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Abstract 

We present the results of light absorption in a series of wavelengtn 
scaling experiments recently completed at LLNL. The Argus facility was 
used to do target studies at 1.06pm, 0.53pm and 0.35pm. Box 
calorimeter scattered light measurements implied greatly improved laser 
light absorption for both high Z and low Z plasmas at laser wavelengths 
shorter that 1.05pm. Furthermore, at the Q.35um laser wavelength, 
the inferred absorption is nearly 100% over a substantial range of 
incident laser intensities. Our results further show a dramatic decrease 
in the stimulated Brillouin scattered light at 0.35pm relative to the 
values at 1.06pm and 0.53pm. 

*Work performed under the auspices of the U. S. Department of Energy by 
the Lawrence Livermore National Laboratory under contract number 
W-7405-ENG-48. 
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Introduction 

The Argus laser facility offered great flexibility to experimentally 
investigate some of the laser-plasma interaction processes which are of 
fundamental interest to the ICF research program. The absorption of laser 
light by laser induced plasmas is one of these processes and it is universally 
agreed that efficient absorption is one of the key factors tnat ultimately 
might determine which laser wavelength will be most suitable for a successful 
ICF program. In this report we show that the use of shorter laser wavelengths 
greatly improve laser light absorption by both high Z and low Z plasmas. 

The experiments were conducted at the Argus laser facility shown 
schematically in Figure 1. Results o'f the 1.06um experiments were obtained 
before the facility was successively frequency doubled and frequency tripled 
by the use of the KOP Type 2 crystals shown in the figure. Values of the 
absorption coefficients were inferred from scattered light measurements by a 
target-enclosing box calormeter shown in the figure, in conjuction with the 
incident beam, the transmitted beam and the back-reflected beam calorimeters. 
The combination of the box calorimeter and the focusing and transmission f/2 
optics covered 98% of the 4n sr about the target. Complete coverage in tne 
backscattered direction was achieved by slightly reducing tne defining hard 
aperture of tne image-relayed laser, resulting in an effective f/2.i. 
focusing optical system. The box calorimeter panel facing this effective 
f/2.2 focused beam had an f/2 laser entrance aperture. Other diangostics used 
during the wavelength scaling experiments are also listed in the figure. 

Details of the box calorimeter configuration are snown in Figure 2, whicn 
shows a 0.35pm laser beam incident on a gold microdisk enclosed inside the 
box. The box configuration during the two other wavelength experiments was 
the same as shown except that the absorber materials were different. The 
1,06pm and the 0.53pm series used Schott NG-1 absorber, while a Schott 
GG-19 absorber was used in the 0.35pm series. Plasma deris were prevented 
from reaching the absorber by a GW-280 glass shield, as shown in the figure. 
During the series care was taken to regularly replace plasma shield panels 
when they became too heavily coated to prevent residual light absorption by 
the shield. 
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Another important parameter in laser plasma interaction experiments is the 
studies of the spectral composition and corresponding intensities of the 
fraction of light which is not absorbed by the target. This un-absorption 
light is observed to be mainly backscattered and is the result of stimulated 
parametric instabilities. Among these both the stimulated Brillouin and Raman 
instabilites are of major concern to laser fusion research since they scatter 
substantial factions of incident laser energy away from the target. They are 
the results of three wave resonant interactions and correspond to the coupling 
of the laser light wave to the plasma ion accoustic waves and to the plasma 
electron waves, respectively. The measured scattered light wave frequency is 
the difference between the incident light wave and the corresponding 
electrostatic wave frequency. Ion accoustic waves have very low frequencies 
relative to a light wave, so that they are very dangerous since tne scattered 
light wave will carry most of the three wave interaction energy. But, Kaman 
waves nave an additional effect. Since in this instance light waves are 
coupled to the plasma electron waves, their electric field can sufficiently 
heat a small fraction of the plasma electrons to suprathermal energies (see 
Figure 3). For this reason, in fusion experiments using a laser lignt, an 
account should be made of the laser light which is not absorbed by the 
target. We measured the Brillouin backscatter light's during the wavelength 
scaling series at Argus. In this report it will be shown that the use of 
shorter laser wavelengths to drive fusion targets can sionificantly decrease 
the amount of laser energy converted into this parametric instability. ', 

i 

Experimental Condition ! 
( 
I 
I 

The experimental conditions under which the wavelength scaling experiments ] 
were conducted at Argus are listed in Table 1. During the aDsorption ' 
experiments, low I and high Z microdisks were irradiated at angles of I 
incidence varying between 0° and 45°, with the laser beam diameter at tne | 
target plane varying between &Uum and ^2U0pm. The irradiance on target 

11 7 IS ? 
was between 3x10 IJ/cm and i-lxlQ W/cm . The beams were 
p-polarized in a l l cases, 

1 
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Experimental Results 

1. Wavelength Scaling of Laser Light Absorption by a High I plasma. In 
Figure 4 we plot absorption coefficients for gold for the three 
wavelengths investigated at Argus. The figure snows high absorption for 
all the wavelengths investigated at low laser intensities (>8iM for I 

n 2 ^ 3x10 W/cm ). But at incident irradiances between 
5xl0 1 3W/cm 2 < ! < 10 1 5W/cm 2, laser wavelengths shorter than 
1.06um greatly improve the absorption. 

2. Wavelength scaling of laser light absorption by a low Z plasma. In 
Figure 5 we show the absorption for a low Z plasma versus the laser 
irradiance I(W/cm ). Here again it fs seen that laser wavelengths 
shorter than one micron are more efficiently absorbed, with the UV laser 
(3UJ ) giving highest absorption values (>90X). Data in Figure 5 as 
well as those of Figure 4 correspond to incident angles of £30 . 
These two figures show that for the UV laser, over %% of the laser light 
is absorbed as is illustrated in Figure 6. This apparent high absorption 
at shorter laser wavelengths was one of the reasons why transport studies 
were undertaken at Argus: to understand how energy is transported from 
the irradiation region to the regions of the target not directly exposed 
to laser irradiation. 

3. Absorption was found to be mainly collisional. In both Figure 4 and 
5 it has Deen seen that the absorption decreases with increasing 
intensity for a fixed Z number. In Figure 7 we show the results at 
1.06pm for three different Z-numbers. The figure shows that relatively 
high Z targets absorb laser energy better. This Z-dependence on the 
measured absorption and the apparent decrease in absorption at higher 
laser intensities are trends that are consistent with an increased role 
of collional absorption. But a component of the increased reflection at 
higher laser intensity could be due to simulated Brillouin backscatter, 
as was discussed earlier in the introduction. 

4. Up to a• =30°, the absorption '.'as found to be basically 
constant for all the wavelength investigated, at fixed irradiance, 
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irradiation spot size and incident laser energy. This is illustrated in 
Figure 8 for data taken at 2uiQ and 3o> . It is seen that the 
absorption does not significantly change before &• n c i * ^ • f ° r b°th 
Au and Be. This means that most of the backscattered light up to 
%• =30 , is mainly stimulated Brillouin backscattering. So that a 
knowledge of this backscattered energy can be used as a reliable measure of 
the effect of the stimulated Brillouin scatter. 

5. The Backscatter Fraction of the Incident Laser Energy was Found to 
Decrease with Decreasing Laser Wavelength. This is illustrated in 
Figure 9, which gives the backscatter fraction as a function of the 
irradiance. Tne figure snows a dramatic drop of backscatter fraction as 
the laser wavelength becomes shorter than l,Q6um. It is also seen tnat 
backscatter decreases with decreasing laser intensity. These trenas are in 
agreement with Lasnex simulation of the stimulated Brillouin backscatter, 
as is illustrated in Figure 10. The figure is an illustration of tne 
effect of the so-called Q-factor, on the reflectivity. The higher the 
Q-factor, the more Brillouin backscatter there is. The effective Q-factor 
is a linear function of the laser intensity I, and varies as X at 
fixed intensity. 

6. For Energy Balance Consideration, we found that the fraction of 
scattered light going into Raman instability was practically negligible at 
laser wavelengths shorter than 1.06pm, so negligible at AL=0.35um 
that it was lower than the threshold value of the diagnostics in use during 
the Argus wavelength scaling series. 
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MAJOR PLASMA PHYSICS COUPLING PROCESSES us 
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Ico ,2.to . A N D 3co^ ABSORPTION — Au DISK TARGETS 
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3Wo EXPERIMENTS: ENERGY B A L A N C E MEASUREMENTS 
SUGGEST T H A T OVER 90% OF THE INCIDENT LASER ENERGY 
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2 O J 0 EXPERIMENTS 
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3co 0 EXPERIMENTS: THE FRACTION OF ABSORBED ENERGY WAS 
I N V E S T I G A T E D FOR A N G L E OF INCIDENCE DEPENDENCE FOR 
BOTH H IGH A N D LOW Z-TARGETS 
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IF UNOERDENSE PLASMA IS LARGE, YOU CAN 
PARAMETRIZE THE A M O U N T OF BRILLOU1N BY A 
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W H E N C O L L I S I O N S A R E S T R O N G , B R I L L O U I N C A N BE 
S H A R P L Y R E D U C E D BY U S I N G S H O R T W A V E L E N G T H S 

«•• Consider st rong inverse Bremsst rah lung: L a b s < L n 
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