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ABSTRACT

Two identical reinforced concrete (RC) shear walls, which consist of web, flanges and massive top and bottom slabs, were
tested up to ultimate failure under earthquake motions at the Nuclear Power Engineering Corporation’s (NUPEC) Tadotsu
Engineering Laboratory, Japan. NUPEC provided the dynamic test results to the OECD (Organization for Economic
Cooperation and Development), Nuclear Energy Agency (NEA) for use as an International Standard Problem (ISP). The
shear walls were intended to be part of a typical reactor building. One of the major objectives of the Seismic Shear Wall ISP
(SSWISP) was to evaluate various seismic analysis methods for concrete structures used for design and seismic margin
assessment. It also offered a unique opportunity to assess the state-of-the-art in nonlinear dynamic analysis of reinforced
concrete shear wall structures under severe earthquake loadings. As a participant of the SSWISP workshops, Brookhaven
National Laboratory (BNL) performed finite element analyses under the sponsorship of the U.S. Nuclear Regulatory
Commission (USNRC). Three types of analysis were performed, i.e., monotonic static (push-over), cyclic static and dynamic
analyses. Additional monotonic static analyses were performed by two consultants, F. Vecchio of the University of Toronto
(UT) and F. Filippou of the University of California at Berkeley (UCB).

The analysis results by BNL and the consultants were presented during the second workshop in Yokohama, Japan in 1996. A
total of 55 analyses were presented during the workshop by 30 participants from 11 different countries. The major findings
on the presented analysis methods, as well as engineering insights regarding the applicability and reliability of the FEM codes
are described in detail in this report.
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EXECUTIVE SUMMARY

Two identical reinforced concrete (RC) shear walls, which consists of web, flanges and massive top and bottom slabs, were
tested up to ultimate failure under earthquake motions at the Nuclear Power Engineering Corporation’s (INUPEC) Tadotsu
Engineering Laboratory, Japan. NUPEC provided the dynamic test results to the OECD (Organization for Economic
Cooperation and Development), Nuclear Energy Agency (NEA) for use as an International Standard Problem (ISP). The
shear walls were intended to be part of a typical reactor building. One of the major objectives of the Seismic Shear Wall ISP
(SSWISP) was to evaluate various seismic analysis methods for concrete structures used for design and seismic margin
assessment. It also offered a unique opportunity to assess the state-of-the-art in nonlinear dynamic analysis of reinforced
concrete shear wall structures under severe earthquake loadings.

The detailed information on the ISP tests, including the test specimens, test procedures and dynamic test results, was provided
during the first SSWISP workshop in Paris in 1994. The shear wall specimens were designed to fail in shear. The tests were
conducted at six amplitude levels, starting from the lower elastic run to the ultimate failure. During the highest amplitude test
run, the shear wall failed catastrophically due to a sudden sliding shear failure. Before each test run, a small-amplitude
vibration test was performed to evaluate the vibration frequency and the equivalent viscous damping values.

As a participant in the SSWISP workshops, Brookhaven National Laboratory (BNL) performed finite element analyses under
the sponsorship of the U.S. Nuclear Regulatory Commission (USNRC). Three types of analyses were performed, i.e.,
monotonic static (push-over), cyclic static, and dynamic analyses. No significant differences were observed in the predicted
envelope curves of the load-displacement relationship and the final failure modes between the three types of analyses. In
addition, the nonlinear analyses accurately predicted the dynamic response of the shear walls, as well as the timing of the
observed sliding shear failure.

Additional monotonic static analyses were performed by two consultants, F. Vecchio of the University of Toronto (UT) and
F. Filippou of the University of California at Berkeley (UCB). The analyses by UT used 3-D brick elements, whereas 2-D
solid elements were used in the analysis by UCB. By using 3-D elements, UT’s model accurately predicted the location of
the sliding shear failure since the additional confinement at the boundaries was accounted for.

The analysis results by BNL and the consultants were presented during the second SSWISP workshop in Yokohama, Japan in
1996. A total of 55 analyses were presented during the workshop by 30 participants from 11 different countries. The
submitted analyses were classified as FEM static, FEM dynamic, simplified modeling method and lumped mass modeling
method. The highlight of the workshop was the FEM dynamic analyses. The SSWISP workshop probably was the first
occasion that the application of nonlinear FEM dynamic analysis to shear wall structures was discussed as the main theme in
an international conference. For many participants, the SSWISP was their first opportunity to perform this type of nonlinear
dynamic analysis, and a wide variety of technical issues were discussed for improving the prediction accuracy. Several
participants presented remarkable analysis results using originally developed in-house codes, which were at various stages of
development. The major findings on the presented analysis methods, as well as engineering insights regarding the
applicability and reliability of the FEM codes are described in detail in this report.

Presently, the structural design methods of reinforced concrete structures used in the nuclear industry have been developed
and evaluated based on a set of laboratory test data. Efforts have been on-going for the last two decades to develop powerful
analysis tools which could improve accuracy and eliminate or significantly reduce the need for additional costly laboratory
testing as new issues arise. The SSWISP has provided valuable test data to evaluate such analysis tools, as well as to develop
new analysis approaches.

The specific objectives of this study were to perform nonlinear dynamic analyses of R.C. shear wall structures under severe
carthquake loading, to identify limitations of the currently available analysis methods, and to collect information on the
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Executive Summary

analysis methods worldwide. These objectives have been achieved through a series of analyses using both in-house and
commercial codes, and comparisons with test results as well as with analysis results performed by other SSWISP workstiop
participants. The SSWISP workshop provided a unique opportunity to review the reliability and applicability of various
analysis methods to predict the dynamic behavior of shear wall structures under severe earthquake loads.
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1 INTRODUCTION

The finite element method (FEM) is now widely used as a practical structural design tool to analyze complex structures in
both the nuclear and non-nuclear industries. In the seismic design of shear wall structures, e.g., nuclear reactor buildings, a
linear FEM analysis is frequently used to quantify the stresses under the design loading condition. The final design decisions,
however, are still based on empirical design rules established over decades from accumulated laboratory test data.

Over the last two decades, the application of nonlinear FEM to reinforced concrete structures has been considered an alternate
analysis/design tool for the seismic structural design. In recent years, significant improvements have been made in Europe,
Japan and the United States in both the numerical techniques and the development of constitutive model for concrete.
Although many research results are available in open publication, engineers generally do not have easy access to the
computer codes as they are mostly proprietary in-house codes. Commercial finite element codes, such as ANSYS and
ABAQUS, also have some options for the nonlinear analysis of R.C. structures, however, most are limited to the
consideration of monotonic push over type loading only. Under seismic loadings, structural components are subjected to
repeated cyclic loading reversals. Most available commercial codes cannot deal with this type of loading for reinforced
concrete structures. Under such loading, repeated shear stress reversals occur and the concrete experiences a combination of
cracking and compression softening/crushing with the principal stress directions constantly rotating. Improvements in the
constitutive model of concrete material are needed to model this phenomena and produce a more reliable result for various
concrete structures. The Seismic Shear Wall International Standard Problem (SSWISP) offered a unique opportunity to
perform state-of-the-art nonlincar dynamic analyses of shear wall structures under earthquake loadings, as well as, to collect
information on the currently available analysis methods worldwide.

Nuclear Power Engineering Corporation (NUPEC) offered the dynamic test results of shear wall structures to the
OECD/NEA/CSNI (Organization for Economic Cooperation and Development/Nuclear Energy Agency/Committee on the
Safety of Nuclear Installation) for use as an International Standard Problem (ISP). Two identical shear walls, which consisted
of a web (3 meter wide, 75 mm thick, and 2.02 meter high), flanges (2.98 meter wide, 100 mm thick and 2.02 meter high),
and massive top and bottom slabs, were tested to ultimate failure under earthquake motions at NUPEC’s Tadotsu Engineering
Laboratory. The shear walls simulated a part of a typical reactor building.

The test results and detailed information on the test conditions were made available during the first workshop in Paris in 1994
(Ref. 1), and the participants were asked to perform structural analyses to reproduce the test results. As a participant in this
effort, Brookhaven National Laboratory (BNL) performed finite element analyses under the sponsorship of the U.S. Nuclear
Regulatory Commission (USNRC). Two consultants, F. Vecchio of the University of Toronto (UT) and F. Filippou of the
University of California at Berkeley (UCB), also performed finite element analyses. The analysis results by BNL/NRC and
the consultants were presented during the second workshop in Yokohama, Japan in 1996 (Ref. 3). The analysis resuits of all
the participants of the SSWISP Workshop are summarized in the comparison report published by OECD/NEA (Ref. 17).

The objectives of this study are to perform nonlinear dynamic analyses of R.C. shear wall structures under severe earthquake
loading based on the best knowledge currently available in the areas of material constitutive modeling and numerical
procedure, to identify limitations of the analysis methods, and to collect information on the currently available analysis
methods worldwide.

This report presents BNL’s and consultants® analysis results. The findings and information obtained during the workshops
and detailed descriptions of promising analysis methods presented by other participants are summarized.
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2 ISP SHEAR WALL TESTS

2.1 Test Specimens

A complete description of the ISP shear wall tests can be found in References 1 and 2 (NUPEC). Two identical shear wall
specimens (called U-1 and U-2) were constructed and dynamically tested using the same input motions to confirm the
reliability and reproducibility of the test. Figures. 2.1 through 2.4 provide detailed descriptions of the specimen. The shear
walls are intended to be part of a typical reactor building, and consist of a web, two flanges, massive top and bottom slabs and
additional weights. The wall has a shear span ratio of 0.8, and together with a high bending strength provided by the two
massive flanges, the design is intended to be predominantly a shear failure type.

The reinforcement ratio is 1.2% for both web and flanges in both the horizontal and vertical directions except with additional
vertical reinforcement at the intersection between the web and flange walls (see Figure 2.2). For the reinforcement, D6
deformed rebars (nominal diameter 6.35 mm) were used.

For additional weight, lead blocks with a total of 92.9 tonf were fixed to the top slab. The total weight of the top slab was
122.0 tonf, and the average vertical stress in the walls is 0.15 kg/mm®.

Material test results were also made available as summarized in Tables 2.1 and 2.2, and in Figure 2.5.

2.2 Test Procedures

NUPEC’s large shake table at the Tadotsu Engineering Laboratory was used for the dynamic tests. The table has a 1.000 tonf
maximum load capacity, a 3000 tonf horizontal maximum excitation capacity (3,300 ton f vertically) and can accommodate a
15 m by 15 m sized specimen. It is a two-directional (horizontal and vertical) vibration table, although only horizontal
motions were applied during the ISP tests.

Figure 2.6 shows the acceleration time history and the response spectra of the input horizontal motion (AXB) recorded during
the maximum amplitude test run (RUN-5). In the dynamic tests, the amplitude of the input motion was the only parameter
varied. A total of five (5) test runs were planned including RUN-1 for the elastic responses and RUN-5 for the ultimate
response, as shown in Table 2.3.

2.3 Instrumentation

Figures 2.7 through 2.10 and Table 2.6 show the location of the test instrumentation which consisted of displacement
transducers, accelerometers and strain gages. To represent the overall response of the shear walls, the average of DXT1 and
DXT2 is used for the horizontal relative displacement (see Figure 2.7), and the average of AXT! and AXT?2 is used for the
horizontal acceleration (see Figure 2.9). The horizontal inertia force is estimated by multiplying the value of AXT (average
of AXT1 and AXT2) by the total weight of the top slab, 122 tonf. The sampling time of the data acquisition was 0.001
second.

2.4 Test Results

The peak responses of the two shear walls, U-1 and U-2, are summarized in Figure 2.11 in terms of the maximum inertia
force and displacement relationship. The U-2 specimen produced slightly lower responses compared with the U-1 specimen.
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ISP Shear Wall Tests

An additional RUN-2" was performed to obtain the response right after the shear cracking run for the U-1 specimen, as
indicated in Figure 2.11.

Table 2.5 summarizes the recorded peak response values. During RUN-5 for the U-1 specimen, the top horizontal
displacement (UXT) far exceeded the measurable range of the displacement transducer of 20 mm due to a sudden sliding
shear failure. For all the analyses described in the following chapters, the response results of the U-1 specimen are used
exclusively.

Figure 2.12 shows the top-slab horizontal force-deformation relationships for all the test runs of the U-1 specimen. It can be
observed that RUN-1 and RUN-2 are in the elastic range; RUN-2" and RUN-3 are in moderately nonlinear ranges; significant
nonlinear responses start to appear in RUN-4; and the ultimate response is shown in RUN-5. Figures 2.13 through 2.15 show
the force-deformation relationship of the top slab and the recorded responses of the top and bottom slabs for RUN-1, RUN-4
and RUN-5. More complete collections of the recorded time histories can be found in Appendices C, D and E of this report.

Initial shear cracks were found at the mid-lower portion of the web wall after RUN-2". Horizontal bending cracks in the:
flange walls were found after RUN-4. During RUN-5, a sliding shear failure occurred at the bottom of the web wall as shown
in Figures 2.16 and 2.17.

Before each test run, a small-amplitude vibration test was performed to evaluate the vibration frequency and the equivalent
viscous damping values. The results are listed in Table 2.6. When the specimens were in the elastic range, the calculated
damping value was slightly higher than 1% of critical.

NUREG/CR-6554 4




ISP Shear Wall Tests

Table 2.1 Tensile strength test results of D6 deformed bar (Ref. 2)
JIS Yield Tensile Moedulus of Elongation
Designation Sample No. Strength Strength Elasticity (%)
(kgfimm?) kegfimm?) (x 10° kgf/mm?)
] 38.7 49.8 18.9 **
-De™ 2 393 49.1 18.6 295
3 393 49.5 18.9 287
mean 39.1 49.5 18.8 29.1
*1) Nominal cross section area: 32 mm? (** Break outside gauge length)
Nominal perimeter length: 20 mm
Nominal diameter: 6.35 mm
Table 2.2  Cylinder test results of concrete of web and flange walls (Ref. 2)
Specimen Compressive Modulus of Poisson’s Splitting
Strength Elasticity™ ratio™ Tens. Strength
(kgf/mm?) (kgf/mm?) (kgf/mm?)
No. 1™ 2.88 23.2 0.167 0.244
U-1 No. 2 3.04 22.8 0.157 0.221
No. 3 2.83 24.1 0.139 0.219
mean 2.92 23.4 0.155 0.228
*D Material test specimen geometry:  Cylinder with 100 mm dia. and 200 mm height
*2) Secant modulus of stiffness at 1/3 value of compressive strength
*3) Ratio at 1/3 value of compressive strength
Table 2.3 Planncd test runs
Name of Test Run Target Amplitude Level Comments
RUN-1I About 005g Elastic Response
RUN-2 005g-0.tg Shear Crack Initiation
RUN-3 025g-03¢g 3 times of RUN-2
RUN-4 04 g-05¢g v = 2/1000 rad
RUN-5 06 g-07g Ultimate Strength

NUREG/CR-6554
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ISP Shear Wall Tests

Table 2.4  List of measured items (Ref. 2)

Measured Item Direction Number of Measurements
- Horizontal displacement ™ X 2
Y 2
- Vertical displacement ™ Z : 16
~ Acceleration Top slab X 2
Y 2
V4 4
Base slab X 2
Y 2
Z 4
- Rebar strain Web:horizontal 11
Web:vertical 9
Flange:vertical 24
Total 80
*1) Relative horizontal displacement between the top slab and the base slab
*2) Relative vertical displacements of segmental parts of flange walls

NUREG/CR-6554 6
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ISP Shear Wall Tests

Table 2.6 Dynamic characteristics of specimens (Ref. 2)

(U-1 Specimen)

f, (Hz) hy, (%)
Before RUN-1 13.2 1.1
Before RUN-3 I3 2.5
Before RUN-4 9.0 3.0
Before RUN-5 77 4.0
(U-2 Specimen)

£, (Hz) b, (%)
Before RUN-1 13.1 1.2
Before RUN-3 11.3 26
Before RUN-4 83 4.2
Before RUN-5 7.1 4.2

1o Natural frequency
h,;  Equivalent damping ratio

eq”
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Fig. 2.2 Plan for Reinforcement Detail (Ref. 2)
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Fig. 2.16 ISP Shear Wall after the Fests

Fig. 2.17 Sliding Shear Failure in Web Wall after RUN-5
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3 BROOKHAVEN NATIONAL LABORATORY’S ANALYSES

3.1 Introduction

This chapter presents the results of the nonlinear FEM analyses for ISP Shear Walls performed by BNL. The finite element
analyses were performed with the ISSAC computer code which was developed by Young J. Park of BNL (Ref. 5). Three
types of analyses were performed, i.e., monotonic static (push-over), cyclic static and dynamic analyses.

A serious technical difficulty was encountered in performing the nonlinear dynamic analyses when the analysis model was
subjected to highly plastic loading reversals. As a result, the initial analysis results for the higher amplitude tests did not
match well with the test results. Additional efforts were made to improve numerical stability by changing analysis
conditions/assumptions, including the damping assumption. Both the initial and improved analysis results are presented in
this chapter.

3.2 Constitutive Model for Concrete

The constitutive model for concrete used in the ISSAC code is based on the concepts of orthotropic plasticity theory and the
rotating smeared crack model (e.g., Refs. 6 and 7). In this analysis scheme, rebar can also be smeared (e.g., Ref. 6). The
biaxial stress-strain relationship in the principal stress direction is expressed as (smeared rebar not included),

do, T E VE, de,
do, (= , VE, E, 0 |{de, 3.1
dt 1-v"1 o o G]|lay
in which,

do,, do, = incremental principal stresses

de,, de, = incremental strains in the principal stress directions

dt, dy = incremental shear stress and strain

E.E, = uniaxial modulus in the principal stress directions

G = shear modulus (set to zero after cracking)

\ = Poisson’s ratio

Currently, detailed information on the hysteretic behavior of concrete is available only from test results under uniaxial
loading conditions. Therefore, a relationship should be established between the uniaxial hysteretic model of concrete and the
foregoing principal stresses, 0, and 0,, and associated strains, €, and €,. The following “independent uniaxial” (IU) concrete
stresses, 0, and 0, , and strains, €, abd €, are introduced for this purpose.

o =0,/ X (32)
o, =0,/ X (3.3)
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a¢;= —(de + vae,)/ X )

d €, l_vz(defvdel )/ X% (3.5)

In which, X, and X, are the biaxial interaction factors that are determined from the biaxial envelope function. In this scheme,
the uniaxial hysteretic behavior is expressed in terms of the IU stress-strains, 6,", 0, ,d €,” and d €, ; then the biaxial stress-
strains are obtained from the above Equations 3.2 through 3.5.

Figures 3.1 and 3.2 illustrate the uniaxial hysteretic model for concrete. The negative slope in compression is assumec| to be a
straight line up to the specified failure strain, - B * €,. The tangential stiffness of the negative slope, E_, is expressed as,

E = - 2C (3.6)
€

All the above parameters are defined in Figure 3.1. To account for the so-called tension stiffening effect, the tensile strength
of cracked concrete, is expressed by a factor “a” as illustrated in Figure 3.1.

Py
o =C, D, 3.7)
In which,
C, = a constant with unit of length (~ 75 mm based on studies by the University of Toronto, Ref. 8).
Ps = steel ratio
D, = diameter of rebars (mm).

When more than one rebar group is considered (e.g., horizontal and vertical rebars), the values of “a” are added to obtain the
overall value, i.e.,

@ = Do, (3.8)

The biaxial envelope function is shown in Figure 3.3, which is a simplified version of the enveloped curve proposed by
Kupfer et al (Ref. 9). In the tension-compression regions, the reduction in the compressive strength is controlled by the so-
called compression softening of cracked concrete (Ref. 10), as
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- 1
1+027 (€, /€, - 037 )

(3.9)

In which, €; is the tensile strain in the direction orthogonal to the crack plane, and €, is defined in Figure 3.1.

3.3 Nlimerical Method

The equations of motion for a FEM model are expressed as,

[M]{a}+[C1{s}+[K]{Au}+{R}=-[M]{;} (3.10)

In which, [M], [C], and [K] are the mass damping and stiffness matrices; @i, & and Au are acceleration, velocity and

incremental displacement; Zisthe input excitation; and R is the restoring force from the previous analysis step. Rayleigh
damping is used for the damping assumption,

[Cl=a[M]+B[K] ‘ (.11

Newmark’s B-method is used to solve the above nonlinear dynamic equations.

In the application of nonlinear FEM to concrete structures, either for static or dynamic problems, a key to a successful
analysis is the method to suppress the unbalanced forces during the analysis. The unbalanced forces arise due to a mismatch
of internal stresses between adjacent elements with different stiffnesses. When the element stiffness changes abruptly, e.g.,
due to cracking, crushing or unloading/reloading, the unbalanced forces tend to increase sharply. Some form of iterative
scheme is necessary to minimize the unbalanced forces during analysis. In the ISSAC code, the following three (3) stages of
iterations are employed in succession to achieve this purpose as illustrated in Figure 3.4.

Stage 1 Newton-Raphson method using tangential stiffnesses with sub-step option (similar to the ones used in
commercial codes such as ANSYS and ABAQUS).

Stage 2 Modified Newton-Raphson method using the “local secant stiffnesses.”
Stage 3 Initial stiffness method using the elastic stiffnesses.

During the main loading steps, i.e., stage 1 and 2 (see Figure 3.4), it is necessary to make all the changes in the element state
as smooth as possible including;

- principal stress angle,

- biaxial interaction factors,
- material stiffnesses,

- Poisson’s ratio.
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Particularly, a smooth transition of loading paths should be implemented in the uniaxial hysteretic model of concrete as
illustrated in Figure 3.5.

During the iteration steps, i.e., stage 3 (see Fig. 3.4), the above changes in the element state should be “frozen” as much as
practically possible in order to achieve a faster and successful numerical conversion. In addition, a simplified version of the
hysteretic model maybe adapted during the iteration steps to avoid repeated loading/unloading changes as illustrated in Figure
3.5,

3.4 Analysis Model

Figure 3.6 shows the analysis model used for both the static and dynamic analyses. Simple 3-node constant-strain 2-D solid
elements were used for both the web and flanges. It is a so-called “unfolded model”, a modeling scheme frequently used to
model a 3-D panel structure using 2-D solid elements. The top slabs of the flanges are constrained in the horizontal direction
(direction orthogonal to the web wall), and the vertical displacements are tied to those of the web at the flange/web joints.
Therefore, the flange actions, except for the out-of-plane bending of the flanges, including the in-plane shear in flanges due to
shear lag, are accounted for. In this modeling scheme, the deformations in the direction orthogonal to the vibration direction
are excluded. Since the model is symmetrical, only half of each flange wall is modeled with twice the thickness.

The material parameters are listed in Table 3.1 (see Figure 3.1 for the definition of the parameters). All the rebar were:
smeared both in the web and flange walls.

3.5 Monotonic Static Analysis

Monotonic static analyses were performed to check the adequacy of the analysis model and to estimate the negative slope of
the concrete stress-strain relationship. Figure 3.7 shows the load-deformation relationships of three monotonic static analyses
in which only the value of 8, which defines the negative slope of concrete (see Figure 3.1), is varied. It appears that when the
value of P is assumed to be 10 to 20 (i.e. failure strain value is 2.5% to 5%), the load-deformation relationship obtained
matches well with that for RUN-5.

Figure 3.8 shows the detailed analysis results for § = 20. It is obvious that the analysis predicts the wall to fail in sliding
shear at the bottom of the web. The observed failure plane in the test, however, is located approximately 40 cm from the
bottom. One possible explanation for this difference may be the use of the plain-stress assumption for the concrete elements.
The 3-D confinement at the bottom of the web wall may have shifted the failure plane away from the bottom.

Table 3.2 lists the horizontal displacements and forces of the top slab for various damage stages.

3.6 Cyclic Static Analysis

A cyclic static analysis was performed under an idealized loading reversal condition. The analysis was performed by
controlling the horizontal displacement of the top slab. The objectives of this analyses are as follows:

. Verify the constitutive model for concrete and the numerical method for analyses that involve large loading
reversals up to the failure point;

. Characterize the hysteric behavior of the ISP shear wall under a simplified static loading condition.

. Observe the differences in responses between the monotonic and cyclic analyses.
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. Obtain the response of the shear wall after loading reversals which are representative of RUN-2, 3, 4 and 5.

Figure 3.9 illustrates the applied displacement history. Loading reversals for peak displacements of 1.05 mm, 1.63 mm and
3.72 mm were first applied, representing RUN-2’, RUN-3 and RUN-4, respectively. Then two larger loading reversals were
applied to observe the hysteretic behavior beyond the maximum strength point. A total of 1330 analysis steps were necessary
to complete the analysis (the average displacement increment is 0.1 mm per step).

Figures 3.10 and 3.11 compare the load-deformation relationships. Relatively small hysteretic damping (i.e., hysteresis loop
area), a significant pinching behavior, as well as sharp strength drop after reaching the maximum point, are observed both in
the analysis and the test results. These observed hysteretic characteristics are considered to be consistent with the brittle
sliding failure mode of the ISP wall. The maximum strength is 3% lower than that of the foregoing monotonic analysis. No
significant differences are observed between the monotonic and cyclic analysis results. -

Figures 3.12 through 3.15 depict the responses of the shear wall for each representative loading reversal. The same sliding
shear failure at the bottom of the wall as in the static analysis can be found in Figure 3.15.

3.7 Dynamic Analysis

3.7.1 Linear Dynamic Analysis for RUN-1

Based on the static analysis results, no element is expected to exceed the tensile strength level during RUN-1, and the shear
wall responses are considered to be entirely in the elastic range. Therefore, a conventional modal time history analysis is
performed for RUN-1.

Figure 3.16 shows the fundamental mode shape. This mode is considered to be dominant over other higher modes. The
analysis conditions/assumptions are as follows:

. NUmber Of IN0QES ... .. i e e e 4
. Damping ... e 1% critical for all modes
. Basemnotion . . .. .v ittt e Horizontal (AXB) only (see Figure 3.17)
. 1T T 1 (11 | O PP 0.001 sec.
. Numerical method . . ... ... e e Newmark’s p-method

Table 3.3 summarizes a comparison of response values. Figures 3.18 through 3.20 show some time history piots and the
load-deformation relationship. As vertical base motions are not considered, the vertical accelerations (e.g., AZTL and AZTR)
are underestimated. Other response values, including the fundamental frequency of vibration, agree well with the measured
values.

3.7.2 Nonlinear Dynamic Analysis for RUN-4

A nonlinear dynamic analysis was performed for RUN-4 using the direct time integration method. As indicated in the
foregoing static analyses, the stiffness matrix, [K] of Equation 3.11 for Rayleigh damping, may take negative values due to
the cracking and crushing of concrete. Therefore, the second term of Equation 3.11 could become a negative contribution to
the linear damping value. To avoid this anomaly, the value of B in Equation 3.11 is assumed to be zero. The corresponding
value of ¢ is estimated based on the frequency value of 11.3 Hz and the equivalent damping value of 2.5% critical:

a=3.55
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The dynamic analysis was preceded by two cycles of static loading with a peak displacement of 1.63 mm to simulate the
effects of the previous test runs. Therefore, residual responses are included in the following dynamic analysis. Other analysis
assumptions/conditions are as follows:

Horizontal (AXB) only (see Figure 3.21)
0.001 sec. (max.) to 0.00025 sec. (min.)
Modified Wilson-style Newmark’s B-method

In the course of the direct time integration analysis, a difficulty was encountered as the abrupt changes in stiffness of the
concrete (mainly due to crack opening and closing) affected the acceleration responses. Relatively high-frequency
components were introduced artificially to the acceleration responses, adversely affecting the numerical stability. The
displacement responses, however, were much less affected by the abrupt stiffness changes. Due to this problem, the analysis
was terminated at 6.5 sec. although the program could have completed the full 12 sec. length of analysis. The analysis,
however, captured most of the nonlinear response as it is truncated near the end of the main table motions (see Figure 3.21).

Table 3.4 summarizes comparison of response values, and Figures 3.22 through 3.26 compare the load-deformation and time
history plots. Figure a 3.27 shows the damage state after the analysis.

The displacement responses agree well with the measured records both in terms of the peak value, the timing of the peak
value, and the time history shape. The acceleration responses, however, are overestimated due to the artificial high-frequency
components as discussed above. The damage state shown in Figure 3.27 indicates more damage to the wall than in the static
analysis result shown in Figure 3.14. Under many cycles of loadings, more elements suffered concrete crushing and rebar
yielding.

Figures 3.25 and 3.26 compare the vertical displacement responses. It should be noted that the analysis result shown in
Figure 3.25 is a vertical displacement at the top slab, whereas the recorded data shown in Figure 3.26 is a relative vertical
displacement measured for a 30 cm segment of the flange wall (see pp. 3-19 of NU-SSWISP-D008). Both time histories
indicate “ratcheting-type” upward movements due to the accumulation of permanent plastic strains under repeated loading
reversals.

3.7.3 Improved Analysis for RUN-4
Efforts were made to improve the numerical stability in the nonlinear dynamic analysis solutions. It was found that the

viscous damping assumption had a significant impact on numerical stability. The foregoing definition of Rayleigh damping
was modified as,

[Cl=a[M]+B][K,] (.12)

where [K,] is the elastic stiffness matrix. The values of the parameters, &, B; were assumed to be,
«=097, $=0.0001.
According to this assumption, the damping value in the elastic range (13.2 Hz) is 1% of critical.

This new damping assumption significantly improved the numerical stability, and the artificial high frequency comporents in
the calculated acceleration responses were eliminated. The calculated results are shown in Figures 3.28 and 3.29. Although
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“a perfect matc » between the analysis and test results was not achieved, it nevertheless improved the applicability and
accuracy of the nonlinear FEM to dynamic problems.

3.7.4 Nonlinear Dynamic Analysis for RUN-5

The same damping assumption was used for the analysis of RUN-5, the highest amplitude test run. The comparisons with
test results are given in Table 3.5 and Figures 3.30 through 3.36.

During the course of the analysis, a numerical difficulty was encountered as the analysis model was subjected to large plastic
loading reversals. It was observed that as many elements started to crush and enter the negative-slope region, the iterations in
stage 3 (see Figure 3.4) tended to aggravate the solutions, rather than improve them. In the analysis, the iterations in stage 3
were turned off at t = 2.5 sec. The analysis was terminated at t = 3.616 sec., which coincides with the occurrence of the
observed shear failure (see Figures 3.30, 3.33 and 3.34). The final failure mode was almost identical with the one from the
static analysis (see Figure 3.15). Although some minor differences between the analysis prediction and the test results were
observed, the analysis nevertheless predicted the timing of sliding shear failure fairly accurately.
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Table 3.1 Material parameters

(Concrete)

Modulus of elasticity, Ec 2340 Kg/mm?
Poisson’s ratio, v 0.16

Density, p 2230 Kg/m'®
Compressive strength, fr 2.92 Kg/mm*
Crush initiation strain, €, 0.25%

Ratio for crushed concrete strength, A 0.1*

Congcrete failure strain ratio, [Q**

Tensile strength, f, 0.228 Kg/mm?
Parameter for cracked concrete strengtl, o 0.29
Parameter for negative slope in tension, y 10

(Rebars)

Modulus of elasticity, Eg 1.8 x 10" Kg/mn??
Yield stress, f, 39.1 Kg/mm?
Post-yield stiffness 188 Kg/mm?

Note: *A 0.3 for static analyses,
**3 20 for static analyses.

Table 3.2 Summary of calculated results (monotonic static analysis)

Top slab

Phenomena - i i
Horizontal displacement Horizontal force

(mm) )

Flange wall
Initiation point of bending crack 0.4 402x 10°

()  Web wall
Initiation point of shear crack . 490x 10°

(c)Flange wall vertical rebar
Initiation point of yield 3. 1.28 x 10°

(d)  Web wall vertical rebar
Initiation point of yield . 1.28 x 10¢

()  Web wall horizontal rebar
Initiation point of yield 154 x10°

@  Crush point 3.8 1.28 x 10°

Maximum load . 1.58 x 10¢
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Table 3.3 Comparison of response values for RUN-1
Items Unit Analysis Test
Fundamental frequency Hz 13.31 13.2
Horizontal disp. (DXT) mm 0.291 0.29
1 Horizontal accel. (AXT) mm/s? 2030 2080
| Horizontal inertial force ton 25.3 258
Left vertical accel. (AZTL) mny/s’ 230 340
Right vertical accel. (AZTR) nun/s? 231 350
Horizontal rebar strain of web 106 4.5 9
Vertical rebar strain of flange
. Left flange 1o - 50.4 45
. Right flange 10 ¢ 50.9 37
Table 3.4 Comparison of response values for RUN-4
Items Unit Analysis Test
Horizontal disp. (DXT) mm 3.80 3.72
Horizontal accel. (AXT) mnvs® 11200 8820
Herizontal inertial force ton 944" 109.0 7
Left vertical disp. (DVLF) mm 2.64 -
Right vertical disp. (DVRF) mm 1.76 --
Left vertical accel. (AZTL) mm/s’ 10330 9820
Right vertical accel. (AZTR) mny/s? 10900 7 8338
Note:  *] Program directly evaluates the peak restoring force value
*2 Estimated from acceleration response
*3 Peak values up to 5 sec.
Table 3.5 Comparison of response values for RUN-3
Items Unit Analysis Test
Horizontal disp. (DXT) numn 143 >20
Horizontal accel. (AXT) mm/s® 13089 13410
Horizontal inertial force ton 155 166
Left vertical disp. (DVLF) mm 435 -
Right vertical disp. (DVRF) mm 6.70 -
Left vertical accel. (AZTL) mm/s’ 17690 17740
Right vertical accel. (AZTR) mnys’ 13500 20000
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Fig. 3.5 Additional Consideration for Uniaxial Hysteretic Model of Concrete
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Fig. 3.7 Load-deformation Relationships from Monotonic Static Analyses
(Circles Indicate Location of Peak Responses of Six Test Runs)
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4 ADDITIONAL PUSH-OVER ANALYSES

4.1 Introduction

As mentioned in Chapter 1 of this report, most of the currently available FEM codes are limited to monotonic push-over type
loading conditions for the nonlinear analysis of concrete structures. Push-over type analyses, if properly performed, still
provide engineers with useful information in the seismic design of concrete structures, including evaluation of the maximum
strength, stiffness, and the dominant failure mode. The reliability of the analysis results using currently available FEM codes,
however, is questionable particularly regarding their ability to predict nonlinear behavior near the failure point of complex 3-
D shear wall structures. Moreover, the response of concrete structures under cyclic loading reversals may be greatly different
than that for monotonic static loads. The ISP project offered a unique opportunity to examine the reliability and applicability
of currently available FEM codes when applied to dynamically tested shear wall structures.

Additional push-over analysis results, by two consultants, F. Vecchio of the University of Toronto (UT) and F. Filippou of
the University of California at Berkeley (UCB), as well as by BNL using the ANSYS code are presented in this chapter.
Detailed descriptions of the analyses by UT and UCB are given in Appendices A and B of this report, respectively.

4.2 Analyses by the University of Toronto (UT)

4.2.1 Analysis Method

The analyses by UT were performed using 3-D models and 2-D models under monotonic static loading conditions. Two (2)
in-house computer codes were used, i.e., the SPARCS code for 3-D analyses and the TRIX code for 2-D analyses.

The constitutive model for concrete is based on the Modified Compression Field Theory (Ref. 7), which is frequently
referenced by many researchers. The model is based on the orthotopic plasticity theory and rotating smeared cracking. Only
monotonically increasing stress conditions are considered both in the material modeling and the numerical procedures. The
Hognestad parabola, as illustrated in Fig. 4.1, is used as the envelope curve for the uniaxial stress-strain of cracked concrete.

The compression strength reduction factor, B, for cracked concrete is based on their own studies, expressed as a function of
the ratio of the tensile principal strain, €,, to the compressive principal strain, €,, in triaxial stress-strain condition, as

= L .1)
1 + K Kf
where
€, 080 4.2)
Ko =035 — - 0.280 > 1.0
€3
- (4.3)
K,= 01825 \f, > 1.0
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and £ is expressed in MPa. The peak stress and strain of the base (envelope) curve, f and €,, are modified using the factor,
B, to account for this strength degradation effect.

fo=Bfe 4.4)

€ =P"-¢ (4.5)

The crack model used in the Modified Compression Field Theory (MCFT), on which the analyses are based, assumes
smeared rotating cracks. Cracking is assumed to occur normal to a principal stress direction, when that stress exceeds the
uniaxial cracking strength of the concrete. While the constitutive relationships are formulated in terms of average stresses
and average strains, local stresses at crack locations are also considered. The presence of average tensile stresses in the
concrete implies local stress increases in the reinforcement at crack locations, and the presence of shear stresses on the
congrete crack surfaces. Thus, the crack criteria includes a check that the Iocal stresses in the reinforcement can be tolerated,
and that the shear stresses on the crack surfaces are below a limiting value (Ref. 7). Otherwise, a shear slip can occur along
the crack surfaces. The model is hypoelastic nonlinear; no attempt is made to reflect load/strain history in determining crack
opening and closing. Cracks are assumed to “heal” if the strains fall below the cracking strain.

The common approach of using a shear retention factor in modeling the shear stiffness of cracked concrete is not employed.
Rather, in the manner of a true orthotopic elastic material, the shear stiffnesses are defined by the moduli of elasticity in the
three principal directions, and by the associated Poisson’s ratios. The Poisson’s ratios are variable, modeled according to the
data of Kupfer (Ref. 9), and are not necessarily set to zero after cracking.

Due to the influence of bond, post-cracking average tensile stresses can develop in the concrete between cracks. This so-
called tension stiffening effect is modeled by adding a descending branch to the constitutive law for concrete in tension.

The so-called smeared rebar modeling is used, therefore, the effects of dowel action and bond-slip of reinforcement are not
considered.

SPARCS employs a total load, secant stiffness approach in the formulation of its nonlinear analysis algorithm. For the
SPARCS model shown in Fig. 4.2, 8-node (24 DOF) brick elements which have one stress-strain point are used. The model
consists of 1090 elements, 1932 nodes and a total of 5796 DOF’s to model half of the ISP wall.

4.2.2 Analysis Results

The predicted failure mode by the SPARCS code is shown in Fig. 4.3. A sliding shear failure is observed at the 2nd layer of
the web wall, which is consistent with the location of the actual failure in the ISP wall (see Figs. 2.16 and 2.17). The ISSAC
code 2-D analyses predicted the same sliding shear failure at the bottom of the web wall (see Fig. 3.8). This difference can
be explained by the additional confinement in the thickness direction, which strengthens the bottom web wall in the 3-D
analysis by the SPARCS code.

Figure 4.4 compares the load-deformation response of the top slab from two (2) SPARCS analyses with the test results. In
one analysis, tension softening was considered, and the other, tension softening was deliberately excluded. It seems, tension
softening has a vary minor effect on the predicted response of the shear wall. The analyses start to deviate from the test
results right after the occurrence of shear cracking, and overestimate the shear strength.

The 2-D analysis model for the TRIX code is shown in Figure 4.5. Plane-stress 4-node elements were used to model both the
web and flange walls. Figure 4.6 compares the analysis results of the 2-D (TRIX) and 3-D (SPARCS) runs, in which the
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effective width of flanges was assumed to be 100% for the 2-D model. A parametric study was performed to examine the
influence of effective flange width in the 2-D model as shown in Figure 4.7. It is pointed out that the actual effective width
lies between 67% and 100% (see Appendix A for a more detailed description).

Additional SPARCS analyses were performed using a finer element discretization as illustrated in Figure 4.8. The number of
layers in the web wall was increased from 10 to 16, and the number of elements through the flange thickness from 1 to 2. The
finer model shows a slight reduction of shear wall strength, about 5%, when compared with the original SPARCS model
results as shown in Figure 4.9,

4.3 Analysis by the University of California at Berkeley (UCB)

4.3.1 Analysis Method
A push-over analysis was performed by UCB using 2-D solid elements and an in-house code MIRAGE.

The constitutive model of concrete is based on a hypoelastic orthotopic model with a stress-equivalent uniaxial strain relation
that is generalized to account for triaxial stress conditions. In the analysis of the ISP shear wall, the constitutive model was
simplified to biaxial plane stress conditions by setting the out-of-plane normal stress equal to zero.

Figure 4.10 shows the envelope curve for the uniaxial stress-strain of concrete. In the formulation, the triaxial stress-strain
relationship is determined from the uniaxial stress-strain components in three (3) orthogonal directions. The concept of the
equivalent uniaxial strain, €, is used to convert from the uniaxial to triaxial stress-strain field, which was originally proposed
by Darwin and Pecknold (Ref. 6), as

g, .
e, = [ (i=123) (4.6)

The rotating smeared cracking model is employed. However, the compression strength reduction of cracked concrete is not
accounted for. Similar to the foregoing analyses by UT, smeared rebar modeling was used, and the effects of dowel action
and bond-slip of reinforcement were not considered. The traditional load increment method based on Newton-Raphson
iteration is used in the MIRAGE code.

Figure 4.11 shows the 2-D MIRAGE model. Similar to the foregoing ISSAC model, the unfolded modeling technique is
employed to model the ISP shear wall using 2-D solid elements. The model consists of 319 quadrilateral plane stress
elements and 360 nodes.

4.3.2 Analysis Results

Figure 4.12 compares the analytical with the experimental load-displacement responses. The analysis was terminated at the
end of the last branch due to a singularity of the stiffness matrix. The load-displacement response up to ultimate consists of
16 load steps. During the 16th load step, crushing of several concrete elements and yielding of rebars at critical locations led
to the singularity of the stiffness matrix with consequent lack of convergence in the Newton-Raphson iteration. Figure 4.13
show the crack pattern and the area of crushed concrete at two (2) loading steps.
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4.4 Analysis Using ANSYS Code

ANSYS is one of the most popular FEM codes used in the nuclear industry. An additional push-over analysis was performed to
examine the applicability of this commercial code to the ISP shear wall tests. To analyze reinforced concrete structures, only one
type of 3-D solid element, “SOLIDG5”, is available in the ANSYS code. It is a 8-node brick element with 8 Gauss points. Rebar
can be smeared in three different directions. A very simple material model for concrete is employed as briefly summaerized below:

Cracking............ elastic up to tension strength, cracking, then the tangential stiffhess is set to be zero.

Crushing............ multi-linear compression softening, then the element “vanishes™ after reaching the crushing stress.

Shear Transfer Across Crack............ a constant B, called shear transfer coefficient, is used to reduce the elastic shear modulus after
cracking; B,= 0 indicates elimmation of shear modulus after cracking, and B, = 1.0 indicates no reduction in shear
modulus.

Figure 4.14 shows the ANSYS model, which is identical with the foregoing SPARCS model, Figure 4.2. For the analysis a shear
transfer coefficient, B, = 0.5 was assumed. The push-over analysis was performed using the ordinary load increment method
based on the Newton-Raphson iteration scheme with substep option.

Figure 4.15 shows the deformed shape and crack locations in the web wall at the last step of the analysis. The analysis survived
up to 17 steps (lateral load of about 100 tonf), and then the solution did not converge due to a singularity of the stiffness matrix.
Figure 4.16 compares the ANSY'S result with the foregoing push-over analyses including the one developed with the ISSAC code
(denoted as BNL). It is obvious that right after the initiation of cracking, the ANSYS result starts to deviate from the other
analysis results. In order to improve the solution, various attempts were made by changing analysis parameters such as the load
increment, convergence criteria, the shear transfer eoefticient, as well as the crushing criteria. No significant improvement was
observed during the parametric studies. It is concluded that the applicability of this commercial code to complex 3-I) shear wall
structures is seriously limited due to the simple material modeling and the numerical procedure which does not accept a negative
stiffness to simulate cracked or crushed concrete.
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Fig. 4.3 Predicted Failure Mode by SPARCS Model
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Fig. 4.4  Analysis Results by SPARCS Model
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Fig. 4.14  ANSYS Model
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5 COMPARISON OF DIFFERENT ANALYSIS METHODS

5.1 Introduction

During the week of April 22, 1996, the 2nd SSWISP Workshop was held in Yokohama, Japan. During the workshop, a total
of 55 analyses were presented by 30 participants from 11 different countries as listed in Table 5.1. These are classified
according to the analysis type as:

(Type of analysis) (Total pumber of analyses)
FEM Monotonic static (MS) 20
FEM Cyelic static (CS) 6
FEM Dynamic (FD) 13
Simplified modeling (SM) 8
Lumped mass modeling (LM) 8
Total 55

NUPEC prepared comparison reports (Ref. 2), as well as a series of updated comparison reports which were also presented
during the workshop. The analysis results of all the participants of the SSWISP Workshop are summarized in the comparison
report published by OECD/NEA (Reg. 17).

The workshop provided a unique opportunity to assess the state-of-the-art in the nonlinear dynamic analysis of reinforced
concrete shear wall structures under severe earthquake loadings. Major findings obtained during the workshop are described
below.

5.2 Applicability of Commercial Codes

Several participants of the workshop attempted to use commercially available FEM codes to evaluate the ISP shear walls.
Table 5.2 lists the names of the codes, the number of participants, and the types of analyses performed:

How well these commercial codes performed in comparison to in-house or proprietary codes is an interesting question since
the commercial codes are often the only analysis tools available to most practical engineers.

In general, the correlation of dynamic analysis results achieved with these code may be considered poor even though a few
participants tried to improve the solutions by implementing original material models with user subroutines (i.e., participants
P5,P19 and P22). One exception may be the participant P19, who implemented a simple constitutive model for concrete in
the commercially available DIANA code. According to their formulation, significant simplifications in material modeling
were made using the Von Mises yield criterion and straight lines for the unloading/reloading branches of the uniaxial
hysteretic model of concrete. Good correlations with recorded test results were achieved in the dynamic analyses up to RUN-
4. The correlation in the RUN-5 analysis, however, is not as good probably because of the simplifications made in material
modeling.

As indicated in Table 5.2, most of the applications of commercial codes were for push-over type analyses. Fig. 5.1 compares
the eight (8) analysis results (Ref. 2). Various modeling schemes were used by different analysts, i.e., use of shell elements
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(in all the ABAQUS cases), 3-D brick elements (in ANACAP and ANSYS cases), and 2-D solid elements (in ADINA and
FEM-I cases). As the solutions approach the maximum strength point, large scatter is observed among the analysis results
even for those using the same code (e.g., ABAQUS cases). Except for the analyses performed with ADINA, which has a
displacement control option, most of the push-over analyses were performed by an ordinary load-increment method. Asa
result, the analyses usually terminated due to the development of a singularity in the stiffness matrix. In these analysis, it is
difficult to identify the “failure point™, as the location of the last loading step is usually controlled by the numerical stability
problems and analysis assumptions/conditions, rather than the actual failure.

5.3 FEM Static Analyses

A total of 20 push-over (monotonic static) analyses and 6 cyclic static analyses were submitted to the ISP workshop; among
them, 8 push-over analyses were performed using commercially available codes. Figs. 5.2 through 5.4 show some of the
comparison studies performed by NUPEC (Ref. 2). Much greater scatter is observed in the prediction of the ultimate
displacement than in the prediction of the maximum strength. Various issues were discussed during the workshop at
Yokohama. Some key issues, which are considered to have a major impact on the static analysis results, are discussed below.

Analysis Control

As mentioned, the load-increment method is seriously deficient in predicting the shear wall behavior near the failure point.
All the better quality push-over analysis results (e.g., P11, P17, P20 and P34a) are obtained using displacement-control
analyses, which predict not only the maximum strength point but also post-peak response with a negative slope. The secant
stiffness method, used by participant P34b, is considered to be a practical approach to trace the monotonic static behavior of
reinforced concrete structures, as the negative slopes in the stress-strain relationships of concrete (due to cracking and
crushing) can be naturally accounted for. However, the approach cannot be applied with cyclic static or dynamic loading
conditions.

Compressive Strength Reduction

Since the early 1980's, it has been recognized that the compressive strength in the direction parallel to the cracks of cracked
concrete tends to be lower than the uniaxial compressive strength, f. How to quantify this compressive strength reduction is
still a matter of controversy, and various assumptions/models were presented during the workshop. The approaches may be
classified as,

@® Simply ignored........ This is the case for most of the commercial codes which were developed in the 1960's and 1970's,
and therefore do not reflect the most recent findings in concrete mechanics.

Use of a constant reduction factor........Factors ranging from 0.6 to 0.7 were assumed by varous participants. This
approach may be considered to be a practical way of accounting for the strength reduction in light of the large scatter
observed in the laboratory test data.

Use of empirical equations........ Various empirical equations were presented which expressed the reduction factor as a
function of the principal tensile strain, €. Among them, the equations developed by Vecchio and Collins (see Eq. 4.1
of this report) and by H. Noguchi (Ref. 12) were the most popular choices among the participants. Noguchi’s
formulation expresses the reduction factor, A, as follows:

_ 1
027 + 0.96 (e,/eo )’"67

A

<1.0
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in which €,, is the average tensile strain; and €, is the strain at the compressive strength.

The impact of the different assumptions on the predicted overall behavior of the shear wall, however, are not clearly evident
as many factors in the material models are inter-related, and it is difficult to isolate one particular factor from the others

(Ref. 2).
Shear Transfer Across Cracks

A wide variety of formulations were presented at the workshop to account for the shear retention of cracked concrete due to
aggregate interlocking. Some notable formulations are summarized below:

@) Yamada-Aoyagi model........ This model (Ref. 13) is one of the most popular choices among the presented analyses,
probably owing to the simplicity of the formulation. The shear modulus, G, is expressed as a function of the elastic
shear modulus, G,, and the maximum tensile strain, €., as

1
G (kglem? )=
(glem® )= 37— /36 (52)

(i)  Orthotropic model........Based on orthotropic plasticity theory, the shear modulus is expressed as a function of the
uniaxial moduli, E;’s, and Poisson’s ratio, v, as

G=f(E,v) (53)

Examples of this approach can be found in Appendices A and B of this report. An advantage of this approach is that
an independent hysteretic model for the shear stress-shear strain is not needed as it can be represented by those of the
uniaxial normal stress-strain relationships.

(i) Maekawa’s model........ According to the experimental study by B.Li and K. Maekawa (Ref. 14), the shear reststance

across cracks due to aggregate interlocking can be expressed as an independent hysteretic model for the shear stress, T,
and the shear strain, y. The envelope curve is defined as,

t/m = -———( y/er)z

5.4
1+ (v/e } G4
in which, €, is the normal tensile strain; and m is the direct shear strength,
m (MPa)=383f. " (5.5)

This shear retention assurnption is considered to have a greater influence on the predicted results than the foregoing strength
reduction factor. However, it was not possibie to assess this influence independently from the presented analysis results.
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Tension Softening
In most of the analyses, tension softening of concrete was considered by assigning a negative stiffness after cracking. It was

the opinion by most of the participants at the workshop that this factor had a very minor influence on the overall shear wall
behavior. A similar conclusion was reached by F. Vecchio from a parametric study (see Fig. 16 in Appendix A of this

report).
Finite El_ement Model

The following modeling schemes were used in the 20 finite element models for the push-over analyses:

(Type of elements) (MNo. of models)
2-D solid 11
Shell 6
3-D solid 3

For the analyses using 2-D solid elements, the determination of the effective flange width was a significant issue and it was
frequently discussed during the workshop. Due to the large flanges of the ISP shear walls, it was observed that the effective
flange width would have to be increased as the plasticity in the shear walls progressed. In fact, in some analyses (e.g., P16)
the effective flange width was changed for different test runs; with a progressively larger width for a higher amplitude test
run. To alleviate this problem, the use of the unfolded mode] was proposed by several analysts (i.e., P22, P34a and P34c), to
account for the complex shear-lag behavior of flanges in the nonlinear analysis.

The use of shell elements was probably the most reasonable modeling approach for the ISP shear walls. The 2-D (plane-
stress) constitutive model can still be applied when the elements are formulated by layered membranes. It was pointed out
however, that a reliable method to account for the out-of-plane shear failure is not currently available for layered shell
elements. In most of the analyses presented, a simple linear stiffness was assumed for the out-of-plane shear deformation.

A few participants presented a complete 3-D model formed with brick solid elements, which is considered to be the most
realistic modeling method as the out-of-plane shear failure can be fully accounted for. An apparent drawback of this
modeling approach is the fact that the constitutive model for concrete for truely 3-D stress-strain conditions is still in the
developmental stage. The 3-D constitutive model developed by the University of Toronto (see Appendix A of this report) is
probably one of the most advanced material modeling methods, although it is limited only to push-over type analyses.

Cyclic Loading

Among the six (6) cyclic static analyses presented during the workshop, only three (3) were considered to be truely credible,
i.e., particpants P11, P17 and P34a. Significant technical problems exist in expanding an FEM code to treat cyclic loading
conditions for reinforced concrete. These may include:

- A “complete” hysteretic model for concrete, including a sophisticated logic for controlling repeated crack openings
and closings, is required for at least biaxial stress-strain reversals.

- The analysis should account for negative-slope (i.e., negative stiffness) due to the cracking and crushing of concrete.

- The solutions tend to be highly unstable when most of the elements enter the negative slope regions, and the loading
direction is reversed. The ordinary Newton-Raphson iteration scheme is not sufficient for this type of problem.
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- To keep the unbalanced forces under control, some form of additional numerical iterations are necessary. During
repeated numerical iterations, elements tend to be subjected to artificial unloading/reloading reversals, which could
aggravate the solutions.

- The so-called numerical rachetting in an analysis may cause significant numerical problems under repeated cyclic
loading reversals.

Some of these problems were discussed during the workshop. It should be noted that all successul [three (3)] cyclic static
analyses were performed with original in-house codes. Currently, no commercially available FEM codes can deal with the
above problems, without significant modifications being made to the material model and analysis procedures through user
subroutines.

5.4 FEM Dynamic Analyses

A total of thirteen (13) FEM dynamic analyses were presented during the workshop, and were considered to be the highlight
of the meeting. The SSWISP workshop was probably the first occasion that the application of nonlinear FEM dynamic
analyses to shear wall structures was discussed as the main theme in an international conference. For many participants, the
SSWISP was the first opportunity to perform these types of nonlinear dynamic analyses, and a wide variety of technical
issues for improving the prediction accuracies were discussed.

Most of the issues described in the foregoing section also apply to the dynamic analyses. In addition, the following issues
and unique problems associated with the application of the FEM to the dynamic analysis of concrete structures were raised:

. Determination of linear (viscous) damping;

. Consideration of hysteretic damping;

. Whether or not to account for the strain rate effect;
. Numerical stability problems;

Differences in responses (e.g., envelope response) between static and dynamic analyses;
Whether or not the ultimate failure mode is different between static and dynamic analysis results.

Although no definitive answers were obtained to any of the above issues, the workshop nevertheless provided a unique
opportunity to review the state-of-the-art in these areas.

Participants were asked to submit the dynamic analysis results for RUN-4 and RUN-5, and the submission of results for the
Iower-amplitude test runs was encouraged. Most of the participants experienced technical difficulties in performing the
RUN-5 analysis, during which the shear wall failed catastrophically. A detailed comparison of the accuracies of prediction is
described in Ref. 2. To gain a further insight, the 13 analysis results are classified into three groups according to the
originality of the computer codes and the degree of sophistication of the hysteretic models for concrete, as listed in Table 5.3.

Most of the analyses in Group A showed good correlation for both RUN-4 and RUN-5. It seems that the use of an original
computer code was an important factor in a successful analysis. Apparently because of the complexity of the analysis and the
technical difficulties, a through knowledge and total control of the computer program are necessary for successful analysis.
Another cirtical factor is the modeling of the hysteretic property of the concrete in the constitutive model. Fig. 5.5 shows the
uniaxial hysteretic models of concrete used in the Group A analyses. All these models are very detailed and realistic, and
they have the following features in common:

Strength deterioration due to cycling in compression zone;
Hysteresis damping in unloading/reloading path;

Negative slope both in tension and compression zones;

Multi-linear or curved lines for unloading path in compression zone.
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The dynamic analysis resuits for RUN-4 from Group B are considered to be as good as those from Group A, except for those
of participant P24 who reported that the computer code used was still in an early stage of development. The analysis
correlations for RUN-5 from Group B however are considered to be somehow inferior to Group A.” All the analyses in Group
B are based on simpler hysteretic models of concrete as illustrated in Fig. 5.6. Further simplifications are also implemented
in some analyses, such as the elimination of Poisson’s effects (e.g., P14) and the use of a simple Von-Mises yield surface
(e.g.,P19).

It seems that the use of a simplified hysteretic model does not have a significant impact on the moderately plastic responses
for RUN-4, but is a critical factor in predicting responses with very large plastic deformations, i.e., for RUN-5.

All the analyses in Group C, were developed using commercial codes, and were considered not successful even for the
moderately nonlinear response case, RUN-4.

5.5 Simplified Modeling Method

In the nonlinear dynamic analysis of building structures, shear wall components are frequently modeled using truss elements
or a combination of shear and bending springs. A total of 8 analyses based on such simplified modeling schemes were:
presented during the workshop, as summarized in Table 5.4.

For the models using either beam elements (P6 and P33) or a combination of springs (P25 and P28), the characterization of
the nonlinear shear spring was important since shear deformation dominated over flexural deformation in the ISP shear wall
tests.

For the analyses using truss models (P12, P15, P23 and P31), the shear deformation behavior is controlled by the diagonal
struts, which account for the shear strength/deformation of the concrete portion of the web wall. In all the cases, a simple
uniaxial spring element is used for the diagonal struts. The cross-sectional area of the element is usually determined from the
equivalent overall shear stiffness of the wall, which can be obtained either from an empirical equation or a linear static FEM
analysis. Since the diagonal struts represent the plain concrete of the web wall, a conventional uniaxial hysteretic model for
concrete can be used to define the nonlinear characteristics of the struts. The compression strength, P, can be defined as,

Po=vef oA, (5.6)
where, v is a strength reduction factor, f_ is the concrete strength, and A, is the cross-sectional area of a strut. According to

earlier studies with similar simplified models of shear walls (Ref. 15), constant values around 0.5 to 0.6 were suggested for
the foregoing reduction factor, v. The following values were used by the ISP participants using truss models:

(Participants) (Reduction factor)
Pi2 v=055
P15 v=0.65
P23 v=075
P31 v=10
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Since the strength reduction factor was not considered by participant P31, the shear strength of the wall was grossly
overestimated (by about 20%). A good correlation in the dynamic analysis results are observed for P12 and P15, who used a
relatively low reduction factor. ’

5.6 Lumped Mass Modeling Method

A total of eight (8) participants presented dynamic analysis results developed using a single-degree-of-freedom (SDOF)
system, as listed in Table 5.5. The analyses may be characterized by the following items:

Way to determine the envelope curve,

Shape of envelope curve,

Whether or not the shear and bending deformations are separately modeled using two springs,
Choice of hysteretic model,

Viscous damping assumption.

The envelope curves were modeled as either a multi-linear or continuous curve. The following methods were used to
determine the envelope curve:

. Use of ISP test results (P4, P37),

. Empirical equations (P4, P32),

. Static analysis using simplified model (P11, P27),
. FEM static analysis (P2, P16, P20).

The order of the above list reflects the order of analysis reliability (i.e., use of test results is the most reliable, and the use of
FEM analysis is the least reliable), as suggested by several experts during the workshop. Participant P4 used an empirical
equation to calculate the strength, and the ISP test results to estimate the deformation of turning points. Whether or not a
negative slope was included after the maximum point seems to have an tmpact on the predicted responses for RUN-5.

As indicated in Table 5.5, several participants (P11, P20 and P37) used two nonlinear springs to separate the shear and
bending deformations, which obviously improved the prediction accuracy. Relatively ductile hysteresis models were used for
the bending spring, and less ductile models for the shear spring. Fig. 5.7 shows the hysteresis models used by the participants
[Ref. 2). It scems that the models used by participants P2 and P27 have too large a hysteresis area (i.e., excessive energy
absorption), and the model used by participant P32 has an excessive pinching characteristic in comparison with the observed
hysteretic responses of the ISP shear walls.

Among all the presented response results, the ones by participants P11 and P20, who used a combination of bending and
shear springs as well as a negative slope after the maximum strength point, showed a good correlation with the recorded
responses for both RUN-4 and RUN-5.

Regarding the viscous damping assumption, no definitive conclusions were reached during the workshop. However,
according to participant P16, the prediction accuracy improved significantly when the damping value was reduced from 4%
to 2% for RUN-5.
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Table 5.1 List of Analyses Presented at SSWISP Workshop

Participant L.D.

Type of Analysis

Computer Code ©»

Analysis Model

Pl

CS,FD

SOLVIA

2-D solid elements with fine mesh

P2

MS, LM(F)

original

2-D solid element

P4

LM(E)

original

slip model

P5

FD

CASTEM M)

simplified hysteretic model

P6

SM

original

used beam elements

P9

MS,FD

ABAQUS

3-D shell elements

P11

original
original

3-D shell element
bending and shear springs

P12

original

strain rate effect considered

P13

original

2-D solid elements

P14

original

simpler material model, 2-D solid elements

P15

original

truss elements

P16

ADINA

displacement control with small increment

P17

original

3-D shell elements

P18

MS,FD

original

2-D solid elements

P19

D

DIANA (M)

3-D shell elements, simpler material model

P20

MS, LM(F)

original

shell elements

P21

MS

original

2-D solid elements

P22

MS

original
ABAQUS M)

unfolded model
3-D shell elements

P23

SM

original

truss model

P24

original

2-D solid elements

P25

original

macro-model

P27

original

flanges were ignored

P28

ABAQUS
original

3-D shell elements
Kabeyazawa model

P30

ABAQUS

shell elements
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Table 5.1 List of Analyses Presented at SSWISP Workshop

Participant LD. | Type of Analysis ™ | Computer Code ¥ Analysis Model
P31 SM original truss model
P32 LM(E) original pinching model
P33 MS FEM-I 2-D solid elements
MS ADINA 2-D solid elements
SM IDARC-2D beam elements
P34a MS, CS,FD original unfolded model
MS ANSYS 3-D brick elements
P34b MS original 3-D brick elements
MS original parametric study by 2-D model
P34c MS original unfolded model
P35 MS ANACAP 3-D brick elements
P37 Cs original shell elements
IM(T) original JEAG model
Note (*1): MS......monotonic static analysis by FEM

CS......cyclic static analysis by FEM

FD......dynamic analysis by FEM

SM......simplified modeling approach

LM()..lumped-mass analysis, the ( ) indicates the method to determine envelope curve
(F)......from FEM anlaysis
(E)......from empirical equations
(S)......from simplified analysis
(T)......from ISP test results

Note (*2): only the names of publically available codes are given
(M)......indicates the modification of material model using a user subroutine
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Table 5.2 List of Commercial Codes

Computer Code No. of Participants Types of Analysis Finite Elements
ABAQUS 4 monotonic static, dynamic 3-D shell
ADINA 2 monotonic static 2-D solid
ANACAP 1 monotonic static 3-D brick solid
ANSYS 1 monotonic static 3-D brick solid
CASTEM 1 dynamic 2-D solid
DIANA 1 dynamic 2-D solid
FEM-I i monotonic static 2-D solid
IDARC 1 monotonic static, dynamic beam element
SOLVIA 1 cyclic static, dynamic 2-D solid
Table 5.3 Grouping of FEM Dynamic Analyses
Group Computer Code Hysteretic Model for Participants
Concrete
Original Detailed and realistic P11,P13,P17,P18,P34a
B Original or commercial with significant Simplified P5,P14,P19,P24
changes
C Commercial Simplified P1,P9,P22,P28
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Table 5.4 Summary of Simplified Models

Participants Structural Model Constitutive Model
P6 Fiber model using beam elements Material - level
P12 Truss modet Material - level
P15 Truss model Material - level
P23 Truss model Material - level
P25 Axial and shear springs Component - Jevel
P28 Axial, shear and bending springs Component - level
P31 Truss model Material - level
P33 Beam element Component - level

Table 5.5 Summary of Lumped Mass Models

Skelton Curve Comb. of Shear Damping (%)
Participants & Bending
Method Negative Slope Springs RUN4 RUN-5
P2 FEM Analysis no no 3 4
P4 Empirical Eq. no no i 1
P11 Simplified yes yes 2 2
method
P16 FEM Analysis yes no 35 2
P20 FEM Analysis yes yes 0.8 0.8
P27 Simplified yes no 3 4
method
P32 Empirical Eq. yes no 1 1
P37 ISP test no yes 1 1
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Fig.5.2 Comparison of Load-displacement Relationship Obtained from Monotonic Loading Analyses (Ref. 2)

99 - NUREG/CR-6554




Comparison

MEAN— ¢
MEAN

MEAN+ o
Exp-positive

NERE

Exp-negative

Load (kN)

500

0 t T T T T L T T Y T T T T T T
0 2 4 6 8
Displacement (mm)

Fig.5.3 Distribution of Displacement at Loads of Every 10kN Obtained from Analyses (Ref. 2)

NUREG/CR-6554 100




Comparison

~ 1500

£

= o

= J

«» 1000

w0 .

2]

& -

= §

& 500

= )

= 9
v N O DD e O I~ D O T ol [ - T O M~
888 TaasaasssgNZzsa
a o e O O Q. Q.

(a) Initial stiffness
2000

=
= 1500 ~
A
-
S
— 1000 —
E
3
=
= -
x 500
=
U
—_ o P D e O~ o O ® &8 & a8 S O~
fE &8s azaazdagsNN3ssa
e a & a a o ol
(b) Maximum load
E
_——
“-
[~ -
- ]
15
:-
E A
=
x ]
=10
]
n_
-
S 5
E-.._ .l.
QQ
& ]
(- SR
= 0- ]
(%]
= —_ N W D e WO~ S S &S © 8 6 o o~
S 8 o33 - =22 2K =2EEISEEEETES
& & & a o o a a N N NS & Al
. A A A a a-

(¢) Displacement at maximum load

Fig. 5.4 Comparisons of Push-over Analysis Results (Ref. 2)

101 NUREG/CR-6554




Comparison

Stress

Compression
envelope

G — %1 %2 Strain

T T Cracking point

(@ Pl11 () P13

1.2
- ]

1.0

ot

0’1/f°
Ol.B

0.2 0].4 0.6

) T L]
0.002 0.004 0006  0.008 0.010
strain, &

= 00

-0

() P34a @ P17

Fig.5.5 Uniaxial Hysteretic Modecls for Concrete for FEM Dynamic Analyses (Ref. 2)

NUREG/CR-6554 102




Comparison

Fig. 5.6 Typical Example of Simplified Hysteretic Model for Concrete
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6 CONCLUSIONS

In the nuclear industry, reinforced concrete (RC) structures are typically designed using linear elastic structural analysis
methods and empirical design formulations. Nonlinear analyses of any kind are rarely used in the seismic design of RC
structures. One exception may be in the seismic fragility analysis of structures and components, where critical RC structures,
such as turbine buildings, may be evaluated using nonlinear time history methods (e.g., Ref. 16). For such an occasion,
engineers tend to use a very simplified approach, modeling highly complex RC structures with a few well-defined nonlinear
elements. This may be due to the fact that more sophisticated analysis methods, such as those described in the foregoing
chapters, are generally perceived to be less reliable, and also most engineers do not have easy access to such analysis tools.

Presently, the structural design methods of reinforced concrete structures used in the nuclear industry have been developed
and evaluated based on a set of laboratory test data. Efforts have been on-going for the last two decades to develop powerful
analysts tools which could eliminate or significantly reduce the need for additional costly laboratory testing as new issues
arise. The SSWISP has provided valuable test data to evaluate such analysis tools, as well as to develop new analysis
approaches.

The specific objectives of this study were to perform nonlinear dynamic analyses of RC shear wall structures under severe
earthquake loading, to identify limitations of the currently available analysis methods, and to collect information on the
analysis methods worldwide. These objectives have been achieved through a series of analyses using both in-house and
commercial codes, and comparisons with test results as well as with analysis results performed by other SSWISP workshop
participants. The SSWISP workshop provided a unique opportunity to review the reliability and applicability of various
analysis methods to predict the dynamic behavior of shear wall structures under severe earthquake loads. Based on the
correlation and comparison studies presented in the previous chapters, the following conclusions may be drawn:

Commercial FEM Codes

It seems the applicability and reliability of commercially available FEM codes to RC shear wall structures are limited. This
may be due to the fact that most of these codes were developed in the 1970's, and therefore, do not reflect the latest
understanding of concrete mechanics, such as compressive strength reduction and shear transfer in cracked concrete. Several
participants attempted to improve the prediction accuracies by introducing original material models through user subroutines.
For some of these cases, the errors in prediction for push-over type static analyses were significantly reduced However, for
nonlinear dynamic analysis, the commercial codes were considered to be only partially successful at best.

FEM Dynamic Analysis

In a sense this is the “simplest” analysis approach since many of the engineering judgments and analysis assumptions,
necessary to allow modeling both structural systems and seismic loads in simplified approaches, can be eliminated. Several
participants presented remarkable analysis results using originally developed in-house codes, which were considered to be in
various stages of development. At the moment of this writing, the applicability and reliability of these codes to full-size RC
structures are still seriously limited. However, the quality and computational power of these codes seems to be improving
rapidly in the last few years. It was suggested by several participants at the workshop that, in the near future, the FEM may
be utilized to visualize the complex damage process of RC structures in severe earthquake events; a far cry from the current
engineering analysis practice.
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FEM Static Analysis

Three participants, P11, P17 and P34, presented results based on three alternate analysis methods, i.e., monotonic static,
cyclic static and dynamic analyses. With these, there are no significant differences in the predicted envelope curves,
hysteresis loops (between dynamic and cyclic static), and the predicted failure modes. It should be noted that all the good-
quality monotonic static analyses were performed using the displacement-control procedure, which clearly predicts the
location of the maximum strength point and traces post-peak behavior. Some of the analysis methods presented during the
workshop may be considered to be reliable analysis tools, although additional correlation studies using available test data may
be still needed to confirm their applicability in unique design conditions. The results of cyclic static analyses are particularly
useful in seismic design as the energy absorbing characteristics (i.e., equivalent damping values) can be evaluated.

Simplified Modeling Approach

Two types of simplified modeling approaches were presented during the workshop, i.¢., truss element model and beamn-type
element mode]. For application to typical shear wall structures in nuclear power plants, e.g., reactor buildings, the truss
model is considered to have a greater potential. It was observed that the assignment of the properties of each truss
component, particularly those of diagonal struts, is judgmental, and may require additional studies.

Lumped Mass Modeling Approach

In a typical simplified nonlinear dynamic analysis of a building, the weights are lumped at each floor level and the nonlinear
behavior is represented by the nonlinear springs for the story shear and story drift relationship. Based on several analysis
results developed using such modeling schemes, it was observed that the bending and shear deformations should be separated
and modeled with separate springs with different hysteretic characteristics. Also, the specification of the envelope curves and
the selection of hysteretic models were considered to be key factors for successfully reproducing the nonlinear dynamic

response.
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1. INTRODUCTION

In a study of the seismic design of shear walls in nuclear reactor buildings, the Nuclear
Power Engineering Corporation of Japan (NUPEC) recently conducted an extensive experimental
investigation. Two large-scale flanged shear walls (designated as ISP series) were subjected to
dynamic loading conditions using a high performance shaking table. The resuits of the tests were
made available to participants of the Seismic Shear Wall International Standard Problem
(SSWISP) Workshop, so that the data might be used for verification of seismic response analysis
codes.

At the request of the Brookhaven National Laboratory, a three-dimensional nonlinear
static finite element analysis of the test specimen was undertaken. The shear wall was analyzed
using the conceptual models, constitutive relations, and analysis software developed in-house at
the University of Toronto. Previous application of these analysis tools to monotonically loaded
shear walls were found to yield reasonably accurate results (Vecchio, 1992).

This report summarizes the analytical formulations, finite element models, analysis
results, interpretation of results, and relevant discussion pertaining to the ISP shear wall
analyses. A parametric study of the factors influencing the behaviour of the test structure, using
two-dimensional finite element analyses, is also presented.

2. CONSTITUTIVE MODELS

2.1 CONCRETE:

Concrete is modelled as an orthotropic nonlinear elastic material according to the
Modified Compression Field Theory (Vecchio and Collins, 1986). A complete description of the
model is provided in Appendix I. A condensed description follows.




The constitutive equations for multiaxial stress states are based on modifications to a
uniaxial stress-strain base curve. For the analysis discussed herein, the compressive stregs-strain
diagram used for the base curve is the Hognestad parabola, shown in Figure 1. It provides a
simple and reasonably accurate representation for normal strength concretes (<30 MPa). The
strength enhancement arising from confining stresses is modelled by modifying the peak stress,
and the strain at peak stress, of the parabolic base curve. The yield envelope proposed by Hseih
et al (1979) is used to determine the modifying peak stress factor. The modifying peak strain
factor is determined from a fit to the data of Kupfer et al (1969) for low peak stresses, and from
a relationship according to Richart et al (1928) for higher peak stress ratios. The negative
gradient of the descending branch of the stress strain curve is based on the Modified Kent-Park
model (Scott et al 1982).

In tension-compression stress states, a compression reduction factor (or compression
softening factor) is applied to the strength of the concrete after cracking. The compression
reduction factor used is that proposed by Vecchio and Collins (1992). Note that according to the
Vecchio/Collins model, both the peak stress and peak strain of the base curve are modified. The
reduction factor is a variable primarily dependent on the magnitudes of the strains transverse to
the compression direction (ie, by the degree of cracking).

The crack model used in the Modified Compression Field Theory (MCFT), on which the
analyses are based, assumes smeared rotating cracks. Cracking is assumed to occur normal to
a principal stress direction, when that stress exceeds the uniaxial cracking strength of the
concrete. While the constitutive relationships are formulated in terms of average stresses and
average strains, local stresses at crack locations are also considered. The presence of average
tensile stresses in the concrete implies local stress increases in the reinforcement at crack
locations, and the presence of shear stresses on the concrete crack surfaces. Thus, the crack
criteria includes a check that the local stresses in the reinforcement can be tolerated, and that
the shear stresses on the crack surfaces are below a limiting value (Vecchio and Collins, 1986).
Otherwise, a shear slip can occur along the crack surfaces. The model is hypoelastic nonlinear;
no attempt is made to reflect load/strain history in determining crack opening and closing.
Cracks are assumed to heal’ if the strains fall below the cracking strain.

The common approach of using a shear retention factor in modelling the shear stiffness
of cracked concrete is not employed. Rather, in the manner of a true orthotropic elastic material,
the shear stiffnesses are defined by the moduli of elasticity in the three principal directions, and
by the associated Poisson’s ratios. The Poisson’s ratios are variable, modelled according to the
data of Kupfer (1969), and are not necessarily set to zero after cracking.

Due to the influence of bond, post-cracking average tensile stresses can develop in the
concrete between cracks. This so-called tension stiffening effect is modelled by adding a
descending branch to the constitutive law for concrete in tension. The model proposed by Izumo
et al (1992) is used for the three-dimensional analysis presented herein.




2.2 REINFORCEMENT:

Average stresses in the reinforcement are related to average strains using the standard
elastic-plastic stress-strain_relationship. A tri-linear curve is used to model strain hardening,
although strain hardening was not relevant to the analyses herein. The MCFT currently does not
model shear stiffness due to dowel action.

2.3 BOND AND SLIP:

The MCFT, currently formulated for monotonically increasing quasi-static load
conditions, assumes perfect bond to exist between the concrete and the reinforcement. Hence,
no explicit bond-slip model is used, and no slip of embedded rebar is assumed to occur in a
standard analysis. However, tests indicate that the degradation in the bond between concrete and
reinforcement, prevalent in dynamic and reversed cyclic loading conditions, has the effect of
diminishing the development of post-cracking tensile stresses in the concrete. Thus, the effects
of bond-slip can be approximated to some extent by discounting the tension stiffening effect; that
is, by assuming no post-cracking tensile stresses in the concrete.

3. FINITE ELEMENT ANALYSIS PROCEDURE
3.1 THREE-DIMENSIONAL ANALYSES:

Analyses were undertaken using program SPARCS, a three-dimensional nonlinear finite
element program developed at the University of Toronto (Vecchio and Selby, 1991). SPARCS
incorporates the constitutive relationships and conceptual models of the Modified Compression
Field Theory (Vecchio and Collins, 1986).

SPARCS employs a total load, secant stiffness approach in the formulation of its
nonlinear analysis algorithm. An analysis usually begins by assuming linear elastic isotropic
material properties. Element stiffness matrices are calculated and then the global stiffness is
assembled. The load vector, which includes prestrain and expansion effects if any, is then
formed. Nodal displacements are determined, from which one strain tensor is calculated for each
element. Principal strains and corresponding directions are then found. Evaluation of the
concrete and steel stresses using the constitutive models permits determination of secant moduli
and, in turn, new material stiffness matrices. Average secant moduli are calculated; if they have
converged to the specified limit, then the load stage is complete. Otherwise, the newly calculated
material stiffness values are used to perform another linear elastic analysis. Normally,
satisfactory convergence is achieved within 10 to 25 iterations. The control procedure in
developing a load-deformation response history for a structure is by load control, with
increments of load applied in each load stage.

SPARCS employs an 8-noded (24 degree of freedom) brick element which assumes linear
displacement fields. As well, a 6-noded wedge element and a truss-bar element are available.




Reinforcement is typically modelled as smeared within the elements, although it can be discretely
represented using the truss-bar elements.

3.2 TWO-DIMENSIONAL ANALYSES:

The equivalent two-dimensional nonlinear finite element program is TRIX (Vecchio,
1989). It incorporates essentially the same material models and analytical formulations as
SPARCS.

TRIX was used for the 2-D parametric studies described later.

4. MODELLING OF TEST SPECIMEN

Taking advantage of symmetry, one-half of the structure was modelled using the glement
mesh shown in Figure 2. A total of 1090 8-noded brick elements were used, requiring 1932
nodes and 5796 degrees of freedom. However, it should be noted that the large number of
elements was a consequence of using an automatic mesh generating facility available, resulting
in a disproportionate and unnecessary number of elements in the top slab and bottom slab
regions. The top slab consumed 380 elements; the base slab required a similar amount; each
flange consumed 90 elements, and the web was modelled with 150 elements. A significantly
more efficient analysis, with no deterioration in accuracy, could be achieved through a coarser
discretization of the top and bottom slabs. The element numbering scheme for the web portion
of the structure is given in Figure 3.

The structure was assumed fully restrained at all nodes along the bottom surface of the
base slab. The total vertical load, having a constant value of 600 kN, was uniformly distributed
among the interior nodes at the mid-depth of the top slab. Similarly, the lateral loads were
applied as uniformly distributed along the mid-depth of the top slab.

The concrete material properties used were as provided in the NUPEC Report of
September 1994. The concrete in the web/flange regions was modelled as having a compressive
strength of 28.6 MPa, and a tensile strength of 1.77 MPa. The strain at peak stress, taken from
the cylinder curves provided, was 0.0025. The initial modulus of elasticity and the Poisson’s
ratio were 22,900 MPa and 0.155, respectively.

The reinforcement ratios in the web were 1.219% in both the horizontal and vertical
directions. The reinforcement in the flange regions varied with position. At the intersection of
the web and flange (a 75 x 100 mm area), the vertical reinforcement ratio was 1.707% (ie 4
rebars). For a distance of 250 mm out from the flange/web corner, the vertical reinforcement
ratio was 0.760% . Beyond that point, to the outer tips, the vertical reinforcement ratio used was
0.366%. The horizontal reinforcement in the flanges was set at 1.371% to a distance 250 mm
out from the web/flange corner, and at 0.914% in the areas beyond. The top and base slabs
were nominally reinforced in all three directions.
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The reinforcement was modelled as elastic-plastic, with a yield stress of 384 MPa and
a modulus of elasticity of 184,400 MPa.

Lateral load was applied in increments of 98.1 kN (10 tonf) per load stage, up to 981 kN.
Beyond that point, the load step size was reduced to 49.0 kN (5 tonf). A tight convergence
criteria was selected, requiring up to 30 iterations at each load stage. Using a MIPS Challenge
M R4400/150 workstation, each load stage required up to 175 min CPU time, and approximately
8 hours real time to execute. Determination of maximum load was made from the flattening
deformation response curves (e.g. displacements, strains in the reinforcement, shear strains in
the concrete). At ultimate load, strains and displacements increased to extreme values (eg
horizontal displacement of the top slab in excess of 200 mm), and was accompanied by an
inability to converge to stable values. Execution of the program required a disk storage memory
size of approximately 120 MB.

5. ANALYSIS RESULTS
5.1 RUN 1 - TENSION STIFFENING CONSIDERED:

The initial analysis of the ISP shear wall was done considering the full effects of tension
stiffening, as would be appropriate under monotonically increasing load conditions. Also, it
should be emphasized that all the modelling decisions were made and all the analysis parameters
were set before this initial (and only) analysis was executed. No ’fine-tuning’ of the analysis was
done subsequently in an attempt to obtain a better fit to the experimental resuits.

Under a monotonic lateral load applied at the mid-depth of the top slab, the shear wall
was predicted to experience a brittle flexural/shear failure near the base. The predicted maximum
strength of the wall was 1815 kN (185 tonf). The mode of failure, represented in Figure 4,
involved a shear/crushing failure of the concrete web leading to a shear failure plane forming
approximately 300 to 500 mm above the base. Crushing of the concrete was also prevalent in
the web regions adjoining the right flange. The web failure was partially initiated by the prior
yielding of the left flange. Yielding of the flange resulted in a deterioration of the clamping
force, and thus a deterioration in the confinement effects, from which the web had benefitted.

The relatively brittle response of the wall is reflected in the load-deformation response
curves. Shown in Figure 5 is the horizontal displacement of the top slab (at its mid-depth).
Figures 6 and 7 provide the vertical relative displacements of the left and right flanges,
respectively. Figure 8 documents the predicted locations of first cracking, first yielding and first
crushing.

The first cracking sustained by the structure was predicted to be shear cracking in the
web, in the lower left region centered around element 457 (see Figure 3), at a load of 490 kN.
By a load of 590 kN, the shear cracking had propagated essentially across the full width and full
height of the web. At a load of 785 kN, the first bending crack developed in the left flange, at




the web-flange junction, just above the base (element 381). As loading increased, the flexural
crack zone propagated outward and upward. At 1175 kN load, the horizontal flexural cracks had
extended across the full width of the flange; the crack zone extended approximately one-third
of the way up the flange. With increased loading, the crack zone continued to expand up the
flange. Figures 9(a) and 9(b) provide the crack patterns at 67% capacity (1220 kN) and 100%
capacity (1815 kN), respectively. It should be noted that the right flange, and the top and bottom
slabs, remained essentially uncracked.

The flange wall vertical rebar was the first reinforcement to yield, occurring at a load
of 1420 kN. Interestingly, however, the location of yielding was towards the outer tip of the
flange, just above the base (elements 387-389). As load increased, the yielding zone gradually
moved in toward the web. Yielding across the full width of the flange did not occur until a load
of 1570 kN. The zone of yielding also propagated up the flange such that by ultimate load,
yielding was widespread in the left flange. Figure 10 shows the straining of the vertical
reinforcement in the flange, at the web junction and just above the base (ie element 381). As
ultimate load was approached, rapid and uncontrolled yielding of the reinforcement was observed
to occur. This ultimately contributed to the failure of the structure.

Yielding of the vertical reinforcement eventually migrated into the web zone. First
yielding of the web wall vertical rebar occurred at a load of 1665 kN, in the bottom left corner
area (elements 390, 391, 423). As load increased, the yield zone extended inward along the
base. Failure of the wall ensued shortly after.

The web wall horizontal rebar was not highly stressed and did not yield. The greatest
demand on the horizontal reinforcement was in the area adjacent to the right flange, about
700 mm above the base (elements 500 to 503). Here, the horizontal reinforcement acted together
with the right flange to contain the outward thrust developed in the concrete compression strut
that formed. Just prior to failure, the average stress in the horizontal reinforcement was about
67% of the yield stress. At crack locations, the maximum local stress in the horizontal
reinforcement was approximately 75% of the yield stress.

The concrete in the web zone was highly stressed. The internal load-carrying mechanism
that prevailed can be visualized as a simple strut-and-tie system, with the left flange representing
a tension tie, the top and bottom slabs representing stiff chords, and a diagonal compression strut
forming in the web from the top left comer to the bottom right corner. While the most highly
stressed zone was that in the vicinity of the compression toe (elements 436, 469), the web was
nearly uniformly stressed throughout, as it would be in the case of pure shear. It should also be
noted that the zones immediately adjacent to the top and bottom slabs experienced less distress
because of the out-of-plane confinement provided by the massive slabs. First crushing occurred
in a zone about 400 mm above the base and 300 mm in from the right flange (elements 436,
437, 469), at a load of 1620 kN. The zone of crushing quickly expanded inward and upward.
At 1720 kN, the concrete was extensively damaged in a large area spanning the lower right
quadrant of the web. The concrete at about 300 to 500 mm up from the base (elements 434 to
437, 464 to 469) was in post-peak response, indicating the formation of a potential failure plane.




The shear strain response of the concrete web, at element 437, is shown in Figure 11. Large
shear strains were apparent as the ultimate load was approached, indicating that a concrete shear
failure was imminent.

The concrete in the compression flange was not highly stressed. At failure, the stress at
the base of the flange was about 50% of the crushing strength, dropping rapidly to less than 10%
of the crushing strength at distances 500 mm and greater above the base.

The analysis procedure assumed perfect‘ bond between concrete and reinforcement.
Hence, no predictions could be made of the vertical slip of rebar at the base of the flanges.

5.2 RUN 2 - TENSION STIFFENING IGNORED:

The analysis was repeated with all parameters unchanged except that no tension stiffening
effects were considered in cracked concrete. For concrete structures subjected to longterm or
repeated loads, it has been suggested that post-cracking tensile stresses in concrete be reduced
or ignored (Collins and Mitchell, 1991). :

The consequences of ignoring tension stiffening effects were minor. The ultimate load
capacity of the wall was only slightly reduced, by 3% to 1765 kN (180 tonf), and the failure
mode was essentially unchanged. At the intermediate and later load stages, the'wall did exhibited
more flexibility, thus better representing the deflection responses observed in the test specimens.
The horizontal deflections of the top slab, obtained from the two analyses, are compared in
Figure 5. The vertical relative deflections of the flanges are given in Figures 6 and .7; the strains
in the vertical reinforcement at the base of the left flange are shown in Figure 10; and the shear
strains in the web near the bottom right corner (element 437) are compared in Figure 11. The
absence of tension stiffening resulted in a loss of stiffness of approximately 10 percent beginning
at about 1275 kN load (approximately 70% of ultimate).

The sequence and locations of cracking, yielding, and crushing, and the loads at which
they occurred, were also essentially unchanged. The only significant deviations from the
behaviour chronicled previously were that: i) yielding of the vertical reinforcement in the left
flange, at the base near the tip, occurred at an earlier load; 1275 kN versus 1420 kN with
tension stiffening considered; ii) cracking of the left flange, in the tip regions, was more
concentrated towards the base; and iii) the horizontal reinforcement in the web showed slightly
higher stress. The absence of tension stiffening impaired the formation of a well-distributed
crack pattern in the flange regions away from the web, concentrating the deformations near the
base. In the web, the absence of post-cracking tensile stresses in the concrete placed a slightly
higher demand on the reinforcement.

5.3 DISCUSSION:

It must be emphasized that the analyses discussed simulate behaviour under the
supposition of static monotonically increasing load. That the specimens were tested under




dynamic cyclically-reversing loads raises some important factors that must be considered in
trying to understand and correlate the predicted and observed behaviours.

Firstly, it is observed that the experimentally measured load-deformation responses are
significantly less stiff than those predicted. The loss of tension stiffening effects under reversed
cyclic load conditions has already been suggested as one possible reason for the discrepancy,
accounting for a portion of the difference as evidenced by the results of the two analyses.
However, a probably more significant factor is the degradation in the bond and anchorage of the
reinforcement, particularly at the base. This behaviour is seen with cyclic loading conditions
only, and would not have manifested itself had the wall been subjected to monotonic loads. The
analyses conducted made no allowances for bond and anchorage shp at the base.

The analyses showed that the vertical reinforcement yielded across the full width of the
left flange at approximately 1570 kN, and that yielding of the vertical reinforcement in the lower
left region of the web commenced shortly after at about 1620 kN. If the loads were then
reversed, the vertical reinforcement in the right flange and right lower regions. of the web could
be expected to yield at similar load levels. However, the reinforcement on the. left side, having
undergone plastic yielding previously, would have retained some permanent offset strain.
Through each cycle of loading, the offset strains resulting from yielding would tend to grow;
this phenomenon is well-known and commonly referred to as the ’ratcheting effect’. The
consequence is two-fold: i) a concentrated zone of damage is created near the base, in the yield
regions, leading to a potential shear failure plane being established; ii) the increased strains
result in a diminished confinement of the web, and an increased influence from compression
softening, lowering the concrete web’s ability to resist load. Thus, in situations where conditions
lend themselves to this ratcheting effect, the reversed loading can result in a lowering of the
ultimate load capacity and a change in the failure mode. It is interesting to note that the analyses
predicted yielding of the vertical reinforcement in the flange and web at about the same load at
which failure was observed in the test specimens. This would be consistent with observations
from other experimental investigations; most notably with beam-column joints where this
ratcheting behaviour leading to a shear-failure plane at the joint interface is well known. Thus,
that the static analysis predicts a somewhat higher failure load (by approximately 12%), and a-
failure mode more in the nature of a shear-crushing of the web, is not unexpected. Further, one
might speculate that a similar wall specimen tested under static loads would exhibit, to some
degree, these variances relative to the dynamically tested specimens.

6. PARAMETRIC STUDY

6.1 OVERVIEW OF STUDY:

A parametric study was undertaken in an effort to more fully understand the behaviour
of the test specimens, the factors influencing behaviour, and the factors influencing the analysis
results. Due to the heavy demands on resources imposed by the three-dimensional models
previously discussed, a two-dimensional model was used for the study. The finite element mesh




used is illustrated in Figure 12; note that the exact same number and arrangement of elements
was used in modelling the web portion of the wall as was used with the three-dimensional
model. The flange portions, of course, were not modelled out-of-plane and thus were represented
by a single element of appropriate thickness. The material models and analysis parameters were
as specified with the three-dimensional model. Analyses were performed using program TRIX,
as previously described. It is interesting to note that the TRIX analyses required apprommately
1/50th the CPU time as a comparable three-dimensional analysis.

6.2 INFLUENCE OF THREE-DIMENSIONAL EFFECTS:

- A two-dimensional analysis of the wall indicated a behaviour somewhat similar to that
obtained from the three-dimensional analysis. The predicted lateral deflections of the top slab,
from the two analyses, are compared in Figure 13. The predicted failure mode from the 2-D
analysis is shown in Figure 14. The following observations can be made:

1) the 2-D analysis predicts an ultimate load capacity of 1960 kN, approximately 8%
higher than that predicted by the 3-D analysis;

ii) the 2-D analysis predicts a substantially stiffer response; and

iii) the failure mode in the 2-D analysis involves a sliding shear failure of the concrete
web at an elevation of about 300 mm above the base.

Concentrating the full width of the flanges into a single element in the two-dimensional
model has several significant implications. The thick, and thus very stiff, flange elements are
assumed fully connected to the web elements. Thus, the degree of lateral and vertical
confinement they provide to the web is over-estimated. Further, the shear lag effect that occurs
in the out-of-plane direction in the three-dimensional model, and in reality, is not considered.
Finally, the ability of the flange elements to carry a lateral shear is over-stated when full fixity
to the web is assumed. These factors contribute to over-estimating both the strength and stiffness
of the wall, relative to the three-dimensional analysis.

Not considering out-of-plane effects negates the triaxial confinement that occurs in the
web regions adjoining the base slab. The ensuing strength enhancement in these regions is thus
not fully taken into account. However, the effect quickly dissipates as one moves away from the
base. As a result, the failure plane is unchanged relative to the results of the three-dimensional
analyses.

6.3 INFLUENCE OF EFFECTIVE FLANGE WIDTH:

In developing a two-dimensional model of the test structure, the question arises as to how
much of the flange width is effective in contributing to the lateral load resistance of the wall.
Four series of analysis were run, with the effective flange width (hence element thickness)
modelled variously as 100% (2980 mm), 67% (2012 mm), 33% (1043 mm) and 0% (75 mm)




effective. The corresponding lateral deflection responses at the top slab level are compared in
Figure 15.

It can be seen that the assumption of a reduced effective flange width has a pronounced
effect on the predicted response. Strength and stiffness are greatly diminished with each
successive reduction in width. When the flange is considered totally ineffective, for example,
wall strength is reduced by 55%. Also significant is the change in predicted failure mode. With
a decreasing flange width, the failure mode becomes more flexural in nature. Increasing tensile
strains and pronounced yielding are observed in the left flange at earlier loads, and eventually
capacity is governed by a concrete crushing failure in the right flange.

In comparing the results of these analyses to those of the three-dimensional analysis, and
to the test results, the indication is the flanges are nearly fully effective in contributing to the
response of the wall in some manner. In a 2-D analysis of this wall, an effective flange width
of somewhere between 67% and 100% seems most appropriate. As described above, however,
considering the flanges 100% effective results in an over-estimation of strength and stiffness.

6.4 INFLUENCE OF TENSION STIFFENING MODEL.:

The assumption of post-cracking tensile stresses in the concrete has a measurable impact
on the computed stiffness of the structure and, to a lesser extent, on the computed strength. This
was observed in the results of the two series of three-dimensional analyses previously described.
To get a firmer understanding of the significance of this mechanism, and to test the sensitivity
of the analysis results to the type of tension stiffening model used, four analysis series were
undertaken. The analyses differed in the tension stiffening models used, employing the
following: i) Izumo et al model, as was used in the 3-D analyses; experience has shown this
model to provide reasonable results in flexure-dominated conditions; ii) Vecchio-Collins model,
which seems to provide the most accurate simulations in membrane stress conditions but tends
to overestimate stiffness under flexural conditions; iii) Collins-Mitchell model, which serves as
a good general purpose model and provides reduction factors for longterm and cyclic loading
conditions; and iv) no tension stiffening effects after cracking.

The resulting lateral load-deflection responses are compared in Figure 16. As can be
seen, the responses predicted using the three alternative tension stiffening models exhibit only
minor differences. The Vecchio-Collins model is stiffest, and the Izumo et al model is least stiff,
as would be expected. However, the differences in deflections never exceed 10% at any load
level. Conversely, ignoring tension stiffening effects results in deflections increased by as much
as 30% at intermediate and higher load levels. The predicted strength of the wall is also affected
somewhat, since the degree of deflection sustained impacts on the degree of containment
afforded the web. However, the influences are minor, except when tension stiffening is
discounted altogether. In the latter case, the predicted strength is reduced by about 5%. There
is no influence on the predicted failure mode.
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6.5 INFLUENCE OF COMPRESSION SOFTENING MODEL:

As is well documented in the literature, the effective compressive strength of concrete
is reduced in the presence of transverse tensile strains. For elements subjected to membrane
shear, as is the web wall of the structure in question, compression softening can significantly
affect the strength, stiffness and failure mode of the structure. To investigate the magnitude of
the effect in this case, two analyses were done: one using the Vecchio-Collins 1992 model for
compression softening; and one in which no compression softening effects were considered.

The predicted load-deformation responses are compared in Figure 17. When compression
softening is considered, only a slight degradation in stiffness is observed at later load stages.
Further, the ultimate load capacity is reduced by a mere 3%. Thus, for this structure, the
compression softening effect is not significant. The influence is minimal because neither the
vertical nor horizontal reinforcement in the highly stressed regions of the web yielded. The
transverse tensile strains remained relatively small, and hence the reductions in compressive
strength and stiffness were small. The compression softening effect becomes much more
pronounced in situations where the tensile strains become large, as when there is yielding of
either the horizontal or vertical reinforcement in the membrane elements.

6.6 INFLUENCE OF CONCRETE CONFINEMENT:

The analysis results discussed previously indicated that concrete strength enhancement
due to confinement affected the strength and failure mode of the wall to some degree. Recalling
the results of the both the 2-D and 3-D models, confinement effects introduced by the massive
base stiffened the adjoining web regions and pushed the failure plane up the wall away from the
base. And the vertical and lateral confinement provided by the stiff flange regions allowed the
concrete in the web to achieve a higher strength before failing.

To further test the role of confinement effects in the response of the wall, an analysis was
done in which the concrete confinement effects were removed. That is, no strength or stiffness
enhancement was allowed due to biaxial or triaxial compression effects. The resulting load-
deformation response of the wall is compared in Figure 18 to the standard case (which allows
for confinement effects).

It is seen that neglecting confinement effects results in a modest decrease in the load
capacity of the wall, with a reduction of about 5%. The failure mode is essentially unchanged.
Also, there is virtually no effect on the stiffness of the load-deformation response prior to
failure.

6.7 INFLUENCE OF AMOUNT OF VERTICAL REINFORCEMENT IN FLANGES:
The three-dimensional analyses suggested that the failure of the wall was governed by

the shear-crushing failure of the concrete in the web, occurring after yielding of the vertical
reinforcement in the left flange. Once the flange lost its ability to clamp down on the web, the
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reduced confinement of the web precipitated failure. Thus, the question remains: Was the failure
brought on by yielding of the reinforcement in the flanges? Would averting yield in the flanges,
by increasing the amount of reinforcement provided, significantly increase the strength and
stiffness of the wall? To address these questions, the standard 2-D analysis was coupled with two
additional analyses: one with 25% more reinforcement provided in the flanges; and one with
25% less reinforcement. The results are shown in Figure 19.

It is seen that the strength and stiffness are not affected in a degree proportional to the
amount of reinforcement provided. The increase of 25% in reinforcement area results in an
increase in load capacity of about 5% relative to the standard case. Similarly, a decrease in
reinforcement of 25% results in a decrease in capacity of about 3%. In all cases, the
reinforcement in the flanges continues to yield and the failure mode remains unchanged.
Deflections are influenced to only minor degrees as well. Thus, while yielding of the
reinforcement in the flanges contributes ultimately to a shear failure of the web, it is not a major
influencing factor.

6.8 INFLUENCE OF CONCRETE STRENGTH:

From earlier analyses it has been concluded that failure of the wall was dictated by a
shear failure of the concrete web, and that compression softening effects and loss of confinement
due to yielding of the tension flange played only minor roles. This then suggests that the
concrete failure in the web was a result of the direct compressive strength being exceeded. If
so, changes in the strength of the concrete should have a noticeable effect on the strength of the
wall. To test this hypothesis, another set of analyses was undertaken. In addition to the standard
case, two other analyses were performed: one with the compressive strength of the concrete in
the wall increased by 15%; and another with the strength decreased by 15%. The resulting
lateral load-deformation responses are given in Figure 20.

It is seen that the wall strength is influenced by the concrete strength to a much larger
degree than it was by the flange reinforcement amount. A 15% increase in concrete strength
brings an 8% increase in the wall’s load capacity; a 15% decrease in concrete strength results
in a 8% decrease in wall capacity. Deflections are similarly affected. Given that the wall
capacity is influenced by other structural parameters as well, including the amounts of vertical
and horizontal reinforcement in the web and the area of the compression flange, the correlation
between concrete strength and wall load capacity is strong. The indication is that the concrete
strength is being fully utilized.

6.9 INFLUENCE OF MESH SIZE:

With respect to the discretization of the web wall, the finite element mesh used for the
two-dimensional analyses was purposely made similar to that used for the three-dimensional
analyses. Considering the stiff nature of the top and bottom slabs, and the low height-to-width
ratio of the wall, one can expect boundary effects to be significant. Given that the finite elements
used were low-powered, one must consider whether the mesh used was sufficiently fine. To this
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end, two additional 2-D analyses were undertaken with progressively finer meshes. Recall that
the original 2-D mesh contained 246 elements. The additional analyses employed meshes of 540
elements and 984 elements, respectively; roughly, 2 times and 4 times the density of the original
mesh.

Compared in Figure 21 are the predicted load-deflection responses of the top slab. It is
immediately evident that there are significant differences in the computed responses. The finer
meshes result in: i) lower cracking stresses; ii) reduced stiffness after cracking; and iii) a lower
ultimate load capacity. Post-cracking deflections are increased by as much as 50% in the later
load stages, and the ultimate load is reduced by 17%. Note that the ’doubled mesh’ and

quadrupled mesh’ give essentially similar results, suggesting that a further refinement of the
mesh-is not necessary.

The finer meshes are better able to capture the lateral expansions of the web wall that
occur away from the constrained top and bottom ends. Shown in Figure 22 is the predicted
bulging of the wall at mid-height; that is, the relative horizontal displacement between the two
flanges in the plane of the web. The finer meshes predict considerably higher expansions (i.e.
tensile strains). The result is an increased compression softening effect in the web concrete,
higher stresses in the web reinforcement, and higher stresses in the restraining flanges. These
effects result in a decreased stiffness, and an earlier failure of the concrete. The predicted modes
of failure are not significantly different, however, as can be seen in Figures 23 and 24.

7. CONCILUSIONS

From the three-dimensional nonlinear static finite element analyses undertaken of the ISP
shear wall, the following conclusions may be drawn:

i) The wall strength is predicted to be 1815 kN under monotonically increasing lateral
load; this is approximately 12% greater than the experimentally observed value with the
wall tested under dynamic cyclically reversing loads.

i) The predicted load-deformation responses agree well with the observed behaviour
before cracking; however, the cracking load and post-cracking stiffness are over-
estimated. The degradation of tension stiffening effects partially accounts for the
decreased stiffnesses observed in the test specimens. Deterioration in the bond and
anchorage of the reinforcement, which was not considered in the analyses, is likely a
contributing factor as well.

iii) The predicted failure mode is one involving a shear-crushing of the concrete web,
resulting in a shear plane approximately 300 to 500 mm above the base, occurring after
yielding of the reinforcement in the tension flange. The predicted mode of failure is in
reasonable agreement with the observed failure.

13




iv) Three-dimensional effects are significant. The flanges are near fully effective in
contributing load resistance to the structure. The massive top and bottom slabs provide
out-of-plane confinement to the web wall, enhancing the strength of the adjoining
concrete web elements. '

v) The sequence and location of yielding in the flange and web regions were such that
likely ’ratcheting effects’ influenced the failure mode and load capacity of the wall. This
phenomenon is commonly observed in beam-column joints subjected to cyclic loads. Its
effect is to produce a well-defined shear failure plane across the zone of yielding, at
loads slightly higher than those required to yield the reinforcement, sequentiaily, on both
- faces of the element.

From the parametric study undertaken, using two-dimensional nonlinear static finite
clement analyses, the following conclusions are supported:

i) Two-dimensional analyses fail to capture some important three-dimensional effects,
such as the out-of-plane confinement provided by the base slab and shear lag effects in
the flange walls. They also lead to an over-estimation of the lateral and horizontal
confinement of the web provided by the flanges, and an over-estimation of the
contribution of the flange elements to the lateral shear stress distribution. The result is
a slightly stronger and stiffer response than obtained using a three-dimensional analysis.
However, the loss in accuracy is not severe, and the failure mode remains predicted well.

if) In modelling the thickness of the flange elements, an effective thickness of between
67% and 100% of the width of the flanges appears to be appropriate. The flanges are
nearly fully effective.

ili) The choice of a tension stiffening model, among several available, does not
significantly affect behaviour. However, ignoring tension stiffening effects results in
substantial increases in post-cracking deflections, and a slight lowering of the ultimate
load capacity.

iv) Compression softening effects (ie the degradation in compressive strength of cracked
concrete due to the influence of transverse tensile strains) is not a significant influencing
factor for this test specimen.

V) Confinement effects have a minor influence, resulting in a slightly increased load
capacity and a positioning of the failure plane up away from the base.

vi) The amount of vertical reinforcement provided in the flanges is not a significant
influencing factor, although yielding of this reinforcement immediately precedes the web
shear failure. '
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vii) The compressive strength of the concrete in the web is fully utilized at ultimate load.
Increasing or decreasing the concrete strength significantly affects the predicted failure
load of the structure. Thus, the strength of the wall is most governed by the strength and
thickness of the web. The vertical and horizontal reinforcement in the web are of
sufficient amounts to not yield. The flanges are of sufficient width, and sufficiently
reinforced, to not precipitate a flexural failure.

viii) The element mesh used to model the web wall, in both the standard two- and three-

dimensional analyses, was somewhat too coarse. Analytically, there was insufficient

freedom for the mid-height regions of the web to overcome the restraint imposed by the
- stiff top and bottom slabs. A finer mesh predicts a considerably less stiff response, and
a significantly lower load capacity. )

8. RECOMMENDATIONS

Given the results of the sensitivity study pertaining to mesh size, the question arises
whether a similar order effect would occur in the three-dimensional analyses. If reductions of
the same proportion were realized in the 3-D analyses, the resulting ultimate load capacity and
load-deflection responses would be very close to those measured experimentally. Thus, it is
recommended that the three-dimensional analysis be repeated using an improved mesh for the
web and flange regions. The total degrees of freedom could be maintained at a reasonable
number by adopting a coarser discretization for the top and bottom slabs.

Some aspects of the parametric study, conducted using two-dimensional finite element
analyses, might also be repeated using a finer mesh. It is possible that factors such as
compression softening may assume more significance, given the reductions in strength and
stiffness previously seen with the finer meshes.
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Table 1

ANAL YSIS SUMMARY

General information -

(1) Contact person
(2) Organization
(3) Address

(4) Tel. No.

(5) Fax. No.

(6) E-mail address

Computer information

(1) Type of computer

: F.J. VECCHIO

: Dept. of Civil Engineering, University of Toronto
: 35 St. George Street, Toronto, Canada

: (416) 978-5910

: (416) 978-7046

: fjv@civ.utoronto.ca

: MIPS Challenge M Workstation R4400/150

(2) Memory size used : 120 MB

Code information

(1) Category of analytical method . Static F.EM.

(2) Code name and version : SPARCS (original)
(3) User specific changes to code : n/a

(4) Total number of degrees of freedom : 5796

(5) Non-linear analysis algorithm : total load, secant stiffness
Dynamic analysis condition

(1) RUN No. (1-5) . Dfa

(2) Time step size : n/a

(3) CPU time for 12 seconds analysis period : nja

(4) Consideration of vertical input : n/a

Static analysis condition

(1) Control procedure of load increment: load control

(2) CPU time: 175 minutes per load stage

(3) Load step size (Max. and Min. value): 98 kN / 49 kN

(4) Determination procedure of maximum load: response curves
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Figure 4
Predicted Failure Mode From 3-D Analysis
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Phenomena Top Slab
Horizontal Displacement Horizontal Force
(mm) (N)
(a) Fl.afxgg wall 1.200 785 x 10°
Initiation point of bending crack
(b) Web wall 0.614 490 x 10°
Initiation point of shear crack
(c)-Flange wall vertical rebar 4.684 i 1420 x 10°
Initiation point of yield crack
{d) Web wall vertical rebar 4 3
Initiation point of yield crack 7.453 1665x 10
(e) Web wall horizontal rebar n/a n/a
Initiation point of yield crack
(f) Crush point 6.814 1620 x 10°
Maximum load 9.862 1815 x 10°
— X
First shear cracking

First flexural cracking / — First crushing
\J l
]\\

First flange vertical rebar yielding

First web vertical rebar vielding

Figure 8
Summary of Caiculated Resuits
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Influence of Three-Dimensional Effects




Figure 14
Predicted Failure Mode From 2-D Analysis
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A Constitutive Model for Analysis

of Reinforced Concrete Solids

R.G. Selby’ F.J. Vecchio'

October 16. 1994

Abstract

This paper describes formulations intended to expand the applicability of the modi-
fied compression field theory for general three-dimensional analysis of reinforced concrete
solids. Proposed stress-strain relationships are based on an orthotropic nonlinear elas-
tic model that acknowledges the asymmetric response of plain concrete under multiaxial
stress conditions. Lateral expansion of concrete subjected to compression is included for
all stress states, even those involving tension. The formulation accounts for complex be-
haviour such as concrete strength enhancement due to confinement, concrete strength
degradation due to transverse cracking, tension stiffening and crack slip. Provisions to
more accurately reflect the response of high strength concrete are also presented. A sam-
ple analysis of a reinforced concrete shear wall is presented to illustrate several features

of the stress-strain model.

*Research Engineer, Morrison Hershfield Ltd., Toronto

tProfessor, University of Toronto, Toronto




1 Introduction

In an effort to determine more realistic constitutive relationships for cracked reinforced con-
crete, Vecchio and Collins (1982) tested a series of reinforced concrete panels. From these
tests, the modified compression field theory (MCFT), which included stress-strain relation-
ships for cracked reinforced concrete under plane stress conditions, was derived. Im this
theory, directions of principal stress and directions of principal strain were assumed to co-
incide. Cracked concrete was treated as an orthotropic material with its own stress-strain
relationships in terms of average stress and average strain. Of particular significance was that
these relationships reflected the reduced compressive strength of concrete in the presence of
large transverse tensile strains, and accounted for the significant tensile stresses that exist in
the concrete between cracks. Local stress conditions at cracks were also examined. The mod-
ified compression field theory was shown to be capable of accurately predicting the response

of reinforced concrete elements subjected to in-plane shear and normal stresses.

Adeghe (1986) and Stevens (1987) were the first to use the constitutive models of the modified
compression field theory in finite element work. Each of these programs used a plane stress
element and was cast in a tangent stiffness algorithm. Some numerical diffficulties were
encountered in modelling the softening branches of the concrete stress-strain curves in tension
and compression. Also, the tangent stiffness matrix, computed according to the modified
compression field theory, is unsymmetric. In an attempt to overcome these problems, both

Adeghe and Stevens were forced to compromise the formulations of the modified compression

field theory.

To avoid the problems encountered by these tangent stiffness approaches, Vecchio (1989)
developed a secant stiffness algorithm for analysis of reinforced concrete subject to conditions
of plane stress. By using a secant stiffness based approach, the asymmetry of the stiffness
matrix was avoided while still completely representing the modified compression field theory.

The program proved to be numerically robust, while predicting the strength. deformation
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pattern and failure mode with good accuracy for a variety of membrane structures (Vecchio

1992, 1990, 1989).

The constitutive relationships of the modified compression field theory were first used in 2
three-dimensional finite element context by Vecchio and Selby (1991). The piane stress con-
stitutive relationships were tentativeiy extrapolated to three dimensions. In accordance with
the two dimensional formulation of Vecchio, the program (SPARCS) used a secant stiffness
algorithm with a smeared, rotating crack model. As a check on the proposed algorithm,
a series of reinforced concrete beams subjected to varying conditions of flexure and torsion
were modelled. The program was able to provide realistic predictions of ultimate load, failure

mode, load-deformation response and locai strain conditions.

This paper discusses some of the recent research work {Selby 1993) that has been directed at
improving these tentative three dimensional constitutive relationships. In particular, models
to include the effects of lateral expansion and confinement are formulated to be compatible
with the existing cracked conci-ete theory. The confined concrete theory is implemented in an
orthotropic nonlinear elastic model, consistent with the crack model. Simple confined con-
crete stress-strain relationships are developed from basic experimentally observed behaviour
of concrete specimens subjected to muitiaxial compressive stresses. These constitutive rela-
tionships represent a first attempt at developing triaxial theory to be ixsed with the modified

compression field theory.

A sample full scale finite element analysis of a shear wall is also presented. The analysis
examines the effects of accounting for confinement and lateral expansion in a compression

field based analysis.

Draft of October 16, 199/ ‘ A 3




2 Finite Element Formulation

The finite element program SPARCS was developed (Vecchio and Selby 1991) to allow for
compression field analysis of reinforced concrete solids. A relatively simple approach is taken
with respect to the finite elements and the solution techniques that are employed. The
program is based on an iterative linear elastic formulation in which secant moduli are defined
and progressively refined according to current local stress/strain states. The program uses

relatively low powered brick, wedge and truss elements based on linear displacement functions.
The stiffness matrix, [k], for a particular element is found from the well known expression
(k] = / (B)T(D][BldV (1)

where [D] is the composite material stiffness matrix and [B] is the strain displacement matrix
which is derived from the assumed element displacement functions. Note that this integral
was evaluated for each of the three different elements and the results b}xilt into the program,
thus avoiding costly numerical integration procedures. Small displacements and infinitesimal

rotations were assumed in the derivation of [B].

The element stiffness matrices are assembled to form the global stiffness matrix {K]. Nodal

forces, { F}, are related to the nodal displacements, {r}, through [K]:
[K]{r} = {F} (2)

This system of equations is solved for the nodal displacements using a blocked bandwidth
technique.

Element strains, {}, and element stresses, {f}, are evaluated once the nodal displacerments

are known.

{e} = (B]{r} (3)
{f} = Dl{e} (4)
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The composite material stiffness matrix {D] must account for the contributions from concrete
and any smeared steel, and for the directional dependence of each material. The matrix is
evaluated as

(D] = (D + 3Ds)s (5)

=1

where the concrete stiffness matrix defined in the principal directions, [D.), is transformed

to the giobal axes by
[DJ = (T]T[DJ| T} (6)

. I3 " , .
and the stiffness matrix for each smeared reinforcement component in the local axes, [D,], is

transformed to the global axes according to
[Ds]i = (TN (DS Tl (7

The transformation matrix [T] is given by

k12 112 m12 k;ll l]_ml m1k1
ka*  1? my? kalo lamy mpks
k 2 l 2 2 kal I3 m3k3
[1] - 3 3 m3 343 33 (8)

2kika 2lils 2myms kylo+ kol Limpn+lomy make + mpky

2koks 2lal3 2mamg kolz + k3la lomsz + lamge  moks + mzke

2k3k; 2L 2mgmy k3ly + kil [3my +limg k) + maks ]

where k,l, m are the direction cosines of either the principal concrete strains (Equation 6) or
the smeared reinforcement component (Equation 7). The composite material stiffness matrix

will be fully populated and symmetric.

The constitutive relationships of the modified compression field theory are best implemented
into secant stiffness based algorithms. In the proposed constitutive models, orthotropic theory
is used for concrete in all stress states. Cracked concrete treated by the smeared crack
approach is inherently modelled as an orthotropic material. In confined concrete, the adoption

of an orthotropic model allows for the consideration of anisotropic behaviour near ultimate.
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The three-dimensional orthotropic materiai stiffness matrix can be written in the principal

directions as

Ea(l —vaues)  Ea(via+viavm) Ealvis+viows) 0 0 0
Eo(vm +vnims)  Eao(l —vaivis)  Ealvas+ mpis) 0 0 0
D] = 1| Balem +vmus) Eg(ve+wvovm) Es(ves+mm) 0 0 0 9)
: 4 0 0 ] &Gar2 0 0
0 0 0 0 $Gas O
i 0 0 0 0 0 ¢Gey ]

where E.; is the modulus of elasticity in the i-direction. the Poisson’s ratio vy is the component

of strain in the i-direction due to a stress in the j-direction and

O =1 — inaue3 — va1vya — w3113 — Loyar3 — V31M12V3 (10)

The three shear moduli are given by

EclEc2
= 11
Gan Ea(l +vi2) + Eaq(l +vm) (an
EsoFEa
G = = (12
BT Ea(l +vm) + Ba( + v32) )
EaFE

Ea(l +vi3) + Ea(l + )

To maintain symmetry in the stiffness matrix. the following three conditions must be satisfied:

Eavis = Eqgvy (14)
Ecgllo = EC3U32 (15) .
Eaviz = Eguy (16)

For cracked concrete, most orthotropic material descriptions (i.e., smeared crack models) have
assumed that the Poisson’s effects are negligible (e.g., Hu and Schnobrich 1989, Vecchio 1989).
All off-diagonal terms in Equation 9 become zero since the six Poisson’s ratios are neglected,

Le., v = 0. This assumption is relatively good for many situations, but for cases in which
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the tensile strains in cracked concrete are relatively small, the lateral expansion of concrete
arising from Poisson’s effects can represent a significant portion of the total strains (Vecchio
1992). Too much strength degradation, due to transverse cracking, would be predicted in this
situation. Also, in triaxial compressive stress conditions the lateral expansion effects cannot

be neglected.

The assumption of symmetry in the secant orthotropic model appears to contradict the ob-
served behaviour of concrete. The constitutive response of concrete in compression is charac-
terized by a progressively softening stress-strain curve (Figure 1). Also, concrete exhibits a
progressively higher proportion of lateral expansion as compression is increased. Considering
the 2/3-plane of a speéimen of triaxialiv compressed concrete for the case when f3 < fe,
it will generally be the case that £ < E,» and a3 > v32. Thus, in general, Equation 16
cannot be satisfied and an elastic orthotropic formulation for concrete in accordance with
the symmetry conditions cannot accurately represent behaviour in which expansion effects
are significant. In the proposed model, the symmetry conditions are not enforced, but an
approach is developed in which the asvmmetry is handled through the material prestrain
concept. Thus, the symmetry of the material stiffness matrices, and therefore the global

stiffness matrix, is retained.

The three dimensional finite element SPARCS includes provisions to model prestrains arising
from strain offset effects such as prestressing of reinforcement, shrinkage or expansion of
concrete, and thermal expansion of either concrete or reinforcement. For concrete, a prestrain

matrix, {2}, is defined relative to the global x.y,z system
] o L0 O ] L2 T (17)
{ed} = {e 0, % 1% 92, )

to account for all nonstress-related straining. A similar matrix is developed for the rein-
forcement prestrains. An equivalent force approach is then used to incorporate the prestrain

effects. From the known prestrains, free nodal displacements {r.} and {r,} are calculated for
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the concrete and steel, respectively

{rd=[{erav (18)
{n}=[{eyav (19

The equivalent nodal loads due to the prestrains, {F*} are calculated from
{F*} =k {re} +Z[ks]i {rs}: (20)
=1 _

where (k] and [k,]; are the element stiffness matrices evaluated separately for the concrete
and each reinforcement component. These equivalent nodal forces due to the prestrains are
then added to the externally applied nodal forces to determine the total nodal forces. The
total nodal load vector is updated on each iteration since the equivalent nodal forces depend

on the component stiffnesses.

This algorithm was modified to include the expansion effects due to Poisson’s effects. The

expansion strains in the principal directions are written as

(&) = (g8} | (21)
where
€§ = =2 'fi - Vls-gi (22)
§=-mid -2 (23)
&g = -stéfl ~ 3 ]];‘Z (24)

The expansion strains are then transformed to the global x,y,z axes according to

{e} = [T {3} (25)

where {T] is the transformation that defines the orientation of the principal axes. Equivalent
nodal loads are then calculated as outlined above. This formulation includes all straining

arising from expansion in the right hand side of Equation 2. All of the expansion strains are
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modelled through the prestrain concept so the material stiffness matrix then includes diagonal

terms only i
E. 0 0 0 ©0 0
0 Eo O 0 0 0
0 0 FE 0 0 0
(D] = .°3 (26)
0 0 0 Gaz O 0
0 0 0 0 Ga O
0 0 0 0 0 Gus|
where F.;,E» and E are the secant moduli
Ey=12 (27)
€1
E,=12 (28)
€2
Eq =12 (29)
€3
and the shear moduli are given by
- EclEc2 (30)
Gaz = Ry
_ _EaEg (31)
O = Ea+Ea
E, FE3
Gz = —2iZs8 (32)
cl3 Ecl + Ec3

The principal strains used in Equations 27-29 are strains due to stress, not total strains. That
is, any nonstress-related strains are first subtracted from the total strains before calculating
the principal values. The prestrain approach is valid for both uncracked and cracked concrete.

An iterative procedure is required for finite element analysis based on this approach.

The concept can be further explained with the example shown in Figure 2. Consider the
linear elastic biaxial element sub jected to the uniaxial stress f.». In the traditional approach,
Equation 9 would be used to determine the strains corresponding to this stress state. With

the prestrain concept, no lateral expansion is included in the material stiffness matrix (see
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Equation 26). The deformation response comprises an axial strain under the applied stress
(with no corresponding lateral strain) and a lateral strain produced from the fictitious lateral
forces (with no corresponding axial strain). The magnitude of the lateral forces is chesen to

produce the lateral strain determined from Equation 22.

The algorithm used to solve for the stresses and strains in a reinforced concrete solid under
externally applied loads involves the following steps. An analysis begins by assuming linear
elastic isotropic material properties. Element stiffness matrices are calculated and then the
global stiffness is assembled. The load vector, which includes prestrain and expansion effects.
is formed. Nodal displacements are determined, from which one strain tensor is calculated
for each element. Principal strains and corresponding directions are found. Evaluation of
the concrete and steel stresses using the constitutive models permits determination of secant
moduli and in turn new material stiffness matrices. Average secant moduli are calculated and
if they have converged to the specified limit, then the load stage is complete. Otherwise, the
newly calculated material stiffness values are used to perform another linear elastic analysis.
Normally satisfactory convergence is achieved within 10 to 25 iterations. A flowchart of this

procedure is shown in Figure 3.

3 Material Modeling

To describe the response of reinforced concrete, models are required for strength degradation
due to cracking, strength enhancement due to confinement, pre- and post-peak stress-strain
response in tension and compression, and concrete lateral expansion. These factors must be
considered when determining the six material constants (Ei, E, E3, v12, v21, V13) required

for the orthotropic formulation described above.

The constitutive equations for multiaxial stress states are based on modifications to the
concrete uniaxial stress-strain curve. The following curve, based on modifications to the

work of Thorenfeldt, Tomasewicz and Jensen (1987) and Popovics (1973), was suggested for
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high strength concrete by Collins and Porasz (1989)

€3 n

fé:fp‘e_p.n—l-{-(e:;/ep)'* (33)
where n is given by
n= 9.80 + % v (34)
and k equals 1 for ascending branch and
k=067+ 12 (35)
62

for the descending branch (where f. is in MPa). Note that f, and ¢, are the peak stress and

the strain at peak stress, respectively.

For this curve, the strain at peak stress under uniaxial compression is estimated from

n f:
_ s 36
©=TT1E (36)

The effect of the cylinder strength on the shape of this curve is shown in Figure 4a. The
uniaxial stress-strain response of high strength concrete is more linear in the ascending branch

and the descending branch drops off more sharply as the concrete strength increases.

Lateral confining stresses increase the strength, stiffness and strain at peak stress of concrete
cylinders. The strength enhancement is modelled by modifying the peak stress of the base

curve. The failure surface of Hsieh et al. (1979)

Jo e

I
2.0108-5; +0.9714 fa -
[

+9.14127% +0.2312— -1 =0 (37)
Iz 7 Iz

is used to find the stress required in the major compressive direction to cause failure, fey, in

the presence of the stresses fo and fc2. The stress fu; is used as the peak stress of the base

curve and a peak stress factor, K, is defined as

= far 38
K, 7 (38)

While experimental evidence suggests the same factor can be applied to find the peak stress

and the corresponding peak strain in cracked concrete, different factors must be applied to
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f{ and ¢, for confined concrete. The peak strain increases much more rapidly than the peak
stress as confining pressure is increased. To relate the peak stress factor and the strain at
peak stress factor, K, a two part expression is implemented (Figure 4b). For low peak stress

ratios (K, < 3), a fit to the data of Kupfer et al. (1969) is used
K. =0.2036K,"* - 2.819K,°% + 13.3131{,2. —24.42K, + 13.718V/K, + 1 (39)
For higher peak stress ratios the expression of Richart et al. (1958) is adopted
Ke=3K, -4 (40)

The coordinates of the apex of the base curve become

€p == —¢ {¢ _._f_é. E- 42
- °[1°(1 fcsf>+K€ (faf)] )

The ratio f/fas is a measure of the degree of nonlinearity. When this value is low, the
strain at peak stress is close to K, ¢,. Nearer the ultimate strength, the strain at peak stress
becomes closer to K.e,. The modified stress-strain curve is then used to determine all three

concrete principal stresses from the corresponding principal strains.

Increased ductility is evident when concrete is confined. To simulate the descending branch
(Figure 4c) of the stress-strain curve of confined concrete a modification was made to the

modified Kent-Park model (Scott et al. 1982). The descending branch is

fa=—fpll + Zn(es ~ ¢)] < —0.2f, (43)
where
0.5
= (44)
3+029f; ( €o ) . (-11 +f¢;'>0’9+€
145f1 — 1000 \ —0.002 170 P

Note that I is the first stress invariant, fei is the current stress in the principal direction
under consideration, and both €, and €, are negative quantities. This equation assumes that

flis expressed in megapascals.
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Lateral expapsion increases rapidly near the peak stress (Figure 4d). This behaviour is

modelled by 2 fit to the uniaxial Poisson’s ratio data of Kupfer et al. (1969)
K¢,

v, , 0>¢6 >

v = (45)

251’ 2 KoEQ
. -1 <05 >
Vo {1+15(Ka€o 1) } - 2 _‘ &

where v, is the initial Poisson’s ratio. This relationship implies that only three Poisson’s

ratios are independent since

by =3y
Vs = 132 (46)
Vi3 = o3

For uncracked concrete in tension, the initial Poisson’s ratio is used. Upon cracking in the
tensile principal direction, expansion normal to this direction is set to zero only (i.e., vy =
v31 = 0, but all other Poisson’s ratios are nonzero). If the intermediate principal direction also
cracks, 12 and 14, are equated to zero, too. All Poisson’s ratios are zero if three orthogonal

tensile failures occur.

In cracked concrete, large tensile strains perpendicular to the principal compressive direction
reduce the concrete compressive strength. Thus. the compressive stress f3 is made 2 function
of the tensile principal strain, €;, in addition to the compressive principal strain, e3. The
strength reduction factor 8 (Figure 4e) for cracked concrete is given by

1

f= 47
where
—e 0.80 _
K, = 0.35(—; - 0.280) (48)
€3
Ky =0.1825,/f! (49)

and f; is expressed in MPa. The K, factor accounts for the effect of the transverse straining

and Ky represents the influence of the concrete cylinder strength. High strength concrete
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is thought to exhibit a more pronounced compression softening effect due to the smoother

fracture planes.

The peak stress and strain of the base curve are modified to account for this strength degra-

dation effect

fr=3-fc . . (50)
=3¢ | (51)

A linear tensile stress-strain relationship is used until the concrete tensile principal stress fq,

reaches the concrete tensile strength f., which is estimated from
fi=033/71  (MPa) (52)

Due to the influence of bond, tensile stresses can develop in the concrete between cracks.
Adding a descending branch in the post-cracked region accounts for this tension stiffening

effect. The response of reinforced concrete in tension (Figure 4f) is given by

E. ¢ . 0<eg <éer
fcl = (53)'
fi

1+ 200 ¢

€1>€cr

To determine the stress in the intermediate principal direction, Equations 48 through 52 are

used with the appropriate base curve if e is compressive, and Equation 34 is used if it is

tensile.

The presence of average tensile stresses in the concrete implies local stress increases in the
reinforcement at crack locations. Thus, local conditions must be checked to ensure that
the concrete tensile stress calculated from Equation 54 can be transmitted across the crack.
The average tensile stress in the concrete must not be greater than the sum of the reserve of

strength of each reinforcement direction taken in the perpendicular direction to a crack. If this
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condition is violated, then f.; must be reduced accordingly. This is expressed algebraicaily

as
fa <Y cos®Beipi+ (fyi = fi) (34)
=1

where f,; is the yield stress of the reinforcement, f,; is the average tensile stress in the
reinforcement and 6.; is the angle between the reinforcement and the normal to the crack
surface. This check is made for the principal tensile direction and also the intermediate

principal direction, if it is tensile.

Tensile stresses may also be limited if the required shear stresses cannot be supported on the
crack surfaces. The local increases in the reinforcement stresses may require shear stresses on
the crack surfaces for equilibrium. As the crack width increases, the ability of the concrete to
transmit shear by aggregate interlock decreases. This may inhibit the local stress increases
in the reinforcement and in turn limit the average concrete tensile stress. Crack slip is said
to occur if the required shear stresses cannot be supported at higher crack widths. The crack
width, w is estimated from

w=¢€ -8 (55)

where s is the crack spacing which must be estimated before an analysis is performed. This
can be determined from the crack control characteristics of the reinforcement, or estimated
from the reinforcement spacing. Vecchio and Collins (1986) suggested that in the absence
of compressive stresses on the crack, the limiting shear stress (in MPa) on the crack can be

estimated from
o7 < _0.18v7 (56)

24w
0.
3+ a+16

where a is the aggregate size. This equation requires units of MPa and mm. The calculated

shear stress on the crack surface v,; in the tensile principal direction is compared against
vg?®. If the limiting shear stress is exceeded, then the average concrete tensile stress fq is

reduced to f2 according to
beg -4 -
le — vcx . fd (07)
T

ct
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Reinforcement stresses are related to strains using an elastic-plastic formulation that includes

strain hardening behaviour. The constitutive relationship, shown in Figure 5, is expressed as

Eoeq; , 0> e < €y
foi= fy y €y < €gg < €n (58)
fy + Esh(esi - esh) < fu , €3> €sh
where E, is the modulus of elasticity, E,; is the modulus of strain hardening, ¢, is the strain

at the onset of strain hardening, f, is the yield strength and f, is the ultimate strength of

~
the reinforcement. Perfect bond is assumed between the concrete and steel.

4 Sample Analysis

Lefas et al. (1990) tested several walls under conditions of constant axial load and monotoni-
cally increasing lateral load. Shear wall SW16, chosen for this analysis. had a height to width
ratio of 1.0 (see Figure 6). The wall had a rectangular cross section and heavily reinforced,
thickened regions at the top and bottom of the wall to facilitate load transfer. The wall was
‘reinforced vertically with two layers of 8 mm diameter bars spaced at 60 mm and horizontally
with two layers of 6.25 mm diameter bars spaced at 80 mm. Closed ties were included near

the edges of the wall, creating 140 mm wide concealed columns.

The wall showed a ductile response and was able to resist a higher than expected load. This
was attributed to the confinement of the concrete in the concealed column at the base of the
wall. Triaxial compressive stress conditions were reported for this region. This wall provides

a good test for the proposed confinement model.

The concrete properties input to the program were a cylinder strength of 44.0 MPa, an initial
secant modulus of 33150 MPa and an initial Poisson’s ratio of 0.15. The reinforcement had
yield strengths of 470 MPa, 520 MPa and 420 MPa for the 8 mm, 6.25 mm and 4 mm bars,
respectively. The modulus of elasticity of the reinforcement was 210000 MPa and strain
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hardening was assumed to begin at a strain of 2.5 x 1073 with a strain hardening modulus of

10000 MPa.

A mesh of 310 brick elements was used to model the spreader beams and wall (Figure 7a).
One element was used across the width of a concealed column. Loads were applied to the top
spreader beam as equivalent nodal loads. The nodes along the lower edge of the base were
fixed. A smeared steel model was used to account for the presence of the reinforcement. Two

material zones were defined for the wall and one region each for the spreader beams (Figure
7b).

The uitimate horizontal load of 353 kN obtained from the SPARCS analysis compared well
with the experimental vaiue of 355 kN. The analyvtical response involved flexural-shear crack-
ing, followed by yielding of the vertical reinforcement on the tension side, and ultimately
crushing of the concrete near the base on the compression side. This was in agreement with
the experimentaily observed response. The ioad-deformation response was also well repre-
sented. The deflection at the centreline of the top of the wall is plotted against the applied
horizontal load in Figure 8a. The shape of the load-deformation curve matches the measured

response, but the deflections are somewhat underestimated near ultimate.

Of particular interest is the calculated stress condition near the base on the compression side
of the wall. The distribution of principal compressive stresses across the base of the wall
at the ultimate load is shown in Figure 8. The theoretical principal compressive stress on
the compression side of the wall was equal to 1.52f.. At this location, triaxial compressive
stress conditions resulted because of the passive confinement provided by the hoop steel. The
theoretical principal compressive stresses in the concrete were fi; = —1.39 MPa, f2 = —5.10
MPa and fg3 = —67.0 MPa. The reinforcement in the out-of-plane direction was approaching

yield. The principal compressive strain of —5.80 x 10~2 was well into the post-peak regime.

An additional analysis was run without consideration of expansion and strength increase

effects. The maximum horizontal applied load was reduced to 285 kN (see Figure 82). There
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was a substantial reduction in the strength and in the ductility near uitimate, but little
influence at low to intermediate load levels. This analysis failed by crushing of the concrete
at the base on the compression side at a stress equal to the cylinder strength. Therefore, the

confinement model proved crucial in providing 2 realistic response for this wall.

The SPARCS program has also been able to successfully capture the response of a variety
of reinforced concrete elements, including shear panels, beam eléments and shell elements
(Selby 1993). The program has also been used to conduct local nonlinear analyses of concrete
offshore platforms to investigate reasons for structural failure (Collins et al. 1994), and to
confirm the design of critical components (Selby et al. 1994). Work is progressing with

regards to application to confined columns.

5 Conclusions

A constitutive model was presented for predicting the response of reinforced concrete solids
subject to short term, monotonic loading. The model was built into a finite element pro-
gram thereby permitting three-dimensional nonlinear analyses of complex reinforced concrete

structures.

A confined concrete model was developed to be compatible with the secant stiffness based
modified compression field theory, cracked concrete formulation. The simple constitutive e-
quations proposed for confined concrete were capable of predicting concrete strength enhance-

ment, dilatancy and post-peak compressive response under triaxial compressive stresses.

The orthotropic nonlinear elastic secant algorithm was a successful framework for the confined
concrete model. The theory accounted for anisotropic behaviour, but did not require enforce-
ment of the unrealistic symmetry conditions. The prestrain approach handled the asymmetry
of the material stiffness matrices in a numericaily stable manner, with only a modest increase

in storage and solution time requirements.

Draft of October 16, 1994 18




The formulation presented herein is simple and flexible. Any set of realistic constitutive
relationships can easily be incorporated into the program. Further work needs to be directed
at improving the preliminary confined concrete stress-strain model. Also, there is currently
a lack of adequate experimental data from which to calibrate three-dimensional constitutive
relationships for cracked reinforced concrete. The influence of the intermediate principal
strain on the compression softening and tension stiffening effects could be quantified once

suitable data is obtained.

The analysis of a shear wall demonstrated the significance of the confinement model in provid-
ing a good estimate of strength. The concealed column at the edge of the wall was subjected
to triaxial stress conditions. Ignoring confinement effects resulted in a significant decrease in

wall capacity and ductility.
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Notation

a = aggregate size

(B] = element strain displacement matrix

(D] = composite material stiffness matrix in global axes

[D}e = concrete material stiffness matrix in global axes

[D]L = concrete material stiffness matrix in priﬁcipal directions
[Dlsi = material stiffness in global axes of reinforcement component i
E. = modulus of elasticity of concrete (initial tangent modulus)
Ea = concrete secant modulus in tensile principal strain direction
Ea = concrete secant modulus in intermediate principal strain direction
Eg = concrete secant modulus in compressive principal strain direction
E, = Young’s modulus of reinforcement

Esn = modulus of strain hardening of reinforcement

f! = compressive strength of concrete cylinder

fa = tensile principal stress in concrete

fe = intermediate principal stress in concrete

fa = compressive principal stress in concrete

feaf = required f to cause failure in presence of f; and fo

fp = peak stress

fsi = average stress in i-direction reinforcement

Sui = ultimate stress of i-direction reinforcement

foi = yield stress of i-direction reinforcement

fsi = stress in i-direction reinforcement

{F} = structure nodal force matrix

{F*} = equivalent nodal loads due to prestrains

{f} = element stress matrix (tensile stresses positive)

Ge2 = secant shear modulus of concrete relative to 1,2 axes

Geas = secant shear modulus of concrete relative to 2.3 axes
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Gas = secant shear modulus of concrete relative to 1,3 axes

I = first invariant of stress tensor

Ja = second invariant of deviatoric stress tensor

K, = strain at peak stress factor

K, = peak stress factor

k = direction cosine with respect to x-axis

(K] = structure stiffness matrix

(k] = element stiffness matrix

[ke] = element stiffness matrix evaluated for concrete component
LAR = element stiffness evaluated for i-direction reinforcement
l = direction cosine with respect to y-axis

m = direction cosine with respect to z-axis

{r} = structure nodal displacement matrix

{re} = free nodal displacements due to concrete prestrains
{rs} = free nodal displacements due to steel prestrains

8 = crack spacing

(T) = transformation matrix

Vei ‘ = maximum allowable shear stress on crack surface

e = shear stress on crack surface

w = crack width

Zm = slope factor for post-peak compressive curve

8 = strength reduction factor ;

€or = strain in concrete at cracking

51 = concrete expansion strain in 1-direction

€ = concrete expansion strain in 2-direction

€3 = concrete expansion strain in 3-direction

€ = strain in concrete cylinder at peak stress f. (a negative quantity)
€p = strain at peak stress (a negative quantity)
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€ = smeared reinforcement prestrains relative to global axes

€sh = strain at onset of strain hardening of reinforcement
€si - = strain in i-direction reinforcement
€ = smeared reinforcement prestrains relative to global axes
€y = yield strain of reinforcement
€ = tensile principal strain
€7 = tensile principal strain at a crack
€2 = intermediate principal strain
€3 = compressive principal strain
{e} = element strain matrix (tensile strains positive)
{€2} = concrete prestrains relative to global axes
{2} = expansion strains in principal directions
{€¢} = smeared reinforcement prestrains relative to global axes
Pi = smeared steel reinforcement ratio in i-direction
Vi = component of strain in i-direction due to a stress in the j-direction
Vo = initial Poisson’s ratio
Oci = angle between i-direction steel and normal to crack surface
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Figure Captions
Figure 1 - Symmetry conditions in the orthotropic model
Figure 2 - Expansion prestrains concept
Eigure 3 - SPARCS solution algorithm
f‘igm‘e 4 - Concrete constitutive model
(a) - Effect of f. on the shape of the base curve
(b) - Peak stress and corresponding peak strain in confined concrete
(c) - Compressive stress-strain model for confined concrete
(d) - Increase in Poisson’s ratio near uitimate
(e) - Strength reduction in cracked concrete
(f) - Tension stiffening
Figure 5 - Reinforcement stress-strain relationship
Figure 6 - Details of Shear Wall SW16
Figure 7 - Finite element model of SW16
(a) - SPARCS finite element mesh
(b) - Reinforced concrete element type zones
Figure 8 - Finite element analysis resuits for SW16
(a) - Load-deformation response of SW16

(b) - Predicted stress distributions along base of wall at ultimate
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STATIC FINITE ELEMENT ANALYSIS
OF SEISMIC SHEAR WALL ISP

ADDENDUM

F.J. Vecchio
Department of Civil Engineering
University of Toronto

November 11, 1995

1. INTRODUCTION

The results of static nonlinear finite element analyses performed for the SSWISP shear
walls were previously presented and discussed in the report of September 25, 1995. Therein,
it was shown that a three-dimensional analysis provided a predicted response which modelled
the experimentally observed behaviour reasonably well, particularly in regards to the location
and mode of failure. However, the wall strength was overpredicted by approximately 12%,
and the stiffness of the load-deformation response was similarly over-estimated. Possible
explanations for the discrepancies included the loss of tension stiffening, bond arnd anchorage
slip, and ratcheting effects, all arising from the fact that the walls were tested under dynamic
seismic loading.

Also presented were the results of a parametric study using a two-dimensional model,
suggesting that the finite element mesh used for the three-dimensional analysis was possibly
too coarse. The recommendation made at that time was that the analyses be repeated with a

finer descretization.

A reanalysis of the shear walls, using an improved mesh, has subsequently been
undertaken. The details and resuits are reported herein.

2. ELEMENT MESH SELECTION

Recall from the previous report that the original two-dimensional model included 246
constant strain rectangular elements: the web was model with 10 (layers) x 15 (columns) of
elements; each flange was modelled with 10 x 1 elements, and the top and bottom slabs were
each modelled using 2 x 19 elements. The same density and pattern of elements were used in
modelling the web and flange components in the three-dimensional model.

Also recall from the initial study that when the element density was doubled, there was
significant change in the computed response of the wall. Post-cracking deflections were
increased as much as 50% in the later load stages, and the ultimate load capacity was reduced
by 17%. A quadrupled mesh gave essentially the same results as the doubled mesh,

- suggesting that a further refinement was not necessary.




In an effort to arrive at an appropriate mesh density, without placing unnecessary
demands on computation time, additional parametric studies were undertaken using two-
dimensional models. Complete load-deformation responses were determined using the
following alternative models:

i) ISP1: web: 10 x 15 elements; flange: 10 x 1 elements;
ii) ISP10: web: 16 x 20 elements; flange: 16 x 2 elements;
iii) ISP1S:. web: 16 x 20 elements; flange: 16 x 1 elements;
iv) - ISP16: web: 10 x 15 elements; flange: 10 x 2 elements;
v)  ISP17: web: 16 x 15 elements; flange: 16 x 2 elements.

In comparing the resulting predicted load capacities, deflections, aﬁd failure modes, it was
concluded that: _

1) Increasing the number of layers of elements in the web and flanges, from 10 to 16,
is warranted. It allows for the bulging effect in the web to be fully realized, reducing the
constraining influence of the stiff top and bottom slabs.

ii)  Increasing the number of elements through the thickness of the flanges, from 1 to
2, is also necessary. Apparently the flanges are subjected to significant flexural action; using
2 elements through the thickness allows this mechanism to be nominally included.

ili) Increasing the number of elements across the width of the web, from 15 to 20,
results in no perceptible influence.

To further optimize the model, in terms of eliminating unnecessary degfees of freedom,
two additional studies were performed: ‘

i) Model ISP18 was formulated such that the web and flanges were assumed fully
fixed at their base (ie at the top of the base slab). This eliminated the need to model the base
slab. The predicted ultimate load capacity, failure load, and wall bulging were unchanged.
The predicted deflections, near ultimate, were reduced by about 1.2%. Thus, it was concluded
that this simplication is well warranted.

ii)  Model ISP20 was formulated such that the top slab was modelled with 19 x 1
elements, reduced from 19 x 2. Using only one layer of elements for the top slab resulted in
no change to the predicted load capacity or failure mode. Near ultimate load, the lateral
deflections were increased by about 1.4%, and the wall bulging at mid-height was increased
by 3.0%. Less elements through the thickness of the top slab perhaps afforded less
opportunity for redistribution of forces. Nevertheless, the losses in accuracy were minor in
consideration of the exorbitant number of degrees of freedom consumed in modelling the top
and bottom slabs in the 3-D model.

In consideration of the results discussed above, the finite element mesh for the revised
three-dimensional analysis was selected as shown in Figure 1. A total of 4950 degrees and
1026 elements were used: the web was modelled by 16 x 15 x 1 elements; each flange was




represented by 16 x 2 x 9 elements; and the top slab was modelled by 1 x 21 x 10 elements.
The wall was assumed fully fixed at the interface to the base slab. All other modelling details,
material properties, constitutive models and analysis parameters were as previously used.

3. RESULTS OF THREE-DIMENSIONAL ANALYSIS

Under a monotonic lateral load applied at the mid-depth of the top slab, the shear wall
was predicted to experience a brittle flexural/shear failure near the base. The predicted
maximum strength of the wall was 1740 kN (177.5 tonf). The mode of failure, illustrated in
Figure 2, involved a crushing/shear failure of the concrete in a large region of the web,
centred along a plane approximately 300 mm above the base. The failure was accompanied by
extensive yielding of the vertical reinforcement in the left flange. Relative to the results of the
previous analysis, this represents a decrease in the predicted ultimate load by about 5% (far
less than the 17% observed in the 2-D studies). The failure mode was essentially unchanged.

Figure 3 documents the predicted locations of first cracking, first yielding and first
crushing. The predicted crack patterns are represented in Figure 4. Shown in Figure 5 is the
horizontal displacement of the top slab (at its mid-depth). Figures 6 and 7 provide the vertical
relative displacements of the left and right flanges, respectively. The strain in the vertical
reinforcement in the left flange, at the base (element 1), is given in Figure 8; and the strain in
the horizontal reinforcement in the web (element 287) is given in Figure 9. The shear strain
and principal compressive stress in the web, near the compression toe (ie element 84), are
given in Figures 10 and 11, respectively. Finally, the bulging of the wall, at mid-height, is
represented in Figure 12.

The first cracks exhibited by the structure were shear cracks in the web, in the bottom
left corner region, occurring at a load of 392 kN. By 490 kN load, the web was essentially
fully cracked. The first flexural cracks appeared on the outside surface of the left flange, at
the base and near the web, at a load of 687 kN. By a load of 981 kN, the cracking at the base
of the left flange extended across the full width of the flange, and penetrated the full
thickness. With increasing load, the zone of cracking in the left flange progressed gradually
upward such that by ultimate load, the flange sustained horizontal flexural cracking along its
full height. The right flange sustained vertical flexural cracks, visible on the outside surface,
along the web joint. These first appeared near the base, at a load of 981 kN, and gradually
propagated upward. The right flange also experienced horizontal flexural cracking on the
outside surface just below the top slab. Relative to the previous analysis, significant changes
include the earlier onset of both the shear crack in the web and flexural cracks in the left
flange, and the emergence of flexural cracks in the right flange.

The vertical rebar in the left flange was again the first reinforcement to yield, occurring
at a load of 1226 kN. As before, the location of first yielding was towards the outer tip of the
flange, just above the base. Yielding across the full width of the flange was achieved at a
load of 1472 kN, with the zone of yielding gradually progressing upward to about mid-height
by ultimate load. Yielding of the web wall vertical rebar occurred at a load of 1570 kN, in
the bottom left corner region. As load increased, the yield zone progressed inward along the
base. Note that relative to the previous analysis, first yielding of the vertical reinforcement




occurred at about 14% lower load, and yielding of the web rebar occurred at about 6% lower
load. Once again, the web wall horizontal rebar was not highly stressed and did not yield.

As before, the concrete in the web zone was highly stressed and dictated ultimate
capacity and failure mode. First crushing occurred at a load of 1472 kN in the compression
toe region (elements 84 and 135). By a load of 1620 kN, this region was in post-peak
response, and crushing was widespread over the lower right quadrant of the web. At ultimate
load, a crushing shear failure occurred along a plane centred approximately 300 mm above
the base. Relative to the previous analysis, the first crushing occurred at approximately 8%

less lateral load and the failure zone was more widespread.

4. DISCUSSION

The finer mesh used in the reanalysis allowed for two important factors to be more
realistically modelled. First, the greater number of element layers used for representing the
web reduced any artificial constraint arising from the very stiff top and bottom slabs.
Secondly, using two elements through the thickness of the flanges allowed the analysis to
nominally account for flexural action in the flange walls and thus greater flexibility. Each of
- these two factors acted in reducing the confinement of the web, evidenced by a more
pronounced bulging of the wall at mid-height. The reduced confinement, in turn, resulted in a
reduced nominal strength for the concrete and a greater influence from compression softening
effects. Hence, the ultimate load attainable was reduced. The lower degree of confinement
also gave rise to a less stiff load-deformation response, and first cracking, first yielding and
first crushing occurring at about 10 to 20 % lower loads.

The finer mesh size had much less influence in the three-dimensional analysis than in did
in the two-dimensional analysis; the failure load was reduced by only 5% in the 3-D study
whereas it was reduced by 17% in the 2-D study. The reasons for this relate back to the
three-dimensional effects discussed in the previous report. In the 2-D analysis, with the total
lateral stiffness of the flanges concentrated in the plane of the web, the web confinement
effects were over-estimated. Hence, the reduced confinement introduced by the finer mesh
had a proportionally greater influence.

Previous remarks concerning the effects of bond and anchorage slip, loss of tension
stiffening, and ratcheting action are still valid in rationalizing the differences the expemuenta.l
and analytical responses.

5. PARAMETRIC STUDIES

The parametric studies previously performed using the two-dimensional finite element
models provided some enlightenment regarding the influence of various parameters. It was
also clear from the results, however, that the two-dimensional models failed to accurately
account for some three-dimensional effects. Hence, some additional studies were performed
using the three-dimensional finite element model described above.




An analysis was performed in which tension stiffening effects were not considered. As
previously discussed, it is customary to discount tension stiffening when attempting to
nominally consider cyclic load effects in a static load analysis. Shown in Figure 13 is a
comparison of the predicted load-deformation responses of the wall. Ignoring post-cracking
tensile stresses in the concrete results in a significantly more flexible deflection response, and
a 4.5% reduction in the estimated failure load. The results more closely resemble the
experimental behaviour. Failure mode was unaffected.

It was previously suggested that the finer mesh resulted in a lowering of the predicted
strength of the wall because it better allowed for wall expansion. The ensuing larger tensile
strains gave rise to a greater influence from compression softening effects. To test this
hypothesis, an analysis series was performed in which the compression softening formulations
were suppressed. Shown in Figure 14 is the predicted response that resulted. Relative to the
standard analysis, the wall response is considerably stiffer in the later load stages, and the
ultimate load is increased by about 7%. Thus, contrary to the findings from the 2-D
parametric study previously discussed, compression softening effects did play a significant
role in influencing the predicted behaviour of the wall.

Finally, to ascertain the importance of confinement effects, another analysis was run in
which strength and stiffness enhancement due to confinement were suppressed (that is, the
strength of the concrete was limited to the cylinder strength). Shown in Figure 15 is the load-
deformation response predicted accordingly. The stiffness of the wall is essentially unaffected,
and the ultimate load capacity is reduced by only about 4%. Also, there is little change in the
mode of failure, or in the predicted crack patterns. Thus, conﬁnemcnt effects are of minor

importance in this structure.

6. CONCLUSIONS

The reanalysis produced a predicted failure load still approximately 7% higher than the
experimentally observed value. Also, the predicted load-deflection response remained
somewhat stiffer than the observed behaviour. The discrepancies, however, were substantially
reduced compared to the results of the initial analysis previously reported which used a
coarser mesh. The remaining disparity between predicted and observed behaviour can be put
down to the effects of reversed cyclic load; it must be remembered that the analyses presume
static monotonically increasing lateral load. In particular, discounting post-cracking tensile
- stresses in the concrete, as one is apt to do for cyclic load conditions, produces results closer
to the experimentally observed behaviour. The predicted mode of faﬂure remained in good
agreement to the experimental resuits.

Other conclusions previously derived from the initial three-dimensional analysis, and
from the two-dimensional parametric studies, remain valid and relevant.
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Figure 1
Element Scheme for SPARCS Model! (finer mesh)
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Figure 2
Predicted Failure Mode From 3-D Analysis (ISP3)




Phenomena Top Slab ,
' Horizontal Displacement Horizontal Force
(mm) ‘ (N)
(a) Flange wall 0 685 x 10°
Initiation point of bending crack 885
(b) Web wail 3
Initiation point of shear crack 0.427 330 x 10
{c) Fl?pgg wall yertica! re!?ar 3.357 ' 1225 x 10°
initiation point of yielding
(d) Web wall vertical rebar 3
Initiation point of yielding 7107 1570 x 10
{e) Web wall horizontal rebar n/a o/
Initiation point of yielding a
(f) Crush point 5.829 1470 x 10°
Maximum load 10.859 1740 x 10°
— X
First shear cracking
First flexural cracking First crushing
| «

N

First web vertical rebar yielding

First flange vertical rebar yielding

Figure 3
Summary of Calculated Results
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Figure 4
Predicted Crack Patterns
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Figure 6
Vertical Relative Displacement - Left Flange
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Vertical Relative Displacement - Right Flange

2000

1800 - SPARCS
(coarse mesh)

1600 —

1400

1200 [~

SPARCS

1000 (finer mesh)

FORCE (kN)

| I f ] l | |
-1 0 1 2 3 4 5 6 7 8 9

STRAIN (x10%)

Figure 8
Vertical Rebar Strain - Base of Left Flange
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Strain in Horizontal Rebar in Web
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Shear Strain in Web
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Intfluence of Compression Softening
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Introduction

This. report addresses the monotonic load to collapse analysis of a reinforced concrete
shear wall specimen that was subjected to dynamic response studies with a large-scale, high-
performance shaking table at NUPEC’s Tadotsu Engineering Laboratory in 1991. The analyses
are conducted with the general purpose finite element computer program MIRAGE. The report
describes the model of the specimen and the analytical results.

Appendices address the concrete and reinforcing steel constitutive relations that form the
basis of the model. The concrete constitutive model used in the analyses is a hypoelastic
orthotropic model based on a stress-equivalent uniaxial strain relation that is generalized to take
into account triaxial stress conditions. This is discussed in detail in Appendix A. Several aspects
of concrete behavior are represented by the model including triaxial nonlinear stress-strain
behavior, tensile cracking, compression crushing and strain-softening. In this study the model is
simplified to biaxial plane stress conditions by setting the out-of-plane normal stress equal to
zero. The reinforcing steel is modeled with an embedded reinforcing layer model. This model is
discussed in Appendix B along with two alternative models, the embedded reinforcing bar and
the oriented medium model. The former becomes important for the inclusion of the bond-slip
effect of individual reinforcing bars in possible future studies. The latter is necessary in three
dimensional finite element models.

The analytical results show good agreement of the analytical predictions with the
experimental results. Appendix D provides a summary of the results of the study and also
supplies the specific information requested in the Specification Report of the Seismic Shear Wall
ISP (Document NU-SSWISP-D008 with revised pages from NU-SSWISP-D009).

Further studies into the cyclic and dynamic behavior of the specimen are presently under
consideration.




Basic Characteristics of Shear Wall Specimen

The geometry of the test specimen is shown in Figs. 1(a) and (b). The specimen has an I-
shape cross section with a web of 75 mm thickness, 3000 mm length measured from top flange
center to bottom flange center and 2000 mm clear height. The resulting shear span ratio is 0.8.
The flange walls are 100 mm thick and 2980 long.

The arrangement of reinforcement in the web and flange walls is shown in Figs. 2 (a) and
(b). Deformed bars D6@70 with nominal diameter of 6.35 mm at a spacing of 70 mm are
arranged in two layers of the web wall to form the vertical and horizontal reinforcement

(Fig. 2b).

 Two reinforcing layers were also present in the flange walls with D6@175 bars for the
vertical and D6@70 for the horizontal reinforcement. As an exception, D6@70 bars were used
for the vertical reinforcement at the intersections of the web and flange walls (Fig. 2a).

The material properties of D6 reinforcing bars, as used in the web and flange walls,
comply with Japanese Industrial Standard (JIS) SD345:

Modulus of elasticity: E =189-10° kgf/mm’
Yield Strength: o, =3870 kgf /mm’®
Nominal cross sectional area: A, =32.0 mm’®

Normal concrete with coarse aggregate having a nominal maximum grain size of 10 mm
was used for the web and flange walls. The concrete material parameters are:

Modulus of elasticity: E,=23.2-10* kgf/mm®
Poisson' s ratio: v, =0.167

Uniaxial Compression Strength: R, =2.880 kgf /mm*

Uniaxial Tensile Strength: R =0.244 kgf /mm?

The weight of the top slab of the specimen and the own weight of the shear wall amounted to
122.0 tonf. The consequent vertical compressive stress in the walls is 6, = 0150 kgf/mm?.
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Figure 1 Reinforced Concrete Shear Wall Specimen U-1
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Finite Element Model of the Structure

The. model of shear wall specimen U-1 was developed with the general purpose finite
element analysis program MIRAGE. Making use of symmetry in the geometry and loading
arrangement of the specimen the model represents one half of the actual specimen, as shown in
Fig. 3.
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Figure 3 Three-Dimensional Thin-Walled Finite Element Model

On account of the cross section configuration of the specimen, with a ratio of wall height
to thickness from 30 to 40, the specimen is idealized as a three dimensional thin-walled structure
with finite elements in condition of plane stress. An alternative three dimensional model with
solid brick elements was also investigated, but is not pursued further in this report. Under the
thin-wall assumption a quadrilateral plane stress finite element was used in the finite element
model of the shear wall specimen.

The model of one-half of the shear wall specimen has 360 nodes and consists of 319
quadrilateral plane stress elements. The boundary conditions of the model were imposed by
fixing the displacements along the global X, Y, and Z-axes for all nodes at the base slab. On
account of the lack of out-of-plane stiffness of the membrane element all nodal out-of plane
displacements were also restrained in the analysis.

The material behavior of reinforced concrete was described by a two-dimensional
orthotropic material model. Appendix A describes the general three-dimensional version of the




model in program MIRAGE. The two-dimensional model of this study was obtained by setting
the out-of-plane normal stress equal to zero in the model of Appendix A. The reinforcing steel is
modeled with an embedded reinforcing layer model, as described in Appendix B.

The following material parameters were used for concrete:
Modulus of elasticity: E, =23.2-10> kgf/mm’
. Poisson's ratio: v, =0.167
Uniaxial Compression Strength: R =2.880 kgf /mm?
Uniaxial Tensile Strength: R =0.244 kgf /mm?
The reinforcement was smeared into an equivalent reinforcing steel layer in the mid-wall
surface with uniaxial properties in each reinforcing direction (Fig. 4):

Modulus of elasticity: E =189-10° kgf/mm?
Strain Hardening Modulus: ~ E, =0.945-10° kgf/mm?®
Yield Strength: G, =38.70 kgf /mm?

Web Horizontal reinforcing ratio:  p_, =12%
Web Vertical reinforcing ratio: p,, =12%
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Figure 4 Reinforcement Layout in Finite Element Model




The vertical reinforcing steel ratio p, was 0.48 % in the flange walls and 0.9 % over a
distance of 500 mm in the anchor zones between flange and web walls (Fig. 2a).

Figs. 3 and 4 show that the effect of the top slab on the structural behavior of the shear
wall specimen was taken into account by the arrangement of a top row of quadrilateral membrane
elements which remained linear elastic during the entire analysis. These elements account for the
position of the applied load and the load distribution into the lateral load elements of the shear-
wall specimen. The following material properties are used for these special membrane elements:

Modulus of elasticity: E,=232-10* kgf/mm’
Poisson' s ratio: Vv, =0.2

Specification of Loading History

The specification of lateral and vertical loads in several load steps is shown in Fig. 5. The
vertical load of K, =122.0tonf simulates the weight of the top slab and other attached devices
and was applied first. It was distributed to the nodes at the top of the model. The lateral load was
gradually applied in subsequent steps guided by the maximum acceleration level of the five
shaking table dynamic tests (Runs 1 through 5 in Fig. 5) up to a maximum value of
P, =158.0tonf which was slightly less than the maximum acceleration level during Run 5:
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Figure 5 Loading History

At load step 02 a horizontal load of 25.0 tonf (maximum acceleration during RUN-1)
At load step 03 a horizontal load of 50.0 tonf (maximum acceleration during RUN-2)

At load step 04 a horizontal load of 75.0 tonf (maximum acceleration during RUN-2")




. At load step 06 a horizontal load of 87.5 tonf (maximum acceleration during RUN-3)
° At load step 09 a horizontal load of 110.0 tonf (maximum acceleration during RUN-4)

. At load step 16 a horizontal load of 162.0 tonf (less than the maximum acceleration
during RUN-5). This load was not attained by the model.

The iterative solution process in each load step had an upper bound of 25 iterations.

Comparison of Analytical with Experimental Results

- Under the load-controlled loading procedure the use of the classical Newton-Raphson
iteration process for the solution of the nonlinear equilibrium equations at each load step only
allowed the tracing of the nonlinear response of the shear wall specimen up to the ultimate lateral
strength of the model, which was reached at a horizontal force of approximately P, =158.0tonf.
Fig. 6 compares the analytical with the experimental load-displacement response of the shear
wall specimen U-1. The analysis terminated at the end of the last branch by the singularity of the
structure stiffness matrix. The use of displacement control procedures will afford the possibility
of investigating the post-peak response of the specimen. In any case, the model underestimates
the lateral strength that the specimen attained in Run 5. This might be due to the difference
between dynamic and static behavior that was observed in other shaking table studies.
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Figure 6 Load Displacement Response of the Top Slab Center

The load-displacement response up to ultimate consisted of 16 load steps. During the
16th load step crushing of several concrete elements and yielding of reinforcing steel at critical
locations lead to the singularity of the structure stiffness matrix with consequent lack of




convergence in the Newton-Raphson iteration of the equilibrium equations. It is interesting that
few iterations were required from the first to the 4th load step, but this number gradually
increased from the 5th to the 15th load step as nonlinear behavior set in. The number of iterations
for each load step are given in Table 1 in Appendix D. During the 16th load step, 11 iterations
were performed before the structure stiffness matrix became indefinite.
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Figure 7 Analytical Crack Patterns in Web Wall

-10-




Figs. 7 and 8 show the analytical crack distributions in the web and flange walls,
respectively, for different loading stages.
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APPENDIX A. CONCRETE MATERIAL MODEL

The.- three-dimensional cyclic concrete stress-strain relation is based on a hypoelastic
orthotropic model with a stress-equivalent uniaxial strain relation that is generalized to account
for triaxial stress conditions. The proposed model includes the effects of triaxial nonlinear stress-
strain behavior, tensile cracking, compression crushing and strain-softening of concrete under
general cyclic loading conditions. The biaxial plane stress model in this study was derived from
the general model by setting the out-of-plane normal stress equal to zero.

Since plain concrete cannot sustain large relative displacements, the material model
formulation assumes small deformations. Even under small deformations, rigid body rotations
may be significant in some cases [3,6,15]. These large rotation effects are included in the finite

element implementation by a total Lagrangian formulation [4].

The following description of the material model is based on engineering stresses 0; and
strains £; for the sake of convenience. For the inclusion of large rotation effects the total
Lagrangian stress and strain variables should replace the corresponding engineering variables in

the finite element implementation. The numerical implementation of the material model allows
for cyclic loading conditions and the opening and closing of tensile cracks.

Stress Strain Relations

The following section describes the stress-strain relations of the model prior to tensile
cracking and compression crushing. These general multiaxial relations are based on the
equivalent uniaxial strain concept [2,10].

Triaxial Stress-Strain Relations

It is well established that concrete could be treated as an initially isotropic material that
exhibits deformational anisotropy during loading [9,11-13,15,20]. Consequently, in structures
where the stress state at every point is defined by three principal stresses, concrete can be
characterized during loading as a nonlinear orthotropic medium with the directions of orthotropy
coincident with the principal stress directions [39,11,16]. In this approach the incremental
constitutive relations of concrete in reference to the orthotropic axes (1,2,3) are:

[ do, ] I E(1-vyuVvy,)  E(vhy+VuVy) E(vy+vyvy,) O 0 0 |[de l
do, E(vip+Vivs)  E(1-Vvivy)  E(vi,+Vvpvy) O 0 0 || 4,
doy | 1| E(Vis+ViVs) Ey(Vs+ViaVa)  Es(1-vyvy) 0 0 0 |]de,
lan, [T 0 0 0 6o o o |am[V
dts, 0 0 0 0 G,Q 0 [|dysy
4T, | i 0 0 0 0 0  G;Q|dYs)
where
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do,(i=1,2,3)= normal stress increments in i —direction;
dv;(i,j=123)= shear stress increments in plane i — j;
v,(i,j=12,3)= transverse strain ratio for strain in j —direction caused by stress in i —direction;
Q= 17 VaVi = Vi Vi3 = ViV = VipVas Vi = Vg Vi Vis;
E(i=123)= total secant modulus of elasticity in i —direction of orthotropy;
G,;(i,j=123)= total secant shear modulus in plane i - j;
d; (i=12,3)= normal strain increments in i —direction;
dy,;(i,j=123)= shear strain increments in plane i — .

Eq. (1) can be written in matrix form as:

{do} =[D}, {de} @
where
{do}= vector of stress increments;
{de} = vector of strain increments;
[D], = incremental concrete material matrix.

The transformation of material matrix [D], to a non-orthotropic set of axes (1,2,3) and

the invariance condition for the shear moduli under this transformation yields the following
relation

EE.
ij

Y E.(I+v..)+E.(1+v..)
i\ )T T i

which defines the incremental concrete shear modulus in Eq. (1).

€)

Since the material matrix [D], in Eq. (2) is defined with reference to the directions of

orthotropy, it must be transformed to the global coordinate system of the structure before
assembly of the element stiffness matrix. This requires the following transformation:

[D); =TT [D],[T] @
where matrix [T] takes the following form according to Lekhnitskii (1963):
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m|21 ? 2mymy, 2my,my, 2”71 13

my, 2my,my 2mym 2y myg
- ) i 2mymy, 2mymy; 2myms;
MMy MMy, sty Mg Mgy T MMy MMy + M3, I Py, + M3,
Moy MppMyy MMy My My, + MMy, Mgy T Mgy Py Mgy + Mg,
My MMy, Mgy Mg M, S Mgy Mgy, + Plgsfit, My g, + Mgty
m,; denotes the direction cosines of the principal stress &,(i=12,3)—axes relative to the
global coordinate system X,(j =1,2,3)— of the structure.

Egquivalent Uniaxial Strains

For the incremental constitutive relation in Eq. (1) it is necessary to describe now the
determination of the nine incremental moduli. To this end the concept of equivalent uniaxial
strain, as proposed in [10], is used in the material model. The method is briefly summarized as
follows:

Let Eq. (1) be written as:

(do,)
do,
do,
dr,,
dr,,
Gy Gy

N

de, = [(1 — Vo3V, JE, +(V,y + Vo35, )dE, + (v, + v21v32)d33]
de, = [(Vlz +Vi3Va, JE, + (1= Vigvy ), +(Va, + vy, )das]

de,; = '5[(\’13 +ViVos JE; +(V5 + VisVy ), + (1= V), vy, )d83]

A

The variables de (i =1,2,3) in Eq. (7) represent the equivalent uniaxial strain increments,
expressed in terms of the actual incremental strains de, (i = 1,2,3).

The equivalent uniaxial strain increments can be determined from Eq. (6):

dac,
de,. =—+{i=12,3
ul E. (l )

I

Eq. (8) yields the total equivalent uniaxial strains by integration over the load path, i.e.




dc, ..
£, = j—ET-(l = 1,2,3)
Eq. (8) shows that the equivalent uniaxial strain increment represents the strain increment

in the i —direction that the material would exhibit under a uniaxial stress increment with the other
stresses kept equal to zero. In reality, de, depends on the three-dimensional stress state, so that

€, and de are not collinear with the corresponding stress along the load path. Both are,
therefore, fictitious quantities, except for the uniaxial case, and are only significant as a measure
for the variation of material parameters.

Egs. (7) are defined with respect to the material axes of orthotropy. Since these coincide
with the current directions of principal stress, it follows that de,, must be defined with respect to
the current axes of orthotropy. The last statement implies equivalence between the equivalent
strain parameters of the elasto-plastic theory and the equivalent uniaxial strains in Eq. (7).

Monotonic Uniaxial Stress- Equivalent Strain Relation

The approach in the proposed model follows the method in [10] and assumes that the
actual stresses are functions of the current equivalent uniaxial strains, whose components are, in
turn, determined from the actual strain increments.

In the description of the uniaxial stress-equivalent strain relation the uniaxial compressive
stress-strain relationship in [22] is generalized, in a manner similar to that proposed in [2], to
describe both tensile and compressive response under monotonic loading. Rewriting this relation
in terms of equivalent uniaxial strains according to [12] results in

R 8ci

Gi =8 2 3 (i = 1,2?3) (93)
£, €, e
1+A| = |+B| | +C|
Ax(eci} l(eci] t(sci}
where the following notation is used:
. 3 :
K, =E, . K, =-%; K, =§‘-; (9b)
ci 8c:i Rﬁ
K, -1
(Ksz - 1) KE’
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Fig. A.1 Monotonic Uniaxial Stress-Equivalent Strain Curve

Figure A.1 depicts the monotonic curve described by Eq. (9a) as well as the variables that
appear in the definitions of Eq. (9b). More specifically:

Ey = initial modulus of elasticity;
€4 = equivalent uniaxial strain in i —direction;
R;= concrete strength in i —direction associated with current principal stress ratio;
€. = cormresponding equivalent uniaxial strain;
R;.€;=control point coordinates on descending branch of stress-equivalent strain curve.
The division of Eq. (9a) by ¢, yields the required incremental secant modulus of concrete

for Eq. (1):

E= = (i=123) (10)

2 3
g, €, L
1+A| % |+B|*| +C| -+
A’(e’ci) x(sci] l(eci)

Before implementing the proposed concrete stress-strain relation it is also necessary to
define the transverse strain ratios v; in Eq. (1). The following expression in [1] defines these

Tatios:

Transverse Strain Ratios
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v".iz Vuivujf (l’J=1’2’3) (11)

J

where v, is the uniaxial transverse strain ratio that is axially symmetric about the i —axis and is

defined as a cubic function of the corresponding equivalent uniaxial strain
2 3
v, = vo[l + A,.[f'"—f] + E(Eﬁ"-) + c(i-) } (i=123) (12)
er:i 8r:i 8ci

Vo = initial Poisson's ratio;

where

A.B,C = parameters determined by Eq. (9c), where the parameter K, = 5\1’—
0

It follows that Eq. (11) satisfies the following conditions of symmetry:
Evy =EV Evy, =Evy;  Ev;=Evy

Variable 2 in Eq. (1) should be always positive. Thus, the limiting value of v, in

Eq. (12) is 0.5. This value corresponds to a limit of zero incremental volume change. As noted in
[9,13,17] the point at which this limit is reached corresponds to the onset of unstable micro crack
propagation which gives rise to the experimentally observed dilatancy phenomenon in the
vicinity of the concrete material strength.

Loading, Unloading and Reloading Criteria

The state of material loading or unloading affects the evaluation of the stress-strain
relations in Eq. (1). The loading or unloading conditions are defined by a loading function [1]

2 2 2
’8 +& ., +¢€
f = ;1 ;2 ;3 (13)
8::1 + 8«':2 + 8(:3

where €,,€ (i =1,2,3) are the parameters in Eq. (9b).

ui®

The condition of material loading is

I ) o

and the condition of unloading is

[ £ fo
where f,.. is the maximum value of the loading function in Eq. (13) during the previous loading
history.
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Under loading conditions the principal stresses are used in the determination of the secant
modulus E; for the corresponding equivalent uniaxial strain €, of each principal direction

according to Eq. (10).

Under conditions of unloading and reloading to the stress state from which unloading
occurred, the material is assumed to be isotropic. In this case the initial Young's modulus X, and
Poisson's ratio v,, are used in the incremental stress-strain relations of Eq. (1).

Ultimate Surfaces

- The determination of incremental moduli in Eq. (10) depends on the specification of the
parameters in Eq. (9b). Since these parameters vary with the principal stress ratio, this can be
done most conveniently by the specification of a surface in principal stress space that defines
three R, values for each stress ratio, and a corresponding surface in equivalent uniaxial strain

space for the definition of three €, values that correspond to these R, values (Fig. A.1).

Ultimate Strength Surface

The surface in stress space that defines the ultimate strength values R, for any principal
stress ratio is usually called the "failure surface”. Because this name is somewhat misleading in
the context of a material with strain softening behavior, this surface is called in the following the
"ultimate strength surface".

The ultimate strength surface of concrete is described in this study by a modification of
the five-parameter model in [7]. The modified surface is described by the following equation, as

shown in Fig. A.2:

R2-R’)[Rr R

_1_12+(——°—‘[—'(1: +3c )+2(1—-—‘}5 =R.R, (14)
3 2R, | R, ° R)']

14

2|

where

G, =—:1):(cs1 +6,+0,); T =\/(o32 +0}+0}-0,0,-0,06,-0,0,)

and R., R, =uniaxial compression and tensile material strength, respectively.

Eq. (14) defines the ultimate strength surface in the principal stress plane ©,,0,,0; and
describes a smooth convex surface (see Fig. A.2) with curvature approaching zero when the

R
brittleness —-—1 and/or G, —> es.
R
[4
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Fig. A.2 Concrete Failure Surface

Ultimate Strain Surface

For the evaluation of the ultimate equivalent uniaxial strains £, a surface is defined in

equivalent uniaxial strain space according to the proposal in [11]. In this study the ultimate
equivalent uniaxial strain surface has the same form as the ultimate stress surface. For the surface
definition the equivalent uniaxial strains€,;,€,, and €,; replace the principal stresseso,,o, and

o,, respectively, in Eq. (14) and the ultimate uniaxial compression and tensile strains €.,
replace the uniaxial compression and tensile strength R. and R,, respectively.

Finally, the concrete stress-strain relation in Eq. (9b) requires the values of 0, and £,

that define the coordinates of a point on the descending branch of the monotonic stress-
equivalent uniaxial strain curve in Fig. A.1. The definition of this point is not possible on a
rigorous experimental basis, as already noted in [13,15,17], since the descending branch of the
stress-strain curve is highly dependent on the properties of the test apparatus and, thus, generally
unavailable from a statically determinate test setup.

The following parameter values are used in this study:

6, =085-R,; and €, =141-¢ ; under compression loading, and

6,=025-R; and €, =4.0-¢, under tension loading.




Current Material Strength
The determination of the three current concrete strength values R, R, and R is based
on the ultimate strength surface in Eq. (14) as follows: if point M,(0,,0,,0;) on the loading

trajectory in principal stress space represents the current stress state of the material in Fig. A.3,
then a line that extends from the origin through the current stress point penetrates the ultimate
strength surface at point M,(R,R.,,R ), where R, is the required current concrete strength of

concrete 1n the i-direction.

A
-0 1 Mr(Rcl’Rc2’Rc3)
V3o,
Mc(01’62’63) -G ) — loading trajectory

Fig. A.3 Definition of Current Material Strength

In a similar manner, the ultimate surface in the equivalent uniaxial strain space is used for
the determination of the current ultimate equivalent uniaxial strains €,,,€_, and €_;.

Uniaxial Stress-Strain Relation under Load Reversal

For the representation of concrete behavior under cyclic load reversals the monotonic
envelope curve in Eq. (9a) is modified to the following form in terms of the equivalent uniaxial
strain:
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where

(e )
K| —u
6.=R e ~%oi) (i=123) (15)
i~ e . 2 3 -
) € . € . € .

1+A,| —U4 || —u | jC|—H |

lle .—¢ . lle .—¢ g .—¢ .

B ci ol c

\¢ci Toi/ I Ol

g,; =strain that corresponds to complete material unloading in the i —direction of orthotropy;

R, A, B.,C. =parameters in Egs. (9b) and (9¢).

The following rules govern the cyclic behavior of the equivalent uniaxial stress-strain

relation in Eq. (15), as depicted in Fig. A 4:

Unloading from a point A (6,,€,,) on the envelope curve takes place along a straight line
connecting the point at which unloading starts to a point B(0,€,,) on the strain axis in
Fig. A4. g, is defined by the relation:

8ui __Z.j— for 8ui S 8c'i
_ 0 -
i = Ey(e.—2,)- R, for &) o= "o
or . .
Eo ut ct
o} _
€n €y € ci € oi / -
: . . € ui

monotonic envelope ci

Fig. A.4 Uniaxial Stress-Strain Curve under Load Reversal
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The parameters in the definition of € , in Eq. (16) are specified in Fig. A.4.

e The material reloads to the stress state from which unloading took place as long as the
loading function in Eq. (13) satisfies the condition

I = foa

J Reloading after partial unloading takes place along the unloading line and rejoins the
original (re)loading envelope once it reaches the point from which unloading initiated.

o The material reloads in the opposite direction once the strain passes through point
B(0,¢,;) in Eq. (16). At point B(0,¢,,) the value of f,, is set to zero, thus, initiating a

- new path of the stress-strain history.

The proposed rules of cyclic material behavior do not account for cyclic damage of
concrete. The importance of this effect on the cyclic behavior of reinforced concrete structures
merits a special study but is beyond the scope of the present report.

Post Peak Behavior

An important aspect of the failure behavior of concrete is the formation and propagation
of tensile cracks. To model the cracking behavior of concrete under tensile stress a smeared crack
approach is adopted according to the original work in [13,15,21].

Another important aspect of the failure behavior of concrete is compression crushing.

The ultimate strain surface is used in the identification of the type of material failure, as
discussed in the following.

Post Peak Behavior after Cracking

According to the smeared crack approach cracks form at the integration points of the
finite element in a plane perpendicular to the corresponding principal tensile stress direction
when the equivalent uniaxial strain in that direction pierces the ultimate strain surface. The effect
of this material failure is that the material stiffness is reduced in the failure plane in the direction
normal and parallel to the crack, the transverse strain ratios become equal to zero in the crack
plane and the stress normal to the crack is equal to zero. This process is described in the
following for the formation of a single crack plane in more detail.

After the material has cracked, it starts to strain-soften in the principal stress direction
until the corresponding equivalent uniaxial strain €, reaches the value of €, in Fig. A.5. When
this happens, stress &, reduces to zero and the material has no more stiffness in the direction of
this stress. With the assumption that Poisson's ratio in the crack plane reduces to zero after
cracking, the stress-strain relation for cracked concrete in Eq. (1) takes the following form:




(do, E{l-vy,vy,) O 0 0 0 0 |[de ]
do, 0 E, Ev, 0 0 0 || de,
4..d°3 _1 0 Eyv,, E, 0 0 0 | de, i an
i, Q 0 0 0 GO 0 0 |av,
dt,, 0 0 0 0 GQ 0 |dvs
\d’t3l B O 0 0 0 0 G31Q_ Ldy3l J
where
EE
Q=1-V,Vy; G12=(E" 1!-2E)’
1 2
st = E2E3 . a1 — E3El
E,(1+Vy) + E(1+vs,) (E,+E,)

E, is the total secant modulus of the corresponding stress-strain point on the descending branch

and R

of the stress-equivalent uniaxial strain relation in Fig. A.5. The parameters R ,€, 1€ Of

the stress-strain relation correspond to the multiaxial conditions at the instant of crack formation.

i
G,

Rcl """""" K

..........................

Fig. A.5 Strain Softening Behavior under Compression Loading

Once a crack plane has formed, it is checked in each subsequent solution step whether the
failure is still active. The failure is considered to be passive provided the normal strain across the
crack plane becomes less than the equivalent uniaxial strain at which the failure occurred initially
and is active otherwise. Therefore, a tensile crack plane may repeatedly be active and passive.
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Once a crack forms, the element checks whether the crack is active during subsequent
solution steps. The crack is passive if the normal strain across the crack plane is less than the
equivalent uniaxial strain at which the crack formed initially. Otherwise, the crack is considered
active. A tensile crack may, thus, be activated and deactivated many times.

If a tensile crack plane has developed, the previous material constitutive relations are
established for the direction perpendicular to the crack plane. Thus, the stress conditions parallel
and normal to the crack plane are used for establishing the material matrix instead of the
principal stress directions used for the undamaged material. Once a crack has formed, subsequent
cracks can only form in planes perpendicular to the first crack plane. Thus, the direction of the
second or third crack plane is fixed at any integration point once one or two cracks have formed.

The material may also fail in compression crushing after tensile cracking in one or two
directions has taken place. This condition is identified by the position of the equivalent uniaxial
strain(s) along the crack plane(s) relative to the ultimate strain surface.

If unloading of the cracked material occurs in the strain-softening region, characterized by
the conditionf < f,, , the material matrix is defined by Eq. (17) if E, is replaced by the

unloading modulus E; given by the relation

g.
E =E : 18
) ° Eo (5ui - eci)+ Rci ( )

where all parameters are specified in Fig. A.S.

Post Peak Behavior after Compression Crushing

Under multiaxial stress conditions compression crushing of the material is identified with
the help of the ultimate strain surface. The material model experiences crushing when the current
equivalent uniaxial strain pierces the ultimate strain surface.

After the material reaches the state of compression crushing, it is assumed that it strain-
softens in all directions until the minimum equivalent uniaxial strain €, reaches €,,. When the
current value of €, reaches the value of € ,, all stresses are completely released and the material
has zero stiffness for subsequent loading. With the assumption that Poisson's ratio v; is equal to

zero after compression crushing, the constitutive relation in Eq. (1) takes the following form for
the crushing material:

(do,] [EL 0 0 O 0 07fde)]

dc, 0 E, 0 0 O 0| ds

<dG3L _ 0 0 E£E 0 0 O ] de, & (19)
dt, 0 0 0 G, 0 O |idy,

dt,, 0 0 0 0 G; 0 (|dy,

dt,)] |0 0 0 0 0 G;|dy;)
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where
EE . o _ BE .  __EBF
(E1+E2), = (Ez'*‘Es) ! (E;+E)

E,; 1s the total secant modulus of the corresponding stress-strain point on the descending branch

Gy, =

of the stress-equivalent uniaxial strain relation. The parameters R,,€; and R;,€, of the stress-

strain relation correspond to the multiaxial conditions at the instant of crushing.

~ If unloading of the crushing material in the strain-softening region occurs, as represented
by the condition f < f,_. , the material matrix is defined by Eq. (19), where E; is replaced by the

unloading modulus in Eq. (18).




APPENDIX B. REINFORCING STEEL MODELS

Three different approaches are possible for the representation of reinforcing steel in three-
dimensional reinforced concrete structures:

- the embed&ed reinforcing bar model;
-the equivalent reinforcing layer model;
-the oriented reinforcing medium model.

- The most widely used model represents the reinforcement with discrete one-dimensional
truss elements, which are assumed to be pin connected and possess three degrees of freedom at
each node. A significant advantage of the discrete representation, in addition to its simplicity, is
that it can also include the slip of reinforcing steel with respect to the surrounding concrete. This
effect might be pursued in possible future studies, which are now under consideration. Thus, a
short description of the model is provided below, even though this model was not used in the
present study.

The model used in this study is the equivalent reinforcing layer model. In the analysis of
three-dimensional structures it is computationally convenient to use a distributed steel model, in
which the reinforcement is represented by an oriented reinforcing continuum medium. Since a
three-dimensional model might be of interest in possible future studies, the oriented reinforcing
continuum model is also described in this Appendix.

Embedded Reinforcing Bar Model

In embedded bar model the reinforcing steel is represented by one-dimensional truss
element which is embedded in the concrete element, as shown in Fig. B.1a. The nodes of the
truss element do not need to coincide with the concrete element nodes. The end displacements of
the steel element are assumed to be compatible with the boundary displacements of the concrete
element, that perfect bond is implied. The discrete embedded steel element can be extended, as
proposed by Filippou et al. [12], to include the effect of bond-slip between reinforcing bar and

surrounding concrete.

For the one-dimensional truss element with constant strain the stiffness matrix in local

coordinate system is given by
N, 1 _ E SAS 1 -1 q (20)

{N}= [tKLo]s{q},




where
E,

A

§

nodes of concrete element

concrete element

steel bar element

node of steel bar element

N
<y

(a) Embedded Reinforcing Steel Bar

nodes of concrete element

\ steel layer element

concrete element

I‘
oo -1t
-~

si

(b) Embedded Equivalent Reinforcing Steel Layer
Fig. B.1 Embedded Reinforcing Steel Models

s =modulus of elasticity of steel;

=cross-sectional area of steel bar;

L =length of steel bar;

-27-




N,,q; =axial end forces and displacements (i = 1,2).

Eq. (21) can be expressed relative to the global coordinate system by applying a rotation
with angles o, and 7y, which are the angles between the axis of the reinforcing bar and the
global X;(i =1,2,3)—axes of the structure. It can be expressed by the following relation:

(N, 1%, ) ( dix, ]
Gix,
dix,
9ax,

92x,

3= [T]T[KLO]S[T]W

(D2x, )

[T]={cosa cosB cosy O 0 0 } 23)

0 0 0 coso cosP cosy

Since the nodes of the reinforcing bar element do not generally coincide with the nodes of
the concrete element (Fig. B.1a) Eq. (22) has to undergo another transformation before it can be
assembled together with the concrete element stiffness matrix. This can be expressed by the
following relation:

[Ko], =[B] 17T (Ko ) [T]T) 24)

where the transformation matrix [7;] has the following form:

[7]=

I:Al,l A2,1 A3,I
A1,2 A2,2 A3.2

and submatrix 4, ; takes the form

Ni(gj’ni’cj) 0
0 N(&;m;.8;) 0 (26)
0 0 N{&;m,85)

In Eq. (26) N, are the shape functions for i —node of the isoparametric concrete element, and
&,.M;,C, are the normalized coordinates of j—node of the reinforcing bar element.

Embedded Equivalent Reinforcing Layer Model

In this model the reinforcing bars inside of concrete element are replaced by an equivalent
steel layer with distributed uniaxial material properties in each reinforcing direction. The
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equivalent steel layer element has thickness ¢; (Fig. B.1b) that is determined by the following
relation:

St b k4
si

where

Aj; =cross-sectional area of reinforcing bar in i —direction;

b,; =spacing of reinforcing bars in i —direction.

Since the equivalent steel layer element has uniaxial properties in direction of r;-axis of

the réinforcing bars, the incremental constitutive relation takes the simple form:
dc; EY 0 O || dg
doit={ 0 0 0 [de >, (27)
dt,] |0 O Gi|drn,

where

st si w‘Ewi .
E'=p,E;; G,= 5(21:_—\7_)" V. =PV,

' E, =incremental secant modulus of reinforcement in i —direction;
p,; =reinforcing ratio in i —direction;
v, =Poisson's ratio of reinforcement.
Eq. (27) can be written in matrix form as
{do'}=[D,,] {de'} (28)
in which
{dci } =vector of incremental stresses in reinforcing layer with bars in i —direction;
{def} =vector of incremental strains in reinforcing layer with bars in i —direction;
[Dy,],, =incremental material matrix of reinforcing layer.

Local material matrix [DLO]H. from Eq. (28) is used now to derive the stiffness matrix of
the equivalent reinforcing steel layer by standard procedures:

(K], = J [BY'[D,,],[BlaV (29)

where [B] is a matrix operator relating the strain to the nodal displacements (assuming plane
stress behavior) of the steel layer element.
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The stiffness matrix [K Lo]s‘. in Eq. (29), which is defined in the local coordinates system
fi» Ty 1y; eed to be transformed to the global system X, X,, X; before it can be used to form the

stiffness matrix of the reinforced concrete element. By the rules of orthogonal transformation the
stiffness matrix of reinforcing layer in the global coordinates becomes

[KGL]si = [T]T[KLO]si[T] (30
in which
L 0 0 T
0 L O
_ 0 0 L 31

[7]

is a diagonal matrix built up of L submatrices in a number equal to that of the nodes in the
reinforcing layer element, and L is a 3x 3 matrix of direction cosines of angles formed between
the local and giobal axes.

Since the nodes of the reinforcing layer element do not generally coincide with the nodes
of the concrete element (Fig. B.1b) stiffness matrix in Eq. (30) has to undergo another
transformation before it can be assembled together with the concrete element stiffness matrix.
This can be formally expressed by relation

[Ko.], =[T] 17T [K.0], [TI[F] (32)
where the transformation matrix [7; ] has the following form:
(A1 Ap Ag - - Ay
Ao A2 Mp - - - App
s (33)
A Mg Mg - - o A8

and submatrix 4, ; has exactly the same form as Eq. (26).

Oriented Reinforcing Medium Model

In the oriented medium model the reinforcing steel is assumed to be distributed over the
concrete element at a certain orientation defined by three axes #,,7; and r; (Fig. B.2). The

oriented steel medium element has the dimensions of concrete element. With reference to the
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reinforcing axes the incremental constitutive relationship for oriented steel medium can be

expressed as:

concrete element

X oriented reinforcing medium

Fig. B.2 Oriented Reinforcing Steel Medium Model

r £ 3

doi) [EF 00 0 0 0]fde
dsy| |0 00 0 0 0| de
Jdos{ |0 00 0 0 0 |de
aq,[ 10 00 GI o o|a,
dti, 0 00 0 0 O |ldy,
4t L0 00 0 0 Gjjldys]
where
E'=wE; Gi=Gji= 2—8—'—_’?5:)-, Vi = PsiVs

‘E,; =incremental secant modulus of reinforcement in 7, —axis of reinforcing;
p,; =ratio of reinforcing in the direction of r; —axis;
v, =Poisson's ratio of reinforcing medium.

The reinforcing ratio is determined from the following relation:
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p —_ A‘.\'i
* byb,

where
A; =cross-sectional area of one reinforcing bar in #; —axis;
b,;,b;; =spacing of reinforcing bars in the direction of r,; and r;; —axes (Fig. B.2).

The constitutive relation (34) can be written in a matrix form:

{do'}=[Ds],{ae'}, (35)
in which
{dci } = vector of incremental stresses in reinforcement medium with bars oriented along the
i —direction of reinforcing;
{dei }= vector of incremental strains in reinforcement medium with bars oriented along the
i —direction of reinforcing;
[D,_o]s‘, =incremental material matrix of reinforcing medium.

Since the material matrix [D,_o]ﬂ. in Eq. (35) is defined with reference to the reinforcing

direction, it must be transformed to the global coordinate system before the element stiffness
matrices can be assembled. This is accomplished exactly as in Egs. (4) and (5) for concrete,
where my; NOW represents the direction cosines of reinforcing steel axes with reference to the

X, (i =1,2,3)—axes of the global coordinate system.

Stress-Strain Relation for Reinforcing Steel

- The stress-strain behavior of reinforcing steel is described by the nonlinear relation which
includes isotropic strain hardening. The relation is computationally efficient and agrees very well
with experimental results from cyclic tests on reinforcing steel bars.

The relation can be presented in following form:

k 2 .
k O, (1+5) e, €, k
0. =— l—b 1+ H— & _1 +8 k=0y19"': 37
a=— (1=5) (1-b)%, Y %, i g G7
where
b= Eu
Eoi
in which

-32-




100

sl (eig) (59 B, 1

Steel stress (ksi)

B0 F (e/a)

_100 ] 1 ] 1 l !
-0.03 -0.02 -0.01 0 0.01 0.02 0.03- 0.04 0.05

Steel strain (in/in)

Fig. B.3 Hysteretic Stress-Strain Relation for Reinforcing Steel

E,; =initial elasticity modulus of steel bar, oriented along the i —direction of reinforcing;

E,; =hardening modulus of steel bar

and
k - k k — ik -—
c,=E,;’e;; "€;,=¢g, ) g, (k=0]1...n)
i
where
o..
etn' =2
Eoi

Eq. (37) readily yields

. ke . ke Y
Exi_:_l.‘:_?‘_(l_bi) _-‘_‘.+1_+b_'._ _i +k8i (k=01,...,n)
2 g, 1-p g,

i i

(38)

(39)

which defines the incremental secant modulus of reinforcement in the i —direction of reinforcing.
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Eq. (37) represents a hyperbolic curve transition from a straight line asymptote with slope
E,; to another asymptote with slope E,; (Fig. B.3). Stress "c).,. and strain "ey,. are the coordinates

of the point where these two asymptotes of the branch under consideration meet; “€ »i 18 the strain

at the point where complete unloading after the k-th reversal took place (Fig. B.3), and “8 is a
parameter that influences the shape of the transition curve and allows a good representation of
the Bauschinger effect. As Fig. B.3 shows, ¢, and “; are updated after each strain reversal.

Parameter *3 is considered dependent on the ratio of the strain at the current asymptote
intersection point and strain € ;. The expression for 8 takes the following form:

k 2
k5 = 1801; [H&] (k=01,..,n) (40)

where parameter 3, is the value of variable “§ during first loading, “eand ¢, are specified in
Eq. (38) (see Fig. B.3).

§,=001; g, =2
E

of
oi

Eq. (40) shows that parameter “8 is updated following a strain reversal. Definition of the variable
*3 remains valid in case that reloading occurs after partial unloading.

Some clarification is needed in connection with the set of rules for unloading and
reloading which complement Egs. (38), allowing for a generalized loading history. The analytical
mode] has a memory extending over all previous branches of the stress-strain history, it would
follow the previous reloading branch, as soon as the new reloading curve reached it. It should be
noted that reloading after partial unloading rejoin the original loading curve after reaching the
point from which unloading started, and continues on the envelope curve.
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APPENDIX D. SHORT SUMMARY ACCORDING TO NU-SSWISP-D008

This Appendix provides a short summary of the results of the study and, in particular, supplies
the information requested in the Specification Report of the Seismic Shear Wall ISP (Document
NU-SSWISP-D008 with revised pages from NU-SSWISP-D009). Repeated figures are numbered

according to their numbers in the main body of this report, so as to facilitate cross-reference.

General Information

Professor Filip C. Filippou and Dr. Toader Balan

Department of Civil Engineering, University of California, Berkeley
Davis Hall, Berkeley, CA 94720-1710

Ph: 510-642-4020

Fax: 510-643-8928

E-mail: filippou@ce.berkeley.edu

AR

Computer Information

1. Gateway 2000, Pentium 60 Mhz
2. 16 MB of RAM memory

Code information

Nonlinear Static FEM Model

MIRAGE original

New concrete and steel constitutive model
#DOF =542

Newton-Raphson Iteration

il

Static Analysis Condition

1. Load control

2. 43 minutes and 59 seconds

3. 16 load steps of lateral load. First three steps with increment of 25 tonf, all subsequent steps
with increments in Table 1. Max. Step Size 7.5 tonf, Min. Step Size 6.25 tonf.

4. Singularity of stiffness matrix
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Model Description

The model of shear wall specimen U-1 was developed with the general purpose finite
element analysis program MIRAGE. Making use of symmetry in the geometry and loading
arrangement of the specimen the model represents one half of the actual specimen, as shown in

%

Figure 3 Three-Dimensional Thin-Walled Finite Element Model
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On account of the cross section configuration of the specimen, with a ratio of wall height
to thickness from 30 to 40, the specimen is idealized as a three dimensional thin-walled
structure with finite elements in condition of plane stress. An alternative three dimensional
model with solid brick elements was also investigated, but is not pursued further in this report.
Under the thin-wall assumption a quadrilateral plane stress finite element was used in the finite
element model of the shear wall specimen.

The model of one-half of the shear wall specimen has 360 nodes and consists of 319
quadrilateral plane stress elements. The boundary conditions of the model were imposed by
fixing the displacements along the global X, Y, and Z-axes for all nodes at the base slab. On
account of the lack of out-of-plane stiffness of the membrane element all nodal out-of plane
displacements were also restrained in the analysis.
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Constitutive Law of Concrete

see Appendix A

Constitutive Law of Reinforcing Steel

see Appendix B

No shear stiffness due to dowel action of reinforcement
Bond-Slip between Concrete and Reinforcing Steel

No bond-slip effect in the model
No Size effect included (tension softening)
No Tension stiffening
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TABLES

Load | Horizontal Horizontal Displ. | Vertical Displ. | Vertical Displ. No. of
Step | Force (tonf) (mm) Left (mm) Right (mm) 1terations
1 0 0 -0.1157 -0.1157 3
2 25 0.2734 -0.1455 -0.0876 2
3 50 0.5798 -0.1768 -0.0602 3
4 75 0.9581 -0.2094 -0.0318 8
5 81.25 1.0657 -0.2179 -0.0242 8
6 87.5 1.2045 -0.2264 -0.0163 10
7 95 1.4497 -0.2372 -0.0014 10
8 102.5 2.2351 -0.2453 0.0306 10
9 110 3.1362 -0.2504 0.0403 10
10 117.43 4.1467 -0.2642 0.0510 16
11 124.86 5.0482 -0.2781 0.0618 16
12 132.29 6.0328 -0.2908 0.0721 16
13 139.72 7.6219 -0.3041 0.0829 18
14 147.16 9.6428 -0.3174 0.0839 16
15 154.58 14.6341 -0.3307 0.0850 16

Table 1 Load Displacement Response and No. of lterations

Load | Horizontal Horizontal Displ. Phenomenon
Step | Force (tonf) (mm)
1 0 0
2 25 0.2734
3 50 0.5798 Initiation of Shear Crack in Web Wall (b)
4 75 0.9581
5 81.25 1.0657
6 87.5 1.2045
7 95 1.4497
8 102.5 2.2351
9 110 3.1362 Initiation of Bending Crack in Flange Wall (a)

Initial Yielding of Vertical and Horizontal Rebar
in Web Wall (d), (e) Fig. 10

10 117.43 4.1467
11 124.86 5.0482
12 132.29 6.0328
13 139.72 7.6219
14 147.16 9.6428
15 154.58 14.6341
16 158 Maximum Load: Crushing of Web (f)

Table 2 Observations during Load-Displacement Response
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Figure 6 Load Displacement Response of the Top Slab Center
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Figure 9 Reinforcement Arrangement in Finite Element Model
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