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INTRODUCTION

The Energy Kernel System (EKS) is a simulation environment for building energy
analysis under development at Lawrence Berkeley Laboratory. EKS is a very flexible,
highly modular environment that allows users to create customized models of thermal
systems by linking together calculation objects — either defined by the user or obtained
from a library — that describe the individual components of the system. A principal
departure from other simulation environments is that system models are constructed
from submodel objects that are defined without prescribed input or output interfaces,
yielding greater modeling flexibility. Also, graph theoretic techniques are employed to
determine the solution sequence, including reduction of the iterative problem size at each
time step.

To demonstrate the use of EKS for modeling complex physical systems, we present in
this paper a dynamic EKS simulation of a hybrid liquid desiccant cooling system. We
show (1) how EKS calculation objects are generated automatically using MACSYMA
(MIT, 1983), given the basic algebraic and differential equations for the system; (2) how
EKS objects are linked into macro objects that describe system components; and (3) how
macro objects are linked together to form a mathematical network representing the

entire system. Finally, we show graphically the numerical results of running a time-
dependent simulation of the system.

This work was supported by the Assistant Secretary for Conservation and Renewable Energy, Office of Building Technologies, Build-
ing Systems and Materials Division of the U. S. Department of Energy under Contract No. DE-AC03-76SF00098.



THE EKS ENVIRONMENT
The EKS simulation environment is based on the intuition that:
(a) there should be a single "sub-model" for each particular component,

(b) the overall system model should be defined once, yet be capable of solving any
well-posed problem involving the system variables, and

(c) the environment software should select the appropriate solution sequence, includ-
ing necessary iteration, in a manner transparent to the modeler.

The underlying principles making this realizable for static (i.e., algebraic) systems
have been described by Sowell, Buhl, Erdem & Winkelmann (1986), implemented by
Anderson (1986), and extended to handle dynamic (i.e., differential-algebraic) systems
(Sowell and Buhl 1988). These ideas are described in terms of the object-oriented para-
digm in Sowell, Buhl and Nataf (1989) and Buhl et al (1990).

Briefly summarized, EKS is a nonlinear equation solver with automatic equation
system reduction and with an object-oriented interface. EKS manipulates objects that
are equations and macro objects, which are collections of equations. The task of the user
is to generate the objects and their related software equivalent, and to link them together
in the appropriate way to take into account the variables common to different objects.

In this way, large systems are modeled by a connection of simple component models,
together with descriptions of how the individual components are related. The promise of
this approach is that the resulting description of a large system is essentially a schematic
of the corresponding physical system, and is constructed in a similar manner to the phy-
sical system.

Step by step, then, the procedure that EKS users follow in setting up and running
simulation is as follows:

(1) Draw the system schematic showing the physical components of the system and
how they are connected.

(2) Write the mathematical equations, such as energy balances, mass balances, etc.,
that describe the system. These equations are the basic objects that EKS manipulates.

(3) Run the EKS MACSYMA preprocessor to generate the C code and associated
functions for the equations (objects) in (2).

(4) Using the EKS Network Specification Language (NSL), link the objects in (3)
into macro objects (sets of equations) that describe system components.

(5) Using NSL, link the macro objects together into a network describing the entire
system.

(6) Specify input variables, starting values, start time, stop time, time step, etc.

(7) Run the simulation.

(8) Plot results.

If macro objects for the system components already exist in the EKS library, then

only steps (5) through (8) are necessary. In the following sections we illustrate the above
steps in an EKS solution of a hybrid liquid desiccant cooling system.

A diagram of the current EKS environment is shown in Fig. 1. The user interacts
with the system in four basic ways: defining objects (e.g., component models); defining
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problems by linking objects together; specifying run-time data; and specifying desired
output. The objects are defined in text files, either as mathematical equations or as com-
ponent models in Neutral Model Format (Sahlin and Sowell, 1989). These files are pro-
cessed symbolically with programs written in MACSYMA, producing C language func-
tions and objects that are stored in libraries. Problems are defined by interconnecting
objects using the interactive graphical user interface, producing a problem specification
file in NSL. The nucleus or kernel is the dynamic Simulation Problem Analysis Kernel
(SPANK) program system (Sowell and Buhl 1988). It works from the NSL description,
generating internal data structures based on graphs. Matching and reduction algorithms
are employed with these graphs to automatically devise an efficient solution algorithm,
producing an executable program for a particular problem. This program reads constant
and time-varying data from files, producing the problem solution. The output processor
reads the result file and generates graphical displays according to interactive user
requests.

PROBLEM DESCRIPTION

We consider the hybrid liquid desiccant system shown schematically in Fig. 2. The
fluid used is a solution of lithium chloride in water. A complete description of the sys-
tem is given in Sick (1986) and Buschulte (1984). The system provides cool, dry air to a
space. It contains an interchanger, a heater and a cooler (all modeled with the LMTD
method), a regenerator and a conditioner (both modeled with a Kathabar equation), and
two sumps, one of which is massive and, therefore, dynamic.

Quoting Sick (1986), "Precooled desiccant solution flows counter-currently to the air
stream through the conditioner where it absorbs water vapor and cools down the air only
to the desired set temperature. The water taken from the air goes into the liquid desic-
cant solution. In order to maintain its concentration, the salt solution is pumped to a
regenerator. The process in the regenerator is reverse to that in the conditioner. Return
air from the building absorbs water from the preheated solution which becomes more
concentrated and is pumped back to the conditioner. The conditioner and the regenerator
are connected by a heat exchanger (interchanger). The hot solution leaving the regenera-
tor heats up the cooler desiccant coming from the conditioner. Thus, the solution enter-
ing the conditioner cycle is precooled, while the solution flow to the regenerator is
preheated."

In this exercise we have not modeled controls (such as turning off the conditioner
when the regenerator cannot keep up with it).

SYSTEM EQUATIONS

The system schematic for this problem is shown in Fig. 2, which also indicates the
system variables. The equations of the system are given below. Here, as in Fig. 2, W
stands for mass flow, x for solution salt concentration, / for humidity ratio, i for specific
enthalpy, 7 for temperature, and m for the mass of the solution in the regenerator sump.

We have only fisted the primary equations; the thermodynamic state equations are not
shown.



Conditioner water mass balance:
WiH4+ We(I-x6)= \V4Hb+ W40 {1-x40)

Conditioner salt mass balance:
Wex9=W40x40

Conditioner energy balance:
N6>a;6)+ Watd( Ta, H4)= MMo*40( T'4o,a-40)+ ~438( Th, Hb)

Conditioner Kathabar relations:
Hb=H(Tb,xe)
Th— Te=Kc [«4( T+,Hs)—ib( Th,Hb)\

Conditioner sump mass and energy balance:
Wib+wil=\vi+w?

"M SL3+ ATHZA=( A6+ N9)xb

ANis¥ie( N 1)+ Waolao( 740,X40)=( Ho+ M/9)88( 78 X6)

Solution cooler heat transfer:
UAC ATim ¢— WiecP,w(Tid— T13)
{Th-T14)-(1\-Tiz)
T*- 7%
n
Te~ T3

where Ar/mg=
I

Solution cooler energy balance:

Interchanger relations:
UAiATin i = Wxbep<l(T-j—T18)
where ATl i=(—T7 —)-(rl-ry)
77—1TY
-7
~[*9( Tgre)—«g( T'8,a:0)]= \VIb[t1( T7,x:1)—ilb( T152:3)]

Desiccant heater relations:
UAi A Tijn/, = WigCpw (T [i—T ,0)
(Tn-Ts)-(T12-77)

where ATl h—
Tu-7z
In
T T7
h72[* 1 N1D)—, 12( T 12)]= "s[*3( ¥ Tvis)]

Regenerator equations:

WxHI+ IK3(1-X3)= war2+ vyd,(i-"41)

173*3="41%41

173*3(7°3,2-3)+ MV h T,//,)= 117a1%41(T'41,2:41)+ Wxi2{ T2,H))
H>=H(T2xz)

12— T7=KR [«,(Tx,Hx)-i){ To,Ho)}



Regenerator sump dynamic equations:

| !
............ =(*9"O+141 ~A—{ A3+ Nis)*FT

OBJECT GENERATION

In EKS, the objects corresponding to the above equations are automatically gen-
erated using MACSYMA, a symbolic language for manipulating equations. We have
written a program in this language that allows the user to enter equations or systems of
equations in a natural form. M\CSYMA then generates all the object files, macro object
files and C function files required by EKS (Sowell and Nataf, 1990).

These files are generated by repeated use of the command makespank(eq,name),
which creates the object name.obj and associated functions corresponding to equation eq.
Equation eq can be either a single relationship covering the full range of its variables, or
a piecewise-defined relationship consisting of different equations for different ranges of its
variables.

The set of makespank commands for the present problem is given in Fig. 3. We
note for example that the object rc Jrac cons22, which is created by the second com-
mand fine

makespankfmass_in *frac_in=mass_out *frac_out, "rc_jrac_cons22",[]),

can be used for the salt mass balance equation for both the conditioner {Wox6=W4xi()
and the regenerator & HYx").

MACRO OBJECT GENERATION

We next generate the macro objects, which represent the sets of equations that
correspond to individual physical components of the system. This is done by using the
EKS Network Specification Language to link objects (each of which represents a single
equation) together. An example of this process is given in Fig. 4, which shows how the
macro object for a heat exchanger is generated by linking the objects x enth cons22h
(enthalpy conservation) and newcross Imtd (LMTD equation) that were created by
MACSYMA in Fig. 3. Because linking of objects by hand is tedious and error prone, we
are developing a graphical interface to automate this process. We also note that objects
and macro objects, once generated, can be stored in a library and reused later, so that
they do not have to be regenerated each time they are needed.

SYSTEM NETWORK GENERATION

The next step is to link the component macro objects together into a network that
follows the system schematic. Again, the Network Specification Language is used, as
shown in Fig. 5.

In NSL, the command declare is used to instantiate (create particular instances of)
objects. For example, in Fig. 5, the lines
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declare exchanger cooler,
declare exchanger heater;

indicate that the macro object "exchanger" is used for both the cooler and heater com-
ponents in Fig. 2.

The NSL command input is used to specify input variables. For example,
input tl(regenerator. temp_inl)[T]

specifies that the incoming air temperature for the regenerator will be input by the user.

The link command identifies variables (unknowns) that are shared by two or more
objects (or macro objects). For example,

link t3(heat. temp_outl, regenerator. temp_in2)[tsump]

specifies that the temperature heat.temp outl of the LiCl solution leaving the "heater"
component (Fig. 2) is the same as the temperature regenerator. temp _in2 of the solution
entering the "regenerator" component. The user has chosen to label this temperature "t3".

The linking process, which has been done by hand in this example, is automated by
the previously-mentioned graphical interface.

THE EKS SIMULATION

The final step is to supply a file with numerical values of input quantities such as
weather data, setpoint values, system parameters, starting values, time step, start and
stop time, etc. At this point the user can run the actual simulation of the system net-
work.

For the present problem a 9-hour run period was selected, with a time step of 1.5
minutes. All input variables were chosen to be constants (with values as shown in Fig. 2)
except for TJh the temperature of the air entering the conditioner. This temperature fol-
lowed a weather profile that increased from 76F to 97F and then fell to 81F.

RESULTS
The simulation results are shown in Fig. 6. Some noteworthy trends are evident:

(1) The humidity, H5, of the conditioned air varies from 0.0062 to 0.0052, and is
less than the humidity HJ/, = 0.0093 of the incoming air. This shows that the condi-
tioner is drying the incoming air, as is it supposed to.

(2) The humidity, H2, of the exhaust air from the regenerator varies from 0.027 to
0.022, and is greater than the return air humidity A7 — 0.0093. This indicates that the
regenerator is removing water from the salt solution, as is intended.

(3) The rapid variation during the first half hour in variables associated with the
regenerator loop, such as 77 and IF/l, is a system transient due to the startup dynamics
of the regenerator sump.

(4) The cooling power, del, of the conditioner follows the T./ profile, as expected.
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(5) The exhaust air humidity of the regenerator, //2, and the conditioner, HSJ,
decrease with time.

(6) The mass, m, of the solution in the regenerator sump decreases, which means
that the amount of water removed from the solution by the regenerator is greater than
the amount of water added to the solution by the conditioner.

(7) The leaving cold water temperature, 774, from the cooler varies inversely with
1'4, whereas the leaving hot water temperature, 772, from the heater is nearly constant.

(8) The regenerator exhaust air temperature, 72, and the solution temperatures in
the regenerator loop (73, 77, and T41) increase slowly after an initial sharp drop due to
the sump startup transient (see (3), above).

(9) The solution temperatures in the conditioner loop (T6, 78, and 7175) track the
T4 variation, whereas the inlet solution temperature is almost constant.

(10) The cold water flow, W16, in the cooler tracks 74. On the other hand, the con-
ditioner flow, W40, and the regenerator flow, W4I, increase steadily in order to compen-
sate for the loss of solution water by the system (see (6), above).

(11) The net loss of circulating water causes a steady rise in salt concentration (X3,
X6, X40, X41).

CONCLUSION

We have demonstrated that complex EKS objects and macro objects can be created
automatically with available symbolic manipulation tools, and that the EKS can be
used to generate a simulation program for modeling a complex real-world problem.

At this point it is important to stress that the input-output-free nature of EKS
allows the user to set up and run variants of the problem with little extra effort. For
example, it is easy to define new problems that involve changing an input variable into
an unknown and vice-versa, as long as the problem remains well posed, i.e., as long as
the number of unknowns equals the number of equations. This is done by interchanging
input and link commands in Fig. 4. EKS will then automatically generate and solve
the new simulation problem. Finally, the inherent modularity of EKS makes it possible
to model part or all of the base problem in greater (or lesser) detail by replacing one or
more macro objects. For example, in the current problem we used the LMTD method for
the heat exchanger macro object. This could be replaced by a more detailed macro
object based on a finite difference approach, for instance, with no change to the rest of
the problem.

FUTURE WORK

The current EKS program, although already capable of handling a wide range of
simulation problems in HVAC analysis, should be considered a prototype. Work is

under way or is being planned to significantly expand the usability and robustness of the
program. This work includes:

(1) completion of the interactive graphical editor, based on X-Windows, to facilitate
retrieval, storage, display, editing, and linking of objects;
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(2) expansion of the existing object library to encompass a range of commonly-used
HVAC system components;

(3) extension and refinement of the Neutral Model Format, which is particularly
important as a way of exchanging component models between EKS and other simulation
environments;

(4) replacement of the present Network Specification Language with a new "Com-
ponent Description Language" that will permit object-oriented specification of integration
methods and variable time stepping (Moshier and Sowell, 1990);

(5) incorporation of methods to automatically partition a network into smaller sub-
problems in order to improve convergence and reduce execution time;

(6) development of an interactive data manager to facilitate data input and results
display.

(7) in a parallel effort to EKS development, incorporation of EKS object-oriented
techniques into DOE-2 to produce component-based SYSTEMS and PLANT subpro-
grams; the resulting new program, DOE-3, will allow users to easily model new HVAC
technologies while retaining the powerful DOE-2 LOADS calculation.
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U.S. ENERGY KERNEL SYSTEM
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Figure 1.
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simulation
program
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Ovals show user actions.

Configuration of the Energy Kernel System (EKS). Shaded boxes are pro-
grams; unshaded boxes are files.
representing the mathematical equations of a physical system, EKS creates
an executable program that can be run to determine the dynamic behavior

From objects
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W6 (64921 Ib/hr), T6, x6
Concentrated LiCl/Water Solution

Conditioned Air

.. T5 (66.7 degF'!
Conditioner H5 J

W40,T40,x40
W15 (4365 Ib/hr), T15  |Massless Sump
T8
Interchanger
W3 (65874 Ib/hr) ,T3,x3

W1l (222)22 4b/hr
T1 (76. d4gF)
HI (0 (3093

Figure 2.

Dilute LiCl/Water Solution

T2, H2

Exhaust Air

W41,T41,x41

T7, m

T13 (55.04 degF)

Cold water from
auxilliary chiller
(not shown)

Cooler

W16,T14

Til (140 degF)

Hot water from boiler
(not shown)

Heater

T12

W12 (34127 Ib/hr]

Schematic of a hybrid liquid desiccant cooling system. Unknown variables

are shown in boldface. User-specified input variables are shown in lighter
type, with values in parentheses.
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/**************************************************/

/*MACSYMA FUNCTION CALLS TO GENERATE SPANK OBJECTS*/
[xhkkkkkhkhkhkhhkhhkkhhkhkhhhhkkhxhkkhhkkhkkhhkkhkkkkkx /

makespank (mass_l* frac_inl+mass_in2* (1. -frac_in2)
=mass__. 1* frac outl+mass out2* (1. - frac_out2)
, "rc_mass_cons22", []) §

makespank (mass_in* frac_in=mass_out* frac_out
, "re_ frac con522", NER

makespank (mass_1 *enth_ inl+mass_in2 *enth_in2
=mass l*enth outl+mass out2 *enth out2,
"re_ enth cons22h" , [])§

makespank (temp outl-temp in2=f* (enth_inl-enth outl) ,
"kath2h"/ [D $

makespank (mass_inl+mass_in2=mass_outl+mass_out2,
"s_mass_cons22",[])$

makespank (mass_inl+mass_in2=mass_outl+mass_out2+mdot
"ds_mass_cons22", []) $

makespank (mass_inl* frac_inl+mass_in2* frac_in2
= (mass outl+mass _out2) *frac out,
"s_frac_con522" ERE:

makespank (mass_inl*enth inl+mass_in2*enth_in2
(mass__ “outl+mass _out2) *ent.h _out,
" s_enth_cons22h", ) s

makespank (mass_inl*enth. inl+mass_in2*enth_in2
= (mass_ "~ outl+mass out2) *enth_out+menthoutdot/
"ds_enth_cons22h" 1§

makespank (m*enth outdot
=mass_inl*enth inl+mass_in2*enth in2- (mass_inl+mass_in2) *enth out/
"ds2 enth cons22h"  [] ) §

makespank (mass_2* (enth_in2-enth out2)
=mass 1* (enth_ outl- enth_:.nl) )
"x_enth_con522h", 1 $

makespank (h=cp*t/ "hcpt", []) $

makespank (ua* ( (temp_inl-temp out2) - (temp outl-temp_ in2) ) /
log ( (temp_i.nl-temp_ out2) / (temp outl-temp in2) )
=mass 1n2*cp2* (temp out2-temp in2),
"newcross_lmtd", IER

makespank (del=w* (i_in-i out) , "coolpower", [w, i_in, i out]) $

Figure 3. MACSY1VIA function calls that generate the EKS objects for the desiccant
cooling system problem.
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/******>I<>l<>l<>l<>I<>l<*>l<>l<>l<>I<>l<*>l<>l<>l<*********************/

/*SPANK FILE FOR THE EXCHANGER MACRO OBJECT*/

y*******************************************A/

/* Spank macro object file exchanger.obj */
/* This file contains an .obj file needed to model
the hybrid liquid dessicant cooling system described
* by the M.S. thesis of Friedrich Sick (University of Wisconsin
* -Madison) */
/* It makes use of the files contained in dessic.c */
/* Can be used for a heater or a cooler*/

/*
* exchanger object

*/

/* LMTD formula (Logarithmic Mean Temperature Difference)
* Energy balance

*/
macro

declare newcross_lmtd 1;
declare x_enth cons22 e;
link ua(l.ua)
link cp (1 .cp2, e.cp)
link mass_1 (e .mass_1)
link mass_2 (emass_2,l.mass_in2|
link temp “inl (e. temp_:l.nl 1. temp inl)
link temp outl (e.temp outl,l.temp outl)
link temp _ in2 (e. temp_1n2 1.temp . in2)
link temp out2 (e.temp out2,1.temp_out2)
link frac 1 (e.frac_1) [x5]
link enth_:l.nl (e. enth_:Lnl)
link enth in2 (e.enth_in2)
link enth outl (e.enth outl)
link enth out2(e.enth_out2)

Figure 4. The EKS file in which objects are linked together to form the macro object

representing a heat exchanger.
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y*****************>I<>I<****>I<*>I<*>X<>l<>l<***********************/

/*S PANK SIMULATION FILE FOR DESICCANT COOLING PROBLEM*/

/*>|<************************************************* y

/* Spank simulation file dyn desiccl.ps */

/* This file contains the links and inputs necessary
* for the matching of the various local variables in
* the hybrid liquid desiccant cooling system problem.
*®/

/*Buschultels Problem+Sick's Thesis, Wisconsin Madison*/

declare regcond conditioner;
declare regcond regenerator;
declare iexchanger interchanger;
declare exchanger cooler;
declare exchanger heater;
declare sump22 condsump;
declare part_dyn sump22 regsump;
declare prod mx3p;
declare cpbctf cpbctfi;
declare coolpower cool ;
/*Inputs*/
input kc(conditioner.f) [kathabar] /*Kathabar constant for conditioner*
input kr (regenerator.f) [kathabar] /*Kathabar constant for regenerator*
input uai (interchanger.ua) [UA] /*UA value of interchanger*/
link: cpi (interchanger cp, cpbctfi  cpbc) [hw] /*Specific heat of
LiCl-water mixture in interchanger*/
input uac(cooler.ua) [UA] /*UA value of cooler*/
input cpc(cooler.cp) [hw] /*Specific heat of cold water in cooler*/
input uae (heater.ua) [UA] /*UA value of heater*/
input cp2 (heater.cp) [hw] /*Specific heat of warm water in heater*/
input tl (regenerator.temp inl) [T] /*Temperature of incoming air
in regenerator*/
input t4(conditioner.temp inl) [T] /*Temperature of incoming air
in conditioner*/
input t5(conditioner.temp outl) [T] /*Temperature of cool dry air
coming out of conditioner into
the conditioned space*/
input til (heater.temp in2) [T] /*Temperature of incoming warm water
in heater*/
input t!3(cooler.temp_in2) [T] /*Temperature of incoming cold water
in cooler*/
input hi (regenerator.frac_inl) [w] /*Humidity of incoming air in
regenerator*/
input h4 (conditioner.frac_inl) [w] /*Humidity of incoming air in
conditioner*/
input wl (regenerator.mass_1) [bigmw] /*Mass flow of air

through regenerator*/
input w3 (heater.mass_1l,regenerator.mass_in2,regsump.mass_out2) [bigmw]
/*Mass flow of LiCl-water diluted mixture
through heater into regenerator*/
input w4 (conditioner.mass_1,cool.w) [bigmw] /*Mass flow of
incoming air through conditioner*/

Figure 5. The EKS file that generates the desiccant cooling system network. The
network is formed by linking together the macro objects that represent
individual system components (conditioner, interchanger, regenerator, etc.)
and by assigning input variables.
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input w6 (cooler .inass l/conditioner .mass_in2 condsump .mass_out2) [bigmw]
/*Mass flow of LiCl-water concentrated solution
through cooler into conditioner*/

input wl2 (heater.mass_2) [bigmw] /*Mass flow of warm water through heater*/

input w!5 (condsump.mass_in2,interchanger mass_2,regsump.mass_outl) [bigmw]
/*Mass flow of LiCl-water mixture out of
regenerator sump into conditioner
sump through interchanger*/

/*Regenerator Sump exit conditions¥*/

link t7 (heater.temp_inl,interchanger.temp_in2, regsump.temp out) [tsump]

link x3 (heater.frac_1l,regenerator.frac_in2,interchanger.frac_ 2,
condsump.frac_in2,regsump.frac_out,mx3p.in2) [x5]

/*Unknowns */

link t3(heater.temp outl,regenerator.temp_ in2) [tsump]

link tl1l2 (heater.temp out2) [tl2]

link h2 (regenerator.frac_outl) [w]

link t2 (regenerator.temp “outl) [tsump]

link w4l (regenerator.mass_out2,regsump.mass_inl) [bigmw]

link x41 (regenerator. frac out2,regsump. frac _inl) [x5]

link t4l (regenerator.temp_ " out2, regsump. temp “inl) [tsump]

link w40 (conditioner.mass_out2,condsump.mass_inl) [bigmw]

link x6 (cooler.frac 1, conditioner. frac_in2 condsump frac_ out,
1nterchanger frac 1l regsump. frac 1n2 ,cpbctfi.f) [x5]

link h5 (conditioner.frac outl) [w]

link x40 (condsump.frac 1n1 conditioner.frac out2) [x5]

link w9 (interchanger.mass l ,condsump.mass outl, regsump.mass _in2) [bigmw]

link t6 (cooler.temp_ outl, condltloner temp “in2) [tsump]

link t40 (conditioner.temp out2/condsump.temp inl) [tsump]

link t!5(interchanger.temp out2,condsump.temp_ in2) [tsump]

link t9(interchanger.temp outl,regsump.temp _ in2) [tsump]

link t8 (condsump.temp out,cooler.temp inl,interchanger.temp inl,cpbctfi.t)

[tsump]
link wl6 (cooler.mass_2) [bigmw]

link tl4 (cooler. temp out2) [tl4]

/*Enthalpies Careful, since fraction and temperature transmitted
*— > enthalpy transmitted too. So beware of linking enthalpies together
*if temps and fracs already linked*/

/*Essentially we here just give names...*/

link il (regenerator.enth inl) [h]

link i2 (regenerator. enth ._outl) [h]

link i3 (/*regenerator.enth in2,*/heater.enth outl) [hw]

link i4 (conditioner.enth_ inl, cool i in) [h]

link i5 (conditioner. enth outl,cool.i out) [h]

link 16 (cooler.enth outl/* conditioner.enth _in2*/) [hw]

link i7 (/*1nterchanger enth in2 heater. enth inl,*/regsump.enth out) [hw]
link i8 (condsump.enth out/* cooler enth__ inl, 1nterchanger enth 1nl*/) [hw]

link 19 (interchanger. enth _outl/* , regsump.enth_in2*/) [hw]

link ill (heater.enth_in2) Thw]

link 112 (heater.enth out2) [hw]

link 113 (cooler.enth in2) [hw]

link 114 (cooler.enth out2) [hw]

link 115 (interchanger.enth out2/*,condsump.enth in2*/) [hw]

Figure 5 (cont.)
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140 (conditioner enth out2/*, condsump enth inl*/) [hw]
141 (regenerator.enth out2/*,regsump.enth_inl*/) [hw]

del (cool.del) [gq]

m (regsump .m, mx3p. ini) [desiccm]
mdot (regsump.mdot)

mi”7 (regsump.menthout) [mi7]
mi7dot (regsump.menthoutdot)

input mx3 (mx3p.product) [desiccm]

history m hist(regsump.m hist)
history mi7 hist(regsump.menthout hist)

input dt (regsump.dt) [TIME]

Figure 5 (end)
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dity ratio, i = specific enthalpy, t = temperature, m = mass of sump, del
= cooling power of conditioner.
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