

SUMMARY COVER SHEET

CONTRIBUTED PAPER

INVITED PAPER

ORIGINAL AND THREE COPIES REQUIRED

TITLE: Posttest Analysis of LOFT LOCE L2-3 Using the ESA RELAP4 Blowdown Model

AUTHOR(S): (List authors in the proper order and exactly as they are to be published. PLACE AN ASTERISK AFTER EACH AUTHOR WHO IS AN ANS MEMBER; AN "S" AFTER STUDENT AUTHOR.)

1. J. L. Perryman
2. T. K. Samuels
3. C. H. Cooper

AFFILIATION(S): (List corresponding author's affiliation and complete mailing address.)

1. EG&G Idaho, Inc., P. O. Box 1625, Idaho Falls, ID 83401
2. " " " "
3. " " " "

MAST

Indicate number of author to whom correspondence should be addressed 1, and complete page 4.

To whom should the page charge be billed? EG&G Idaho

Preferred: Attach purchase order with appropriate purchase order number to original copy of the summary.

FOR CONTRIBUTED SUMMARY:

Identify ANS Division or Technical Group having cognizance of your subject. Nuclear Reactor Safety

In which subject category (from page 3) do you feel this summary belongs? 10.2.3

Alternative Category: _____

Has the substance of this summary been presented or published previously (including U.S. DOE or equivalent reports)?

YES NO Give details _____

Has the paper been submitted for publication in a technical journal?

YES NO Give details _____

Have you presented related papers?

YES NO Give details _____

Has this summary been approved for publication by your institution or company?

YES NO Give details _____

FOR INVITED SUMMARY:

Which ANS Division or Technical Group invited you? _____

Person who invited you _____ Session No. _____

FOR CONTRIBUTED OR INVITED SUMMARY:

Number of: Pages _____ Tables 1 Figures 1

Word Count: Text 600 + (No. of figures plus tables) 150 300 + (No. of lines of equations \times 10) _____

Total 900

Original line drawings or glossy black-and-white prints of each figure must be attached to original.

A COMPLETED SUMMARY COVER SHEET, TOGETHER WITH THE INFORMATION REQUESTED ON PAGE 4, MUST BE ATTACHED TO EACH OF THE FOUR SETS OF THE SUMMARY. Please have copies made to complete your four sets.

FILING AND MAILING INFORMATION

Name and full mailing address of author
to whom correspondence should be sent.
(Type or print legibly - form used for mailing.)

LOG # _____

Mr. J. L. Perryman
LOFT Program Planning & Test Evaluation
TSA
EG&G Idaho, Inc.
P. O. Box 1625
Idaho Falls, ID 83401

Telephone:	
Commercial:	(208) 526-9492
FTS:	583-9492

Title of Summary Posttest Analysis of LOFT LOCE L2-3 Using the ESA
RELAP4 Blowdown Model

This is to acknowledge receipt of your summary. Please use the log number above in future correspondence.

This summary will be considered for inclusion in the program of the American Nuclear Society's 1979 Winter Meeting, San Francisco, California, Nov. 11 - 16, 1979. Another copy of this form will be sent to you about July 23, 1979.

Your paper has been reviewed and:

- 1. Accepted for presentation at the 1979 Winter Meeting. (See Attached Instructions)
- 2. It is suggested that your summary be revised. (See Attachment)
- 3. It is suggested that your summary be combined with the summary referenced as Log # _____. (See Attachment)
- 4. Rejected. (See Attached Comments)

Your paper is being returned without review because:

- 1. It was received after the deadline date.
- 2. It significantly exceeds the word limit of 900 words.

In all correspondence regarding your summary, please refer to the Log Number shown above.

Thank you for submitting this summary.

Sincerely,

Neil Norman
ANS Technical Program Chairman
1979 Winter Meeting

NOTICE
This document contains neither recommendations nor conclusions of the United States Nuclear Regulatory Commission. It is the property of the Commission and is loaned to your agency. It and its contents are not to be distributed outside your agency without the express permission of the Commission. It is loaned to your agency "as is" and without warranty, express or implied, and the Commission disclaims any liability for the accuracy, completeness or usefulness of any information, opinion, advice or process included, or represents that its use would not infringe privately owned rights.

POSTTEST ANALYSIS OF LOFT LOCE L2-3
USING THE ESA RELAP4 BLOWDOWN MODEL

by

J. L. Perryman

T. K. Samuels

C. H. Cooper

EG&G Idaho, Inc.

P.O. Box 1625

MASTER

Idaho Falls, Idaho 83401

A posttest analysis of the blowdown portion of Loss-of-Coolant Experiment (LOCE) L2-3¹, which was conducted in the Loss-of-Fluid Test (LOFT) facility², was performed using the experiment safety analysis (ESA) RELAP4/MOD5 computer model³. Measured experimental parameters were compared with the calculations in order to assess the conservatisms in the ESA RELAP4/MOD5 model.

LOFT LOCE L2-3 simulated a 200% double-ended offset shear break in the cold leg of a four-loop large pressurized water reactor (PWR). The initial conditions for the LOCE were: maximum linear heat generation rate of 39.6 kW/m, system pressure of 15.06 ± 0.2 MPa, hot leg temperature of 592.85 ± 3.0 K, and intact loop flow rate of 199.8 ± 6.3 kg/s. Scaled quantities of high-pressure, low-pressure, and accumulator emergency core coolant (ECC) were injected during the LOCE. The primary coolant pumps were operated at constant speed throughout the experiment.

The MOD5 version of the RELAP4 computer code with the following conservative model options were used for the analysis:

- (1) Evaluation model (EM) heat transfer model
- (2) Baker-Just metal water reactor model

- (3) American Nuclear Society decay heat times 1.2
- (4) EM fuel cladding swell and rupture model
- (5) ECC bypass model, which calculates an end-of-bypass time and subtracts all previously injected ECC from the system inventory
- (6) Adiabatic fuel heatup model, which allows the hot rod in the core to adiabatically heat up during the refill portion of the transient
- (7) Ross-Stoute gap conductance model
- (8) Henry-Fauske and Homogeneous Equilibrium critical flow models with multipliers applied to give the most conservative discharge flow conditions.

The overall ESA methodology includes conservatisms in initial conditions as well as in the computer code models selected. However, for this analysis, the actual measured experiment initial conditions were used allowing only the conservatisms in the code models to be determined.

Table I presents a chronology of some of the major events occurring during the blowdown portion of LOCE L2-3 compared with the calculated times for these events. Generally, most of the calculated events agreed well with measurements. However, the calculated end-of-ECC-bypass time, which is the time at which ECC flow can penetrate the downcomer and all previously injected ECC is subtracted from the system mass inventory, significantly differed from the measured time. In the experiment, the flow in the downcomer initially reversed ($t = 0$ s), then gradually stagnated at 3.0 s; however, in the calculation it was 29 s before flow stagnated in the downcomer. By using the end-of-ECC-bypass model, 654 kg of ECC water was subtracted from the system.

The calculation of system depressurization agreed well with the test data, even though the pressurizer emptied during the experiment 4.8 s earlier than was calculated. Since the calculated accumulator flow was initiated 1 s earlier than the data, this indicates that the calculated and actual system depressurization rates are nearly the same.

Figure 1 presents a comparison of the measured peak cladding temperature (PCT) compared with the calculation. The core thermal response during the experiment was dominated by the system hydraulics, which caused a core-wide rewet at approximately 6.0 s after rupture. This rewet, which significantly reduced the stored energy in the rods, was not calculated. The ESA RELAP4/MOD5 model calculated a 0.66 s earlier departure from nucleate boiling (DNB) than was observed in the experiment, resulting in the earlier increase in calculated PCT. The maximum measured PCT during the entire experiment was 914 K at 4.95 s after rupture. For the same time, the calculated value was 1085 K.

This posttest analysis of LOCE L2-3 covers the time span from the initiation of the transient until the start of reflood, which is defined as the time when the reactor vessel mixture level is at the bottom of the core. This was calculated to occur at 40 s after rupture or 5 s later than in the test. At the beginning of reflood, the PCT was 750 and 1160 K, respectively, for the experiment and the calculation.

In conclusion, this posttest analysis exercise using the LOFT ESA model for LOCE L2-3 with only model conservatism incorporated (that is, not including conservatisms due to initial conditions which were included in the actual ESA) serves to show that the LOFT ESA model does exhibit a conservative calculation throughout the transient.

REFERENCES

1. P. A. Harris et al, "Power Ascension Test Series L2," LOFT Experiment Operating Specification Volume II, NE L2 Series, Revision 2 (July 1978).

2. D. L. Reeder, LOFT System and Test Description (5.5-ft Nuclear Core 1 LOCES), NUREG/CR-0247, TREC-1208 (July 1978).
3. EG&G Idaho, Inc., RELAP4/MOD5: Computer Program for Transient Thermal-Hydraulic Analysis of Nuclear Reactors and Related Systems User's Manual, ANCR-NUREG-1335 (September 1976).

TABLE I
 CHRONOLOGY OF EVENTS FOR NUCLEAR LOCE L2-3
 WITH CALCULATED COMPARATIVE VALUES

Event	Experiment	Calculation
LOCE initiated (s)	0.0	0.0
Blowdown valves opened (ms)	20.6	20.6
First indication of departure from nucleate boiling (s)	0.96	0.3
End of ECC bypass ^a (s)	3.0	29.0
Peak cladding temperature (PCT) at 4.95 s (time of measured PCT) (K)	914	1085
High-pressure injection system initiated (s)	14.0	19.0
Pressurizer emptied (s)	14.0	18.8
Accumulator injection initiated (s)	16.0	15.0
Low-pressure injection system initiated (s)	29.0	30.0
Lower plenum filled with liquid (s)	35.0	40.0
Core volume reflooded (s)	55.0	0.0

a. End of ECC bypass is defined as the time when the mass flux resumes its normal flow direction in the reactor downcomer.

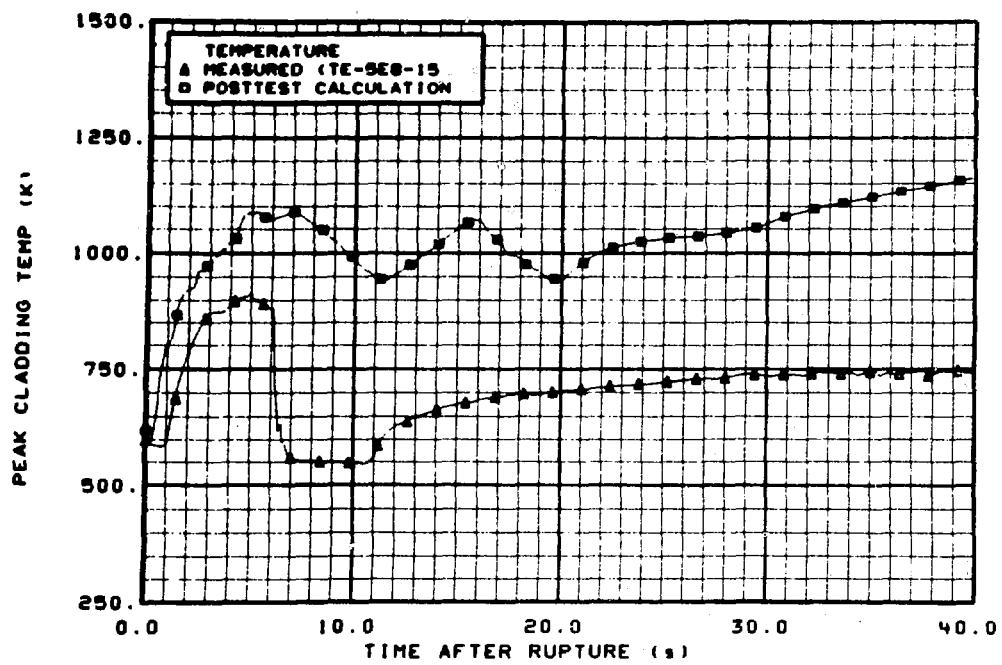


Fig. 1 Comparison of measured and posttest calculation of fuel rod peak cladding temperature for LOCE L2-3.