
3L

Parallel Graphics Algorithms on a 
1024-Processor Hypercube* SAND—89-0550C

DE89 015492

Robert E. Benner
Sandia National Laboratories, Albuquerque, NM 87185

To appear in the Proceedings of the Fourth Conference on Hypercube Concurrent 
Computers and Applications, Monterey, CA, March 6-8,1989.

Abstract. We have developed four parallel graphics algorithms for visualization of complex 
problems in PDE simulations, radar simulation, and other large applications on a 1024-node 
ensemble with a 16-node graphics device. We discuss the impact of system parameters on 
algorithm development and performance. Algorithmic issues include multistage routing of 
graphics data through the ensemble, non-hypercube mappings from the ensemble to the graphics 
system, synchronization between ensemble and graphics nodes, and synchronization between 
graphics nodes. These issues apply to both the present and anticipated future systems which 
combine highly parallel ensembles and parallel I/O devices. “Best” solutions are described for 
routing, mapping and synchronization on the current hardware. Implications are discussed for 
future hardware and software fa* massively parallel computers.

1. Introduction

We are engaged in research in parallel methods, algorithms, application programs, and 
performance models for massively parallel computer systems. In the area of 
application-driven research, several highly parallel applications [2] have sustained 
computation rates in the range of 70 to 130 MFLOPS and parallel speedups of order 1000 on 
a 1024-processor NCUBE/ten hypercube ensemble. Through heterogeneous use of the 
hypercube, a parallel radar simulation [3] runs an order of magnitude faster on the 
ensemble than on the CRAY X-mp or CRAY Y-mp.

Highly parallel applications require graphics and other parallel VO systems and software 
capable of supporting large computations in the sciences and engineering. Hence, we are 
concerned with parallel graphics algorithms for real-time visualization of large, 
multidimensional simulations. Parallel graphics hardware is commercially available, for 
example, on both the NCUBE/ten and the Thinking Machines' CM-2, as well as graphics 
supercomputers such as the Stellar GS-1000 and Ardent Titan. This paper focuses on 
graphics for our 1024-node hypercube, but we anticipate that much of the discussion will 
apply to future parallel I/O devices, particularly those associated with MIMD computers.

To date, performance monitors [4,6] for parallel computations have been the focus of 
parallel graphics research on the NCUBE RT Graphics System. This graphics device has 16 
nodes which receive data from the 1024-node ensemble. Graphics nodes have their own 
(non-hypercube) interconnect and have only 128 K byte of local memory each, of which 40 
K byte acts as a message buffer.

This paper addresses parallel graphics hardware and software limitations and ways to 
minimize their impact, both on the NCUBE and on future systems of highly parallel 
ensembles and parallel I/O devices. Section 2 summarizes hardware parameters of our 
hypercube, with an emphasis on system constraints upon graphics performance. Section 3

* This work supported by the Applied Mathematical Sciences Program, U.S. Department of Energy, Office of 
Energy Research. It was done at Sandia National Laboratories, operated for the U.S. Department of Energy under 
contract number DE-AC04-76DP00789.

Distribution of this document is unlimited3



DISCLAIMER

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference 
herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, recommendation, or 
favoring by the United States Government or any agency thereof. The 
views and opinions of authors expressed herein do not necessarily 
state or reflect those of the United States Government or any agency 
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image 

products. Images are produced from the best available 

original document.



Parallel Graphics Algorithms onal024-Processor Hypercube

outlines techniques for dealing with these constraints. Algorithmic issues include 
multistage routing of graphics data through the ensemble, non-hypercube mappings 
between ensemble and graphics device, synchronization between ensemble and graphics 
nodes, and synchronization between graphics nodes. “Best” solutions are described for 
routing, mapping and synchronizing on current hardware.

hi particular, four parallel graphics algorithms have been developed for visualization on 
highly parallel ensembles. Section 4 presents generic algorithms for host, ensemble node, 
and graphics node processors, as well as specific graphics algorithms, a benchmark, and 
results. Section 5 summarizes advances in our understanding of parallel graphics and 
discusses implications for future hardware and software for massively parallel computers 
with high-performance, parallel VO devices.

2. Parallel Graphics Research Facilities

We are pursuing two research directions in parallel graphics, based on different 
interfaces to the hypercube. Two graphics devices are included in our current hardware 
configuration, which is shown in Figure 1: an NCUBE RT Graphics System and a Stellar 
GS-1000 Graphics Supercomputer. The RT Graphics System is a suitable vehicle for 
real-time display of images from 2D simulations or performance data, but does not 
currently have a flexible, high-performance graphics software environment for real-time 3D 
graphics or object-oriented graphics. An alternative approach to object-oriented or 3D 
graphics is to interface the 1024-node hypercube to a graphics supercomputer, such as the 
four-processor, shared memory, Stellar GS-1000. The interface is presently under 
development and will not be discussed further in this paper.

NCHANNEL Real-Time
Parallel Disk Graphics

System System

Direct
Terminals

Stellar GS-1000 
(Parallel Graphics 
Supercomputer) Host Disks

Figure 1. Sandia Hypercube Environment

All memory is distributed in the NCUBE/ten, both within the hypercube itself and within 
the RT Graphics System. This latter system has 16 nodes which receive data from the 
1024-node ensemble. Information is shared between processors by explicit 
communications across channels; 8 of the 11 channels on each graphics node connect to the 
ensemble. (These 128 channels have a composite bandwidth of more than 64 M byte/sec.) 
Graphics nodes use the remaining 3 channels for their interconnect. These nodes have only 
128 K byte of local memory each, of which 40 K byte acts as a message buffer. With 
system calls from Fortran, sending a message takes about 0.35 msec to start and then 2 
(isec per byte. However, time to move data across a channel can be partly overlapped [2] 
with computations or other communications. A real-time display rate of 30 ffame/sec is 
quoted for the graphics system [5], based on communication bandwidths from the 
ensemble to the graphics nodes and, in turn, from the graphics nodes to the display.

2



Parallel Graphics Algorithms on a 1024-Processor Hypercube

3. Synchronization and Routing Issues

There are three hardware issues associated with the RT Graphics System which must be 
addressed in order to obtain high performance: (1) the interconnection network of the 16 
graphics nodes, which dictates how efficiently they can communicate and synchronize with 
each other; (2) the mapping of graphics node memories to the display, which dictates the 
amount of data movement necessary to display images correctly; and, (3) the 
interconnection network between graphics nodes and ensemble nodes, which dictates how 
efficiently (relative to 30 frames/sec) data can be transferred to the graphics system.

The first-generation of vendor software for the RT Graphics System does not support 
the quoted 30 frame/sec display rate. The library of graphics routines called by ensemble 
nodes (1) performs data collection and transfer for each graphics node in turn, rather than 
in parallel; (2) limits the user to one message per graphics node per call, or about a 
half-frame per call; (3) uses linear synchronization of graphics nodes, i.e., graphics node 0 
reads messages from the other 15 nodes, and then writes back to all 15 (c/. § 3.1); (4) 
reorganizes data on the graphics nodes, rather than the ensemble nodes, for correct 
mapping to the display (c/. § 3.2); and (5) doesn’t make use of direct channels from 
ensemble nodes to graphics nodes (c/. § 3.3). The resulting software is robust and can 
handle graphics data from an arbitrary number of processors. However, it requires about 
1.5 seconds per half-frame image (0.3 frame/sec) from 1024 nodes.

3.1 Graphics Interconnect

Each graphics node, like their counterparts in the 1024-processor ensemble, has 11 
bidirectional DMA channels. Eight of the channels connect to ensemble nodes, so that only 
three are available for the graphics nodes to communicate with each other and with the rest 
of the hardware (e.g., an 80186 processor) on the graphics board. Figure 2(a) outlines the 
graphics node interconnection network, which uses three channels on each node. Two 
additional channels per node would be required to support a hypercube interconnect of the 
graphics node: four channels for the hypercube and an additional channel on graphics node 
0 for communication with the 80186 processor.

Fast synchronization and communication between the graphics nodes require novel, 
non-hypercube algorithms. For example, we cannot synchronize the graphics nodes in 
four bidirectional communication steps, as on a 16-node hypercube, but we can 
synchronize to one graphics node in five steps by using any of several trees that are 
embedded in the graphics node network. Full synchronization requires ten steps—a fanin 
and fanout through the tree—as opposed to the eight steps (counting bidirectional reads and 
writes separately) required by a hypercube global exchange algorithm. Figure 2(b) shows 
the tree used in our graphics node synchronization, fanin, and fanout software.

3



Parallel Graphics Algorithms on a 1024-Processor Hypercube

(unused)

(a)

(b)

Figure 2. RT Graphics System: (a) Node Interconnection Network (c/. [5]); (b) a Five-Level Tree

3.2 Memory-to-Display Mapping

Figure 3 outlines the mapping of the display to the graphics node memories in the RT 
Graphics System. Groups of 32 consecutive pixel columns are assigned to the graphics 
nodes as shown. As a result, each graphics node is responsible for 32 pairs of 
widely-separated pixel columns. Furthermore, pixel rows are mapped consecutively into 
memory. This assignment and mapping scheme forces collection and reordering of pixel 
data on a grand scale for grid-based and other general simulations. In fact, it is hard to 
envision an application for which this mapping is optimal. We mitigate the effect of these 
hardware constraints upon performance by using assembly language kernels to move and 
reorder pixels and by using communication channels for pixel collection and transmission 
to the graphics system, as discussed below.

3.3 Graphics-Ensemble Interconnect

Figure 4 outlines the interconnection of nodes on one of the first eight boards in the 
ensemble to an RT Graphics System board in backplane slot 2 [5]. Our graphics software 
identifies these channels and makes explicit use of them in moving data by means of 
two-step routing from ensembles of at least 64 nodes to the graphics system. In the two 
step routing messages are first sent to an ensemble node in a set 5,

S = {4,6,12,14,20,22,28,30,37,39,45,47,53,55,61,63,...},

which has a channel to the graphics node responsible for the data in the message. The 
pattern of the entries of S is repeated on each of the first eight boards of 64 processors in 
the ensemble. On fewer than 64 ensemble nodes, our graphics routines use the default 
routing from the ensemble to the graphics system.

4



Parallel Graphics Algorithms onal024-Processor Hypercube

2 111 3 i 4 i 6l5l7j8 Hoj9 jt1 [l2 H4ll3il5
32 Consecutive Pixel Columns 
(by Psirs) and Their Assigned 

Graphics Node

The Display: Marked Pixel Column Pairs 
Reside In the Memory of Graphics Node 0

Figure 3. Mapping of Pixel Columns on the Display to Graphics Node Memories

64 Ensemble Nodes

16 Graphics Nodes

Figure 4. Channels Between the Graphics Board and a Board of Ensemble Nodes.

4. Graphical Methods and Performance

Parallel graphics algorithms are discussed below in terms of a generic parallel 
implementation, four specific parallel graphics algorithms, a test problem, and results.

5



Parallel Graphics Algorithms on a 1024-Processor Hypercube

4.1 Generic Parallel Implementation

The parallel implementation of an application program with parallel graphics is 
summarized by the following host processor and ensemble node algorithms, H and E, 
respectively {cf. [2]), as well as a generic graphics node algorithm, G. Some references 
are also made to specific graphics algorithms (Column, Column-Section, 
Column-Collection, and Global Collection) introduced in § 4.2.

Algorithm//
Host Program for Applications with Parallel Graphics

HI. [Get job parameters.] Prompt the user for input values. For example, read the 
subcube dimension, grid size in the jc and y directions, model parameters, names of 
input files, etc. Read the number of pixels in the horizontal (x) and vertical (y) 
directions if graphical display of solutions is specified. In addition, read k and /, the 
display intervals for inner and outer solutions, respectively. Read the number of 
sections per pixel column for the Column-Section algorithm. (The number of 
sections is given by the number of processors assigned to the y direction for the 
Column-Collection or Global Collection algorithm).

H2. [Open and load cube.] Open a subcube of the hypercube, and send the node program 
(Algorithm £) to all ensemble nodes using a logarithmic fanout (cf. [2]).

H3. [Send input.] Send the input values to ensemble node 0 (step E2).
HA. [Start output.] Create the output header, including input values from step H\.
H5. [Collect output.] Collect output data from ensemble node 0 (step £6 or £7) and print 

them in the output file.
//6. [Monitor solver.] Check the message type of step H5 for solver completion, 

continuation, or failure. Repeat step H5 if message type denotes continuation.
HI. [Post-mortem.] Receive and print timing statistics from ensemble node 0 (step £8).
Z/8. [Done.] Close subcube. Stop the host program. I

Algorithm £
Ensemble Node Program for Applications with Graphics

El. [Start.] Record the time and execute a system call to get this node’s process number 
(hereafter referred to as the node number) and the allocated cube dimension.

£2. [Get job parameters.] Receive job parameters from the host on node 0 (step H3). 
(This data is then propagated using a logarithmic fanout).

£3. [Create spatial topology.] Use data from £1 and £2 to compute node numbers of 
nearest neighbors in an appropriately dimensioned (usually 2D or 3D) subset of the 
hypercube interconnect, a binary-reflected gray code order (e.g., [5]).

£4. [Initialize graphics.] Open the graphics system and send the graphics operating 
system (graphos) and graphics node program (Algorithm G) from node 0 to the 16 
graphics nodes using linear load routines. Send input values from node 0 to graphics 
node 0 (hexadecimal node address 8007 [5]) and receive a synchronization message 
in return (step G3). Synchronize nodes on a global exchange.

£5. [Start outer iteration.] Start outer timer. Begin outer iteration: e.g., time stepping for 
a transient problem, Newton iteration for a nonlinear iteration. Set outer iteration 
counter j to 1.

£6. [Inner solver.] Start inner timer. Set inner iteration counter i (if needed) to 1. Begin 
inner solver, e.g., preconditioned conjugate gradient iteration or multifrontal solver 
for linear systems of equations. Iterate so long as i is less than or equal to an upper 
bound (a job parameter). Compute and send pixel data to the graphics system (step 
G7) every &-th inner iteration. Stop the inner timer, send a message to the host that 
the inner solver failed (step H5), and go to step £8 if i exceeds its upper bound, or 
the direct solver fails, etc.

El. [Update the outer solution.] Send a message from node 0 to the host if the outer

6



Parallel Graphics Algorithms on a 1024-Processor Hypercube

iteration is complete. Compute and send pixel data to the graphics system (step G7) 
every /-th outer iteration. Send a message from node 0 to the host (step H5) if j 
exceeds its upper bound (a job parameter). Otherwise, increment j and go to step E6.

£8. [Complete timings.] Gather complete (steps El-ETI) and partial (steps E5-E1) timing 
statistics by a global exchange. Receive graphics node timing statistics (step G10) on 
node 0. Send ensemble and graphics node timing statistics from node 0 to the host 
(step HI). Stop the ensemble node program. I

Algorithm G 
Graphics Node Program

G1. [Start.] Record the time and execute a system call to get this node’s number.
G2. [Set graphics interconnects.] Calculate the parent and children of this node in a 

five-step tree algorithm used for data fanout and graphics processor synchronization.
G3. [Get job parameters.] Receive job parameters (number and size of frames) on node 0 

from ensemble node 0 and acknowledge receipt (step £4). Propagate job parameters 
to all nodes using the tree algorithm (§ 3.1).

G4. [Set array-graphics interconnects.] Use data from step G3 to compute the expected 
number of and frame buffer destinations of messages from the ensemble, such that 
images are centered on the display.

G5. [Start outer iteration.] Start outer timer and set outer iteration counter j to 0.
G6. [Start frame.] Start inner timer and set inner iteration counter / to 0.
G7. [Acquire data.] Read a message from the 1024-processor ensemble (step £6 or £7). 

Read the message directly into the display array if the Global Collection algorithm is 
in use on the ensemble nodes. Otherwise, read the message into a buffer and, based 
on several bytes of header information in the buffer, perform an assembly language 
move with stride 64 into the display array. Increment i by one. Repeat step G7 if / is 
less than the expected number of messages.

G8. [Update display.] Synchronize nodes using the tree algorithm. Issue a DMA write 
command from node 0 to the 80186 processor in the graphics system. Send a 
completion message for the frame from node 0 to ensemble node 0.

G9. [Complete frame.] Increment j by 1. Go to step G6 if j is less than the expected 
number of frames.

G10. [Complete timings.] Gather complete (steps G1-G9) and partial (steps G5-G9, steps 
G6-G8) timing statistics by the tree algorithm. Send timing statistics from node 0 to 
ensemble node 0 (step £8). Stop the graphics node program. I

4.2 Four Parallel Graphics Algorithms

We now outline four specific graphics algorithms. The simplest is the Column 
algorithm, which is applicable to simulations, such as radar simulation, which can 
conveniently produce complete columns of pixels. The others are the Column-Section, 
Column Collection, and Global Collection algorithms, which are applicable to 2D grid 
calculations and, in some cases, more arbitrary decompositions. Therefore, the 
descriptions of the last two algorithms frequently refer to operations on the 2D processor 
grid (e.g., Figure 4) onto which a 2D application has been mapped. The sections handled 
by the Column-Section algorithm can be either the portions of pixel columns that belong to 
each node in the 2D processor grid, or portions of pixel columns that are generated in an 
arbitrary order.

The Column algorithm first sends a pixel column from the ensemble node which 
calculated it to an ensemble node in the set S (§ 3.3) which has a channel to the responsible 
graphics node. The message is read by the recipient ensemble node and rewritten to the 
graphics node. Each graphics node receives as many as 64 messages per frame. At most 
two nodes (from the set of nodes 0 to 127) are allowed to write to each graphics node; this

7



Parallel Graphics Algorithms on a 1024-Processor Hypercube

limitation prevents overflow of graphics node message buffers. Graphics nodes 
synchronize with each other using the tree algorithm (§ 3.1). Graphics node 0 also 
synchronizes with ensemble node 0 at the end of each frame. The resulting software is 
robust and can handle graphics data from an arbitrary number of ensemble nodes.

The Column-Section algorithm first sends each section of a pixel column from the 
ensemble node which calculated it to the appropriate node in the set S. This algorithm 
proceeds as the Column algorithm, except that each graphics node receives a number of 
messages that is up to 64 times the number of sections in each pixel column. This 
algorithm seems ideal for 2D grid calculations and is readily extended to arbitrary 
geometries by slightly increasing the amount of header information in each message. 
However, the algorithm is presently not robust when the number of sections per pixel 
column is large {e.g., greater than 24), and, in fact, even fails consistently in one case (§ 
4.4) when each pixel column is divided into only two sections.

The Column-Collection algorithm first collects sections of a pixel column by means of a 
logarithmic exchange among columns of processors in the 2D processor grid {e.g., nodes 0 
to 7 in Figure 4). Complete pixel columns then reside on one node in the column of 
processors. That node applies the Column algorithm to the pixel column. This algorithm 
is well-suited to 2D grid calculations, is robust (like the Column algorithm), but does not 
readily extend to arbitrary geometries.

The Global Collection algorithm first exchanges sections of pixel columns among rows 
of processors in the 2D processor grid {e.g., nodes 0, 8,16,..., 56 in Figure 4). At each 
step of the exchange each processor sends data belonging to half of the graphics nodes and 
receives data belonging to the remaining half. Upon completion of the row exchange, each 
node has data belonging to one or two graphics nodes. The data is then reordered so that 
its order corresponds to the contiguous order in graphics node memory.

Data is then collected by means of a logarithmic exchange down half-columns of 
processors in the 2D processor grid {e.g., nodes 0 to 3 in Figure 4). This results in two 
messages per graphics node per frame, which are then sent in turn from the node in each 
half-column which either has a channel to or is at most distance two from the recipient 
graphics node. For example, in tire first column of processors in Figure 4, nodes 0 and 2 
first write to graphics nodes 0 and 1, respectively, followed by nodes 4 and 6. Graphics 
nodes synchronize with each other and with the ensemble nodes to ensure that their two 
large messages do not collide.

The Global Collection algorithm is robust, but is limited to 2D grid calculations on 
regular geometries. It requires more than 130 K byte of ensemble node memory. In its 
present version it is limited to simulations on 64 to 512 ensemble nodes, i.e., the smallest 
and largest subcube sizes for which complete sets of channels to the graphics system are 
available. A general extension to 1024 nodes is nontrivial, because some nodes will 
become idle during the initial row exchange process whenever 32 or more nodes are 
assigned to the x direction in the 2D processor grid.

4.3 A Benchmark

The algorithms presented above have been used in a number of applications: the 
Column algorithm in radar simulation [3], and the others in finite difference and finite 
element computations. For example, the wave mechanics, fluid dynamics, and structural 
analysis applications presented in [2] supplied graphical or disk output at the end of a 
simulation; the Column-Collection and Global-Collection algorithms now provide 
continuous output from these highly parallel simulations.

In this paper, a simple test problem is used to compare all four graphics algorithms. 
The benchmark produces a hyperbolic test pattern on the screen. The computational effort 
per pixel is uniform: 4 integer adds, 3 integer multiplies, and 1 integer divide. The elapsed

8



Parallel Graphics Algorithms on a 1024-Processor Hypercube

time required to compute a frame of 1024 by 768 pixels scales perfectly with the number of 
processors: 27.021 seconds on one processor and 0.026 seconds on 1024 processors. 
These elapsed times correspond to computation rates of 0.233 M and 238 M integer 
operations per second, respectively.

4.4 Results

We present timings for the four graphics algorithms of § 4.2 in terms of either the time 
required to collect (if necessary), transmit, and display a full 1024 by 768 pixel frame, or 
the M byte per second rate for collection, transmission and display regardless of the image 
size. Although these measures are more informative than a vendor’s quoted display rate, 
they are not meant to be (and should not be taken as) all-encompassing performance 
measures [1] in the fashion of mflops, parallel speedup, polygons/sec, etc. The overall 
display rate for a real application is determined by user-specified display intervals 
(parameters k and / in § 4.1), the time to compute a frame {e.g., as reported in § 4.3 for the 
test problem), and the sustained display rate of the graphics hardware and software.

The range of run times in Table 1 for the Column-Collection and Global-Collection 
algorithm represent two cases: (1) twice as many processors assigned to the x-direction as 
to the y-direction (the faster case); and (2) twice as many processors assigned to the 
y-direction as to the x-direction. Typical display rates are 2 to 3 frame/sec for the Global 
Collection algorithm and 0.5 to 2.5 frame/sec for the Column Collection algorithm. The 
results show that if one can afford to use a quarter of the ensemble memory (~130 K byte 
per node) as a buffer for graphics data, then the Global Collection algorithm is the method 
of choice for 2D grid calculations on a large ensemble.

Table 1
Graphics System Run Time for Various Graphics Algorithms:
Image of 1024 by 768 Pixels. Two Sections were Used in the
Case of the Column-Section Algorithm.

Graphics System Run Time (sec)
Number of 
Processors Column

Column
Section

Column
Collection

Global
Collection

1 0.96 1.47 1.05
2 0.49 0.74 0.54 - 2.39 .

4 0.26 0.38 1.18
8 0.14 0.20 0.57 - 1.91 ,

16 0.087 0.12 0.86 .

32 0.17 (0.47) 0.52-1.20 .

64 0.18 0.25 0.79 0.38
128 0.21 0.26 0.45 - 0.81 0.29 - 0.45
256 0.20 0.25 0.53 0.36
512 0.21 0.23 0.38 - 0.66 0.50

1024 0.21 0.27 0.41 •

The highest display rates presented in Table 1 are associated with the Column 
algorithm. Figure 5 summarizes the dependence of sustained display rate upon ensemble 
size for the Column algorithm. The display rate of the Column algorithm increases nearly 
linearly through 16 nodes, beyond which the inability of graphics nodes to process bursts 
of incoming data dominates. The highest rate is 9.04 M byte/sec, or 11.5 frame/sec, when 
16 ensemble nodes are used. Display rates of about 4 M byte/sec, or 5 frame/sec, are 
typical when 32 or more ensemble nodes are used. Only minor variations in display rate 
are observed between using 16 or 32 channels to the graphics system. This observation

9



Parallel Graphics Algorithms on a 1024-Processor Hypercube

suggests that the speed at which graphics nodes read and move data limits the display rate, 
which explains message buffer overflow when more than 32 channels are used.

£
«T
Q_
CO
O

1 Channel per Graphics Node
2 Channels per Graphics Node

Dimension of Allocated Subcube

Figure 5. Display Rate as a Function of Communication Channels 
for a 1024 by 768 Image (Column Algorithm)

A sizable performance penalty is paid just for splitting columns in two and applying the 
Column-Section algorithm (Table 1). lit addition, the Column-Section algorithm fails 
consistently on 32 ensemble nodes: some ensemble nodes are swamped by message traffic 
unless the slower, two-stage routing scheme is used. The run time for the Column-Section 
algorithm is asymptotically linear in the number of sections per pixel column, as shown in 
Figure 6. This indicates that message start-up time dominates, as expected, when many 
small graphics messages are transmitted.

Number of Pixel-Column Sections

Figure 6. Run Times for the Column-Section Algorithm (1024 ensemble nodes, 1024 by 768 Image)

10



Parallel Graphics Algorithms on a 1024-Processor Hypercube

Next, the effect of small changes in the image size is explored in Figure 7 with the 
Column algorithm. The display rate is relatively insensitive, as expected, to the number of 
pixels in a column. (The variation in display rates for repeated simulations, about 0.05 M 
byte/sec, is evident in the pair of results for a 768 by 768 image.) However, display rate 
varies by almost 15% in the number of pixel columns (the highest sustained display rate is 
9.32 M byte/sec or 11.9 frame/sec). Note that images are centered on the screen (§4.1, 
step G4), so that a small change in die number of columns drastically changes the mapping 
of ensemble node data to graphics nodes. This phenomenon suggests that a better 
algorithm would approximately center the image so as to keep the left boundary of the 
image at a multiple of 32 columns. This scheme would preserve the mapping of the first 
two pixel columns to graphics node 0, etc.

Pixels per Row (768 Rows)
Pixels per Column (768 Columns)

760 762 764 766
Number of Pixels

Figure 7. Display Rate from 16 Array Nodes as a Function of Image Size (Column Algorithm)

Figure 8 shows the dependence of display rate upon a broad range of image sizes for 
the Column algorithm. Display rate tends to increase as image size increases in increments 
of 32 rows and columns, because message startup is amortized by the longer messages. 
However, the trend is somewhat erratic, because of the dynamics of message traffic. This 
effect is seen with both default message routing, as on 16 ensemble nodes, and explicit 
two-stage routing, as on 64 or more nodes.

n



Parallel Graphics Algorithms on a 1024-Processor Hypercube

16 Ensemble Nodes 
64 Ensemble Nodes

Image Size (Pixels per Dimension)

Figure 8. Display Rate as a Function of Image Size (Column Algorithm)

4.5 Graphics Performance Parameters

In terms of performance evaluation of parallel graphics, we have attempted to identify 
and quantify meaningful parameters in addition to display time or display rate. Table 2 
summarizes dimensionless parameters which govern the performance of the RT Graphics 
System and our algorithms. The ideal value of each parameter is unity.

Table 2. Performance Evaluation of Parallel Graphics: 
Dimensionless Parameters

Hardware Parameters:

(graphics nodes)/(ensemble node) = 0.016
(channels to graphics)/(ensemble node) = 0.125
(graphics sync steps)/(hypercube sync steps) = 0.8 
(contiguous pixels in memory)/(total pixels) = 0.00004

System Software Parameter:
(GRAPHOS buffer size)/(frame buffer size) =0.8

User Software Parameter:
(channels to graphics used)/(total channels) = 0.25

Although all of the parameters deviate significantly from the ideal, the organization of 
pixels in memory and the GRAPHOS buffer size have proven to be more critical than the 
others in terms of their impact on performance. For example, neither the number of graphics 
nodes in the system nor the number of channels to the graphics system ate crucial, so long as 
sufficient space is available to buffer message traffic. The number of steps required to 
synchronize the graphics system is more of a issue in terms of software development (for 
synchronization and data fanin and fanout) than performance. Finally, the user-software 
restriction on the number of channels used is not an independent parameter, but rather a 
consequence of the other parameters.

12



Parallel Graphics Algorithms on a 1024-Processor Hypercube

5. Summary

Four parallel graphics algorithms have been developed for visualization of complex 
problems in PDE simulations, radar simulation, and other large applications. Parallel 
graphics hardware and software limitations have been addressed. Algorithmic techniques for 
dealing with system constraints include multistage routing of graphics data through a large 
hypercube ensemble, explicit use of non-hypercube mappings between ensemble and 
graphics device, tree algorithms for fast synchronization and data fanin and fanout between 
graphics nodes, and synchronization between ensemble and graphics nodes.

Display rates of up to 11.9 frame/sec have been achieved on an NCUBE/ten hypercube and 
RT Graphics System. Display rates of 2 to 5 frame/sec are typical across a wide range of 
graphics algorithms, applications, image sizes, and ensemble sizes. Key parameters which 
govern the performance of the RT Graphics System have been identified. These parameters 
are associated with some operating system and hardware issues to be resolved in future 
systems. Operating system issues include having graphics message buffers large enough (> 
49 K byte) to hold all of the incoming data associated with a frame, and unbuffered message 
passing. Hardware issues which should be addressed in future systems include simplified 
memory-to-display mappings and larger graphics node memories.

More issues in performance evaluation need to be explored, as well as 3D and 
object-oriented visualization, and use of the present set of algorithms to transfer data to an 
NCUBE-Stellar interface and other I/O interfaces. We have assembled a library of our evolving 
software for graphics, disk I/O, interprocessor communications, etc., for use in parallel 
applications. The library routines use the novel techniques introduced into the graphics 
algorithms to ensure robustness.

Many of these graphics techniques are useful in other I/O and communications tasks. For 
example, the NCUBE NCHANNEL parallel disk system consists of 16 disks served by 16 
processor nodes on an I/O board that resembles the RT Graphics System in some respects. 
Application program issues, such as message buffer limitations and message routing 
considerations are the same for both systems, except that messages and file operations on the 
NCHANNEL nodes are handled by the DISKOS operating system rather than a user program. 
Preliminary tests indicate that some of the algorithms presented above will also safely transfer 
images to die parallel disk system at a sustained transfer rate of a few M byte/sec.

Acknowledgements

I thank Gary Montry for several helpful discussions concerning this research. I also 
thank Rod Morison of Caltech, Bert Stiles of the University of South Carolina, and Matthew 
Hall and Chaz Sliger of NCUBE for additional stimulating discussions. Finally, I thank John 
Gustafson for numerous helpful suggestions concerning the paper.

References

[1] COMMITTEE ON SUPERCOMPUTER PERFORMANCE AND EVALUATION, et al., “An Agenda for 
Improved Evaluation of Supercomputer Performance,” National Academy Press, Washington, D.C. 
(1986).

[2] GUSTAFSON, J. L., MONTRY, G. R., AND BENNER, R. E., “Development of Parallel Methods for a 
1024-Processor Hypercube,” SIAM J. Sci. Stat. Comput., 9 (1988), pp. 609-638.

[3] GUSTAFSON, J. L., BENNER, R. E., SEARS, M. P., AND SULLIVAN, T. D., “A Radar Simulation 
Program for a 1024-Processor Hypercube,” Proc. Supercomputing '89, (1989), submitted.

[4] MORISON, R., “Interactive Performance Display and Debugging on the NCUBE Real-Time Graphics 
System,” Proc. 3rd Conf. Hypercube Concurrent Comput. Appl., 1 (1988), pp. 760-765.

[5] NCUBE Users Manual, Version P2.1, NCUBE Corp., Beaverton, Oregon (1987).
[6] TOLLE, D., “A Graphics Facility Useful for Performance Monitoring on the NCUBE,” Proc. 3rd Cortf. 

Hypercube Concurrent Comput. Appl., 1 (1988), pp. 766-771.

13


