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ABSTRACT

A method, based on a boundary-integral representation of the elastic displacement, for calculating
crack-opening-displacements on a flat crack of arbitrary shape and for incident elastic waves of arbi-
trary direction, polarization, and wavelength is developed and illustrated by application to Rayleigh

scattering from two families of crack shapes.
complete set of functions on the crack surface.

The crack-opening-displacement is expanded in a truncated
This transforms the boundary-integral represoatation
into a matrix equation with rank three times the order of the truncation.

This matrix equation has the

properties that can be expressed as the result of an extremum principle with respect to variations of
the expansion coefficients of the crack-opening-displacement (thus converges as the truncation order
increases) and the matrix kernel (which must be inverted) 1s positive definite.

INTRODUCTION

Calculations of scattering from cracks in 3d
are aeager. Although geometrical diffraction
theory can provide some results for very short
wavelengths, there are in the literature no quan-
titative calculations of scattering from cracks
of arbitrary shepe at long or intermeciate wave-
lengths.

Such a theory is here proposed and imple-
mented. In the following we will develop the
me. ~d and illustrate its application to flat
cracks at long wavelength.

We start with an integral equation for the
crack opening displacement, which 1s converted
to a matrix equation by means of introducing a sat
of functions on the crack surface into which to
exnand the crack-opening-displacement (COD). Tte
equation is solved for the COD in the Rayleigh
limit, and results for scattering of long-wave-
length elastic waves froa two families of shapes
of flr* cracks are exhibited.

Integral Equation for the COD.

The equation with which we start {s the
surface-integral reppegentation for the clastic
displacement vector u(r). A contgaiont form {5
given by Bostrtm anc Kristensson'™’:

Hera S, fs the bourdary of a void as shown in Fig.
1, 2 }s the Green's traction dyadic (several
form; for it are given by BK)2 is a ugit vector
norma) to the surfaces, and ki o p/p, k& = p/A+2y
are the wave numbers of shear®and longifudina
waves propagating in a humugeneous ang {sotropic

>

S

Fig. 1. The geometry associated with Eq. 1.
The volume V. is filled with an eiastic medium
with Lamé pa}ameters A, p and density p. VZ is

a void.

elastic mgdium with Lamé parameters A, p and den-
sity p. "inc(r) is an incidunt plane wave.

1f the void becomes a crack, S, degenerates
{nto a crack bottom and a crack top, both of

which are the same open surface Cl. With the COD
written as

>3, - >, .7 \
BU(F') = Uy oo (') = Upgpegn(™') (2)

£q. (1) then takes the form, for r ¢ Vi.

k . .
Uinc(M # —s/ dxdy B (B, - 800 = 6D

T
~ Cé
Car

We have taken the crack to be flat, situated in
the xy plane.

The traction dyadic A - I (F,F') can be

exprgssed in terms of the displacecent dyadic
G(r,r') which satisfies

' 2 2oty o
Cyyualia, go * P° Gyy * (/K087 T) = 0,y

whare tue stiffness matrix iy
CiJkl LI 6116k1 +y (6“6Jg . oinsjk) (%)
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fig. 2. The integration contours C_ and C_.

for an isotropic naterial(z)c(?,?') can be written
in many equivalant forms; wae find one given by

BX to be most useful. It is
> 9, n » T" -
%ﬁhr)=ﬂ/.ﬁoﬁtﬂoﬁmvngr ,
t (6)

c

and caezbs)darived from the more familiar

forms. *\© In Eq. (6) the integration is over

a (complex) solid angle df = Jpsinada, the inte-

gration 1imits for P are 0 < p < 2r, and o follows

ipo contours shown in Fig. Z. The basis vectors
are solutions of the elastic wave equation

n n_
cijkﬂ ’k.Jﬂ + ﬂ”.i =0 (7)

corresponding to polarization n. Thay are
n =1, SH wave:

itk § 7
B oo :

n = 2, 5V wave:
_ R 1k §°r
b =ge ™ : (8)

ne J, P wave:
Vo (k372 ik §7
TR =(gf) LSS ol \

whare the three unit vectors &,8,} have cartesian
componunts

é = (=3{np, cosp, 0)

6 = (cosa ~ocp, cosa sind, =sina) (9)

= (sina sing, tine cosp, cosa)

Notice that although &-&@ = B-p =1 and &g = a-y =
B:§ = 0, the components of & and § are unbounded,
because, according tv Fig. 2, sin a is real and
positive (0 < sina < @) while cos a is imaginary
the basis vecto;s (y.r) grow or decay exponen-
tially in z. ¢' in Eq. (6) is the function ob-
tained by replacing i with -1 in Eq. (8) where it
explicitly occurs. In passing it shoyld be noted
that' the a-integral diverges for r = r', reflect-
ing the singular behavior of G at that point.

The individual terms in the sum over m = 1,2,3
also diverge for z = z', but the sum converges,
The divergences become worse for the traction
dyadic that we actually use in the following, but
the infinities alway. miraculously cancel in the
polarization sua.

We now define basis stregses corresponding
to the displacesent vectors 2 (y.r) according to

%3 = Cijielu.p * 2,00

R ITR AR R CPE Y B (10)
and basis traction vectors for a surface paraliel
to the xy plane
t, = 9 ﬁJ =04, . (11)

In terms of these quantities the traction
dyadic fis

(-3 i)y =2 J/' ay D

(e 230 (12)

which, when substituted into Eq. (3),will allow
one to calculate the displacement u(r) when one
knows the COD. In order to calculate the COD we
opurate with the traction operator on Eq. (3),
giving

21k -
t}"‘(?) + -ﬁ—id/-dx'dy' J/.d"i t?(q,r)
C, c,

t 2 1y = —"
x tj"(ﬁ.r )AuJ(r ) = ti(r) 130

(13)

1f ¥ is on C,, then the boundary conditions require
that the right-hand side vanishes.

An important observation is that t'"c(ﬁ) is
continuous across the crack. Therefore the second
term in £q. (1)) s also continuous and we can use
either C or C when z = 0. Yo will find_ it con-
venient to use their avera?e Ce=hC +C); then
the contributions of certain taerms to the kernel
will convaniently cancel.

With this replacement for the contour, Eq.
(13) is equivalent to that given by BP. In order
to mitigate S~ singularities of the kernel, how-
ever, they i.teagrate by parts on r' and use the
elastic wave equation to yield a more decorous
intagral equation at the expense of introducing
darivatives of the COD. We will find that these
cong\icntionl. produced by the precautions prese
cribed by BR to pallfate the pltholo?y of the ker-
nel, do not occur {n the schame wa will describe,



The Matrix Equation.

Our method for solving tq. (23) for Auj(F)
is as follows. First, we pick a convenient’com-
plete set of real functions or C;; call thea

vn(r) = vn(x.y) with x, y eCl. *hen expand

N
au M) =Y v, (18)
n=1

(for practical reasons, the set {v_} is always

trupcated to N members), multiply Eq. (13) ty

v_(r) and integrate over dxdy on C1 with z = 0.
en it becomes

2i

j; axdy va(Pti"eF) +

k
22 [ ¢ i)
1 ;

X n =
cj 0, (19

where

N - hd n bd

Gam = f oy v, Gah (16)
€

inc

Now expand t, in the basis stresses

4" = for by @ an
3

(it can therefgre, be either upgoing (Qcc*) or
downgoing (yeC )); then Eq. (15? becomes

21k
JERSRENRCEE Y ETTORMID
A A

c
x N
Cj'=0 (18)

Since the {ncident traction is presumed to be
known, we can take

fine .y . .
6 () = b, 88 e (19)
0 0
then Eq. (18) becomas
n 21k
0 & n
.no “ (Qoln) + —p- Qi.l\;J.n CJ- -0 (20)

which can be solved for tha 3N-vactor ¢ by in-
verting the 3N x 3N matrix Q.

A valuable way of viewing Eq. (18) is as
the result of minimizing

te [ qm e fimdet)

C

+ UQmdy™ (21)

*a Ziks *e

with respect to variations in di =~ NI ¢ -
l.e.,

91

ad n

i

is exactly Eq. (18). This fact can be made the
basis of a proof of convergence of a sequence of
truncations N, N + 1, N+ 2, . .(As auch the
same way as it was done for MOOT.

Another feature of the matrix Q is werth
mentioning. This is that at least in the long-
wavelength limit it can be shown to have the form
of the product of a non-singular matrix w'th its
own hermitian conjugate. Such a matrix is
positive-definite; this means that solving for
the COD in this case is a well-posed problem and
many kinds of numerical difficulties are, there-
fore, guaranteed not to occur.

The Q-Matrix.
The matrix Q defined by Egs. (18) and (20) is
Qg 4 =fd9 e meltn)

¢
a/ dy W(§.m) A U L @)
e
where
i g%,
W (§) =/dxdy e T v (R, (24)
¢
)

and k_ = k (n =1,2), kq =k (n=3), so A is
just ¥he pPoduct of der vatilles (Eq. 10) of ¢'s
(Eq. 8) without exponential factors.

Some simp11cat¢ﬂns can be made immediately.
Firsy, notice that (7,n) {t the same on C as
on C ; thys any terms in A which change sign
batween C and C won't contribute t0 Q. The
(13) and 723) terms in A have this behavior, so
Q, for a given (n,m) pair, 1s block-diagonal.
The 2-COD does not mix with the x,y=C00s, in
sgreemant with the results of BR.

Now we nead to choose the complete set v (T).
n=1,2...N. The {deal set would allow us tu pér-
form the {ntegral over C1 in €Eq. (24) analyti:
cally, and the integrals over f and & in Lq. (23)
analytically also. The closest we have becn able
to come to this ideal is the set of gaussians

Y

v = 2?1 oxp(-(F1)2/20%) (25)
o

on the crack surface. The cet of positions ro
(x_,y_ ,0) can be chosen in some sort of regultr
arflay"on C,; by choosing the grid sufficiently
tine (with®the gausstan range o wppropriately
small), {t i easy to show that in the distribu-

tiun sunse o {s complete.
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With this choice of Vo we have

.o \2
-(ok_sina)“/2
e Tn

ik g7
Wh() = e T : (26)

which has a simple enough dependence on a and 8
to alluw us to hope to do the integrals in Eq.
(23) analytically. The integral over g yields
regular Bessel functions of order 0 and 2. The
integrals over a, however, must be computed numer-
jcally except in th2 long-wavelength 1imit
(k_o0+0), in which case they are expressible in
teflms of modified Bessel functions IO 1

The Q-matrix elements (Lq. (23)) are then

_ JAs 2 _ A2
Q11 =53 S° cos2¢ e S2

- A+ 2 A 2
022 = 53 So + Cos2¢ Xvm S2
LA 2
012 = m s1n2¢ 52
0y = 4528 Ss ' (21

where a common factor p2/16nx02

and

s2 = (WR2)e [ (01 (x) + x1(0)]

has been omitted,

sg = (WR72)e™ (x1,(x) = (x+h)1;(x)]

€ach of Eqs. (27) are N x N matrices (the n, m
indices have been s!ppressed): ¢ =9 __ = arctan
(yn-y /x=x_), x = p“/8, p = r__/0. e Qis a
ININ Blgck-diagona1 natrix"ith one N x N
block and one 2N x 2N block.

The fact that the Q-mat' {x elements are pure
imaginary cowines with the 1 in £q. (20} to fin-
sure that the COD will be in phase with the inci-
dent stress, as must be the case in this limit,

The ?auss1an basts functions v (?) need to

be specifieg. For simplicity and vﬂrsati\ity we
have taken r_ to form a regular 2d lattice, eiftler
square or trianqular dopendin? on the problem,
with lattice spucing a determined by the crack
size and shape. The only parametar then remaining
arbitrary {s 3, the gaussian range.

As long as 0 < & and a s sufficiently small
relative to the crack size, results should be
insensitive to o, sirce the completeness criterion
we need to fulfill can be satisfied as well as
we Yike. But in practice, of c-urce, we can't
lat a be arbitrarily small, bacause we nead to
compute and invart tho Q-matrix. For the praesent
we have used only a 7 x 7 array of basis func-
tions, s0 2N = 98 at most.

AR
What wa have chosen to do to fix o 15 to
pick a creck for which an exuct solution {s known,
namely, the penny-shuaped (circular) crack, simue
tate 1te CODs with an arrays of gaussiecns, and
vary o until our calculateu average CODs match
the exact average CODs.

Long wavelength scattering from a circulay
crack in the xy plane can be parametrized by two
quantities; namely, the average z-COD produced
by an asymptotic traction in the z-direction,
and by the average x (or y)-CCD produced by an
asymptotic traction in the x (or y)-direction.
The ratio of these quantities (x-C0D)/(z-C0D)
= R depends only on Poisson's ratio in the exact
calculation; in ours it depends also on o. For
Poisson'tssatio = A/2(A+u) = 1/3, it happens that
R = 6/5. For the arrays shown in Fig. 3,
wnich are our simulations of circular cracks, we
can reproduce R = 6/5 if o = 0.376 for the hexa-
gonal approximation to the c;rc!e and if g =
0.398 vor the octagonal one.” The z-COD itself
depends on the magnitude of the asymptotic z-trac-
tion and on the radius of the panny-shaped crack;
by requiring that our computed average z-COD
ucing the just-determined o equal the exact
average COD, one can deduce the radius; this is
how the circles in Fig. 3 were drawn.

(o) (b)

Fig. 3. Array. T of centers for basis functions.
The circles ara the edges of the penny-shaped
cracks whose Rayleigh scattering is exactly repro-
duced by our calculations using the pictured
arrays, which are our simulations of penny-shaped
cracks using square (a) and triangular (b) arrays.
This requirement of matching exact results fixes
0=0.398 in (a), and 0 = 0.376 in (b). T

small circles delineate the 1/¢ range (= JE%) of
the basis gaussians.

The sipgularity in the COD at the crack edge

(COD ~V¥R °r£) is not accurately described in our
simulation. The edge singularity is important if
one wishes to estimate strass-intensity factors,
but not scattering crosia,ections. because the
latter can be expressed fn terms of the Fourier
transforms of the COD with k = ko As long as

the scale of our errors s small compared to a
wavelength our computed cross-sections will be
richt,

Scattering from Flat Cracks of Arbitrary Shape.

The matrix equation [Eq. (20)] {s most useful
when applied to non~circular cracks, which have
Aot been computed by ary other method. To f1lus-
trate the procedure, we will in this section cal-
culate Rayleigh scattering from two families of
crack shapes.

It has bean shown(7) that long-wavalength
scattaring from flat crac's can be parametrized
with six real numbers. Three of these are orien-
tation angles, vne s a scale paramater which is
cetermined by the crack size, and two are fixeu



by the crack shape. Therefore a two-parameter
family of shapes generally exhausts all possible
scattering siznatures.

Starting with a square crack, one family can
be generated by cutting out a rectangle from its
center; the two shape paramelers are then the
ratios of the sides of the rectangie to the side
of the square. This we will call the 0-family.
Another family can be generated by making a corner
of the omitted rectangle coincident with the cor-
ner of the square. This is the .-family.

The three parameters (one scale parameter and
two shape parameters) are in correspondence with
three of the parameters A, of Ref. 7. in terms
of which t-e scattering cigkﬁe naturally expressed.
To a comzon multiplier, A j is the average COD
in the ith direction causla By an asymptotic
strain in the jth direction. One can always
rotata the crack in its plane (the xy plane) so
chat A = A = 0, leaving only A , A .
and A 1323&0 pgﬁgaetrize the scatterina?33The1?6a-
ward ?3%3 back)-scattered longitudinal amplitude
for a normally-incident longitudinal wave is nro-
portional to A3333; in Ref. 7 are defined

B (A1313 * R2323)/A3333

=1
H
B (28)
Yo = 7 (Puany ™ Apaga)/Aasy

which depend only on the crack shape. These num-
ber pairs should be in one-to-one correspondence
with our two shape parameters. This correspon-
dence 1s 11lustrated in Fig. 4 for the O-family
and in Fig. 5 fer the L-family. We have taken

| Y T =T T T Y
ok e
- .
1S oo
B -
QF -
L7z
3 .
l
L.
it ]
- B .
(7.0 i
(]
0at- Z_ b
=
] [ X 1 7)

rig. 4. Values of (p, yo) for members of the
0-family of crack shapes. The relative sizes of
the fllustrated cracks are adjusted so thyt al
have equal A 133 The numbers for the 10re ex-
treme menbnrg. auch as the two paralle) rectang:-
lar cracks each with aspect ratio 7:1 should not
to trusted quantitatively because they are
represented ty 7 x 1 arrays of basis functions.

the various members of the two families represen-
ted them with a portion of a 7 x 7 square array of
gaussian basis functions, and obtained the CODs

by solving Eq. (20). From the CODs we obtain g
and y_ from Eq. (28) and plot a point on Fig. 7

or B." The crack is then drawn at that point; its
orientation is adjusted so that A =0 and its
size is adjusted so that all the LR&Gks i1lus-
trated have equal A 33 hence equal normally
incident longitudingq ?ongitudina1 backscattering.
It appears that to each accessible point (8,y.)

on Figs. 4 and 5 (the upper left portion appeﬂrs
to be physically unrealizable) there corresponds

a set of shape parameters for the 0-family and

for the L-family. Since Rayleigh scattering
depends only on B, Yor and A this means that
an O-crack cannot be distingaegﬁed from an L-crack
with the same (B, y.). The same can be said of

an infinite numbar 8f other shape families.

T 1 1 T L

" m

) -

BF -

Al -

/420

1 1
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0

QS S
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Fig. 5. Values of (B, y.) for members of the
L-family of crack shapes. Sizes are adjusted so
that all cracks here and in Fig. 4 have the same
longitudinal backscatiering of a normally incidert
Jongitudinal wave. Orientation {s such that

A 3235 0. Cracks appearing at ithe same (B, y.)
oa @Ais plot and on Fig. 4 are indistinguishabfe
to long-wavelength elastic waves.

Summary.

Starting from a boundary-integral representa-
tion for the elistic displacement, we have com-
puted the CODs 'n the Rayleigh Yimit for a variety
of planar crack shapes, and have shown how to com-
pute them for highar fraquencies for planar cracks
of genaral shapa.

The key steps in the developmant wera:

1) Selection of the appropriate expansion of the
Graen's dyadic. This allowed one to deduce a ma-
trix equation which has a positive definite kernel
and is derfvable fron an extremua principle.



2) Expansion of the CODs in a complete set of
functions on the crack surface. This formed the
basis for the matrix equation mentioned above.

3) Felicitous choice of this set of expansion
functions, which allows the development to proceed
as far as possible before consigning it to the
computer.
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Footnotlus

.'One might think that, since Eg. (18) {s the
condition for 1 {{q. (21)} to be ar. extreme with
respect to variatfons in dm. that the optimal o
could algo be found variationaliy. This would
be s9 if I wrs’ a boundary residual, as in the
case of MOOT .

'lf o 1s increased by 1X, R increases by about 2X.

This report 15 an abbreviated version of a
paper to be published in Wave Motioun.



