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The eigenmode equation describing ballooning 
drift waves in toroidal plasmas is analyzed using 
the VJKB method. Two branches of eigenmodes are 
identified. One is slab-like and the other is 
a new branch induced by the finite toroidicity. 
The slab-like eigenmodes correspond to unbounded 
states and experience finite shear damping. The 
turoidicity-induced eigenmodes, however, corre­
spond to local quasibounded states with negliqible 
shear damping. Both branches of eigenmodes may 
exist simultaneously. Corresponding analytical 
theories are also presented. 
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:. -XTRODIVTIOX 

Recently, there has been an active interest in the stability 
L-:vpt=rties of drift-wave eigenmodes in sheared magnetic fields. 
A crucial point to realize in the stability analysis is, in the 
presence of finite magnetic shears, drift-wave eigenmodes in slab 
qeometries experience anti-well potential structures and, therefore, 
finite damping due to energy convecting away from the mode-rational 
surface. The existence of this shear-induced convective damping 
or, simply, shear damping was first pointed out by Pearlstein and 
Berk. Indeed, it is now well established that the shear damping 
is so effective that both che collisionless and the collisional 
"universal" drift-wave eigenmodes are stabilized in slab geometries. 
On the otherhand, as first emphasized by Taylor, the shear damping 
mechanism may be modified significantly in toroidal plasmas, such 
as tokamaks. The physical arguments are as follows. In toroidal 
geometries, the mode-rational surfaces corresponding to different 
poloidal mode numbers are closely packed. Due to toroidal effects, 
such as curvature drifts, the neighboring poloidal modes are coupled. 
The drift-wave eigenmode centered about one particular mode-rational 
surface will be, therefore, affected by the wave energies which 
convect away from the neighboring eigenmodes. In other words, 
toroidal-coupling effects can modify the anti-well potential struc­
ture and, thereby, the shear damping mechanism. 

7 8-In this work, we have employed the ballooning-mode formalism ' 
and analyzed the effects of toroidal couplings on the shear damping 
of drift-wave eigenmodes. The toroidal-coupling effects considered 

11-13 here are those due to the usual ion VB and curvature drifts. 
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The theoretical model and the corresponding drift-ballooning 
eigeninode equation are given in Sec. II. In Sec. Ill, we discuss 
the relevant boundary conditions. Applying these boundary condi-

14 15 tions, the eigenmode equation is analyzed using the WKB method. ' 
The results of WKB analyses are presented in Sec. IV. Based on the 
WKB results, we have developed corresponding analytical theories, 
which are described in Sec. V. Final conclusions and discussions 
are given in Sec. VI. 

The WKB method employed here, when comparing with the usual 
numerical shooting schemes, has several advantages. (a) There is 
no difficulty in dealing with eigensolutions which are asymptotically 
divergent (see Sec. III). (b) Using the Stokes diagram, 
one can readily identify the various branches of eigenmodes 
and follow their evolutions as the parameters are changed. (c) With 
the Stokes diagram, the subdominant regions in the complex plane can 
be located. "Numerical solutions can then be done in the complex plane 
to compare with the WKB results. In this respect, this work not 

12 13 only clarifies the results obtained elsewhere, ' but also contains 
new findings as well as analytical theories. 

II. THEORETICAL MODEL AUD EIGENMODE EQUATION 

Let us consider electrostatic drift waves in an axisymmetric, 
large-aspetit-ratio torus with concentric, circular magnetic surface.1 

We adopt the usual {x,Q,%) coordinates corresponding, respectively, 
to the (minor) radial, poloidal and toroidal directions. The per­
turbed potential- can be expres^-id as 
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<f(r, 8, O = I *j Is) exp [i(m oO + j9 - n£ - ut)], (1) 

where iji << I m 0 < , s = (r - r Q)/fir s, r Q is the reference mode-
rational surface m 0 = nq( r Q ) , A r g = 1/k s, k Q = m Q / r o and 
s = rq'/q at r = r . Following standard procedures, the two-
dimensional eigenmode equation can be straightforwardly derived 
and is given by 

[L(s, j) + Q 1(s, j) - enT/o.]<j, (S) = o, (2) 

where 

I = b B ( s 2 d 2 / d s 2 - 1 ) , (3) 

Q = i/n - l + [(s - j)/n n ] 2 , (4) 

and 7^.(s) = <(.. + ^ s ) + *. ^ s ) + s J~ [$ 1 ( s ) - ̂  _ n (s)] j - 1 
(5) 

Here, b @ = k Qp 2, p g = cs/uc±, c g = (T e/M i) 1 / 2, £1 = wA>*e, 
1/2 -1 

n= = 5 bH / E n ' e n = r r / R ' r n = l dlnN/drl and the remaider 
notations are standard. In deriving Eqs. (2)-(5), we have assumed 
T = Tg/T^ >> 1 and made the small ion-Larmor-radius as well as fluid-
ion approximations. Furthermore, we have only kept the adiabatic 
electron response and ignored any electron destabilizing, 
temperature-gradient, or trapped-particle effects. We note that 
T, as defined in Eq. (5), is the toroidal-coupling operator due 
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to ion VE and curvature drifts. We remark that we have suppressed 
the destabilizing effects here in order to concentrate on the 
shear damping mechanism in toroidal plasmas. However, it needs 
to be emphasized that, (as stability analyses in slab geometries 
have clearly indicated,) modifications in the shear damping 
mechanism will have direct implications to the stability 
properties. 

2 3 Since, typically, In I ~ Inl ~ )r /p i - 0(10 - 10 ) , we * ^ * o n' s 
8 — 10 may adopt the large-n ballooning-mode formalism. In the 

zeroth order, we have, with z = s - j, <j> . (s) = *(z) and 
<|i . + , (s) = 0(2 + 1); i.e., the eigenmodes are composed of 
identical structures centered at each mode-rational surfaces. 
Equation (2) then reduces to a one-dimensional differential-
difference equation- i.e., 

Hx + Q1(z) - £n11/Q]4>(z) = 0, (6) 

where Lj_ = bg(s 2d 2/d2 2 - 1), Q-^z) = 1/fi - 1 + z2/fi2r\2, 
and 

T ^ = 4>(z + 1) + ${z - 1) + s ~ [*(z - 1) - -I>(z +• I)]. 

(7) 

F o u r i e r t r a n s f o r m i n g Eq. (6>, we then o b t a i n 

[d / d n

2 + n 2 f i 2 Q ( n , n ) ) <t>(o) = 0; -<* < n < », (J 
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where 

Q(i1,n) = b„(l + s 2n 2) + 1 - 1/fi + (2E /fi) 
J n 

(cos i) + s)i sin n) / (9) 

o "I rj 

and 'i can be regarded as the coordinate along the field lines. 
Equation (8) is the drift-ballooning eigenmode equation to be 
analyzed here. We note that Eq. (8) corresponds to perturbations 
centered at the outside of the torus and similar equations also 
have been derived by other authors. ' ' Equation (9) shows that 
toroidal-coupling effects intrduce modulations on the otherwise 
anti-well potential structures. As mentioned earlier, we shall solve 
Eq. (8) using the WKB method. Before proceeding with the WKB 
analysis, however, we need to discuss the relevant boundary 
conditions. 
III. BOUNDARY CONDITIONS 

~2 2 " (" 
As I Ml •+ =>, Q •* b„s n and , fo r <|> = exp [+ i k dn] , 

we have 

k p - « n s b j / 2

s n ' do) 

; -* exp [+ i n n s b p / 2 s n 2 / 2 ) . (ID 
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For unstable eigenmodes (Im ft > 0), that $ must be spatially 
decaying requires us to take the plus sign; i.e., 

I -> exp (ifir,sbg/2sn2/2) . (12) 

Noting that 

3iV3k, •> ( n b ^ s n } * 1 , (13) 
S u 

the boundary condition, as given by Eq. (12), then corresponds 
to outward wave energy propagation. On the other hand, there is 
a difficulty in applying the outgoing-wave boundary condition, 
Eq. (12), to the marginally stable and damped eigenmodes 
(Im si ̂  0); which will not asymptotically decay. This difficulty, 
however, can be readily resolved by noting that, in the 
original configuration (z) coordinate, the outgoing-wave 
boundary condition is equivalent to the asymptotically decaying 
condition if the linear ion Landau damping term is included. 
One would, therefore, expect similar properties in the Fourier 

12 transformed n coordinate. 
Retaining the ion Landau damping term, it is easy to show 

that the potential structure, Q, is modified to be 

2 
Q = Q + it /rf ̂  exp l-^) , (14) 

where t^is an operator, ? i = (T/2T n R/1 id/dn I , and we have assumed 
1^) > 1, in deriving Eq. (14). Since j^l >- 1, we may treat 



the ion Landau damping term perturbatively. Thus, as InI "* ro, 
the WKB wave number becomes 

k - k [1 + ii /i X, exp (-lh/2bas2n2], (15) 

where k i s g i v e n by Eq. (10) and 

: L = ( T / 2 ) 1 / 2 n s f 2 / i k n i - ( T / 2 b e ) 1 / 2 / s i n i • (16) 

Meanwhile, we have 

<Hn) - exp (+ i I k d n ) . (17) 

Since £. > 0, the requirement that the solutions desay 
asymptotically, again, leaus us to take the plus sign, i.e., 
the outgoing-wave boundary condition; Eq. (12). Indeed, from 
Eqs. (15) and (16), we may view even in the n coordinate, that 
the boundary condition, Eq, (12), describes the wave energy being 
propagated outward and absorbed by the ion Landau damping at 
I n l = ±°°. Thus, Eq. (12) dictates that for damped eigen-
modes (Im Q < 0) the solutions be asymptotically divergent. 
With the appropriate boundary conditions determined, the eigen­
value problem as posed by Eq. (8) is thus completely specified. 
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IV. RESULTS OF WKB ANALYSES 

we present results of eigenmode analyses using the WKB 
(phase-integral) method. The WKB analyses are carried out with 
the interactive WKB code developed by White. J Detailed 
descriptions of this code are given in Ref. 15 and will not be 
repeated here. 

In the present work, we have found that there exists 
two branches of eigenmodes. One is slab-like; i.e., this 
branch represents the continuation of the slab eigenmodes into 
the toroidal geometries. The corresponding Stokes diagram and 
potential structure along the real n axis, -Q (fi, n J, are 
shown in Fig. 1. We note that the complete Stokes structures 
are rather complicated and, therefore, only those anti-Stokes 
lines which are relevant in determining the eigenvalue condition 
are shown. £s shown in Fig. 1(b), the potential structure is 
an anti-well; as in the slab limit. The wave energy, therefore, 
can freely convect outward and the eigenmodes are damped. The 
boundary condition, Eq. (12), thus dicates regions (i) and (i)' 
to be dominant and, hence, regions (ii) and (ii) ' to be 
subdominant. The corresponding WKB eigenvalue condition is then 

fln s Q 1 / 2 d n = (n + 1/2)IT, n = 0, 1, ... (18) 

The other branch of eigenmodes is induced by the finite 
toroidicity; i.e., it has no counterpart in the slab limit and, 
in this sense, is a new branch of eigenmodes. The details of 
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the eigenmodes, however, depend on the shear strength s and 

the toroidicity e . Three cases have been identified: (a) 

s - 1/2 and small c , (b) s > 1/2 and large £ , and (c) s < 1/2. 

The corresponding Stokes diagrams and potential structures are 

given in Figs. 2, 3, and 4, respectively. According to the 

Stokes diagrams, we classify (a) as the weak toroidicity-induced 

eigenmodes; and (b) as well as (c) as strong toroidicity-induced 

eigenmodes. From Figs. 2-4 i t is clear that these toroidicity-

induced eigenmcdes are characterized by eigenstates bounded by 

local potential wells, which may be localized either about or 

away from n = 0. Contrary to the slab-like branch with anti-

well potentials, the outward convection of the wave energy 

occurs herp only through the tanneling leakages. Therefore, we 

mav expect the shear damping rates to be significantly reduced. 

In this respect, \rs may regard these eigenmodes to be guasi-

bounded states which are quasi-mar^'inally stable. Refering 

to Figs. 2 and 3 the WKB eigenvalue conditions for the weak 

and stro.ig toroidicity-induc«>d eigenmodes are, respectively, 

r T 
In l 2 Q 1 / 2 d n = (n + 1/2) IT + A i ; finl Q ' d n = (n + 1/2) IT + An , (19) 

and 

r T 
fin 1 Q 1 , / 2 d n = (n + 1/2) v + <^; fo r n = 0, 1, . 

- T , (20) 
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where 6. and 6 correspond to tunneling:-leakages: and can be 
readily calculated. In general, the eigenvalue conditions, 
Eqs. (18)-(20), have to be solved numerically, and we may just as 
well apply the numerical shooting schemes in the complex plane. 
That is, with the Stokes diagrams given by the WKB results, 
we can locate the subdominant regions and, perform numerical 
shootings in a complex coordinate along which the solutions 
decay asymptotically. The results presented in this work are 
obtained by using this coupled WKB-numerical shooting scheme; 
which automatically includes the tunneling effects. 

We have examined the evolution of the two branches of 
eigenmodes as the parameters, s and e , are varied. Only the 
n = 0 eigenstate, which is least shear damped, is studied here. 
In the following results, wa have fixed b. = 0.1 and q = 1. 
Figures 5, 6, and 7 plot the eigenfrequencies, fi = Q. _ + in., 
versus E for s = 1, 0.3 and 5, respectively. For 
comparision, the corresponding slab shear-damping rates are also 
shown. Figure 5 shows that, for s = 1, only the slab-like branch 
exists for small _e,...£..-<,.0_. 0.7-5. ,: As e ^ 0.075, the weak 
toroidicity-induced•branch appears, in addition, to the slab­
like branch. As E n is further increased, the slab-like branch 
disappears fori? > 0;1 andthe weak toroidicity-induced eigen­
modes evolve into-the strong toroidicity-induced eigenmodes. 
Regarding the shear damping rates, we note that the slab branch is 
further damped by the toroidictty. Meanwhile, for the toroidicity-
induced branch, the shear damping rates are negligibly small; 

-3 -4 " 
typically, Is;. I - 0(10 - 10 ). In the weak shear (s = 0.3), 
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case, Fig. 6 shows that the slab-like branch, which exists for 

>' 0.02, is connected to the strong toroidicity-induced branch. 

Thus, in this case, there exists only a single branch of eigen-

modcs for a value of - . Meanwhile, contrary to the s = 1 case, 

the shear damping rates of the slab-like branch are somewhat 

reduced by the toroidicity. The toroidicity-induced branch, 

again, experiences negligible shear damping. The results of the 

strong shear (s - 5) case, are shown in Fig. 7. While the 

general properties are similar to the s = 1 case, there are two 

interesting differences. First, even with a strong shear, 

toroidicity-induced branch starts appearing at rather small s~ . 

In fact, the critical value of e , e m , is about 0.05 which 
n cT 

is less than the s = 1 case; F - 0.075. Second, the slab-

like branch persists throughout the range of entire r • i.e., up 

to t = 0 . 5 . Hence, both branches of eigenmodes exist for a 

wide range of £ . Figure 8 shows the dependence of the eigen­

modes on the shear strength s for z = 0 . 1 . For small s, 
n 

s ^ 0.6, only the strong toroidicity-induced eigenmodes exist; 

which evolve into the weak toroidicity-induced eigenmodes as s 

is increased. Meanwhile, the slab "like branch starts appearing 

at s - 0.8. Both branches then persist throughout the entire 

range of s; up to s = 10. 

We now summarize the above results as follows: 

(1) The slab-like branch exists when either, with s fixed 
E < e , or, with e fixed, s '-• s n cs n cs 
(2) The slab-like branch has basically anti-well potential 



structures and, therefore, experiences finite shear damping. 
Toroidicities further enhance (reduce) the shear damping rates 
for moderate and strong (weak) shear. 

(3) The toroidicity-induced branch exists when t - c for a 
fixed s and persists into regimes with s >> 1. 

(4) The toroidicity-induced branch corresponds to eigenstates 
quasi-bounded by local potential wells. Shear damping occurs 
through tunneling leakages and is, in general, negligibly small. 

(5) Finally, for s J 1, both eigenraode branches may exist 
simultaneously. 

The results described in this section provide useful insights 
in developing analytical theories: which not only, in turn, 
explain these results but also, more importantly, generalize 
the above results to a wider parameter space. 

V. ANALYTICAL THEORIES 

(A) Slab-Like Bigorrcnodes 

For this branch of eigenmodes, the complex turning points 
are located near n = 0; i.e., IPI < I (c. f. Fig. 1). Therefore, 
we may assume Inl ^ 1 and approximate Q as 

Qia,n) = Q(ft,0) + Q" (n,0)n2/2, (21) 

where 

Q(fi,0) = 1 + b 0 - l / Q + 2 e n / f l , (22) 
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ancl 

Q" ('.'', 0) = 2[b ( )s 2 + r.n(2s - 1)/Si]. (23) 

liquation (8) then becomes a standard Weber's equation and can 
bo readily solved. Applying the outgoing-wave boundary 
condition, wo obtain the following dispersion relations 

l - 2 , n , (2n + D , n r.2 en!2s - 1) 1/2 
-IT-^7 - 1 q (1 + b e) L S + — V J ! " = " ' 

(24) 

Since -1 -• 0, Eq. (24) clearly shows that for s > 1/2 (s < i/2) 
the shear damping is further enchanced (reduced) by toroidal 
couplings. We note the assumption Inl < 1 is identical to 
Taylor's strong-coupling approximation. Furthermore, while the 
eigenmodes are localized about n = 0 in the complex plane, they 
are extended alonq the n coordinate. 

J r 
Since the slab-like branch requires that the potential 

structures be anti-well, it will cease to exist if either of the 
following two conditions occur 

o; («, 0) = 0, (25) 

and 

Q.('.!,n ) = Q'<«,n ) = 0, Q".(fi,n ) > 0; at n ¥ 0- (26) 
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In Egs. [25) and (2r>) , we have assumed fi >> in. I, which is 
generally true. Equation (25) simply states that the anti-well 
potential structure about n = 0 is absent. Equation (26), on 
the other hand, indicates the appearance of well structure, 
which prohibits the wave energy from freely convecting outward. 

For s < 1/2, the relevant condition is Eq. (25); from which 
we obtain the cirtical value of e . c , c.s 

n cs 

cs = b e s 2 / [ ( 1 + V ( 1 - 2 s ) + 2 b 0 ^ 2 ] " < 2 7 > 

In Eg. (27) , we have used the dispersion relation given by 
Eq. (24). For b Q = 0.1 and s = 0.3, we find e = 0.02 in 

9 CS 
good agreement with the WKB result (c.f. Fig. 6). 

For s > 1/2, however, Eq. 125) never occurs and, Eq. (26) 
is the relevant condition. From Q'(fi,n ) = 0, we have 

• 2 " * b n s n ~ + ( f"v. c/ nr-H ( s ~ 1i s i r i n + STI cos n 1 = 0. (28) u o cs r o o o 

Assuming lnQl > 1 and b Qs < e c s/« r, Eq. (28) can be solved and 
we obtain 

n Q = 3TT/2 - bgsn r/e c a + (s - 1)2/3TTS. <29) 

Using Eqs. (24) and (29) in the condition Q (fin ) = 0 we obtain 
r o 
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V s n0 - i) -cs= 4—y * , (30) 
2[1 + b n s z n 0

z + snQ(l + b g)] 

and n '-• 3IT/2. For s = 1 and b Q = 0.1, we find c - 0.13, 0 9 cs 
which again, agrees well with the WKB result shown in Fig. 5. 
Finally, from Eqs. (24), (2S) , and (30), it can be easily 
shown that the assumptions n , E /n b„s > 1 are justified. r o cs r 6 

(B) Toroidicity-lnduced Eigenmodes 

WKB results described in Sec. IV indicate that this eigen-
mode branch exists only for e _> e _. For s < 1/2, we have 
e „ = E with e given by Eg. (27). In the following, we 
shall derive the analytical expression of £ _ for s > 1/2. At 
e = Ef,Tr the weak toroidicity-induced eigenmode branch appears 
and the corresponding potential structure, -Q (°.,n ), is shown 
in Fig. 9. From Fig. 9, we have the following five conditions 

Qr(tt,n.2) = 0, (31) 

Q;(n,n2> = 0, (32) 

Q̂ . (n,n1) = 0, (33) 

Qr(fl,n3) - 0, (34) 
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! 2 Q 1 ' 2 dn = (n + 1/2) n, n = 0, 1, . . . (35) 
S; 

for the five unknowns; n,, 'U, ru, e „ and tt=Q . Note in 
Eq. (35) , we have neglected the tunneling leakage and, there­
fore, :. is purely real. Since analytical expressions for 
r:<|. (35) is generally difficult to obtain, we approximate the 
potential well about n, to be parabolic. Thus, in replacement 
of Eqs. (34) and (35), we have for the n = 0 eigenstate, 
the following condition 

Q rUl c T, V = r-Q;<neT, V / b e ] 1 / 2
( i : / q f i > c T . (36) 

To make further analytical progresses, we shall solve 
Eqs. (31), (32), (33), and (36) by successive approximations. 
That is, we assume n, and n, are sufficiently close to n , where 
Q"(n ) = 0. We thus, let n, = n - <5. and n^ = n + <5_ with r o l o l ^ O i 
6 . , (5 2 < 1. Correspondingly, we let e _ = e + e. and 
QcT = f ! o + P"l ; s u c h t h a t ' E ] / e '' '"ĵ /n I < 1. We then have 
Q r = Q Q + Qx, where 

Q 0 = 1 + b 9(l + s 2
n
2) - l/no + (2e/!))o(cosn+ snslnn). 

(37) 
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and 

Q± = n i / n Q + 2 (e/fi) B 2 (cos n + s n s i n n ) , (38) 

w i t h 

B 2 = E A n - n n / n . (39) 
1 0 1 0 

In the ze ro th order , we have 

WV 5 Q

0 = °- ( 4 0 ) 

A 2 A " 
Q' = 2{b„s n + U/f i ) [ ( s - l ) s i n n + sn cos n ] ) = 0, 

0 8 O 0 0 0 0 

(41) 

and 

Q" = 2 { b n s 2 + ( E / £ ! ) t (2s - 1) cos n - sn s i n n ]} = 0. (42) 
0 0 0 0 0 0 

E q u a t i o n s ( 4 0 ) - ( 4 2 ) can be r e a d i l y s o l v e d by assuming 

l b 0 s 2 + ( e / f t ) 0 ( 2 s - l ) c o s n o l < I (e/ i i) Q s n o l . From Eq. ( 42 ) , we 

o b t a i n 

n = it - 6 , (43) 
o o 

and 

S = ( b „ s 2 n A + 1 - 2 s ) / s n . (44) 
o 6 o o 
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Frora Eqs. (41), (43), and (44), we have 

:?. - <./b0s, (45) 

and 

>S = (1 - S)/STT. (46) 

In deriving Eqs. (45) and (46), we have ignored terms of 
OU /«) - 0(n~ ). Finally, from Eq. (40) we obtain 

: = brs/ri + h(l + S 2 T I 2 - 2 S 2 ) 1 . (47) 

2 
VJe now c o n s i d e r t h e c o r r e c t i o n s u p t o 0 (8 ) w i t h 6 , fi., -. 6 

From E q s . (32) a n d ( 3 4 ) , we h a v e <5. = 6- = 6 a n d 

fi2 = - 2 Q ^ ( n o ) / Q ; " , (48) 

w h e r e 

Q\ (n ) 5 Q* = B 2 2 b Q s 2 i r , (49) 

Q™ = - 2 b e s 2 T r a i , (50) 

and 

a 2 = 1 +- ( s - 1) ( 4 s - 1 ) / S 2 T T 2 . (51) 
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We note that we have used Eqs. (41), (42), and (45) in deriving 
Eqs. (49) and (50). Substituting Eqs. (49) and (50) into Eq. (48), 
we then have 

'5 = b 16, (52) 

with 

hx = ( 2 / a i ) 1 / 2 . (53) 

From Eq. (31), we have 

Q 1 + <SQ̂  = 0, (54) 

where Q' is given by Eq. (49) and Q~, Eq. (38) can be reduced to 

Q 1 = n i / B o
2 - 2bQs2(32. (55) 

Equation (54) then becomes 

n,/fl 2 - 2b Qs 2B 2(l + 6it) = 0. (56) 
1 o o 

Meanwhile, Eq. (36) becomes 

Q± - &Q[ = t-(5j - 5Q^)/b e] 1 / 2(E/qn) 0. (57) 

Noting Eqs. (50), (52) and that 

QJ = 2b as 2e 2, (58) 
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w<2 then have IQ"/6Q"'I -• g/Tta.^ < 1 and therefore, Eq. (57) 
becomes 

i'^/fi^2 ~ 2b(,s2[;2(l -.i-.i) = [2 ^ a 1 b 1 B ] 1 / 2 b s s 2 / q . (59) 

rombininq Eqs. (56) and (59) and noting 6 = b^B, we obtain 

H = ( a 1 / 8 n q 2 b 1 ) 1 / 5 , (60) 

and 

fl./'n = 2sf> 2 ( l + TTb,6>£ . (61) 
1 0 1 0 

Equation (61) into Eq. (39) we then find 

c l / r o = V*11 + 2 s ( 1 + 1'i>ie)er)l- (62) 

An interesting property predicted by the above analytical 

theory is , as either b„ ->• u j o r s -• «>, we have 

t : o -• l / s ( i i 2 - 2 + s " 2 ) i d Q / s , (63) 

and 

CCT " U + d l > V S - E c ' ( 6 4 ) 



where d = £2[1 + 2 (1 + -b,B)d ]. That is, there exists a x * o 
maximum value of -.- , •• , which is a constant for a fixed s and, 
as s - -, is inversely proportional to s. This predicted 
property is consistent with the WKB results that the 
toroidicity-indueed branch persists for s 1. 

for q = s = 1, we have plotted in Fig. 10 the analytically 
predicted • = : + >• versus b . As can be seen, the 
analytical predictions agree rather well with the WKB results. 
Meanwhile, in this case, we find ~^ -• 0.14. 

VI CONCLUSIONS AND DISCUSSIONS 

In this work, we have examined the shear damping of drift-
wave ej.genmodes in toroidal plasmas. The toroidal-couplinq effects 
considered here are due to the ion 78 and curvature drifts. The 
corresponding drift-ballooning eiqenmode equation, derived via the 
ballooning mode formalism, in then analysed using the WKB 
method. It is found that toroidal couplings introduce modulations 
to the potential structures. Two eigenmode branches are then 
found to exist. One is slab-like and the other is a new branch 
induced by the finite toroidicity. The slab-like eigenmode branch 
exists for small toroidicities and has anti-well potential 
structures. The eigenmodes, thus, correspond to unbounded states 
and experience finite shear damping. For s = rq'/q • 1/2, 
toroidal couplings further enhance the shear damping rates. Por 
s • 1/2, however, the shear dampinq rates are somewhat reduced by 
the toroidal effects. On the otherhand, the toroidi ci ty-i.iduced 
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eigenmode branch, which has no coun te rpa r t in the s l a b l i m i t , 

i s charac te r ized by p o t e n t i a l s t r u c t u r e s with l o c a l w e l l s . 

For t h i s branch, the eigenmodes correspond to e i g e n s t a t e s q u a s i -

bounded by those loca l p o t e n t i a l w e l l s . Shear damping occurs 

only through tunnel ing leakages and i s , g e n e r a l l y , n e g l i g i b l e . 

The t o ro id i c i t y - i nduced eigenmodes, t h e r e f o r e , can be regarded as 

quasi -marginal ly s t a b l e . For c e r t a i n parameters , both eigenmode 

branches can e x i s t s imul taneously . We have a l s o developed 

corresponding a n a l y t i c a l t h e o r i e s , which agree both q u a l i t a t i v e l y 

and quan ta t ive ly with the WKB r e s u l t s . An i n t e r e s t i n g proper ty 

predicted by the a n a l y t i c a l t h e o r i e s i s t ha t the t o r o i d i e i t y -

induced branch can e x i s t even when b n , s >> 1 for reasonable 

t o r o i d i c i t i e s ; i . e . , E - 0 (1Q~ ) . 

Since d e s t a b l i z i n g e f f e c t s ; such as e l e c t r o n d i s s i p a t i o n s , 

a re suppressed here in order to concen t r a t e on t he shear 

damping e f f e c t s , t h i s work, t h e r e f o r e , does not answer the s t a b i l i t y 

quest ion. However, some remarks may be made on the impl ica t ions 

of the presen t r e s u l t s to the s t a b i l i t y p r o p e r t i e s . Let us 

concentra te on the un ive r sa l d r i f t mode. In t h i s c a s e , e l ec t ron 

d i s s i p a t i o n s can be e a s i l y incorpora ted i n to the 1-D d i f f e r e n t i a l -

differenca eigenmode equat ion, Eq. (6 ) . As noted in Sec. V, we 
7 

may apply T a y l o r ' s s t rong-coupl ing approximation for the s l a b - l i k e 

branch. Equation (6) can then be reduced to a second-order 

( i f f e r e n t i a l equa t ion and r e a d i l y so lved . ' ' General ly 

speaking, the r e s u l t s show t h a t uns tab le eigenmodes e x i s t only for 

weak shears ; i . e . , s < 1/2. As for the t o r o i d i c i t y - i n d u c e d 
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eigenmode branch, since the eigenmodes are quasi-raarginally 
stable, it may be expected that finite electron dissipations 
can render the eigenmodes to be absolutely unstable. This 
expectation, however, remains to be verified. 

The existence of the toroidicity-induced eigenniode branch 
clearly indicates that, contrary to conventional thinkings, 
toroidal-coupling effects can not be simply regarded as (regular) 
perturbations to the slab eigenmode branch. In this respect, 
it is interesting to note the possibility that trapped particles 
can play not only the usual destabilizing role but also, through 
the associated toroidal-coupling effects, the new role of intro­
ducing new eigenmode branches. 

Finally, we remark that the present analyses can be 
easily extended to consider perturbations which may be centered 
away from the outside of the torus. 
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Fig. 2. 
structure 

792268 
r ^ ^ f ! 1 ( a? a n t i ~ s t o k e s plot and (b) potential for the weak toroidicity-induced eigenmode branch. 
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792270 Pig. 3. Typical (a) anti-Stokes plot and (b) potential 
structure for the strong toroidlcity-induced eigenmode branch 
with § = rq'/q > 1/2. 



792266 Fig. 4. Typical potential structure for the strong toroidicity-lnduced eigenraode branch with § < 1/2. The anti-Stokes plot is similar to Fig. 3(a). 



792265 
Fig. 5. Plot of eigenraode frequencies fi versus cn for bj = 0.1, q = 1, 

and s = 1.0, • and x correspond, respectivly, to the slab-like, weak and 
strong toroidicity-induced eigenmodes. 
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Fig. 6. Same as F ig . 5, except £ = 0 . 3 . 
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792271 
F i g . . Same as F i g . 5, except § = 5. 
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792263 
Fig. 8. Plot of fi versus s for bg = 0.1, q = 1, 

and e n = 0.1. The rest is same as Fig. 5. 
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792272 
Fig. 9. Potential structure for E n = E C T > where the weak toroidicity-

induced eigenmode branch appears. 



Fig. 10. Plots of ôT versus b 0 for E n = 0.1 
792267 

1, and q = 1. 


