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Summary

The use of prestressed concrete reactor vessels (PCKVs) for LMr'BK con t a inner:!; crc.-.tĉ  ;:

need for analytical methods for treating the transient response of such structures, fcr LMT2K

containments nusc be capable of sustaining the dynamic effects which arise in a hypr.'t ':.' t jcal

core disruptive accident (HCDA). These analyses require several unique features: a y.-dtl ef

concrete which includes tensile cracking, a methodology for representing the prestrc..;.:;:.-.

tendons and for simulating the prestressing operation, and an efficient computational tool

fur treating the transient response. Furthermore, for the sake of convenience, ;i]] of tleso

fixtures should be available in a single computer code.

For the purpose of treating the transient response, a finite element program, with ex-

plicit time integration was chosen. The use of explicit tirae integration has the auvsr-.taro

that it can easily treat the complicated constitutive r.odel vhich arises froi,7 the con-idc-rr-.-

tions of concrete cracking and it can handle the slip between reinforcing tendons arc the

concrete through the use of t lie well known sliding interface options. However, explicit ti-u

integration programs are usually not well suited to the si;.ulation of static processes such

as prestressing. Nevertheless, explicit time integration programs can handle static proces-

ses through the introduction of damping by what is known as a dynaniic relaxation procedure.

For this reason, the dynamic relaxation procedure was refined through the introduct 5or. of

lumped mass, viscous daciping. This provision raade the prestressinr. operation of the concrete

structures by means of the explicit fonnulntion rather convenient.

A second difficulty in the explicit transient analysis was found to be the spurious high

frequency noise introduced by the sudden cracking of an element. To ameliorate tfx-se effect?,,

the stress was gradually reduced to zero as a function of strain after the tensile li;;it is

exceeded. It was found that this procedure reduces the high frequency noise and attenJar.t

chain reaction cracking.

For the purpose of illustrating the applicability of these techniques and the validity

of the models for concrete and the prestressing tendons, several example solutions are pre-

sented and compared with experimental results. These sample problems range from sir.ply sup-

ported beams to small scale models of PCRV's. It is shown that the analytical methods cor-

relate quite well with experimental results, although in the vicinity of the failure load the

response of the models tends to be quite sensitive to input parameters. This sensitivity of

the models response in the vicinity of its failure load deserves further study.
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1. In trod u ctj o n

The analysis of reinforced concrete hat; been the topic of many investigations, beginning

with the original work of Nilsou [1] who duplicated the cracking pattern in a point loaded,

simply supported beam. Recently, a definitive paper describing the use of a Mohr-Conlomb

model was published by Argyris, et al. [2], which demonstrated the application of o finite

element procedure tro a large variety of static problems.

The analysis of prestressed concrete under impulsive loads such as in the safety analysis

of an hypothetical core disruptive accident (HCDA), however, poses additional difficulties.

An efficient solution under such conditions makes an explicit technique preferable, both be-

cause of economy and because it permits a realistic model of the interaction of prcstressing

tendon:-", with the concrete through the slide line option; the latter are very difficult to pro-

grain in implicit, Newton type codes. However, this necessitates an efficient solution proce-

dure for the static prestressing. Dynamic telaxation procedures provide a natural method for

obtaining static solutions by explicit, transient codes, and finite ditference procedures for

its implementation have been pubiished by Otter [3], Holland [4] and the group at the Imperial

College [5]. However, little was available for enhancing the efficiency in a finite element

context, so we have explored tiiis niatter.

Another difficulty which has plagued our treatment ni concrete nodels with cracking in a

dynamic setting is the chain reaction of cracks introduced by cracking in a single element

[6,7]. This often leads to complete failure of the structure in situations where experiments

do not indicate failure. The culprit in our initial models was the complete elimination of

tensile strain across the crack immediately after cracking. We have now refined this model

by introducing a gradual decay in tensile stress and found experimental evidence for this

phenomenon. In addition we invc found literature on the strain rate dependence of the ten-

sile and compressive strength of concrete. The incorporation of these factors }ms led to

rather good agreement bc'twec-n our model and many cxperiments; some of these comparisons are

reported here.

2. Dynamic KHaxation

Dynamic relaxation is n procedure for obtaining static solutions by solving the dynamic

equations with sufficient damping to converge to the static solution. Damping can be intro-

duced in the dynamic relaxation procedure by either viscous-damping C u or a stiffness pro-

portional damping (which is another guise for artificial viscosity) c. K JJ. The equations of

motion to be solved are then

M u + (C + c. K) u + K u = FeXt . (1)
J. •

If these equations are solved by an explicit central difference method, the stiffness propor-

tional damping must be treated by a backwards difference

•n 1 , n n-1. /n*
u = -̂-JT (u - u ) , (2)

where superscripts denote the time step number and At is the time step. However, if _C is

diagonal, a central difference form

•n 1 , n+1 n-1. ...
U = 2AT (U - U > (3)
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may be used for this damping. The use of the latter is important, for the stable time step of

the uncoupled equation is uneffected by any damping treated by this term, whereas any damping

treated by the backwards difference 02) results in a stability condition

max

where u is the maximum frequency in the mesh and u is the fraction of critical damping inmax n • e.

the highest frequency. Thus as p is increased, the stable tine step is reduced significantly.

However, stiffness proportional damping cannot be used with the central difference velocity

Eq. (3) in a strictly explicit tanner for updating u_ since K would have to be inverted and K

is never diagonal; on the other hand, a diagonal C matrix is quite natural, so Eq. (3) ran be.

used with this damping in an explicit scheme.

With the central difference formula for the accelerations,

..n 1 . n+1 , n n~l\ /c\
u = - — T ( u - 2 u + u ; , (5)

At"
the formula for updating the displacements is then

n+1 , 1 1 . . T,n,ext n 1 n-1 1 . n n-1, , , .
u_ = (-^z M + -^Jl £) UL ~ ii H + J^T £ u. + ̂ — il (2u - _u ) ] . (6)

Nonlinear it ies can be treated by simply replacing _K u by _F '

The C-damping is primarily effective for low frequency modes, which are considerable

trouble in dynamic relaxation since they require the longest time to eliminate. Tt-f arti-

ficial viscosity jr. used for damping the high frequency modes; for low frequency modes, art i-

iicial viscosity is quite ineffective since the fraction of critical damping, u, in any f n -

quency u is given by

u = cju (7)

and so decreases with the frequency.

We have used two schemes for choosing the diagonal £ matrix:

C = c 2 M ', (8)

The scheme indicaterl by Eq. (8) allows Eq. (A) to be a strict stability condition and the C-

damping has no effect on stability. If Eq. (9) is used, the stability criterion varier.

slightly with C2-

To estimate At for a run, we use a development of Hughes, et al. [8] that

ele
, (10)

which means that the maximum frequency of any element in the mesh bounds the maximun. frequen-

cy of the system.

For a constant strain triangle

C =Vp(l+v)(l-2
ele 21
"maX~c~

 a"u " ~Mp(l+v)(l-2v)
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where 8. is the minimum element dimension, c is the dilatational elastic wave speed, E is

Young's modulus, v is Poisson's ratio, and p the density.

Since the density in the prestressing solution plays a purely fictitious role, whenever

the elements vary in size significantly, convergence can be enhanced by making to equal for

all elements by letting

where a' can here be any convenient constant.
max

3. Concrete Modeling

In the treatment of concrete cracking, we have u^ed a scheme in which cracking is trig-

gered whenever the tensile limit is exceeded by any principal strain in the element. The di-

rection of the crack is considered to be normal to this principal direction, and in our initial

studies., the normal stress across the crack, was set to zero across the crack unless the crack

closed, which was indicated by a compressive nornal strain across the crack. This model of

concrete cracking created difficulties, because cracking in one element caused sudden load

transfer to adjacent elements, and thus a chain of cracking, leading to complete failure of

the model.

A basic source of this difficulty is the discrepancy between the model and crack forma-

tion in concrete. Cracking in concrete is a rather irregular process: as the tensile limit

is approached, aiicrocracks form normal to the direction of the tensile stress, but some load

carrying ability is retained because of the irregularity of the crack pattern and aggregate

interlock. 'j>ie microcrarks then coalesce into larger, isolated cracks, which further reduce

the 1 o. d carrying ability.

In our initial efforts to model these phenomena [6], wo incorporated a time delay factor.

In crack formation, the normal stress, instead of vanishing instantaneously, was reduced to

zero linearly over a pre.~~ribed characteristic time. The physical motivation for this time

delay was to model the limited rate of crack growth and the associated energy dissipation.

However, it was found that no single time constant for the decay time was satisfactory

for even modelling the limited experimental data available to us. At the same tine, we

learned of tho test of Evans and "arathe [9], which showed that even at slow strain rates

concrete maintained tensile strength after thi' tensile limit was reached, so that the modelling

of ten.sile stress decay strictly in terms of a time constant did not correlate with this ex-

perimental informal inn. Therefore, the tensile decay was changed to a time independent phe-

nomenon depending only on the magnitude of the tensile strain.

Another physical aspect neglected in the earlier model that was found to be of impor-

tance is the strain rate dependence oT the tensile and compressive limits for concrete.

McHenry and Shideler [10] and McKecley and Lash [11] have presented data on strain rate de-

pendence; the data is unfortunately limited to a maximum of 10 s~^ for compressive strength,

10-3 s-l for tensile strength. Based on this data, the strain rate dependence of tensile

and compressive strengths were fit by a function

V f S = A + B ̂
C

where f and f_ arc the dynamic and static strength, e the strain rate, and A, B and C con-

stants.
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The combination of strain rate dependence of strength and a Lime independent tensile

strength decay have significantly improved our correlations with experiments. However, the

data available for these aspects of concrete behavior are quite minute, and much additional

data are needed to provide a firm foundation for these models. Our studies have clearlv in-

dicated that these factors play a significant role on the response of concrete models, so the

need for this data is great.

4. Results

Some results are given here for dynamic problems" for which exrt?rirriental data are avail-

able. The first is a reinforced concrete beam tested at the Universitv of Illinois ,'I.1 j . Thc-

synimetrically loaded beam, its reinforcement and the finite ele-er.c model are shown i" ':':?• 1.

The yield limit of the reinforcing steel in the analytical nvidel is taken to be 43% higher,

according to the presently accepted variation for a strain rate of 0.5s"1. The history of the

applied load, a record of the reactions and the resultant, central deflect ions uf the S"1 •;:.-. art-

given in Fig. 2, together with the analytical results of the deflection. Tru- t ir-ie of t:.t-

analytical solution shown has been decreased by 0.2ns so th.it the initial r ::,<.• of tin- dt-fh-c-

tion corresponds to thnt of the experimental data. The -laxi-ui-i value of '-;.•• deflection is

comparable to the magnitudes of the experimental data. It is r.otcwurthy t'r.'.t the perT.ar.̂ nt

set of deflections corresponds rather closely to the analytical results.

The second set of results given here refers to the use of viscous damping in a dvr̂ r'.ic

relaxation solution. The example used is a statically loaded c^nt ilo^er ben:'", shown in : i.~.

3. This figure gives dimensions and loading of the bearr., the- raterial constants and rhc- out-

line of the 12 x 4 quadrilateral finite element model used in the solution. Figure A fhov.--

the analytical results when a step load is used in the simulation. The effect of da-:ii'-^ is

illustrated by three different curves: one with zero danpir.f, and two with C2 e^ual to 0.0>

and 0.1, respectively. The static deflection of the beam using beam theory is 0..8f>7 re; when

this deflection is corrected for the effect of shear, it -scones 0.919 cm.

The sample illustration shows that viscous da-iping is very effective in reducing i':.f

oscillations present in dynamic solutions. With C2 = 0.1, the vibration:; are complete!;.

damped and stable equilibrium is reached almost during the first cycle of vibration. Fur-

thermore, the equilibrium deflections reduce to the average values shown by tho UJ-•!.::.p̂ J

solution.

The third set of results given here is for the PCRV model tested at Fu'iinoss [13!. The

finite element model is shown in Fig. 5. This model was prestressed by tru- dynt!:;.ic rtl ';:•:.;-

tion algorithm using 7'iGO time steps, which required 20 minutes of CPU on thu Ji.M 37r>/l'}5.

The model was then loaded by a pressure time history generated fror. an ICKCO simulation of

the. 27g charge. The displacement time history at point A in Fi;. 5 is shewn in Fi,,. 6. l:i

this case the maximum experimental displacement is exceeded sor.tvhat, but th^ model aĉ -jv.:t t-

ly replicates the extended period of the vessel tiue to crack-softening and the absence of per-

manent deformation brought about by crack closing.

Also shewn is the elastic r^oponse using, the same material constants -but with no crack-

ing.. The response is markedly different. The maximum amplitude is reduced, the period is

reduced substantially, and there is no hysteretic mechanism, so the vibrations persi. •_.
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5. Conclus ion:;

Several recent advances in the solution of prestressing by dynamic relaxation and the

modelling of concrete cracking phenomena have been presented. The' importance of including

the decreasing part of the tensile stress-strain, curve of concrete after the initiation of

microcracking and the strain rate depende.-ce of concrete strength have been indicated. Sample

results presented here show that current models can simulate transient experimental displace-

ments fairly well, particularly their phenomenolo^ical aspects, but that the results are fairly

sensitive to material parameters and features of the model.
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Fig. 1. Details of the Tested Reinforced Bean.

Fig. 2. History of Forces and Midspan Deflection of the Bca-i.

Fig. 3. Details of the Contilever Beam.

Fig. h. End Deflection of Beam due to Step Load.

Fig. 5. Finite Element Model of the Test Container.

Fig. 6. Comparison of Cylindrical Wall Displacement.
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