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CALCULATION OF W.lTERINGOF E.IATIC UAVES FM FLAT CRACKS

uilllam M. Visscher
Theoretical Oivision

Los Al&los National Laboratory
Los Al-s, NM 47545

ABSTRACT

A method, based on a boundary-integral mwsen~tton of the elast$c dfwlac=nt~ forcalculatlW
crack-opening-displacementson a flat crack of arbitrary,shape and for incident elastic wam:esof arbi-
trary direction, polarization, and wavelength is develo~d and illustrated by application to Rayleigh
scattering from two families of crack shapes. The crack-opening-displacementis expanded in a truncated
complete set af functions on the crack surface. This transfoswtsthe boundary-integral repres.wtation
into a matr~x equation with rank three times the order of the truncation. This m:rlx equation has the
properties that can be expressed as the result of an extmnum principle with respect to variations of
the expansion coefficients of the crack-opening-displacmimt (thus converges as the truncation order
increases) and thesnatrix kernel (which must be iuverted) is positive definite.

INTRODUCTION

Calculations of scattering froa cracks in 3d
are ~ager. Although geometrical diffraction
theory can provide some results for very short
wavelengths, there are in the literature no quan-
titative calculations of scattering from cracks
of arbitrary sh&pe at long or intetmeaiate wave-
lengths.

Such a theory is here proposed and ifsple-
mented. In the following tiewill develop the
me. -d and illustrate fts application to flat
cracks at long wavelength.

We start with an integral equation for the
crack opening displacement, which is converted
to a matrix equation by means of introducing a set
of functions on the crack surface into which to
expand the crack-opening-displacement(COO). The
equation is solved for the COD in the Rayleigh
limit, and re~ults for scattering of long-wave-
length elast~c waves fro& two famille~ of shapes
of flc’.cracks are exhibited.

Integral Equation for the COD.

The equation with which we start is the
surface-{ntegral ~p~e$entation for the @lastic
displacement vector u(r). A con{~?~ant form is
given by BostrMa and F,risten;kon :
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Fig. 1. The geowtry associated w~th Eq. 1.
The volume V Is filled with an eiastfc medium
with Lamd parameters A, p and density P. $’2 is
a void,

elastic ❑$dium+with Lard parameters A, p and den-
siLy P. UinC (r) is an incident plane wave.

If the void becomes e crack, S1 degenerates
Into a crack bottom and a crack top, both of
which are the came open surface Cl. U~th the COD
written es

(2)

Eq, (1) then takes the form, for ; c VII

Jinc(;) + ~

/
dxdy h ● ~ (;,+’) . A;(i”) =ti(~) .

r (3)

We hav~ taken the crack to be flat, sltuetod in
the w plan..

Th~ traction dyadic 1?s ~ (~;;’) can be
●x~r$ssed in tom of tha displacecwnt dyadic
G(r,r’) which tat{sf{oc

\

‘.



Fig, 2. The intqration contours C+ and C-.

for an isotropic material
f~ many equivalent ~om~;(2)G(F’y’) can be writtenwe find one given by
BK to be ~$t u~eful. It is

and cd b derived from the mare familiar
fore, y2,9) In Eq. (6) thtzInte ration 1s over

!a (complex) solid angle d~= d(tsnodal the {nte-
gratfon limits for ~ are O < p < 2rI,and a follows

~he contours shown in Fig. 2, The basis vectors
are solutions of the elastic wave equation

n_$jklt,jt+w -0 (7)

corresponding to polarization n. Thay are

n ❑ 1, SH wave:

{ks~,~
il(f,;)= g e ,

n= 2, W wave:

ikt~!r
~z(~,;)=+e , (8)

n M 3, p wave,

a= (coeu?oGfs, Coca strip, -Sirw) (9)

i= (sino slnp, cinucorn~, COSO) ,

Notlca that although&.& = p.p= 1 andii. p=ti.~=
Bc\’0, the c~nents of6 and~ are unbounded,
because, acco?ding t) Fig. 2, sin a is real and
positive (O: sins :=)+while cos a is imaginary
the basis vectofs $ (t,r) grow or decay exponen-
tially in z. ~ in Eq (6) is the function ob-
tained by replacing f w~th -i in Eq. (8) where it
explicitly occurs. In passing it+shn~ld be noted
that’t!!ea-integral diverges for r = r’, reflect-
ing the singular behavior of G at that point.
The individual tcms in the smovern= 1,2,3
also diverge for z = z’, but the SUI converges.
The divergences bec~ worse for the traction
dyadic thatwe actually use in the following, but
the infinities alway. ●iraculously cancel in the
polarization s-.

Me nou define basis str ses corresponding
~fi(~~) according toto the displacamnt vectors ,

cl,J = cijd”k,t +

= ~ij
+.~+

and b~sis traction
to the MY plane

t, ‘“ij ‘j=oi3

tQ,k)

IJ($i,j+$,,j) , (10)

vectors for a surface parallel

(11)

In terms of these quantities the traction
dyadfc is

which, when substituted into Eq. Q).,will allow
one to calc~late the displacement u(r) when one
knows the COD. In order to calculate the COD we
operate with the traction operator on Eq. (3),
glvlng

lf?isonC then tha boundary conditions require
that the rig/1~-handsida vanishes.

‘nC(;)lbAr,f~ortant observation fs that t,
continuous across the crack, Therefore the second
term In $Q. (lJ) {s alto continuous and w can use
either C or C whan z = 0, Ma wlll+find.lt con-
venient to usc th~ir avera c C = 4(C + C ); then

!the contributions of cwta n terms to tho karnel
will conveniently cancel.

With this replacemel)tfor the contour, ECI,
(13) 16 OClui ValOnt to that given by BP, In order
to mitigate ~? Slngularitias of }ho kernel, how-
evar, they i~tegrate by parts on r’ and use the
alastic wava eqdatfon to yield a more decorous
intugral tquation at th, expense of introducing
darlvativee of tho COO, WQ will find that thcsu

c%
Ilcatlons, produc~d by the precautions pres-

cri cd by M to pall(at~ Lh~ patholo
Y

of the ker-
nel, do not occur ~n the cchame wo w 11 dascr{ba,



The Matrix Equation. %. 2ik~ ~
with respect to variations in df - - —

Ourmethoa for solving Eq. (23) for Auj(~) I.e., Pcf-

is as follows. First, ~e pick a convenient ccm-
ple}e set of real functions or C ; call them a~
vn(r) = Vn(x.y) with x, y CCI. ~hen expand ~=fJ (22)

i

N

AUj(; ) ❑

z c]vn(~) ‘
n=l

(14)

(for practical reasons, the set {v ) is always
tru~cated to N ~ers), multiply ~q. (13) Ly
v (r) and fntearate over dxdy on Cl with z = O.
Hen itbeccms

xc !=0 , (15)

is exactly Eq. (M). This fact can be ~de the
basis of a proof of convergence of a sequence of
truncations N, N + 1, N + 2,. . . ~q much the
s- way as it was done for WOT.(

Another feature of the mat~”ixQ is wr,rth
mentioning. This is that at least in the long-
wavelength limit it can be shown to have the form
of the product of a non-sil!gularmatrix w’th its
wn hermitlan conjugate. Such a matrix is
positive-definite; this means that solving for
the COO in this case is a well-posed problem and
many kinds of numer;cal difficulties ●re, there-
fore, guaranteed not to occur.

The Q-Matrix.

wher~ Thq matrix Q defined by Eqs. (18) and (20) is

(16) ‘im;jn
I

= di t~($,m)t~(~,n)

t

‘ncin the basis stressesNow expand ti E
1

d~~($,m) A~j #*(\,n) , (23)

inc (;) =
1

t
ti

‘nc f~)dj t~(~,?) tn (17)

t where

1 ikn~+

(ft can therafgre, be either up oing (J.cC+)or
!

~(~)= dxdye “n(;) ,
downgoing (~cC )); then Eq. (15 becomes

c1

~

inc 21ks
dj t’@) Ln (t) +~

J
d~ t~(y,m) tjn($,n)

t i nXc,=o (18)

(24)

J

Since the incident traction IS presumed to be
known, we can t~ke

t;nc (~) - 6nn 6[?-!.) an ;
o 0

(19)

than Eq. (18) becomah

‘o 2ik<
an ti (fo,m) +7 ‘i,n;j,n c! h 0 (20)
o

which can be solved for tho 3N-vactor ~ by in-
v~rtlng the 3N x 3N matrfx Q,

A valu~ble way of viewing Eq. (18) ib as
the result of min~mizlng

and k
t

❑ 3), so A iS

just?h~&$u~tl~;)~er v’t!~$ (Eq. 10) of O’S
(Eq, 8) without exponential faCtOrS.

Sw sfmpllcati ns can be made immedia~ely.
$Firsj, noticu that ( ,n) ic the same onC a~

on c !; th~s #ny terms n A which change sign
between C and C won’t contribute to Q. Thu
{13) and ’23) terms fn A have this behavior, so
Q, for a given (n,m) pair, is block-diaqonal.
The z-COO dots not mix with the X,Y-CODS, in
&greammnt with the results of BR.

Nowwe ne~d to choose the crmplete set v (~),
n=l,2...N. The idedl set would allow us to p8r-
form the integral over Cl in Eq. (24) analyti’
tally, and the intaurals over F and a in Eq, (23)
analyt.fcallyalso. The closest w have Ilccnable
to coma to lhfs {daal Is the mt of Uausslans

q?) ‘ -J cxP(-(wn)2/2u2) (25)

I =Jd$ (t.~nc($)+ t!n(!,n)d~)(t~fnc(~) on t.hacrack surface. The cet of positions ~ m
(X ,Y ,0) canbo choLen in sw tort of regul~r

t erpay~on Cl; by choosing ths grid sufficiently
tine (with the gaussltn range o bpproprlat~ly

+ t~(~,m)d;m) (21)
small), it is easy to show thet in tha distribu-
tion sunse Vn Is c~leto.



bj+;
,,.,
L
;

,,

With this choice of Vn, w have

ik#”;n -(uk#-xl)2/2
+(~)=e e D (26)

which has a siqle enough dependence on a and 13
to allI.Jwus to hope to do the integrals in Eq.
(23) analytically. The Integral over p yields
regular Bessel functions of order O and 2. The
integrals over a, however, ❑ust be c~uted numer-
ically except in th? long-wavelength l+mlt
(ko+O), in which case they are expressible in
ta%s of modified Bessel functions 10 ~.

P
The Q-matrix el~nts (Eq. (23)) are then

Q22 = ~ so2 + COS24 & s;

(27)

whera a co-n factor lJ2/16JKKO2has been omitted,
and

s:= (iE/2)e-x[ (+-x)Io(x) +X1l(X)l

s: = (f fi/2)e-x [xIO(x) - (X+~)Il(X)l

Each of ECIS.(27) are N x Nmatr{ces (the n, m
indices hive been s!pprassed): 6 = Q = arctan
(Yn-Y/x-x ),x= p/8, p=r /cr. ~Q isa
3N x?N el~ck-diaaonal matrix~lth one N x N
block and one 2N ~ 2N block,

The fact that the Q-mat’ix alements ~re pure
fmag{nary catiines with the i {n Eq. (20) to fn-
sure that the COO will be in phase with the fnci-
dent stress, as must be the case in this lfnit.

The aussian basis functions v (~) need to
Ybe specif a!. For slmpl{c!ty and vgrsat.il{tywe

have taken r to form & regular 2d lattic&, eitl,er
square or tr~anqular dependin on tha problem,

!w{th Iattlce spuclng a detem ned by the crack
~ize and shape. The only parameter then rema~ning
arbftrary is J, the gaussian range,

As long as o < a and a Is sufficiently small
relative to the crick s~ze, results should be
insensitive to u, ~i~ce the complatmess cr{terfon
w n~ed to fulffll can be satfsfled as well as
we like. But in practice, or c;mso, we can’t
let a b~ arbitrarily small, because we ne+d to
cowut.e and invert tho Q-matrix. For the present
we have used only a 7 M 7 arr~ of baslk func--
tions, to 2N= 98 at most,

mm
What w have chosen to do to ftxo ib to

pick a cr~ck for which an exuct solution is known,
n~ly, tha penny-ehtiped(circular) crack, SiMu”
Iata its COOS with an array~ of gallss~r.ns,and
vary o unt~l our calculated average COOS match
the omact awraga COD:;,

Long wavelength scattering from a circula}.
crack in the xy plane can be parametrized b,ytwo
quantities; namely, the average z-COO produced
by an as~totic traction in the z-direction,
and by the average x (or y)-CCD produced by an
asyqtotic traction in the x (or y)-direction.
The ratia of these quantities (x-COD)/(z-COD)
= R depends only on Poisson’s ratio in the exact
calculation; in ours it depends also on U. For
~~s;~:’~5$atfo=U2(AW)=l/3, it happens that

For the arrays shown in Fig. 3,
wnlch are our simulations af circular cracks, we
can reproduce R = 6/5 if u ❑ 0.376 for the hexa-
qonal WP~xf~tfan tO the cjrc~e and ff a ❑

0.398 for the octagonal one. The z-COO itself
depends on the magnitude of the asymptotic z-trac-
tfan and on th~ radius of the panny-shaoed crack;
by requiring that our computed average z-COO
using the just-determined u equal the exact
average COD, one can deduce thp radius; this is
how the cfrcles in Fig. 3 were drawn.

.0.0. ● .

● .**.

.0.0.

. ...* .

. ..*.

(o) (b)

Fig. 3, Array, ~ of centers for basis functions,
The circles ara tHe edges of the penny-shaped
cracks whcse Rayle{gh scattering is exactly repro-

duced by our calculations using the pictured
arrays, which are our simulations of penny-shaped
cracks using square (a) and triangular (b) arrays,
This requirement of mJtching ekact results fixes
0= 0.398 in (a), ando= 0.376 in (b). T
small circles dclineata the 1/< range (= P o) of
the basis gaussians.

PTte s ularity in the COD at the crack edfy

(coo - R ‘r2) is not accurately descr!bed In our
simulation. The edge singularity Is important If
one wfshes to e~timate stress-intensity factors,
but not scattering cros~~jectim%, becaus@ the
lattar can be expressed in terms of the Fourier
transforms of the COD with k = \. As long as
the scale of our errors Is small compared to a
wavelength our computed cross-bections will be
right.

Scattering from Flat Cracks of Arbitrary S@.

The matrix equation [Eq. (20)] Is most useful
when applied to non-circular cracks, which have
fiotbean computed by ahy other methoa. TO illus-
trate the procedure, we w(11 {n thii section cal-
culate Rayleigh scattering from two fom{l{es of
crack Shape$.

(7)thatlong-wavelengthIt has been shown
scattering frnm flat crac!.scan be parametr zed
with six raal ntiers. Three of these are orien-
tation anal~s, one Is a ~cale parameter tiich ic
determined by the crack size, and two are ffxeu



by the crack shape. I“hereforea two-par~ter
family of shapes generally exhausts all possible
scattering si;natuws.

Starting with a square crack, one family can
be generated by cutting out a rectangle from its
center; the two shape para@Lers are then the
ratios of the sides of the rectangle to tlw side
of the square. This we will call the O-family.
Another family can be generated by making a corner
of the omitted rectangle coincident with the cor-
ner of the square. This is the ~-faaily.

The three parameters (one scale parameter and
two shape parameters) are!in correspondence with
three of the parameters A. of Ref. 7. in terns
of which t’- scattering c~~%e naturally expressed.

is the Pverage COD
i; ;h:~t;’’d~$:;y; ;e;~u;~~J3yO;: ;:~a:~;~
strain in the jth direction.
rotati the crack in its plane (the xv r)lane)so

:::’/1323=A = O, ieaving only-A”333,
to p$$~htrize the Scatterini.

ward ?i~~ back)-scattered longitudinal amp
for a normally-incident longitudinal wave
poitional to A3333; in Ref. 7 are defined

P ‘; (A1313 + A2323W5333

Y. ‘; (A1313 - ‘2323)’A3333 ‘

(28)

which depend only on the crack shape. These num-
ber pairs should be in one-to-one correspondence
with our two shape parameters. This correspon-
dence is illustrated in Fig, 4 for the O-famil!
and in Fig. 5 fcr the L-family. He have taken

,o~

.?

t

Ezzzl

E&J

4●

;io, 4, Value6 of (p, y jfor Mmbers of tht
O-family of crack shap~s? The relative cizos of
the illustrated c~acks are adjusted so thht all

The numbers for the CIoraex-
%ee%$~f3~uch as tl),two paral1,1 rectang:t-
lar cracks each with aspect ratio 7:1 should not
k?otrusted quarltlt~t,ivelybecause thay ara
ropresente(ity 7 x 1 arrays of basis functions,

the various ~ers of the two families represen-
ted th~ with a portion of a 7 x 7 square array of
gaussian basis functions, and obtained the COOS
by Solving Eq. (20). From the CODS we obtain p
and Y. from Eq. (2@) and plot a point on Fig. 7
or 8. The crack is then drawn at that point; its
orientation is adjusted so that A =0 and its
size is adjusted so that all the ~%~ks illus-
trated have equal A hence equal normally
incident longitudin~~:!~ngitudinalbackscattering.
It appears that to each accessible point (@ly )
on Figs. 4 and 5 (the upper left portion appefirs
to be physically unrealizable) there corresponds
a set of shape parameters for t,hoO-family and
for the L-family. Since Rayleigh scattering
depends only on ~, yo, and A

?I
this means that

an O-crack cannot be disting ?~~ed from an L-crack
with the saw (B, y ). The same can be said of
an infinite nwkmr 8f other shape families.

.?

●

b

AI
Izzz!
7
/.

Fig. 5. Values of (@, yo) for members of the
L-faoily of crack shapes. Sizes are adjusted so
that all cracks here and in Fig. 4 have the sme
longitudinal backscattering of a normally incider,t
longitudinal wave, Orientation is such that

Cracks appeartng ar the saw (P, y )
~~3~~i~SiotandonFig. 4 are indistinguishable
to long-wavelength elastlc waves.

W!uY’
Starting from a boundary-integral representa-

tion for the eliistlc displacement, wc have com-
puted the COOS In the Rayleigh l{mlt for a variety
of planar crack shapes, and have shown how to com-
pute them /or higher frequencies for pl~nar cracks
of guneral shape.

The key steps in the development were:

1) Selection of the appropriate enpansfon of the
GMen’6 dyadlc. This allowed one to deduce a ma-
trix equation which has a positive definite kernel
●nd i~ derivable from an oxtramuu prfncipla.



2) Expansion of the CODS in a c~let.e set of
functions on the crack surface. This fomed the
basis for the -trix equation mentioned above.

3) Felicitous choice of this set of expansion
functions, which allows the develo~nt to proceed
as far as possible before consigning it to the
c~uter.
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Footnotus
kn
One might think that, since Eq. (18) Is the

condit{on for I {L’q.(21))tob@arfextre~~with
raspect to variations fn d, that the opt!mal o
could aleo be found vsrtat{onaliy. This would
be s~ if I wt$~ a boundary res~duali as In the
case of MOOT ,

‘lf a is increasad by l.%,R Ilcreases by about 2%.

This report Is an abbreviated version of a
paper to be publlshed in Ua+c Notion.


