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i INTRODUCTION

I The following report summarizes our ,:esearch activities under the U.S. Depart-

I ment of Energy, Scientific Computing Staff Office of Energy Research, Contract No.
DE-FG05-87ER25036. We h_ve organized the report under the following categories:

I
i I. Work Done in the Period January 1991 Through December 1991.

A. Summary of the research done.

I
i B. Papers published in refereed journals or refereed proceedings.

I II. Planned work for the period January 1992 through December 1992.

I III. Appendix reprints.
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I
I. WORK DONE IN THE PERIOD JANUARY 1991 THROUGH

I DECEMBER 1991

A. Summary of the Research Done

I 1. "Controlling Chaotic Dynamical Systems"

I The control of chaos is in DOE funded researchmajora component our program.

In this work we found a method that converts _he motion on a chaotic attractor

I to a desired attracting time periodic motion by making only small time dependent

perturbations of a control parameter. The time periodic motion results from the

| stabilization of one of the infinite number of previously unstable periodic orbits

I embedded in the attractor. The present work extended that of Ott, Grebogi, and.
Yorke [Phys. Rev. Left. 64, 1196 (1990)], allowing for a more general choice

I of the feedback matrix and implementation to higher-dimensional Thesystems.

method is illustrated by an application to the control of a periodically impulsively

I kicked dissipative mechanical system with two degrees of freedom resulting in a four-

dimensional map (the "double rotor map"). A key issue addressed is that of the"

I dependence of the average time to achieve control on the size of the perturbations

I and on the choice of the feedback matrix. Some comments concerning this method
are the following:

I 1. Before settling into the desired controlled orbit the trajectory experiences a

chaotic transient whose expected duration diverges as the maximum allowed

I size of the control approaches zero.

I 2. Small noise can result in occasional bursts in which the orbit wanders far from

i the controlled orbit.
3. Controlled chaotic systems offer an advantage in flexibility in that any one

I of number of orbits be stabilized the :;mali aaid the choiceby control,a call

can be switched from one to another depending on the current desired system

I performance.
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2. "Embedding of Ex_erlmental Data"

I addressed fundamental mathematical formulations in embed-
In this work we

ding methods used for the zeconstruction of attractors from experimental data.

I[ Embedding theorems, b_ed ,on previous work by H. Whitney and F. T-,&ens, are

established for compact subsets A of Euclide_,a space R _. If n is an integer larger

Iii than twice the box-counting dimension of A, then a]xlaost every map from R k to

lli R", in the sense of prevalence, is one-to-one on A, and moreover is an embedding
on smooth manifolds contained within A. If A is a chaotic attractor of a typical

li theu the is true for almost delay-coordinatedynamical system, same every m_i0

from R k to R _. These results are extended in two other directions. Similar results

li ,axe proved in the more general case of reconstructions which use moving averages

of delay coordinates. Second, information is given on the self-intersection set that

I exists w_Len n is less thar_ or equal to twice the bor.counting dimension of A.

I 3. "Effect of Noise on Critical Exponents of Crises"
The work on crises and cha_,tic transients were developed under DOE contract.

I In this work, we considered the influence of random noise on low-dimensional, non-

linear dynamical systems with parameters near values leading to a crisis in the

I absence of noise. In a crisis, one of several characteristic changes in a chaotic at-

I tractor takes piace as a system parameter p passes through its crisis value pc. For
each type of change, there is a characteristic temporal behavior of orbits after the

I crisis (p > pc by convention), with a chara_:teri,_tic time scale r. For an important
class of deterministic systems, the dependence of r on p is r -_ (p- pc) -_ for p

I slightly greater than pc. \Vhen noise is to a system p < Pr., can
added with orbits

exhibit the same sorts of characteristic temporal behavior as in the deterministic
I

ii ,:ase for p > pc (a noise-induced crisis). Our main result is that for systems whose

ii_ characteristic time_ scale as above in the zero-noise limit, the characteristic time in

I the noisy case scales as r -,_ a-'Vg((pc - p)/a), where a is the characteristic strength

i of the noise, g(.) is a nonuniversal function depending on the system and noise,
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and _f is the critical exponent of the corresponding deterministic crisis. Illustrative

I] numerical examples are given for two-dimensional maps and a three-dimensional
liiiw

flow. In addition, the relevance of the noise scaling law to experimental situations

lt is discussed.

We also investigated experimentally the scaling of the average time r between

I! intermittent, noise-induced bursts for a chaotic mechanical system near a crisis. The

Ii system studied is a periodically driven (frequency f)magnetoelastic ribbon. Theory
I!

predicts that for deterministic crises where r scales as r ,,o If- Ll-_(f < fc, f = ]'=

I at crisis), the characteristic time between noise-induced bur_ts (f >_lc) should scale

as r ,,, a-"g(If - f¢l/a) where a is the noise etrength and O'is the same in both

I cases. We determine 7 for the low-noise ("deterministic") system, then add noise

and observe that the scaling for r is as predicted.

I 4. "Transition to Chaotic Scattering"

I Another major topic developed under DOE grant has been related with chaotic
scattering. In this work we addressed the question of how chaotic scattering arises

I and evolves as a system parameter is continuously starting a
varied from value

for which the scattering is regular (i.e., not chaotic). Our results show that the!

_ transition from regular to chaotic scattering can occur via a saddle-center bifurca-

tion, with further qualitative changes in the chaotic set resulting from a sequence

of homoclinic a_d heteroclinic intersections. We also show that a state of "fully

developed" chaotic scattering can be reached in our system through a process anal-

ogous to the formation of a Smale horseshoe. By fully developed chaotic scattering,

we mean that tile chaotic-invariant set is hyperbolic, and we find for our problem

that all bounded orbits can be coded by a full shift on three symbols. Observable

consequences related to qualitative changes in the chaotic set are also discussed.

5. "Distribution of Floaters on a Fluid Surface"

The long-time spatial distribution of particles floating on the surface of a con-

fined fluid whose flow velocity has complicated time dependence was considered. It

z
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was shown that this distribution can be either a fractal or else can clump at sev-

I eral (or one) discrete points. The transition from the latter type of distribution to

the former occurs when the Lyapunov exponent characterizing the particle motion

I passes through zero from negative values to positive values. The characteristic fea-

tures of this type of transition are investigated using random maps. It was shown

! •that near the transition there are extremely intermittent temporal fluctuations in

I the particle cloud, and their scaling with a parameter is elucidated.

!
!
!
!

|
!
!

!
!



I

I B. Papers Published in Refereed Journals or Refereed Proceedings

I 1. "Controlling Chaotic Dynamical Systems," F. J. Romeiras, E. Ott, C. Gre-

I bogi, and W. P. Dayawansa, Proc. 1991 American Control Conference (Amer-
ican Automatic Control Council, IEEE Service Center, Piscataway, NJ, 1991),

I pp. 1112-1119.

i 2. "Embedology," T. Sauer, J. A. Yorke, and M. Casdagli, J. Stat. Phys. 65,
579-616 (1991).

I 3. "Scaling Law for Characteristic Times of Noise-Induced Crises," J. C. Som-

i merer, E. Ott, and C. Grebogi, Phys. Rev. A 43, 1754-1769 (1991).

4. "Experimental Confirmation of the Scaling Theory for Noise-Induced Crises,"

I J.C. Sommerer, W. L. Ditto, C. Grebogi, E. Ott, and M. L. Spano, Phys.

i Rev. Lett. 66, 1947-1950 (1991).
5. "ExperimentM Confirmation of the Theory for Critical Exponent of Crises,"

I J.C. Sommerer, W. L. Ditto, C. Grebogi, Ott, and M. L. Spano, Phys.
E.

Lett. 153A. 105-109 (1991).

!
6. "Transition to Chaotic Scattering," M. Ding, C. Grebogi, E. Ott, and J. A.

I Yorke, Rev. A 7025-7040 (1991).Phys. 42,

I 7. "Massive Bifurcation of Chaotic Scattering," Phys. Lett. 153A, 21-26 (1991).

8. "Fractal Distribution of Floaters on a Fluid Surface and the Transition to

I Chaos for Random Maps," L. Yu, E. Ott, and Q. Chen, Physica 53D, 102--

ii 124(1991).

9. "The Spectrum of Fractal Dimensions of Passively Convected Scalar Gradients

J in Chaotic Fluid Flows," F. Varosi, T. M. Antonsen, and E. Ott, Phys. Fluids

ill A 3, 1017-1028 (1991).
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10. "Calculating Topological Entropies of Chaotic Dynamical Systems," Q. Chen,

-,l:] E. Ott, and L. P. Hurd, Phys. Lett. 156A, 48-52 (1991).

11. "Cubic Maps as IVlodelsof Two-Dimensional Antimonotonicity," S. P. Dawson

li and C. Grebogi, Chaos, Solitons and Fractals, 1, 137-144 (1991).
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II 1. ''P revale nee"

We introduced a measure-theoretic condition for a property to hold "almost

_1 infinite dimensional vector with particular emphasis oneverywhere" on ali space,

function spaces such as C k and L p. Like the concept of "Lebesgue almost every"

_!1 on finite diinensional spaces, our notion of "prevalence" is translation invariant.

!|i| Instead of using a particular measure on the entire space, we define prevalence in
|t terms of the class of all probability measures with compact support. Prevalence is

Iii ,t ,,lore appropriate condition than the topological concepts of "open and dense"
|!|

or "generic" when one desires a probabilities result on the likelihood of a given

li propertyonafunctionspace. Wegiveseveralexamplesofpropertieswhichhold

"almost everywhere" in the sense of prewdence. For instance, we prove that almost
#1,,I

It every C' map on R" has the property tha.t ali of its periodic orbits are hyperbolic.

We believe, this is a path-breaking concept tha_ needs much further work.

II
2. "Border Crossing Bifurcations"

] We intend to investigate tim phenomenon ofborder bifurcation. These occur in

l_iecewise smooth systems, which in turn occur in a variety of situations involving

It optimiz_ation a_ld/or constraints. In the paper above, we have presented qualita-
\

tively different types of border bifurcations for piecewise smooth maps. t_).,gree

I! theory, which is a useful tool analyzing bifurcation problems involving periodic or-

l_its only, cannot always be applied as the examples show. Therefore, new methods

I1 have to be developed to attack the problem of border bifurcation phenomenon.

Ii 3. "Numerical Procedure for Computing the Dimension"

Based on our experience with _,he development of saddle straddle trajectories

li and the equality for Hausdorff, box-counting and uncertainty dimension, wv
intend

I to develop a mlmerical procedure for computin_ the dimension of one dimensionallyI
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unstable attractor. We will show that the method is guaranteed to work for a class

li of one-dimensionally unstable hyperbolic attractors.

4. "Generalized Saddle Straddle Trajectories Methods"

I_ In many systems one observes transient chaos, This is due to the presence of

I!l chaotic saddles in the system. So far we have a numerical method (SST method)
that generates a trajectory on a chaotic saddle (_hat is, a chaotic set that is not at-

I!1 tracting) that has been implemented in the Yorke's DYNAMICS problem. We have
III

shown that the SST method is guaranteed to work for a class of one-dimensionally

I_ unstable saddle-hyperbolic systems.

We intend to develop numerical methods for finding trajectories on chaotic sad-

Iii dies which are either at least two-dimensionally unstable saddle-hyperbolic sets or

t.I include points that have a different unstable dimension. A problem related to shad-
owing and our SST method is the following. Assume that for x given system, the

ii SST meti,od generates a numerical trajectory that can be computed as long as
I,W

one wishes. Is it true that the numerical trajectory can be shadowed by a true

II trajectory?

5. "Finding Typical Tra,lectories Numerically"

I, Finding typical numerical trajectories is a central problem of simulating of

II chaotic systems. A fundamental question is whether or not tim behavior of a typical

trajectory is compatible with the behavior of some numerically generated trajectory.

II Ford variety of problems, we are not interested in tracking a particular trajectory
III

but rather we need information about the behavior of typical trajectories. In such

I!1 ,'ases. the problem bcc(mms first of showing that numerical trajectories are shad-

owed by true trajectories, mad second, that these true trajectories are typical. We

II t)elieve these true trajectories are usually in fact "typical". Examples are common

]1 where the st,trifle initial condition is not important, but the long term behavior is
I|

important. There are examples, where one wants to know the statistical behavior.

Iii We plan to continue investigating a theoretical foundation for methods pro-
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ducing typical numerical trajectories. The different methods for different systems

i might vary slightly, depending on some global properties of the system that is con-

sidered. Our objective is to find a numerical procedure which produces a numerical

tl trajectory which has the properties (1) the trajectory is shadowable, and (2) the

trajectory is distributed throughout the attractor in accord with the natural mea-

lm sure. Of course, the latter statement will ,.ave to be made precise, since only a

_| finite number of iterates will be available. We believe we have a procedure that

i!| will work for low dimensional ct.,mtic systems, but proving that it will work will be
l

!!l difficult. ()ur objective will De first to prove that it works for uniforr][_,ly hyperbolic

attractors. Some progress has been made on investigating some particular systems,

ii such as maps near tile map x,+l = 3x, mod 1. \Ve propose to develop Inethods

that are guaranteed to generate (dearly) typical numerical trajectories in a variety

of d"namical system_. Furthermore we want to be able to obtain useful estimates

m for how close our trajectories are to being typical.
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