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ABSTRACT
Nineteen uniaxial compressive experiments were performed on samples
of the Bullfrog Member of the Crater Flat Tuff, obtained from drillhole
USW-Gl at Yucca Mountain on the Nevada Test Site. The water saturated
samples were deformed at a nominal strain rate of 1072 sec-l, atmospheric
pressure and room temperature. Resultant unconfined compressive strengths,
axial strains to failure, Young's moduli and Poisson's ratios ranged from

4.63 to 153. MPa, .0028 to .0058, 2.03 to 28.9 GPa and .08 to .16,

respectively.

*
This work was supported by the U, S. Department of Energy (DOE) under
Contract DE-ACO4-T76-DP0O0789.
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UNIAXTAL COMPRESSION TEST SERIES ON BULLFROG TUFF

Ronald H. Price, Adrian K. Jones, Karol G. Nimick
Sandia National Laboratories
Albuguerque, New Mexico 87185

INTRODUCTION

Yucca Mountain,‘near the SW margin of the Nevada Test Site (NTS) in
southern Nevada, is being evaluated as & potential site for underground
storage of nuclear wastes. Yucca Mountain primarily consists of layered
volcanic tuff (Lipman and McKay, 1965). At present, four stratigraphic
units are being tested for physical, thermal and mechanical properties as
part of the Nevada Nuclear Waste Storage Investigations (NWWSI) project,
administered by the Nevada Operations Office of the U, 8. Department of
Energy. The four units, in order of increasing stratigraphic position
(decreasing depth), are as follows: 1. Tram Member of the Crater Flat
Tuff, 2. Bullfrog Member of the Crater Flat Tuff, 3. The Tuffaceous beds
of Calico Hills, and 4. Topopah Springs Member of the Paintbrush Tuff.

This report presents data from a series of nineteen mechanical experi-
ments conducted on samples of Bullfrog Tuff obtained from USW-Gl core at
eleven different stratigraphic levels ranging in depth from 661.4 to 804.9 m
(2170. to 2641. ft). The test specimens were saturated and deformed at
nominal strain rate, confining pressure and temperature conditions of

lO-5 secfl

s 0.1 MPa and 2300, respectively.

It must be pointed out that while this report is presenting only the
experimental techniques and resulting data from a series of tests on
Bullfrog Tuff, a detailed analysis of the mechanical data from Yuéca Moun-

tain tuffs, in general, will be reported following structural testing of

the three other targeted horizons.
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EXPERIMENTAL TECHNIQUES

Test Apparatus and Techniques

The mechanical experiments were performed on a load frame having a A
maximum load capacity of 1.0 MN (200 kip). A constant displacement rate
of the loading piston is achieved by servo-control of the hydraulic loading
ram while monitoring an LVDT (linear variable displacement transformer) at
the base of the loading column.

Throughout this test series, axial stresses were calculated by dividing
the forces, measured on a standard load cell, by the original cross-sectional
area of the sample. Axial strains were calculated by averasging the measured
displacements on two diametrically opposed LVDT's mounted directly on the
sample and dividing the average value by the original gage length. Lateral
(transverse) displacements were measured across one sample diameter by a disk
gage (as described by Schuler, 1978). Lateral strains were then obtained by
dividing the displacements by the diameter of the test specimen. Volumetric
strains were computed from axial and transverse strain data. Axial force,
axial displacement, transverse displacement, ram displacement and time data
were collected, reduced and plotted by & mini-computer, and then stored
on cassette tapes.

Calibrations

The test system load cell is calibrated against a standard transducer
once a year. The most recent load cell evaluation was performed July 1, 1981.
The axial displacement LVDT's and transverse displacement gage were calibrated
with a standard micrometer head prior to the test series. Calibration data
for the load cell, LVDT's and gage are listed in Table I. |
As a calibration test of the entire mechanical testing system, an
aluminum sample of known mechanical properties was tested. The resultant

data are listed and plotted in Table II and Figure 1, respectively.



Sample Preparation

The samples were all right circular cylinders recored from drillhole
USW-Gl core material. The experimental specimens were 2.53 cm (.998 inj
in diameter and ranged in lengths from 4.94% to 6.01 cm (1.95 to 2.37 in).
The samples were stored in ground water from well J-13 (NTS) and; while
submerged, subjected to a vacuum (< 2 Torr = 267 Pa) for 18 hours in order
to be sure of sample saturation, Each gample was piaced between steel end
pieces and Jacketed in polyolefin shrink tubing. The disk gage and two
LVDT's were then mounted on the specimen, the sample assembly placed between

the loading ram and the load cell and the mechanical experiment begun.

EXPERIMENTAL RESULTS

Test Conditions

The nineteen mechanical experiments in this series are all unconfined
compressive tests run at a nominal strain rate of 1077 sec™! and room
temperature (approximately 23°C). The samples were obtained from eleven
depth intervals of USW-Gl core. The test/sample identification used through-
out this report consists of eight numbers and letters representing the
drillhole (Gl), sample depth (in feet) and two letters (SB, SD or SF)
identifying individual samples from the same depth.

Test Data

Tabulated ultimate axial stress, axial strain to failure and elastic
moduli vélues are given in Teable III. The ranges of unconfined strengths,
axial strains aﬁ failure, Young's moduli and Poisson's ratios are L4.63-153.
MPa, .0028-.0058, 2.03-28.9 GPa and .08-.16, respectively.

The experimental axial stress-axial strain curves are presented in

Figure 2, The general shapes of the stress-strain curves are similar:

13
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an initial concave upward portion, a linear region, a slight concave
downward portion and a sharp downward break. These curve characteristics
reflect pore collapse and compaction, elastic deformation, material yield
and macroscopic failure of the test specimen, respectively.

Only one sample was deformed at each of four depths (2232, 2312, 2367
and 2641 ft)., The test results from these samples seem consistent in
general behavioral trends with the bulk of the data and so are assumed to
be representative of each depth. Test G12L468SD is presented alone because
the strain data for G12468SB was not retained.

Several of the curve sets show excellent reproducibility of results
(e.g., Figures 2H, 2I, 2J), while Figures 2A and 2C illustrate the wide
scatter which caﬁ occur in these results. The differences in stress-strain.
behavior of adjacent samples can be attributed to variability of matrix
physical properties or, and probably more importantly, to the existence of
a large void space or soft grain within a test specimen. While samples
G12170SD and G12276SD (from Figures 2A and‘2C) probably represent the
actual general behavior of the competent rock at the respective depths,
samples G12170SB and G12276SF apparently contained large volumes of void
space and/or soft, weak grains (although none were macroscopically observed
on the outer surface of the tested specimens).

Figure 2F is a good example of both reproducibility and an anomalous
result. The stress-strain curves for samples G12429SB and SF are very
similar, and appear to reflect the general behavior of that zone of tuff.
The nature of curve Gl2429SD is totally different from the previous two,
and is subsequently assumed to be anomalous.

If results from the three anomalous samples (i.e., G12170SB, Gl2276SF

and Gl2429SD) are not included, the ranges of unconfined compressive



strengths and Young's moduli are reduced, from those quoted earlier, to
19.3-153. MPa and 5.3&-28;9 GPa, regpectively; while those for axial strains
at feilure and Poisson's ratio are unchanged.

The three parts of Figure 3 present axial strain-time, axial stress-
axial strain and lateral strain-axial strain data from test G12563SB, along
with calculated linear-regression fits to the data. These plots are
shown to illustrate representative examples of fits for strain rate, Young's
modulus and Poisson's ratio. Data from éample G12563SB are also used in
Figure 4 to illustrate the prevailing axial stress-lateral strain and
lateral strain-axial strain relationships, which are approximately linear

prior to macroscopic sample failure,

SUMMARY
Nineteen samples of Bullfrog Tuff were saturated and deformed in com-
pression at a nominal strain rate of 1072 sec-l, atmospheric pressure and
roonm temperature, Although a few of the results were anomalous, most of
the samples exhibited a similar axial stress-axial strain behavior re-
sulting in macroscopic brittle failure. The resultant unconfined com-
pressive strengths, axial strains to failure, Young's moduli and Poisson's

ratios ranged from 4.63 to 153. MPa, .0028 to .0058, 2.03 to 28.9 GPa

and .08 to .16, respectively.

15



16

REFERENCES

Lipman, P, W, and E, J. McKay (1965), Geologic Map of the Topopah Spring
SW Quadrangle, Nye County, Nevada, USGS Map GQ-439.

Schuler, K. W, (1978), Lateral-Deformation Gage for Rock Mechanics Testing,
Experimental Mechanics, V. 18, No. 12, p. 477-480.



LT

a

Load Cell

a

FActual FCell " Error
(Ibs) (Lbs) (%)
4000 Look .10
8000 8010 .13
12000 12006 .05
16000 16000 0.0
20000 19990 -.05

LVDT's
dActualb dLVDTb Error
(Milliinch) (Milliinch) (%)
5.000 L.976 -.48
6.000 5.964 -.60
7.000 6.966 -.k9
8.000 7.978 -.28
10.00 9.988 -.12
11.00 10.99 -.09
12.00 12.00 0.0
15.00 15.03 .20
16.00 16.04 .25
18.00 18.03 .17
20.00 20.03 .15

Disk Gage

dActualb dGageb Error

(Milliinch) (Milliinch) (%)

5.000 5.050 1.0
6.000 6.036 .60
7.000 7.022 31
8.000 8.022 .28
10.00 10.01 .10
11.00 11.01 .09
12.00 12.01 .08
15.00 15.04 .27
16.00 16.05 .31
18.00. 18.08 L
20.00 20.11 .55

® The Factual 15 the force measured by the standard load cell, while the Fpgyy is the force measured by the

system's load cell.

The dpctygl 1s the displacement measured on the standard micrometer, while the dyypp and 4
displacements measured by the ILVDT's and disk gage, respectively, used in the test series.

Table I,

Load Cell, LVDT and Disk Gage Calibration Data

Gage are the



18

100.
108.
116.

1230

M o 9 W

o0 @ =

= v W

[

Table IT,

€ax

(Millistrain)

0.0
.0992
.190
.294
.390
.503
.607
.690
.802
.903

1.02

1.12

1.20

1.30

1.42

1.54

1.64

1.71

"€ IAT
(Millistrain)

0.0
.0k11
.0871

’.106
.140
.160
.194
.208
.285
.322
.348
.356
397
.L62
.489
.530
.554
.583

Aluminum Sample Calibration Data
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Samgle ID

G12170SB
G12170SD

G12232SB

G12276SD
G122T76SF

G12312SD
G12367SD
G124293B
G12429sD
G12429SF

G12468sB
G12468sD

G12563SB
G12563SD

G1258538B
G12585SD

G12608sB
G12608SD

G126L418D

Depth

m fft2

661.4(2170)
661.4(2170)

680.3(2232)

693.7(2276)
693.7(2276)

70k4.7(2312)
721.4(2367)
740.3(2429)
740.3(2429)
740.3(2429)

752.2(2468)
752.2(2468)

781.2(2563)
781.2(2563)

787.9(2585)
787.9(2585)

794.9(2608)
794 .9(2608)

80k.9(2641)

a AJ1 E and V values were calculated at .5 (OAX)u, except for the E value for sample

Table III.

CIom

(epyx)

Experimental Data

a8

u E

(MPa. ) (%) (GPa)
27.4 Ll 9.39
h7.1 49 11.5
19.3 b5 5.34
26.7 .28 10.3

4,63 .34 2.03
41.6 34 15.8
29.2 .50 8.38
30.6 .55 8.71
16.6 .50 3.93
29.0 .52 8.01
36.6 - ————
46.3 .56 12.6
120. .58 21.9
153. .54 28.9
71.7 .51 15.2
83.7 .58 15.7
71.9 45 18.4
73.5 b7 19.4
50.2 .57 10.kL

G12170SB, which was calculated at .3 (0ax)y-
b Bulk property data from A. R. Lappin (personal communication).

va

11
.]—2

12

.11
.1k

A1
.16
.16

b

kb
L1k

.08
.12

.14
.13

.14

b

b Pe ;

(%) (g/cm)
28.1 2.48
28.1 2.48
38.7 2.4k
34,2 2.40
34.2 2.4
36.1 2.37
26.7 2,61
27.3 2.61
27.3 2.61
27.3 2.61
28.0 2.60
28.0 2.60
21.4 2.47
21.4 2.h7
2L L 2.39
24 .4 2.39
23.5 2.47
23.5 2.47
27.9 2.hk9
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Figure 2A. Axial stress-axial strain curves for saturated samples G12170SB and SD deformed in com-
‘pression at a nominal strain rate of 10-? sec-l, atmospheric pressure and room temperature.
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nominal strain rate of 10-2 sec"l, atmospheric pressure and room temperature.
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Figure 2C. Axial stress-axial strain curves for saturated samples G12276SD and SF deformed in compression
at a nominal strain rate of 10-5 sec-l, atmospheric pressure and room temperature.
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Axial stress-axial strain curves for saturated sample G123673D deformed in compression at a
nominal strain rate of 10-5 sec‘l, atmospheric pressure and room temperature.
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Axial stress-axial strain curves for saturated samples G12429SB, SD and SF deformed in com-
" pression at a nominal strain rate of 10-2 sec'l, atmospheric pressure and room temperature.
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Figure 2G. Axial stress-axial strain curves for saturated sample G12468SD deformed in compre331on at a
nominal strain rate of 10-5 sec'l, atmospherlc pressure and room temperature.
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Axial stress-axial strain curves for saturated samples G125638B and SD deformed in com-
pression at a nominal strain rate of 10-2 sec‘l, atmospheric pressure and room temperature.



ot

100 TrH[IITTllﬂrIIIII||IIIIIIIT| rTTT
—~ Gl 2585 SB AND SD -
€~ 1073 sec™?
80 — ROOM T AND P —
‘© ~ .
a
g 60 —
(73]
7))
m ——
m p—
-
- 4 ]
S =
>
< - , -
Ve
P4
P4 .
20 |— w _
p
P/
| /. -
0 JII!JLIIJLIILLIIIlllJlllllllJlllL

o 1 2 3 4 S 6 7
AXIAL STRAIN (MILLISTRAIN)

Figure 2I. Axial stress-axial strain curves for saturated samples G12585SB and SD deformed in compression
at a nominal strain rate of 10-2 sec*l, atmospheric pressure and room temperature.
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Axial stress-axial strain curveg for saturated samples G12608SB and SD deformed in compression
at a nominal strain rate of 10~2 sec*l atmospheric pressure and room temperature.
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nominal strain rate of 102 sec'l, atmospheric pressure and room temperature.
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Figure 3A. Plot of axial strain-time data with a linear fit for sample G12563SB deformed saturated
~ at 10-5 sec-l, 0.1 MPa and 230°C,
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Figure 3C. Plot of lateral strain-axial strain data with a linear fit for sample G12563SB deformed
saturated at 10™2 sec l, 0.1 MPa and 230°C,
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Figure LA. Axial stress-lateral strain curve for sample G12563SB deformed saturated at 10 ° sec
0.1 MPa and 23°C.
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Figure 4B. Lateral strain-axial strain curve for sample G12563SB deformed saturated at 10 ° sec
0.1 MPa and 23°C. '
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