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Summar,
The present paper develops a reliability-analysis method for category I nuclear struc-
tures, particularly for reinforced-concrete containment structures subjected to various load
combinations. The loads considered here include dead loads, accidental interna2l pressure, and
earthquake ground acceleration. For mathematical tractability, an earthquake occurrence is
assumed to be governed by the Poisson arrival law, while its acceleration history is ideal-
ized as a Gaussian vector process of finite duration. A vector process consists of three
component processes, each with zero mean. The second order statistics of this process are
specified by a three-by-three spectral density matrix with a multiplying factor representing
the overall intensity of the ground acceleration.

With respect to accidental internal pres-
sure, the following assumptions are made:

(a) it occurs in accordance with the Poisson law,
(b) its intensity and duration are random and (c) its temporal rise and fall behaviors are
such that a quasi-static structural analysis applies.
termiinistic constant.

A dead load is considered to be a de-

To accompiish the stated purpose, however, the present paper concentrates on the develop-
ment of an analytical procedure which permits one to estimate the canditional limit-state
probability of a containment structure, given that the structure is subjected to a specific
load combination. In this procedure, a particular method of fregquency-domain reliability
analysis is applied to those cases of load combinations involving earthquake ground accelera-

tion. This reliability-analysis procedure is based on the finite-element method and on the

theory of random vibrations. The limit-state condition recently developed for reinforced-

concrete containment structures is also used here.
structural failure:

The condition represents the onset of
concrete crushing at the extreme fibre or yielding of the reinforcing
steel bars. The lTimit-state condition thus defined exhibits a closed curve in the membrane

stress ~ moment stress plane. The conditicnal limit-state probability under the unit dura-

tion of a specific load combination is then evaluated as the probability that the response,

vhen it is plotted in the membrane stress ~ moment stress plane, will reach outside this
closed curve at least once in the unit duration.
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1. Introduction

——— .

The purpesz of the present paper is to develop a reliability analysis method for cate-
gory [ nuclear structures, particularly for reinforced concrete containment structures sub-
jected to various load combinations. The loads considered here include dead loads, acci-
dental internal pressure and earthquake ground acceleration. For mathematical tractability,
an earthquake occurrence is assumed to be governed by the Poisson arrival law, while its ac-
celeration history is idealized as a Gaussian vector process of finite duration. The vector
process consists of three component processes (e.g., WE, NS and vertical components), each
with zero mean. The second order statistics of the vector process are specified by a three-
by-three spectral density matrix with a multiplying factor representing the overall intensity
of the ground acceleration. With respect to accidental internal pressure, the following as-
sumptions are made: ({a) it occurs in accordance with the Poisson law, (b) its intensity and
duration are random and (c) its temporal rise and fall behaviors are such that a quasi-static
structural analysis applies. A dead load is considered to be a deterministic constant.

To accomplish the stated purpose, however, the present paper concentrates on the devel-
opment of an analytical procedure which permits one to estimate the conditional 1imit state
probability of a containment structure, given that the structure is subjected to a specific
load combination. In this procedure, a particular method of frequency domain reliability a-
nalysis is applied to those cases of load combinations involving earthquake ground accelera-
tion. T.e basic analytical procedure associated with this method is presented in a companion
paper by Xako, et al [1] and is based on the finite element method and on the theory of ran-
dom vibrations. The limit state condition recently developed for reinforced concrete con-
tainment structures is also used in this method. The condition represents the onset of
structural failuie: concrete crushing at the extreme fibre or yielding of the reinforcing
steel bars., The limit state condition thus defined exhibits a closed curve (limit state sur-
face) in the membrane stress ~ moment stress plane. The detailed derivation of this limit
state condition is presented in a second companion paper by Chang, et al {2]. The condition-
al 1imit state probability under the unit duration of a specific load combination is then
evaluated as the probability that the response, when it is plotted in the membrane stress ~
moment stress plane, will reach outside this closed curve at least once in the unit duration.
These conditional 1imit state probabilities, together with other probabilistic characteris-
tics of the loads such as durations and occurrence rates, proyide an analytical basis for
developing a probatility-based lrad combination methodology. Such a combinatorial procedure
is presented in the third companion paper by Shinozuka, et al [3]. The numerical evaluation
of the 1imit state probabilities is carried out with the aid of a computer program called RAS
{Reliability Analysis of Structures) developed at Brookhaven Mational Laboratory in accord-
ance with the above mentioned reliability analysis method.

2. Finite Element Analysis of Containment

The concrete containment Structure considered is illustrated in Fig, 1.
consists of a circular cylindrical wall with a hemispherical dome on the top.
inder reinforced concrete system is fixed at the base.
is 2'-6" whereas that of the cylindrical wall is 3'.

The containment
The dome-cyl-
The thickness of the containment dome

The inside radius of the dome is equal
to 62' which matches the inside radius of the cylindrical portion of the containment. The

height of the cylindrical wall is 150'-6", and thus, the total height of the containment is
215",
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The containment wall is reinforced with hoop and meridional rebars which are placed in
two layers, i.e., one layer closer to the inner surface of the containment and the other
closer to the outer surface of the containment. For the cylind-ical portion of the contain-
ment, both the hoop and-meridional are reinforced with No. 18 rebars spaced twelve inches
apart. The hemispherical dome is reinforced with two layers of No. 14 rebars spaced twelve
inches apart.. These rebars are placed in the orthogonal directions. In the lower half of
the dome, two layers of No. 14 hoop rebars with twelve inch spacing are added to the cross-
section, one layer each near the inner and outer surfaces. For most containment structures,
diagonal rebars are used to resist the shear forces. In the present analysis, the diagonal
rebars are disregarded. Also, the steel liner, which is usually located on the inner surface
of the reinforced concrete containment is disregarded as a 1oad carrying structural component
in the analysis. Finally, other complications such as penetrations, personal locks and e-
quipment hatches are not included in the study.

Althree—dimensiona] finite shell element model described in the SAP-V code is used for
the structural analysis of the containment. Each element has 4 nodes, which can have up to 6
degrees-of-freedom. The containment is divided into 19 layers. With the exception of the
top-most layer of the dume, each layer has 24 elements, so that the nodal points are taken
every 15° in the circumferential direction. This discretization required a total of 457
nodes and 444 elements.

When a reinforced concrete containment is subjected to static and dynamic loads, its
cross-section will usually produce cracks, the extent of which depends on the l1oad history.
Hhile a Tinear elastic analysis cannot take into account the temporal variations of the
structural stiffness which result from such a dependence on load history, it will neverthe-
less, in most instances, yield correct stress resultants for the various sections of the
structure. This is especially the case if the section material properties are adjusted to
reflect the concrete cracking. Because of rhe complexity of the various load combinations,
however, it is difficult to predict the crack patterns for all conceivable combinations of
loadings. Therefore, in the present study, the structural stiffness associated with the un-
cracked section was used for all loads and their combinations, thus in fact follows the pro-
cedures recommended in SRP 3.8.1.

The dynamic characteristics of the structures are represented by the natural frequencies
and associated mode shapes. 4ith the aid of the RAS computer program, the first 20 natural
frequencies are evaluated. The two most significant modes (the first and second pairs of
bending modes; modes 1,2,16,17) are at 4.2 Hz and 12.5 Hz. Practically no other modes par-
ticipate under the unidirectional horizontal ground acceleration. )

3. Material Properties

With respect to the concrete, the weight density is 150 1b/ft3, while Young's modulus
and Poisson’'s ratio are 3.6 x 106 psi and 0.2, respectively, and the 91 day compressive
strength fé = 6086 psi. As for the steel reinforcement, ooth No. 18 and No. 14 rebars are
used in the containment structure. Young's modulus and Poisson's ratio are 29.0 x 106 psi
and 0.3, respectively, while the yield strength is 71.1 ksi for both types of rebars, Pos-
sible statistical variations and uncertainties involved in the material properties ought to
be taken into account and indeed have been considered in *he analysis.

However, the results
of such a statistical and uncertainty analysis will be presented elsewhere due to the 1imited
space available here.
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4. Limit States for the Containment

The state of structural response is considered to have reached the 1imit state if the
rebars begin to yield (in tension or compression) and/or if the crushing strength of the con-
crete is reached at the extreme fibre of the containment wall cross-section. The limit state
condition introduced above can be analytically expressed as

fe ;fy and/or fc ;O.BSf("_ (1)
where fS is the strecs in the rebars and fC the compressive concrete stress at the extreme
fibres. Since the stresses fS and fc are functions of the stress vector {7}, the 1imit state
condition in eq. (1) is in general given in the form of g({t}) < O vhere g(*) is an appropri-
ate function. The equality g({<}) = 0, representing fs = fy and fc = O.BSfé, usually indi-
cates a closed (hyper-) surface or a limit state surface in the {r} space.
with the SAP V finite eiement code used, the stress vector {1} is given by

{t} = [

To be consistent

Y Ty Txy Mxx myy mxy]T (2)
where the first three are the membrane stress components and the last three the bending mo-
ment components of the usual definition.

Based on {a) the above definition of the limit state, (b) tne assumption of a linear
stress-strain relationship, and (c) the conventional theory of reinforced concrete, which as-
serts that concrete cannot take any tension, the 1imit state surface in terms of the membrane
strass component t (e.g. Txx) and the corresponding bending moment component m (e.g. mxx) car
be established for the cross-section at the finite element boundaries as shown by Chang, et
al [2]. Such a limit state surface is schematically shown in Fig. 2 in which point "a" rep-
resents a 1imit state under pure (uniform) compression and point "g" a Timit state under pure
(uniform) tension. Also, straight lines I (ac and ac'), lines II (approximated by ce and
c'e'), lines III (ef and e'f’') and lines IV (fg and f'g) indicate those parts of the limit
state surface in which the 1imit states are reached in concrete crushing with cross-sections
remaining uncracked (lines 1), in concrete crushing with partially cracked cross-sections
(1ines 11}, in yielding of rebars in tension with partially cracked cross-sections {lines
111} and in yielding of rebars in tension with totally cracked cross-sections (lines IV).

A1l other possible limit states, such as those based on shear stress or strain are not con-
sidered at this time.

5. Containment ioads

A containment structure will be subjected to various static and dynamic loads during it
lifetime. In this study only four types of loads are taken into consideration.
dead load, live load, internal pressura and earthquake ground acceleration.
the containment such as the SRV Toad will be considered in a future study.

They are:
Other loads on

5.1 Dead and Live loads

The dead load is the weight of the dome and the cylindrical wall.
the reinforced concrete is taken to be 150 1b/ft3.
sumed to be deterministic.

The weight density o
The dead load is obviously static and as

Becar'se several 1inors are connected to the containment structure, some live loads act
on the containment at the locations where the floors are connected to the containment. The
locations and design values of the corresponding live loads are shown as follows:

5
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Elevation 856' gear’ ey 778' 755"
Live Load (kip/ft) 0.707 3.00 0.%40 1.02 0.930

[t is noted that there are some uncertainties as to the zctual m2onitude of the live Toad.
For the purpose of the .present analysis, however, the’ live Joad is assumed to be determinis-
tic and equal to the design values.

5.2 Internal Pressure

The internal pressure is considered a quasi-static load uniformly distributed on the
containment wall. Moreover, it is idealized as a rectangular pulse and will occur at a pre-
scribed mean interval during the containment life. Three parameters are used to model the
jnternal pressure: the occurrence rate Ap (per year), the mean duration Yg (in seconds) and
the intensity P. The intensity P is treated as a Gaussian random variable.

The containment considered in this study was designed for an internal pressure of 15
psi. For the present veliability analysis, however, two different kinds of internal pressure
are considered. One is the accidental pressure PL due to a large LOCA, but not followed by a
hydrogen burn, and the other is the accidental pressure PH caused by a hydrogen burn (deflag-
ration) following a large LOCA.

For the accidental pressure P caused by a iarge LOCA, the occurrence rate AP and the
mean duration ”dP are taken to be 1.0 x 10~ /year and 1.0 x 10 seconds, respect1ve1y, while

the intensity PL 15 Gaussian with a mean value of 15 psi and standard deviation of 3 psi. If

the probability is assumed to be 0.1 for a LOCA to be followed by a hydrogen kurn, the occur-

rence rate of the hydrogen burn xp is 1.0 x 10_5. It is further assumed that the mean dura-
H

tion Hgp of the pressure resulting from the hydrogen burn is 600 seconds and that its inten-
H

sity Py is a Gaussian variable with « mean value of 45 psi and standard deviation of 9 psi.
For mathematical simplicity, moreover, the hydrogen accident is assumed to occur independent-
1y of the LOCA without, however, allowing their simultaneous occurrence., Although this sce-
nario is somewhat different from the actual situation, the 1imit state probability based

thereupon is expected to be close to that which would follow from the actual sequence of
events.

5.3 Earthquake Ground Acceleration

The earthquake ground acceleration is assumed to act only along the global x (horizon-
tal) direction. It is further assumed that the ¢round acceleration can be idealized as a

segment of finite duration of a stationary Gaussian process with mean zero and Kanai-Tajimi
spectrum;

2 2.2 2
= s 2 - + 2
Sggxx(m) S5l 4Cg(m/wg) MM (m/mg) 1 4Cg(m/ug) } (3)
where the parameter S0 represents he intensity of the earthquake and w_ and g_ are the domi-
nant ground frequency and the ground damping ratio, respectively. The values of w_ and ¢

depend on the soil conditions of the chosen site. For the present study,
= 0.6 are used.

= 9z rad/sec an
Also, the mean duration 4E of the earthquake acceleration is assumed to
be 10 seconds. The peak ground acceleration Al’ given an earthquake, is assumed to be A1 =
pgag vhere pg is the peak factor which is assumed to be 3.0 and 9% is the standard deviation
of the ground acceleration such that

ag = /ﬂmg(2cg + II(ZCQTT /§a (4)
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and therefore

A a.Yon with

= = 5
1% 29" ag = Pg/ragl2e, + 1/12e,]] (5)
If the earthquake occurs in accordance with the Poisson law at a rate Ag per year, it is easy

to show that the probability distribution FA(a) of the annual peak ground acceleration A is
related to the probability distribution Fa (a) of A1 in the following fashion.
1

Fala) = exp{-xg[l - Fnl(a)]l or FA (a) =1+ _E 2n Fa(a) (6)
Therefore, if ag indicates the minimum peak ground acceleration for any ground shaking to be

considered an earthquake, FA (au) = 0 and hence A = -n FA(aO). Assuming that FA(a) is of

the extreme distribution of Type II, FA(a) = exp[~{a/u)™®] with a = 2.61 and u = 0.01, one
finally obtains

FAl(a) =1 - (a/ag)™ \ a >

ag (7)

Under these conditions, one finds that A = 1.50 x IO"Z/year provided that a, = 0.059.
bining eqgs.

Com-
(5) and (7) and writing Z for /§5, one further obtains the probability distribu-
tion and density functions of Z in the forms, respectively,
- . +
Fol2) = 1~ (agz/ag)™ £(2) = alaglaghlag2/ag™ ™)z, (8)
6. Conditional Limit State Probabilities

The limit state surface is expressed in terms of the segments of the following eight
straight lines which define the octagonal area shown in Fig, 2.

Ry - (A;) Tle)y o g

(3=1,2,...,8) (9)
where {r(e)} is the element stress vector, and RJ and {A } are constants and constant vectors
espectively. The vector {r( )} is at most the sum of three vectors; {r(e) O {t (e P and

(T(e)}d respectively representing the stresses due to the dead and live (D/L) loads, due to
tha accidental internal pressure (P) and due to tne earthquake acceleration (E). The vector
(e)} is time invariant and deterministic since so are the D/L loads, while {r(e)}P

ur1tten as P- {1 ) P where {T(e

can be
}pey 15 the stress due to the unit internal pressure P =1
psi and P is a Gaussian random variable with mean P and standard deviation g On the other

hand, as shown by Kako, et al [1], the vector {T(e)} has been shown to be {T(E)} = Z[B(E)]
el Jtvg.. In this expression, (8(8)7 and [6(8)] are such that (%} = [a'®)1qul®))
with (u'®)) being the elenent nodal displacement vector and {u(e)} = [¢(e)]{q} with {q} being
the generalized coordinate vector, respectively. The vector {VO} is obtained from a 1inear
transformation {q4} = [Lq]{vo} such that the covariance matrix [Vv VO] of {vD(t)} becomes

[[m] = mxm identity matrix (m = number of modes considered). The vector {qo} is the general-
ized coordinate vector when Z = /§6 =1 /in2/sec3. Thus, {T(e)}d = Z[C(e)]{vo} where [C(e)]
= (8¢)36(® 111,01 and

B A TN (AL TS

Substituting eq. (10) into eq. (9) and writing R: = R.

RY -
J

(10)
- {Aj}T{r(e)}O one obtains
Dge)P - Z{K§E)}T () = or o) _gledp _ gple)yT

{vg} = 0 (11)
T, (e) —{e) T
AP p, (B

unere o{e) - ag'iel®)y, He) <y e’1 ale) - D(e’/l )} ang
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{n(e)} = {N(E)I/IA(E)I It can be shown (Kako, et al [1]) that the probability distribution

of '(E) = maxl{n ] {v }] in 0<t_pdE is given in approx1mat1on by

F (x) £ 1= ulel L expl-m2)  with WiE) - b ? [V V0 1/(27) (12)
x(e)‘ . Vj0 MdE 2 Maj"bjtYoaY Ob

. a=1 b=1

where X > /21nv50)udE, n(e) is the a-component of (nge)} and E[v Ob] is the a-b component

of the covariance matrix [V- H ] of {vo(t)) The conditional 11m1t ctate probabilities are
Yo'o

then obtained as the probabilities that the left-hand side of eq. (11) becomes negative. In
eq. (11), it is assumed that R3>0. This implies that the D/L loads alone will not produce
the stresses in the limit state. When the structure is subjected to D/L and P but not to E
(nence {v0}={0}), the conditional 1imit state probability given this load combination becomes

(D/L+P) oy - (e) 4le) _ 7 £ dl®) 5 0. =0 if af®) <
P} (e) = ol=(r;®'/d;®) - P)/op} if dj 0; =0 if d; 0 (13)

where #(-) is the standardized Gaussian distribution function. Eq. (13) can be used for both
cases in which the internal pressure P=PL and =PH, provided of course that the corresponding
values of P and op are used. When the structure is subjected to D/L and E but not to P, the
conditional probability for this load combination is given by, using eq. (12),
2z
(O/L*+E) v & [ 2% (e) (D/L+E) ale), 42
P (e) = [ Vo ¥ exp{ %(rj /2) ¥, (z)dz (14)
min

where uéD/L+E) e M4E Finally, when the structure is under the simultaneous action of D/L, P
and E, the conditional probability is
z
max
PP/ o) = 1 T 6l (a) 1,20 (15)
Zmin

where
68(2) = e - (-0 Dor18{®(2) - Fio)

& 8L/ (8) (2))expl- (612 (2) - (5{2)(2)) 16} (2)1/(203)]

SR OISO ‘e)(z)/(s( )(z))-}/apl) (16)

with e=1 if d$®>0, e=0 17 a{® a0, WVUPE) 2, o g/ (igptuge) and

i (2) = rl®) - z«zzn<ugg>;g°/L+P+E>)}/dge>; 88(2) = 1+ (a{®)ayr2)’

_, ! (17)
52 = 7+ l®oyat 6@ -7 el (00

For the load combination D/L+P, the maximum value of eq. (13) with respect to j and (e)

is evaluated as the conditional 1imit state probability for the entire structure. However,

: 8

for the load combinations D/L+E and O/L+P+E, the maximum values of P(')(e) = 3 P§')(e) with
j=1

respect to (e) are used as the upper bound of the conditional limit state probabilities. The

computations carried out using the parameter values 1nd1cate9 in the preceding sections re-
(D/L+PL) (D/L+PH)
sulted in P = numerically zero, P
(D/L+PL+E) -3 (D/L+PH+E)
4 =1.15x 10~ and P = 0.424. The finite element location at which

these maximum values are obtained usually depends on the load combination.

= 0.172, PO/LE) o1 4 1073,
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Figure Captions

1. Containment-Structure.

2. Limit:State-Sirface
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