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INTRODUCTION

The following report summarizes our esearch activities under the U.S. Depart-
ment of Energy, Scientific Computing Staff Office of Energy Research, Contract No.
DE-FG05-87TER25036. We have organized the report under the following categories:

I. Work Done in the Period January 1991 Through December 1991.

A. Summary of the research done.
B. Papers published in refereed journals or refereed proceedings.
II. Planned work for the period January 1992 through December 1992.

III. Appendix reprints.



I. WORK DONE IN THE PERIOD JANUARY 1991 THROUGH
DECEMBER 1991

A. Summary of the Research Done

1. “Controlling Chaotic Dynamical Systems”

The control of chaos is a major component in our DOE funded research program.
In this work we found a method that converts “he motion on a chaotic attractor
to a desired attracting time periodic motion by making only small time dependent
perturbations of a control parameter. The time periodic motion results from the
stabilization of one of the infinite number of previously unstable periodic orbits
embedded in the attractor. The present work extended that of Ott, Grebogi, and
Yorke [Phys. Rev. Lett. 64, 1196 (1990)], allowing for a more general choice
of the feedback matrix and implementation to higher-dimensional systems. The

method is illustrated by an application to the control of a periodically impulsively

dimensional map (the “double rotor map”). A key issue addressed is that of the:
dependence of the average time to achieve control on the size of the perturbations
and on the choice of the feedback matrix. Some comments concerning this method

are the following:

1. Before settling into the desired controlled orbit the trajectory experiences a
chaotic transient whose expected duration diverges as the maximum allowed

size of the control approaches zero.

[fv]

Small noice can result in occasional bursts in which the orbit wanders far from

the controlled orbit.

3. Controlled chaotic systems offer an advantage in flexibility in that any one

of a number of orbits can be stabilized by the small control, and the choice

can be switched from one to another depending on the current desired system

I kicked dissipative mechanical system with two degrees of freedom resulting in a four-

performance.




2. “Einbedding of Experimental Data”

In this work we addressed fundamental mathematical formulations in embted-
ding methods used for the ieconstruction of attractors from experimental data.
Embedding theorems, based on previous work by H. Whitney and F. Tukens, are
established for compact subsets A of Euclidean space R*. If n is an integer larger
than twice the box-counting dimension of A, then almost every map from RF to
R", in the sense of prevalence, is one-to-one on A, and moreover is an embedding
on smooth manifolds contained within A. If A is a chaotic attractor of a typical
dynamical system, theu the same is true for almost every delay-coordinate map
from RF to R". These results are extended in two other directions. Similar results
are proved in the more general case of reconstructions which use moving averages
of delay coordinates. Second, information is given on the self-intersection set that
exists wien n is less than or equal to twice the bor counting dimension of A.

3. “Effect of Noise on Critical Exponents of Crises”

The work on crises and chactic transients were developed under DOE contract.
In this work, we considered the influence of random noise on low-dimensional, non-
linear dynamical systems with parameters near values leading to a crisis in the
absence of noise. In a crisis, one of several characteristic changes in a chaotic at-
tractor takes place as a system parameter p passes through its crisis value p.. For
each type of change, there is a characteristic temporal behavior of orbits after the
crisis (p > p. by convention), with a characteristic time scale 7. For an important
class of deterministic systems, the dependence of 7 on pis 7 ~ (p — p;)”" for p
slightly greater than p.. When noise is added to a system with p < p., orbits can
exhibit the same sorts of characteristic temporal behavior as in the deterministic
case for p > p. (a noise-induced crisis). Our main result is that for systems whose
characteristic times scale as above in the zero-noise limit, the characteristic time in
the noisy case scales as 7 ~ 0~7g((p. — p)/c), where o is the characteristic strength

of the noise, g(-) is a nonuniversal function depending on the system and noise,
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and « is the critical exponent of the corresponding deterministic crisis. Illustrative
numerical examples are given for two-dimensional maps and a three-dimensional
flow. In addition, the relevance of the noise scaling law to experimental situations
is discussed.

We also investigated experimentally the scaling of the average time 7 between
intermittent, noise-induced bursts for a chaotic mechanical system near a crisis. The
system studied is a periodically driven (frequency f) magnetoelastic ribbon. Theory
predicts that for deterministic crises where 7 scalesas 7 ~ | — f.|7"(f < fo, f = f.
at crisis), the characteristic time between noise-induced bursts (f > f.) should scale
as 7 ~ o~ "g(|f — f.|/o) where o is the noise strength and v is the same in both
cases. We determine v for the low-noise (“deterministic”) system, then add noise
and observe that the scaling for 7 is as predicted.

4. “Transition to Chaotic Scattering”

Another major topic developed under DOE grant has been related with chaotic
scattering. In this work we addressed the question of how chaotic scattering arises
and evolves as a system parameter is continuously varied starting from a value
for which the scattering is regular (i.e., not chaotic). Our results show that the
transition from regular to chaotic scattering can occur via a saddle-center bifurca-

tion, with further qualitative changes in the chaotic set resulting from a sequence

‘of homoclinic and heteroclinic intersections. We also show that a state of “fully

developed™ chaotic scattering can be reached in our system through a process anal-
ogous to the formation of a Smale horseshoe. By fully developed chaotic scattering,
we mean that the chaotic-invariant set is hyperbolic, and we find for our problem

that all bounded orbits can be coded by a full shift on three symbols. Observable

consequences related to qualitative changes in the chaotic set are also discussed.
5. “Distribution of Floaters on a Fluid Surface”

The long-time spatial distribution of particles floating on the surface of a con-

fined fluid whose flow velocity has complicated time dependence was considered. It



was shown that this distribution can be either a fractal or else can clump at sev-
eral (or one) discrete points. The transition from the latter type of distribution to
the former occurs when the Lyapunov exponent characterizing the particle motion
passes through zero from negative values to positive values. The characteristic fea-
tures of this type of transition are investigated using random maps. It was shown
that near the transition there are extremely intermittent temporal fluctuations in

the particle cloud, and their scaling with a parameter is elucidated.

[EY
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Papers Published in Refereed Journals or Refereed Proceedings

. “Controlling Chaotic Dynamical Systems,” F. J. Romeiras, E. Ott, C. Gre-

bogi, and W. P. Dayawansa, Proc. 1991 American Control Conference (Amer-

ican Automatic Controi Council, IEEE Service Center, Piscataway, NJ, 1991),

pp. 1112-1119.

“Embedology,” T. Sauer, J. A. Yorke, and M. Casdagli, J. Stat. Phys. 65,
579-616 (1991).

“Scaling Law for Characteristic Times of Noise-Induced Crises,” J. C. Som-

merer, E. Ott. and C. Grebogi, Phys. Rev. A 43, 1754-1769 (1991).

“Experimental Confirmation of the Scaling Theory for Noise-Induced Crises,”
J. C. Sommerer, W. L. Ditto, C. Grebogi, E. Ott, and M. L. Spano, Phys.
Rev. Lett. 66, 1947-1950 (1991).

“Experimental Confirmation of the Theory for Critical Exponent of Crises,”
J. C. Sommerer, W. L. Ditto, C. Grebogi, E. Ott, and M. L. Spano, Phys.
Lett. 153A., 105-109 (1991).

“Transition to Chaotic Scattering,” M. Ding, C. Grebogi, E. Ott, and J. A.
Yorke, Phys. Rev. A 42, 7025-7040 (1991).

“Massive Bifurcation of Chaotic Scattering,” Phys. Lett. 153A,21-26 (1991).

“Fractal Distribution of Floaters on a Fluid Surface and the Transition to
Chaos for Random Maps,” L. Yu, E. Ott, and Q. Chen, Physica 53D, 102~
124 (1991).

. “The Spectrum of Fractal Dimensions of Passively Convected Scalar Gradients

in Chaotic Fluid Flows,” F. Varosi, T. M. Antonsen, and E. Ott, Phys. Fluids
A 3,1017-1028 (1991).
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11.

“Calculating Topological Entropies of Chaotic Dynamical Systems,” Q. Chen,
E. Ott, and L. P. Hurd, Phys. Lett. 156A, 48-52 (1991).

“Cubic Maps as Models of Two-Dimensional Antimonotonicity,” S. P. Dawson

and C. Grebogi, Chaos, Solitons and Fractals, 1, 137-144 (1991).
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II. PLANNED WORK FOR THE PERIOD JANUARY 1991
THROUGH DECEMBER 1991

1. “Prevalence”

We introduced a measure-theoretic condition for a property to hold “almost
everywhere” on an infinite dimensional vector space, with particular emphasis on
function spaces such as C¥ and L. Like the concept of “Lebesgue almost every”
on finite dimensional spaces, our notion of “prevalence” is translation invariant.
Instead of using a particular measure on the entire space, we define prevalence in
terms of the class of all probability measures with compact support. Prevalence is
a more appropriate condition than the topological concepts of “open and dense”
or “generic” when one desires a probabilities result on the likelihood of a given
property on a function space. We give several examples of properties which hold
“almost everywhere” in the sense of prevalence. For instance, we prove that almost
every C'! map on R" has the property that all of its periodic orbits are hyperbolic.
We believe. this is a path-breaking concept that needs much further work.

2. “Border Crossing Bifurcations”

We intend to investigate the phenomenon of border bifurcation. These occur in
piccewise smooth systems, which in turn occur in a variety of situations involving
optimization and/or constraints. In the paper above, we have presented qualita-

(\
tively different types of border bifurcations for piecewise smooth maps. D.gree
theory, which is a useful tool analyzing bifurcation problems involving periodic or-
bits only, cannot always be applied as the examples show. Therefore. new methods
have to be developed to attack the problem of border bifurcation phenomenon.

3. “Numerical Procedure for Computing the Dimension”

Based on our experience with the development of saddle straddle trajectories
and the equality for Hausdortf, box-counting and uncertainty dimension. we intend

to develop a numerical procedure for computing the dimension of one dimensionally
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unstable attractor. We will show that the method is guaranteed to work for a class
of one-dimensionally unstable hyperbolic attractors;

4. “Generalized Saddle Straddle Trajectories Methods”

In many systems one observes transient chaos. This is due to the presence of
chaotic saddles in the system. So far we have a numerical metlod (SST method)
that generates a trajectory on a chaotic saddle (that is, a chaotic set that is not at-
tracting) that has been implemented in the Yorke's DYNAMICS problem. We have
shown that the SST method is guaranteed to work for a class of one-dimensionally
unstable saddle-hyperbolic systems.

We intend to develop numerical methods for finding trajectories on chaotic sad-
dles which are either at least two-dimensionally unstable saddle-hyperbolic sets or
include points that have a different unstable dimension. A problem related to shad-
owing and our SST method is the following. Assume that for 1 given system. the
SST method generates a numerical trajectory that can be computed as long as
one wishes. s it true that the numerical trajectory can be shadowed by a true
trajectory?

5. “Finding Typical Tra ectories Numerically”

Finding typical numerical trajectories is a central problem of simulating of
chaotic systems. A fundamental question is whether or not the behavior of a typical
trajectory is compatible with the behavior of some numerically generated trajectory.
For a variety of problems, we are not interested in tracking a particular trajectory
but rather we need information about the behavior of typical trajectories. In such
cases, the problem becomes first of showing that numerical trajectories are shad-
owed by true trajectories, and second, that these true trajectories are typical. We
believe these true trajectories are usually in fact “typical”. Examples are common
where the specific initial condition is not important, but the long term behavior is
important. There are examples, where one wants to know the statistical behavior.

We plan to continue investigating a theoretical foundation for methods pro-

"o t 'I' 1"
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ducing typical numerical trajectories. The different methods for different systems
might vary slightly, depending on some global properties of the system that is con-
sidered. Our objective is to find a numerical procedure which produces a numerical
trajectory which has the properties (1) the trajectory is shadowable, and (2) the
trajectory is distributed throughout the attractor in accord with the natural mea-
sure. Of course, the latter statement will l.ave to be made precise, since only a
finite number of iterates will be available. We believe we have a procedure that
will work for low dimensional cl.aotic systems, but proving that it will work will be
difficult. Our objective will be first to prove that it works for uniformly hyperbolic
attractors. Some progress has been made on investigating some particular systems,
such as maps near the map r,,, = 3z, mod 1. We propose to develop methodé
that are guaranteed to generate (nearly) typical numerical trajectories in a variety
of d'namical systems. Furthermore we want to be able to obtain useful estimates

for how close our trajectories are to being typical.
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