UCRL- 86132
PREPRINT

ORI CLERY

DEBUGGING IN A MULTI-PROCESSOR
ENVIRONMENT

James M. Spann

HMASTER

This paper was prepared for submittal to
9th Symposium on Engineering Problems
of Fusion Research
Palmer House
Chicage, I17inois

October 26-29, 1981

September 29, 1981

This is a prepriat of a paper intended lor pablication in a journal or proceedings. Since
+ changes may be made before publication, this preprint is made available with the wn-
derstanding that i will not be cited of reproduced without (he permission of the suthor.

Unclassified

| [T e N
b L TTHOT I8 ey

B s e e T e O PR

DISCLASMER
Qerareibrd ey o e Ured Bt Garement,
o tlanell_not iy G 1T EMEI LBy, manE4TY
i it o mzAMBIRy 128 the FOUIY.
. v, o prov avined. or
+ Refereace harein 10 1y weokic
e, manutocturee, Gt STharwg, 00T

DEBUGGING TN A WULTI-PROCESSOR ENVIROWMENT*

o A Tl St o

-y

James M, Spann
Lawrence Livermore National Laboratory
P. 0. Box 5511, L~535

. Tre ytm and
1 o St Geverroent ot g g et

mataatash, O 14510 B the Lrited
a7 of 40 eazrevved heten do ol

Livermore, CA 94550

Summary

The Supervisory and Control and Diagnostic System
(SCDS) for the Mirror Fusion Test Facility (MFTF)
consists of nine 32-bit minicomputers arranged in a
tightly coupled distributed computer system utilizing
2 share memory as the data exchange medium. Debugging
of more than one program in the multi-processor en-
vironment is & difficult process. This peper de-
scribes what new tools were developed and how the
testing of software is performed in the SCOS for the
MFTF project.

The Inter-Processor Comunications System (IPCS; of
SCDS coordinates tasks running on various computers.
A task that runs under the IPCS is called an execute
medule (EM). Normally all computers are running si-
multaneously various EMs; EMs rumning on one computer

Introduction

Software testing and debugging in a multiprocessor en-
vironment requires a new set of tools for the software
engineer, The supervisory and control and diagnostics
system (SCDS; for the Mirror Fusion Test Facility
(MFTF} consists of nine 32-bit minicomputers arranged
in 2 tightly coupled distributed computer systra using
3 shared memory as the data exchange medium (Figs, 1
and 2), We developed a new debugging too! to aid in
code testing in this envirom.mt, This debugging tool
(called rmDeBug) allows 3 user from one terminal con-
nected to one processor to debug and test multiple
coordinated Pascal programs running on several of the
processors in SCDS as though the user was dealing with
onlv one computer and one program.

Each computer (Ferkin-Elmer 7/32 or 8/32) in the net-

may have Lo communicate with another computer, The vtk runs the vendor-supplied operating system
EMs are the application control programs that reguire 0S-32/6T, A code running under 0S-32/MT is called 2
testing, Conventional debugging teels do not allow task. The inter-processor comrunications system
coordinated debugging of a set of EMs cemmuricating (IPCS) of SCDS coordinates tasks running on the

across computer boundaries, The testing of EMs re.
quired modifications to the JPCS and development of a
new debugging wtility. Modificatioas to the PCS
allow the vser to comrunicate with fMs directly via
hisfher terminal; this together with gther existing
software utilities were incorporated into a single
debugging tool, The SCDS group has been using this
debugaing technigue in a multi-processor environment
for pver 2 year,

*York performed by LLNL for USDOE under contract
number W-7405-ENG-48"

Fig. 1.

=17 B L

.l

various processors. & task running under IPCS is
called an execute module (EM) and has attributes that
are characteristic to EMs exclusively. One such
attribute is that each EM has & mail box im which to
receive mail from other Els, fmDeBug (execute medule
debugger), described in this article, allows 2 user
to control and to symbolically debug several EMs si-
multaneously from a single terminal regardless of an
which physical processor a particular EM is executing.

L ates Bizach ey
it

Ltae

o OF TS

SOCLIERT 1S ey A2

g,

— Suparvisory control
network

- GO suvai ‘s:
“S" su__!\l.s.m / ”’ﬁ

. Pimmuphytcsdogrostin

Fig. 2.

iy
-;%Ij ‘f Faciliy Dh'mi;

=== Local controd
o
DxL: o
’h-l
Data base

b
;
g

Ji\._ Interlocks
TN

(8l

Lines of Communication Between EmDeBug and EMS Under Test,

The user is ahle to test EMs on many processors simultaneously,

Coordinated Debugging Difficult

Coordinated debugging of more than one program in the
multiprocessor environment is an extremely difficult
process. Before EmDeBug was developed for multi-
processor debugging, the programmer was required to
have a terminal assigned to each processor that was
running the debugger. This enabled program testing
across processor boundaries. But the process was cum-
bersome and expensive, and made poor use of valuable
resources (terminals) for which other programmers were
competing. Even with this method, it was difficult to
test two EMs at a time and next to impossible to test
modules across three processors, The problem became
unmanageable as more of the processors were brought on
line and more programmers started testing, Thus, it
became imperative for us to develop a high-level de-
bugger that would enable programmers to efficiently
test multimodule systems running an multiple proces-
sars,

Sum Of The Parts £quals The Solution

The facilities of IPCS--together with certain software
utility programs--a1lowed us to construct a new soft-
ware debugging taol. A symbolic debugger already ex-
isted for local debugging on a single processor. And
various ather software utilities programs existed for
examining the messages (known as mail) sent between
EM's. These and several other programs were put under
the control of EmDeBug and comprise the tmDeBug system
for multiprocessor debugging.

Symbolic Debugger

The Pascal/3z symbolic debugger facility allows an
interactive user to examine the state of a Pascal
program; to address and display active variables by
their symbolic names; and to estahlish breakpoints
for tracing and further state examination, This
debugger was provided with the Pascal compiler as a
debugging teol for a user debugaing one pragram, An
option in the Pascal compiler allows construction of
a symbol table file that the debugger uses to address
variables and procedures by name, When an EM is to

-2-

be tested, the decugger is included as a procedure and
Tinked into the E code for local debugging. The de-
bugger becumes active when a breakpoint, explained
below, is executed,

The following is & pertiel list of the symbolic
debugger commards:

¢ LIST provides a list of all the symbolic names
which may be used in conjunction with a specified
name.

e LOCATE returns the relative memory address of the
specitied symbolic name,

¢ DISPLAY causes the contents of the memory loca-
tion Specified by the symbolic mame (variable,
routine, or components) to be displayed.

o BREAKPOINT sets a dynemic breakpoint at a
specitied program line number or relative memory
address. A breakpoint causes the program to
interrupt execution and transfer control to the
debugger when the code gets to the specified
place. The program is then suspended until the
user restarts it, at which time it continues
from the breakpoint,

o TRACEBACK provides 2 listing of a1l of the active

pracedires which have been executed to date
starting with the current procedure and back-
wards in time to the initial statement of the
program,

o EXAMINE displays a memory Tocation, specified
either symbollically or as a relative memory
address, in hexadzcimal notation,

8 REGISTERS displays the computer register and
program counter contents for the process that
caused the debugger to be entered.

To reiterate, all of the above commands are available
after the program being debugged has executed a
breakpoint that activates the debugger program.

What is the IPCS?

The inter-processor communications system ([PCS) is
the distributed operating system that manages the com-
munications between all the processors and the execute
modules. EM's can only be started by other [M's.
{Note that there is a way to get the first EM into
the system.) When an EM sends mail to another EM, the
IPCS queves the mail (puts it in the mailbox) and then
loads and starts the reripient £M task if it is not
already running. When the M completes its job, it
returns its mail through the IPCS to the sender,
called the “parent* of the mail, and removes itself
from memory thus completing the cycle.

Each EM task performs a well-defined job; it is loaded
into memory, runs to completion and then is removed
from memory, This is the normal operation of IPCS-
handling system control type mail. Any errors gen-
erated during execution of an EM causes messages to
be sent to the system operator. EmDeBug uses this
feature to communicate with EMs across processor
boundaries,

EmDeBug has the special ability to attach to an EM {on
any processor) for testing, EmDeBug, itself is an EM,
runs on the current processor and is activated by a
user, When EmDefug attaches to an £M, the [PCS re-
routes the mail (messages) from the £M task to EmDeBug
{Fig. 3). The EM program on finding mail in its mail-
box determines if it is message from EmDeBug (known as
EM commands) and takes appropriate action,

Proueisar Frocesar Poesxs ol Nocesr 508
Baundyy IR

) Eorcute

B Llodule

' e et}

\ . L neciDemg
v 'quawq'

e
[N

*opteoal

Fig. 3. EmDebug Communication Paths,

EmDeBug Commands

There are three major groups of EmDeBug commands:
symbolic debugger commands, EM commands, and utilities
commands.

Execute Module Commands

The M commands and their interface with the IPCS make
EmDeBug 3 debugger taol for a multiprocessor program.
With £M commands, the user may start EM tasks, cancel
running EMs, comnect to and discomnect from EMs, and
force an EM to break as if it had come to a breakpoint
(which then activates the symbol debugger),

The TASK cosmand causes the specified EM to be brought
into memory and started, All error messages sent by
the EM are then displayed on the user's terminal, If
the EM specified by the TASK .command to already in
memory, EmDeBug will simply attach to it and not Toad
it.

3

The TASK command wil) also Jet the user specify the
file from which the execute module is to be loaded,
and hence the user may load a surrogate execute module
for testing and debugging rather than the one normally
run, For example, an execute module surrogate that
only prints out the contents of any mail received
could be loaded and used for testing communication
with other EM's. The use of surrogates is a fairly
powerful testing and debugging technique. Further,
genera’1zed utility program stubs can now be written
and widely used by programmers as surrogates for test-
ing interfaces with other EMs,

The TELL command sends a text string message to an
execute module via the [PCS. Communication between
the EM under test and the user is provided by two
procedures which are part of the EM. If an execute
mode” - under test wishes to send a message to the user
run. g EmDeBug, the EM may do so by the procedure
Tel1pbug {pronounced Tell Debug).

Tellpbug sends the text string in the message to
£mDeBug, which then displays it for the user, Execute
Modules that wish to receive messages from the user
running EmDeBug can do so via the procedure HearDhug
{pronounced Hear Debug}.

HearDbug receives the m¢ssage initiated by the EmDeBug
comand TELL. The message (text string) so transmit-
ted could be wsed to select (user determined) branches
within the €M to aid in testing internal routines,
These two procedures allaw 2 user bidirectional com-
munication with an EM and also with the debugger
attached to the EM. (See Fig. 3.) TellDbug and
HearDbug would be normally removed when testing is
completed.

The DISCORNECT command detaches EmDeBug from an exe-
cute module. ¢ leaves the EM in memory, tut the EM
will no longer receive messages (via HearDbug) from
it; EmDeBug will also not receive any messages sent
via Tellpbug from the EM,

The CANCEL command causes the curre~tly attached £
to cancel itself; i.e. terminate and leave memory.

The DEBUG command will force the currently attached
EM to break as if it had executed a breazkpoint and
then enter the symbolic debugger,

Ut lity Commands

The utility commands are among the most wseful
commands available to the EmDeBug user, These
commands provide general information concerning the
activities and en- vironment of the processor{s) dur-
ing a test session, The following is a list of the
more interesting utility commands,

¢ ONRECORD logs all subsequent commands and mes-
sages to a disk log file. This provides a re-
port of a debugging session that can be used as
a reference later for a group discussion and
documentation.

¢ [OMMENT allows the user to enter coments into
the Tog file.

o MAP displays a map of memory showing the curr_at
memory allocation of programs runring on the
specified processor,

& MTREE allows a user to examine the mail tree,
Wail in the shared memory is linked into a tree
for debugging purposes,

-

o TABLE displays important IPCS tables (processor
status, logical-tosphysical map, etc.).

o EXECUTE MODULE RESTART allows the user to specify
at the attache Should automatically reload
and restart an if it goes end.of.job.
® TASK TABLE displays a list of the EMs that
EmDeBug s currently attached to and can receive
messages from, The Lable contains the EM name,
Toad file name, mail id number and if execute-
module-restert is active.

® BfTCH processes a 1ist of £mDeBug commands from
3 disk file. This makes it easier for the user
to repeatedly set up a group of EM's for testing.

e [DIT activates a full feature editor. This lets
The user inspect source files during a test
session and make modifications,

Physical Requirements of EmDeBug

EmDeBug executes on the 32-bit minicomputers manufac-
tured by Perkin-[imer Corporation. £mDeBug was de-
veloped in the Pascal language provided by the Univer-
sity of kansas, which also provided the symbolic de-
bugger. Tha code size of EmDeBug is about 60K bytes
in length, However all but 5K bytes of this program
can be shared by more than one user; i.e, the first
user requires 60K bytes to run EmD2Bug, but each addi-
tional user only requires a 5K bytes of additional
memory space, Several of the utility programs are
execute modules; these are brought into memory and
run and then removed from memory when completed to
keep the memory requirements as small as possible,

Ceaclusions

Symbolic debugging software tools have been around
since the late 1950s, They have proved so useful that
they are now routinely available at most computer fa-
cilities, With the advent of multiprocesser systems,
where one task may invoke other tasks running on other
processors, the traditional debugging tools lose ef-
fectiveness,

What we have presented in this article is an enhance-
ment of an already existing tool to allow debugging in
the traditional way in a multiprocessor environment,
The tool makes heavy use of features of the Inter-
Pracessor Comunications System that is instailed on
the system,

The work presented in this paper is probably not very
transportable because of the heavy use of features of
the IPCS, which is also a home-grown system, However,
it is our hope that the outline presented here will be
of use to other groups planning multiprocessor systems.,

We believe this work is original and hope that others
contemplating building multiprocessor systems will
recognize the importance of designing the communi-
cation system to support multiprocessor debugging
functions,

Bibliography

1, R. L. Blass, "Real-Time: The ‘Lost World of
Software Debugging and Testing'," Communications
of the ACM, May 1980.

A

3.

P. McGoldrick, "IPCS User's Manual,* SCDS System
Software Manual Section 6.1.2, 3nf§FﬁE1"1Efﬁf
Tocument,

J. Spann and ®, McGaldrick, “Execute Module De-
bugger,"

SCDS System Software Manual, Section
6.1.3.5.6, Tnternal LLRL Document
R. Young, Pascal/32 Symbolic Debugger, an in-
formal Kansgs State Univeriity repori, 1976.
R. Young and V. wallentine, Pascal/32 Lagguage
Def inition, ar informal Kansa§ State University

Teport, 13/8.

DISCY NIMER

Vi documenit wis greputcd s an account uf work spunsorcd by an agews of
the 1 nited States Gaseanment. Neither the | nited Siuirs Gasesnment mc the
Univesaite of California mar 120 of their employes, mahes any warranty, es-
Bress ur implivd, or aswemes am fegal lability o respomsibifils for the ac.
curacs, completenen, ar uschudness of 3wy iafurmation, apparatus, product, of
procew disclined, or repaesents that it uve would nol infrimge privately owned
rights, Reference herein t any specific commercial products, prices, ne senvice
by tradv mamc. trndematk, mamulacture, or niherwive, divs mot necrwarily
comstitufe at imply its endnmement. trcummendation, of avoring by che | wited
Stwdes dimvemment ar the € misersity of California, The views and tipiainas of
wathurs evpressed herein do mot accewatily state or reflet those af (he | nited
States Governmeni therenf. and vhab) mt be gved for advertining oF prdust en-
dursmenl purpines.

