
y

UCRL- 86132
PREPRINT

DEBUGGING IN A MULTI-PROCESSOR
ENVIRONMENT

James M. Spann MR
This paper was prepared for submittal to
9th Symposium on Engineering Problems

of Fusion Research
Palmer House

Chicago, Illinois
October 26-29, 1981

September 29 , 1981

This, is a preprint of i paper intended for paMicatioA in i jowai l or proceedings.
cbMges nay be male before publication, rhis preprint is made aiailable Kith the an-
dtnlnndini tai l it win not be cited or reproduced mlnout the perniisioa of tbe author.

Unclassified

l,:.";''JT it ii". '''Mi

DEBUGGING IN ft KUL1I-PROCESSOR ENVIRONMENT*

James PI. Spann
Lawrence Livermore National Laboratory

P. 0. Box 5511, L-535
Liverraore, CA 91650

DISCLAIM" —
-/• i icrt l 'ncf* frct'S-H** jM-n

? itv".r^°
lr* U ned

w s ^ " f c * W i ^ (^ . I ' r C B l

Summary

The Supervisory and Control and Diagnostic System
(SCDS) for the Mirror Fusion Test Facility (MFTF)
consists of nine 32-bit minicomputers arranged in a
tightly coupled distributed computer system utilizing
a share memory as the data exchange medium. Debugging
of more than one program in the multi-processor en­
vironment is a difficult process. This paper de­
scribes what new tools were developed and how the
testing of software is performed in the SCDS for the
MFTF project.

Thp Inter-Processor Communications System (IPCS; of
SCDS coordinates tasks running on various computers.
A task that runs under the IPCS is called an execute
module (EM). Normally all computers are running si­
multaneously various EHs; EHs running on one computer
may have to communicate with another computer. The
EMs are the application control programs that require
testing. Conventional debugging tools do not allow
coordinated debugging of a set of EMs communicating
across computer boundaries. The testing of EHs re­
quired modifications to the IPCS and development of a
new debugging utility. Modifications to the IPCS
allow the user to communicate with EMs directly via
his/her terminal; this together with other existing
software utilities were incorporated into a single
debugging tool. The SCDS group has been using this
debugging technique in a multi-processor environment
for over a year.

*"Work performed by LLNL for USDOE under contract
number W-JJ05-ENG-48"

Introduction
Software testing and debugging in a multiprocessor en­
vironment requires a new set of tools for the software
engineer, The supervisory and control and diagnostics
system (SCOSJ for the Mirror Fusion Test Facility
(MFTF) consists of nine 32-bit minicomputers arranged
in a tightly coupled distributed computer syst'j using
a shared memory as the data exchange medium (Figs. I
and 2). He developed a new debugging tool to aid in
code testing in this environi.,'"t. This debugging tool
(called tmDeBug) allows a user from one terminal con­
nected to one processor to debug and test multiple
coordinated Pascal programs running on several of the
processors in SCOS as though the user was dealing with
onlv one computer and one program.

Each computer (Perkin-Elmer 7/32 or 8/32) in the net­
work runs the vendor-supplied operating system
0S-32/MT. A code running under OS-32/KT is called a
task. The inter-processor communications system
(IPCS) of SCDS coordinates tasks running on the
various processors. A task running under IPCS is
called an execute module (EM) and has attributes that
are characteristic to EMs exclusively. One such
attribute is that each EM has a mail box in which to
receive mail from other EMs. Err.De8ug (execute module
debugger), described in this article, allows a user
to control and to symbolically debug several EMs si­
multaneously from a single terminal regardless of on
which physical processor a particular EM is executing.

Fig. I. MFTF Control and Diagnostic System.

Sofmkorycmtroi
Mtwork
Local control
liM*

l D b f M » o , B b l B Duabw

-•»•

: < »

Fig. 2. Lines of Cotmnunication Between EmDeBug and EMS Under Test.
The user is able to test EHs on many processors simultaneously.

Coordinated Debugging Difficult

Coordinated debugging of more than one program in the
multiprocessor environment is an extremely difficult
process. Before EmDeBug was developed for multi­
processor debugging, the programmer was required to
have a terminal assigned to each processor that was
running the debugger. This enabled program testing
across processor boundaries. But the process was cum­
bersome and expensive, and made poor use of valuable
resources (terminals) for which other programmers were
competing. Even with this method, it was difficult to
test two EHs at a time and next to impossible to test
modules across three processors. The problem became
unmanageable as more of the processors were brought on
line and more programmers started testing. Thus, it
became imperative for us to develop a high-level de­
bugger that would enable programmers to efficiently
test multimodule systems running on multiple proces­
sors.

Sum Of The Parts Equals The Solution

The facilities of IPCS—together with certain software
utility programs—allowed us to construct a new soft­
ware debugging tool. A symbolic debugger already ex­
isted for local debugging on a single processor. And
various other software utilities programs existed for
examining the messages (known as mail) sent between
EM's. These and several other programs were put under
the control of EmDeBug and comprise the EmfleBug system
for multiprocessor debugging.

Symbolic Debugger
The Pascal/32 symbolic debugger facility allows an
interactive user to examine the state of a Pascal
program; to address and display active variables by
their symbolic names; and to establish breakpoints
for tracing and further state examination, This
debugger was provided with the Pascal compiler as a
debugging tool for a user debugging one program. An
option in the Pascal compiler allows construction of
a symbol table file that the debugger uses to address
variables and procedures by name. When an EM is to

be tested, the debugger is included as a procedure and
linked into the EK code for local debugging. The de­
bugger becomes active when a breakpoint, explained
below, is executed.

The following is a partial list of the symbolic
debugger coimiards:
• L1ST provides a list of all the symbolic names

which may be used in conjunction with a specified
name.

t LOCATE returns the relative memory address of the
specified symbolic name.

» DISPLAY causes the contents of the memory loca­
tion specified by the symbolic name (variable,
routine, or components) to be displayed.

• BREAKPOINT sets a dynamic breakpoint at a
specified program line number or relative memory
address. A breakpoint causes the program to
interrupt execution and transfer control to the
debugger when the code gets to the specified
place. The program is then suspended until the
user restarts it, at which tine it continues
from the breakpoint.

• TBACEBACK provides i listing of all of the active
procedures which have been executed to date
starting with the current procedure and back­
wards in time to the initial statement of the
program.

• EXAMINE displays a memory location, specified
either symbolically or as a relative memory
address, in hexadecimal notation,

• REGISTERS displays the computer register and
program counter contents for the process that
caused the debugger to be entered.

To reiterate, all of the above commands are available
after the program being debugged has executed a
breakpoint that activates the debugger program.

What is the IPCS?

The inter-processor communications system (IPCS) is
the distributed operating system that manages the com­
munications between all the processors and the execute
modules. EM's can only be started by other EM'S.
(Note that there is a way to get the first EM into
the system.) when an EM sends mail to another EH, the
IPCS queues the mail (puts it in the mailbox) and then
loads and starts the recipient EM task if it is not
already running, when the EM completes its job, it
returns its mail through the IPCS to the sender,
called the "parent" of the mail, and removes itself
from memory thus completing the cycle.

Each EM task performs a well-defined job; it is loaded
into memory, runs to completion and then is removed
from memory. This is the normal operation of IPCS-
handling system control type mail. Any errors gen­
erated during execution of an EM causes messages to
be sent to the system operator, EmOeBug uses this
feature to communicate with EMs across processor
boundaries.

EmDeBug has the special ability to attach to an EM (on
any processor) for testing. EmOeflug, itself is an EM,
runs on the current processor and is activated by a
user. When EmOeBug attaches to an EM, the IPCS re­
routes the mail (messages) from the EM task to EmDeBug
(Fig. 3). The EM program on finding mail in its mail­
box determines if it is message from EmDeBug (known as
EM commands) and takes appropriate action.

PrtMlia 0 h«(K» P-XttW »,1 INlMliW B'9

Fig. 3. EmDebug Communication Paths.

EmDeBug Commands
There are three major groups of EmDeBug commands:
symbolic debugger commands, EM commands, and utilities
commands.

Execute Module Commands
The EM commands and their interface with the IPCS make
EmDeBug a debugger tool for a multiprocessor program.
With EM commands, the user may start EM tasks, cancel
running EMs, connect to and disconnect from EMs, and
force an EM to break as if it had come to a breakpoint
(which then activates the symbol debugger).

The TASK command causes the specified EM to be brought
into memory and started. All error messages sent by
the EM are then displayed on the user's terminal. If
the EM specified by the TASK/Command to already in
memory, EmDeBug will simply attach to it and not load
it.

The TASK command will also let the user specify the
file from which the execute module is to be loaded,
and hence the user may load a surrogate execute module
for testing and debugging rather than the one normally
run. For example, an execute module surrogate that
only prints out the contents of any mail received
could be loaded and used for testing communication
with other EM'S. The use of surrogates is a fairly
powerful testing and debugging technique. Further,
genere'tzed utility program stubs can now be written
and widely used by programmers as surrogates for test­
ing interfaces with other EMs.
The TELL command sends a text string message to an
execute module via the IPCS. Communication between
the EM under test and the user is provided by two
procedures which are part of the EM. If an execute
modu'- under test wishes to send a message to the user
run! .g EmDeBug, the EM may do so by the procedure
TellObug (pronounced Tell Debug).

TellDbug sends the text string in the message to
EmDeBug, which then displays it for the user. Execute
Modules that wish to receue messages from the user
running EmDeBug can do so via the procedure HearDbug
(pronounced Hear Debug).

HearDbug receives the message initiated by the EmDeBug
command TELL. The message (text string) so transmit­
ted could be used to select (user determined) branches
within the EM to aid in testing internal routines.
These two procedures allow a user bidirectional com­
munication with an EM and also with the debugger
attached to the EM. (See Fig. 3.) TellDbug and
HearDbug would be normally removed when testing is
completed.

The DISCONNECT commend detaches EmDeBug from an exe­
cute module. It leaves the EM in memory, but the EM
will no longer receive messages (via HearDbug) from
it; EmDeBug will also not receive any messages sent
via TellDbug from the EM.
The CANCEL command causes the curre-tly attached EH
to cancel itself; i.e. terminate and leave memory.

The DEBUG command will force the currently attached
EM to break as if it had executed a breakpoint and
then enter the symbolic debugger.

Ut lity Coimiand5
The utility commands are among the most useful
commands available to the EmDeBug user. These
commands provide general information concerning the
activities and en- vironment of the processor(s) dur­
ing a test session. The following is a list of the
more interesting utility commands.
• ONRECQRD logs all subsequent commands and mes-

sages to a disk log file. This provides a re­
port of a debugging session that can be used as
a reference later for a group discussion and
documentation.

• COMMENT allows the user to enter comments into
the log file.

I MAP displays a map of memory showing the curr_jit
memory allocation of programs running on the
specified processor.

• MTREE allows a user to examine the mail tree.
Mail in the shared memory is linked into a tree
for debugging purposes.

•3-

• TABLE displays important IPCS tables (processor
status, logical-to-physical map, etc.).

• EXECUTE MODULE RESTART allows the user to specify
tnat the attached EH should automatically reload
and restart an if it goes end-of-jDb.

I TASK TABLE displays a list of the EMs that
EmDeBug is currently attached to and can receive
messages from. The table contains the EM name,
load file name, mail id number and if execute-
module-resta^t is active.

• BITCH processes a list of EmOeBug commands from
a disk file. This makes it easier for the user
to repeatedly set up a group of EM's for testing.

• EDIT activates a full feature editor. This lets
the user inspect source files during a test
session and make modifications.

Physical Acquirements of EmOeBug

EmDeBug executes on the 32-bit minicomputers manufac­
tured by Perkin-Elmer Corporation. EmOeBug was de­
veloped in the Pascal language provided by the Univer­
sity of Kansas, which also provided the symbolic de­
bugger. The code size of EmDeBug is about 60K bytes
in length. However all but 5K bytes of this program
can be shared by more than one user; i.e. the first
user requires 60K bytes to run EmDeBug, but each addi­
tional user only requires a 5K bytes of additional
memory space. Several of the utility programs are
execute modules; these are brought into memory and
run and then removed from memory when completed to
keep the memory requirements as small as possible.

Conclusions
Symbolic debugging software tools have been around
since the late 1950s, They have proved so useful that
they are now routinely available at most computer fa­
cilities. H'th the advent of multiprocessor systems,
where one task may invoke other tasks running on other
processors, the traditional debugging tools lose ef­
fectiveness.

What we have presented in this article is an enhance­
ment of an already existing tool to allow debugging in
the traditional way in a multiprocessor environment,
The tool makes heavy use of features of the Inter-
Processor Communications System that is installed on
the system,

The work presented in this paper is probably not very
transportable because of the heavy use of features of
the IPCS, which is also a home-grown system. However,
it is our hope that the outline presented here will be
of use to other groups planning multiprocessor systems.
we believe this work is original and hope that others
contemplating building multiprocessor systems will
recognize the importance of designing the communi­
cation system to support multiprocessor debugging
functions.

Bibliography

1. R. L. Glass, "Real-Time: The 'Lost World of
Software Debugging and Testing'," Communications
of the flCH, Hay 1980.

2. P. McGoldrick, "IPCS User's Manual," SCDS System
Software Manual Section 6.1.2, Internal LLNL
Document.

3. J. Spann and P. McGoldrick, "Execute Module De­
bugger," SCDS System Software Manual, Section
6.1.3.5.6, internal LLHL Document

1. R. Young, Pascal/32 Symbolic Oebugoer, an in­
formal Kansas state university report, 1978.

5. R. Young and V. Wallentine, Pascal/32 Language
Definition, an informal Kansas State University
report, IS78.

DM I MMIH

I hi, **umtiu »a, priijirri i , in annum (if null *pnfi*m* In in JEHki of
ih* 1 nil** Marr* <;<»rttmrni. V-iih.r IP* („j,ri ^ , M | n (, (l , „ „ m r n t M j r , (*
I niimiti nr (aliuiiNia wir ant nf Ihii, .main,,,.,, makn am warrant*, LA-
piw ur inpliid. i* aNwmr, ant lual liahilit, m irtswisihiiilt fw Ihr af-
reran. oinipU-u.ni.v .if u*-rulno* nl *», tfuimalinn, apparatus. priNlurl, w
prom, ditrtuwd. nr irfii'trnt. llul i i , u.i< I IH IU mil jarring pri.aidi .wired
riehh. Krfmmrhmjrrl"an. upcrifit-uimmi< trialpriidnrK|niww.nrsmiu'
hi iraaY namr. trademark. rniMjfanunr. „r iiirHTm*. dim nil fiurwarili
riHuritureiirifiipli i!ttlldnnrmi*l.irr<iftim,nda!iiHi.iiirai<iiinKhvihi'l nilril
Slain linmnmrnl "r Ihf I ninTsin nl I iljrurnia. In* l i t ** and iipMi.HI, nf
.aihurs rtpirwd it.rri.i dii nil nrc ruanli Mali- in ti(lii1 Ihmr orIhr I nilrd
Male, l.nirmmrW rhrrciif. and .hall mx hi- u „ d for adirriiMne, m produtt m-
dniwtninl purpinrv

-4-

