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QUARTERLY PROGRESS REPORT gg“i’ER
.,4 "'y
April 1 - June 30, 1979 il
Contract No. DE-AS05-76MC05197

Summary: Progress has been made on all assigned tasks. In particular we have
concentrated on the high pressure apparatus.

A. Technical Progress

1. High Pressure Degasibility/Isotherm. The construction of the apparatus
is complete and two demonstration runs have been made’ (Appendix A).
AN N

ITI. Low Pressure. Progress has proceeded normally.

Appéndix B - Gas Chromatographic Analysis of Off-gassing from //
Wells KY#4-EGSP, PA#1-EGSP, PA#2-EGSP, OH#3-EGSP g
and IL#4-EGSP-_

Appendix C - Temperature Coeffiéients of Degasibilities and
Isotherm Parameters in Devonian Shale (cont.)

Appendix D - Degasibility/Isotherm Data Summary

III. Models. A computer simulation of a matrix diffusion/fracture flow
model in the radial case is discussed (Appendix E).

IV. Other Laboratory Studies. A small infrared/X-ray diffraction study is
proceeding on selected samples (Appendix F).

B. Financial Progress. Formal accounting is sent by our business nffice on a
monthly report. An informal summary is as follows.

Supplies : $ 899.22
Maintenance Contract on Computer 603.00
Salaries 10,325.91 -
Faculty $8,919.66 ‘ :
Student 1,406.25 - ) -
Indirect Costs ' .- - 8,095.16
TOTAL $19,923.29

NOTICE
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sponsored by the United States Government. Neither the
United States nor the United States Department of
Energy, nor any of their employees, nor any of their
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STATUS REPORT: HIGH PRESSURE

Construction of an apparatus to extend our degaéibility/isothérm measure-
ments to pressure of 1000 psi is complete. Initial checkout revealed some leaks
which have now been repaired. An initial volume calibration has been!completed
for the various parts of the system within an accuracy of about 2%.

We plan next to make measurements on an inert (non-sorbing) substance as

a standard against which to compare shale.
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GAS CHROMATOGRAPHIC ANALYSIS OF OFF-GASSING FROM WELLS

KY#4 - EGSP
PA#1 - EGSP
PA#2 - EGSP
OH#3 - EGSP
IL#4 - EGSP

Dale L. Wampler

Juniata College
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GAS CHROMATOGRAPHIC ANALYSIS OF OFF-GASSING FROM
WELLS KY#4-EGSP, PA#1-EGSP, PA#2-EGSP, OH#3-EGSP, IL#4-EGSP

Chromatographic analysis and subsequent treatment of data is the same as
has been previously reported (1). The percent composition of the gas in the can
with the sample, as determined by gas chromatography, is converted to the volume

of gas off-gassed (STP) per unit volume of rock. The formula of convérsion is

\) .
v, = 0.916 =< [px, - X°
i V i i
R
|
where '
Vi -- the computed volume of gas per volume of rock for component'i. .
ot y
0.916 -- converts gaé'ﬁolumeaxgo standard temperature (0°C)
VR -~ the volume of rock (estimated”by W - WC)/Z.SS)
VC -~ free volume in can (Volume of empty can - VR)
P -- pressure (atm)
Xi -- fraction of gas which is compohent i as determined by GC
Xg -- fraction of component i in air (i.e., 0.78 for nitrogen and etc.)

The results are ghown in the acuuMpanying table?

All samples showed a depletion of oxygen although for some samples
(KY#Q-EGSP:]SO3, PA#1-ECEP:3487, OH#3-EGSP:1161 and IL#4-EGSP:137) the amoﬁnt of
depletion is probably not significant. Several of the samples showed no oxygen

-

at all. Extensive oxygen depletion seems to .be related to the presence of carbon

. : : .[ - / .
dioxide in the gas and/or the presence of significant amounts of methane.’ Possibly,
in some cases the dose of oxygen is due to conversion to carbon dioxide (by bacterial

or chemical action) while in other cases chemical reactions which do not yield

gaseous products may be responsible.

Bl



The average amounts of methane and ethane outgassing for the five wells
vary considerably. The KY#4-EGSP well samples showed by far the largest average
amount of methane outgassing, 0.41 volume of methane per volume of rock. The two
PA and the OH#3 wells showed average methane outgassing ranging from 0.16 to 0.10,
while the IL#4 well shoﬁed no methane outgassing. Surprisingly, the ¥A#2 well
samples revealed the largest amount of ethane outgassing, the average‘of 0.08 V/V
being considerably larger than the 0.05 V/V exhibitéd by the most metLane producti&e
well samples, KY#4. The low methane/ethane degassing ratios for many of the PA#1
samples ig puzzling, particularly the samples which showed no ﬂethane, but large
quantitiesxbf etﬁane. All of the samples with very low methané/ethane ratio show
reasonab1y~1arge quan;ities of carbon dioxide and low oxygen content, suggestingﬁ
possible conversion of-soée‘or all angbe methane to carbon dioxide. An alternative

explanation for the low methane values in some cases is selective diffusion through

possible small leaks in the can.

s

Bibliography

1. L. Hoeflich, E. Jensen, D. Wampler, P. Schettler, 'Analysis of Hydrocarbon
Gases From Cores of Well #20403, Lincoln County, West Virginia," Progress
Report #1, OR0O-5197-1, under USERDA Contract No. E(40-1)5197. ' :
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SAMPLE IR

KY#4-EGSF 997
KY44- Cﬁbr 1036
KY$4~EGSF 21089
KY$4-EGSF 11146
KY$4-EGSF 11196
KY$#4-EGESPT 1244
KY$4-FEGSP 11283
KY$#4-E0G
KY$4-EGSF 1392
RY#4-EGSF:1443
RYH4-EGESF 1503

13487
4547
34597
~EGSF 4649
Fatl I EGSF 4699
FAFL-EGSF 4749
Pe4a799
4849
14899
4949
£5004
5053
$5103
EGSF 5153

SF

ALl

Fakl--
Atk
Pl
Fada-
FA$2
Fadd-
!
I
!

EGSF 6957
EUSE 702
-EGSF 17075
EGSF 7125
SGSR7234
EGSF: /284
~EBSF 7334
-EGSF 7405
2-EGSF 7455

I-EGSFIE67
OHEI-EGSF 617
OHEZ~EGEF 3667
OH4:3-1 717
OHEZ~EGSF 761
COHE3~ lU“I’Bil

OHd: 3~ EGE l2909
OHEZ-EGSFR 1959
ISR e e 31061
OH$E3-ECSF L1235
OHE3-EGSH 1161

HF1342

VOLUMES
WG

1587
1583
1557
1536
1550
1545
1541
1565
1560
1545
1561

1519
1560
1501
- 1548
1540
1548
1512
1519
1546
1513
1518
1544
15469
1547

1534
1507
1554
1527
2257
L1554
1953
1549
1543

1342
1578
1179
1081
1508
1001

1043

136%
1330

604
1030
1328

TARLE .1

OF GAS DESORRED FER VOLUME OF
PFCATMY  WCCHA)Y  VC2H6)Y  VICEH
1,005  0.016 0.000 0,000
1,297 0,668 0.0467 0,019
1.424 0.634 0,075 0.021
1 010 0.4%4 0.068 0,024
521 0.768 0.080 0.026
l.$14 0.6%7 0.070 0.024
1.000 0.156 0.030 0.012
1.743 0.804 0.089 0.023
1#167 0‘279 00044 00011
00998 00067 00017 00000
1.000 0,011 0.000 0.000
0.986 0.000 0,012 0.000
1.034 0.000 0,065 0,079
0.978 0,000 0.084 0.085
1.028 0.117 0.132 0.070
0.964 0.000 0.021 0.020
0,999 0,000 0.046 0.063
1.120 218 - 0.119 0.071
11239 0.294 0.097 0.041
1.033 0.148 0.090 0.042
1.276 0.446 0.190 0.084
0.998 0.167 0.062 0,020
1.004 0,000 0.047 0,083
1.007 0.044 0,062 0.051
1.0095 0.000 0,093 0.088
1.043 0,228 0.039 0.000
1,020 0.203 0.041 0,000
1.033 0,250 0.047 0,000
1.003 0.171 0.026 0.000
1.010 0.022 0.013 0.000
0.975 0.084 0.019 0,000
0.276 0.087 0,050 0,000
1.010 0.198 0.054 0.000
1.021 0.211 0.078 0.000
1.000 0,015 0.000 0.000
1.000 0.098 0.017 0,000
1.000 0.108 0.021 0.000
1.000 0.018 0.000 0,000
1,000 0.367 0.039 0.007
1.000 0.196 0.03% 0,000
1.000 0,338 0.044 0.000
1.037 0,155 0,038 0.000
1.000 0.052 0,015 0.000
1,000 0.140 0.063 0.000
1.000 0.338 0074 0.017
1.000 0.000

0,000

0.000

B3

SHALE
8)

0,043
0.000
0.000
0,000
0.000
0,000
0,065
0.000
0.000
0.073
0.000

0,000

0.035
0,048
0,000
0,097
0,065
0,000
0,000
0,000
0,000
0,000

0,080
0.070

0.047

0.061
0,059
0.000
0.000

0,025

0+039
0,043

0.000
0.000

0,000 -
0.070 -

0.000
0.000
0.000
0,000
0.000
0,000
0.000
0.000
0,000
0,000

VaCo)

VINZD

" 0.061

“0182
0.002

W 296
W.OOQ
~e126

”0105

0.189
0.015
0,082
0.004

‘0003
0.126
0.034
o 045
0,042
0.0%0
0,028
0,008
0,026
=, 086
=092
0.091
0.041
0,018

-+ 002

70015
0,009
-~ 015
0,068
0.024
0.083
0.026
-+ 308

0,037
0.070
0.096
0.044
“0162
”0037
-0 2095
“0028
“0013
~ 067

J o233

0.029

V02

=113

211

”0200
“0212

=e214

v 226

~.158
w0182
'0140

« 241

~y 015

”0028

'0262

”)280

=, 238
- 226

o266

- 277
”0272
- 264
271
~+159
"0267
0260
e 239

= o270
~ o263
~ e b4
-, 122
~,198
-0 264
e 266

~e 253

-y 052
- 256

- 225

~+061

- 252

~.194
177
-,108
“0054
~+137

A"I195

w°029



TARLE ...1._ (continued)

VOLUMES OF GAS DESORRED FER VOLUME OF SHALE

SAMFLE ID WGY FOATM)  V(CH4)Y  VC2HE)  VCIHE) VCCO2)  VIN2) VD)
COHE3-EGSFI1215 1153 1.000 0,000 0,000 0.000 0,000 "0.034 - ~,034
ILLE4-EGEF 85 2265 0.968 0,000 0.000 0.000 0.064 0,039 -s121
TLLf4-EGSF 2137 2571 0.999 0.000 0.000 0.000 0,000 0.004 ~.004
TLLEA-EGSF 1196 1497 1.022 0,000 0.000 0,000 0,002 0.039 - 062
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TEMPERATURE COEFFICIENTS OF DEGASIBILITY AND ISOTHERM PARAMETERS

IN DEVONIAN SHALES (PART II)

Introduction

We previously reported (1) on the initiation of a study of the temperature
dependence of degasibility and isotherm parameters for Devonian shales. Our earlier
paper included the results of the study of three shale samples (2). We now are
reporting on the results of the study of an additional samples, WV#5-EGSP:2935.

We also are including graphical presentation of the analyses rﬁported previously.

T Experimental /

~-~

Experimental procedures weréufhe*samgﬁas reported previously. Data were
taken for the saméle for seven temperatures ragéing from -28.5 to 31.32°C. During
the data gathering for the sample, it was noted that the circulator from the
temperature control bath was not functional. The exact time of failure of the
pump is not known. Inspection of the Qaté revealed that the results for the two
temperature settings run just previous to noting the failure were inconsistent

with the other data. The data for these two temperature settings are not included

in this analysis.

The data taken are summarized in Table I. The results of the data analysis
are givern in Table II. The graphical presentation of the analyses follow Table II.

- 4

Discussion

The heat of sorption calculated from the methane isotherm is -2.55 * 0.13 Kcal/
mole. This value is similar to those found for the three samples previously examined.

of the four samples thus far examined, the heats of sorption for three, WV#5-EGSP:3035

Cl



(-2.72 + 0.58 Kcal/mole), WV#5-EGSP:2935 (-2.55 % 0.13 Kcal/mole) and 20403:2926.1
(-2.78 £ 0.23 . Kcal/mole), appear the same within experimental error. The -3.44

+ 0.13 Kcal/mole vaiue for the WV#6-MERC-IX:7474 sample seems significantly

larger than that for the other three samples.

The systematic increase of the diffusion constant with temperature is
consistent with a model of activated diffusion for the sample. A linear least
squares analysis of gnD versus 1/T gives a computed heat of activation of
2.48 + 0.39 Kcal/mole.

The helium isotherm data revealed too much scatter to draw any conclusions
._about their temperature dependence.

e ' . "/

'~ References
‘1. Jay C. Nelson and Dale L. Wampler, ”Temperééure Coefficients of Degasibility
and Isotherm Parameters in Devonian Shales,' Progress Report #13, ORO-5197-13,

2. 1In our analysis of data from sample WV#5-EGSP:3035 we have inadvertently

referred to the sample as WV#5-EGSP:3085 in several places. All references
to WV#5-EGSP:3085 are actually for WV#5-EGSP:3035.
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TABLE I
B

Data from the Study of Temperature Dependence of Isotherm and Degasibilities
for Sample WV#5-EGSP :2935

. Helium Methane Methane Methane
" Isotherm . Isotherm Degasibility =  Diffusion-Constant
T °C x 10-5 x 10-5 x_10-7 x'10-6
.28.5 ... 10,28 72.77 1.14 - © 0,077
-19.3 3.43 &su6s e L.04 0.079
-10.1 9.02 50.47 Tiow 0.126
0 | 4.51 43.70 0.863 0.123
16.5 4.11 32.97 0748 0.162
Lo
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TABLE 1II
‘ Results of Linear Least Squares Analysis

of Data from Study of Temperature Dependence of Isotherms and Degasibilities
for Sample WV #5-EGSP:2935

Methane Isotherm Data

1/t @n KCH )obs @n KCH )calc A
4 4
0.004087 -7.226 -7.196 -0.029
0.003939 -7.329 -7.387 0.058
0.003801 -7.592 -7.564 -0.028
0.003661 -7.736 . -7.744 0.008
0.003452 -8.017 -8.013 -0.004 -~
Slope = 1285 with a standard deviation of 65
AH = «2,55 + 0,13 Kcal/mole
- - ~ sorption
Methane Diffusion Data
/T (@nD )oBs @n D)calc A
0.004087 -16.375 -16.404 0.029
0.003939 -16.358 -16.,220 . -0.138
0.003801 -15.887 A -16.048 0.161
0.003661 -15,887 . -15.873 -0.014
0.003452 -15.638 - -15.613 -0.025
Slope = -1246 with a standard deviation of 197
AHactivation = 2.48 + 0.39 Kcal/mole
Helium Isotherm Data
/1 (on KHe)obs @n KCHa)calc a
0.004087 - 9.18 - 9.47 0.29
0.003939 -10.28 = 9.62 -0.66 _
0.003801 - 9.31 - 9,76 0.45 -
0,003661 -10.01 - 9,91 -0.10
0.003452 -10.10 - -10.12 0,02 .

Slope = 1016 with a standard deviation of 776

C4
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DATA SUMMARY

This compact presentation is designed to save production costs. Herein
is a summary of all data on our data files. The * samples have been run during
the period of this report. The complete data (as presented in previous reports)

is available on request.

Explanation of Headings ;

el Table I

-~

Well ID ,
EGSP# when possible. Others as follows:

Brown - Belmont County, Ohio
Dawson - Richland County, Ohio
Egner - Richland County, Ohio
Romig - Richland County, Ohio
Warn - Chatauqua County, New York

Density Dulk

Density measured using toluene as displacing fluid

Isotherm Slope

Volume of gas sorbed into rock (STP) per unit volume rock per torr pressure

-

BET Area

! ’
< /

Volume of nitrogen (STP) calculated frow BET equation required’

[}

Specific degasibility. Volume of gas (STP) released ffom a sq cm of‘rock
surface per (sec)? per torr of discontinuous pressure drop.

D1



Explanation of Headings (cont)

Table II

Well ID

Brown - Belmont County, Ohio
Dawson - Richland County, Ohio
Egner -~ Richland County, Ohio
Romig - Richland County, Ohio

Warn - Chatauqua County, New York -

«.--.Diffusion Constant

Calculated from degassing data. Expressed in cmz/sec. /

Sream o
fm—

——

Density, Helium, ~

Density found using helium as the displaéing fluid.

Net Methane Sorption

'The amount of methane that must be in solution in kerogen, or adsorbed onto

surfaces expressed in volume sorbed/volume rock/torr pressure.
e

Permeability

Expressed in darcies,

Apparent Porosity

Calculated in the standard manner from helium and methane isotherms. These
numbers do not, however, reflect actual void spaces in the shale,.

‘D2
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WELL PRODUCTION IN TIGHT SHALES: DIFFUSION-FLOW IN THE RADIAﬁ CASE

\\ - ’ .
Abstract

e S

oan

Well production is examined in Eﬁé\case where in both degasibility
effects through the rock matrix and‘flow effects through a horizontal
fracture system to the well bore must be_considered; The productivity
vs. time curves are flatter than foffééher cases including the vertical

fracture case and the short open'ffacture case. Some implications are

discussed.,
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Introduction

A model was récently introduced (1) that calculates well prodpctivity as a
function of time that takes into account both the processes of flow of gas into
a fracture from the rock matrix as well as its subseqﬁent flow along the fracture
to the well bore. The model assumed a single vertical fracture of constant thick-
ness and defined height. One end of the fracture was terminated by the well bore;
the other termination was at infinity. Thus linear diffusive flow through the

rock matrix was coupled with Poiseuille flow of the gas through the fracture. The

] !
{
i

resulting'solution indicated that , :

N\
- — er : - N
I T _ ,.-1/4 V4
~.~.Q\'n§. ./
. —_
or o -
2) MT'= -g— At3/4

where MT = cumulative well production,
t = time, /ﬁ
N
A = a constant containing the specific degasibility, G, the rock pressure,

Pys etc.

These fesults were compared with an open fracture case (wherein resistancé through
the fracture could be neglected) and a '"constricted fracture case." |

The purpose of this paper is to consider the case of radial flow taking
into‘account.both fracture flow and matrix flow in a manner similar to that of the
linear case. We shall consider the case of éfsingle.horizontal fractgre of uniform
width intersected at right angles by the well bore. The fracture W;If;be/éssumed
to be of unifogm width, h, and of great-enough extent in each direction so.fhat
end" effects are not detectable: At time zero the pressure-iﬁﬂfﬁe well bore

is assumed to drop from rock pressure, Py> to a new constant value, Pos as

production begins. As a result of flow through the fracture, a radial pressure

/

E2



" ""“before (1), as

gradient will be set up which will determine a pressure profile within the
fracture. This flow is maintained by‘diffusive flow through the f;acture faces
into the fracture. Flow changes with time because as the concentration of gas
within the rock decreases the pressure gradient decreases correspondipgly. This
in turn decreases the flow into the fracture which causes a decreasedlpressure

gradient along the fracture and hence a decrease in production with time.

Theoretical

The volume flux 6f gas at any gilven point within the fchtﬁre is given, as

w . . i . . l‘/"

© .3
I ) 3
3) Q,(x) = 12T dr "

-~

This can be immediately integrated around the radius to give a total flow (in

moles) of

S
’

4) ETI = EEEEE op
dt 6TRT dr .~

at radius r. As before we take the flux into the fracture as

- -3
5) Jn = G(p2 - P)t

where Jn is the contribution to flow per unit area of fracture face. Defining

-

6) P =+
P2 ’
: '///' /
2y u e |24CRITE |

3% - : e
h pzt ’./: )

we obtain (setting the divergence of flow equal to the diffusive flux)

2(p2)= (- P
&) BU<P'6U ' /

for the pressure profile of the gasAin the fracture as a function of radius.
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| w- - F = [PRly] ///

The total flow is given by

My

dt

O.
r du i
0 ry : _ :

3 2
h™rp
Z g

9 " T6TMRT "0

where the evaluation is made at ro = the well bore radius.
Equation 8) integrates directly to give

10) Fu'+ h = Fu + A

+ h
A= fu? u(l - P) du

“““ ~— 4
= \' T
dp2
' _ L
Noting that PP ia
2 F
dP u
1 = P
1) =z du u+h + A ’

or by integrating

- A
u +h

12) %P =% L F on (1 + x) + J dh

The solution of this latter equation permits-evaluation of the pressure at any

radius given the value of P and the reduced flow F at some other radius. The
/ . .
function A is most easily solved for small values of h corresponding/gb sﬁall

N

"

changes in radii. Specifically P T Ce >

- . -
-

2 .
A - - - 1y b
13) A E uo(} P0)11 + (1 PO , uOPO ) 5
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0 2

. A 2 0 '
14) ‘Jm = UO (r - PO) L(1;x) +'_2"_ (1 - Po - uOPO ) L(2;x)
0
where © ,
- " Wi+ 1ln+1
15) L(“;x)=Joxlixdxg§ ) e
i=1 ‘
and ‘
i
_ h ’
x =3
0
. Results |/

AN

~

-Figure I shows a plot of production rate vs. time for the following assuyb-

tions. The calculations were made assuming a .01 cm wide fracture, a specific

~ .

degasibility of 4 x 10"7 cm3 gas (STP)/cmZN}BCk/torr, a rock pressure of 500 psi
and that the viscosity of methane is 102.6 x 10_6 poise, and that the well bore

radius was 10 cm. A primary feature of the productivity curve obtained (Fig. I)

s
’

t

is its flatness. - /7

-

o
A second feature is the relativély large rate of flow associated with the

siigle [racture., In this regafa it should be noted that the flow rate is a
sensitive function of the assumed fracture width; an error of a factor of two

makes almost an order of magnitude difference‘in flow. As a second point it should
be noted that a radial (i.e., horizontal) fract;re is much more effeétive per Qnit
lengﬁh of intersection with the well bore than a vertical fracture. Comparing'ogr.
result here with the 1inear‘case of identical fracture width, it beénmes apparent

that the .63 meters of radial fracture-well bore intersection involved in this

P

calculation produces 10 times more gas than 40 meters of the vertical fracture-
well bore intersection. The qualitative reason for this is that the geometry of

the radial fracture moves the pressﬁre gradient toward the well bore. Since flow

is associated with the gradient at the bore-fracture intersection thg/radial

E5



fracture should be more efficient per unit length of bore intersection. (This
conclusion will need to be reexamined to determine the extent to which it holds
in the case of finite fractures,)

The radial model closely'fits the equation

. e —

My

— = At
A = 490. ‘
b= -.026 - - .

This small value of b compares with -.5 for the '"open fracture"{mo&el, -.25 for

\

the infinite linear (vertical) fracture and 0.0 for the constricted exit model (1).

———— Kl

" ... 4
It should be noted that for the four cases considered, the closer the exponent is

o~

-~

\ -~
to zero the more the pressure gradient along the fracture has been shifted toward

the well bore,

Conclusioﬂ

r
~

As in previous cases the well pféductivity is a function of rock matrix
parameters (1.e., specific degasibility), fracture parameters (i.e., fracture
width, geometry and extent) and well bore parameters (rock pressure and wellhead:
pressure). Successful production can only (or:best) occur when all three tjpés of

parameters have favorable values.

-

The calculations shown here for the radial fracture case are supportive

of the notion that the production from wells with flattened productibity carves can’

be increased because these flattened curves correlate with high pressure gradients

e

-

and hence constrictions near or at the well bofe-fracture interface. For example
propping of an kinfidite) radial fracture could be particularly effective bécause
of the high sensitivity of the.flqwlrate to thé frécture width combined with ;hé
relative importance of the area of-the fractu?e near the bore. The oKiy exception
to this generalisation is some modeling work a couple of years ago which attained

E6
\ .
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A
\

flattened curvés by postulating a skin effeét due t§ slickensiding'or mineralization
of éhe fracture surface(2). Wé:have had plans to look at the degassing kinetics

'of natural fracture surfaces>in‘prder to éscefpain whether a "skin'" effect is in
vfact a réélistic possibility or not. Regafdless\of the outcome of this postulated

"exception," it seems inescapable to avoid the conclusion that many, if not all,

flattened production curves are produced by conditions that can be corrected or

/

at lgast/iﬁproved by application of appropriate technology such as propping.
. - / .

We are continuing work on the various implications and generalizations of

. \

these calculations.
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INFRARED AND X-RAY STUDIES

A systematic study has been initiated on the inffared épectrallprogerties
of a group of 14 selected shale samples displaying both average and extreme values
of the physical parameters arising from the Juniata EGSP measurements }isotherms,
degasibilities, etc.). Primary emphasis is being placed on the wavelength region
from 11;23 microns, readilyAaccessible using KBr optics. Samples are prepared as

KBr pellets using shale crushed and sieved to pass 400 mesh (38 p) at a weight

concentration in the range of 0.5-1%. The standard NaCl region/(3714 w) is also

!

being scanned, though to date it appears less' promising in that few differences are

.

apparent from-sample-to sample. In the KBr region some variable features have//’

been identified, primarily as‘ﬁeak\absg;gtion bands or shoulders, but it is
premature to attempt to assess their signifiééﬁdé.
The samples selected for IR study will also, in coming weeks, be extensively

invesﬁigated using powder X-ray diffraction techniques, and it is further planned
to utilize them for more sophisticated température and pressure variation studies

,//

so that reasonably complete physicochemical profiles can be constructed in an
attempt to isolate new parameters that can be used to predict gas production

potential.
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