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1 INTRODUCTION

1.1 Brief historical review of superconductivity

Superconductivity was discovered by Kamerlingh Onnes in 1911 [Kamerlingh Onnes, 1911]. He
observed that the electrical resistance of certain metals vanished at a finite temperature T, (see Fig. 1.1),
which was characteristic of the particular metal. Perfect conductivity is one of the characteristic features
of the superconducting state. A second important feature, perfect diamagnetism (see Fig. 1.2}, was
discovered by Meissner and Ochsenfeld in 1933 [Meissner and Ochsenfeld, 1933]. A phenomenological
explanation of these two effects was provided in 1935 by the London brothers [London, 1935]. They
proposed two equations relating the electric and magnetic fields to the current density flowing in a

superconductor,

N

T

Figure 1.1 Resistance versus temperature for a superconductor. Perfect con-
ductivity is achieved (R=0) at a finite temperature T, called the

critical temperature.




! | >

T>T T<T,

Figure 1.2 The expulsion of a weak magnetic field from a superconducting
sphere cooled below its critical temperature 7. This is commonly
refered to as the Meissner effect. When the field at the equator
reaches the critical field H., the sphere will divide into a mixed

state of superconducting and normal regions.

5 .
= 2 1
E ,UQ/\ 8tJ, (1 )

and
B=—u)(VxIJ), (1.2)

where pg = 47 x 10~7 N/A? is the permeability of free space, and X is called the London penetration
depth. Equation (77) states that any electric fleld present in the superconductor will accelerate the
current rather than doing work against a non-conservative force (perfect conductivity), and Eq. (?7)

can be combined with the Maxwell equation V x B = ppJ to yield

1

VB = =B (1.3)

which implies that a magnetic field is screened exponentially, within a distance A, of the surface of a
superconducting cylinder in a parallel field (perfect diamagnetism), as shown in Fig. 1.3.

The next landmark in the understanding of superconductivity came in 1950 with the phenomeno-
logical Ginzburg-Landau theory [Ginzburg and Landau, 1950]. In this theory, the superconducting
electrons are represented by a complex order parameter ¥ with a magnitude given by [¢v|2 = n,, where
ns is the number density of superconducting electrons. The order parameter also has a definite phase
angle # which is related to the quantum coherence of the superconducting electrons. In this theory,
superconductors can be characterized by a dimensionless parameter k = /&, where X is the magnetic

screening length (London penetration depth) and £ is the coherence length (the characteristic length
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Figure 1.3 Screening of a weak magnetic field, H, < H,, by a superconduct-
ing cylinder. Inside the superconductor the field decreases expo-
nentially within a distance A of the surface. When H, > H,, su-
perconductivity will be destroyed and the cylinder will be in the

normal state.

for spatial variations in |#|) (see Figl.4). Superconductors with & < 1/4/2 are called type-I and those
with & > 1/4/2 are known as type-II. In 1957 Abrikosov predicted [Abrikosov, 1957] that the structure
of the intermediate state, the state where normal and supercondcuting regions coexist (see Fig. 1.4), is
different in type-I superconductors than in type-II superconductors. For a type-I superconducting sam-
ple with a significant demagnetizing factor (eg., a sphere or flat plate in a perpendicular field), when the
field at the surface or edge reaches H, the sample will divide into normal and superconducting regions.
For a type-1 superconductor there is a positive surface energy associated with a domain wall between
normal and superconducting regions; therefore, a laminar structure tends to form to reduce the surface
energy contribution to the free energy. A type-II superconducting sample will enter the intermediate
state when the field at the surface or edge reaches the lower critical field H.;. For a type-II supercon-

ductor there is a negative surface energy associated with domain walls; therefore, the normal regions

tend to divide up into narrow filaments or flux tubes (with radius roughly equal to €) in order to take




superconductor
metal

Figure 1.4 Domain wall between a superconducting and normal metal domains
in the intermediate state. The microscopic magnetic field &(z) de-
cays exponentially inside the superconductor within a distance A.
The magnitude of the order parameter |¢(z)| decays exponentially
inside the normal metal within a distance £. If v/2A < ¢ then the
superconductor is called type-I, and if v/2X > £ it is called type-II.

advantage of the negative surface energy. Each of these flux tubes cénstitutes an Abrikosov vortex with
supercurrents circulating around it, and a flux quantum ¢ = 2.07 x 107 Gcm? of magnetic flux is
associated with it (see Fig. 1.5). The density of vortices becomes greater as the surface or edge field
increases, until the field reaches the upper critical field H.; when the vortices begin to overlap and
superconductivity is destroyed. If there are no significant demagnetizing effects (eg., a long cylinder in
a parallel field), then a type-II superconductor will still exist in the critical state between the fields Hy
and H.s, but a type-I superconductor will no longer enter the intermediate state; superconductivity
will simply be quenched at the field H.. The relation between the fields B and H, for both type-1 and
type-II superconductors, in the absence of demagnetizing effects, is shown in Fig. 1.6.

Another landmark development occurring in 1957 was the emergence of the BCS theory [Bardeen
et al., 1957] which explains conventional superconductivity on the microscopic level. In this theory the
superconducting charge carriers consist of bound electron pairs called Cooper pairs. The BCS theory
was able to quantitatively reproduce experimental results for the energy gap (the energy needed to
break a Cooper pair), the superconducting transition temperature, and many other physical properties
for which the energy gap and excitation spectrum play an important role [Tinkham, 1996]. It was even
shown by Gorkov in 1959 [Gorkov, 1959] that the Ginzburg-Landau theory is a limiting case of the BCS

theory for temperatures near 7.
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Figure 1.5 Microscopic current J and field b distributions for an Abrikosov
vortex in a type-II superconductor. The core of the vortex is not
superconducting and has a radius of £&. Both J and b decay ex-

ponentially within a distance A away from the core. The magnetic

flux through the surface of an arbitrarily large contour encircling
the vortex is equal to ¢¢ = 2.07 x 1077 G cm?.
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Figure 1.6 The relation between the fields B and H in type-l and type-II
superconductors in the absence of demagnetizing effects. In a
type-1 superconductor, B = 0 for H < H, and B = poH for
H > H.. In a type-II superconductor, B = 0 for H < H, and
B =poH for H > H.» but 0 < B < poH in the intermediate state
Hey < H< Hea. If s> 1, then B ~ pgH over most of the inter-

mediate state region and B = poH is an excellent approximation.

The next major discovery came in 1962 when Josephson [Josephson, 1962] was able to predict a pecu-
liar type of tunneling of Cooper pairs between two superconductors which are weakly coupled together.
He found that even in the absence of any voltage drop, there would be a supercurrent, which depends
on the phase difference of their order parameters, flowing between the two superconductors. This dis-
covery has led to numerous applications including the development of extremely precise voltmeters and
magnetometers.

The last major landmark in the history of superconductors occured in 1986 when Bednorz and Muller
[Bednorz and Muller, 1986] discovered superconductivity, with a 7, ~ 35K, in the ceramic compound
LBCO. This important find was followed by the discoveries of other oxide superconductors such as
YBCO, BSCCO, and TBCCO, with T;’s > 80K. These high-temperature superconductors (HTS’s)
have revitalized interest in applications of superconductivity because they can operate at liquid nitrogen
temperatures (T ~ 7T7K), and have very high upper critical fields; however, they also present researchers
with significant challenges such as trying to understand the pr«;irimc,:r mechanism, the order parameter

symmetry, fluctuation effects, and many other novel phenoma. These materials are also challenging

from the materials science and applications standpoint because they are not malleable and typically




contain many defects, such as grain boundaries, which cause nonlinear behavior not present in ohmic

materials.

1.2 Applications of high-temperature superconductors in microwave devices

There is presently considerable interest in the use of HTS’s in passive microwave devices such as
filters for wireless communication [Liang et al. 1995, Lubkin, 1995, Oates et al., 1995, Shen, 1994]. It
is generally believed that this will be one of the first wide-spread applications for HTS’s [Lubkin, 1995].
Much of this belief stems from the superior performance (narrower bandwidth) of recent prototypes
of HTS filters [Liang et al., 1995, Lubkin, 1995, Shen, 1994]. This improvement is due to the lower
conductor losses in HTS’s as compared with conventional conductors such as copper. These lower losses
lead to a larger Q, and narrower bandwidth, for resonators and filters.

There are, however, many obstacles to overcome before HTS filters become a marketable technology.
One major problem is the inherent nonlinearity of HTS’s. This nonlinearity manifests itself in a depen-
dence of the surface impedance on the input power [Golosovsky, 1995, Nguyen, 1995]. One consequence
of this non-ohmic behavior is that the low-power surface impedance is no longer a sufficient figure of
merit for the material. Instead, the surface impedance must be determined at the specific power at
which the device will be operated [Nguyen, 1995]. Nonlinearities can also lead to harmonic generation
(HG) and to two-frequency intermodulation. In HG, an input signal with a single frequency w leads to
an output signal with components at integer multiples of w. In IM, an input signal with two closely
spaced frequencies wy and wo leads to an output signal with components at frequencies which are linear
combinations of w; and wy. The occurrence of IM in filters can cause various problems such as the
generation of spurious targets in radar receivers [Nguyen, 1995]. A thorough understanding of all these
effects 1s essential before high-quality devices can be successfully designed and constructed.

Nonlinear effects occur at both low and high powers; however, the power and frequency dependence
of these effects changes upon moving from the low-power to the high-power regimes [Halbritter, 1990,
1995, Nguyen, 1995]. It is believed that in the low-power regime the nonlinearity is caused by grain

boundaries which act as weak links or Josephson junctions, while at higher powers it is suspected that

vortex pinning is the dominant mechanism [Oates, 1995].




1.3 Sources of nonlinearity in superconductors

1.3.1 Weak links

Bulk HTS’s are granular in structure. They consist of strongly superconducting grains which are
weakly coupled to each other by non-superconducting interface material. This granularity creates many
weak links or Josephson junctions which can cause nonlinearities in HTS samples.

In general, a Josephson junction or weak link is any region of strongly suppressed order parameter
(weakened superconductivity) between two superconducting electrodes. One example of a weak link is

pictured in Fig. 1.7.
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Figure 1.7 A Josephson junction formed by two superconducting electrodes,
infinitely tall in the z direction, with a slab of thickness d; and
infinite resistivity placed between them. A weak magnetic field
applied in the z direction will penetrate a distance A into the su-
perconductors, and a distance Ay along the junction. There will be
supercurrents circulating around the perimeter of the superconduc-
tors, within a thickness A of the surface, and Josephson currents
flowing across the junction, within a distance Ay of the edges. The

arrows indicate the directions of current flow.




The figure shows two superconducting electrodes with a an infinite-resistivity region sandwiched
between them (the electrodes are not electrically connected). Each of the superconductors has an
averaged wavefunction of the form ¥ = || exp(36), where 6 is the phase associated with the coherence
of the Cooper pairs [Van Duzer and Turner, 1981]. When the separation between the superconductors
is small enough (< £), their averaged wavefunctions can overlap, and Cooper pairs can tunnel across

the barrier. This Josephson tunneling can be described by the equations

Jy(z) = JosinAy(z, 1), (1.4)
and
d
ey(e,0) = 320 2 Az, 1), (1.5)

where A7 is the gauge-invariant phase difference between the superconductors, and Jy is the Josephson
critical current density (a measure of the coupling strength between the superconductors). The relation

between Ay and A# is [Tinkham, 1996]
2r
B(a,t) = A6(a,t) - - /Aydy, (1.6)
0

where A, is the magnetic vector potential, and the integral is along a line connecting the two su-
perconductors. Equation (?77) is interesting because it predicts a tunneling current between the two
superconductors even in the absence of any voltage difference. This is very different from the case of
tunneling of normal electrons through an energy barrier, which requires the application of a finite bias
voltage to induce the tunneling. When the non-superconducting region between the syperconductors
has a finite resistivity p;, Eq. (??) must be modified by adding a term, ey/p;, to account for the
tunneling of quasi-particles or normal electrons between the superconductors.

Since it is believed that the grain boundaries in HTS samples act as Josephson junctions, it is useful
to study the model pictured in Fig.1.7. A thorough understanding of the nonlinearities encountered in
this simple model may lead to a much better understanding of the nonlinearities found in actual HTS
devices. However, actual grain boundaries undoubtedly are nonuniform, and this would probably need

to be incorporated into the model to achieve accurate results.

1.3.2 Vortex pinning and the critical state model

When the field at the suface of a HTS exceeds the lower critical field H.;, magnetic flux will begin

penetrating into the interior of the sample in the form of vortices (see Fig. 1.5). In HT'S’s there are many

inpurities and defects which tend to pin these vortices. This feature is actually advantageous because
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an external current will exert a force on a vortex which tends to make it move. A moving vortex creates
an electric field and dissipates energy. Therefore, dissipationless current flow is only possible if there is a
force, the pinning force, which is equal and opposite to the force of the external current. Superconductors
with strong pinning are called hard superconductors because of their mechanical properties. Hard
superconductors exhibit strong nonlinearities such as magnetic irreversiblity and hysteresis in their
magnetization curves.

Magnetic hysteresis in hard type-II superconductors can be understood in terms of the critical state
model [Bean, 1962, Brandt and Indenbom, 1993, Norris, 1970, Zeldov et al., 1994]. In this model the
density of vortices n is assumed large enough (nA? >> 1) that the vortices essentially form a continuum
with average magnetic-flux density parallel to the vortices given by B = nég [Zeldov et al., 1994]. The
force per unit volume that tends to drive the vortices in from the surface is the Lorentz-force density
F = JxB, where J = V x H. In the absence of a surface barrier, B and H satisfy the Maxwell boundary
conditions at the sample surface (continuity of the normal component of B and the tangential component
of H). In critical-state models, it is typically assumed that, to good approximation, B = ygH. This is
an excellent approximation when B > uoH,. {see. Fig. 1.6), which is often satisfied in HTS’s. A force
balance obtains when the Lorentz-force density on the vortex array is balanced by the pinning force
density. The maximum pinning-force density is characterized by a critical current density J.. When the
magnitude of J exceeds J., the distribution of vortices, and hence B, changes until the force balance
is restored [Zeldov et al., 1994]. There is an important distinction in critical-state models between
parallel and perpendicular geometries. An example of the parallel geometry is shown in Fig. 1.8. In
this geometry, the penetrating vortices are nearly parallel to the sample surface.  Figure 1.9 shows an
example of the perpendicular geometry. In this geometry the vortices are curved in the neighborhood of
the sample surface because of the large demagnetizing effects [Brandt and Indenbom, 1993, Zeldov et al.,
1994]. This difference can be observed by examining the equation V x B = poJ, where I have assumed
that B = poH. This equation can be written as (VB) x B + B (V X ]3) = poJ, where B = B/B
[Brandt and Indenbom, 1993, Clem, 1990, 1994]. The first term on the left-hand side depends on the
spatial gradient of the flux density, while the second term depends on the curvature of the flux lines.
In the parallel geometry the Lorentz force stems mainly from gradients in magnetic pressure. In the
perpendicular geometry, however, the magnetic-field lines bend around the sample and the tangential
component has opposite signs on opposite sides of the sample. This leads to a large vortex curvature

so that the second term on the left-hand side of the equation becomes dominant. Since the dominant

terms are different in the two geometries, the structure of the critical state is also different.
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Figure 1.8 Cross-sectional view of a superconducting slab (infinite in the y

direction) in a parallel field. All vortex lines are essentially parallel
to the faces of the slab.
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Figure 1.9 Cross-sectional view of a superconducting strip (infinite in the y

direction) in a perpendicular field. The vortex lines near the edges

of the strip are curved because of demagnetizing effects.
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2 NONLINEARITIES IN HARD SUPERCONDUCTORS

2.1 Critical state model

2.1.1 Introduction

In this chapter I will investigate the role of vortex pinning on the generation of nonlinearities in
type-II superconductors. In Sec. 2.1 T will discuss the structure of the critical state (assuming no
surface barriers) in a half space, a thin-film strip, and a wire of elliptical cross section. I will then use
these results in Secs. 2.2 and 2.3 to calculate the nonlinear surface impedance in a superconducting
half space, and harmonic generation and intermodulation distortion in a superconducting transmission

line.

2.1.2 Superconducting half space in an applied field

In this section I consider the superconducting half space pictured in Fig. 2.1. The region # > 0 is
occupied by a type-II superconductor with London penetration depth A. There is an applied magnetic
field B, = B, % in the region < 0. The applied field induces currents in the superconductor. When B,
is less than the lower critical field pg H.1, the induced current consists of an equilibrium screening current
concentrated in a layer of thickness A near the surface of the superconductor. When B, > puoH., many
vortices penetrate into the superconductor inducing a nonequilibrium current density J = ¥V x H. The
magnitude of J is much larger than the magnitude of the screening current density, which means that to
good approximation B = ugH. Therefore, one can write V x B = poJ, which in this geometry reduces

to
dB,(z)
dz

= —pody(x) . (2.1)

Once vortices have penetrated in from the surface, the sample can be divided into two regions.
There is a vortex-occupied outer region 0 < & < @1, which is in the critical state with J, = J.. There
is also an inner region z > ay, which is screened from the applied field with Jy(z) = 0 and B, (z) = 0.

Using Eq. (?7), and assuming that J. is a constant, the critical-state profiles obtained are [Bean, 1962,
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~—+— type-1I superconductor

y

Figure 2.1 Superconducting half space (infinite along the y and z directions
and semi-infinite along the z direction) with an external magnetic
field B, applied along the z direction.

Zeldov et al., 1994]

Je s I<e<a,
Iy @) = (2.2
07 > a 3
Byl —z/a), 0<ze<a,
B,(z) = o1 ==/a) ' (2.3)
0, x> a,
where the distance a; is given by
B,
a; = . 2.4
1= (2.4)

Figure 2.2 shows a typical current and field distribution.

I now consider the case when the applied field is decreased from an initial value By to a new value
B, . Initially the current and flux densities are nonzero only in the outer region 0 < & < ag [the profiles
are given by Eqs. (2.2-2.4) with B, replaced by Bsg and a; replaced by ag]. After the field is decreased,
there will be an outer region 0 < z < a3, where the current density and flux density will change, and a

field-invariant inner region # > ay, where the current density and flux density remain the same. The
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Figure 2.2 Typical current-density and flux-density profiles for flux penetra-
tion into a type-II superconducting half space initially in the virgin

state.
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current density in the outer region is Jy(z) = —J. and the flux density can be calculated from

dB,(z)
dx

= _MOJc- (2'5)

The resulting current and field profiles are

‘—Jc, 0<$<a1,
Jy(z) = Je, a1 <z <ag, (2.6)
0; x> a0,

Ba0(1+($—2a1)/a0), I<e<a,
B:(z) = Bao(l —z/ag), a <z <ag, (2.7)
O, CL’>GO,

where the distances aq and a, are given by

Bao ’
= — 2.
Gg MOJC ) ( 8)
and
BaO - Ba
= =2 2.
i 2#0*]0 ( 9)

Figure 2.3 shows the current and field distributions for several values of B, between By and —B,g.
If the applied field is then increased starting from B, = — B,g, the profiles are given by [Bean, 1962,
Zeldov et al., 1994]
Je, 0<e<a,
Jy@) =3 =L, a1 <z<ao, (2.10)

0, x>(l0,

—Ba0(1+($—2a1)/a0), I<e<ay,

B.(z) = { Bao(—-1+z/a), a1 <z < ap, (2.11)
0, z>ap,
with
Bu.O + Ba.
= 2.12
“ 2.“0Jc ( )

These profiles are shown in Fig. 2.4.

2.1.3 Superconducting strip in a perpendicular applied field

In this section I consider the superconducting strip pictured in Fig. 2.5. The region |z| < W and

|z} < d/2is occupied by a type-II superconductor with London penetration depth A. It is assumed that
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Figure 2.3 Current-density and flux-density profiles for flux penetration into a
type-I1 superconducting half space as the applied field is decreased
from Bgg to —Bgo. The arrows indicate the progression of the

profiles as the applied field is decreased.
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Figure 2.4 Current-density and flux-density profiles for flux penetration into a
type-I1 superconducting half space as the applied field is increased
from —Bgp to Bgg. The arrows indicate the progression of profiles

as the applied field is increased.
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d__|
l 2W !
Figure 2.5 Superconducting strip (infinite along the y direction) of width 2W

and thickness d with an external magnetic field B, applied along

the z direction.

d € W and A « W. There is an applied magnetic field B, = B, 2. The applied field induces currents in
the superconductor. When the magnetic field at the edge of the strip, which is approximately equal to
Bg+/W/d [Brandt and Indenbom, 1993, Zeldov et al., 1994], is less than the lower critical field pgHe1,

the induced current consists of an equilibrium screening current given by

2B, x

Jy(@) = T d V=t lz| < W, (2.13)
which leads to the flux density
0, l|el<W,
B.(z) = o (2.14)
aymor el >W.

Equations (??) and (??), which can be obtained by conformal mapping methods [Huebener et al.,

1972, Swan, 1968], are exact in the limit d — 0. The apparent square root divergence is an artifact of
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the assumption of infinitesimal film thickness [Zeldov et al., 1994]. In the case of finite d, J, and B, are
understood to be averaged over the film thickness, and the expressions in Eqgs. (7?) and (??) fail when
the edges of the strip are approached to within a distance d if d 2 A or A = 2)%/d if d K \ [Zeldov et
al., 1994].

When Ba\/W—/cl > poH.1 many vortices penetrate into the film, and to good approximation B =

poH. In this regime one may write V x B = poJ, which reduces in the strip geometry to

By (2,2 =d/2) —de(x, z=-d/2) _ pody(z) - (2.15)

Equation (77) should be compared with Eq. (?7?) for the half space geometry.

Once vortices have penetrated in from the edge, the strip can be divided into three regions. There
are two vortex-occupied outer regions a1 < |z| < W, which are in the critical state with J, = —Tf:—‘Jc.
There is also an inner region |z| < aj, which is screened from the applied field with B (z) = 0. Both
Jy(z) and B,(xz) must be determined by solving the boundary value problem B,(|z| < a1) = 0 and
Jylar < |z| < W) = —1a7Je. This problem has been solved for a constant J. using conformal mapping
[Norris, 1970, Brandt and Indenbom, 1993, Zeldov et al., 1994],

Je s W<z <—ay,
Jy(z) = { —ZLearctan (% %%- , |z] < a1, (2.16)
—Je, a<z<W,
0, lz| < a1,
B.(z) = Bfln'z'@;:_/ﬁj_vvw{fh“? e (2.17)
and
a; = E(‘)E}T(—gi——wf), (2.18)

where By = ppJ.d/n. Figure 2.6 shows current and field profiles for several values of B,.

I now consider the case when the applied field is decreased from an initial value B,g to a new value
B,. Initially the current and flux densities are given by Egs. (?7-??) with B, replaced by By and
ay replaced by ag. After the field is decreased, there will be two outer regions a; < |z| < W, where
the current density and flux density will change, and a field-invariant inner region || < a1, where the
current density will change but the flux density will remain the same; this is in contrast to the half
space geometry where the current density only changed in the region near the surface. The current
and flux-density profiles have been determined previously using a superposition method [Brandt and

Indenborn, 1993, Zeldov et al., 1994]
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Figure 2.6 Current-density and flux-density profiles for flux penetration into
a type-II superconducting strip initially in the virgin state. The
arrows indicate the progression of profiles as the applied field is

increased.
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_Jca
Je [1 + Zarctan (Vf,— Wi-ay ]

a?—g2

Jy(e) = e [Qarcta,n (%7 2T xaz — arctan (%

‘W<£L‘S-—(11,
—a1 <z < —ap,

W2_
a‘-—xazo J ’ |£| <ap,

—Je [1 - —arctan (% V:j_":; ] , ap<z<ap,

Je, a <z< w,
and

0, |$| S ap,

/W2 a2+ W, /z2—al
Bz(l‘) = 1 kd \/awz—;{a: bl s ag < |$| S ap ,
N i PN e R Vet Y A W
ag\/|m2 w2| alfo w?2|
where
o = w
0= cosh(Bqo/By)’

and

W

a; =

Figure 2.7 shows the current and field profiles for several values of B, between B, and —Bgg.

cosh ((Bao — Ba)/2By) |

applied field is then increased starting from B, = —Bgp, the profiles are given by

JC) -W <z S —a1,
W2
—J. [1 + arctan <% a2_wa2 ] —a1 <z < —ap,
W2—q W2—q2
Jy(z)y =14 —2= [Qarctan <% 7=z | —arctan ( ag_:g" ] , el <ag,
2
Jc[l—;arctan i WJ, ay <z <a,
—J. s ay S r < W,
0 3 lil?‘ S ao,
|zi/W2—a24+W/z2—al
B.(z) = Bgln v u\/W2—;{ ) ap < |z| < a1,
2. 2 —a2 242
—Bf lnl.'l:l\/W ao;l-_VV\gx ao — 2In ]ri\/WZ al;l__vV\{x & s Ix' > ay,
apr/|22—W3| a1/ |x?—-W?2|
where

w

= cosh ((Bao + Ba)/2B;)

These profiles are shown in Fig. 2.8.
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Current-density and flux-density profiles for flux penetration into a
type-I1 superconducting strip as the applied field is decreased from
Bgo to —Byg. The arrows indicate the progression of profiles as the
applied field is decreased.
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Current-density and flux-density profiles for flux penetration into a
type-II superconducting strip as the applied field is increased from
—Bgo to Bgp. The arrows indicate the progression of profiles as the
applied field is increased.
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2.1.4 Superconducting strip carrying a transport current

In this section I consider the superconducting strip pictured in Fig. 2.9. There is a transport current
Ir flowing along the strip in the positive y direction. When the magnitude of the induced magnetic
field at the edge of the strip, which is approximately equal to po It /27 Wd [Zeldov et al., 1994], is less

than ppH,.1, the transport current is carried by an equilibrium screening current density given by

Iy

J, =, < W, 2.26
which induces a flux density
0, z| < W,
B, (z) = 2l (2.27)
— solr lz| >W.

2 |x]¢52—‘_2’

Equations {??) and (?7) can be obtained by conformal mapping methods [Huebener et al., 1972,
Swan, 1968] in the limit d — 0. The apparent square root divergence is an artifact of the assumption
of infinitesimal film thickness. In the case of finite d, J, and B, are understood to be averaged over the
film thickness, and the expressions in Eqgs. (77) and (?7?) fail when the edges of the strip are approached
to within a distance d if d 2 XA or A = 2A%/d if d <« A [Zeldov et al., 1994].

When ol /2mV/Wd > poH. many vortices penetrate into the film and to good approximation
B = poH, which means that Eq. (??) applies. The strip can now be divided into three regions. The
vortex-occupied outer regions a; < |#| < W are in the critical state with J, = J., and the inner region
lz| < a; is screened from the induced magnetic field with B, = 0. These two conditions define a
boundary value problem which must be solved to determine Jy(x) and B,(z). This problem has been

solved for a constant J, using conformal mapping methods [Norris, 1970],

2J W2—a?
Zearctan { 4/ —=— | , |z] < a1,
Jy(z) = ( ai-=? | (2.28)
Je, ay < lxi <W,
0, lxl <ag,
B,(z) = Bfln\/Wz‘/_‘Z;__&;_GQ , @ < |z < W, (2.29)
Bfln W2 lz| > W,

\/m2-—a2—\/W2—a2 ’

where
a=Wy1- (IT/IC)2 ) (2'30)

and I. = J.2Wd is the saturation current of the strip. Figure 2.10 shows current and field profiles for

several values of Ir. 1 now consider the case when the transport current is decreased from an initial
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Figure 2.9 Superconducting strip (infinite along the y direction) of width 2/

and thickness d carrying a transport current /7 in the positive y

direction.
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0.0
x/W

Figure 2.10 Current-density and flux-density profiles for flux penetration into
a current carrying type-II superconducting strip initially in the
virgin state. The arrows indicate the progression of profiles as the

transport current is increased.
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value Ipp to a new value Ir. Initially the current and flux densities are given by Eqs. (?7-77) with Ip
replaced by Iro and ay replaced by ag. After the current is decreased, the flux density will change in
the two outer regions a; < || < W but will remain the same in the inner region # < a;. The current
density will change across the entire width of the strip. The current and flux density profiles have been

determined previously by a superposition method [Brandt and Indenbom, 1993, Zeldov et al., 1994]

2o [arctan ( V:;_—:Zﬁ — 2arctan ( V:f%_:j ] , lz| < aq,
Jy(z) =19 . [1 — Zarctan <,/%~:§ ’] , ap < |z < ay, (2.31)
—Je, a1 < le] < W,
and
0, lz| < ao,
B,(z) = BfanWjﬁ_—-\/x;_az , ap < |z < ay, (2.32)
By (lnl A W\/_gj"\;j;'z_aﬂ) S k>,
where
ao = W+/1~(Iro/L)?, (2.33)
and

2
a; = W\/l - (%) . (2.34)

Figure 2.11 shows the current and field profiles for several values of It between Ipg and —Ipg. If the

transport current is then increased starting from —Ipg, the profiles are given by

_Z;{Ja [arctan ( v:g%_::l — 2arctan ( Zz—__;; ] , |z| < ag,
Jy(@) =9 —J, [1 — Zarctan ( v:;:;j : ao < |z| < a1, (2.35)
Je, ap < |zl < W,
and
0, lz] < ao,
B.(z) = ﬁBfln\/Wz_fi'&;_az ) a0 < e[ < a1, (2.36)
| ( kit — 2ln Viez W] ) , |z| > a1,
[\/xz—az—\/Wz—agl I\/xE—af—\/W2—af|
where

a; = W\/ - M) : (2.37)

These profiles are shown in Fig. 2.12.
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Figure 2.11 Current-density and flux-density profiles for flux penetration into
a current carrying type-II superconducting strip as the transport
current is decreased from Irg to —JIpg. The arrows indicate the

progression of profiles as the transport current is decreased.
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Figure 2.12 Current-density and flux-density profiles for flux penetration into
a current carrying type-1I superconducting strip as the transport
current is increased from —Ipg to Irg. The arrows indicate the
progression of profiles as the transport current is increased.
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2.1.5 Superconducting wire of elliptical cross section carrying a transport current

In this section I consider the superconducting wire of elliptical cross section pictured in Fig. 2.13.
The wire is infinitely long in the y direction (into the page) and has an elliptical cross section in the
2 — z plane with semi-major axis ¢ and semi-minor axis b. The aspect ratio of the ellipse is defined as
o = b/a (when o = 1 the wire is circular in cross section, while when o <« 1 the wire resembles a

Z

Figure 2.13 Cross section of an elliptical superconducting wire. The y axis is
directed into the page. The wire is infinite in the y direction and
has semi-major axis a and semi-minor axis . There is a transport

current It flowing along the wire in the positive y direction.

thin strip with elliptical rather than rectangular cross section). There is a transport current flowing
along the wire in the y direction. I will assume that H.; = 0, so that vortex penetration occurs for any
I > 0, and that the London penetration depth A satisfies the relation A < a,b. When J; is a constant
the flux fronts will be ellipses which are concentric to the cross section of the wire (the aspect ratio of
the flux front is @ = b/a) [Norris, 1970]. The wire can be divided into two regions. The outer region

a? < 22 +y?/a? < a? is in the critical state with J, = J.. The inner region z% +y%/a? < a? is screened

from the induced magnetic field with J, = 0 and B = 0. The current-density and flux-density profiles
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along the z axis have been determined previously [Norris, 1970]

Jy(z) = > Peesa (2.38)
-]c: g <zr<a,
and
0, 0<z<ay,
Bi(z)={ -B.(fa-f(@)), wm<z<a, (2.39)
—B. (f(a) — f(a1)) , a<zx,
where
_ (u/a)?
= e Ty - =y (240
and

ay = a\/1— (Iz/1.), (2.41)

I, = maa?J,, and B, = poad.a. Figures 2.14 and 2.15 show these_proﬁles for the two extreme cases,
a =1 (circular wire) and o <« 1 (film with elliptical cross section), for several values of Ir.

I now consider the case when the transport current is decreased from an initial value frq to a new
value Ir. Initially the current and flux densities are given by Egs. (??7-??) with I replaced by I'ro and
ay replaced by ag. After the current is decreased, the current density and flux density will change in
the outer region a? < z? + y*/a? but not in the inner region z? + y?/a? < a?. The current-density and

flux-density profiles can be determined using a superposition method

0 y 0 <zx<L ap,
Jy(z) =9 J, ag <z <ap, (2.42)
_Jc y a<er<a
and
r 0, t<e<ay,
—B. (22 _ £(ag)) , ag < < ap,
B.(z) = 4 (£~ 7 (en) ’ ' (2.43)
—Be(Qf(al)—f(ao)—ﬁ—Z), a<z<a,
| —B. (2f(a1) - f(&) = f(a)),  z>a,
where
ag = ay/1— (Iro/lc), (2.44)
and

Ipg — I
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Figure 2.14 Current-density and flux-density profiles for flux penetration into
a type-II superconducting wire of circular cross section (o = 1)
which is initially in the virgin state. The arrows indicate the

progression of profiles as the transport current Iz is increased.
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Figure 2.15 Current-density and flux-density profiles for flux penetration into
a type-II superconducting strip of elliptical cross section (o < 1)
which is initially in the virgin state. The arrows indicate the

progression of profiles as the transport current Ip is increased.
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Figures 2.16 and 2.17 show the current and field profiles, when o = 1 and a < 1 respectively, for several
values of Iy between Ipg and —Ipqg. If the transport current is then increased starting from —Irq, the

profiles are given by

0, I<e<ap,
Jy(:c) = —Je, ap<z<a, (2.46)
Je g <e<a
and
0, 0<e<a,
Be(f_{_z—f(ao», ap <z <ag,
B,(a) =< (2.47)
B, (2f(a1) — flao) - #2) , @ <z<a,
| Be (2f(a1) — fla) — f(ao)) , z>a,
where

Iro + I
a) = a\/l - (l"QI—T> . (2.48)

These profiles are shown in Figs. 2.18 and 2.19 for &« = 1 and a <€ 1 respectively.

2.2 Nonlinear surface impedance of a type-II superconducting half space

The surface impedance of a hard type-II superconductor in an alternating magnetic field can be
calculated using the critical-state field profiles determined previously in Sec. 2.1.2. In order for the
calculation to be valid it must be assumed that the frequency of the applied field is low enough that
the response of the superconductor can be treated quasistatically. The surface impedance of a linear
material Z;, = R, —1X,, where R, and X, are the surface resistance and surface reactance respectively, is
defined as the proportionality constant between the tangential complex electric field and the tangential
complex magnetic field at the surface of a half space of the material [Jackson, 1975]. The tangential
magnetic field at the surface is equal to the applied magnetic field which is assumed to be harmonic.
For a linear material, the tangential electric field at the surface will typically have components both
in-phase and out-of-phase with the applied magnetic field. The in phase component of the electric
field is proportional to R, while the out of phase component is proportional to X;. As an example
consider a half space of normal metal characterized by a resistivity p and subjected to an applied field

H.{t) =Re [H aoe"""t]. The magnetic field inside of the metal is given by

B,(z,t) = Re [ugHaoe_‘”/‘sei(x/é_wt)} , (2.49)
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Figure 2.16 Current-density and flux-density profiles for flux penetration into
a type-1I superconducting wire of circular cross section (a = 1) as
the transport current is decreased from Ipg to —Ipg. The arrows

indicate the progression of profiles as the transport current Ip is

decreased.
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Figure 2.17 Current-density and flux-density profiles for flux penetration into
a type-II superconducting strip of elliptical cross section (o < 1)
as the transport current is decreased from I7g to —Ipp. The arrows

indicate the progression of profiles as the transport current Ir is

decreased.
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Figure 2.18 Current-density and flux-density profiles for flux penetration into
a type-I1 superconducting wire of circular cross section (@ = 1) as
the transport current is increased from —Ipg to Irg. The arrows
indicate the progression of profiles as the transport current Ip is

increased.
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Figure 2.19 Current-density and flux-density profiles for flux penetration into
a type-II superconducting strip of elliptical cross section (o < 1)
as the transport current is increased from —Ipg to Irg. The arrows
indicate the progression of profiles as the transport current /7 is
increased.
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where § = \/2p/pow is the skin depth [Clem, 1992]. The electric field at the surface can be found by

applying Stokes’ theorem in the z — y plane to Ampere’s law V x E = —%—?. The result is
d o0
Eye=0,t)= —/ B.(z,)dz . (2.50)
dt Jo

Inserting the appropriate expression for B, (x,t) into Eq. (7?) yields
Ey(z = 0,t) = Re [p/6(1 — i) Hape™™] . (2.51)

The relation between the complex electric field E, (z = 0,t) and the complex magnetic field H,(z = 0,1)
is By(z = 0,t) = p/8(1 — i)H,(z = 0,t). Therefore, Z, = (1 —1)p/é.

In a nonlinear material the application of a harmonic magnetic field will typically generate higher
harmonics in the electric field. Therefore, the surface impedance concept must be generalized in non-

linear materials. One method is to expand the electric field at the surface in a Fourier series,

Ey(e =0,t)=Hg Z [Rncos(nwt) — X,sin(nwt)] , (2.52)
n=0

where
w [ E d 2.53
R, = WHaO/o cos(nwt)Ey(z = 0,1)dt, (2.53)

and

CHY E d 54
X, :_WHGO/O sin(nwt) By ( = 0, 8)dt . (2.54)

R; and X are the surface resistance and surface reactance of the material respectively, while the
coeflicients for larger n provide information about the higher harmonics that are generated.
Returning to the superconduting half space, the magnetic flux density is given by Eqgs. (2.6-2.12).

The resulting electric field, calculated from Eq. (77}, is

“Bio (Lsin(2wt) — sin(wt 0<t< m/w
Ey(.’.lf — O)t) — 2;10.]52(2 ( ) ( )) ) / s (255)
—;‘B;‘j,‘l (—%—sin(2wt) + sin(wt)) , wlw<t<2nfw.
The Fourier coeflicients calculated from Eqs. (2.15) and (2.16) are
—Bagw 12D 44
Ro=q T (2.56)
0, n even,

and

Bagw n=1,
X, =14 2% : (2.57)
0, other n.
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The surface impedance of the superconductor is given by [Fisher et al., 1992]

QBaow
7=
A

(1—i3m/4). (2.58)

It is clear from Eq. (?7) that the surface resistance for a type-II superconductor is proportional to the
amplitude of the applied field; this is in contrast to a normal metal where the surface resistance is a

constant [Jackson, 1975].

2.3 Harmonic generation and intermodulation due to alternating transport

currents

2.3.1 Harmonic generation in strips and elliptical wires

In this section I consider harmonic generation {HG) in a one-dimensional coaxial-type transmission
line as shown in Fig. 2.20 [Sridhar, 1994]. The outer conductor is a superconducting cylindrical shell
of radius R, and the inner conductor is either a superconducting wire of elliptical cross section or a
superconducting thin-film strip. The center conductor carries a transport current I'r(t) = Irocos{wpt). I
will assume that R is large enough that the center conductor can be treated as if it were isolated. It can
be shown that this is not a very restrictive assumption [Campbell, 1995, Clem et al., 1996, Fleshler et
al., 1995]. When Iz¢ becomes large enough, vortices will penetrate into the center conductor. In these
calculations I will assume that H,; = 0 and that there are no surface barriers, so vortex penetration
occurs for all Irg > 0. For simplicity I will neglect any flux penetration into the outer conductor. I will
also assume that wg is small enough that the vortex motion can be treated quasistatically, which will
allow me to use the results of Secs. 2.1.4 and 2.1.5.

The voltage drop per unit length is given by Faraday’s law

d R
Vi) = -2 / dzB,(z,1), (2.59)
dt J, '
where B, is the z component of the flux density in the # — y plane. Since Ip(t) is periodic with period
T = 2w /wg, V(t) is periodic with the same period. I may, therefore, express V(¢) as a Fourier series

V(t) = Iro f: [Rncos(nwqt) — Xysin(nwot)] (2.60)

n=1

where the coefficients R, and X, are given by

27 /wo
/ dtV (t)cos(nwgt) , (2.61)
0

27 Jwo
/ dtV (t)sin(nwot) ,
0
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outer conductor

center conductor

Elliptical geometry

Strip geometry

Figure 2.20 Picture of superconducting coaxial-type transmission lines. The
outer conductor is a cylindrical shell of radius R. The center
conductor is either an elliptical wire with aspect ratio o = b/a or
a thin-film strip of width 2W and thickness d, where a, W <« R.
The y axis points into the page.
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respectively. The dissipated power per unit length is given by

wp 27 fwo
Pyss = — dtip(t)V(t). (2.63)
2w 0
Inserting Eq. (?7?) into Eq. (77?) yields
1o
Paiss = 51rofts - (2.64)

Equation (??) implies that R; is the resistance per unit length. X, is the reactance per unit length,
which is related to the inductance and to the resonant frequency. When Ity — 0, V(t) becomes purely
inductive; therefore, X; — Xy, where X is the geometric reactance per unit length. For n > 1, R,
and X,, yield information on the generation of higher harmonics in the fransmission line.

I will first consider the strip geometry. During the half cycle when Ip is decreasing from Ipg to
—Ipg, the current-density and flux-density profiles are given by Eqgs. (2.31-2.34). During the other half
cycle It is increasing from —JIp¢ to Irg, and the current-density and flux-density profiles are given by

Eqs. (2.35-2.37). Inserting It = Irpcos(wot) into Egs. (2.34) and (2.37) results in

(2.65)

W/l - Psint(wot/2),  0<t< mfw,
al(t =
W\/l — IPcos® (wot/2), mfwe <t < 21 fwy,

If the expressions for B, given in Eqgs. (2.32) and (2.36) are used in Eq. (?7) to calculate V{(t), the

result is

2r ay (t)

V(t) = —Iro 2 sin(wot)In (R VI~ ‘“W) : (2.66)

The logarithm can be expanded around large R to obtain

V(t) = Iro “;‘;Osin(wot) [—m (%@) +In (‘ngl) +0 ((ﬁf‘%@) 2)] . (2.67)

The first term is the voltage drop per unit length when the strip is in the Meissner state. The second

term is the dominant nonlinear term, and the third term leads to small corrections and will be neglected.

The expressions for R; and X; are found to be

powo 2 1+ D1+ +(1-Dn(1—-1)-17], (2.68)

B = 2 wl?

which yields Norris’ result for the losses in a thin-film strip [Norris, 1970]

I2
Paiss = 22 B2 [(1 4+ (1 + 1) + (1= Din(1 = 1) = 7], (2.69)

and

Xi=Xo+AX;, (270)
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where AX; is given by

Ax, = B2 4 24-e-D 1-12{_(2+W1+—I)
+ln<(2—l+2\/i——7ié2+1+2\/m))] | -

and |
Xo= 50 (%) : (2.72)

The coefficients for the higher harmonics can be calculated analytically. The even harmonics vanish
Rop = Xop =0, (2.73)

while the expressions for the third harmonics are given by

Holo 1 4 2 9
Bs 537 21 — 14417 + (48(1 + 1) + 617) (1 + N)In(1 + )
+(48(1 -1y +6I*) (1 — NIn(1 - 1)] , (2.74)
and
X3 = H;:O % {[4 — 144717 — 128 +32(12 =3I + V1 — T +32(2+ D)/(1 + 1)_3] ) (2.75)
The leading order behaviors for I « 1 are
Ry= el (2.76)
YT Tor 3x0 :
powg [ I
= ET Y 2.
AN = (16) : (2.77)
Howo I?
=5 \ T~ 2.78
Rs o ( 571_) , (2.78)
powo I?
= 29 - 2.
Xa= 55 (2.79)

Figure 2.21 shows R;, AX;, Rs, and X3 as a function of I for the strip geometry.

I now consider the elliptical geometry. When I is decreasing from Ipg to —Irp the current-density
and flux-density profiles are given by Eqgs. (2.42-2.45). When JIr is increasing from —Ipy to Iy the
current-density and flux-density profiles are given by Eqs. (2.46-2.48). Inserting Iy = Ippcos{wot) into
Eqgs. (2.45) and (2.48) yields

/ .2
a(t) = { ay/1 — Isin®(wqt/2), 0<t<mfwg, (2.80)

ay/1 — Icos?(wot/2), mjwy <t < 2 fwg .
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Figure 2.21 The resistance per unit length R;, power-dependent part of the
reactance per unit length AXy, and third harmonics R3 and X3,

in units of powo /27, versus I = Ipg /I, for a superconducting strip

transmission line.
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If the expressions in Eqs. (2.43) and (2.47) are used in Eq. (2.32), then the result for V (¢) is

V(t) = —Iro “;‘;0 sin(wot)In (R +/RP - (1= a2)a1(t)2) . (2.81)

(1+e)ai(t)

The logarithm can be expanded around large R to obtain

V(0) = Fro 2 %sin(unt) [_m ( : 1-|2-oz) %) +1n (“-’Laﬂ> +0 (((—“lg)l) 2)} . (2.82)

The first term is the voltage drop per unit length in the absence of vortex penetration (Izo — 0). The

second term is the dominant term arising from the quasistatic vortex penetration. It is interesting to
note that this term is independent of . The third term leads to small corrections and will be neglected.

Using Egs. (2.59) to calculate Ry, we find

_ powo 1
By = 2 w2

[[(2—1)+2(1-Din(1-1)] . (2.83)

Inserting Eq. (77) into Eq. (2.62), we obtain Norris’ result for the losses in an elliptical wire [Norris,

1970]

_ Wo ,U()Icz
Paiss = 52 EE [I(1= 1/2) + (1= Dn(1 - D] . (2.84)
Using Eq. (2.60) to calculate X; we obtain

X1 =X +AX;, (285)

where AX, is given by

AXlzﬂowo _1+2\/1~I(2—I~2\/1—I)__1n 2 —I4+2/1-1 ’ (2.86)
4 2 12 4
and
__ powo 2 R
Xo = 5 1n<(1+a) a) . (2.87)

A X, is the power-dependent or nonlinear part of the reactance, while X is the geometric reactance.

The coefficients for all higher harmonics can be calculated analytically. For the even harmonics it is

found that
Rgn = X2, =0. (2.88)
The expressions for R3 and X3 are
R,3=“2°“’0 14MM—7ﬂ?+mﬁ+J“+M&l—n+6ﬂﬂl—nmu—fﬂ, (2.89)
T 3nl
and
= "’;:" glﬁ [14 + 167 — 14417 4+ 2561 — 128 + 64(2 — I) \/(_1——1)3] , (2.90)
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respectively. The leading order behaviors for I < 1 are

powa I

Ry = Y. 3_71" (2.91)

Axy = ool (2.92)
ir 2’
Howo I

_ _1L 2.

By = £ ( 5W), (2.93)
_ Howoz

Xs= 0o (2.94)

Figure 2.22 shows Ri, AX;, Rs, and X3 versus [ for the elliptical geometry.

2.3.2 Two-frequency intermodulation in strips and elliptical wires

In this section I consider intermodulation {IM) in a one-dimensional coaxial-type transimission line
shown in Fig. 2.20. The inner conductor carries a transport current with two closely spaced frequencies

w1 and ws centered around the resonant frequency wo,
Iro
Ir(t) = - (cos(w1t) + cos(wat)) , (2.95)

which can also be written as

Ip(t) = Ippcos(wot)cos(Awt) , (2.96)

where w; = wg + Aw and wy = wp — Aw. | will again assume that H.; = 0 so that vortex penetration
will occur for all Ipg > 0.

The voltage drop per unit length is again given by Eq. (2.57). If T assume that wy/Aw = N = integer,
then Ir and V(¢) are periodic with period T = 2 /Aw. Therefore, V(¢) may again be written as a
Fourier series

o<

V)= Z ncos(nAwt) — Xy sin(nAwt)] , (2.97)

where the coefficients R, and X,, are given by

Aw 27 f Aw

R, = dtV (t)cos(nAwt), (2.98)
nlpo
and
_ 27/ Aw
X, = —2v / 4tV (1)sin(nAwt) (2.99)
7TITO o}

respectively. Since w1 = (N + 1)Aw and wy = (N — 1)Aw, the fundamental response will be given

by the n = N +1 and n = N — 1 terms in the series. The third order intermodulation response, at




48

0.40

0.20

0.00

-0.20

-0.40

0.0

Figure 2.22

0.5

The resistance per unit length R;, power-dependent part of the
reactance per unit length AXy, and third harmonics Rz and X3,
in units of powo/2w, versus I = Ipo/I, for a superconducting

elliptical wire transmission line.

1.0



49

frequencies 2w; — wy and 2ws — wy, is given by the n = N 4+ 3 and n = N — 3 terms of the series. The
time-averaged dissipated power per unit length can be found by inserting Eq. (7?) into Eq. (2.61),
I2
Pyiss = % (Rn+1+ Rn-1) . (2.100)
Equation (??) implies that the resistance per unit length of the transmission line is equal to the average
of Ryy1 and Ry—1. The reactance per unit length is equal to the average of Xy11 and Xpny_1.
The structure of the critical state in the presence of two frequencies is considerably more complicated
than for a single frequency. The simpleist case is when the center conductor is a circular wire [a = 1].
The flux fronts will be circular and there will only be one front moving at any given time. Let a; () be

the radius of this front. The voltage drop per unit length is given by

R R
V() =d% [/0 deqs(p,t)} = %— UO dpg%Bq&(p,al)} : (2.101)

where Bg(p,t) is the magnetic flux density at radius p measured from the center of the wire. The

expression for the magnitude of the partial derivative of By is given by

0, <a,
- pa (2.102)

} d
2u0dear/p, a1 <p,

aTIqu(P,al)

and the sign is opposite to the sign of the current density in the region a; < p < a. The magnitude of
V{(2) is given by

da R

|V(t)| = —ngJcal d—tlhl <Z> , (2103)

and the sign of V() is the same as the sign of the current in the region a; < p < a. Therefore, once
ay(t) is determined, V(¢) can be calculated with Eq. (?7).

To determine ay (t) we must examine the equation
SIrt)=0. (2.104)

The roots of Eq. (?7) are the values of ¢ at which the previous flux front stops moving and the new
flux front starts to penetrate in from the surface. Using Eq. (?7) for Ir(¢) in Eq. (?7) yields a
transcendental equation which can only be solved numerically. However, when N > 1 the roots deviate
only very slightly from integer multiples of 7/wq. Using this appréximation for the roots of Eq. (77)
allows us to derive analytical exressions for a;(¢). In order to derive the expressions we divide up the

period T = 27 /Aw into four equal intervals. Each of these intervals is then divided into N/2 equal

subintervals. Each subinterval corresponds to a time period m/wg. At ¢ = 0 the center conductor has
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current-density and flux-density profiles given by

0; p<aop,
Jy(p) = (2.105)
Joy ap<p<a,
and
0, p<ap,
J 2_ 2
By(p) = NL—(—Qg—O), ap<p<a, (2.106)
IL_O(_]_T——GO)_7 a<p<R’
2p

where ag = /1 — I and I = Iy /I, with I. = 7a?J,. A new front begins to penetrate in from the surface
at ¢t = 0 and collapses quasistatically toward the center until ¢ = 7/wq, at which time it stops at radius
as > ag. This new front leaves a current density —.J. behind it as it penetrates in. Af time t = m/wy
another front begins to penetrate in and leaves a current density +J. behind it. This front stops at time
t = 27 /wo and radius as > a2. This process continues until t = (N/2— 1)}n/wy, at which time there is a
remnant structure consisting of annular regions with the current density alternating between -+J. and
—J.. The outermost annular region contains a current density —J,. At time ¢ = (N/2 — 1) /wq, a new
front begins to penetrate into this remnant structure, leaving a current density +J; behind and it stops
at time ¢t = (N/2+ 1)7/wg. At time ¢t = (N/2+ 1)m/wp a front begins to penetrate in leaving a current
density —J, and stops at time ¢ = (N/2 + 2)w/wy. This process continues until ¢ = N /wg, at which
time the current density is the same as as in Eq. (?7) except with a negative sign. This corresponds to
time ¢t = T/2 = w/Aw. The same process occurs between ¢ = m/Aw and t = 27/Aw, except that the
positive and negative current densities are switched. The expression for a1 (t) is derived by writing the
expression for Ir(t) in terms of ay (t) in each subinterval. The resulting expression for the first interval

0 <t < n/2Aw is given by

ax(t)/a = \/1 - é (cos (-TV—“) + (=L I (t)/ Fro) (2.107)

where m is the index that labels the subintervals, mr < wet < (m+ )7, m = 0,1,...,N/2— 1. The
expression for Ir (%) is given by either Eq. (?77) or Eq. {??). For 7/2Aw <t < n/Aw, the expressions

are

\/1 % (sin (BE) + (-1)™Ir(t)/Iro), (=1)™Ir(t)/Iro <sin (%)
\/ ~1 (sm (L_i_lﬂ) + (=)™ Ip(t )/ITO) , otherwise,

(N/24+m)r <wot < (N/24+m+1)x, m=0,1,..., N/2— 1. The reason that there are two expressions

ay(t)/a= (2.108)

for 7/2Aw <t < ©/Aw is that the flux fronts are penetrating through a remnant state. For m/Aw <
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t < 37/2Aw,

a1(t)/a= \/1 - é (cos (%) + (—1)’”IT.(t)/IT0) , (2.109)

(N+m)r<wit < (N+m+Dr, m=0,1,...,N/2— 1. For 3n/2Aw < t < 27/ Aw,

VI3 Gin () + CO P i 0)/Iro), (<1 Er(t) o < sin (2) |
a1(t)/a = - (mt1)r i
\/ _ % (sm (§T> + (—1)m+1IT(t)/[T0) , otherwise,

(BN/2+ m)r < wot < (3N/2+m+ 1)m, m = 0,1,..., N/2— 1. Using these expressions to calculate

(2.110)

daq/dt, T obtain

V(t) = —“11:0 (wisin(wit) + wasin(wat)) [ln (%) —In (a—la(t—))] . (2.111)

The first term within the brackets is a linear inductive response and is proportional to the geometric

reactance per unit length X,

_ Howo, (R
Xo = E1 (a) . (2.112)

The second term arises from the hysteretic behavior and leads to nonlinearites.
When 0 < o < 1 a similar derivation can be performed and the same expressions are obtained for

a1(t). The difference is that the voltage drop per unit length is now given by

V(t) = —%ﬂ (wisin{w1t) 4+ wasin(wat)) In (R + \/](%12_:0(3&_1(?)2)(11@)2> , (2.113)

which can be expanded around large R to obtain

V(t) = ~H20T0 (ursin(urt) + wasin(wst)) [m (%) —In <‘lfl> +0 ((%)Zﬂ @i

The first two term in Eq. (?7) yield Eq. (??) when o = 1. The third term is a small correction
term that vanishes when o = 1. The important observation is that the second term, which is the
dominant nonlinear term, is independent of «. Figure 2.23 shows the resistance per unit length Ry 41
and reactance per unit length AXyy; [w = w;] as well as the third-order mixer products Ry+3 and
Xnys [w = 2wy — wy] versus I for the elliptical geometry.

A similar analysis can be applied to the strip geometry. Let the position of the moving front be

given by a;(t). The voltage drop per unit length is given by

R R
V= l—/o d:r:Bz(a:,t)] = {_/0 dwgz—l—Bz(x,al)} , (2.115)

where B, is the normal component of the magnetic field in the z — y plane a distance z from the center

of the strip. The magnitude of the partial derivative of B, is given by

0, r < ay,
9, (2.116)

b x>a 3
VW2 = a3 (2 - al) '

a
\B_ale (17,01)

B;
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Figure 2.23 The resistance per unit length Ry41, power-dependent part of the
reactance per unit length AXn 41, and third-order mixer products
Ryys and Xpygs, in units of powe/2m, versus I = Ipy/I. for a
superconducting elliptical wire transmission line.
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where the scaling field By is given by

B; = : (2.117)
and the sign is the same as the sign of the current density in the region a; < # < W. The magnitude

of V() is

day 1 R++\/R?—a}
Vit -2B 2.11
V)= 280 G — e ( - , (2.118)
and the sign is the same as the sign of the current density in the region ay < ¢ < W.

The period is divided and subdivided in the same way as for the circular geometry. The expression

for a;(¢) during the first interval 0 <t < 7/2Aw is given by

g mn 2
— . — —1ym+1
a(t)/W = \/1 ) (cos( I ) + (-1 IT(t)/ITO) , (2.119)
mr <wgt < (m+ Dwr,m=0,1,..,N/2— 1. For 7/2Aw <t < 7/ Aw,

V1= Z (sin (BF) + (-)™r(t)/Tro)’, (~)™Ir(8)/Fro < sin (3F) |

a1 (¢)/W = (2.120)
\/1 - £ (sin (im—j;,lﬁ) + (—1)mIT(t)/IT0)2, otherwise
(N/24+m)r <wet < (N/2+m+ 1w, m=0,1,..,N/2—1. For n/Aw <t < 37/2Aw,
3
(t)/W = \/1 _ cos ) 5 (—1)mIT(t)/IT0> , (2.121)
(N +m)r <wot < (N+m+1)m, m=0,1,...,N/2— 1. For 37/2Aw < t < 27/Aw,
V1= L (sin (Z5) + (1) Ip(0) /Ir0)*, (1) Ip(2)/Iro < sin (22)
ar1(t)/W = (2.122)

2
\/1 -7 (sm (Lﬂl}l—;rlll) + (—1)m+1IT(t)/IT0) , otherwise,
(BN/2 4+ m)r < wot < (3N/2+m+ 1)m, m =0,1,..., N/2 — 1. Using these expressions to calculate
day/dt, 1 obtain

I /RZ _ 42

V(t) = _“‘;—WTO (wisin(wit) + wasin(wat)) In (R—”*——ER———‘E) . (2.123)

1

If I expand around large R, the result is
_ _ polro . . 2R a(t) w2

Vit) = 0 {wisin(wit) + wasin(wat)) [ln (W) —In ( wo )t 0 = )| (2.124)

The first term is proportional to the geometric reactance per unit length

HoWo 2R

~ ==, 2.125
Xo 42 (31) (2.125)

The second term arises from the hysteretic behavior and leads to nonlinearities. The third term leads
to small corrections and will be neglected. Figure 2.24 shows the resistance per unit length Ry and
reactance per unit length AX 41 [w = wi] as well as the third-order mixer products Ry4s and Xy43

[w = 2wy — waq] versus I for the strip geometry.




Figure 2.24 The resistance per unit length Ry .1, power-dependent part of the
reactance per unit length AXpy;, and third-order mixer products
Ry43 and Xyys, in units of powo/2m, versus I = Ipg/I, for a

superconducting thin-film strip transmission line.
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2.3.3 Applications to resonators

The results of Secs. 2.3.1 and 2.3.2 apply to infinitely long transmission lines. In experimental
investigations and in device applications resonators or finite length segments of transmission lines are
typically employed [Golosovsky et al., 1995, Nguyen et al., 1995, Oates et al., 1995, Wilker et al.,
1995]. In order to apply the results of Secs. 2.3.1 and 2.3.2 to resonators it must be assumed that
the fringing effects due to the ends of the resonator can be neglected. This should be an excellent
approximation if the length of the resonator £ is much larger than the lateral dimension of the center
conductor [€ > W, a]. The expressions derived in Secs. 2.3.1 and 2.3.2 for V'(t), Rn, Xp, and Plyjss
must also be multiplied by £ to make them dimensionally correct. It can be shown that the relation
between Xy and the characteristic impedance Zg is £X¢ = w2g.

In a typical experiment a current given by Ipr = Ipgcos(wot) (HG) or Ir = Ipgcos(wot)cos(Awt)
(IM) is established in the center conductor. The output voltage signal is analyzed to determine the
distribution of power among the various frequencies inside the resonator. The amount of output power at
a given frequency can then be plotted versus the incident power to determine the degreee of nonlinearity
in the resonator. The relation between the time-averaged output power P,,; and the the time-averaged
incident power Py, is Poyt = rngc, where r, is called the voltage insertion ratio. In the S parameter
notation, r, = |S91|. The insertion loss IL is defined as IL = —20log;,7, dB. In HG measurements
a well-matched transmission-line sample is typically used and Pm; ~ (1/2)I2,£Xo [Shen, 1994]. The
power spectrum at frequency nwq is proportional to R2 + X2, and the time-averaged output power at

that frequency is

(2.126)

R+ X2
Pout(nwﬂ) = Pout X ( >

S + X0
In IM measurements the resonator is usually weakly coupled to the input and output lines so that the
loaded @ is nearly equal to the unloaded @ [Shen, 1994]. The relation between Fjp,. and Irg has been
derived previously [Oates et al., 1990]

87y (1 — 7,)Q Pyyee
Irg = \/ ( ﬂ'ZO)Q , (2.127)

where @ = Xnyi1/Ry11 is the unloaded quality factor. The power spectrum at frequency nAw is
+ + q

proportional to RZ + X2, and the time-averaged output power at that frequency is

Ry + X5
Pout(nAw) = Pout X (ZOCIJ—l(RzI +X2/)> : (2128)

Figure 2.25 shows plots of Poy(wo) and Poyt(3wo) versus Py, for HG in both the elliptical and strip

geometries. The slope of Puy:(wg) versus Py, curve is equal to one for both geometries. The slope of
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Figure 2.25 Poy¢(wo) and Poy(3wo) versus Pj,. for a resonator, with either

an elliptical (a) or strip (b) center conductor. All powers are
expressed in dBm [P(dBm) = 10log;o(P(mW)/(1 mW))]. The
parameter values used were Zg = 50§, fo = wo/27 = 1.6 GHz,
£=3cm, Wora="T75um,dor 2b=0.3um, and J, = 10° A/cm?.
It was assumed that the dielectric constant characterizing the re-
gion between the conductors is € = 10.
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the P,yt{3wo) versus Py, curve is equal to two in the elliptical geometry and equal to three in the strip

geometry. The value of P, where Puys{wg) and Poy:(3wo) become equal is denoted as PZ-(,TCO Y. Tt can

be shown that for the elliptical geometry

P'('TOI) —_ l (L)z (TFZO)s (2129)
ine 2 \ po(wo/2m)e . ’

“and for the strip geometry
(Ton) _ (W10Z0)2/ [“0("‘)0/271-)4 )
e 2/(1/5m)% + (1/32)2
The third order intercept (TOI) is defined as 10log;o[P{To” /1mW] dBm. Using the parameter values

ine

(2.130)

Zo =50, fo =wo/2m = 1.6 GHz, £ =3cm, W or @ = 75 ym, d or 2b = 0.3 um, and J. = 10% A/cm?,
the TOI 1s equal to +72.2 dBm for the elliptical geometry and +57.7 dBm for the strip geometry.

The values of the TOI calculated from Eq. (2.126) are in reasonable agreement with experimental
measurements on coplanar TBCCO lines given in Table 1T of [Wilker et al., 1995]. A better way to
compare the theoretical predictions to the experimental results, however, is to examine how the TOI
depends on line width, line length, and temperature, as was done in Table III of [Wilker et al., 1995].
According to Eq. (2.126), the change in the TOI when only the width of the line is changed from
2W1 to 2Ws is ATOI = 20log;o(Wa/W1). When only the length of the line changes from 4 to £,
the corresponding TOI difference is ATOI = 10log;,(£1/¢2), and when only the temperature changes
is changed from T to 7%, then ATOI = 20log;(Je(T2)/J(T1)). Table 2.1 shows a comparison of
experimental and theoretical values for ATOI. Excellent agreemenﬁ is found with regard to the width
dependence, and fair agreement is found with the dependencies on length and temperature.

Figure 2.26 shows plots of Poys(w1) and Poyt(2w; —ws) versus Piy. for IM both the elliptical and strip
geometries. At low powers the slope of Ppy(w1) versus P, is equal to one for both geometries and
the slope of Poy¢(2w1 — ws) is equal to two for the elliptical geometry and three for the strip geometry.
At intermediate powers the slope of P,y:(w;) becomes equal to 1/2 for the elliptical geometry and 1/3
for the strip geometry, while the slope of Poy:(2w; — ws) is equal to one for both geometries. The
change in slope between the low and high power regious is observed experimentally [Chin et al., 1992,
Findikoglu, 1996]. Assuming the same parameter values as for the HG case yields a TOI of +29.0 dBm
for the elliptical geometry and +18.G6 dBm for the strip geometry.
£ ) /A (o

&o 2Q
nonlinearity in resonators. This quantity can be determined experimentally from the resonance curve.

The ratio r = ( } has been stressed as an important figure of merit characterizing the

Awg is the shift in position of the peak of the curve, and @ is the reciprocal of the bandwidth. This

ratio is also related to the theoretical quantities R; and AX;. The change in the bandwidth A(1/Q) is
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Table 2.1 Comparison of the theoretical and experimental results for ATOI as
the width, length, and temperature are varied independently. The
experimental values were taken from [Wilker et al., 1995]. The values
for the critical current density at a given temperature were deter-

mined by taking the average of all accurately reported values at that

temperature.

Parameter ATOI (dBm)
experiment | theory

Width
(W — 2W) 6.9 6.0
(W — 4W) 12.2 12.0
(W — 8W) 18.4 18.1
Length
(14 mm — 1 mm) 9.7 11.5
(14 mm — 5 mm) 31 A5
(5 mm — 1 mm) 6.5 7.0
Temperature
(90 K — 80 K) 5 4 31
(80 K — 70 K) 5.5 5.8
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Figure 2.26

P, . (dBm)

Poui(w1) and Puyy(2w1 — ws) versus P, for a resonator, with ei-
ther an elliptical (a) or strip (b) center conductor. All powers are
expressed in dBm [P(dBm) = 10log;,(P(mW)/(1 mW))]. The
parameter values used were Zo = 50 Q, fo = wg/27 = 1.6 GHz,
£=3cm, Wora="T5um,dor 2b = 0.3 ym, and J. = 10° A /em?.
It was assumed that the dielectric constant characterizing the re-

gion between the conductors is ¢ = 10.
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given by
1 R,
A=) = 22, 2.131
=1 (2.131)
and the relative shift in resonant frequency Awg/wy is given by
Awo 1 AXl
— == 2.132
W 2 X1 ( 3 )
Substituting these expressions inte the expression for r yields
AX,
= . 2.133
= (2.133)

Therefore, r provides a simple way to compare experiment and theory. In Nb microstrip resonators, the
quantity r was found to be essentially constant (~ 1) except at temperatures close to T, [Golosovsky
et al., 1995]. In this case a plot of Awp/wg versus A(1/2Q)) should be a straight line with slope of order
unity at smaller values of I, and should deviate from a straight line at larger I values. Figure 2.27
shows such a plot using the derived expressions for By and AX;.

A frequency-independent r value of order unity is character‘istic of the nonlinearity caused by vortex
pinning and hysteresis. For other mechanisms the magnitude and frequency dependence of the r value
may be quite different. For the case of the low-field behavior of weak links, the r value is often one or

two orders of magnitude larger and is inversely proportional to the frequency. This has been observed

in granular and polycrystalline samples in small fields [Halbritter, 1996].
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Figure 2.27 Plot of Awg/wq versus A(1/2Q) for a resonator with an elliptical
or strip center conductor. The curves end at I = 1. The initial
slopes of the lines, corresponding to / <« 1, are 2.4 and 1.5 for
the ellipse and strip, respectively. This straight-line behavior is

observed experimentally [Golosovsky et al., 1995].
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3 NONLINEARITIES IN SUPERCONDUCTING WEAK LINKS

3.1 Introduction

In this chapter I will consider the nonlinear effects caused by weak links in superconductors. In Sec.
3.2 I will examine HG in small Josephson junctions. In Sec. 3.3 HG in a long junction will be treated,
and in Secs. 3.4 and 3.5 I will investigate the transition from small junction to large junction behaviour

for both the slab and circular wire geometries,

3.2 Harmonic generation in small Josephson junctions

Penetration of magnetic flux into a Josephson junction occurs on a length scale characterized by a
length Ay called the Josephson penetration depth. A Josephson junction is small if all its dimensions
transverse to the magnetic field are smaller than A;. The ac properties of a junction satisfying this
criterion are most easily treated using the resistively and capacitively shunted junction (RCSJ) model
[Tinkham, 1996, Van Duzer and Turner, 1981]. In this model the Josephson junction is modeled by an
ideal junction J shunted by a resistance R and a capacitance C to form a parallel circuit (see Fig. 3.1).
The current flowing through the circnit Ir can be thought of as the superposition of a supercurrent
Is, a normal current Iy, and a displacement current Ip. The normal current is caused by the flow of
quasiparticles or single electron excitations across the barrier, while the displacement current is due to
the time-varying electric field between the superconducting electrodes. The supercurrent, which flows

through the ideal junction, is given by the Josephson relation,
Is = Iy sinAvy, (3.1)

where Ipg is the critical current and A<y is the gauge-invariant phase difference across the junction
which is related to A¢ by Ay = A¢ — (27/¢g) [ A - ds, where the integral is along a path connecting

the two superconductors. The normal current and the displacement current are given by

In = — (32)
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Figure 3.1 The circuit used to represent an actual Josephson junction in the
RCSJ model. An ideal junction J is shunted by a resistance R and
a capacitance C. The transport current Ir flowing through the
junction is the sum of three terms: a supercurrent Is through the

ideal junction, a normal current In through the resistance, and a

displacement current Ip through the capacitance.
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and
Ip = CiV : (3.3)
D = dt > .
where V is the voltage drop across the junction. The relation between V and A« is
¢o d
t) = ——A%(1). 4
v =22 a0 (3.4
Combining Eqs. (??-77) yields
_ T ¢o d $oC d?
Ir = Is + In + Ip = IysinAxv(2) + Sr R dt Axy(t) + o 712 Ay(t). (3.5)

For a given transport current we can determine A~(¢) by solving Eq. (?7). In microwave applications

Ip typically varies sinusoidally, It = Irg sin(wt). In this case Eq. (7?) becomes

1 (w)® & d : ,
) (E) WA'y(t') + E@A'y(t') + sinAy(t') = I sin(2xt’), (3.6)

where t' =t/T = wt/2m, wp =\/1/L;jC,e =wly/2nR, Ly = ¢o/2m]y, and I = Ito/Iy. The frequency

wp is the plasma frequency of the junction. For low driving frequencies, w < wp, Eq. (77) reduces to

E%Ay(t') + sinAq(t') = I sin(2rt') (3.7)

The steady-state solution of Eq. (7?) is periodic in the variable ¢, with a period equal to one. The
voltage drop given by Eq. (?7?) will also be periodic with the same period. Therefore, we may expand

V in a Fourler series,

V(') = Iro Z [R,sin(27nt’) + Xpcos(2mnt’)] (3.8)
n=1

where the coefficients are given by

1
R, = 2 V ()sin(2mnt’)dt’ (3.9)
Iro Jo
and
9 i
Xp = —/ V(t')cos(2mnt’)dt" . (3.10)
Iro Jo

The coeflicient R; is related to the time-averaged dissipated power Py,
! 1
Paies = / I(¢)V ()l = SFoRy (3.11)
0

Equation (??) indicates that R; is the resistance. The coefficient X is the reactance. For n > 1 the
coeflicients are related to the generation of higher harmonics by the junction.
In the limit of small transport current, 7 <« 1, Ay <« 1, and sinAy ~ Ay, In this case Eq. (?7) can

be linearized,

E%A'y(t') + Av(t') = I'sin(2rt’) . (3.12)
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The steady-state solution of Eq. (?7) is

1

no_ - I N '
Ax(t) = Traroa [—2me cos(2nt’) + sin(27t')] , (3.13)
and the resulting expression for V(t') is
V(')=1I RQL [27e sin(2nt’) + cos(2mt')] (3.14)
O™ Fanze? ' '

By comparing this with Eq. (?7) one can see that

4722
Ri=— 3.15
T T  an2e? (3.15)
and
2me
Xij=———R. .16
! 1+4n252R (3.16)

These expressions are plotted as a function of £ in Fig. 3.2. There is a local maximum in X; at
g€ = 1/2x. At this value of ¢ the shunting resistance R is equal to the Josephson reactance wL; and
R =X, =(1/2)R.

In the opposite limit of large transport current, I > 1, Iy > Ig, and Is can be neglected in Eq.

(*7),

d
S@A'y(t’) = Fsin(2xt’). (3.17)
The resulting V (t') is
V(t') = IroRsin(27t’) (3.18)

which implies Ry = R and X; = 0. This is also the solution when ¢ > 1.

In general, however, Eq. (??7) must be solved numerically. This has been done previously by various
authors [Auracher and Van Duzer, 1973, Herd et al., 1996, Perpeet et al. 1995, Xie et al., 1996, Zhai
et al., 1996]. Figure 3.3(a) shows Ry versus [/ for three different values of &. When ¢ <« 1, there are
very sharp steps in Ry for I > 1 (A and B, for example). Corresponding steps also are seen in X1, Rs,
and X3 for small £, as shown in Figs 3.3(b), 3.4(a), and 3.4(b), respectively. For R, the step heights
decrease in magnitude with increasing I, and when [ 3> 1, R; ~ R, as expected. The sharp steps occur
at values of I for which there are bifurcations in the solutions of Eq. (77). Figure 3.5(a) shows the first
two bifurcations (marked A and B in Figs. 3.3 and 3.4) for ¢ = 0.01. These bifurcations cause sudden
changes in the voltage drop V'(¢) given in Eq. (??). As shown in Fig. 3.5(b), for I = 1.064 there is a
negative voltage pulse near ¢’ = 0.4 and a positive voltage pulse around ¢’ = 0.9, while for I = 1.065

there is positive pulse near ¢ = 0.4 and a negative one near ¢’ = 0.9. The voltage responses at [ = 1.198

and [ = 1.199 also differ from each other by a change in sign of voltage pulses in the neighborhood of
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Figure 3.2 The resistance R; and reactance X; versus £ for the RSJ model

when I < 1 [see Egs. (3.15) and (3.16)]. R, increases from zero
quadratically with increasing £ and quickly approaches the shunting
resistance R. X initially increases linearly with increasing &, goes
through a maximum at € = 1/2n, and then decreases to zero as 1/¢

as € — co. When € = 1/2x7 the shunting resistance is equal to the
Josephson reactance (R =wlLjy = ¢ow/27lp), and Ry = X; = R/2.
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Figure 3.3 The resistance R; (top) and reactance X; (bottom) versus I in the
RSJ model for three different values of e. When ¢ is small, there
are very sharp jumps. These jumps occur because of bifurcations in
the gauge-invariant phase difference Ay. Arrows indicate jumps at
values of I for which bifurcations in Ay versus ¢ are illustrated in
Fig. 3.5(a). As ¢ increases, the bifurcations move to larger values of
1, and successive bifurcations are spaced further apart. This causes
the sharp steps to become broadened, to become less frequent, and

eventually to disappear completely.
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(b) ——

0.0 1.0 2.0 3.0 4.0

Figure 3.4 The third harmonic responses R3 (top) and X3 (bottom) versus [ in
the RSJ model for the same three values of ¢ as in Fig. 3.3. When
¢ is small, there are very sharp oscillations. These oscillations,
which occur because of bifurcations in the gauge-invariant phase
difference A~, have a behavior similar to the behavior described in

the caption to Fig. 3.3. Arrows indicate steps at values of I for

which the bifurcations are shown in Fig. 3.5(a).
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Figure 3.5 Plots of the gauge-invariant phase difference A¥(¢) (a) and voltage
drop V(t) = (¢o/2m)dAy(t)/dt (b) versus t, for ¢ = 0.01, show-
ing the first two bifurcations. The first bifurcation occurs between
I = 1.064 and I = 1.065, and the second between I = 1.198 and
I = 1.199. The bifurcations occur because A< slips by 2x. For

clarity, the voltage curves are offset in the vertical direction.
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t' = 0.4 and ¢ = 0.9. Therefore, the sharp features in the curves of R1, X1, R3, and X3 correspond
to the inversion of a voltage pulse at two different times during one cycle of the alternating current.
As ¢ is increased, the bifurcations in the solution move to larger values of I, and the spacing between
them becomes larger. The steps in R; are therefore broadened [see Fig. 3.3(a)]. As ¢ — oo, all the
bifurcations are pushed to infinitely large values of I, and Ry — R. The curves in Fig. 3.3(a) indicate

that this transition is approached quite rapidly.

3.3 Harmonic generation by a long Josephson junction in a superconducting half space

A Josephson junction is long if one of its dimensions transverse to the magnetic field is much larger
than Ay. In this case the RCSJ model no longer gives an adequate description of the ac properties of
the junction.

Consider a semi-infinite superconductor (z > 0) containing the junction pictured in Fig. 3.6. The
entire region = > 0, except for a slab of thickness d; centered on the z — z plane, is occupied by a
superconductor with London penetration depth A. The slab consists of a nonsuperconducting material
of resistivity p; and permittivity e. There is an applied field B, = Byosin{wt)Z in the region # < 0. The
Josephson penetration depth for this junction is Ay = W , where the magnetic thickness d
is given by d = 2\ + d; and Jj is the critical current density of the junction. The relation between the
gauge-invariant phase difference across the junction Avy(x,t) and the magnetic field along the junction

b,(z,1) is given by [Tinkham, 1996]

$o_ 9 Ay(z,t). (3.19)

bz(a:,t) = _ﬂa_a}

The relation between A+(z,%) and the electric field across the junction ey(z,t) is

9
e, (,1) = %—%Av(m,t). (3.20)

The current density across the junction Jy(z,t) is given by

Jy(2,1) = JosinAvy(z, 1) + &1 (3.21)

i
The first term is the Josephson relation for the supercurrent density and the second term is the normal

leakage current density. Jy(x,t) is related to b,(,t) and ey{z,t} by Ampere’s law with a displacement

current,
—ibz(m t) = poJy(z,t)+ uoeie (z,t). (8.22)
ax bl Yy 3 8t Yy 3
By combining Eqgs. {?7-77), we obtain a single equation for Avy(z,1),
5° 1 [w)® 8 9
Az ) — — (2} 2 Py Y ! ) = o togr )
5o y(z',1) yp (wp) T Avy(z',t) ags Axy(z', t') = sinAxy(2', 1), (3.23)
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_ superconductor

superconguctor

s z
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Figure 3.6 Geometry of a long Josephson junction. The region z > 0, ex-
cluding a slab of thickness d; centered on the z — 2 plane, is occu-
pied by a superconductor with London penetration depth A. The
slab-shaped barrier region is characterized by a resistivity p;. An
ac magnetic field B, is applied parallel to the z axis. A weak field
will penetrate into the superconductor a distance A from the surface
z = 0. The length of penetration along the barrier region is given
by Ay = \/m, where Jy is the Josephson critical current
density of the junction and d = 2\ + d; is the magnetic thickness

of the junction.
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where 2/ = ¢ /A5, t' = t/T = wt /27, wp, = \/m, a=wly/2rxpd;, Cr=¢/d;, and L; = ¢o/27Js.
There is also a boundary condition at 2’ = 0
0 . . ,

[%A'y(x .t )] e = —2rFsin(2nt’) , (3.24)
where F' = (BgpAsd)/¢o. The coefficient o is a damping parameter which arises because of the electrical
connection between the superconductors. In the limit p; — oo, @ = 0 and Eq. (??) reduces to the
usual sine-Gordon equation [Tinkham, 1996]. The frequency wy is the plasma frequency of the junction
and is usually in the infrared region of the spectrum (w, ~ 10'2rad/s). For microwave applications

w ~ 10%rad/s so w < wy; therefore, Eq. (??) reduces to

2

d .
WA’y(m',t') —a—Av(z',t) = sinAy(a', ). (3.25)

ot

The steady-state solution for Ay(z’,#’) is periodic in ¢’ with period unity. The electric field given by
Eq. (77) is also periodic with the same period. Therefore, ey (2’ = 0,t) may be expanded in a Fourier
series,

[eo]
ey(0,¢') = Hao Z [R,sin(27rnt’) + X, cos(2rnt’)] , (3.26)

n=1

where Hy0 = Bgao/ o, and the coefficients are given by

2 1
Ry = / e, (0, t')sin(2mrt’)d#’ (3.27)
HaO 0
and
2 1
Xp=— [ ey4(0,t)cos(2mnt’)dt’ . (3.28)
HaO 0

By the Poynting theorem, the power per unit height absorbed by the surface P, is given by

1 0
- /0 a / dy[E x H],._, . (3.29)

- The only non-zero contribution comes from the region —d;/2 < y < d;/2, where the electric field is

given by Eq. (27). Inserting Eq. (??) into Eq. (?7) yields
1
Pays = 5diHo Ry, (3.30)

which implies that R; is proportional to the surface resistance R;. If the length of the sample in the
y direction is equal to L, or if there is an array of long junctions spaced along the y direction with
periodicity length L, then R, = (d;/L)R;. We ignore here the energy dissipated via quasiparticles
(normal fluid) within A of the surface of the superconductor. Similarly, the surface reactance X is

given by X, = (d;/L)X1 + (1 — d; /L) powA. The second term in X, is due to the electric fields that

accelerate the screening currents near the surface of the superconductor.
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In the limit of small applied field, F <« 1, sinAy ~ A, and Eq. (??) can be linearized,

2

)
WA'y(x',t') —a—Ay(z',t') - Ay(z',¥) =0, (3.31)

at’

with the boundary condition given by Eq. (?7?). The steady-state solution for Ay(z’,t') is

Ay(z' ) = T e~ [asin(bz’ — 2mt') + b cos(bz’ — 2t')] (3.32)
where
a = (1 +47%a?) Y %cos (%tan“l(%‘a)) (3.33)
and
b= (1+4r%a?)*sin (%tan_l(%'a)) . (3.34)

The electric field at the surface is given by

ey(0,t) = Ha(x%;% [a cos(2mt’) + bsin(2mt')] (3.35)
so that
Ri= %;T; = %%ﬁﬁn (%tan”%%ra)) (3.36)
and
X= %GQZW—SZQ = %(_1-;!12;&—&)1/4608 (%tan'l(%ra)) . (3.37)

Figure 3.7 shows R; and X, as functions of a.
In the opposite limit of large applied field, F > 1, ey(2',t')/p; > JosinAy(z',t'), and Eq. (?77)
becomes
52

a
WA’y(a:',t’) = a%Aql(x’,t') , (3.38)

with the boundary condition given by Eq. (??). The solution for Avy(z’,t') is
RN T _Jmas' [ ’ / ’ /
Axy(z',t) = —F\/ge [sin(v7a &’ — 27t’) + cos(v/ra 2’ — 2nt’) |, (3.39)

which gives

ey(0,%') = Hao f\)—i\/ﬂ'a e~V [ cos(2xt’) + sin(27t’)] (3.40)
J
and
_ _ P
Ri=X =2 (3.41)
g

where we have defined the Josephson skin depth d; = Aj//7ra = (2p¢di/ﬂ0dw)1/2. This is also the

result for the limit of large damping, o > 1. Thus, at high fields or large damping the junction behaves
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Figure 3.7 Resistance R; and reactance X; of a long uniform junction versus
damping parameter o« for F €« 1. R; increases from zero with
increasing o and quickly approaches the limiting value p;/é5;. X3
initially increases with increasing o up to a value larger than the

limiting value p; /87, then slowly approaches the limiting value from

above as o — 0.

1.5
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like a normal metal with resistivity p; and skin depth §7. The reason for this is that in these two limits
the magnitude of the normal current is much larger than the magnitude of the supercurrent, and the
normal current, therefore, dominates the behavior of the junction.

In general Eq. (77) must be solved numerically. Figure 3.8(a) shows R; versus F for three different
values of a. For the smallest value of &, there are sharp jumpsin R; (C, D, and E, for example) which
decrease in amplitude as F increases. For F' > 1, R; quickly approaches the saturation value p; /§;. As
« increases, the sharp steps become broader until they disappear completely and R; approaches p;/d;
for all values of F. From Fig. 3.8(a) it is apparent that this limit is approached even for very modest
values of a. The behaviors of X1, Rs, and X3 vs. F for the same values of « are shown in Figs. 3.8(b),
3.9(a), and 3.9(b), respectively.

The sharp jumps and fine features (C, D, E, F, and G) in Figs. 3.8 and 3.9 for o = 0.005 are
caused by changes in the number of Josephson vortices in the junction. The nucleation of a vortex
at the first jump (C) in R; is depicted in Figs. 3.10 and 3.11. Several field profiles are shown as the
field at the surface changes through one period. Just below the jump C shown in Figs. 3.8 and 3.9
(F = 0.32) the field decays from the surface (see Fig. 3.10) and there are no vortices visible. However,
just above this jump {F = 0.33} (Fig. 3.11), there is clearly a vortex trapped in the junction during
one half cycle and an antivortex trapped during the other half cycle. The nucleation process at the
second jump (D in Figs. 3.8 and 3.9) is shown in Figs. 3.12 and 3.13. Just below the jump (F = 0.41)
there is either a single vortex or a single antivortex inside the junction. Just above the jump (F = 0.42)
there are two vortices trapped during one half cycle but only one antivortex trapped during the other
half cycle. At the third jump (E in Figs. 3.8 and 3.9), the symmetry between the two half cycles is
restored, so that there is a two-vortex two-antivortex state (Figs. 3.14 and 3.15). There is another shift
to an asymmetric three-vortex two-antivortex state at the fourth jump (F in Figs. 3.8 and 3.9), and
the symmetry is then restored to a three-vortex three-antivortex state at the fifth jump (G in Figs. 3.8
and 3.9). The asymmetry occurring between the second and third jumps (D and E in Figs. 3.8 and
3.9), and between the fourth and fifth jumps (F and G in Figs. 3.8 and 3.9), leads to the generation
of second harmonics, as shown in Fig. 3.16. The sign of Ry and X, depend on whether the jump is
approached from below (increasing F') or above (decreasing F'). This effect occurs because the direction

that the symmetry is broken (more vortices than antivortices or vice versa) depends on the previous

history of the junction.
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Figure 3.8 Resistance R; (a) and reactance X; (b) of a long, uniform junction
versus I for three different values of &. When « is small, sharp
features (C, D, E, F, and G) are visible. These features occur be-
cause of changes in the number of Josephson vortices in the barrier
region. As the damping parameter ¢ increases, the threshold for
vortex nucleation is pushed to larger values of 7' and the vortex
dynamics play a less significant role. This causes the sharp features

to become broadened and eventually to disappear completely.
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(b) C / \
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Figure 3.9 Third harmonics Rz (a) and X3 (b) versus F for a long, uniform
junction for three different values of . When « is small, there are
some sharp features (C, D, E, F, and G) visible that are associated
with the nucleation of Josephson vortices in the barrier region. As
o increases, the threshold for vortex nucleation is pushed to larger
values of F and the vortex dynamics play a less significant role
in the electrodynamic properties of the junction. This causes the

sharp features to become smoother and eventually to disappear

completely.
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Figure 3.10 Profiles of b,(x,t) versus z for a long uniform junction with
a = 0.005 at F = 0.32, just before the first vortex nucleation
process will occur. The top figure corresponds to the external ac
field decreasing from +B,g to —Bgg, and the bottom figure cor-
responds to the external ac field increasing from —Bap to +Bap.

The external field is screened by the junction on a scale of a few
AJ.
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Figure 3.11 Profiles of b,(z,?) versus & for a long, uniform junction with
a = 0.005 at ' = 0.33, just after the first vortex nucleation process
(feature C in Figs. 3.8 and 3.9) has occurred. The top figure cor-
responds to the external ac field decreasing from +Bgo to —Bgo.
The bottom figure corresponds to the external ac field increas-
ing from — B, to +B,g. When the external field is zero, there is
clearly either a vortex (top figure) or an antivortex (bottom figure)

trapped in the junction. The field increasing and field-decreasing

profiles of b, () are mirror images of each other.
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Figure 3.12 Profiles of b,(z,t) versus & for a long uniform junction with
o = 0.005 at F' = 0.41, just before the second vortex nucleation
process (feature D in Figs. 3.8 and 3.9) will occur. The top fig-
ure corresponds to the external ac field decreasing from +8Bz0 to
—Bgo. The bottom figure corresponds to the external ac field in-
creasing from —Bgp to +Bgo. When the external field is zero there
is clearly either a vortex (top figure) or an antivortex (bottom fig-

ure) trapped in the junction.
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Figure 3.13 Profiles of b,(z,t) versus z for a long uniform junction with
a = 0.005 at F = 0.42, just after the second vortex nucleation
process (feature D in Figs. 3.8 and 3.9) has occurred. The top
figure corresponds to the external ac field decreasing from + Bgg to
—By0. The bottom figure corresponds to the external ac field in-
creasing from —Bgg to +Byo. When the external field is zero, there
is clearly either a pair of vortices (top figure) or a single antivor-
tex (bottom figure) trapped in the junction. The field-increasing
and field-decreasing profiles of b,(z) are no longer mirror images

of each other.
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Figure 3.14 Profiles of b,(x,t) versus &, for a long uniform junction with
a = 0.005 at F' = 0.45, just before the third vortex nucleation
process (feature E in Figs. 3.8 and 3.9) will occur. The top fig-
ure corresponds to the external ac field decreasing from +Bgp to
—Bgp. The bottom figure corresponds to the external ac field in-
creasing from — By to +Bso. When the external field is zero there
is clearly either a pair of vortices (top figure) or a single antivortex
(bottom figure) trapped in the junction, and the field-increasing
and field-decreasing profiles of b () still are not mirror images of

each other.
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Figure 3.15
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Profiles of &,(z,t) versus z for a long uniform junction with
a = 0.005 at F' = 0.46, just after the third vortex nucleation pro-
cess (feature E in Figs. 3.8 and 3.9) has occurred. The top figure
corresponds to the external ac field decreasing from +Bgo to —Bgo.
The bottom figure corresponds to the external ac field increasing
from — B to +Bgo. When the external field is zero there is clearly
either a pair of vortices (top figure) or a pair of antivortices (bot-
tom figure) trapped in the junction, and the field-increasing and

field-decreasing profiles of b,(z) again are mirror images of each
other.

15.0




84

0.05 | Ro/(py/ 8y) 1
L [\
I /n\ Vs
0.00 g U )
/
I b increasing F  —— |

-0.05 o= 0.005 decreasing F  — — — - |
0.10 F ’ ‘ ’ ' ’ -
/) X, 1 (py/ 8y)
0.05 - ]‘ \‘ .
[ . 1
Il /h\ [\
0.00 >
| U _
-0.05 - —
-0.10 , | ‘ | . .
0.0 0.5 1.0 1.5
F

Figure 3.16 Second harmonics Ry and X5 versus F', for a long uniform junction
with a = 0.005. These harmonics are generated by the asymmetry
in the field profiles between the two half periods of oscillation of
the external field, as illustrated in Figs. 3.13 and 3.14. The signs
of these harmonics depends on whether it is a vortex nucleation
process (increasing F') or a vortex exit process (decreasing F'). The
difference in sign occurs because the direction of the asymmetry

(more vortices than antivortices or vice versa) depends on the

previous history of the junction.
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3.4 Harmonic generation by a long Josephson junction in a superconducting

slab

3.4.1 Alternating field case

In this section I consider a long junctioh in a superconducting slab of width W (see Fig. 3.17).
The thickness of the barrier region is d; and its resistivity is p;. There is an applied magnetic field
B, = Bjpsin(wt)Z, and the Josephson penetration depth for the junction is Ay = /éo/(27peJod)
where d = 2X + d;. The gauge-invariant phase difference Ay(z,t) is again given by Eq. (?7?) which
reduces to Eq. (?7) when w <« w,. The boundary conditions are

J ' . '
[%A'y(m )t )] o = —2nFsin(2nt’), (3.42)
where W' = W/A;.

In general Eq. (?7) must be solved numerically. It is interesting to investigate the effect of the width
of the sample on the surface impedance and harmonic generation. It is expected that the results of Sec.
3.3 will be recovered in the limit W’ > 1; however, one would not expect to obtain results analogous
to those of Sec. 3.2 for the limit W’ <« 1 because there is no net transport current. When W’ < 1 the

solution for Ay(z’,t’) is given by
Avy(z' ') = aW/ F(1 — 22" /W')sin(2xt") . (3.43)
The resulting electric field at the surface is
ey(a' = 0,1') = Hyo (%\/EW) cos(2rt’) , (3.44)

therefore, X; = (pi/d7)/maW’ and all other coefficients are zero. In the opposite limit W’ > 1 the
coeflicients should obviously be given by the results of Sec. 3.3.

Figure 3.18 shows R; and X versus F, a = 0.005, for several different values of W’. One interesting
feature is that the reactance X /(p;/ds) saturates at high fields to a value greater than one for interme-
diate values of W’. This occurs because at intermediate values, W’/2 is nearly equal to the Josephson
skin depth d; /Ay ~ 8. Figure 3.19 shows Rs and X3 versus F for the same values of W’'. It is evident
from the figure that there are essentially no third harmonics generated in a very small junction placed
in an external field. It was also found that second harmonic generation does not occur until the juntion

is sufficiently large (W’ 2 15). This is not surprising since the second harmonics seem to be generated

by the dynamics and interactions of Josephson vortices.
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Figure 3.17 Geometry of a long Josephson junction in a slab of width W. The
region 0 < # < W, excluding a slab of thickness d; centered on the
x — z plane, is occupied by a superconductor with London pene-
tration depth A. The slab-shaped barrier region is characterized

by a resistivity p;.
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Figure 3.18 Resistance R; (a) and reactance X; (b), versus F, of a uniform

Junction of width W and damping parameter ¢ = 0.005, in an
applied ac field. When W/Ay ~ 1, By ~ 0 and X; is nearly
constant. When W/A; > 1, Ry and X; approach the curves
pictured in Fig. 3.8 for a long junction with o = 0.005. The
curves do not change monotonically as W/A; changes from being

very small to being very large.
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Figure 3.19 Third harmonics R3 (a) and X3 (b), versus F, of a uniform junc-
tion of width W and damping parameter o = 0.005, in an applied
ac field. When W/Ay >~ 1, Rz ~ 0 and X3 ~ 0. When W/A; > 1,
R3 and X3 approach the curves pictured in Fig. 3.9 for a long
Junction with & = 0.005. The curves do not change monotonically
as W/Ay changes from being very small to being very large.
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3.4.2 Alternating current case

In this section I consider the junction pictured in Fig. 3.17 carrying a sinusoidal transport current
per unit height in the y direction. The transport current creates a magnetic field external to the slab
given by

+Bgosin(2nt’), 2’ <0,
B,(2',t) = sosin(2rt’) (3.45)
—Bgosin(2wt’), ' > W',

Using Eq. (??) with the boundary conditions

AAy(z' —2rFsin(2xt’), z' =0,
6(1:’ ! - . (3.46)
+2nFsin(2xt’), ' =W',

A~v(z',¥') can be calculated and the Fourier coefliecients R,, and X,, determined. In the limit W’ < 1
Egs. (77) and (??) reduce to Eq. (3.7) in the RSJ model with the identifications o = ¢ and 47 F /W’ = I.
In the opposite limit W’ > 1 one would expect to recover the results of Sec. 3.3 for a long junction in
a half space.

Figure 3.20 shows R; and X; and Fig. 3.21 shows Rs and X3 versus F', a = 0.005, for several values
of W’. It is interesting to note that for even for W’ as large as 10, many of the features exhibited are
similar to those of Sec. 3.2 for the RSJ model. One difference, however, is that for the RSJ model X
oscillates around zero and here it oscillates around a positive value. Once again there are no second

harmonics generated until W’ 2 15.

3.5 Harmonic generation by a long Josephson junction in a circular wire

In this section I consider a long junction in a superconducting wire of radius a (see Fig. 3.22)
carrying a transport current, Ip = Ipgsinwt, in the z direction. The transport current creates a

tangential magnetic field [By = (¢o/27d)0Ay/8p] at the surface of the wire given by
By(p' = a’,t') = Baosin(2nt’) , (3.47)

where o' = a/A; and Bgo = polro/27a. In cylindrical coordinates, the equation for Ay(p/, ') is

Ay 4 10Ay a@A'y
op2 " oy EYY

= sinAy, (3.48)

with boundary conditions

3Afy]
927 o, 3.49
[ 3 | e (3.49)
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() I

0.0 0.5 1.0 1.5
F

Figure 3.20 Resistance R; (a) and reactance Xy (b), versus F, of a uniform
junction of width W and damping parameter o = 0.005, carrying
a transport current. When W/A; = 10, the curves are similar to
those obtained from the RSJ model with a small damping param-
eter. When W/A; > 1, R; and X approach the curves pictured
in Fig. 3.8 for a long junction with & = 0.005. The curves do not

change monotonically as W/Ay changes from being very small to

being very large.
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(b)

F

Figure 3.21 Third harmonics R3 (a) and X3 (b), versus F, of a uniform junc-
tion of width W and damping parameter @ = 0.005, carrying a
transport current. When W/A; = 10, the curves are similar to
those obtained from the RSJ model with a small damping param-
eter. When W/A; > 1, R3 and X3 approach the curves pictured
in Fig. 3.9 for a long junction with o = 0.005.
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superconductor

barrier

superconductor

Figure 3.22 Geometry of a long Josephson junction in a circular wire of radius
a. The region 0 < p < a, excluding a slab of thickness d; cen-
tered on the p — ¢ plane, is occupied by a superconductor with

London penetration depth A. The slab-shaped barrier region is

characterized by a resistivity p;.




93

and

[8A'y
8y’

In the limit ' € 1 Egs. (??-77) reduce to Eq. (3.7) for the RSJ model with the identifications « = ¢

] = 2xFsin(2xt’). (3.50)
pl:al

and 27 F/a’ = I. In the opposite limit ¢’ ~+ co the results of Sec. 3.3 should be realized because the
second term on the left hand side of Eq. (?7) will go to zero, and Eq. (?7?) will reduce to Eq. (77).
Figure 3.23 shows R; and X; and Fig. 3.24 shows Rz and X3 versus F, a = 0.005, for several values
of @’. Once again even in the intermediate regime, o’ = 10, many of the features are similar to those
seen in the RSJ model of Sec. 3.2. Once again, however, X; oscillates around a positive value rather
than around zero. As in the slab geometry, second harmonics are not generated until o’ 2 15. Figure
3.25 shows Ry and X» for o/ = 40.0 and o = 0.005. It is interesting that the curves in Fig. 3.25 are
markedly different from those in Fig. 3.16. This is in contrast to the slab geometry where the limit

W' — oo is approached much more quickly. This difference can be attributed to the difference between

the dynamics of ring fluxons and straight-line fluxons.
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L (a)
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Figure 3.23

0.5 1.0
B .

Resistance R; (a) and reactance X; (b), versus F, of a uniform,
circular junction of radius a and damping parameter a = 0.005,
carrying a transport current. When a/A; = 10, the curves are
similar to those obtained from the RSJ model with a small damp-

ing parameter.

1.5
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(b)

0.5 1.0
F

Figure 3.24 Third harmonics Rz (a) and X3 (b}, versus F, of a uniform, cir-

cular junction of radius a and damping parameter o« = 0.0053,
carrying a transport current. When a/A; = 10, the curves are
similar to those obtained from the RSJ model with a small damp-

ing parameter.

1.5
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Figure 3.25 Second harmonics Ry and X5 versus F, for a uniform junction in
a round wire with a/Ay = 40.0 and a = 0.005. The signs of these
harmonics depends on whether F is increasing or decreasing (the
previous history of the junction). These curves are significantly
different from those of Fig. 3.16 due to the difference in geometry

between the two cases.
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4 SUMMARY

4.1 Nonlinearities due to flux pinning

The nonlinear response, caused by vortex pinning and hysteresis, of a hard type-Il superconductor
was investigated in both the parallel and perpendicular geometries. The surface impedance was found
to be proportional to the amplitude of the applied magnetic field. This is in stark contrast to convential
metals which have a field-independent surface impedance. The resistance and reactance of an elliptical
wire and a thin-film strip, carrying an ac transport current, were calculated analytically. For small
current amplitudes, the resistance and reactance were found to be proportional to the current amplitude
in an elliptical wire, and to the square of the current amplitude in a strip. Analytical expressions were
also found for the third harmonics, and all even harmonics were found to be zero. The third-order
intermodulation products were calculated numerically. An analytical formula was derived for the input
power at the third-order intercept for harmonic generation, in a coaxial-type strip line, in terms of the
width, length, characteristic impedance, and critical current density. From this formula, scaling rules
for the change in the third-order intercept, upon changes in various parameters (length, width, and
temperature), was obtained and compared with experimental results. The agreement between theory
and experiment was found to be excellent with regard to the width dependence, and fair with regard

to the length and temperature dependence.

4.2 Nonlinearities due to weak links

The nonlinear response of both small and long, uniform Josephson junctions to ac fields and currents,
with frequencies much smaller than the Josephson plasma frequency, was analyzed. For the case of long
junctions various geometries were considered including a half space, a slab, and a round wire. For
both small and long junctions, the behavior was found to be strongly dependent on the strength of the

resistive damping. For small damping, sharp features were found in the resistive, reactive, and higher

harmonic responses as a function of the ac field or current amplitude. In the case of small junctions,
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the sharp features are caused by bifurcations, or 27 phase slips, in the gauge-invariant phase difference
across the junction. In the case of long junctions, the sharp features are due to changes in the number
of Josephson vortices in the junction. In both cases, the resistive response saturates at large current
or field amplitudes. This is in contrast to the case of flux pinning where the resistive response grows
with the field amplitude. Long junctions also show second harmonic generation due to asymmetric field
profiles between the two half periods of oscillation of the external field. This effect appears to be related
to Josephson fluxon dynamics and is not seen in smaller junctions. The signs of the second harmonics
are different for increasing applied field than for decreasing applied field. The structure of the second

harmonics is significantly different for a large junction in a wire than for a large junction in a slab. This

difference is due to the difference in dynamics between ring fluxons and straight-line fluxons.
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