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ABSTRACT
Nineteen uniaxial compressive experiments were performed on samples

of the Bullfrog Member of the Crater Flat Tuff, obtained from drillhole
USW-Gl at Yucca Mountain on the Nevada Test Site. The water saturated

-5 -1samples were deformed at a nominal strain rate of 10 sec , atmospheric 

pressure and room temperature. Resultant unconfined compressive strengths, 

axial strains to failure. Young's moduli and Poisson's ratios ranged from 

I+.63 to 153. MPa, .0028 to .0058, 2 .0 3 to 2 8 .9 GPa and .08 to .16, 
respectively.

This work was supported by the U. S. Department of Energy (DOE) under 
Contract DE-AC0i4-76-DP00789.**A U. S. DOE Facility.
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UNIAXIAL COMPRESSION TEST SERIES ON BULLFROG TUFF

Ronald H. Price, Adrian K. Jones, Karol G. Nimick 
Sandia National Laboratories 

Albuquerque, New Mexico 87185

INTRODUCTION
Yucca Mountain, near the SW margin of the Nevada Test Site (NTS) in 

southern Nevada, is being evaluated as a potential site for underground 
storage of nuclear wastes. Yucca Mountain primarily consists of layered 

volcanic tuff (Lipman and McKay, I965). At present, four stratigraphic 

units are being tested for physical, thermal and mechanical properties as 

part of the Nevada Nuclear Waste Storage Investigations (NMSl) project, 
administered by the Nevada Operations Office of the U. S. Department of 
Energy. The four units, in order of increasing stratigraphic position 

(decreasing depth), are as follows: 1. Tram Member of the Crater Flat

Tuff, 2. Biillfrog Member of the Crater Flat Tuff, 3. The Tuffaceous beds 
of Calico Hills, and 4̂-. Topopah Springs Member of the Paintbrush Tuff.

This report presents data from a series of nineteen mechanical experi­

ments conducted on samples of Bullfrog Tuff obtained from USW-Gl core at 

eleven different stratigraphic levels ranging in depth from 66l.ij- to 80U .9 m 
(2170. to 26UI. ft). The test specimens were saturated and deformed at

nominal strain rate, confining pressure and temperature conditions of
-5 -1 o10 sec , 0.1 MPa and 23 C, respectively.

It must be pointed out that while this report is presenting only the 
experimental techniques and resulting data from a series of tests on 

Bullfrog Tuff, a detailed analysis of the mechanical data from Yucca Moun­
tain tuffs, in general, will be reported following structural testing of 
the three other targeted horizons.
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EXPERIMENTAL TECHNIQ,UES 
Test Apparatus and Techniques

The mechanical experiments were performed on a load frame having a 
maximum load capacity of 1.0 MN (200 kip). A constant displacement rate 

of the loading piston is achieved hy servo-control of the hydraulic loading 

ram while monitoring an LVDT (linear variable displacement transformer) at 
the base of the loading column.

Throughout this test series, axial stresses were calculated by dividing 

the forces, measured on a standard load cell, by the original cross-sectional 

area of the sample. Axial strains were calculated by averaging the measured 
displacements on two diametrically opposed LVDT’s mounted directly on the 

sample and dividing the average value by the original gage length. Lateral 
(transverse) displacements were measured across one sample diameter by a disk 

gage (as described by Schuler, I978). Lateral strains were then obtained by 

dividing the displacements by the diameter of the test specimen. Volumetric 
strains were computed from axial and transverse strain data. Axial force, 

axial displacement, transverse displacement, ram displacement and time data 
were collected, reduced and plotted by a mini-computer, and then stored 
on cassette tapes.
Calibrations

The test system load cell is calibrated against a standard transducer 

once a year. The most recent load cell evaluation was performed July 1, I981. 
The axial displacement LVDT's and transverse displacement gage were calibrated 

with a standard micrometer head prior to the test series. Calibration data 

for the load cell, LVDT's and gage are listed in Table I.

As a calibration test of the entire mechanical testing system, an 

aluminiim sample of known mechanical properties was tested. The resultant 

data are listed and plotted in Table II and Figure 1, respectively.
12



Sample Rreparation
The samples were all right circular cylinders recored from drillhole 

USW-Gl core material. The experimental specimens were 2.53 cm (.998 in) 
in diameter and ranged in lengths from to 6.01 cm (1.95 to 2.37 in).

The samples were stored in ground water from well J-13 (NTS) and, while 
submerged, subjected to a vacuum (< 2 Torr = 267 Pn) for l8 hours in order 
to be sure of sample saturation. Each gample was placed between steel end 

pieces and Jacketed in polyolefin shrink tubing. The disk gage and two 

LVDT's were then mounted on the specimen, the sample assembly placed between 
the loading ram and the load cell and the mechanical experiment begun.

EXEERIMENTAL RESULTS
Test Conditions

The nineteen mechanical experiments in this series are all unconfihed
-5 -1compressive tests run at a nominal strain rate of 10 sec and room 

temperature (approximately 23°C). The samples were obtained from eleven 

depth intervals of USW-Gl core. The test/sample identification used throiigh- 

out this report consists of eight numbers and letters representing the 
drillhole (Gl), sample depth (in feet) and two letters (SB, SD or SF) 

identifying individual samples from the same depth.
Test Data

Tabulated ultimate axial stress, axial strain to failure and elastic 
moduli values are given in Table III. The ranges of unconfined strengths, 
axial strains at failure. Young's moduli and Poisson's ratios are ij-.63-153. 

MPa, .0028-.0058, 2 .03-2 8 .9 GPa and .08-.I6 , respectively.
The experimental axial stress-axial strain curves are presented in 

Figure 2. The general shapes of the stress-strain cvirves are similar:

13



an initial concave upward portion, a linear region, a slight concave 
downward portion and a sharp downward hreak. These curve characteristics 
reflect pore collapse and compaction, elastic deformation, material yield 

and macroscopic failure of the test specimen, respectively.
Only one sample was deformed at each of four depths (2232, 2312, 2367 

and 26hl ft). The test results from these samples seem consistent in 

general behavioral trends with the bulk of the data and so are assumed to 
be representative of each depth. Test G12i<-68SD is presented alone because 
the strain data for G12i+68SB was not retained.

Several of the curve sets show excellent reproducibility of results 
(e.g.. Figures 2H, 21, 2j), while Figures 2A and 20 illustrate the wide 

scatter which can occur in these results. The differences in stress-strain 
behavior of adjacent samples can be attributed to variability of matrix 
physical properties or, and probably more importantly, to the existence of 

a large void space or soft grain within a test specimen. While samples 
GI217OSD and GI2276SD (from Figures 2A and 20) probably represent the 

actual general behavior of the competent rock at the respective depths, 

samples GI217OSB and GI2276SF apparently contained large voliimes of void 
space and/or soft, weak grains (although none were macroscopically observed 

on the outer surface of the tested specimens).

Figure 2F is a good example of both reproducibility and an anomalous 

result. The stress-strain curves for samples G12i<-29SB and SF are very 

similar, and appear to reflect the general behavior of that zone of tuff. 

The nature of curve GI2U29SD is totally different from the previous two, 
and is subsequently ass\amed to be anomalous.

If results from the three anomalous samples (i.e., GI217OSB, GI2276SF 
and G12ii-29SD) are not included, the ranges of 'unconfined compressive

lU



strengths and Yoimg's moduli are reduced, from those quoted earlier, to 

1 9.3-153. MPa and 5 .3U-2 8 .9 GPa, respectively; while those for axial strains 
at failure and Poisson's ratio are unchanged.

The three parts of Figure 3 present axial strain-time, axial stress- 

axial strain and lateral strain-axial strain data from test GI2563SB, along 
with calculated linear-regression fits to the data. These plots are 

shown to illustrate representative examples of fits for strain rate. Young's 

modulus and Poisson's ratio. Data from sample GI2563SB are also used in 
Figure to illustrate the prevailing axial stress-lateral strain and 

lateral strain-axial strain relationships, which are approximately linear 

prior to macroscopic sample failure.

SUMMARY

Nineteen samples of Bullfrog Tuff were saturated and deformed in com-
-5 -1pression at a nominal strain rate of 10 sec , atmospheric pressure and 

room temperature. Although a few of the results were anomalous, most of 
the samples exhibited a similar axial stress-axial strain behavior re­
sulting in macroscopic brittle failure. The resultant unconfined com­

pressive strengths, axial strains to failure. Young's moduli and Poisson's 

ratios ranged from k .63 to 153. MPa, .0028 to .OO5 8, 2.03 to 2 8 .9 GPa 
and .08 to .16, respectively.

15
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Load Cell LVDT's Disk Gage

F. . ®Actual Cell 
(Lbs) (Lbs)

Error d ^ Actual
(Mi n  i i nr>h

d ^ LVDT
) (Milliinch)

Error
{%)

d ^ Actual
(Milliinch)

d ^ Gage
(Milliinch)

Error
{%)

4000 4oo4 .10 5.000 4.976 -.48 5.000 5.050 1 .0

8000 8010 .13 6.000 5.964 - .6 0 6.000 6.036 .60

12000 12006 .05 7.000 6.966 - .4 9 7.000 7.022 •31

16000 16000 0.0 8.000 7 .9 7 8 -.28 8.000 8.022 .28
20000 19990 - .0 5 10.00 9.988 -.12 10.00 10.01 .10

11.00 10 .99 - .0 9 11.00 11.01 .09

12.00 12.00 0.0 12.00 12.01 .08

15 .00 15.03 .20 1 5 .00 15 .04 .27

16 .00 1 6 .o4 .25 16.00 16.05 .31

18 .00 18.03 .17 18 .00 . 18.08 .44
20.00 20.03 .15 20.00 20.11 .55

^ The Factual is the 
system's load cell.

force measured by the standard load cell, while the FQg]_3_ is the force measured by the

The d^cbual displacement measured on the standard micrometer, while the d̂ TOrp and d^^ are the
displacements measured by the LVDT's and disk gage, respectively, used in the test series.

!-■-<i
Table I, Load Cell, LVDT and Disk Gage Calibration Data



^AX ® AX "® lAT
(MPa) (Millistrain) (Mllliatrain)
0.0 0.0 0.0
7.00 .0992 .04ll
14.1 .190 .0871
21.2 .291̂  • .106

28.1+ .390 .lUO
33.h .503 .160
i+2.5 .607 .19^
kg.9 .690 .208

57.U .802 ,285

64.5 .903 .322
71.7 1.02 .348
78.9 1.12 .356
86.2 1.20 .397

93.7 1.30 .462
100.8 1.42 .489
108.6 1.54 .530

116.1 1.64 .554

123.8 1.71 .583

Table II. Alvuninum Sample Calibration Data

18



Table III. Experimental Data

Depth ^®AX^u E^ 0"̂ Pg QSample ID m (ft) (MPa) (GPa) -- m . (s/cm )
GI217OSB 661.4(2170) 27.4 .44 9.39 __ 28.1 2.48
GI217OSD 661.4(2170) 47.1 11.5 .11 28.1 2.48
G12232SB 680.3(2232) 19.3 .45 5.34 .12 38.7 2.44
GI2276SD 693.7(2276) 26.7 .28 10.3 .12 34.2 2.40
GI2276SF 693.7(2276) 4.63 .34 2.03 -- 34.2 2.4o
G12312SD 704.7(2312) 41.6 .34 15.8 .11 36.1 2.37
GI2367SD 721.4(2367) 29.2 .50 8.38 .14 26.7 2.61

G12i|29SB 740.3(2429) 30.6 .55 8.71 .11 27.3 2.61
GI2429SD 740.3(2429) 16.6 .50 3.93 .16 27.3 2.61
GI2l̂ 29SF 740.3(2429) 29.0 .52 8.01 .16 27.3 2.61
GI2I168SB 752.2(2468) 36.6 _ _ _ _ _ _ 28.0 2.60
GI2I+68SD 752.2(2468) 46.3 .56 12.6 .14 26.0 2.60
GI2563SB 781.2(2563) 120. .58 21.9 .14 21.4 2.47
GI2563SD 781.2(2563) 153. .54 28.9 .14 21.4 2.47
GI2585SB 787.9(2585) 71.7 .51 15.2 .08 24.4 2.39
GI2585SD 787.9(2585) 83.7 .58 15.7 .12 24.4 2.39
GI2608SB 794.9(2608) 71.9 .45 18.4 .14 23.5 2.47
GI2608SD 794.9(2608) 73.5 .47 19.4 .13 23.5 2.47
GI26UISD 804.9(2641) 50.2 .57 10.4 .14 27.9 2.49

VO
a All E and V values were calculated at .5 (<̂ aX̂ u» ®^^ept for the E value for sample 

GI217OSB, which was calculated at .3 (o'ax)u* 
b Bulk property data from A. R. Lappin (personal communication).
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Figure 2J. Axial stress-axial strain curves for saturated samples G12505SB and SD deformed in compression
at a nominal strain rate of 10"5 sec-1, atmospheric pressiire and room temperatiire.
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Figure 2K. Axial stress-axial strain curves for saturated sample G126ij-1SD deformed in compression at a 

nominal strain rate of 10"5 sec“^, atmospheric pressure and room temperature.
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satiirated at 10~5 sec“l, 0.1 MPa and 23°C.
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Plot of lateral strain-axial strain data with a linear fit for sample GI2563SB deformed 
saturated at 10"5 sec" , 0.1 MPa and 230c.
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