)

and

=3
)

=2 - 25) /81 (44)
(bgs? /e, + 1 - 25)/sn.
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From Egs. (41), {(43), and (44), we have
. iu,bﬁ;, (45)
and
S = (1 - s)/sm. (46)

In deriving Egs. (45) and (46), we have ignored terms of

(IESRTII 0(v~%). Finally, from Eq. (40) we obtain

L s ~2 2 ~2
€, = bgs/T1 + b (1 + s"n” - 28%) 1. (47)

Wenowconsiderthecorrectionsuptoo(dz)with 61. 62
From Bgs. (32) and (34), we have 61 = 62 = § and
5% = —20! (n ) /0" (48)
B 1 no QC'
where
Q' tn ) = @ = slap s?n (49)
1'% 1 ] !
g" = -2b_s°ra (50)
o 0 1!

and

ay =1+ (s - 1)(4s - 1) /522, (51)
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We note that we have used Egs. (41), (42), and (45) in deriving

Eqs. (49) and (50). Substituting Egs. (49) and (50) into Eq. (48),

we then have

8 = blB, (52)
with

b, = (2722 (53)
From BEg. (31), we have
Ql + aQi = 0, (54)

where ai is given by Eq. (49) and 61, Eq. (38) can be reduced to

- 2 _ Ly 2.2
L= 9/9, 2b s°8%. (55)

©l

Equation (54) then becomes

2

2,2 _
0,/9 % - 2bgs B (L + &) = 0. (56)

Meanwhile, Eg. (36) becomes

Ay — an awm 1/2
§, - 80y = 1-(@ - sTN /bl Flesqn) . (57)

Noting Egs. (50), (52) and that

ay = ZbQQZEZ, (58)
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we then have 163/66?1 E B/nalbl <~ 1 and therefore, Eg. (57)
becomes

v e 2 22,2 N . 172, 72

Ll/h“ = 2b;s" k7 (1 - &y = [2nalb18] bys /9. (59)

Combining Eqs. (56) and (59} and noting & = blB' we obtain
. (al/8ﬂq2bl)l/5, (60)
and
@ /0 = 2s6%(1 + b B)e . (61)
Equation (61) into Eq. (39) we then find

e /e, = 8511 + 2801 + b Ble 1. (62}

An interesting property predicted by the above analytical

theory is, as either b0 + w or s + «», we have

e, l/s(nz- 2+ s—z) : do/s, {63)

and

Cap 7 (1 + dl)do/s YoELs (64)

e LU 1l



s . . .
where dl = 2701 + 2 (1 + "b,b)do]. That is, there exists a
maximum value of fmT' Tc’ which 1s a constant for a {ixed s and,
“
as s - v, is inversely proportional to s. This predicted

preperty is consistent with the WKB results that the

toroidicity-induced branch persists for s - L.

For g = 5 = 1, we have plotted in Fig. 10 the analytically
predicted ‘er — +. t vy versus bU‘ As can be seen, the
analytical predictions agree rather well with the WKB results.

Meanwhile, in this case, we find ¢_ ~ 0.14.

<

VI CONCLUSIONS AND DISCUSSIONS

In this work, we have examined the shear damping of drift-
wave ejgenmodes in toroidal plasmas. The toroidal-coupling effects
considered here are due to the ion B and curvaturc (dvifts. The
corresponding drift-ballooning eigenmode equation, derived via the
ballooning mode formalism, 1s then analyzed using the WKB
method. Tt is found that toroidal couplings introdusce modulations
to the . tential structures. Two eigenmode branches are then
found to exist. One is slab-like and the other is a new branch
induced by the finite toroidicity. The slab-like eigenmnde branch
axists for small toroidicities and has anti-well potential
structures. The eigenmodes, thus, correspond to unbounded states
and experience finite shear damping. For ; =rq'/q ~ 1/2,
toroidal couplings further enhance the shear damping rates. For
s - 1/2, however, the shear damping rates are somewhat reduced hy

the toroidal effects. On the otherhand, the toroidicity-iaduced
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eigermode branch, which has ne counterpart in the slab limit,
is characterized by potential structures with local welils.
For this branch, the eigenmodes correspond to eigenstates gquasi-
bounded by those local potential wells. Shear damping occurs
only through tunneling leakages and is, generally, negligible.
The toroidicity-induced eigenmocdes, therefore, <an be regarded as
guasi-marginally stable. For certain parameters, both eigenmode
branches can exist simultaneously. We have also developed
corresponding analytical theories, which agree both qualitatively
and quantatively withthe WKB results. An interesting property
predicted by the analytical theories is that the torocidicity-
induced branch can exist even when be, é >» 1 for reasonable
toroidicities; i.e., £ - 0(1071).

Since destablizing effects; such as electran dissipations,
are suppressed here in order to concentrate on the shear
damping effects, this work, therefore, does not answer the stability
question. However, some remarks may be made on the implications
of the present results to the stability properties. Let us
concentrate on the universal drift mode. 1In this case, electron
dissipations can be easily incorporated into the 1-D differential-
difference eigenmode equation, Eq. (6). As noted in Sec. V, we
may apply Taylor's strong-coupling approximation7 for the slab-like
branch., Equation (6} can then be reduced to a second-order
6,11,17

« ifferential equation and readily solved. Generally

speaking, the results show that unstable eigenmodes exist only for

~

weak shears; i.e., s < 1/2. As for the toroidicity-induced
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eigenmode branch, since the eigenmodes are quasi-marginally
stable, it may be expected that finite electron dissipations
can render the eigenmodes to be absolutely unstable. This

expectation, however, remains to be verified.

The existence of the toroidicity-induced eigenmode branch
clearly indicates that, contrary to conventional thinkings,
toroidal-coupling effects can not be simply regarded as (regular)
perturbations to the slab eigenmode branch. In this respect,
it is interesting to note the possibility that trapped particles
can play not only the usual destabilizing role but also, through
the associated toroidal-coupling effects, the new role of intro-
ducing new eigenmode branches.

Finally, we remark that the present analyses can bhe
easily extended to consider perturbations which may be centered

away from the outside of the torus.
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Fig. 8. Plot of Q versus § for bg = 0.1, q = 1,
and e = 0.1. The res: is same as Fig. 5.
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