

PPPL-2194

DR-0891-5

PPPL-2194

UC20-A,C,D

200/85 950
3/26/85

I-20190

THE PERFORMANCE OF THE PDX
NEUTRAL BEAM WALL ARMOR

By

H.W. Kugel, H.P. Eubank, T.A. Kozub,
M.D. Williams, and M. Ulrickson

FEBRUARY 1985

PLASMA
PHYSICS
LABORATORY

PRINCETON UNIVERSITY
PRINCETON, NEW JERSEY

PREPARED FOR THE U.S. DEPARTMENT OF ENERGY,
UNDER CONTRACT DE-AC04-76-CHO-3073.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

1
THE PERFORMANCE OF THE PDX
NEUTRAL BEAM WALL ARMOR

PPPL--2194
DE85 008709

H.W. Kugel, H.P. Eubank, T.A. Kozub, M.D. Williams
and M. Ulrickson

Plasma Physics Laboratory
Princeton University
Princeton, New Jersey

08544

ABSTRACT

The PDX wall armor was designed to function as an inner wall thermal armor, a neutral beam diagnostic, and a large area inner toroidal plasma limiter. In this paper we discuss its thermal performance as wall armor during two years of PDX neutral beam heating experiments. During this period it provided sufficient inner wall protection to permit perpendicular heating injections into normal and disruptive plasmas as well as injections in the absence of plasma involving special experiments, calibrations, and tests important for the optimization and development of the PDX neutral beam injection system. Many of the design constraints and performance issues encountered in this work are relevant to the design of larger fusion devices.

MASTER

1. INTRODUCTION

The PDX wall armor was designed to function as an inner wall thermal armor, a neutral beam diagnostic, and a large area inner toroidal plasma limiter. In this paper we discuss its thermal performance as wall armor during two years of PDX neutral beam heating operations.

The PDX inner wall protective plates were designed to absorb 8 MW of neutral deuterium beam power at maximum power densities of 3 kW/cm^2 for pulse lengths of 0.5 s. The armor consists of arrays of titanium-carbide-coated (20- μm thick) graphite tiles supported on the inner wall of the torus opposite each beam port (Fig. 1). Titanium plates shield the gaps between the graphite units. The graphite tiles are held to stainless steel backing plates by a water-cooled copper dovetail design. Flat springs cause the tiles to float 0.076 cm above the support structures to allow the free expansion and bending of the tiles into the dovetail gap, thereby minimizing thermal stresses while maintaining support at the dovetails. Copper cooling lines between the stainless steel and copper sections provide optional cooling capability (Fig. 2). A detailed description of this armor design and its development is given elsewhere.¹

2. INITIAL QUALIFICATION

The PDX neutral beam armor was designed so that the front-face material would withstand $\sim 10^3$ unattenuated beam strikes of 0.5-s duration and $\sim 10^4$ beam strikes at $\sim 20\%$ of full power for each year of its planned five-year life.

Electron beam tests² and theoretical studies¹ showed that the selected tile material was suitable to accept power densities of 3 kW/cm^2 for 0.5-s durations. Heat transfer studies were performed by measuring the front-face

temperature changes as a function of time with and without cooling water using an infrared (IR) camera. The results of these studies indicated that with water cooling, the prototype would cool down in ≤ 180 -s after a full power, 0.5-s beam strike. It was found that without water cooling, the prototype would cool down in a comparable time after an $\sim 10\%$ of full power shot of 0.5-s duration. This cool-down rate was adequate to prevent excessive thermal ratcheting during experimental runs with typical PDX plasma densities and a duty cycle of one pulse every 360-s. The prototype was then subjected to one thousand 40-keV, 2.5-kW/cm², 250-ms neutral beam (H^+) shots as a test stand target. After this test the prototype showed no visible evidence of beam impact or deleterious effects.

3. OPERATING CONDITIONS

Typically, at the beginning of a daily neutral beam heating run, three to four unattenuated neutral beam shots of $\sim 75\%$ of full power and 100-ms duration were injected into PDX in the absence of plasma, usually between normal ohmic heating shots, to outgas the beam ducts and armor. During these beam duct outgassing shots, residual gas analyzer measurements of the PDX vacuum species yielded spectra exhibiting hydrocarbons typical of tokamak vacuum conditions and having intensities which decreased initially by about a factor of two per shot. The behavior of the PDX beam duct outgassing is discussed in detail elsewhere.³

During heating experiments, $\sim 5\text{-}50\%$ of the beam power was transmitted to the armor depending on the beam energy, beam species, and plasma density. Typically, the transmission was 10-15% of full power. Under these conditions, the armor received $\sim 80\text{-}100$ shots per run day at a 360-s duty cycle over a discontinuous period of 28 months. Figures 3 and 4 show the neutral beam operating history during this period.

In addition, special calibrations or experiments were often performed by injecting ~ 75-100% of full power shots of mostly 100-ms duration in the absence of plasma. These experiments involved injection system development,⁴ duct outgassing studies,³ neutral beam computer system development,^{5,6} water calorimetry, thermocouple power density profiles,⁷ IR camera and pyrometer measurements,⁸ species measurements via sample implantation,⁹ and species studies using Rutherford backscatter spectrometry.¹⁰ Some of these experiments involved pulses of 200- and 300-ms duration.

In addition to the duct outgassing shots, normal operating modes, special calibrations, and experiments, the inner wall armor has also been used as a beam dump for conditioning ion sources under special circumstances using 50-ms duration pulses of 50-100% of full power at a 60-s duty cycle.

4. NET THERMAL LOAD

Figure 5 shows a histogram of the approximate number of shots of various durations and intensities impacted on the east neutral beam armor in the absence of plasma during the experimental period. These shots were typically 100-300 ms in duration, of 50-100% of full power with maximum on-axis power densities at the armor of 1.5-3 kW/cm² using H⁺ and D⁺ beams. Figure 6 shows a histogram of the approximate total net kJ absorbed by the armor during the experimental period. Figure 7 shows a calculated plot of front-face temperature versus pulse duration for a 500-ms pulse with a power density of 3 kW/cm² incident on a 1.27-cm thick graphite tile. It is seen that during full power shots with durations of 100 to 300 ms, the peak front-face tile temperatures varied from about 950°C to 1550°C. Typical equilibrium tile temperatures observed during or after runs using the armor thermocouples were in the range of ~ 50 to 250°C.

5. OUTGASSING AND IMPURITIES

Prior to installation, measurements of the outgassing from an unbaked armor titanium-carbide-coated graphite tile were performed up to 800°C using a residual gas analyzer. The results indicated the presence of typical hydrocarbons at levels acceptable to the PDX environments.¹¹ Prior to installation in the backing plates, the armor tiles were baked in a vacuum furnace at 600°C for 8 hours. Residual gas analyzer measurements of the PDX vacuum constituents made after duct outgassing shots in the absence of plasma, as discussed above, or measurements made after normal heating injections into PDX plasmas yielded spectra exhibiting hydrocarbons typical of tokamak vacuum conditions. During neutral beam heating injections into either circular C-rail limited, circular inner bumper limited, or Dee-diverted plasmas, the plasma cleanliness was monitored extensively and the main intrinsic impurities were found to be usually C, O, and Ti with intensities typical of Ti-gettered tokamaks.¹² There has been no significant impurity production attributable to the heating of the armor tiles under clean machine conditions. The behavior of Z_{eff} versus injected beam power for C-rail limited, inner bumper limited, and Dee-diverted plasmas is discussed in detail elsewhere.¹²

6. SURFACE CHANGES

The tile surfaces initially exhibited a uniform metallic appearance which gradually changed over large regions of the armor due to titanium deposits from dome and midplane gettering in PDX. These regions are darker, less specular, and exhibit multiple colors characteristic of thin films. In general, this film became easier to remove with light brushing after several weeks of exposure to the atmosphere. However, over the beam impact regions that received maximum power densities, the surface chemistry appeared to be

more complex, exhibiting an apparent alloying of the titanium film with the tile surface due to beam heating. The texture is smooth and constant across these regions and there is no tactile evidence of a break or discontinuity in the surface smoothness.

In general, with the exception of the alloying effect described above, a visual inspection of the armor using fluorescent light after open machine conditions for several weeks found no indication of beam impact on the armor units. Although the beam power density profiles are approximately axially symmetric gaussians in shape, there is no visual evidence of concentric rings of different color or texture on any armor unit. There is no visual evidence that beam impact has chipped, melted, or removed titanium carbide coating from the tile surfaces.

Some tiles outside of the beam impact regions exhibit surface arcing streaks predominantly in the vertical direction relative to the toroidal plane. In some regions of the armor, at the graphite/titanium interfaces (see Fig. 1), there are several gaps for inner wall diagnostics such as laser dumps, for example. Some of the tiles at the edges of these gaps have exposed graphite edges or corners indicating that sufficient power was deposited from the plasma to remove a small amount of titanium carbide coating. This type of surface edge damage appears to be more prevalent on edges that received power depositions from the ion-direction of the plasma current. Perhaps this type of minimal edge damage could be controlled by more rounded edges at the armor gaps, minimizing the width of armor gaps, or appropriate shielding.

Preliminary microscopic surface measurements have been performed on a tile from the center of the east armor unit.¹³ Elemental distributions were measured using energy dispersive X-ray spectroscopy (EDX), and surface topology was examined using a scanning electron microscope (SEM). The

elemental distributions found in thin surface films and surface droplets were characteristic of PDX materials (i.e., Ti, Fe, Cr, Ni, and Al). The surface topology exhibited several interesting phenomena including enhanced sputtering at grain boundaries, 2 to 3 μ diameter blisters, micro-projections, and oriented "wedge-shaped pits." The investigation of these effects is still in progress and may yield a deeper understanding of neutral beam/plasma armor requirements.¹³

7. SAFETY INTERLOCKS

The primary safety interlock was a signal supplied by the plasma-current sensing circuits which permitted acceleration voltage across the ion sources when plasma current was present. This system never failed to inhibit heating injections during plasma-current disruptions. This interlock was manually removed during special injections in the absence of plasma or to allow the continuation of injecting pulses following disruptions in plasma current for the calibrations and special experiments discussed above.

A secondary interlock was provided by the thermocouple control circuitry which disconnected the thermocouples from the vessel prior to each shot in order to maintain electrical isolation of the vessel. Prior to disconnecting the thermocouples, this circuit also scanned each thermocouple and measured the resistance across its junction and the resistance between the thermocouple and the vessel. A high resistance was taken as indication of a cracked or missing tile or a thermocouple malfunction, which alerted the operator until manually returned to normal.

In addition, a prototype IR pyrometer interlock was demonstrated to inhibit effectively a beam when the armor front face temperature exceeded a selected threshold.⁸ This was demonstrated for injections in the absence of

plasma, injections into circular C-rail limited plasma, and injections into circular plasmas inner limited by the armor.

8. CONCLUSIONS

The thermal loads, electromagnetic forces, mechanical vibrations, duty cycle, plasma control requirements, and ultra clean environment of PDX imposed many difficult conflicting constraints on the design of the wall armor. The overall thermal performance of the PDX wall armor has provided sufficient inner wall protection to permit perpendicular heating injections during normal and disruptive plasma conditions. In addition, it has permitted short pulse length, full power shots in the absence of plasma for special experiments, calibrations, and tests important for the optimization and development of the PDX neutral beam injection system. There has been no significant impurity production attributable to the heating of the armor tiles under clean machine conditions. Many of the design constraints and performance issues encountered in this work are relevant to the design of larger fusion devices.

ACKNOWLEDGMENTS

The authors wish to acknowledge the technical contributions of S. Hand and L. Gereg. This work was supported by U.S. Dept. of Energy Contract No. DE-AC02-76-CHO-3073.

REFERENCES

- ¹ H.W. Kugel and M. Ulrickson, "The Design of the Poloidal Divertor Experiment Tokamak Wall Armor and Inner Limiter System," *Nucl. Technol./Fusion* 2, 712 (1982). H.W. Kugel and M. Ulrickson, Princeton Plasma Physics Laboratory Report No. PPPL-1785 Aug. 1981.
- ² M. Ulrickson, "Material Studies Related to TFTR Limiters and Wall Armor," in Proceedings of First Typical Meeting on Fusion Reactor Materials, F.W. Wiffen, J.H. DeVan, and J.D. Stiegler, Eds., (North-Holland Publishing Company, Amsterdam, 1979).
- ³ H.W. Kugel, H.F. Dylla, H.P. Eubank, T.A. Kozub, R. Moore, G. Schilling, L.D. Stewart, A. von Halle, and M.D. Williams, "PDX Neutral Beam Reionization Losses," *J. Vac. Sci Technol.* 20, 1197 (1982).
- ⁴ M.D. Williams, H.P. Eubank, T. A. Kozub, H.W. Kugel, J.E. Rossmassler, G. Schilling, and A. von Halle, "Installation Start-up of the PDX Neutral Beam Injection System," *Proceedings of Ninth Symposium on Engineering Problems of Fusion Research*, Chicago, IL (1981) 760.
- ⁵ T.A. Kozub, J.E. Rossmassler, H.P. Eubank, H.W. Kugel, G. Schilling, A. von Halle, and M.D. Williams, "Development and Operation of PDX Neutral Beam Computer System," *Proceedings of Ninth Symposium on Engineering Problems of Fusion Research*, Chicago, IL (1981) 912.

- 6 T.A. Kozub, H.W. Kugel, H.P. Eubank, J.E. Rossmassler, K.L. Tuttle, and M.D. Williams, "Performance of PDX Neutral Beam Computer Control," Bull. Am. Phys. Soc. 27 (8), 1050 (1982).
- 7 H.W. Kugel, H.P. Eubank, T.A. Kozub, J.E. Rossmassler, G. Schilling, A. von Halle, and M.E. Williams, "Initial Operation and Performance of the PDX Neutral Beam Injection System," Proceedings of Third Neutral Beam Heating Workshop, Gatlinburg, TN (1981) 505.
- 8 H.W. Kugel, S.S. Medley, H.P. Eubank, J.L. Lowrance, T.A. Kozub, G. Renda, and M.D. Williams, "TFTR Neutral Beam Interlock System Using Infrared Pyrometry," Proceedings of Fourth APS Topical Conf. on High Temperature Plasma Diagnostics, Boston, MA (1982) D14.
- 9 C.W. Magee, S.A. Cohen, H.F. Dylla, H.P. Eubank, T.A. Kozub, H.W. Kugel, D.M. Manos, G. Schilling, and M.D. Williams, "SIMS Analysis of Neutral Beam Species Mix," Princeton Plasma Physics Laboratory (unpublished).
- 10 H.W. Kugel, R. Kaita, G. Gommel, and M.D. Williams, "Neutral Beam Species Measurements Using In-Situ Rutherford Backscatter Spectrometry," accepted for publication in Rev. Sci. Instrum (1985).
- 11 H.W. Kugel and H.F. Dylla, "RGA Studies of a PDX TiC Coated Graphite Tile as a Function Temperature," Princeton Plasma Physics Laboratory (Unpublished).
- 12 R.J. Fonck, M. Bell, K. Bol, K. Brau, R. Bundy, J.L. Cecchi, S. Cohen, S. Davis, H.F. Dylla, R. Goldston, B. Grek, R.J. Hawryluk, J. Hirschberg, D.

Johnson, R. Hulse, R. Kaita, S. Kaye, R.J. Knize, H. Kugel, D. Manos, D. Mansfield, K. McGuire, D. Mueller, K. Oasa, M. Okabayashi, D.K. Owens, J. Ramette, R. Reeves, M. Reusch, G. Schmidt, S. Sesnic, S. Suckewer, H. Takahashi, F. Tenney, P. Thomas, M. Ulrickson and R. Yelle, "Impurity Levels and Power Loading in the PDX Tokamak With High Power Neutral Beam Injection," *J. Nucl. Mater.* 111 & 112, 343 (1982).

¹³ Y. Gotoh, H. Hoven, K. Koizlik, J. Linke, E. Walluha, H. Kugel, and M. Ulrickson, "Surface Damage on Ceramic and Metallic Limiters of Tokamaks," in *Proceedings of 13th Symposium on Fusion Technology*, Varese, Italy (1984). Y. Gotoh and J. Linke, private communication.

FIGURE CAPTIONS

FIG. 1. A partial schematic top view showing the location and injection angles of the PDX neutral beam injection system, and the location of the coated graphite wall armor.

FIG. 2. Partial schematic cross-sectional end view of the armor graphite tile and backing plate arrangement.

FIG. 3. PDX neutral beam operating history. Shown is the neutral beam heating injections per month during the experimental period. The variations in total injections per month were due primarily to the PDX experimental schedule.

FIG. 4. PDX neutral beam ion sources fault history. Shown are the percentage of neutral beam ion source faults per injecting ion source during the experimental period.

FIG. 5. A histogram of the approximate number of shots of various durations and intensities impacted on the east armor unit in the absence of plasma during the experimental period.

FIG. 6. A histogram of the cumulative energy (kilojoules) absorbed by the armor during the experimental period.

FIG. 7. Calculated plot of front-face temperature versus pulse duration for a 500-ms pulse with a power density of 3 kW/cm^2 incident on a 1.27-cm thick graphite tile.

PDX INSTALLATION, PARTIAL TOP VIEW

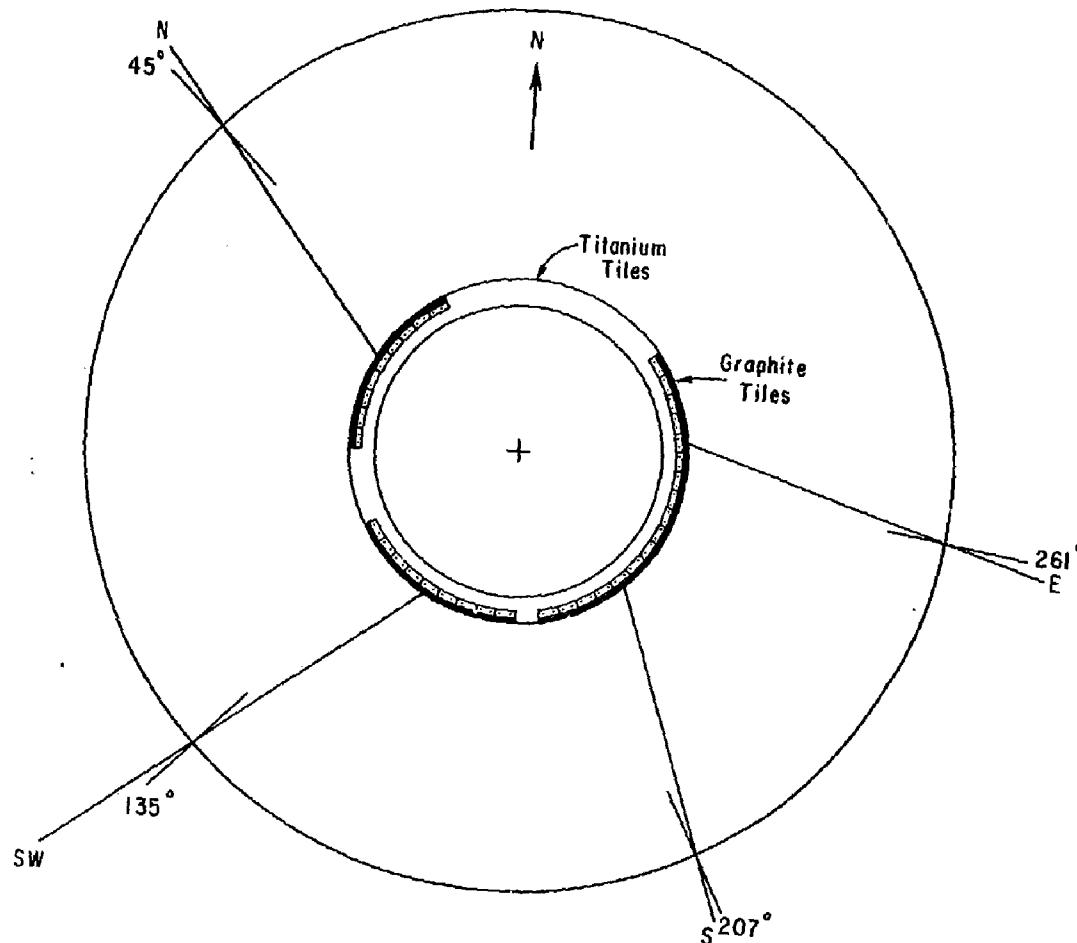


Fig. 1

GRAPHITE-SLAT ALIGNMENT

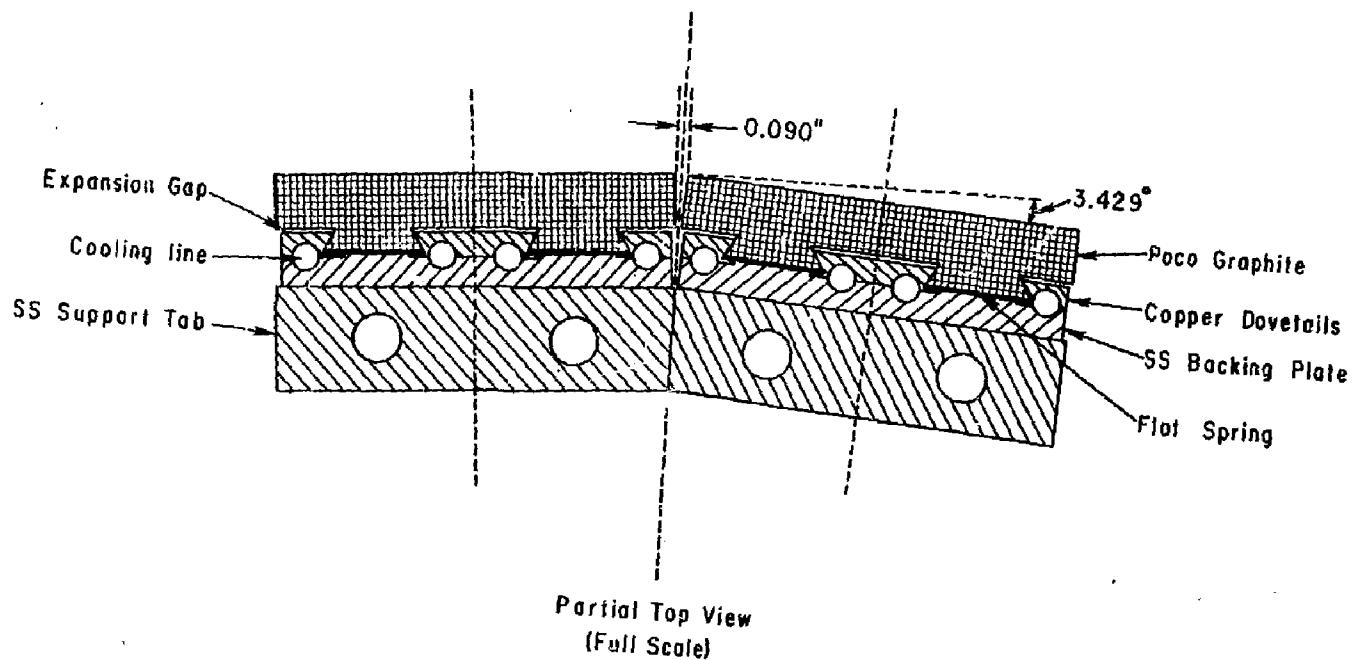


Fig. 2

#84x1995

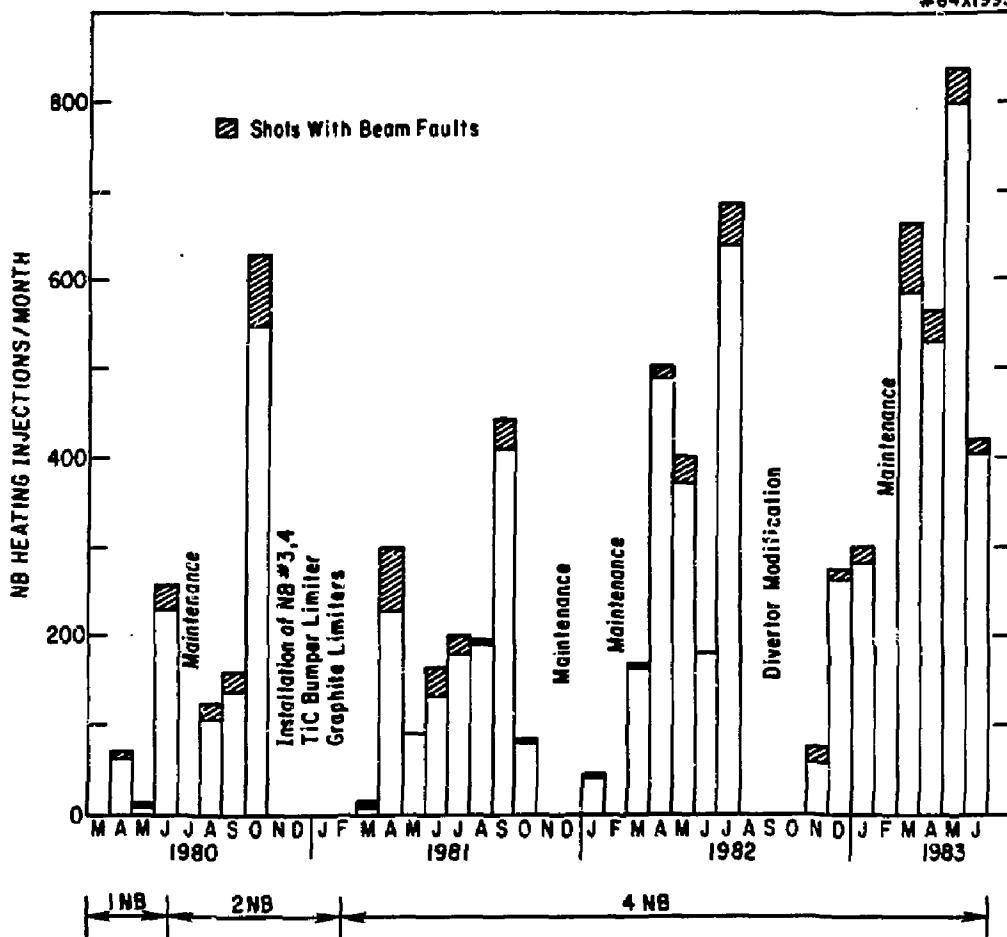


Fig. 3

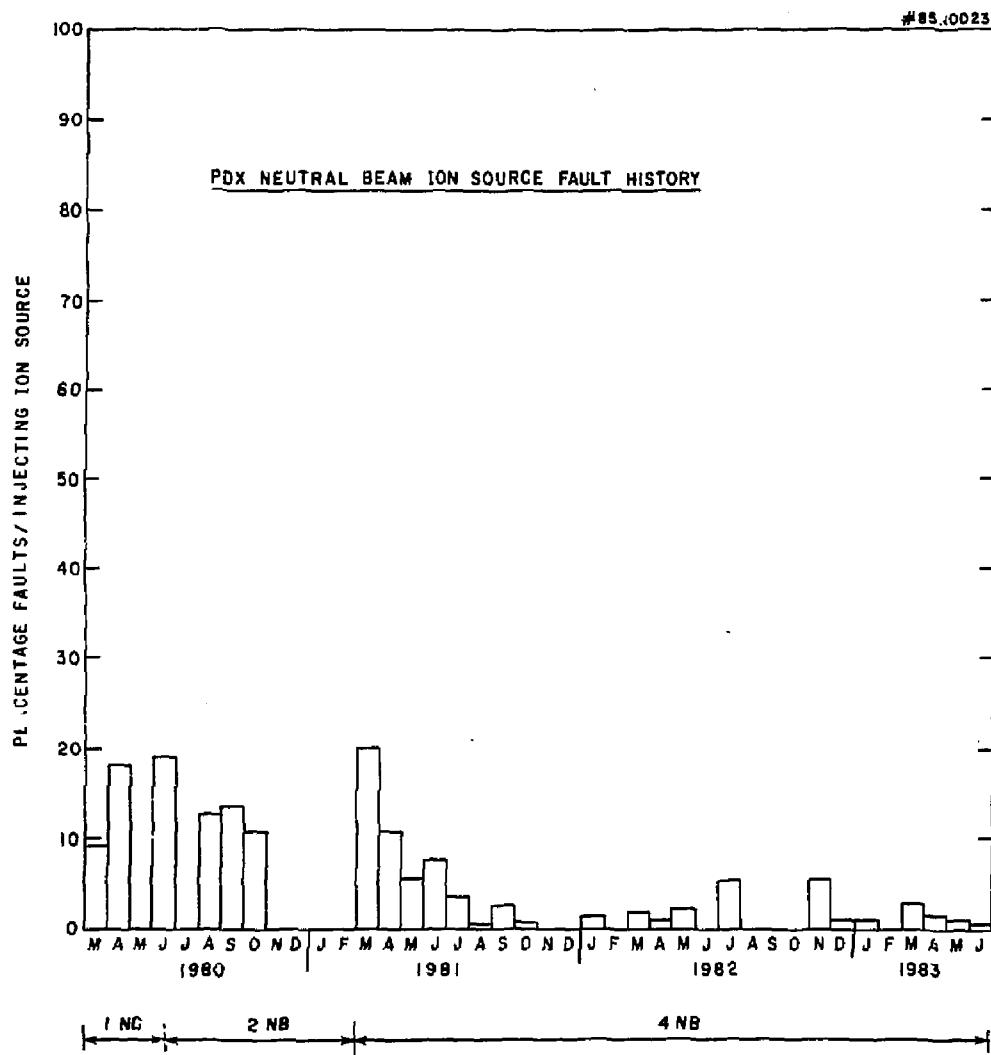


Fig. 4

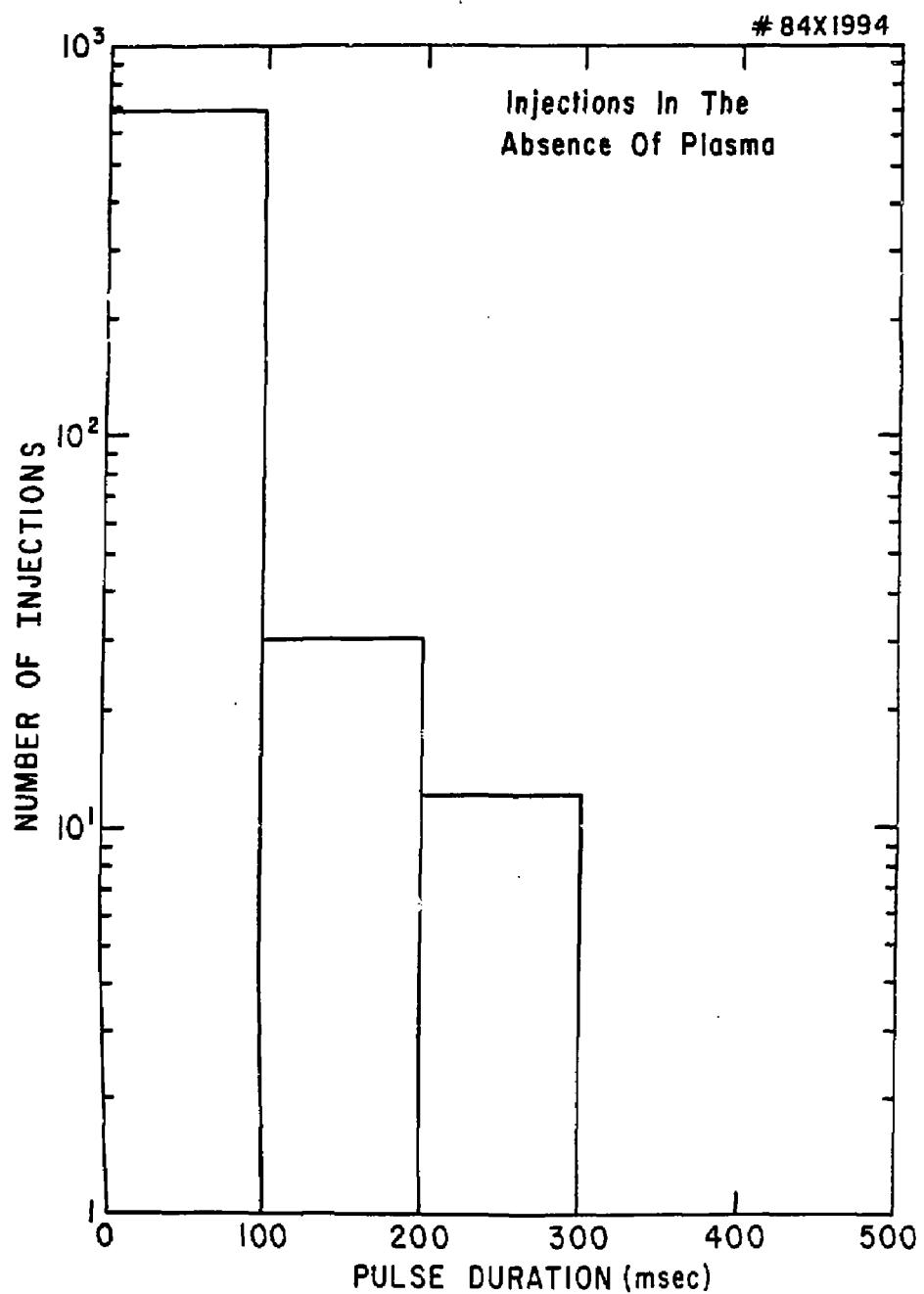


Fig. 5

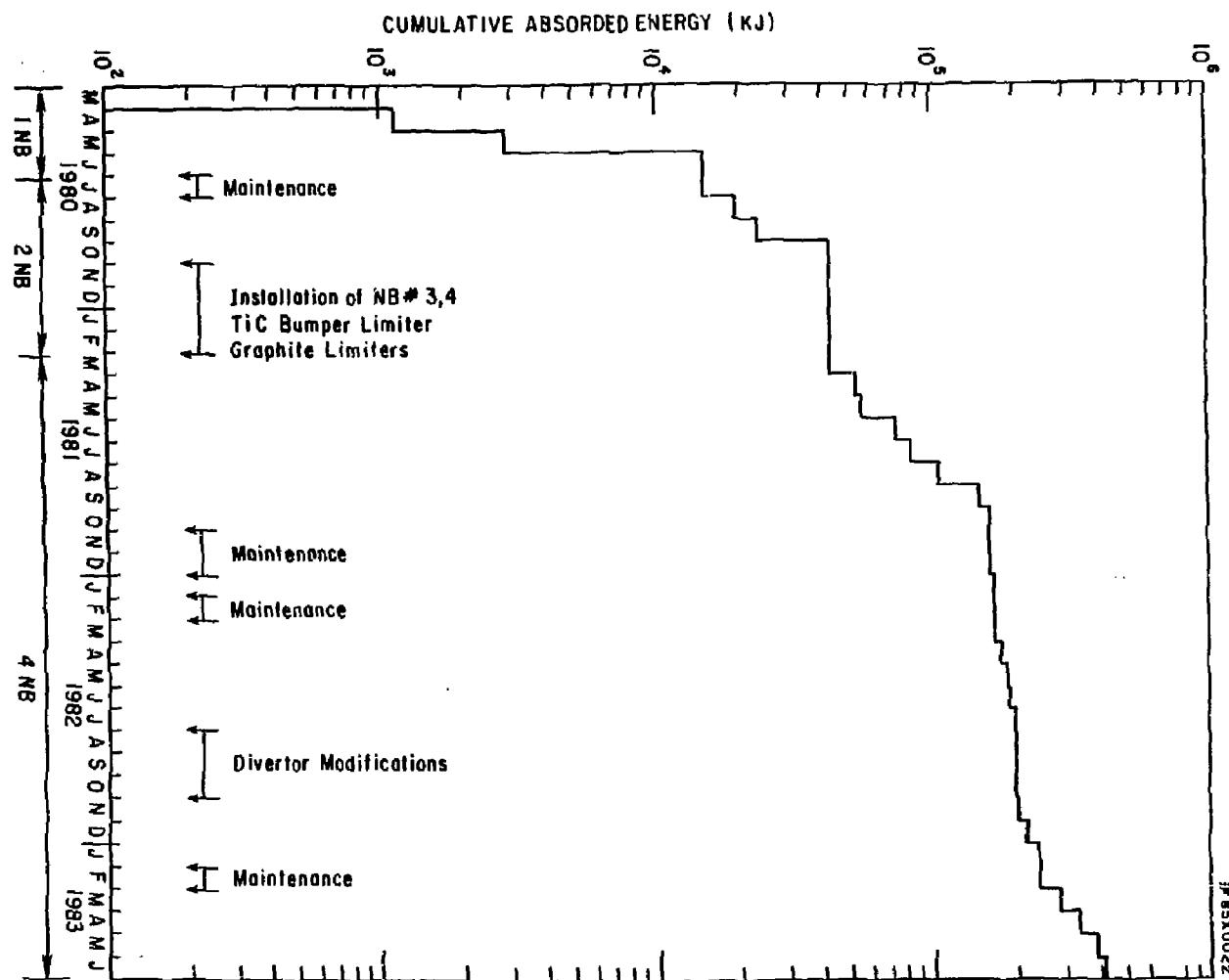


Fig. 6

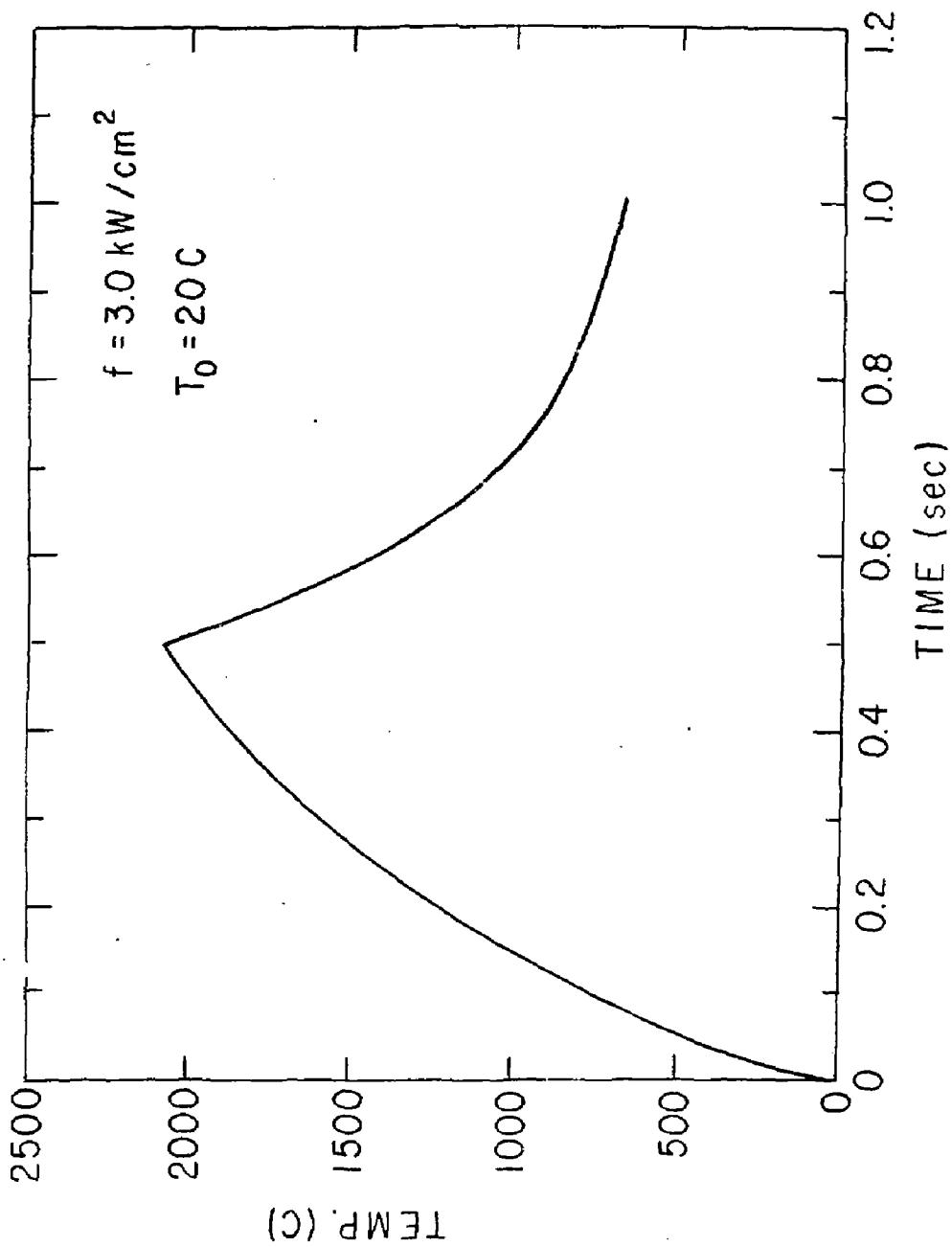


Fig. 7

EXTERNAL DISTRIBUTION IN ADDITION TO UC-20

Plasma Res Lab, Austr Nat'l Univ, AUSTRALIA
Dr. Frank J. Paoloni, Univ of Wollongong, AUSTRALIA
Prof. I.R. Jones, Flinders Univ., AUSTRALIA
Prof. M.H. Brennan, Univ Sydney, AUSTRALIA
Prof. F. Cap, Inst Theo Phys, AUSTRIA
Prof. Frank Verheest, Inst theoretische, BELGIUM
Dr. D. Palumbo, Dg XII Fusion Prog, BELGIUM
Ecole Royale Militaire, Lab de Phys Plasmas, BELGIUM
Dr. P.H. Sakanaka, Univ Pstadual, BRAZIL
Dr. C.R. James, Univ of Alberta, CANADA
Prof. J. Teichmann, Univ of Montreal, CANADA
Dr. H.M. Skarsgard, Univ of Saskatchewan, CANADA
Prof. S.R. Sreenivasan, University of Calgary, CANADA
Prof. Tudor W. Johnston, INRS-Energie, CANADA
Dr. Hannes Barnard, Univ British Columbia, CANADA
Dr. M.P. Bachynski, MBB Technologies, Inc., CANADA
Chalk River, Nucl Lab, CANADA
Zhenyu Li, SW Inst Physics, CHINA
Library, Tsing Hua University, CHINA
Librarian, Institute of Physics, CHINA
Inst Plasma Phys, Academia Sinica, CHINA
Dr. Peter Lukac, Komenskeho Univ, CZECHOSLOVAKIA
The Librarian, Culham Laboratory, ENGLAND
Prof. Schatzman, Observatoire de Nice, FRANCE
J. Radet, CEN-BPF, FRANCE
AM Dupas Library, AM Dupas Library, FRANCE
Dr. Tm Mual, Academy Bibliographic, HONG KONG
Preprint Library, Cent Res Inst Phys, HUNGARY
Dr. S.K. Trehan, Panjab University, INDIA
Dr. Indra Moha, Lal Das, Banaras Hindu Univ, INDIA
Dr. L.K. Chavda, South Gujarat Univ, INDIA
Dr. R.K. Chhajlani, Vikram Univ, INDIA
Dr. B. Dasgupta, Saha Inst, INDIA
Dr. P. Kaw, Physical Research Lab, INDIA
Dr. Phillip Rosenau, Israel Inst Tech, ISRAEL
Prof. S. Cuperman, Tel Aviv University, ISRAEL
Prof. G. Rostagni, Univ Di Pad, ITALY
Librarian, Int'l Ctr Theo Phys, ITALY
Miss Clelia De Palo, Assoc EURATOM-ENEA, ITALY
Biblioteca, del CNR EURATOM, ITALY
Dr. H. Yamato, Toshiba Res & Dev, JAPAN
Direc Dept Lg. Tokamak Dev, JAERI, JAPAN
Prof. Nohayuki Inoue, University of Tokyo, JAPAN
Research Info Center, Nagoya University, JAPAN
Prof. Kyoji Nishikawa, Univ of Hiroshima, JAPAN
Prof. Sigenori Mori, JAERI, JAPAN
Library, Kyoto University, JAPAN
Prof. Ichiro Kawakami, Nihon Univ, JAPAN
Prof. Satoshi Itoh, Kyushu University, JAPAN
Dr. D.I. Choi, Adv. Inst Sci & Tech, KOREA
Tech Info Division, KAREI, KOREA
Bibliotheek, Fom-Inst Voor Plasma, NETHERLANDS

Prof. B.S. Liley, University of Waikato, NEW ZEALAND
Prof. J.A.C. Cabral, Inst Superior Tecn, PORTUGAL
Dr. Octavian Petrus, ALI CIIZA University, ROMANIA
Prof. M.A. Hellberg, University of Natal, SO AFRICA
Dr. Johan de Villiers, Plasma Physics, Nucor, SO AFRICA
Fusion Div. Library, JEN, SPAIN
Prof. Hans Wilhelmsen, Chalmers Univ Tech, SWEDEN
Dr. Lennart Stenflo, University of UMEA, SWEDEN
Library, Royal Inst Tech, SWEDEN
Centre de Recherches, Ecole Polytech Fed, SWITZERLAND
Dr. V.T. Tolok, Khar'kov Phys Tech Ins, USSR
Dr. D.D. Ryutov, Siberian Acad Sci, USSR
Dr. G.A. Eliseev, Kurchatov Institute, USSR
Dr. V.A. Glukhikh, Inst Electro-Physical, USSR
Institute Gen. Physics, USSR
Prof. T.J.M. Boyd, Univ College N Wales, WALES
Dr. K. Schindler, Ruhr Universitat, W. GERMANY
Nuclear Res Estab, Juelich Ltd, W. GERMANY
Librarian, Max-Planck Institut, W. GERMANY
Bibliothek, Inst Plasmaforschung, W. GERMANY
Prof. R.K. Janev, Inst Phys, YUGOSLAVIA