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ANALYSIS OF PIPING SYSTEMS WITH NONLINEAR SUPPORTS 
SUBJECTED TO: SEISMIC LOADING 

D. A. Barta, Senior Engineer 
I Code Stress Analysis 

Westinghouse Hanford Company 
Richland, Washington 

ABSTRACT 

An analyt ical  study o f  e f fects  o f  nonl i nea r i t i es  i n  ptping supports on 
response t o  seismic exc i ta t ion i s  presented. Response calculations f o r  
simp1 i f i e d  sing1 e degree o f  freedom nonlinear models are used t o  ill ustrate 
sens i t i v i t y  t o  s t i f fness  variations, l o s t  motion and impact damping. 
Seismic responses o f  typ ica l  spans o f  various sizes o f  piping supported by 
both l inear  and nonlinear constraints are compared t o  assess the support 
load magnifications due t o  impacting. 

The ideal ized nonlinear piping support models are integrated wi th  a f i n i t e  
element model o f  a large pi.ping system. Time domain seismic responses of the 
nonlinear piping system are compared t o  loads determined by a standard 
1 inearized seismic response spectra technique. 

INTRODUCTION 

The analysis o f  piping systems i n  the high temperature and seismic en- 
vironment o f  nuclear plants, including the Fast Flux Test F a c i l i t y  (FFTF), 
has t rad i t iona l  l y  been carr ied out under assumed 1 inear conditions. P i  ping 
supports were assumed t o  o f f e r  no resistance t o  the piping under normal 
thermal growth but, under seismic conditions, t o  be locked up as completely 
r i g i d  struts.  Dynamic characterization tests  o f  avai lable mechanical seismic 
supports have disclosed the existence o f  s ign i f i can t  l o s t  motion due t o  f ree 
play i n  the l inkage between support and piping and w i th in  the mechani.ca1 ; 
support i t s e l f .  I n  addition, f l e x i b i l i t i e s  o f  the support, pipe clamp and 
c i v i l  support structure were disclosed which can s ign i f i can t l y  a f fec t  the 
piping system v ibrat ion character ist ics and u l t imate ly .  a f fec t  the seismic 
response behavior. Fi,nal l y ,  the tests a1 so. disclosed large energy d i s s i p a t i o n - - -  - 
per- cycle which . f a r  exceed's the standard 2% of c r i t i c a l  damping which i s  I customarily assumed i n  seismic response spectra generation for nuclear piping., 

, 
The primary 'e f fect  of f l e x i b l e  supports i s  t o  lower the piping system 1 

natural v ibrat ion frequencies. Whether o r  not t h i s  w i l l  i n  turn increase o r  ' , 
decrease the system- response t o  ' seismic loading w i l l  depend on how closely 

. . : the: par t i c ipa t ing  v ibrat ion mode frequencies become tuned t o  the peak seismic 



response spectra f requek ies .  The FFTF p ip ing systems, when assumed t o  be 
r f g i d l y  supported, have natural  frequencies higher than the peak seismic . 
response spectra frequencies. Therefore, consideration o f  f l e x i b l e  
supports i n  the seismic analysis general ly e f f ec t s  an increase i n  the 
overa l l  system response. Some 1 ocal i zed decreases may occur, however, due t o  
a red i s t r i bu t i on  o f  the loading. 

The e f f ec t s  o f  gaps i n  the mechanical snubber and l inkage system are not  
obvious. Possible e f f ec t s  are the lowering o f  the response frequencies, 
p a r t i c u l a r l y  a t  r e l a t i v e l y  low amp1 i tude exci tat ion,  loca l  magni f icat ion o f  
load due t o  impact, and large energy d iss ipa t ion  a t  the impact locations. 

This paper describes some o f  the p ip ing models and the analysis techniques 
used t o  study the e f f ec t s  o f  support f l e x i b i l i t y ,  f ree p lay and damping. Both 
time domain and frequency domain analyses were performed by using the general 
purpose f i n i t e  element ANSYS [I]' computer program and also a special purpose 
program which i s  a nonl inear adaptation o f  the phase plane method [2] f o r  re-  
sponse solut ions. 

The object ives o f  t h i s  study are t o  estab l ish the importance o f  p ip ing  
support gaps and the associated impact damping e f fec ts  on the response o f  
p ip ing systems subjected t o  seismic loading, t o  develop analysis methods f o r  
assessment o f  backlash ef fects,  and t o  extend the analysis o f  a simple p ip ing  
system t o  a t yp i ca l  FFTF large p ip ing system. 

PIPING AND SUPPORT MODELS 

Nonl inear Spri ng/Mass Model s 

I n  order t o  determine the loca l  e f f ec t s  o f  the f l e x i b i l i t y ,  f ree play and 
damping parameters over a wide range o f  values, a s imp l i f i ed  nonlinear 
spring/mass model w i  t h  viscous damping, as shown i n  Figure 1 , was used. A 
simulat ion o f  a mechanical snubber combined w i t h  c i v i l  s t ructure and p ip ing  
f l ex i  b i l  i t i e s  w i t h  seismic accelerations appl i e d  through 1 arge ground masses 
i s  depicted i n  Figure 2. This model was used t o  evaluate seismic responses 
associated w i th  actual snubber s t i f f ness  , f ree  p lay and damping values 
measured dur ing snubber character izat ion tests.  

Three-Span P i  p ing Model s 

I n  order t o  assess the e f fec ts  o f  snubber gaps and impact damping on a 
system-wide basis, a f i n i t e  element model was constructed which represents 
three p ip ing spans simply supported a t  the extreme ends and supported by 
nonlinear snubbers between spans. This model i s  shown i n  Figure 3. Piping 
sizes chosen f o r  t h i s  model are t yp i ca l  o f  the small-to-large diameter p ip ing 
i n s t a l l e d  i n  FFTF and includes 1 " (2.54. cm),3" (7.62 cm) and 16" (40.64 cm) 
nominal diameters. The p ip ing was considered t o  be insulated and t o  contain 
sodium ' a t  700°F (371 OC) . The p ip ing lengths and distances between' supports 
f o r  these models were chosen such t h a t  the fundamental vf b ra t ion  mode f r e q u e n ~ l  
would be a t  2.5 Hz. whi le assuming 1 inear ized seismic supports. 

FFTF Large Piping System Model 

The schematic o f  a t yp i ca l  FmF large p ip ing system i s  shown i n  Figure 4. 
A t o t a l  o f  19 mechanical snubbers are used t o  support t h i s  system. The model 
was used as shown f o r  the l i n e a r  frequency domain seismic response spectra 
analysis. However, f o r  the nonlinear time domain analysis, the model was 
modif ied by connecting each support t o  a largeo'mass representing ground. This 
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numbers i n  pare r i t l 3es  ind icate  references 1 i sted a t t h e - - 3  - 



modification was necessary t o  enable appl icat ion o f  the seismic loading a a 
base acceleration. The large ground masses were a1 1 assumed t o  be 1 ,Ox1 0 8 
mass un i ts  so tha t  the applied forces a t  a l l  support points could be scaled 
equally t o  produce the proper ground acceleration. I n  addition, the ground 
masses were su f f i c ien t ly  large t o  preclude in teract ion wi th  the piping system 
masses, thereby preserving the piping system natural v ibrat ion frequency 
characterist ics. 

FAST FLUX TEST FACILITY SEISMIC MOTIONS 

Responset Spectrum 

The seismic response spectrum used i n  t h i s  invest igat ion corresponds t o  a 
horizontal acceleration a t  the operating f l o o r  o f  the reactor containment 
building. It was generated from a Design Base Earthquake (DBE). acceleration/ 
time h is to ry  using damping a t  2% o f  c r i t i c a l .  The calculated seismic response 
spectrum i s  shown i n  Figure 5. It i s  seen that, due t o  in teract ion between 
the s o i l  structure and the building, the peak response occurs a t  a frequency 
o f  2.5 Hz and the response spectrum diminishes very rap id ly  a t  higher o r  lower 
frequencies. Correlation of resul t s  obtained from seismic response spectra 
and from time domain analysis methods i s  therefore very sensi t ive t o  f i n e  
tuning o f  the structural  v ibrat ion frequencies near 2.5 Hz. 

Time Domain Acceleration 

The horizontal acceleration/time h is tory used t o  generate the response 
spectra i s  20 seconds duration; however, less than 3 seconds o f  the h is to ry  
i s  needed t o  determine the maximum responses o f  the piping systems studied. 
The 3-second acceleration/time h is to ry  used i n  t h i s  study i s  shown i n  Figure 
6. A double in tegrat ion o f  the acceleration/time h is to ry  wi th  respect t o  time 
w i l l  produce large absolute displacements i n  the r i g i d  body modes, since the 
acceleration/time h i  story i s  not base 1 ine corrected. However, the s t ructura l  
loads depend only on re la t i ve  displacements and are not af fected by the r i g i d  
body motions. 

COMPUTER PROGRAMS 

Modi f l e d  Phase P l  ane 

The phase plane method f o r  response solutions i s ,  because o f  i t s  simplici- 
ty, accuracy and economy, a very powerful too l  f o r  analysis o f  a s ing le dynamic 
degree o f  freedom system. This method, f u l l y  described i n  [2] , i s  generally 
applied as a graphical solut ion o f  two simultaneous 1 inear .equations. For 
t h i s  study, the phase plane method was modified t o  permit use o f  any number o f  
variat ions o f  s t i f fness  versus displacement and t o  include both viscous and 
coulomb damping. A computer program was then developed t o  d i g i t i z e  the 
response solutions. 

ANSYS F i n i t e  Element Program 

The ANSYS computer program i s  a large scale general purpose program f o r  
the solut ion o f  several classes o f  analysis problems. The ANSYS computer code 
offers two analysis options which are applicable t o  the type o f  time domain 
nonlinear computation. required i n  t h i s  investigation. Option 2.4, which i s  
referred t o  i n  [I] as "Nonlinear Transient Dynamic Analysis ," i s  a numerical 
integrat ion method i n  which var iat ions o f  s t i f fness  as a function o f  time o r  
pos i t ion are read i ly  f ncluded. The mass, damping and s t i f fness  matrices are 

' recalculated a t  each time in terva l ,  thus allowing var ia t ion i n  any desired 
manner. Option 2.4 i s  therefore not only versa t i le  but r e l a t i v e l y  time con- 
sumi ng . Option 2.5, referred t o  as "Reduced Linear Transient Dynamic Analysis1' 
can be used i f  the mass, damping and st i f fness matrices are constant and the 
time in te rva l  i s  constant throughout the transient. This option o f fe rs  a '9 ; 

"semi-1 inear" var ia t ion which a1 1 ows interfaces (gaps) between any of the 



I dyhamic degrees o f  freedom. These interfaces are described by speci f ic  forms 
O f  forcing functions f o r  the l inear  analysis. Since the dynamic matrix 
i s  inverted but once, option 2.5 i s  f a r  more economical than the former, and 
i t  was used throughout t h i s  investigation. 

ANALYSIS RESULTS AND DISCUSSION 

. Single Degree of Freedom Results 

The response o f  the s imp l i f ied  spring/mass model shown i n  Figure 1 t o  the 
FFTF horizontal acceleration was determined wi th  dampin assumed t o  be 2% of 
c r i t i c a l .  Gap sizes were varied from zero t o  1.0 inch 9 2.54 cm) and the osc i l -  
l a t o r  frequency, calculated by disregarding gap effects,  was varied from 1.0 
t o  30. Hz. The results, which are shown i n  Figure 7, reveal r e l a t i v e l y  small 
load magnification f o r  a l l  gap sizes a t  frequencies lower than the 2.5 Hz. 
seismic spectrum peak. A t  frequencies higher than 5. Hz. load magnifications 
due t o  impact against hard structure become increasingly larger  w i th  increases 
i n  both natural frequency and gap size. 

The response resul ts  shown i n  Figure 8 i l l u s t r a t e  the e f fec t  o f  20% o f  
c r i t i c a l  impact damping on response attenuation. The nonl inear responses are 
less than the 2% o f  c r i t i c a l  damped l i n e a r  response spectrum a t  a l l  frequencies 
lower than 5. Hz. Furthermore, the nonlinear responses remain lower than 
the peak o f  the response spectrum up t o  a frequency o f  30. Hz. The value of 
20% c r i t i c a l  damping f o r  impact was chosen a r b i t r a r i l y  f o r  t h i s  study. 
However, some fuel. assembly impact tests  [3] show maximum rebounds o f  less 
than 30%. The impact damping coeff i .cient was shown i n  [3] t o  be related 
t o  the coef f i c ien t  o f  r e s t i t u t i o n  by the fol lowing equation: 

Where, f? = Coeff ic ient o f  Impact Damping 

C~ 
= Coeff ic ient o f  Rest i tut ion 

Maximum rebounds o f  less than 30% approximate a 20% o f  c r i t i c a l  impact damping 
coef f ic ient .  

Simulated Mechanical Snubber/Piping Results 

- .  A simulation o f  the combined c i v i l  structure, snubber and piping stiffness, 
. shown i n  Figure 2, was used t o  assess the seismic response character ist ics 

over a range o f  snubber s t i f fness  and damping values which were determined by 
snubber characterization tests. The assumed piping mass and s t i f fness  
correspond t o  a 1.0 inch (2.54 cm) nominal diameter p i  e wi th  fnsulation' , 

, 

and f i l l e d  wi th  sod,ium, and, with a 141.6 inch (360. cm ! span simply supported 
a t  each end t o  ground. A mechanical snubber wi th  varsiable s t i f fness  and 
damping values was assumed t o  be attached a t  one end t o  the piping a t  mid- 
span and a t  the other end t o  ground through c i v i l  support structure wi th  
variable st i f fness.. . The snubber. gap was assumed. t o  be .030 inch ( .076 cm) 

- as measured by test . ,  .A range o f  snubber s t i f fness  and damping values were 
- .  . used which correspond t o  a smal l  snubber o f  the type tha t  are used t o  

support small piping. The seismic loading was applied through large base 
masses representing ground. Forces applied through the ground masses were 
scaled t o  produce base accelerations i dentical t o  the FFTF horizontal 
seismic motion. The. ci 'vi l  support structure s t i f fness  values were chosen 
t o  tune the system natura l  v ibrat ion frequencies t o  2.5, 5.0 and 9.0 Hz. 'r 

. - b.. A F 7  . -  - .< .-. :. . .  . - 
, . . . .. ' . .'. . .:. . I 

_: .I - 



The maximum snubber load f o r  the 2.5-Hz case was calculated t o  be 98. 
Ib. (436. N. ) as shown i n  Figure 9. By comparison, using the 2% damped 
seismic spectrum which has a 2.7 G acceleration peak a t  2.5 Hz, a 313. 1 b. 
(1 392.N) snubber load was obtained. 

A t  a system frequency o f  5.0 Hz, the maximum snubber load was calculated 
to  be 85. Ib.  (378. N.) as shown i n  Figure 10. This compares t o  a 101. l b .  
(449. N. ) snubber load determined by using the 2% damped seismic spectrum 
a t  5.0 Hz. 

Snubber loads determined for the 9.0-HZ. case are shown i n  Figure 11. I n  
t h i s  case, the maximum snubber load, calculated t o  be. 84. 1 b. (374 N. ) i s  
greater than the 73. I b. (325 N. ) load obtained by using the 2% damped 

* seismic spectrum a t  9.0 Hz. This i s  a t t r ibu ted  t o  load magnification due 
t o  impact which becomes increasingly larger  wi th  increases i n  natural 
frequency. 

The impl icat ion o f  these resul ts  i s  that, wi th  the use o f  mechanical 
snubbers t o  support p i  ping systems, much 1 arger damping coef f ic ients  than 
the 2% o f  c r i t i c a l  may be j us t i f i ed .  Additional more re1 iab le evidence needs 
t o  be provided, however, on a system-wide basis f o r  a large p ip ing system, 
since the damping e f fec t  o f  the snubber could be very localized. 

Three-Span Piping Results 

The three-span piping models were chosen i n  order t o  assess the ef fects  
of snubber gaps and impact damping on a system-wide basis. The size o f  these 
models was a compromise between a large piping system and a small system which 
enabled the study o f  a. wide range o f  parameters a t  a reasonable computer cost. 
The three-span p i  ping responses t o  the FFTF horizontal base acceleration ace 
shown i n  Figures 12, 13 and 14 f o r  piping nominal diameters ranging from 1 
(2.54 cm) t o  16" (40.64 cm) . The .I20 in. ( .305 cm) gap represents the maximum 
allowable l o s t  motion during dynamic cyc l ing o f  the combined snubber and 
linkage system. The expected range o f  support s t i f fness  f o r  each size of 
piping was enveloped by the support s t i f fness  values chosen f o r  t h i s  study. 

The three-span piping response resul ts  lead t o  two conclusions: (1) the 
e f fec t  o f  impact damping.is most pronounced wi th  the piping supported a t  a 
frequency which coincides wi th  the peak seismic spectra frequency, and (2) the 
gap e f fec t  on load magnification i s  o f  importance only i n  association wi th  very 
s t i f f  support structure. 

FFTF Large Piping System Results 

The f i n i t e  element model o f  the piping system included 113 dynamic degrees 
o f  freedom and hence a 1 i ke  number o f  natural frequencies and associated mode 
shapes were computed f o r  the l i nea r  seismic response spectra analysis. O f  the 
t o t a l  , only the 36 lower frequency modes provided s ign i f i can t  contr ibut ion t o  
the seismic response. These mode frequencies are l i s t e d  i n  Table 1. The 
indiv idual modal responses were combined according t o  [4] and account for a l l  
closely spaced modes. The t o t a l  response was then determined as the square 
root o f  the sum o f  the squares o f  the responses resu l t ing  from seismic 
excttat ion i n  the ve r t i ca l  d i rect ion and i n  two orthogonal horizontal 
directions. The applied seismic-spectrum i s  the 2% damped spectrum for  the 
FFTF reactor containment bui 1 ding a t  the operating f loor .  

.: . 

For the nonlinear analysis, snubber gaps were assumed t o  be .I20 in .  
- (.-305 cm) and impact damping a t  the snubber locations was a r b i t r a r i l y  ehosen 

1 - as 20% o f  c r i t i c a l .  The time domain seismic accelerations were applied 
simultaneously i n  the ver t i ca l  and one horizontal d i rect ion and, i n  another - - .  

-1 . -  
- separate computation, i n  the ver t i ca l  and another horizontal d i rec t ion  I 

j - -  orthogonal t o  the f i r s t .  The greatest snubber loads o f  the two com utations 
* -.' 

1 S L' are compared t o  the loads determined by the 1 inear method i n  Table . 
--- --- 



The 1 inear  analysis loads exceed the nonlinear loads i n  a l l  but two 
locations.' These resu l t s  ind icate  t h a t  the 1 inear analysis i s  general l y  
conservative; however,. t h i s  i s  not  e n t i r e l y  conclusive. Addit ional studies 
are needed t o  assess a wider range o f  gap, damping and s t i f f ness  parameters 
on a system-wide basis, 

CONCLUSIONS 

The e f f e c t  o f  gaps on magni f icat ion o f  seismic support loads due t o  impact 
i s  minimal a t  support frequencies lower than f i v e  Hz. Load magni f icat ion i n -  
creases rap id l y  w i th  increases i n  support s t i f f ness  and also w i th  increases i n  
gap size a t  higher support frequencies. 

Energy loss due t o  the impact damping associated w i th  gaps i s  an important 
consideration i n  determining seismic 1 oads throughout the e n t i  r e  range o f  
support frequencies. 

i 

. , The e f f e c t  o f  gaps on reduction o f  response frequency i s  neg l i g i b l e  due 
t o  the t rans ient  nature o f  the seismic accelerat ion loading, however t h i s  
e f f e c t  could be s i g n i f i c a n t  i n  associat ion w i t h  a more c y c l i c  loading cond i t ion  

j 
j Large p ip ing  system analysis resul  ts .  suggest t h a t  the seismic response 

spectra method, which ignores the nonl inear i t ies ,  i s  more conservative than 
I the nonlinear time-domain method. However, a broader base o f  study on a 

system-wide basis i s  needed t o  support t h i s  conclusion. Addit ional studies 
should lead t o  the development o f  .a c8st  e f f ec t i ve  quasi l i n e a r  analysis 

, method which would. provide good approximations o f  the nonl i near ef fects but 
exclude repe t i t i on .  o f .  the cos t l y  time-domain analysis procedure. 
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TABLE 1' 

FFTF PIPING SYSTEM NATURAL FREQUENCIES 

MODE FREQUENCY 

MO HZ 

1 5.821 

2 5.829 

3 5.889 

4 ' .  6.905 

5 7.812 

6 8.779 

7 9.180. 

8 : 9.869 

9 . . 10.15 

10 i 0.37 

11 10.39 

12 10.77 

13 11.12 

14 12.21 

15 12.99 

16 13.87 

17 13.99 

18 15.02 
! 

MODE FREQUENCY 

NO HZ 

19 16.53 

20 20.31 ' 

2 1 21 .20 

22 23.53 
23 23,. 79 

24 24.67 ' 

25 27.81 

26 28.20 

27 31 .93 

28 33.53 

29. 37.68 

30 41.30 

31 43.62 

32 . 48.08 

33 49'. 49 ' 

34 50.45 

3.5 55.14 

36 56.40 



TABLE 2 

COMPARISON OF LINEAR SPECTRA AND NONLINEAR ANALYSIS 
FFTF PIPING SYSTEM SNUBBER LOADS 

P 

SEISMIC 

SUPPORT 

NO. 

1 - X  
1 - Y  

I 

2 - z 
3 - X  

3 - Y 

4 - X  

4 - Y  

5 - Y  

5 - Z  

5A - Y 

5A - Z 

6 - 2  

7 - X 

7 - Y 

I A  - X 

7A - Y 

9 - X  
9 - 2  

10 - Z 

*1.0 LBF = 4.448 N. 

SNUBBER 

LINEAR 

SPECTRA 

5047 

3289 

5071 

2552 

2391 

4422 

1327 

1819 

5866 

2092 

5826 

1081 7 

9369 

4862 

9835 

6086 

3670 

4227 

6888 

LOADS LBF* 
NONLINEAR 

ANALYSIS 

41 40 

1423 

31 52 

1315 

1776 
4376 

486 

2876 

551 4 

2708 

5273 

471 6 

8536 

37 60 

8994 

4021 

2238 
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MB = GRAND MASS 
M1 = STRUCTURAL MASS 
C = DAMPER 
K = STIFFNESS 

Fig. 1 Simplified Nonlinear Spring/Mass Model 



2 BASE ACCELERATION 
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-. 
Z BASE 

ACCELERATION 
Mi. Mq = GROUND MASSES 
M;'= P~PING MASS 
C1, K l  C I V I L  SUPPORT STRUCTURE DAMPING AND STIFFNESS 
C2, K2 = SNUBBER DAMPING AND STIFFNESS 
C3, K 3  = P I P I N G  DAMPING AND STIFFNESS 

F ig .  2 Combined Ci v i  1 Structure/Snubber/Pi ping Simulat ion 
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Fig. 3,:.  . Three-Span PipingkSupport. Model . - 
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INTERMEDIATE 
ucHANGER ) Y, - 

REACTOR 

F i g .  4 Typical  FFTF Large P ip ing  System 



Fig .  5 DBE Horizontal  Seismic Response Spectrum A t  The 
FFTF Reactor Containment Bui 1 ding Operat lng Floor 

2% Damping 
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FREQUENCY HZ 

. . .  i. 
Fig.  7 . Single SpringIMass Response t o  FFTF seismic ~ o r i z o n t a l  Acceleration . : Y 

Damping = 2% o f  C r i t i c a l  I 
. . . 1 # ' 

Note: 1"  = 2.54 cM' j 1 



118" GAP 
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FREQUENCY - HZ 
HEDL 7902-253.4 

I 

3 

Fig. 8 Response Spectrum and Nonlinear Response To 
FFTF Seismic Horizontal Acceleration 
Note: 1 "  = 2 .54  CM 

ZERO PERIOD ACCELERATION = .45 G 

DAMPING:  2% FOR GAP O 
iWo FOR GAP > 0 - - 



SNUBBER DAMPING - LB-SECIIN 

Pipi,ni$Sn"bkr, RGSpinse- TO FFTF Sei ~ m i l  
Accel,eration/Time History : . ' 

System Natural Frequency = : 2 . 5  HZ 
Piping Weight = 116. LB. (52.6 KG 
snubber Gap = .030 IN. (.076 CM) 
Note: 1 . 0  L,BF.. = 4.$48 N. 

1 .O.LB/IN:. = 1.751 N/CM 



F i g . .  10, ' . ' ~ i . ~ i , n ~ / ~ n " b b e r  Response To FFTF seismic Horizontal : 
Accel eration/Ti.me H i  s to ry  

System Natural Frequency =. 5.0 HZ' 
Pi.ping Weight = 116. LB. : (52.6KG) , . 

I 
L .  
I 

. . '  . 
Snubber Gap = .030 IN.  t.076 CM) . 

. ' 

Note: 1.0 LBF= 4'.448 N. . . - - . . . . . . .  . . . . . . 1 1.0 LB/ IN.-= 1.751 N/CM ' ' . . 
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Fig. 11 . p i  p i  ng/snubber ~esponse to: FFTF Seismic ' Hor izonta l  
Accel eration/Time Hi s t o r y  

System Natural Frequency = 9.0 HZ 
P ip ing  Weight = 116. LB. (52.6 KG) 
Snubber Gap = . .030 IN.  (.07.6 CM) . . . . . . . . . . . .  - ... . . . . . .  . . 
Note: 1.O'LBF = 4.448 N. 
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Fig.  1 2  . Three-Span Piping/Support Response To FFTF ~ o r i z o n t a l  Accej e r a t i o n  
Note: 1.0 IN. = 2.54 CM . 
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SUPPORT REACTION LOADS - LB 
HE DL 7902-253.1 

. ~i g .  1 3  Three-Span ~i p i  n g / ~ u p p o r t  Response To FFTF Horizontal  Accel e r a t l o n  
Note.: 1'.O, I N .  = 2.54 CM 

1.0 LBF = 4.448 N . . .  .- - . . ... ....... . . . . . . . . .  
. . . . 1 .O '  LB/IN = 1.751. N/CM . . 

. . .  . . 
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