

136
11-9-81
jwv

B 8224

①

1h. 61

MASTER

DOE/ET/20279-108

SAFETY PROCEDURES FOR THE 100-kW SOLAR
PHOTOVOLTAIC SYSTEM AT NATURAL
BRIDGES NATIONAL MONUMENT

September 1981

R.F. Hopkinson

Massachusetts Institute of Technology
Lincoln Laboratory
Lexington, Massachusetts 02173

Prepared for
THE U.S. DEPARTMENT OF ENERGY
UNDER CONTRACT NO. DE-AC02-76ET20279

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Additional copies available from the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22161.

Price: Paper Copy \$6.50
Microfiche \$3.00

DOE/ET/20279-108

Distribution Category UC 63a-e

**SAFETY PROCEDURES FOR THE 100-kW SOLAR
PHOTOVOLTAIC SYSTEM AT NATURAL
BRIDGES NATIONAL MONUMENT**

September 1981

R.F. Hopkinson

**Massachusetts Institute of Technology
Lincoln Laboratory
Lexington, Massachusetts 02173**

**Prepared for
THE U.S. DEPARTMENT OF ENERGY
UNDER CONTRACT NO. DE-AC02-76ET20279**

DISCLAIMER

This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED *[Signature]*

ABSTRACT

The 100-kWp solar photovoltaic power system at Natural Bridges National Monument is a unique electrical power-generation system and special safety guidelines have been developed to govern its operation. General safety requirements have been set forth to safeguard newcomers to the PV system at Natural Bridges National Monument. Procedures to be used in event of emergency, including a recommended shutdown procedure, are included together with specific safety hazards inherent in the array field, battery room, control room, and inverter room. It is the intention of this book to inform guides for visitors, operators, and maintenance personnel of the nature of these safety hazards and to detail means of effectively dealing with them.

CONTENTS

1. 0	BACKGROUND	1
2. 0	GENERAL SAFETY REQUIREMENTS	2
2.1	Safeguarding Oneself and Others	2
2.2	Lockout Procedures	3
2.3	Working Alone Policy	3
2.4	Clearance from Live Parts	3
2.5	Making Connections	4
2.6	Energizing Equipment	4
2.7	Handling Capacitors	4
2.8	Site Visitors	4
2.9	Area Protection	5
3. 0	EMERGENCY SHUTDOWN PROCEDURES	5
3.1	PV System Operation	5
3.2	Diesel Generator Operation	7
4. 0	EMERGENCY POWER ISOLATION PROCEDURES	7
4.1	Battery Isolation Requirements	7
4.2	Array Field Isolation Requirements	8
4.3	Diesel Generator Isolation Requirements	10
4.4	PV Building Power and PV System Control Power Isolation Instructions	11
5. 0	EMERGENCY MEASURES	11
5.1	Electrical Shock	11
5.2	Acid Burns	12
5.3	Thermal Burns	13
5.4	Electrical Burns	13
5.5	Bodily Injury	13
5.6	Evacuation	14
5.7	Fire Fighting	14
6. 0	ARRAY FIELD SAFETY	15
6.1	Electrical Shock	16
6.2	Array Maintenance	18
7. 0	BATTERY ROOM SAFETY	20
7.1	Potential Hazards	20
7.2	Battery Maintenance Protective Equipment	22
7.3	Battery Maintenance Safety Precautions	22
7.4	Battery Module Removal	25
8. 0	CONTROL ROOM SAFETY	27
8.1	Potential Hazards	27
8.2	Alarm Indicators	28
8.3	Control Room Maintenance	29

CONTENTS (Continued)

9.0	INVERTER ROOM SAFETY	32
9.1	Potential Hazards	32
9.2	Inverter Room Maintenance	34
	REFERENCES	36
	BIBLIOGRAPHY	36
	APPENDIX	37
	Definition of Terms	

LIST OF ILLUSTRATIONS

1	Aerial view of site.	viii
2	Site plan.	viii
3	PV building layout showing safety features.	6
4	Battery room, south exterior wall.	8
5	Array subfield junction box (ASJB).	9
6	Location of ASJB and AJB boxes.	10
7	Battery room.	13
8	Cable trench.	16
9	ARCO array field.	17
10	Eyewash station and shower.	23
11	Battery maintenance protective equipment.	24
12	Battery removal.	26
13	Control console.	29
14	Console alarm panel close-up.	30
15	PV building alarm system.	31
16	Inverter room, east wall.	32
17	Inverter room, west wall.	33

Fig. 1. Aerial view of site.

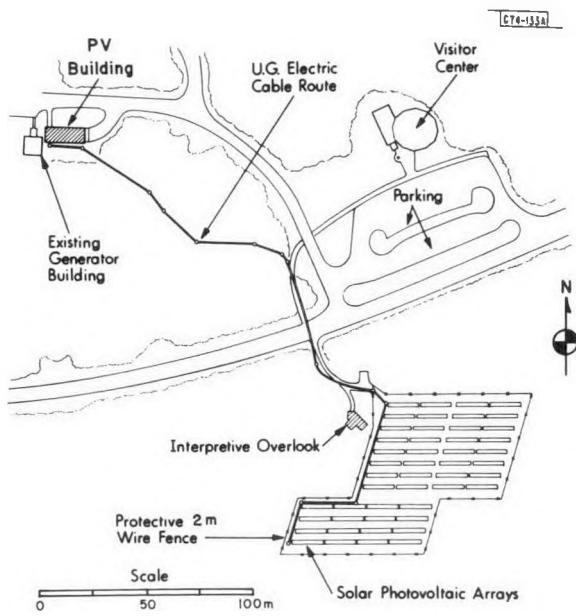


Fig. 2. Site plan.

SAFETY PROCEDURES FOR THE 100-kW_p SOLAR
PHOTOVOLTAIC SYSTEM
AT NATURAL BRIDGES NATIONAL MONUMENT

1.0 BACKGROUND

MIT Lincoln Laboratory (MIT LL), under the sponsorship of the Department of Energy and in partnership with the National Park Service of the Department of the Interior, has designed and installed a 100-kW-peak photovoltaic (PV) power system at the Natural Bridges National Monument (NBNM) in southeastern Utah (Figs. 1, 2). This system converts sunlight to DC electrical power, stores all or part of the accumulated energy in a large battery storage facility, and supplies AC power to various loads at the NBNM site through a 50-kVA main inverter. The site electrical demand usually varies between 10 and 20 kW. In addition, certain critical PV system AC loads are supplied from an uninterruptible power source (UPS) inverter if main power is interrupted. Since there is no electrical utility service at NBNM, a diesel-powered generator serves as a backup for the PV system during periods of reduced solar energy (Refs. 1,2).

The choice (Refs. 3,4) of NBNM for the location of a PV power system was based on such factors as its remoteness from a public utility grid, the size of its annual electrical consumption, the diversity of its loads, and its accessibility to visitors. The PV system supplies power to all local loads, such as lighting, appliances, shop tools, and refrigerators.

Because of the remoteness of the site and the potential hazards that exist, specific safety guidelines have been developed. For example, in the array field, it will be necessary to inspect some of the PV modules, remove some modules from arrays for more detailed analysis in the laboratory, make measurements that locate electrically defective modules, wash and clean the modules, and perform various other module-related maintenance and testing operations during daylight hours. These operations are all potentially hazardous. This book details the correct methods of performing these tasks, both generally and specifically, and warns of any especially hazardous operations. All operators and maintenance personnel should understand the nature

of the hazards involved as well as the recommended procedures for dealing with them.

Since lead-acid batteries are used to provide energy storage for the power system, special safety guidelines for the testing and handling of batteries are included. Finally, attention is focused on the power-conditioning equipment and its safe operation and maintenance.

2.0 GENERAL SAFETY REQUIREMENTS

WARNING

All operating and maintenance personnel should understand that lethal voltages exist in the array field, power conditioning equipment, storage batteries and cabling of the NBNM PV System. Read and understand this chapter prior to operating and maintaining the NBNM PV System.

2.1 Safeguarding Oneself and Others

Do not rely on other people for your own protection. Report to your supervisor any obvious equipment defects, as well as accidentally energized objects, such as conduits.

If your duties do not require you to handle energized equipment, keep away from such equipment.

If you do work on or near energized equipment, consider how you do your job, taking into account your safety as well as that of other employees on the job site.

Avoid working in areas where objects and materials may be dropped by persons working overhead. If this cannot be avoided, wear a hard hat for protection.

If you are in doubt as to the safe performance of any work assigned to you — *Stop!* Request specific instructions from your supervisor.

2.2 Lockout Procedures

Before you start work on the PV system, *it is your responsibility* to make a personal inspection to assure yourself and the person working with you that it is de-energized. Opening a switch is not enough! To ensure that all appropriate systems are isolated, it is necessary for all possible sources of power to be investigated and de-energized.

To isolate a system and guarantee that it remains de-energized, all appropriate disconnecting switches must be locked open and tagged with the name of the individual responsible. These locks and tags must be removed after the job is completed by the person who placed them on the switches, except when the switches are in view.

Before anyone begins work on a de-energized circuit or system it must be checked out with a reliable voltage tester or other appropriate device to verify that it is "dead". *Do not work on energized equipment unless you have been trained to do so.*

2.3 Working Alone Policy

If it is necessary to work on or about energized equipment, do not work by yourself, but only under the direct supervision of an experienced and qualified person. It should be emphasized that it is not good practice to work alone, regardless of experience. The only exception to this paragraph would be in the case of reading meters, inspection visits, and routine attending of the data system.

2.4 Clearance from Live Parts

Maintain safe working distances around energized equipment at all times. When repairing equipment and live parts operating at 600 volts or less, a minimum distance of 30 inches should be maintained between you and any other equipment or walls. Do not trap yourself. *Do not wear metal objects, such as rings, metal wrist bands, watches, key chains, or zippered material around exposed conducting material.*

2.5 Making Connections

Always make connections *from the load to the source*. Make disconnections first at the source and work toward the load.

The one hand rule should always be used: *use one hand to make electrical connections while keeping your other hand either at your side or in your pocket*. The intent of this rule is to reduce the chance of providing a shock path across the chest from one hand to the other. Rigidly observe the one hand rule when opening switches, removing leads, pulling plug leads from apparatus such as terminal or distribution boards, measuring voltages, replacing fuses, or when testing circuits where any voltage may be present.

2.6 Energizing Equipment

After making repairs or alterations, never close a circuit until all personnel are clear of equipment to be energized and circuit breakers. *Do not close any switch until you are certain that it is safe to energize the circuit and all of the equipment on it*. Prior to energizing equipment, all locks and tags should be removed by the person who installed them.

Before using equipment, test for adequate insulation resistance and ground connections. Always close and open circuits with apparatus suitable for the circuits involved.

2.7 Handling Capacitors

Before working on capacitors, disconnect them from the energized source, wait for built-in bleeder resistors to discharge the capacitors, test for any voltage, short circuit them, and ground them. In addition, short circuit any ground or any line to which the capacitors are connected. Do not depend on their internal resistance to discharge capacitors.

2.8 Site Visitors

When a guide is accompanying uninstructed employees or visitors near equipment, it is his/her responsibility to safeguard the people in his/her care and see that safety rules are observed. It is good practice to ensure that

cabinets with exposed voltages are closed and locked before escorting visitors near equipment.

2.9 Area Protection

Before doing any work that may endanger the public, warning signs and/or traffic control devices, should be put in place. If further protection is needed, suitable barrier guards should be erected. If the work is particularly hazardous, a person should be stationed to warn traffic away while the hazard exists.

If the work exposes energized or moving parts that are normally protected, display danger signs and erect suitable guards to warn other personnel in the area.

Keep all access doors to the PV building and the gate to the array field closed at all times; these entrances should be locked when the systems are unattended.

3.0 EMERGENCY SHUTDOWN PROCEDURES

3.1 PV System Operation

In the event of a fire or an accident, power to and from the PV system must be cut off immediately. *This is accomplished by depressing any one of the red EMERGENCY SHUTDOWN pushbuttons.* These pushbuttons are located in the diesel generator building, inverter room, control room, battery room, or on the control console (Fig. 3). Everyone should know where each pushbutton is located.

One should use judgement before depressing the EMERGENCY SHUTDOWN pushbutton. Only do it, if, in your judgement, a real emergency exists. The reason is that the loss of power will cause the following problems:

- a. Lights will extinguish, which may create an inconvenience at night.
- b. Water pumps, safety showers and eyewash stations will not operate.
- c. Radio equipment and the intercom system will lose power.

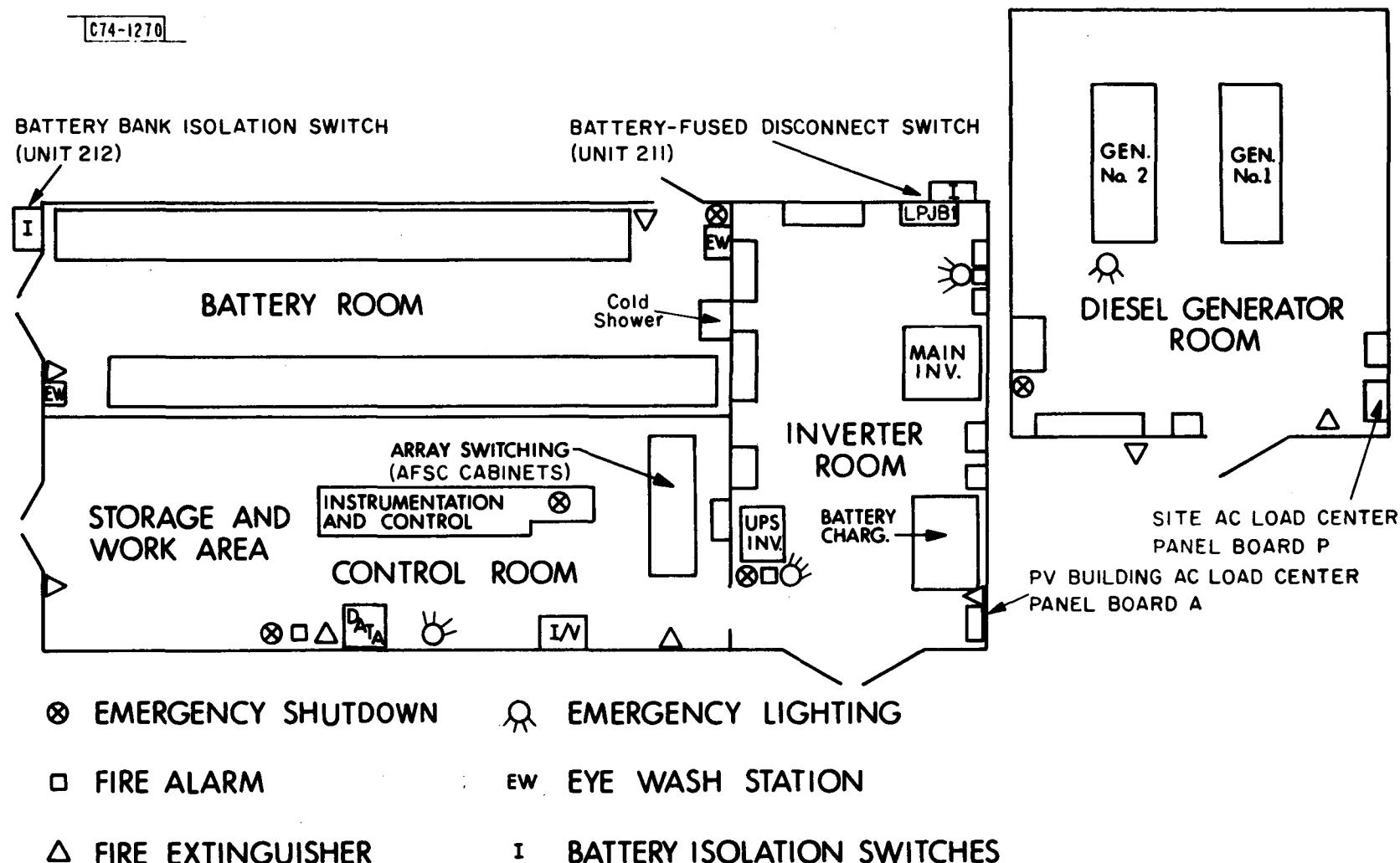


Fig. 3. PV building layout showing safety features.

Power to other buildings can be shut off selectively at the site load center (Panel P) in the generator building. If the PV system is not affected, this is a preferred course of action.

3.2 Diesel Generator Operation

Depressing any of the red EMERGENCY SHUTDOWN pushbuttons will cut off power throughout the system *if the diesel generator was in the automatic control mode at the time the pushbutton was depressed* (refer to the Operations Manual). If the diesel generator was in the manual control mode at the time the pushbutton was depressed, the diesel generator must be manually shut down as described in the Operations Manual. Control power will still be present in the PV building until the diesel generator is shut down, because the AC control power normally supplied by the UPS is automatically transferred to the diesel generator when the EMERGENCY SHUTDOWN pushbutton is depressed.

4.0 EMERGENCY POWER ISOLATION PROCEDURES

After the EMERGENCY SHUTDOWN pushbutton has been depressed, it will be necessary to isolate power sources within the system. Follow the procedures outlined below:

4.1 Battery Isolation Requirements

To completely isolate the battery storage facility, the two disconnect switches located outside each battery room exit door must be placed to their OFF positions. Specifically:

- a. Place the battery fusible disconnect switch (Unit 211, Fig. 4) located on the southwest corner to OFF. This disconnects the battery room from the inverter room.
- b. Place the battery isolation switch (Unit 212, Fig. 4) located on the southeast corner to OFF. This isolates the two battery banks from each other.

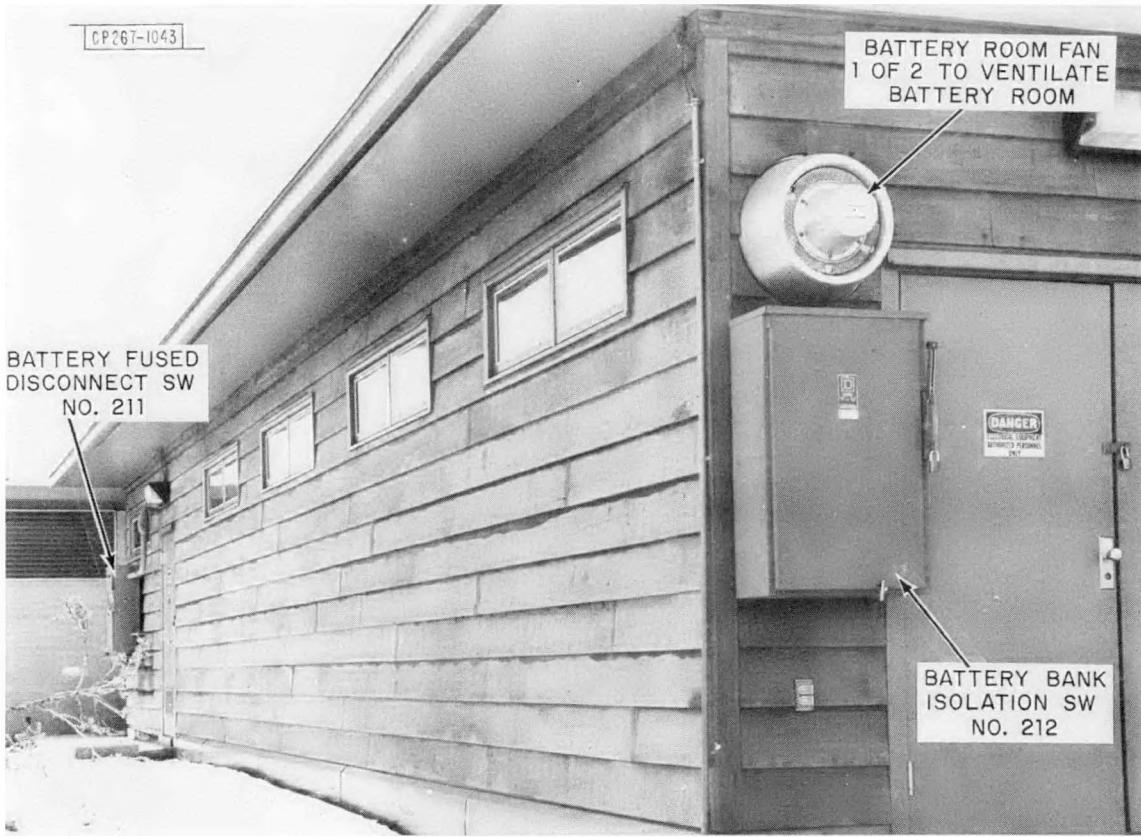


Fig. 4. Battery room, south exterior wall.

4.2 Array Field Isolation Requirements

After the EMERGENCY SHUTDOWN pushbutton has been depressed, PV power from the array will still be present in the lightning protection junction box (LPJB), Unit 224, and the array field subsystem control (AFSC) cabinets, Units 221, 221A, 221B, located in the PV building. This is because the system was designed without a main array field disconnect switch. To remove array power from the LPJB1 (Unit 224) and AFSC proceed as follows:

- a. In each of the 48 array subfield junction boxes (ASJB) (Fig. 5), located as shown in Fig. 6, place DISCONNECT switch S2 to OFF.
- b. Lock and tag each of the ASJB boxes. Refer to Paragraph 2.2. (In a fire emergency, the relocking of cabinets can be done later. Two people can shut down the array very quickly.)

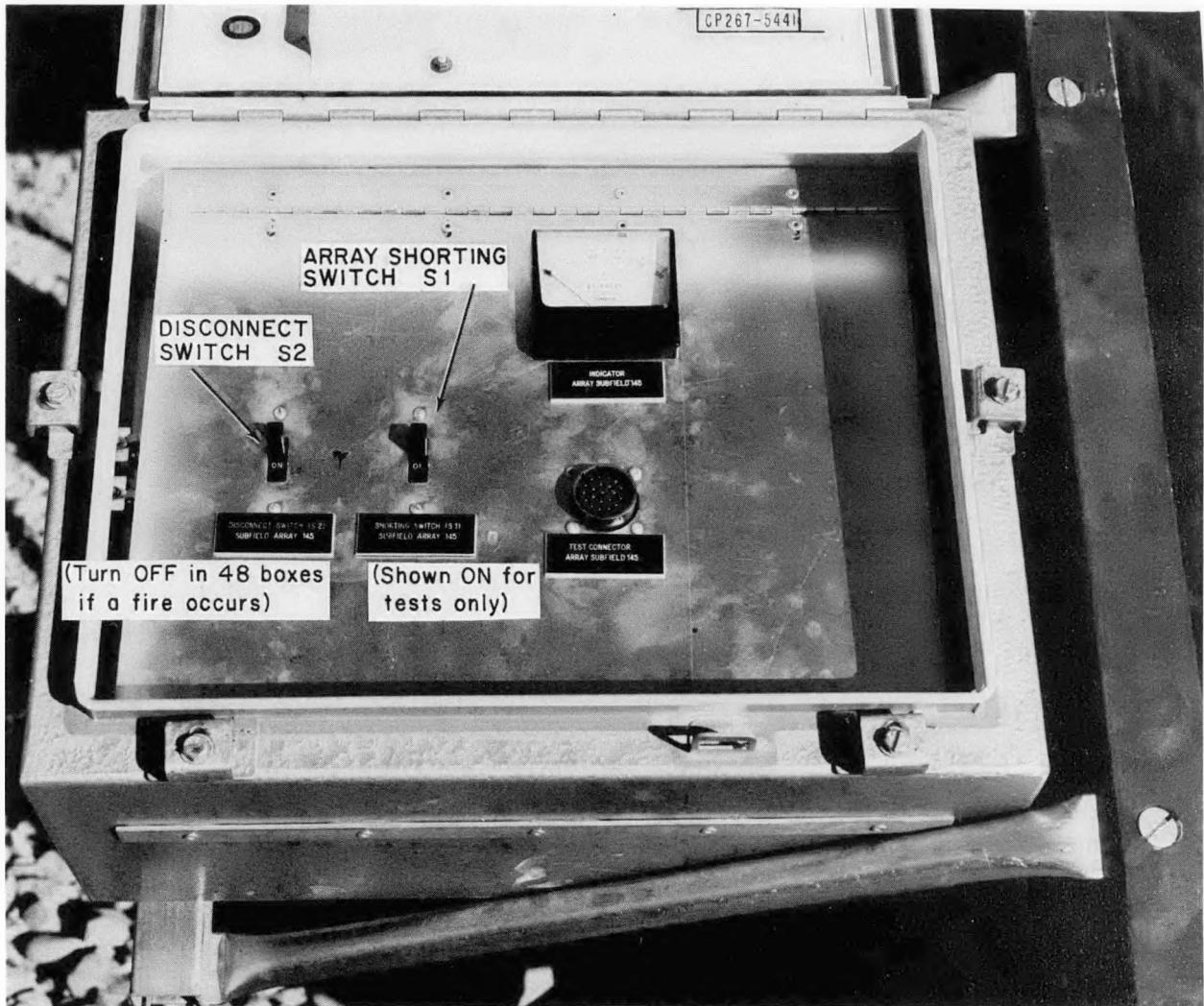


Fig. 5. Array subfield junction box (ASJB).

WARNING

It is essential to follow the procedures provided in Paragraph 4.2 before attempting to extinguish fire in the LPJB or AFSC cabinets. Use either dry chemical or CO₂ fire extinguisher. Never use water on electrical fires.

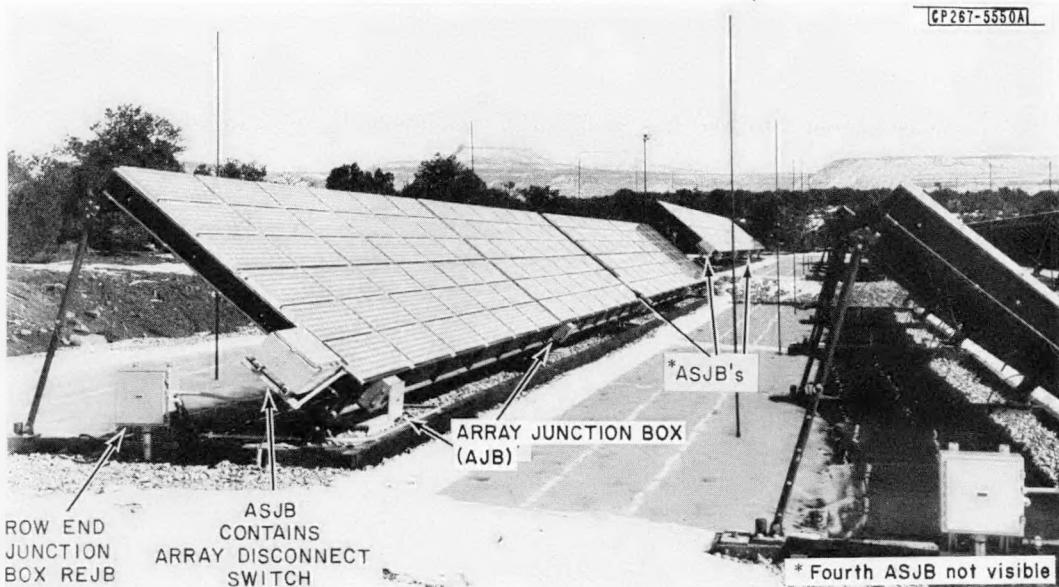


Fig. 6. Location of ASJB and AJB boxes.

NOTE

The LPJB 1 and AFSC cabinets are painted red to indicate that unswitched (and lethal) power is present.

4.3 Diesel Generator Isolation Requirements

Refer to Paragraph 3.2. If under manual control, the diesel generator is shut down by placing the yellow knob on the diesel control panel to OFF. The diesel control panel is located on the north wall of the generator building. Refer to NPS instructions for shutting down diesel generator No. 2 (portable generator).

4.4 PV Building Power and PV System Control Power Isolation Instructions

PV building power is cut off at the site load center in Panel P in the generator building, or at Panel A in the PV building. When the EMERGENCY SHUTDOWN pushbutton switch is depressed, the PV system control power, normally supplied by the UPS inverter, will then be supplied by the diesel generator. This control power will be present unless cut off at the site load center in Panel P in the generator building or at Panel A in the PV building.

When working on the control system, prompt power shutdown is available by placing breakers 30 and 32 in Panel A (Unit 270) of the PV building to OFF. This action will permit only the UPS inverter to provide power to the control system loads. The EMERGENCY SHUTDOWN pushbutton switch can be depressed to cut off power to the UPS inverter. Refer to the Operations Manual for further technical explanation.

5.0 EMERGENCY MEASURES

5.1 Electrical Shock

Free the person involved from the live circuit. If a person is "frozen" to a live electrical contact, shut off the current if possible. If this cannot be done, use dry wooden boards, poles or sticks, a belt, a piece of dry rope, an article of clothing, or any *nonconducting* material of sufficient length to pull the body away from the contact. Act quickly and remember to protect yourself by using rubber gloves which have been tested beforehand for electrical serviceability.

Administer cardiopulmonary resuscitation (CPR) when there is no breathing and/or pulse present in a victim. It is recommended that all residents of remote sites, such as NBNM, be provided with CPR training.

Each person should be familiar with the locations of the EMERGENCY SHUTDOWN pushbutton switches (Paragraph 3.1) and the methods available for summoning help. Two-way portable radios can save valuable time in an emergency if they are monitored and maintained properly. Their use at both ends of a radio circuit ensures communications regardless of a power interruption.

Any shock received, no matter how slight, should be reported immediately to your supervisor or other appropriate authority. In addition, any popping or sparking associated with equipment operation should be reported together with any other observations that might indicate potentially hazardous conditions.

5.2 Acid Burns

An emergency shower, located at the west end of the battery room (Fig. 7), is used to rinse acid from the body. Two emergency eyewash stations located at each end of the battery room may be used to treat acid or electrolyte burns as follows:

- a. The eyes should be washed out immediately with large amounts of water, repeating this operation several times to make certain that all traces of acid have been removed.
- b. Wash the eye lids thoroughly by pressing downward below the eye for the lower lid and elevating the upper lid and applying water under the lids.

NOTE

An emergency power shutdown will remove power from the pumps in the emergency shower and emergency eyewash stations. One-gallon jugs of distilled water are available for acid treatment under these conditions.

Remove acid-splattered clothing promptly. Acid should be rinsed promptly from the skin with copious quantities of water, and then apply bicarbonate of soda pastes or solutions.

5.3 Thermal Burns

Thermal burns should be treated with cold water until the pain subsides; do not use grease, tannic acids, or other ointments on severe or extensive burns. Cover the burned body area loosely with a clean cloth or bandage and then seek medical attention.

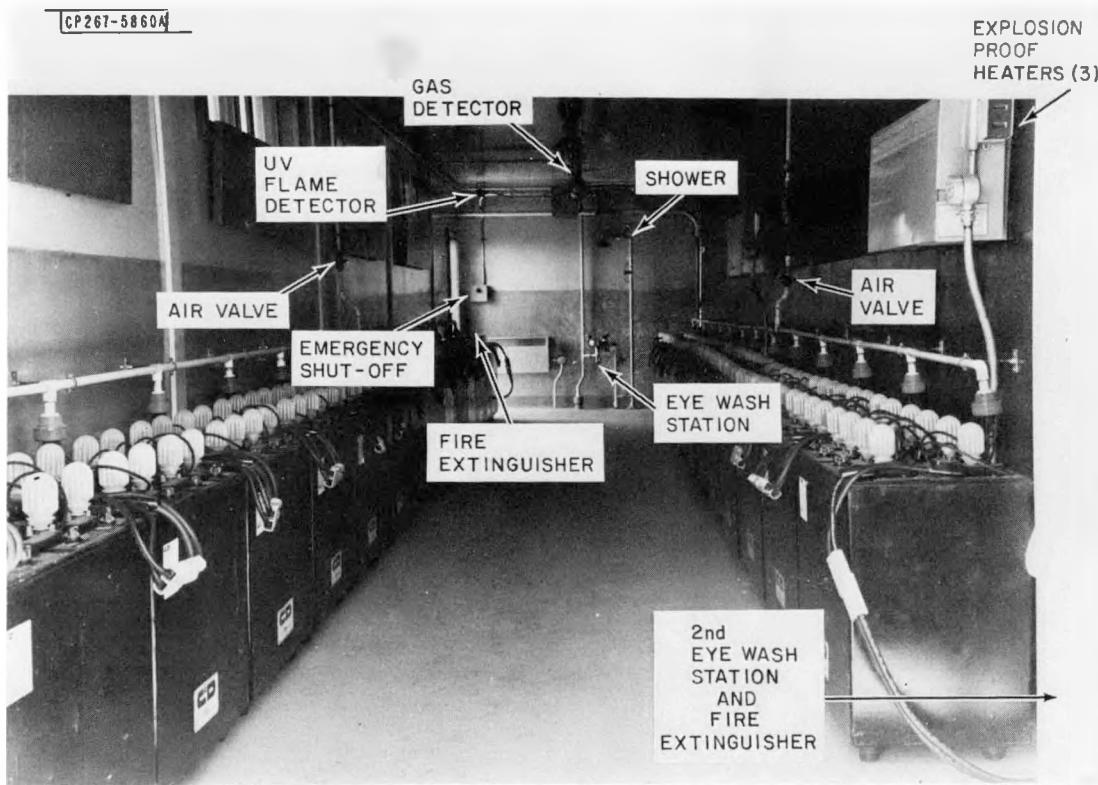


Fig. 7. Battery room.

5.4 Electrical Burns

Burns resulting from high-voltage electrical arcs are similar to those produced by high-intensity heat sources. The true electrical burn is often characterized by a pinkish mark on the skin surface. These burns may penetrate deeply and require a considerable time to heal. Burns produced by electricity usually heal without infection. Treatment is the same as for thermal burns (Paragraph 5.3).

5.5 Bodily Injury

It is best not to move an injured person before a physician or experienced ambulance crew arrives, unless there is real danger of his receiving further

injury by being left at the accident site. Control bleeding, maintain breathing, and splint all suspected fractured bones before moving. Administer CPR when there is no breathing and/or pulse present in a victim.

If a victim must be pulled to safety, protect the head and move the victim head first or feet first, but never sideways.

If a victim must be lifted to safety (before a check for injuries can be made) be sure that every part of the body is kept in a straight line and not bent.

5.6 Evacuation

Seriously injured persons may need to be evacuated to the nearest hospital as quickly as possible. Refer to NPS procedures for MEDEVAC instructions.

5.7 Fire Fighting

In case of a major fire in the PV building, power to and from the PV system should be cut off immediately by following the procedures outlined in Paragraph 3.0.

NOTE

Unless there is good reason, do not walk along the exterior south wall of the battery room. This is a blow-out wall, and in the event of an explosion this wall would be pushed out by the force of the explosion.

When fighting a fire that is not located in the AFSC cabinets or in the LPJB box, fight the fire first, then disconnect the array field (Paragraph 4.2a)

The recommended procedure for fighting a fire in the NBNM PV building is as follows:

- a. Depress nearest red EMERGENCY SHUTDOWN pushbutton switch.
- b. Open battery fused disconnect switch, Unit 211, as shown on Fig. 4.
- c. Open battery isolation switch, Unit 212, as shown on Fig. 4.

- d. Cut off the PV building power at the site load center in the generator building (panelboard P, Fig. 3).
- e. In each of the 48 ASJB boxes, Fig. 5, located as shown in Fig. 6, place DISCONNECT switch S2 to OFF.
- f. Fight the fire with suitable fire extinguishers or materials.

NOTE

Portable CO₂ and dry chemical fire extinguishers are provided throughout the PV building and on the outside wall of the diesel generator building near the exit door (Fig. 3). Use the CO₂ fire extinguisher for electrical fires and the dry chemical fire extinguisher for flammable liquids. The CO₂ fire extinguisher will cause less mess because it leaves no residue. In extremity, after cutting off power, fight the fire with water (except for petroleum-based fires).

Shutdown of the electrical power in event of a fire should be balanced with the need for continued radio, telephone communications and lights. If the PV power system is contributing to the fire, it should be shut down. The generator can then be used for site power after a very short warmup.

6.0 ARRAY FIELD SAFETY

WARNING

Be careful when digging near the cable trench which runs from the array to the PV building (Fig. 2). This cable trench does not take a direct line-of-sight path. Careful digging with a small hand shovel to locate the cable marker tapes and the cables is essential (Fig. 8). Severe electrical shock would result if the cable insulation were removed and contact made with the exposed cable. Best practice would be to avoid making any excavations near the cable trench, unless there is a need to repair or replace the cable.

6.1 Potential Hazards

6.1.1 Electrical Shock

If the PV module terminals are touched, the person touching them will receive an electrical shock. The ARCO modules have terminals which are accessible from the front (Fig. 9). The Motorola and Spectrolab modules are no less lethal; however, their terminals are protected by a screen on the rear of the modules. Workers and visitors should not touch these module terminals.

6.1.2 Electrical Arcs

Do not remove modules without properly grounding each module or sub-frame. To avoid electrical arcs, modules must be removed by short-circuiting

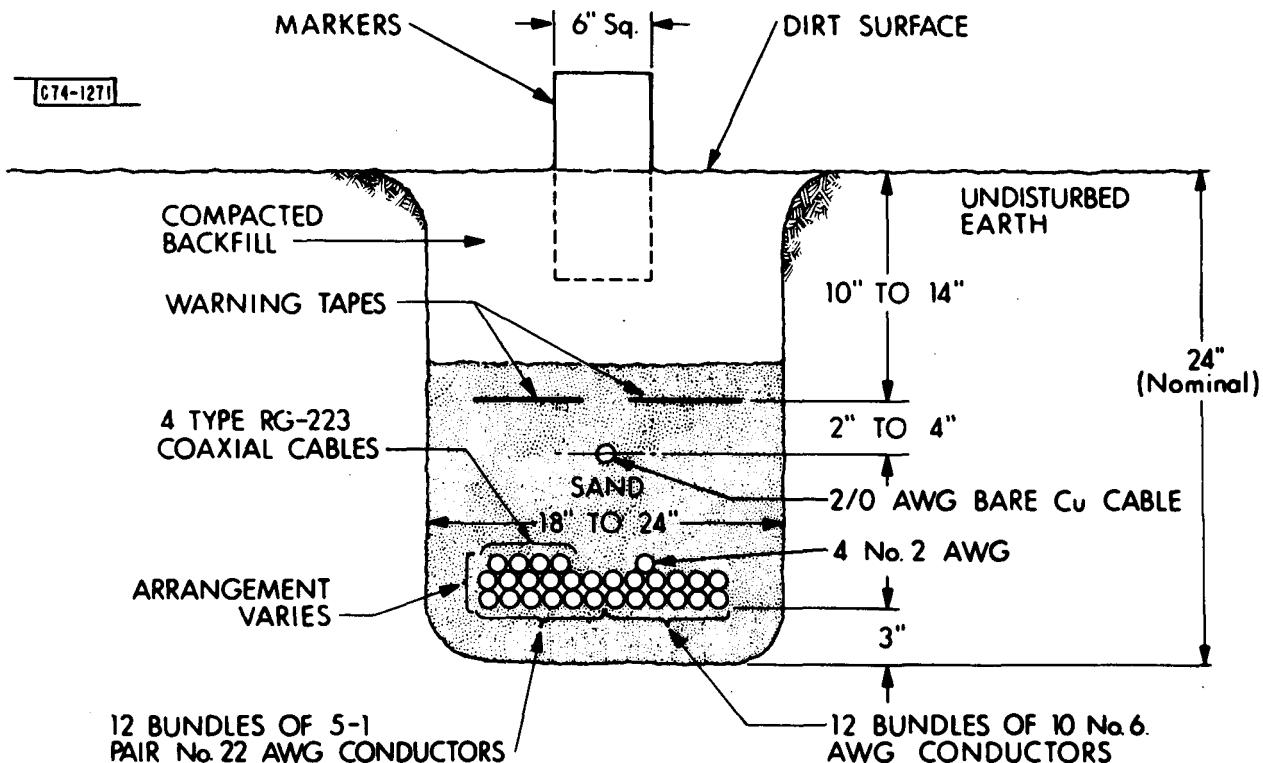


Fig. 8. Cable trench.

the subarray upon which the module is attached. Each side of the module to be removed must be grounded, or arcing will occur when removing leads from an active circuit.

6.1.3 Bodily Injury

To lower array frames, if necessary, use proper equipment. To prevent bodily injury, ensure that everyone is at a safe distance from a frame before attempting to change its angle. Care and attention must also be given when removing a module or subarray from an array frame. Each module or subarray must be properly supported (as outlined in the Maintenance Manual) before removal is attempted.

Many safety features have been incorporated into the design of the array to prevent bodily injury and equipment damage, such as:

Fig. 9. ARCO array field.

- a. Lightning protection
- b. Surge elimination
- c. Lockable gate and junction boxes
- d. Fencing
- e. Protective screening on the rear of the modules
- f. Grounding of all metallic parts.

6.2 Array Maintenance

6.2.1 Module Inspection

To inspect the array field, follow the procedure provided in the Maintenance Manual. Be especially careful if the module cover glass is broken, since the high-voltage connections may be touched. Avoid cuts from broken glass. Be alert for damaged wires. Be careful not to bump your head while working under the array frames; wear a hard hat when working there.

6.2.2 Module Removal

NOTE

Refer to the Maintenance Manual before removing a subarray or module.

A defective module cannot be removed without removing the subarray, of which it is a part. Each subarray, measuring 4 by 4 feet, contains a different number of modules, depending on the manufacturer:

- a. Motorola four modules per subarray
- b. ARCO five modules per subarray
- c. Spectrolab three modules per subarray

To remove the intended subarray, proceed as follows:

- a. Isolate the desired subfield (that contains a defective subarray)

by placing DISCONNECT switch, S2, located in the ASJB box (Fig. 5) to OFF. This cuts the power from that particular subarray to the PV building.

- b. Short-circuit the negative line to its positive line by placing SHORTING switch S1, located in the ASJB box (Fig. 5) to ON.
- c. Unfasten the tie-down hardware located on the bottom and top of the subarray to be removed.

CAUTION

While performing this operation, support the subarray by using 2 X 4 wooden members.

- d. Lift the outside edge of the defective subarray and ground the subarrays to both sides of it. This is done by attaching a ground lead from the frame to one of the module terminals, as described in the Maintenance Manual.
- e. Unplug the connectors that are attached to the defective subarray.
- f. Remove the defective subarray.

CAUTION

Two people are required to remove a subarray because of its 70-pound weight.

Once a subarray has been removed from a subfield, the defective module can be replaced. After module replacement, reverse the procedure provided above to reinstall the subarray and return the subfield to service.

6.2.3 Washing

The array field must be made electrically safe before the front surface of the array can be washed. This is done by placing DISCONNECT switch S2 to OFF and placing SHORTING switch S1 to ON in the ASJB box (Fig. 5). One or two subfields at a time can be switched as washing progresses so that the

power system can remain in operation. Unless full power is needed, the power from a few subfields will not be needed during the time washing is performed.

7.0 BATTERY ROOM SAFETY

7.1 Potential Hazards

7.1.1 Electrical Shock

Since electrical shock happens when the body becomes part of an energized electrical path and energy is transferred between parts of the body, or through the body to a ground, care must be taken at all times to keep a safe distance from the batteries unless one is trained to perform maintenance duties. The battery room provides a large DC power source with voltages between 200 and 300 VDC with very high current. Switches are provided to break the electrical circuit to the batteries if isolation is necessary (Fig. 4).

7.1.2 Electrical Arcs

Care must be taken to avoid creating electrical arcs by closing switches or circuit breakers too slowly, since electrical arcs can burn the body and damage the eyes. Never disconnect or connect a battery while a circuit is active. Always disconnect the battery system before doing any modifications or repairs by switching off the fused disconnect switch located on the exterior southwest corner and the isolation switch on the exterior southeast corner (Fig. 4) of the PV building.

7.1.3 Explosion

All lead-acid batteries produce hydrogen during equalization and at the end of daily charging, and during normal periods of prolonged sunny weather. These large batteries tend to produce larger amounts of hydrogen than smaller batteries, so extreme care has been taken in the design of the battery system to eliminate the chance of a hydrogen explosion.

The lead-calcium alloy battery plates used in these batteries inherently produce much less gas during charging than lead-antimony battery plates. In addition, the cells are sealed so that any gas produced must exit through the

hydrogen recombining bulbs on the top of each cell. These recombiners catalytically recombine the hydrogen and oxygen into water for return to the cell.

Hydrogen gas, lighter than air, will rise to the ceiling and seek escape through cracks or other openings in the roof.

Realistically, the only way a hydrogen explosion could take place is if the batteries were improperly charged, all of the safety devices were rendered inoperative, and an open flame or arc was introduced into the battery room. This is highly unlikely. When air contains 4% by volume of hydrogen it becomes explosive. To prevent this, two hydrogen detectors are set to activate an exhaust fan when the hydrogen level reaches 1% by volume, and then sound an alarm (with an indication on the control panel) when the hydrogen level reaches 2% by volume.

The battery room has been constructed with explosion-proof fixtures and the following safety features:

- a. Two hydrogen detectors
- b. UV flame flicker detector (fire detector)
- c. Explosion-proof inner wall constructed of reinforced concrete
- d. Exhaust fans to reduce hydrogen concentration by air exchanging
- e. Blow-out panels in south wall of PV building
- f. No sources of electric sparks.

It is best to stay out of the battery room unless your duties require your presence there. *Smoking is never permitted in the battery room.*

7.1.4 Acid Burns

Refer to Paragraph 5.2.

7.1.5 Bodily Injury

Do not attempt to move a battery without using the pallet jack provided, and do not attempt to climb on a battery to reach another object. When removing a battery with the pallet jack, be careful not to run over a person's

foot or cause any other injury. The battery modules each weigh approximately 2400 pounds.

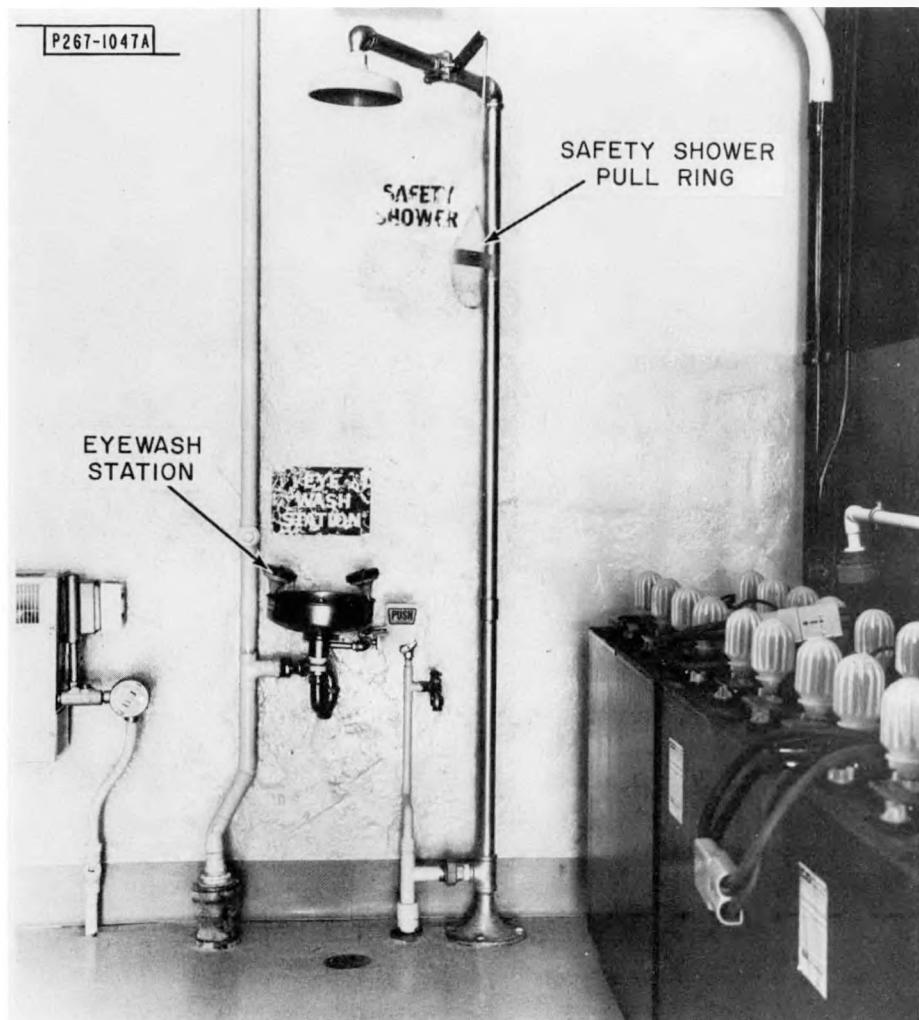
7.1.6 Fire Fighting

Take care when fighting a fire in the battery room because the potential exists for a hydrogen explosion. Refer to Paragraph 5.7 for procedures to be followed in fighting a fire.

7.1.7 Evacuation

Seriously injured persons may need to be evacuated to the nearest hospital as quickly as possible. Refer to NPS procedures for MEDEVAC instructions.

7.2 Battery Maintenance Protective Equipment


The following protective equipment is available and should be used by personnel who maintain batteries:

- a. Goggles or face shields
- b. Acid-resistant gloves
- c. Protective aprons (with sleeves) or disposable laboratory coats
- d. Shoe covers or rubber boots
- e. Eyewash stations and shower (Fig. 10)
- f. Bicarbonate of soda (or an equivalent neutralizing agent) for acid spills. One pound will be available in the battery room, and a further supply will be kept in storage.
- g. Insulated tools for use with batteries
- h. A nonmetallic or insulated flashlight
- i. Distilled water kept in one-gallon jugs for use if the shower and eyewash stations are inoperative.

7.3 Battery Maintenance Safety Precautions

The following precautions should be followed when working in the battery room:

Fig. 10. Eyewash station and shower.

- a. Always wear proper protective equipment (Paragraph 7.2) when performing battery maintenance. Whenever you enter the battery room you should always wear goggles or a face shield (Fig. 11)
- b. Absolutely no smoking or open flames are permitted
- c. Never work alone in the battery room
- d. Make sure that the fan is working
- e. Keep battery room aisles clear
- f. Make periodic inspections of the protective equipment and keep it in good repair

Fig. 11. Battery maintenance protective equipment.

- g. "NO SMOKING" and "DANGER-HIGH VOLTAGE" signs must be displayed inside, and "NO UNAUTHORIZED PERSONNEL" signs must be posted at both entrances to the battery room
- h. Guides should instruct visitors never to touch the batteries to prevent accidental shock and possible acid burns
- i. Never walk on the batteries or use them for a work surface

- j. If working above the batteries, use a suitable ladder or scaffold and cover the batteries to protect them from falling objects
- k. When cleaning a battery module, be careful not to touch the lead terminals (normally covered with black plastic caps). When cleaning, keep one hand behind your back or in your pocket and use the other for cleaning. *Do not come in contact with any liquid which may be on top of the battery modules; this may be electrolyte which conducts electricity and can cause a lethal shock.*
- l. Avoid dropping or placing metal tools (such as wrenches) on top of a battery module, because severe arcing may result. Use tools with insulated handles or wrap metal tools with electrical tape to minimize risk of accident
- m. Be careful washing the battery room floor because the wet floor increases the danger of electrical shock. Avoid hitting the sides of the battery modules when using the power floor scrubber. Only use enough water for the task.
- n. Shut down the battery subsystem (Paragraph 4.1) when washing the batteries with a hose. Do not place any bottles or floor washing aids on top of the battery modules.

NOTE

The battery room floor may be splattered with acid after measurement of specific gravity. Since the batteries will be off line, this would be a good time to schedule floor washing.

7.4 Battery Module Removal

The pallet jack (Fig. 12), located in the battery room, is used to remove a battery module from the battery room. Pallet jack operators must make certain that the PV power system has been separated from the battery room (Paragraph 4.1) before removing the battery module. Refer to the instructions in the Maintenance Manual.

Fig. 12. Battery removal.

WARNING

Do not connect the leads of a battery module together! Wrap and tape the connectors with paper or cloth to ensure that they cannot be interconnected. If the leads were connected together, a huge short-circuit current would flow and extensive damage would result, such as fire and explosion.

Disconnect the positive and negative leads to the battery. Be careful when moving a loaded pallet jack. Move slowly to avoid damaging the sides of other batteries. *At least two people are required to ensure that the battery module can be moved and stopped safely.* Do not lift a battery module higher than necessary.

8.0 CONTROL ROOM SAFETY

8.1 Potential Hazards

8.1.1 Electrical Shock

The potential for an electrical shock exists inside all the electrical equipment located within the control room. The control room contains two cabinets where high-voltage DC power (250-300 VDC) is available: the AFSC switching cabinet and the I/V load box. Other cabinets in this room contain 120 VAC and lower DC voltages.

To aid in servicing, cabinet doors in the control room are not provided with safety interlocks, but they are provided with locks. Unless maintenance is required these cabinet doors should always be locked shut, with the keys kept by trained personnel in the key cabinet (Unit 265A) in the PV building.

Do not touch any electrical or electronic equipment unless authorized. If equipment must be repaired, first make a personal inspection to assure that it is de-energized.

8.1.2 Electrical Arcs

Since arcing usually happens when high-energy circuits are broken, care must be taken that power is cut off to the AFSC cabinets before replacing one of the 48 AFSC modules. Reduced array output is present early and late in the day, and these are the best times to replace an AFSC module. If possible, avoid changing modules in the middle of the day, but if it is necessary, place DISCONNECT switch S2 in the corresponding ASJB box to OFF (Fig. 5). Refer to the appropriate instructions in the Maintenance Manual.

8.1.3 Fire Fighting

Fires can have electrical causes, for example, overloaded circuits can cause fires by overheating. Circuits should not be overloaded by using improperly sized extension cords. Poor contact between plugs and receptacles can also cause arcing, leading to a serious fire hazard. Make sure that contacts are secure. Should a fire start, it can be more readily extinguished if there is no burnable matter in its path. For this reason the control room (and the storage area) should be kept free of flammable debris.

8.1.4 Bodily Injury

Power supplies, oscilloscopes, chassis and other heavy materials should be lifted in such a way as to prevent back injuries. To prevent tripping, cables should be routed in cable ways or overhead.

8.2 Alarm Indicators

The system alarm panel is located on the left side of the main control console (Unit 240) (Figs. 13 and 14). At present, there are 17 major alarm "eyeballs" and 11 minor alarm "eyeballs". Those related to safety are:

Major Alarms: FIRE ALARM; HYDROGEN ALARM; AFSC HOT ALARM

Minor Alarms: BATTERY HOT ALARM; UPS HIGH TEMPERATURE ALARM; MAIN INVERTER HIGH TEMPERATURE ALARM; BATTERY ROOM HIGH TEMPERATURE ALARM; I/V BOX HIGH TEMPERATURE ALARM.

If any alarm has been enabled, check the equipment associated with that alarm, taking all proper precautions.

In addition, a PV building alarm panel, (Unit 236), located on the west wall of the control room (Fig. 15) contains two gas alarms (Units 237A and 237B) to warn of excess hydrogen in the battery room, as well as fire and thermal alarms from the battery room, control room and inverter room.

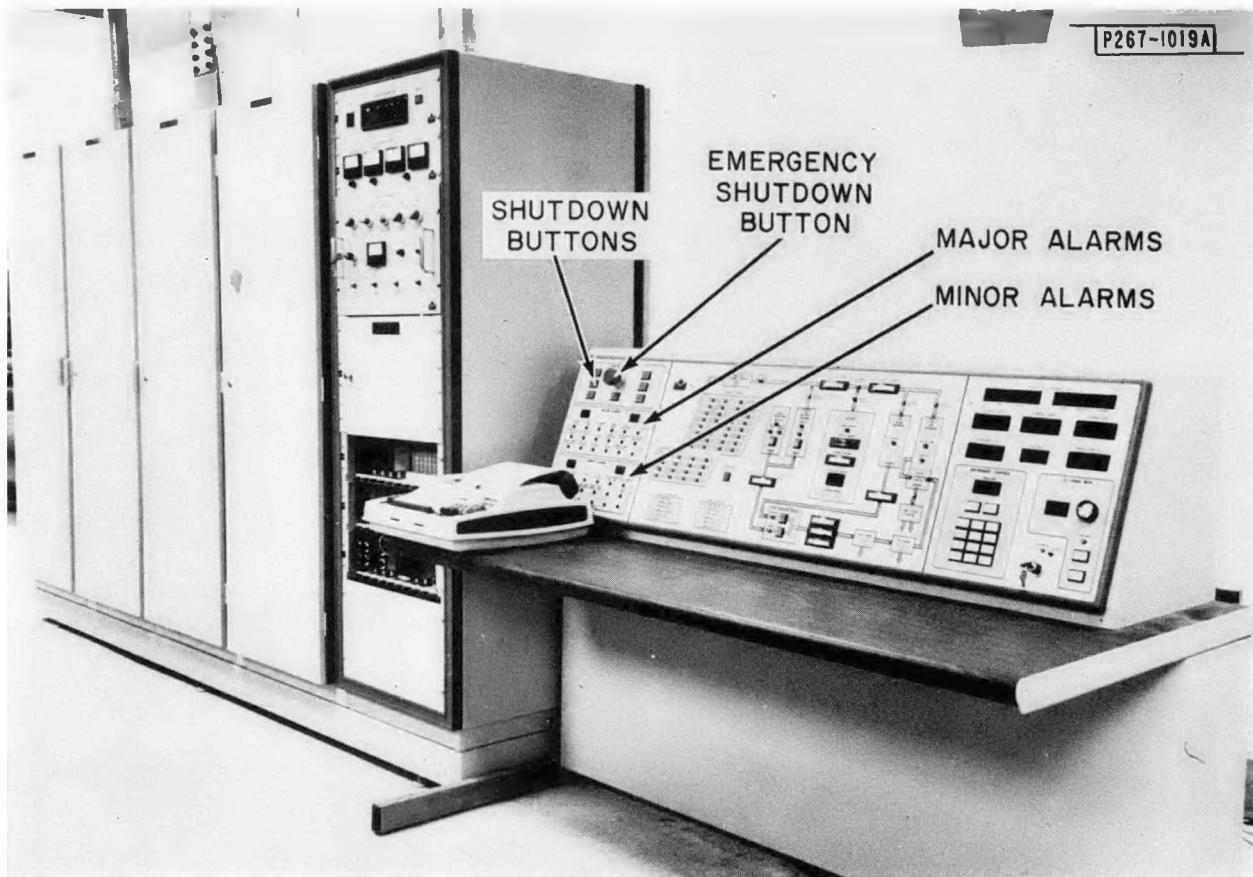


Fig. 13. Control console.

8.3 Control Room Maintenance

Be careful when operating or maintaining electrical equipment, for your safety as well as the safety of others.

Servicing may be done from the front or back of each equipment rack. Be neat. Do not use spaces behind and under consoles or power supplies for storage.

All equipment located within the control room, with the exception of the AFSC cabinets, can easily be de-energized for service. Refer to Paragraph 4.2 for instructions for removing power from the AFSC cabinets.

If it is necessary to obtain voltage indications while the equipment racks are energized, use the one-hand technique described in Paragraph 2.5, wear insulated and tested rubber gloves, and stand on an insulated rubber mat.

P267-901L-A

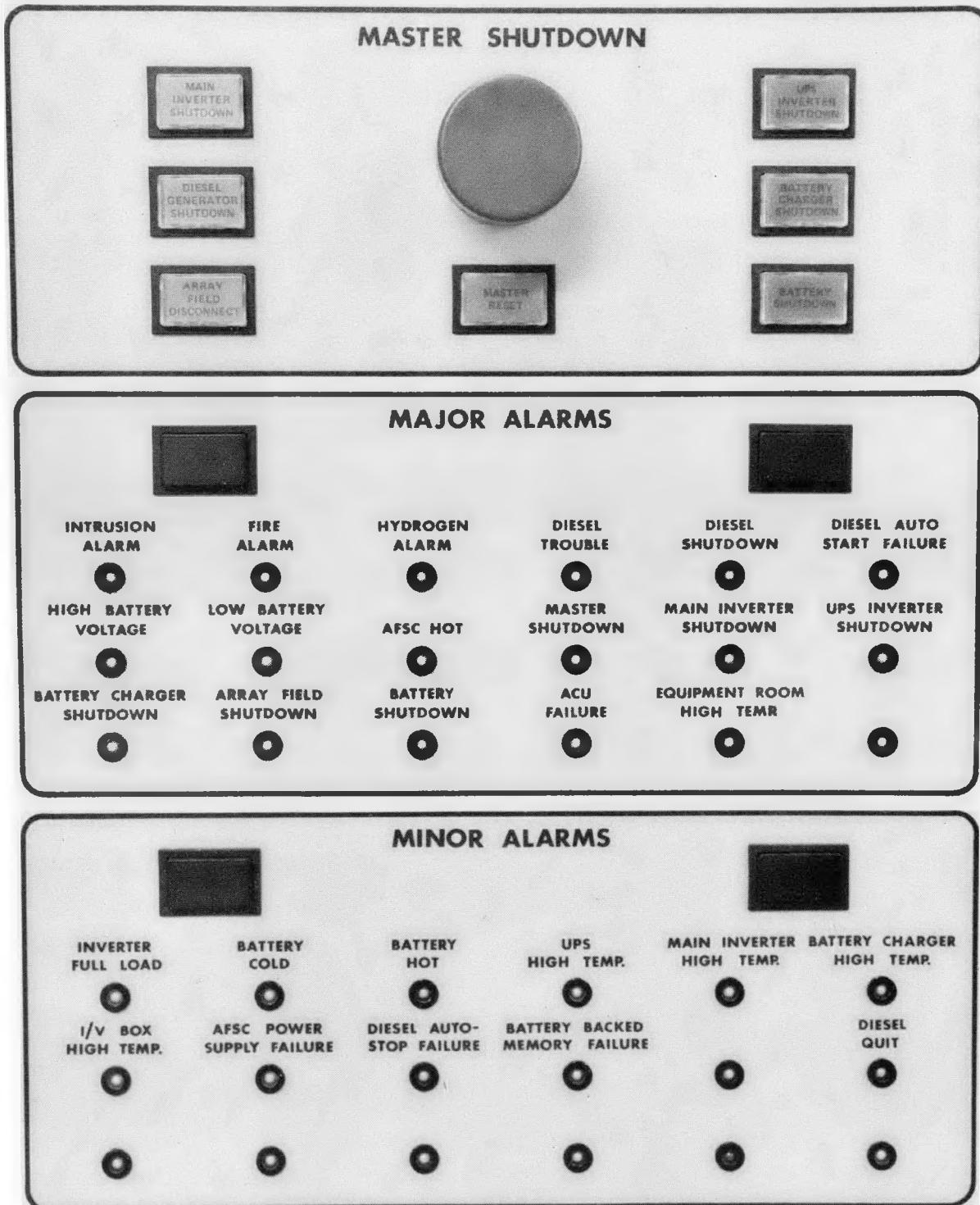


Fig. 14. Console alarm panel close-up.

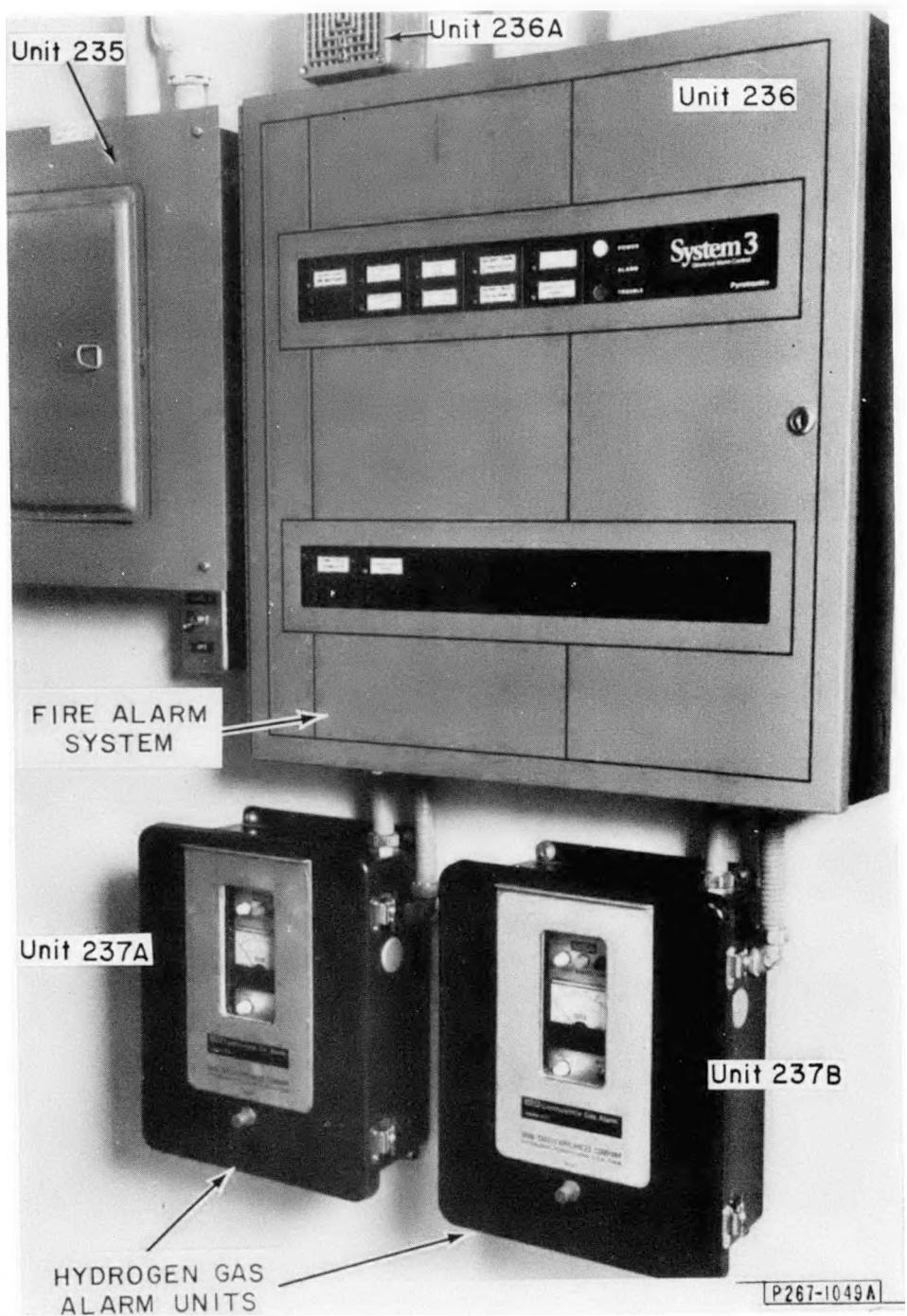


Fig. 15. PV building alarm system.

9.0 INVERTER ROOM SAFETY

9.1 Potential Hazards

9.1.1 Electrical Shock

The potential for electrical shock exists in all the equipment located within the inverter room. Located within this room are the main inverter and a UPS inverter along with a battery charger. Accompanying this equipment are AC and DC disconnects and circuit breakers (Figs. 16 and 17). AC and DC voltages in excess of 240 volts are present in this equipment and in the disconnects.

Before repairing any equipment it is your responsibility to make a personal inspection to assure yourself that it is de-energized. *Opening a switch is not*

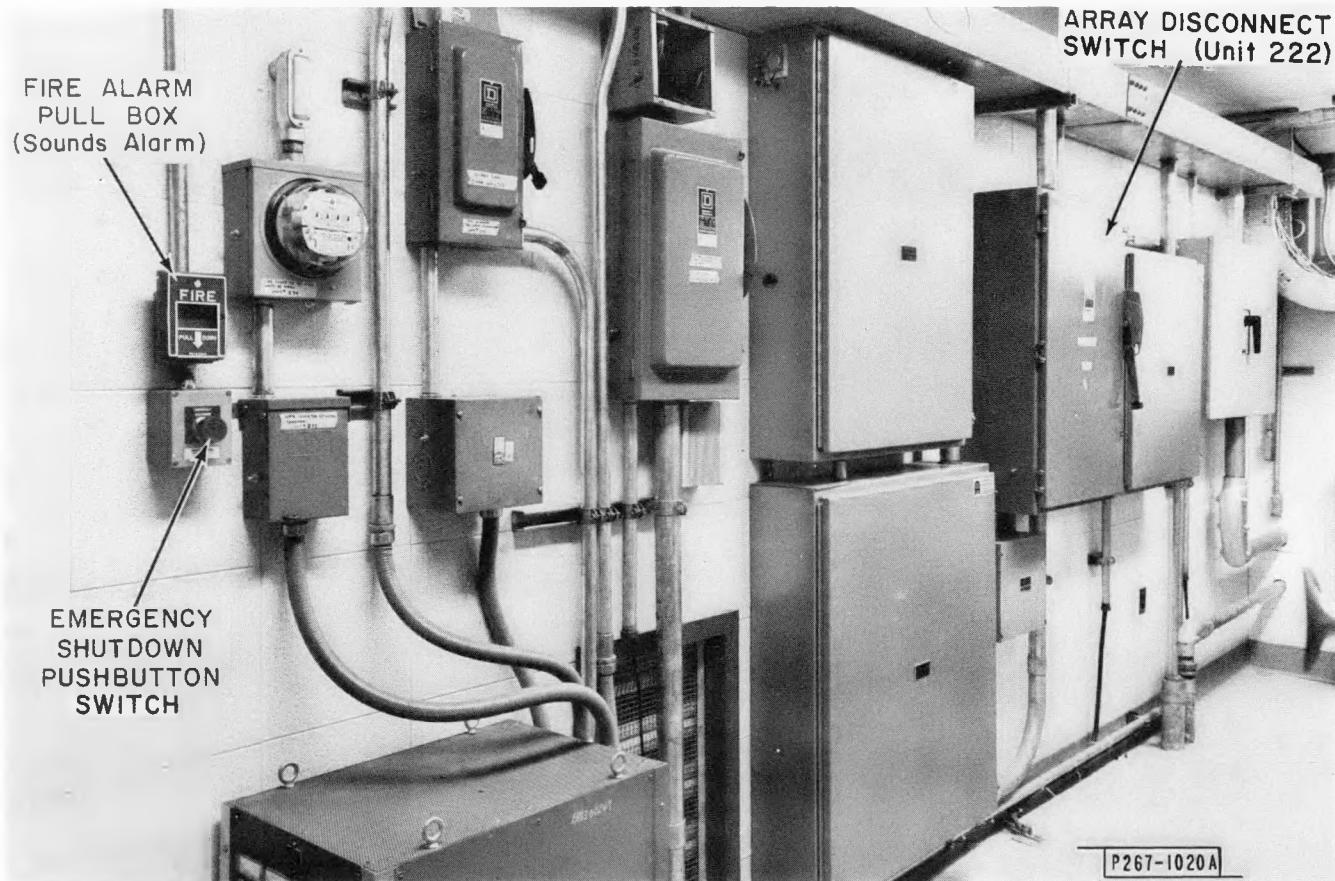


Fig. 16. Inverter room, east wall.

enough! To ensure that all appropriate systems are isolated, it is necessary that all possible sources of power be investigated and de-energized. Before working on any power-conditioning equipment which include capacitors, disconnect them from the energized source, allow time for normal discharge by bleeder resistors and then test them by shorting and grounding. Refer to Paragraph 2.7. Test circuits with a voltage sensor such as a voltmeter before your touch!

9.1.2 Electrical Arcs

Since burns from arcs can be severe, never close a switch slowly or hesitantly, as arcing may result. Arcing happens when breaking high-energy

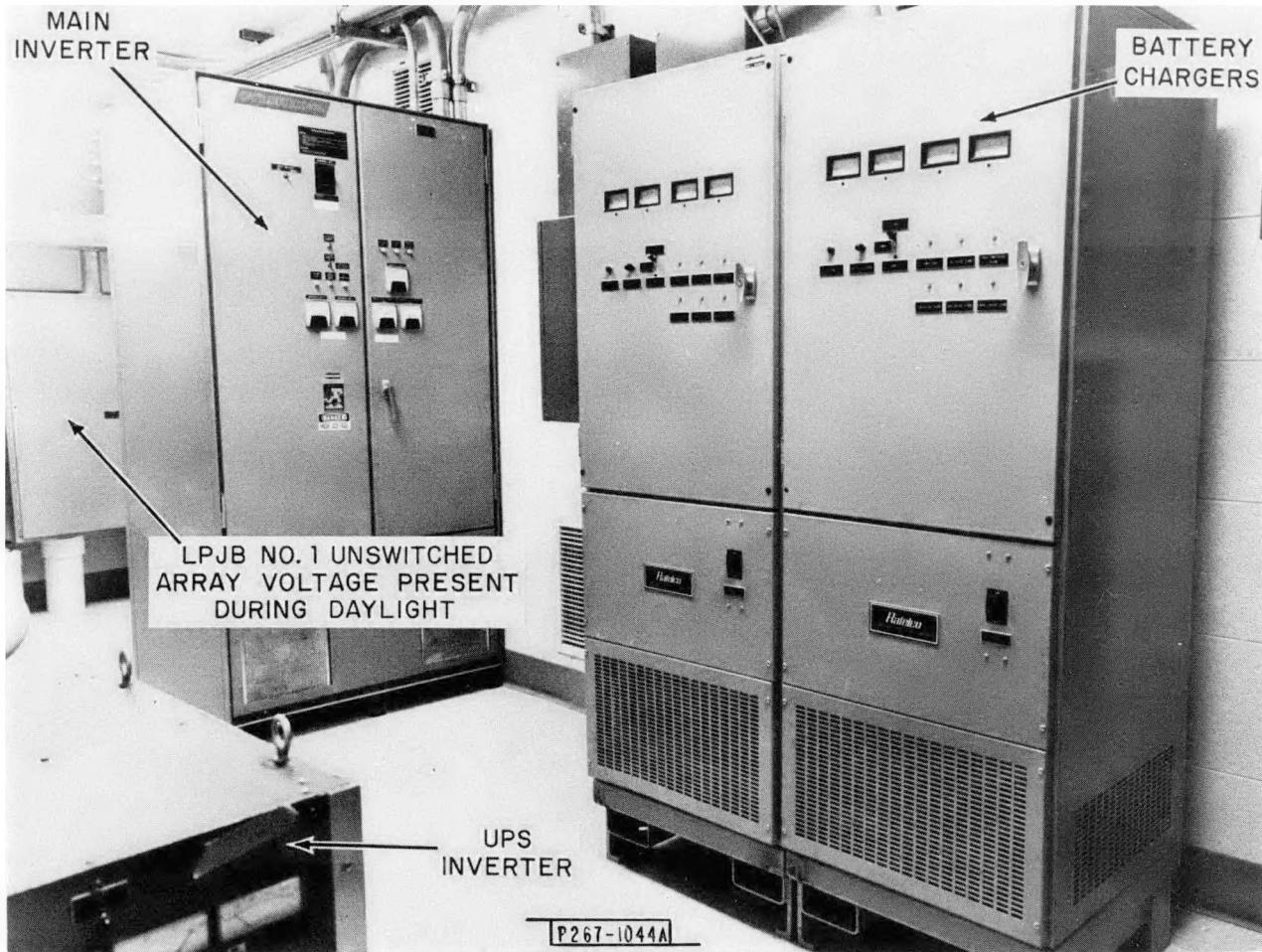


Fig. 17. Inverter room, west wall.

circuits, which are present in this room. Caution must be taken to properly de-energize equipment before attempting repair. *While this system has been carefully designed, it is always best to stand to the side and look away when opening or closing high-power switches.*

9.1.3 Fire Fighting

The potential exists for a fire in the power-conditioning equipment should any component become shorted. This equipment has many built-in safety features to protect it. If by chance a fire should start, the grounded metal enclosures should prevent damage to other equipment. Refer to Paragraph 5.7.

If the array field is struck by lightning, it is remotely possible for the lightning surge arrestors to catch fire. The lightning surge arrestors are located in the LPJB 1 box (Fig. 17) located on the south wall. It will be necessary to shut down PV power to fight the fire, as described in Paragraph 3.0.

9.1.4 Bodily Injury

Refer to Paragraph 5.5.

9.1.5 Evacuation

Refer to Paragraph 5.6.

9.2 Inverter Room Maintenance

When maintaining the electrical equipment in the inverter room, it is necessary to take safety precautions for oneself and for those providing assistance. Do not attempt any repairs unless you are a technician trained in servicing high-power equipment. All power equipment located within the inverter room can be easily de-energized for service. Refer to Paragraph 2.7 before handling capacitors.

Care must be taken when servicing the LPJB 1 box (Fig. 17), which contains the lightning surge arrestors. Before servicing, cut off array power by following the instructions provided in Paragraph 4.2. Then place the array disconnect switch Unit 222, located on the east wall of the inverter room to OFF. Refer to the procedures provided in the Maintenance Manual for checking and replacement of fuses.

Replacing the fuse inside the main inverter (and other maintenance in the inverter) should be done with the main inverter DC disconnect switch (Unit 202) placed to OFF, locked, and tagged by the person doing the work. The AC disconnect switch is Unit 204. The same is true when servicing the UPS inverter and the battery charger. Refer to Paragraph 2.2.

The battery charger must be isolated from the AC power provided by the generator as well as from the DC power available on the battery bus. Place the AC and DC disconnect switches to OFF before servicing this unit. The DC disconnect switch is Unit 217 and the AC disconnect switch is Unit 215.

The UPS inverter also has three power feeds. Place the following switches to their OFF positions:

DC disconnect (Unit 232)

No. 32 50-A AC (Unit 270) Panel A

No. 30 20-A AC (Unit 270) Panel A

A bypass switch can be used to supply power to the control system.

REFERENCES

1. E. F. Lyon, "A 100-kW Peak Photovoltaic Power System for the Natural Bridges National Monument," ISES Silver Jubilee, Atlanta, Georgia (28 May – 1 June 1979).
2. P. O. Jarvinen, C. R. Peatfield, and H. Haiges, "Photovoltaic Applications for the National Park Service," Proc. 12th Intersociety Energy Conversion Engineering Conference, 1159-1166, Washington, DC (28 August – 2 September 1977).
3. P. O. Jarvinen, and H. Haiges, "Natural Bridges National Monument, Utah – Solar Photovoltaic Power System Design," Proc. National Conference on Technology for Energy Conservation, Albuquerque, New Mexico, 318-325 (24-27 January 1978).
4. E. F. Lyon, L. L. Bucciarelli, and A. E. Benoit, "Design of the Natural Bridges National Monument 100-kW PV Power System," 13th IEEE Photovoltaic Specialists' Conference, Washington, DC (5-8 June 1978).

BIBLIOGRAPHY

1. F. J. Solman, A. E. Benoit, J. H. Helfrich, and E. F. Lyon, "The 100-kWp Photovoltaic Power System at Natural Bridges National Monument," 15th Intersociety Energy Conversion Engineering Conference, Seattle, Washington (18-20 August 1980).
2. A. E. Benoit, "Construction of a PV Power System at Natural Bridges National Monument" (December 1980).
3. F. J. Solman, B. E. Nichols, "Design, Construction and Evaluation of Two Large Photovoltaic Power Systems," 1980 Annual Meeting of American Section of ISES, Phoenix, Arizona (1-5 June 1980).

APPENDIX

Definition of Terms

Array

An array is a mechanically integrated assembly of modules together with interconnects, junction box, conduit, heat-transfer elements, and support structure (frame for this project) but exclusive of foundations. An array forms a DC power-producing unit. For this project, an array is 8×24 ft and contains 12 panels. The array produces approximately 1-kW peak and is a branch subcircuit.

Array Field (AF)

The AF is the aggregate of all array subfields, associated electrical auxiliaries, and support foundations. In this document, when AF is used in a contractual context, the support foundations (structural work or members below the top of the NPS provided foundation elements) shall be excluded from the definition. The AF incorporates 48 array subfields for a total power of approximately 100 kW.

Array Junction Box (AJB)

An AJB is an electrical junction box located at the west end of the easterly array in an ASF which provides for power connection of the easterly array to the ASJB and provides the required apparatus for testing of the easterly array (branch circuit) at the subarray level.

Array Subfield (ASF)

An array subfield (ASF) is, for the purposes of this project, the combination of two arrays into an 8×48 ft electrical unit. An ASF produces approximately 2-kW peak at the required DC bus voltage and is a branch circuit.

Array Subfield Junction Box (ASJB)

An ASJB is an electrical junction box located at the west end of a 48-ft array subfield. The ASJB incorporates provision for power summing of the two arrays in the ASF, testing of both arrays at the array level, and testing

of the westerly array at the subarray (branch circuit) level. The ASJB also includes the necessary isolation diodes, current shunts, switches, lightning protection devices, and other required components.

Branch Circuit

A branch circuit is the electrical interconnection of solar modules in an array subfield. For this project, a branch circuit (array subfield) will include two branch subcircuits (arrays).

Frame

A frame is the support structure in which subframes are mounted. The frame used for this project has nominal dimensions of 8×24 ft and will accommodate 12 subframes. The frame incorporates appendages for attachment to a foundation and for the adjustment of the zenith angle. When combined with panels, a frame becomes an array.

Panel

A panel is the electrical and mechanical integration of an appropriate number of solar modules in a subframe including the intermodule power wiring, a module shunting diode, the intersubarray power wiring with companion connectors, module test wiring with companion connectors and the required assembly hardware. For our purposes a panel is 4-ft square; twelve panels fit into an 8×24 ft frame to make an array.

Photovoltaic (PV)

The photovoltaic (PV) effect involves the direct conversion of light energy (in this case sunlight) to electric potential by photon ionization at the junction of a semiconductor.

Photovoltaic System

An installed aggregate of solar array subfields and other subsystems transmitting power to a given application. A system may include the following subsystems; (a) array fields, (b) power conditioning and control, (c) storage, (d) backup, (e) thermal, if required, (f) land security system and building,

(g) on-site conduit/wiring, (h) instrumentation, and (i) maintenance and repair equipment.

Row-End Junction Box (REJB)

A REJB is an electrical junction box located at the west end of a row of four ASFs. It includes the functions of an ASJB except that it has additional provisions for the power summation of all the ASFs in the row and for the interconnection with the underground cable connecting the row with the PV building.

Solar Cell

The solar cell is a semiconductor which presents a relatively large junction area to incident sunlight. The solar cells used for this project are of silicon type and have a diameter of approximately 8 cm. The solar cell is the basic photovoltaic conversion device.

Solar Module

A solar module is the electric interconnection and physical integration of a significant number of solar cells into a complete environmentally compatible assembly. The solar module, in addition to the solar cells and their interconnects, includes a supporting framework for the solar cells, an embedment to minimize thermal and environmental protection to the solar cell surfaces. The module incorporates terminals for external electrical connection as well as a means for mounting in higher assemblies. Three different glass-covered module types with metal framework are used on this project.

Subframe

A subframe is the supporting structure in which solar modules are mounted. The subframe used for this project has standardized dimensions of 4 ft \times 4 ft and will accommodate all three solar module types. When combined with solar modules, diodes, hardware, wiring, and connectors, a subframe becomes a panel.

Underground Cable

The underground cable is a buried cable providing for power and signal interconnection of the AF with other components of the photovoltaic system, which are housed in the PV building.