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Abstract The purpose of this paper is to develop a controller for a force- 
reflecting teleoperator system having kinematically dissimilar master and 
slave. The controller is a stiffness controller for both the master and the 
slave. A mathematical problem associated with representing orientations 
using Euler angles is described, and Euler parameters are proposed as a 
solution. The basic properties of Euler parameters are presented, specifically 
those pertaining to stiffness control. The stiffness controller for both the 
master and the slave is formulated using Euler parameters to represent 
orientation and a Liapunov stability proof is presented for the controller. The 
master portion of the control scheme is implemented on a 6-degree-of-freedom 
master.

Introduction and Objectives

In the late 1940s Goertz and his colleagues at Argonne National 
Laboratory developed one of the earliest recognizable mechanical 
master/slave manipulators without force reflection. Later, in the early 1950s 
Goertz and his colleagues developed an electric master/slave manipulator with
force-reflecting capabilities in which each slave joint servo was tied directly
to the master joint servo since both the master and slave were kinematically
similar. The control structure for these manipulators was the classical 
position-position controller. A positional difference between the slave and the 
master is reflected back as a drive signal to the master to push the human 
operator away from the object. Goertz's work is summarized in the references 
[Goertz,54]. The position-position control scheme has been the basic 
controller for almost all master/slave manipulators used by industry up to the 
present. When the master and slave are not kinematically similar, the design
of the controller is particularly difficult. Bejczy developed the first 
force-reflecting teleoperation with dissimilar kinematics [Bejczy,81]. Three 
major issues are associated with this control problem: (1) orientation 
representation, (2) accurate force-reflection, and (3) redundancy resolution. 
Only the first two objectives will be elaborated upon in this paper. A brief 
discussion pertaining to the third will be included.

Representing the orientation between the master and slave and using 
that information for force reflection is one of the more difficult problems in 
the control of any teleoperated system with kinematically dissimilar master 
and slave. One of the objectives of this paper is the incorporation of Euler 
parameters into the controller design.
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Dissimilar kinematic designs make simple joint positional differences
no longer adequate for a force-reflecting manipulator. To achieve accurate
force-reflection, a type of stiffness controller will be designed for both the 
master and the slave. Based on using both the master and slave jacobians 
[Miyazaki,86] an accurate force-reflecting controller for kinematically 
dissimilar manipulators is proposed. Differences in the specification of
stiffness when stiffness controllers are used for robotic operation and 
teleoperation will be pointed out.

When the slave has more than 6-DOF, redundancy resolution needs to be 
addressed. Primarily, the master manipulator will be addressed in this paper
but a brief discussion of controller design for a redundant slave will be
included. The results are applied to a specific 6-DOF master manipulator and a 
7-DOF slave manipulator at the Oak Ridge National Laboratory (ORNL).

The paper is organized as follows. First we will introduce orientation 
representation using Euler parameters and present several sections 
describing the applicable properties of Euler parameters such as uniqueness, 
Euler parameter rates, and their relationship to rotational matrices. Next, the
stiffness controller will be presented including the slave redundancy 
resolution. Liapunov stability for a passive system will be discussed. The 
controller is then applied to a commercially available 6-DOF force-reflecting
master. Finally, the motivation for using Euler parameters and ways to 
properly set the controller gains are discussed and conclusions are drawn.

Euler Parameters

Difficulties with Euler angles. Three variables are needed to 
represent orientation, implying that there is considerable redundancy in a 
rotational matrix composed of nine terms. Euler angles (which differ from 
Euler parameters) have difficulties when applied to teleoperated systems 
having a master dissimilar from the slave. These difficulties will be pointed out 
more clearly but can be summarized: (1) Euler angles introduce artificial 
singularities. (2) Euler angles are not a natural representation for force 
reflection.

It has been stated that Euler angular representations of orientation can 
fail because they can introduce artificial singularities. In control algorithms 
employing angular rates, the failure manifests itself as infinite joint rates. 
These algorithmic singularities cannot always be placed out of reach of the 
operator because of the large workspace volume. Consider defining the end- 
effector orientation using a Z-Y-Z Euler angle set, where the first rotation is 
about the nominal z-axis, the second rotation is about the new y-axis produced 
after the first rotation, and the final rotation is about the new z-axis produced 
after the first and second rotations. It is desired to produce an incremental 
rotation 0 in the positive direction about the x-axis, as shown in Fig. 1. To 
produce this rotation, first rotate 90 in the counterclockwise direction about 
the z-axis to produce the x'y'z' coordinate system, then rotate 0° in the 
clockwise direction about the y'-axis to produce the x"y"z" coordinate system, 
and finally rotate 90 in the clockwise direction about the z"-axis to produce 
the x",y",z"' coordinate system, which is the desired result. The velocity about 
the z- and z"-axes will be infinite even for infinitesimally small desired
rotations because the change in angle about the z- and z"-axes is 90 , 
regardless of the size of the desired change 0°. This can be verified
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mathematically by determining the relationship between the Euler angle rates
✓N

(a) and the instantaneous angular velocities about the x-, y-, z-axes (to) of 
Fig. 1. This relationship is derived in Fu [Fu,87;p.235]. As expected, the

« O'-V
relationship between a and to has a cosec(P) term, where P is the pitch angle, 

indicating infinite velocities at orientations having zero {3.1

z,z'

1: 90 deg. rotation about z 
Produces 1-prime axes 

2: - e deg. rotation about y' 
Produces 2-prime axes

3: - 90 deg. rotation about z" 
Produces 3-prime axes

Fig. 1 Euler angle rotation about the x-axis.

Selection of another set of Euler angles only moves the singularity to 
another orientation. For example, consider using a yaw-pitch-roll set of Euler 
angles, where the first rotation is about the nominal (unrotated) x-axis, the 
second rotation is about the nominal (unrotated) y-axis, and the final rotation 
is about the ^nominal (unrotated) z-axis. The relationship between the Euler
angle rates (a) and the instantaneous angular velocities about the x-, y-, z-
axes (co) is derived in [Fu,87;p.235]. In this case, a sec(p) term appears

indicating infinite velocities at orientations having P of 90°.
The conclusion from these observations has broad implications. For 

controllers using Euler angles to represent orientations with formulations
requiring the relationship between the Euler angle rates (dc) and the

.«*«*
instantaneous angular velocities about the x-, y-, z-axes (CO) to be known [e.g., 
resolved rate, stiffness (see Eq. 17) in this paper], artificial singularities will 
be introduced. These singularities may be moved to different locations in the 
manipulator work space by appropriate choice of Euler angle representations; 
however, they will never be eliminated completely. Clearly, another method of

1 Unless otherwise stated, all variables with a cap A on top will denote a 3x1 
vector in this paper.
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representing orientations that does not produce these types of singularities is 
desirable.

Euler parameters. The notation followed in this paper is similar to 
Craig's notation [Craig,89]; the modifications for Paul's notation [Paul,81] 
will be clear from the context. Many of the matrix and vector relationships 
that are stated but not proven can be found in Yuan's work [Yuan,88] or at 
least in his references.

Let frame A, [A] and frame B, [B] be two arbitrary frames that are 
initially coincident. If [A] is fixed and [B] is rotated about a normalized vector
AK by an angle 0 according to the right-hand rule, then the rotational matrix,
bR, relating a vector in {B} to [A] can be written in terms of AK and 0. The 
following Euler parameters are defined:

(1)

(2)

(3)

(4)

where AK = [ ki , k2 , ks ] . Craig [Craig,89;p.55] shows that ^R can be written 
as

1 - 2d - 2 £3 2(eie2 - £364) 2(£iE3 + £264)

bR — 2(£i£2 + £3£4) 1 - 2d - 2 £3 2(e2£3 - Ei£4)

2(£i£3 - E^) 2(£2E3 + £i£4) 1 - 2£i - 2 £2

(5)

Because only three pieces of information are needed to adequately represent a 
rotational matrix, the Euler parameters satisfy the following additional 
constraint [Yuan,88]:

d + E^ + d + d31 1 (6)

Let the first three Euler parameter terms be combined into a vector

(7)

which is given with respect to [A] since AK is given with respect to {A}. 
Equation (6) can be rewritten in vector notation as

er + e e = 1

In this paper, the Euler parameters will be represented by the set {£4, £}.

(8)
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Uniqueness of representation of Euler parameter. If the
rotational angle 0 is restricted between -180 < 0 < 180, then £4 is nonnegative 
and the Euler parameter representation is unique [Yuan,88]. Outside this 
range, the^representation is not unique. By substitution into Eq. (5), both {Et, £} 
and {-£4, -6} can be shown to represent the same orientation. For teleoperation,
restricting the range between ± 180 is adequate.

Rotational matrix representation. Equation (5) can be rewritten 
[Yuan,88] as

£R = (eir - e e) I3 + 2 ££ + 2 £4 £ (9)

^R = (e? - £Te) I3 + 2 E£T - 2 £4 £x = |^R)t ,
(10)

[O-EjEz'

£ = £3 0 -£i .
.-£2 £1 0.

(11)

Euler parameter rates. Time derivatives of the Euler parameters 
will be used in the design of the stiffness controller. The Euler parameter rates 
can be written as

£4 — .1
2 £ CO

t ''x 
£4 I3 - £

02)

(13)

where CO is the angular velocity vector with respect to {A}, and CO is defined
the same as is £ in Eq. (11). A slightly different formulation is given in Yuan 
[Yuan,88].

Relative orientation. The relative orientation between two
rotational matrices can be defined in terms of the Euler parameters. Let 
and §R be two arbitrary matrices relating frames [M] and [S], respectively, to
the inertial frame {0}. The rotational matrix “R describing the orientational 
differences between these two frames is

$?R=|&R)t§R . (14)

The Euler parameters of s’R, {504,8e}, can be written in terms of the Euler 
parameters of &R , [Em, £m }, and §R, [£s, £s } [Yuan, 88] as

o£= £m £s - Es Em - Em Es
and

(15)
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/N'T /N
§£4 = £m Es + Em£s (16)

where 8e is with respect to {M}.

Stiffness Controller Using Euler Parameters

Master. The master manipulator will incorporate a 
[Salisbury,80]. The torque signal is

= Jm {[Kpm (xs ' xm) + ^-vm (^s " )] } +

where the m subscript indicates master terms and 

Jm = master Jacobian,

stiffness

grav

controller

(17)

Kpm and Kvm positional and velocity gain matrices, respectively,

torque signal to compensate for gravity effects.

xs and £s slave position and velocity, respectively,

xm and xm master position and velocity, respectively.

For the Kraft manipulator (see "Application to the Kraft Master" section), 
counterbalance weights have been incorporated in its design making Xmgrav =
0. Typically, Kpm and KVm are diagonal matrices

Kpm — diag(kpm,...,kpm) (18)

and

Kvm = diag(kvm,...»kvm) (19)

These matrices will be used in later derivations.

Dynamics of a manipulator. To understand the force reflection and 
transient response of the proposed controller, the dynamics of a manipulator 
in Cartesian space will be formulated. Assuming that the gravity component 
has already been compensated (i.e., by feedforward compensation), the 
dynamic equations of motion for all rigid-bodied link manipulators can be 
formulated [Khatib,87] as

M(q) q + C(q,q) q + J(q)T Fext = T , (20)

where
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M(q) e Rnxn js ^ jnertja matrix,

C(q,cl) € Rn x n [nciU(ies the Coriolis and centrifugal effects,

J(q) eR6xnis the manipulator Jacobian,
Fext e R6 is the contact force/torque vector,

X e Rn is the joint torque vector,

q e Rn is the generalized joint coordinates,
n = number of degrees of freedom (dof) of the manipulator.

For the rest of this paper the functional dependency of M, C, and J will be 
dropped to reduce notational clutter. Multiply Eq. (20) by (since M is
always nonsingular) to obtain the following:

q + M-1cq + M-1JTFatt=M-1x . (21)

Next, multiply Eq. (21) by J to obtain the following:

J cj + J M'1 C q + J M’1 JT Fatt = J M1 x . (22)

The definition of the manipulator Jacobian, J, is

x = J q . (23)

Taking the derivative of Eq. (23) with respect to time yields

J q = x - j q . (24)

Substitute Eq. (24) into Eq. (22) to obtain:

(x-jql + JM-^q + JM-1 JTFatt=JM-1x . (25)

Define = J M'1 JT in Eq. (25) to produce

X+(j M^C - j) q + M2 Fgxt = J M'1 x 
o r

MxX + Mx(j M^C - j) q + Fext = MXJ M'1 x . (26)

Equation (26) is the general equation for manipulator dynamics in Cartesian 
coordinates.



8

Slave controller and dynamics. Now the results of the preceding 
section will be applied. The slave manipulator which is being considered in 
this paper has 7-DOF. The slave manipulator will incorporate a stiffness 
controller [Salisbury,SO and Miyazaki,86]. The torque signal is

— Js [Kps (xm - Xs) + Kvs (Xm * Xs )] + Xj gay + Xjbc , (27)

where the s subscript indicates slave terms and

n

Kpg and Kvs

Xsgjw

xs and xs 

xm and xm 

Xred

= transpose of the slave Jacobian,

= positional and velocity gain matrices, respectively,

= torque signal to compensate for gravity,

= slave position and velocity, respectively,

= master position and velocity, respectively,

= redundancy torque.

The redundancy torque will be defined based on extended task-space 
techniques [Oh,84 and Colbaugh,89]. The basic idea is to add additional 
constraints to the system so that the end-effector Jacobian is extended to have 
full rank. For the 7-DOF manipulator used in this research, adding a constraint 
to the elbow is convenient (other possibilities exist and will be addressed in a 
later paper), that is.

where

Xelb
Odes
xelb
kdamp
Kpselb
Jred

Xred — Jred [KpSeib (xelb “ Xelb)] " ^damp 4s

slave joint velocity vector, 
elbow position in Cartesian position, 
desired elbow position in Cartesian position, 
positive damping constant, 
positive semi-definite matrix, 
redundancy Jacobian.

(28)

Jred has the property that Jied4s = I x^ where I = [I3 Os]1, I3 = 3x3 identity matrix

and O3 = 3x3 zero matrix. More will be said about this controller in a later 
paper; however, a discussion concerning the stability of the master/slave 
system will be presented here.

Assume that feedforward compensation has been incorporated to make 
Xsg»= 0; consequently, for the rest of the discussion in this paper it will be set 
to zero. The redundancy torque, X^, is used to exploit the redundancy of the 
extra DOF without resorting to pseudoinverse techniques.
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Similar to the master, Kj* and Ky* are diagonal matrices

Kps = diag(kpS,...,kpS) (29)

and

Kvs — diag(kis,... ,kvs) (30)

If, at steady state, the manipulator is stationary, then use of Eq. (26) will obtain 
the following result:

where
Kps (Xs - Xm) + Fsext ' J 'Cred — 0

J = M'1 JT (j M'1 J7)"1

(31)

(32)

o r

J = (MxJM-1)T . (33)

J is the the generalized inverse that minimizes kinetic energy [Whitney,72], 
Equation (31) indicates that the stiffness of the end-effector depends 

only on the difference between the slave and master position and the
redundancy torque. If J tred is either small or zero, then the slave external
force is proportional to the positional differences in Cartesian coordinates in
steady state.

Equation (26) shows that coupling still exists between slave states 
because Mx typically will not be a diagonal matrix. This indicates that the 
transient response of the end effector will be very complex. An eigenvalue
analysis of the linearization in joint space of Eq. (20) using x from Eq. (27)
(assuming the manipulator is stationary and the Xred and 'Cs par terms are zero) 
indicates that the eigenvalues will move significantly in the left half of the s- 
plane [An,88]. The linearized equation is

Ms 6c]s + (jg Kvs Js + kdampl?) 8<)s + Js Kps Js 8qs= 0 , (34)

where I7 is a 7x7 identity matrix. The mean eigenvalue [Asada,87] is defined 
as

2n

i=i 1 _ - Trace (m^1 Jj KVs Js +kdam p M^1) 
2n 2n

(35)

Physically, the mean eigenvalue provides a quantitative measure of the 
average damping of the system. The mean eigenvalue for stiffness control can 
vary significantly but usually has a value less than position-position control 
[An,88].
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The slave position, xs, and the master position, xm, of Eq. (17) must be 
expressed mathematically. Both xs and xm are vectors and have to be at least of
dimension 6x1 because six pieces of information are required to specify the 
spatial location and orientation in three dimensional space. The first three 
terms of these vectors are the linear Cartesian position (i.e., the x, y, and z
coordinates).- In Eq. (17), replace the first three terms in xs . xm with Ax. The

first three terms in Ax will be the linear Cartesian position difference between 
the slave and master with respect to the base frame. The next three variables 
in xs - xm, as proposed in this paper, should be the §£ vector addressed in the 
"Discussions Related to the Proposed Controller" section. It will be shown later 
that this scheme caa be made stable and that no artificial singularities are 
introduced because of this angular formulation. Further, a physical argument 
to be presented later indicates that this scheme will give the human operator 
the "correct feel" required for force reflection by modifying the stiffness 
controller of the master and slave to include Euler parameters; that is.

= fl
Kpm

Ax

Be J
+ KV Ax

ABe .
+ %m gray (36a)

Ax
Kv

L 5e J
Ax

Vn
8e .

"*■ ^sgrav + 'tred (36b)

Equation (6) is a constraining equation relating Se to E4. Because of this 
constraint, only 8e is needed in the control algorithm (see [Yuan,88]). In the 
control algorithm, there are two Jacobians: the master Jacobian, Jm, and the 
slave Jacobian, Js. These differ from the manipulator Jacobian (for an example, 
see [Craig,89]). The manipulator Jacobian is a transformation relating the 
joint rates to the Cartesian rates. The manipulator Jacobian for a 6-DOF
manipulator is a 6x6 matrix whose il11 column vector ji is given by Fu [Fu,87]:

Zi-i x ‘-ipe 

Zi-l
if joint i is rotational

Zi-l
0

if joint i is translational

(37)

where zj.i is the unit vector along the axis of motion of joint i expressed in the 
base coordinate frame and 1’1P6 is the position of the origin of the hand 
coordinate frame from the origin of the (i-l)st coordinate frame, expressed in 
the base coordinate frame. The manipulator Jacobian of the master can be 
written as



Jmf 4 —

1 1

(38)
l COm J

where c) (6x1 vector) is the joint actuator rates and CO is the angular velocity

vector (3x1 vector) with respect to the base frame. The master and slave 
Jacobian is different from the manipulator Jacobian because the angular rates
are based on Euler parameters. Define the (3x3) matrix W that relates the

angular velocities co to 8e, that is,

8e = Wco . (39)

The master Jacobian, Jm, is

(40)

Likewise, the slave Jacobian, Js, and slave manipulator Jacobian, Jsf, can be 
defined similarly as

(41a)

(41b)

To obtain the W matrix, first take the derivative of 8e in Eq. (15):

0E= £m Es - £s Em - Em Es + Em Es - Es Em - Em Es 

which can be rewritten using Eqs. (12) and (13) as

5e=W (cos - con)

(42)

(43)

where

(44)

Note that Eq. (43) is an exact representation relating Euler and angular rates. 
Small angle approximations used by other authors [Nguyen,90] have not 
been utilized in the derivation of Eq. (43). Using Eqs. (40) and (41b), Eqs. (38) 
and (41a) can be formulated into the more useful form that will be utilized in 
the Liapunov stability proof:
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Js 4s “ Jm 4m —

A.
Xs " Xm Ax

. wfe-SJ . Vv
l 8e J

(45)

Next, the stability properties will be examined.

Liapunov Stability

Stability model. The human operator and the environment will be 
modeled as a spring/dashpot model. There are limitations with representing 
the operator and environment with passive models [Anderson,89]; 
nevertheless, investigations using a passive model build confidence with the
proposed control techniques.

To show positional stability of stiffness control, a Liapunov function
candidate is written as

L = 0.5 Mm C[m + 0.5 a qj Ms 4S + 0.5 (xm - xs)T Kpi (xm - xs)
+ 0.5 (Xdes - Xm)T Kp2 (Xdes - Xm)+ 0.5 (x^fb - Xeib)T Kelb (x^lb - Xelb) , (46)

where
Xdes = position of the operator's hand (i.e., desired master position),
Kpl , Kp2 , and Keib are > 0, 
a is > 0.

The dynamic model for the master is

Mm 4m "*■ On 4m + Xmgrav + Jmf Fhand = ^m (47)

where Fhand is the force exerted by the operator's hand. The Fhand term will be 
modeled as a spring with damping; that is.

Fhand ~ Kphand (Xm “ xdes) Kvhand (48)

where Kphand tmd Kvhand ®te > 0.
The slave dynamic model is

Mg 4s Cs 4s "t" ^sgrav + Jsf Fsext — ^s . (49)

The Liapunov function, L, of Eq. (46) is a continuously differentiable positive
definite function in terms of Ax and 4s. According to Liapunov’s second 
method, one needs to show for global stability that

#^ = L<0 
dt (50)

for all nontrivial trajectories.

Stability proof. Taking the derivative of the Liapunov function 
candidate, Eq. (46), with respect to time, yields the following:
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L — (5[m Mm (Jm + Cl (Js Ms (Js +0.5 (JmMm(Jm +0.5 (X {JsMs(Js
\T v . f* ^ \T , f-des ^ ^+ (xm " xs) Kpi (xm ' xs) " (xdes * xm) Kp2 xm (xefb - xelbj* Kelb xelb

(51)

Using Eqs. (47) and (49), this derivative becomes

L — (Jm ( " Cm <Jm " ^mgrav “ Jmf Fhand + ^m) + Cl (jj ( - Cs (Js - XSgrav - Jsf Fsext + Xs) 
+0.5 (JmMm.(Jm +0.5 CL (jjMs(Js + (xm ■ Xs)"^ Kpj (xm - xs) ' (Xdes " Xm)^ Kp2 Xm

(xelb - xelb)T K^b Xelb
(52)

Next, using Eqs. (17) and (27) and recalling that all gravity forces have been 
compensated, Eq. (52) becomes

L = (Jm { " Cm (Jm * Jmf Fhand + Jm [Kpm (xs ■ Xm) + K.Vm (xs ' Xm )] )
+ (jJ { ” Cs (Js - Jsf FSext + Js [Kps (xm ' Xs) + KVs (^m “ )] + ^red)

+0.5 (JmMmCjm +0.5 Ot (jjMs(Js + (xm - Xsj^ Kpi (xm ■ Xs) - (x<ies - Xm)^" Kp2 Xm
‘ (xelb - Xeib)T Kelb Xeib .

(53)

Using the matrix relationships [Asada,86;p.l37]

Mm * 2 Cm — 0
and

Ms - 2 Cs = 0

(54a)

(54b)

in Eq. (53) results in

C — (Jm { - Jmf Fhand + Jm [Kpm (xs * Xm) + KVm (^s'^m )] }

+ (jT { * Jsf FSext + Js [Kps (xm ■ Xs) + KVs (xm ' Xs ) ] + Xred}

+ (xm _ XS)T Kpi (xm ‘ Xs) - (x^s - Xm)^ Kp2 Xm - (x^fb * Xelb) Kelb Xelb • (55)

Let Kpm = (X KpS and KVm = a KVs, which means that the slave and master gains
are related by an arbitrary positive constant and that Kpi = Kpm = ClKpB. Using 
the definition of the master and slave Jacobians given in Eqs. (38) and (41) and
recognizing that x = J(J yields xT = (JTJT Eq. (55) can be further simplified to:

L' = (Jm ( " Jmf Fhand ) + (X (jj ( ■ Jsf FSext + ^red )

" (xm " Xs 'F Kvm (xm ' xs ) - (x^es - Xm)^ Kp2 Xm * (xelb “ Xeib) Kelb xelb (56)

Examine Eq. (56) under the following cases:

Case 1: Set FSext = 0. This condition implies that the slave is moving in free 
space. Using Eq. (48), Eq. (56) reduces to

L = ^m { “ Jmf [Kphand (xm ' Xdes) + Kvhand Xm]} + Cl (jj Xred



* (^m “ Xs ^ Kvm (^m " ) ' (^des " Kp2 Xm - (xeib ■ Xeib) Kelb Xelb . (57)

Set Kp2 = Kphand and recall the definition of the master manipulator Jacobian 
given in Eq. (38). Eq. (57) reduces to:

L = ■ Xm Kvhand Xm " (xs - Xm ) KVm (Xs ~ Xm ) * (xelb " xelb) ^elb Xelb + Ot C)J Xmd _

(58)

Set Keib = 01 KpSeib and use the definition of Xred from Eq. (28) to reduce Eq. (58) 
to

L = - Xm Kvhand Xm ~ (xs - Xm ) Kvm (Xs ~ Xm ) " Ot kdamp (59)

Eq. (59) shows that L is negative semi-definite. By LaSalle's Theorem 
[Miyazaki,86], asymptotic stability is shown.

Case 2: Set Fsext = KpSext (xs - xg) + Kvsext xs, which is the case when the slave 
touches the environment at xg. Augment the Liapunov function in Eq. (46) 
with an additional term:

1 4

L L + 0.5(xs - xe )T Kp3 (xs - xe ) , (60)

where Kp3 is a positive definite matrix. With Kp2 = Kphand and noting that 
xe = 0. L is written as

L — 4m( ” Jmf Kvhand Xm + V Jmf Fs) - <X (]X ( JsKpsact (Xs ' Xe) + J^Kvsext Xs )

' (^m “ Xs ^ Kvm (^m " Xs ) + (Xs ) Kp3 (Xs ■ X£ ) ■ Otk^amp (61)

Let Kp3 = a KpSext and use the definitions of the master and slave manipulator 
Jacobians. Eq. (61) becomes

L ~ C)m( " Jmf Kvhand Xm ) " Ot ( Js^Cvscxt Xs ) ■ (xm " Xs)^” Kvm (Xm ” Xs) " Otk^hmp C)s4s (62)

O r
= ( ” Xm Kvhand Xm ) ” Ot ( XsKvsa^t Xs ) " (^m ” Xs)"^ Kvm (^m * Xs) - Ct kdamp 4s4s (63)

Eq. (63) shows that L is negative semi-definite. Again by LaSalle's Theorem, 
asymptotic stability is shown.

Application to the Kraft Master

Hardware. The controller was implemented on the Kraft master 
controller, shown schematically in Fig. 2. The Kraft KMC 9100-MC is a 
lightweight 6-DOF master arm designed, manufactured, and sold by Kraft 
Telerobotics, Inc., of Overland Park, Kansas. Position is measured at each joint 
by potentiometers. The first five joints are actuated by ac servomotors for
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Denavit-Hartenberg Table Shoulder Azimuth q

Shoulder Pitch q

Note: d = 0.073 m, d = 0.084 m.

3 Elbow ‘l 3

Wrist Yaw

Wrist Roll ^ 6
Wrist Pitch q

Fig. 2 Kinematic diagram and Denavit-Hartenberg table for the Kraft master
manipulator.

force feedback. Wrist roll is not actuated. The Kraft arm is sold with the KMC 
9100S electronics interface unit. Kress [Kress,90] has further details.

Implementation. In some ways, this section is the salient feature of 
the paper. The control algorithm was programmed in the C language on a 
Motorola 68020 with a 68881 floating-point coprocessor. The control algorithm



was optimized by (1) factoring the Jacobians (see the appendix) so that 
common terms were not recalculated and (2) using a special assembly 
language routine that simultaneously determines the sine and cosine of each 
joint angle. When implemented, the master code ran at ~60 Hz, including the 
communication overhead.

Torque vs applied signal was measured in the laboratory for each of the five 
actuated joints on the Kraft master. A plot of the torque vs applied signal for 
each joint of the Kraft manipulator is shown in Fig. 3.

Waist (N-m) 

Shld. (N-m) 

Elbow (N-m) 
Wrist P (N-m) 
Wrist Y (N-m)

—

Power (%)

Fig. 3 Response of Kraft manipulator joints.

Figure 3 shows -10% deadband in each joint. Some compensation is required to 
optimize between good backdrivability and force sensitivity when using a 
master with these levels of deadband. For a master having friction that 
consists mainly of stiction and coulomb friction, a simple form of 
compensation is an offset function, called the preload function (PLF), which is 
the inverse of a deadband function [Gelb, 68]. The PLF function is shown in 
Fig. 4.
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signal out

signal in

Fig. 4 Preload function for friction compensation.

An analysis was performed using describing function methods to determine 
whether limit cycles would be present when applying the preload function. A 
limit cycle is defined to be an initial condition-independent periodic 
oscillation occurring in dissipative systems [Gelb,68]. Figure 5 shows a block 
diagram of a single joint controller for the master. The following definitions 
are helpful:

1. NLF is the nonlinear friction block comprising coulomb friction and 
stiction (N-m).

2. Kp and Kv represent position and velocity gains.
3. KT is the motor torque constant (N-m/A).
4. Jl is the load inertia (kg-m^).
5. Kvf represents viscous damping (N-m/rad/s).
6. PLF is the preload function (A/rad).
7. Qtfe is the desired joint angle (rad).

8. ©Land 0l are the output (load) angle (rad) and angular velocity 
(rad/s), respectively.

9. 1/s indicates integration.

PLF — KT

Fig. 5 Block diagram of a single master joint.
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Making the assumptions that the filter hypothesis holds and sinusoidal

waveforms are present, set 0l = A sin cot [Gelb,68]. Setting the input and load 
torque to zero, the following equations must be satisfied for a limit cycle to 
exist:

and
A (Kvf + KT Kv) + A nitp = 0 

KpKT (A / co) npLF = A Jl co

(64)

(65)

where npu is the describing function for the PLF block and onif is the
describing function for the nonlinear friction block. Since Oplf and nra* are 
both real positive functions, the only solution to Eqs. (66) and (67) is A = 0 and 
co = arbitrary; therefore, a limit cycle will not occur [Gelb,68]. If, however, 
there are significant amounts of backlash (not modeled in Fig. 5), then a limit 
cycle might occur. This was not true when the controller was implemented on 
the Kraft master arm.

The PLF was implemented on the master controller. For most of the
joints, the preload was set to ~10% except for the wrist pitch and yaw. For these 
joints, the preload was reduced to -5% to avoid a chattering at the switching 
line between plus and minus preload. The PLF did not introduce any
instabilities, and it improved the force reflection.

Figures 6a and 6b show the high-level block diagrams of both the
master and slave controller, respectively.

MASTER CONTROLLER

Tm — Jm [Kpm Xg - Xm)

^vm (*s ” )]

4- T^ wm grav

Drive Signal

Se and W 
Calculation

Master Manipulator

Joint Torques 
to

Motor Torques
PWMs H Actuators -r

CJm

Joint
Angies

Control Algorithm

Quaternions Calc. ^m

From SLAVE
To SLAVE

Fig. 6a Master Controller



SLAVE CONTROLLER

Slave Manipulator

Joint Torques
ActuatorsPWMs

Motor Torques

Drive Signal
Joint
Angles

Damping

Quaternions Calc.S& and W

From Master
To Master

Fig. 6b Slave Controller

The dashed line represents a force/torque signal from the JR3 sensor and will 
be discussed in the conclusion. The computational requirements are modest. A 
single MC 68020 with a math coprocessor can easily perform the computational 
requirements for each controller.

Discussions Related to the Proposed Controller

Motivation for Using Euler Parameter. It has been shown that 
the stiffness controller based on Euler parameters does not introduce artificial 
singularity points and that stability is guaranteed, assuming passive models. 
The purpose of this section is to motivate the use of Euler parameters to 
represent orientation.

Angular positional differences for large displacements are not vector 
quantities; therefore, the expression

has no meaning as a vector difference for large positional differences because 
components cannot be subtracted, [Asada,86 and Yuan,88]. This is a 
fundamental difference between linear Cartesian differences and angular
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differences. Euler parameters provide a means for defining an angular 

difference in terms of the 8e vector. If co is defined as the product of the (3x3)
>*N

matrix W of Eq. (44) and 0), then the expression

(67)

has meaning as a vector difference.
Further, the magnitude (Euclidean norm) of 8e is proportional to the 

sine of the half-angular difference between frames, as can be seen in Eqs. (1).*N
through (3). For small angular displacements, 8e is proportional to the 
angular difference between frames, which is the feel an operator desires. As 
the angular displacements increase, the sine function will act as a saturation 
function, preventing the feedback of excessive forces. Large angular 
displacements are possible on systems (most working systems have bandwidths 
under 3 Hz.) that have appreciable tracking phase lag between master and 
slave.

Gain Selection for the Stiffness Controllers. While both the 
master and the slave incorporate a stiffness controller, the requirements are 
different for robotic operation. For robotic stiffness control, the interaction 
between the environment and the robot arm is specified [An,88]. For 
teleoperation, the purpose is to reflect the environmental forces and stiffness 
accurately to the human operator. The human operator will vary impedance 
according to changes in the slave impedance [Hogan,85]. To achieve this, 
the positional gain matrices for both the master and slave, Kpm, and, Kps. are
adjusted so that they are made large but not so large as to produce limit cycles 
[Gelb,68].

A dichotomy exists when tuning a stiffness controller for a teleoperator 
system. For an ideal teleoperator, the slave joint position should track the 
master position and likewise the slave forces on its end-effector should track 
the master forces on its end-effector. The mechanical equivalent indicates that 
the master and slave should be tightly coupled and there should be zero 
compliance between the two (or an infinite stiffness coupling the two). At 
steady state, the operator stiffness will be reflected to the slave as shown in Fig. 
7, where the operator is simply modeled as passive spring with stiffness Koper. 
and the teleoperator stiffness is Kp

Fig. 7 Operator stiffness reflected to slave.

The equivalent stiffness K^q will in the limit approach Koper when Kp 
approaches infinity. Since infinite stiffness is not physically achievable, Kp



should be set to as large a value as possible while avoiding limit cycles. 
Compensators can be designed to allow large values of Kp while avoiding limit 
cycles (details can be found in [Jansen,90]).

Conclusion

This paper has presented a formulation of a controller for a teleoperator 
system with dissimilar kinematics and force feedback. The controller is a 
stiffness controller for both the master and the slave. A mathematical 
problem associated with representing orientations using Euler angles has 
been described, and Euler parameters are proposed as an alternative. Euler 
parameters are superior to Euler angles not only because they do not introduce 
artificial singularities but also because they are a natural representation for 
force reflection. The basic properties of Euler parameters have been 
presented, specifically those pertaining to stiffness control. The stiffness 
controller for both the master and the slave has been formulated using the 
Euler parameters to represent orientation. A Liapunov stability proof is 
presented for the controller. Asymptotic stability is shown for two cases, 
namely, the slave moving in free space and the slave in contact with the 
environment.

The master controller is presently implemented on a 6-DOF, force- 
reflecting Kraft master manipulator and runs at a loop rate of ~60 Hz. The 
stiffness controller has worked well on the Kraft master manipulator. With 
the Euler parameter formulation, no artificial singularities are present as with
the Euler angle formulation. Further, the magnitude (Euclidean norm) of Se is 
proportional to the sine of the half angular difference between frames as can 
be seen in Eqs. (1) through (3). For small angular displacements, Se is 
proportional to the angular difference between frames, which is the feel an 
operator desires. As the angular displacements increase, the sine function 
will act as a saturation function, preventing the feedback of excessive forces.

Force-reflection capability is enhanced by means of a force/torque 
sensor on the slave. This signal is sent back to the master after suitable 
transformations are made. Unfortunately for large force feedback gains, 
instabilities have been observed due to noncolocation of this sensor and 
phase-lag between master and slave.

The control algorithm can be extended using the manipulator Jacobian 
and artificial potential functions to create artificial walls and surfaces defined 
in Cartesian space to restrict operation in "forbidden zones." With proper gain 
settings, these surfaces can be given a "repelling" feel such that the operator 
must exert a strong force to pass through the surface. Dangerous obstacles 
(e.g., avoiding contact with the robot base) can be defined in the master's 
Cartesian space such that the operator cannot move the master to a location 
that would drive the slave into the obstacle.

Appendix • Kraft Jacobian

The master Jacobian, 3j, has been symbolically determined in the third frame 
and checked by MACSYMA™ [Symbolics,85]. Note that the third frame is a 
convenient frame in which to formulate the Jacobian because, overall, the 
terms are in their simplest form. For example, determining the Jacobian in
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the final (hand) frame would simplify the lower right (3x3) block; however,

the upper left (3x3) block would then be more complicated. Determining the 
Jacobian in a frame preceding a spherical wrist seems to produce the simplest 
form:

023(^-6455^ ct*?* 0
523(035485^-^) <13+045545 0 0

s23^k'c5<l5)023(^+<Hs5<l5)02^2 0 0 ■s4<?4s 0
*23 0 0 0 s4
°23 0 0 1 0 ■*5

0 1 1 0 c4 *#5 -
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