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Abstract The purpose of this paper is to develop a controller for a force-
reflecting teleoperator system having kinematically dissimilar master and
slave. = The controller is a stiffness controller for both the master and the
slave. A mathematical problem associated with representing orientations
using Euler angles is described, and Euler parameters are proposed as a
solution. The basic properties of Euler parameters are presented, specifically
those pertaining to stiffness control.  The stiffness controller for both the
master and the slave is formulated using Euler parameters to represent
orientation and a Liapunov stability proof is presented for the controller. The

master portion of the control scheme is impilemented on a 6-degree-of-freedom
master.

Introduction and Objectives

In the late 1940s Goertz and his colleagues at Argonne National
Laboratory developed one of the earliest recognizable mechanical
master/slave manipulators without force reflection. Later, in the early 1950s
Goertz and his colleagues developed an electric master/slave manipulator with
force-reflecting capabilities in which each slave joint servo was tied directly
to the master joint servo since both the master and slave were kinematically
similar. The control structure for these manipulators was the classical
position-position controller. A positional difference between the slave and the
master is reflected back as a drive signal to the master to push the human
operator away from the object. Goertz's work is summarized in the references
{Goertz,54]. The position-position control scheme has been the basic
controller for almost all master/slave manipulators used by industry up to the
present. When the master and slave are not kinematically similar, the design
of the controller is particularly difficult. Bejczy developed the first
force-reflecting teleoperation with dissimilar kinematics [Bejczy,81]. Three
major issues are associated with this control problem: (1) orientation
representation, (2) accurate force-reflection, and (3) redundancy resolution.
Only the first two objectives will be elaborated upon in this paper. A brief
discussion pertaining to the third will be included.

Representing the orientation between the master and slave and using
that information for force reflection is one of the more difficult problems in
the control of any teleoperated system with kinematically dissimilar master

and slave. One of the objectives of this paper is the incorporation of Euler
parameters into the controller design.
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Dissimilar kinematic designs make simple joint positional differences
no longer adequate for a force-reflecting manipulator. To achieve accurate
force-reflection, a type of stiffness controller will be designed for both the
master and the slave. Based on using both the master and slave jacobians
[Miyazaki,86] an accurate force-reflecting controller for kinematically
dissimilar manipulators is proposed. Differences in the specification of
stiffness when stiffness controllers are used for robotic operation and
teleoperation will be pointed out.

When the slave has more than 6-DOF, redundancy resolution needs to be
addressed. Primarily, the master manipulator will be addressed in this paper
but a brief discussion of controller design for a redundant slave will be
included. The results are applied to a specific 6-DOF master manipulator and a
7-DOF slave manipulator at the Oak Ridge National Laboratory (ORNL).

The paper is organized as follows. First we will introduce orientation
representation using Euler parameters and present several sections
describing the applicable properties of Euler parameters such as uniqueness,
Euler parameter rates, and their relationship to rotational matrices. Next, the
stiffness controller will be presented including the slave redundancy
resolution.  Liapunov stability for a passive system will be discussed. The
controller is then applied to a commercially available 6-DOF force-reflecting
master. Finally, the motivation for using Euler parameters and ways to
properly set the controller gains are discussed and conclusions are drawn.

Euler Parameters

Difficulties with Euler angles. Three wvariables are needed to
represent orientation, implying that there is considerable redundancy in a
rotational matrix composed of nine terms. Euler angles (which differ from
Euler parameters) have difficulties when applied to teleoperated systems
having a master dissimilar from the slave. These difficulties will be pointed out
more clearly but can be summarized: (1) Euler angles introduce artificial
singularities. (2) Euler angles are not a natural representation for force
reflection.

It has been stated that Euler angular representations of orientation can
fail because they can introduce artificial singularities. In control algorithms
employing angular rates, the failure manifests itself as infinite joint rates.
These algorithmic singularities cannot always be placed out of reach of the
operator because of the large workspace volume. Consider defining the end-
effector orientation using a Z-Y-Z Euler angle set, where the first rotation is
about the nominal z-axis, the second rotation is about the new y-axis produced
after the first rotation, and the final rotation is about the new z-axis produced
after the first and second rotations. It is desired to produce an incremental

rotation ©° in the positive direction about the x-axis, as shown in Fig. 1. To
produce this rotation, first rotate 90" in the counterclockwise direction about
the =z-axis to produce the x'y'z' coordinate system, then rotate 8° in the
clockwise direction about the y'-axis to produce the x"y"z" coordinate system,
and finally rotate 90" in the clockwise direction about the z"-axis to produce

the x"y™z" coordinate system, which is the desired result. The velocity about
the z- and =z"-axes will be infinite even for infinitesimally small desired

rotations because the change in angle about the z- and z'-axes is 90,
regardless of the size of the desired change 6°. This can be verified



mfthematically by determining the relationship between the Euler angle rates

(d) and the instantaneous angular velocities about the x-, y-, z-axes ((?)) of
Fig. 1. This relationship is derived in Fu [Fu,87;p.235]. As expected, the

relationship between & and © has a cosec(B) term, where [ is the pitch angle,

indicating infinite velocities at orientations having zero .}

z,Z

" "e

z,2

: 90 deg. rotation about z
Produces 1-prime axes
x,x" 2: - 6deg. rotation about y'
Produces 2-prime axes
3: - 90 deg. rotation about z"
Produces 3-prime axes

Fig. 1 Euler angle rotation about the x-axis.

Selection of another set of Euler angles only moves the singularity to
another orientation. For example, consider using a yaw-pitch-roll set of Euler
angles, where the first rotation is about the nominal (unrotated) x-axis, the
second rotation is about the nominal (unrotated) y-axis, and the final rotation
is about the nominal (unrotated) z-axis. The relationship between the Euler

angle rates (&) and the instantaneous angular velocities about the x-, y-, z-
axes (W) is derived in [Fu,87;p.235]. In this case, a sec([i) term appears

indicating infinite velocities at orientations having B of 90’.

The conclusion from these observations has broad implications. For
controllers using Euler angles to represent orientations with formulations

requiring the relationship between the Euler angle rates (@) and the

instantaneous angular velocities about the x-, y-, z-axes (W) to be known {e.g.,
resolved rate, stiffness (see Eq. 17) in this paper], artificial singularities will
be introduced. These singularities may be moved to different locations in the
manipulator work space by appropriate choice of Euler angle representations;
however, they will never be eliminated completely. Clearly, another method of

1 Unless otherwise stated, all variables with a cap ~ on top will denote a 3xI

vector in this paper.



representing orientations that does not produce these types of singularities is
desirable,

Euler parameters. The notation followed in this paper is similar to
Craig's notation [Craig,89]; the modifications for Paul's notation [Paul,81]
will be clear from the context. Many of the matrix and vector relationships
that are stated -but not proven can be found in Yuan's work [Yuan,88] or at
least in his references.

Let frame A, {A} and frame B, {B} be two arbitrary frames that are
initially coincident. If {A} is fixed and {B} is rotated about a normalized vector

AK by an angle © according to the right-hand rule, then the rotational matrix,

8R, relating a vector in (B} to (A} can be written in terms of AR and 8. The
following Euler parameters are defined:

g1 =k sin(6/2) (1
€2 =ky sin(6/2) )
€3 =ks sin(0/2) 3)
€4 = COS (9/2) , 4)

where Ak =[ky.kz,k3 T, Craig [Craig,89;p.55] shows that §R can be written
as

1-262-268 2ei€2-€8) 2AE1E3 +E264)
AR =| 2Aeie2+68s) 1-267-26} 2Aeks-e18) | . (5)
Aeies-ex£s) 2AerEs+e18s) 1-2¢ef-2¢}

Because only three pieces of information are needed to adequately represent a
rotational matrix, the Euler parameters satisfy the following additional
constraint [Yuan,881:

g+el+el+ei=1 . (6)

Let the first three Euler parameter terms be combined into a vector

a &
E=i g , )
€3

”~
which is given with respect to {A} since AK is given with respect to {A}.
Equation (6) can be rewritten in vector notation as

F+ee=1 )

In this paper, the Euler parameters will be represented by the set {84,;:}.



Uniqueness of representation of Euler parameter. If the
rotational angle 0 is restricted between -180 <0< 180, then & is nonnegative
and the Euler parameter representation is unique [Yuan,88]. Outside this
range, the representation is not unique. By substitution into Eq. (5), both {&, g}
and (-&, -€} can be shown to represent the same orientation. For teleoperation,

restricting the range between * 180 is adequate.

Rotational matrix representation. Equation (5) can be rewritten
{(Yuan,88] as

ATA AAT A
AR=(e?- €0) 3 +288 +28,8° ©
or B ( ATA) AAT Ax A T
BR=\ef- eg)l;+2¢ee -2e4€ =(4R) , (10)
where
~ | 0-B&
€ =leg 0-&| . 1)
€6 0
Euler parameter rates. Time derivatives of the Euler parameters

will be used in the design of the stiffness controller. The Euler parameter rates
can be written as

m-%?& (12)
2=.;_(m3-g><)a (13)

~ . . ~X
where @ is the angular velocity vector with respect to {A}, and @ is defined

the same as is € in Eq. (11). A slightly different formulation is given in Yuan
[Yuan,88].

Relative orientation. The relative orientation between two
rotational matrices can be defined in terms of the Euler parameters. Let 4R
and JR be two arbitrary matrices relating frames {M} and (S}, respectively, to

the inertial frame {0}. The rotational matrix ¥R describing the orientational
differences between these two frames is

YR=({4RI R . (14)

The Euler parameters of ¥R, (594,52},Acan be written in terms of the Euler
parameters of SR , {€m, €M }, and {R, (&, & } [Yuan, 88] as
Ax "~

SE= £y Es - € En - Ent Es (15)
and



AT A

3€4 = Em Es + EmEs (16)

where O€ is with respect to {M]}.

Stiffness Controller Using Euler Parameters

Master. The master manipulator will incorporate a stiffness controller
[Salisbury,80]. The torque signal is

Tm = Im {[Kpm (s~ Xm) +Kom (- Xm )]} + Tm grav ' an

where the m subscript indicates master terms and

Im = master Jacobian,

Kpm and Ky = positional and velocity gain matrices, respectively,
Tm g = torque signal to compensate for gravity effects,

Xs and Xg = slave position and velocity, respectively,

Xm and Xm = master position and velocity, respectively.

For the Kraft manipulator (see "Application to the Kraft Master” section),
counterbalance weights have been incorporated in its design making Tpmgry =

0. Typically, Kpm and Kvm are diagonal matrices

Kpm = diag(kbm,--..kSm) (18)

and

Kvm‘:diag(k%ms---,kam) . (19)
These matrices will be used in later derivations.

Dynamics of a manipulator. To understand the force reflection and
transient response of the proposed controller, the dynamics of a manipulator
in Cartesian space will be formulated. Assuming that the gravity component
has already been compensated (i.e., by feedforward compensation), the

dynamic equations of motion for all rigid-bodied link manipulators can be
formulated [Khatib,87] as

M@ 4§ + C(g,4) 4 + J@QT Fexe =7 , (20)

where



M(q) € R" ™ 5 the inertia matrix,

C@9 € R™ " includes the Coriolis and centrifugal effects,
J(q) € ROX™ s the manipulator Jacobian,

Fext e RS is the contact force/torque vector,

T € R" is the joint torque vector,

q € R" is the generalized joint coordinates,

n =

number of degrees of freedom (dof) of the manipulator.
For the rest of this paper the functional dependency of M, C, and J will be
dropped to reduce notational clutter. Multiply Eq. (20) by M-1 (since M is
always nonsingular) to obtain the following:
q+MICq+MIJTF =M1t . @21)
Next, multiply Eq. (21) by J to obtain the following:
Jq+IMICG+IMIITE=IM1z . (22)
The definition of the manipulator Jacobian, J, is
x=Jq . (23)
Taking the derivative of Eq. (23) with respect to time yields
Jg=x-Jq . (24)
Substitute Eq. (24) into Eq. (22) to obtain:
(X-74)+IMICq+IMI T Fou=IM11 | (25)
Define M =JM1)T in Eq. (25) to produce

X +(IMIC-1)q+M} Feu=TM11
or

M + MIMIC-J)q+ Fer =MJI M1 1 26)

Equation (26) is the general equation for manipulator dynamics in Cartesian
coordinates.



Slave controller and dynamics. Now the results of the preceding
section will be applied. The slave manipulator which is being considered in
this paper has 7-DOF. The slave manipulator will incorporate a stiffness
controller [Salisbury,80 and Miyazaki,86]. The torque signal is

where the s subscript indicates slave terms and

IT = transpose of the slave Jacobian,

K and Ky = positional and velocity gain matrices, respectively,
Ts grav = torque signal to compensate for gravity,

Xs and Xg = slave position and velocity, respectively,

Xm and Xp = master position and velocity, respectively,

Tred = redundancy torque.

The redundancy torque will be defined based on extended task-space
techniques [Oh,84 and Colbaugh,89). The basic idea is to add additional
constraints to the system so that the end-effector jacobian is extended to have
full rank. For the 7-DOF manipulator used in this research, adding a constraint

to the elbow is convenient (other possibilities exist and will be addressed in a
later paper), that is,

Tred = Jred [Kpselb (i‘gﬁs,-'felb)] - Kdamp 4s (28)

where

ds = slave joint velocity vector,

Xelb = elbow position in Cartesian position,

s = desired elbow position in Cartesian position,

Kyamp = positive damping constant,

Kpselb = positive semi-definite matrix,

Jred = redundancy jacobian.

Jred has the property that Jmiqs=’f?db, where 1=[I3 05", I = 3x3 identity matrix

and 03 = 3X3 zero matrix. More will be said about this controller in a later
paper; however, a discussion concerning the stability of the master/slave
system will be presented here.

Assume that feedforward compensation has been incorporated to make
Tsgav= 0; consequently, for the rest of the discussion in this paper it will be set

to zero. The redundancy torque, Teq, is used to exploit the redundancy of the
extra DOF without resorting to pseudoinverse techniques.



Similar to the master, Kx and Ks are diagonal matrices
Kps = diag(kk,...,k§) (29)
and
Ky = diag(kl,....kS) . (30)

If, at steady state, the manipulator is stationary, thén use of Eq. (26) will obtain
the following result:

Kps (Xs - Xm) + Fsext -J Trea=0 31)
where
T=M1IT(r ML T (32)
or
T=(Mm)T (33)

J is the the generalized inverse that minimizes kinetic energy [Whitney,72].
Equation (31) indicates that the stiffness of the end-effector depends
only on the difference between the slave and master position and the

redundancy torque. If Tr'c,ed is either small or zero, then the slave external
force is proportional to the positional differences in Cartesian coordinates in
steady state.

Equation (26) shows that coupling still exists between slave states
because My typically will not be a diagonal matrix. This indicates that the
transient response of the end effector will be very complex. An eigenvalue
analysis of the linearization in joint space of Eq. (20) using T from Eq. (27)
(assuming the manipulator is stationary and the Trd and Tsga terms are zero)
indicates that the eigenvalues will move significantly in the left half of the s-
plane [An,88]. The linearized equation is

M, 8t +(JF Kus Js + kdampl7) 84s +JT Kps Js 8= 0 , (34)

where I7 is a 7X7 identity matrix. The mean eigenvalue [Asada,87] is . defined
as

2n
_&8 " _ - Trace (M3 JT Kug Js +Kdam p M3})
o= = (35)
2n 2n

Physically, the mean ecigenvalue provides a quantitative measure of the
average damping of the system. The mean eigenvalue for stiffness control can

vary significantly but usually has a value less than position-position control
[An,88].
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The slave position, Xs, and the master position, Xp, of Eq. (17) must be
expressed mathematically. Both X and Xy, are vectors and have to be at least of

dimension 6X1 because six pieces of information are required to specify the

spatial location and orientation in three dimensional space. The first three
terms of these vectors are the linear Cartesian position (i.e., the x, y, and z

coordinates)- In Eq. (17), replace the first three terms in Xg . Xy, with AX. The

first three terms in AX will be the linear Cartesian position difference between
the slave and master with respect to the base frame. The next three variables

in X - Xm, as proposed in this paper, should be the 8¢ vector addressed in the
"Discussions Related to the Proposed Controller” section. It will be shown later
that this scheme can be made stable and that no artificial singularities are
introduced because of this angular formulation. Further, a physical argument
to be presented later indicates that this scheme will give the human operator
the "correct feel”" required for force reflection by modifying the stiffness
controller of the master and slave to include Euler parameters; that is,

| AR %
Tm = JIn ;Kpml: n } + Kym Af + Tmgrav (36a)
\ oe de
T AR AR
T =-Js Kps [ " } + Kys o + Tsgrav + Tred . (36b)
o€ Se

Equation (6) is a constraining equation relating O€ to €4 Because of this
constraint, only O€ is needed in the control algorithm (see {Yuan,88]). In the
control algorithm, there are two Jacobians: the master Jacobian, J,, and the
slave Jacobian, Js. These differ from the manipulator Jacobian (for an example,
see [Craig,89]). The manipulator Jacobian is a transformation relating the
joint rates to the Cartesian rates. The manipulator Jacobian for a 6-DOF

manipulator is a 6x6 matrix whose ith column vector ji is given by Fu [Fu,87]:
zi.1 X "1pg

if joint i is rotational
Zi1

Ji , 37

[ 7*61 } if joint i is translational

where zj; is the unit vector along the axis of motion of joint i expressed in the

base coordinate frame and ' 'P6 is the position of the origin of the hand
coordinate frame from the origin of the (i-1)St coordinate frame, expressed in

the base coordinate frame. The manipulator Jacobian of the master can be
written  as
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Lﬂq=[im} : (38)
@

where ( (6X1 vector) is the joint actuator rates and ® is the angular velocity

vector (3X1 vector) with respect to the base frame. The master and slave
Jacobian is different from the manipulator Jacobian because the angular rates

are based on Euler parameters. Define the (3%3) matrix W that relates the

angular velocities © to Og, that is,

Se=Wa . (39)

The master Jacobian, J_, is

I O
Ln=[(§VV]Jm1. (40)

Likewise, the slave Jacobian, J;, and slave manipulator Jacobian, Jg4 can be
defined similarly as

Jiq{f} : (41a)
(O]
_[1s O]

To obtain the W matrix, first take the derivative of 8:: in Eq. (15):

5?:=éu§s-€sgm-’é:a'és +EMES'ésEM‘E:dES , 42)
which can be rewritten using Egs. (12) and (13) as
Se=W (Gs - Gn) (43)
where
A AT ~ AX
W= O.S[EsSM'l'(Es I3-€;)(€MI3-€M)] . (44)

Note that Eq. (43) is an exact representation relating Euler and angular rates.
Small angle approximations used by other authors [Nguyen,90] have not
been utilized in the derivation of Eq. (43). Using Egs. (40) and (41b), Egs. (38)
and (41a) can be formulated into the more useful form that will be utilized in
the Liapunov stability proof:
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2% 2
Js‘ls‘]mqm'-'l: i r: :|=[ Af } . 45)
W (@ - B de -
Next, the stability properties will be examined.

Liapunov St_ébility

Stability model. @ The human operator and the environment will be
modeled as a spring/dashpot model. There are limitations with representing
the operator and environment with passive models [Anderson,89];

nevertheless, investigations using a passive model build confidence with the
proposed control techniques.

To show positional stability of stiffness control, a Liapunov function
candidate is written as

L =0.5 45 Mm dm + 0.5 a 47 M; ds + 0.5 (Xm - Xs)' Kp1 (Xm - Xs)
+0.5 (xdes - xm)T Kp2 (xdes - xm)+ 0.5 (ﬁfg - ﬁelb)T Keb (ﬁgfg - ielb) , (46)

where

Xdes = position of the operator's hand (i.e., desired master position),
Kp1, Kp2 , and Kjp are > 0,
ais>0.

The dynamic model for the master is
Mm dm + Cm 4m + Tmgrav + It Fhand = Tm , @7

where Fpana is the force exerted by the operator's hand. The Fpang term will be
modeled as a spring with damping; that is,

Fhand = Kphand {(Xm - Xdes) + Kvhand Xm (48)

where Kphand and Kyhang are > 0.
The slave dynamic model is

M g5 + Cs s + Tsgrav + Jot Fsext = Ts . 49
The Liapunov function, L, of Eq. (46) is a continuously differentiable positive
definite function in terms of Ax and {s. According to Liapunov's second
method, one needs to show for global stability that
d_1<0 50
it (50)
for all nontrivial trajectories.

Stability proof. Taking the derivative of the Liapunov function
candidate, Eq. (46), with respect to time, yields the following:



13

L= 4f Mn dm + @ qIM; 4 +0.5 4iMmdm +0.5 quTvlsqs
+ (km - %7 Kot (km - %s) - (Xaes - Xm) Kp2 km - (RS - Retw) Kem%ets (51

Using Egs. (47) and (49), this derivative becomes
L= qu( -Cndm- Tmgrav - JElfphand + Tm) +Q qg‘( -Csqs - Tsgrav - szFsext + Ts)
+0.5 q'tl;leqm +05a q.{qu:i + (xm - Xs)T Kpl (*m - Xg) - (Xges - xm)T Kp2 Xm
~ T A

- (RY55 - Retw)' Kot Ketw (52)
Next, using Egs. (17) and (27) and recalling that all gravity forces have been
compensated, Eq. (52) becomes

L= q’rrn{ ‘CQO - J-rrnflr"hand'*' J;rn[Kpm (xs ‘Xm) + Kvm ()'(5 - xm)] }

+ o qg‘{ -Cs qs - T5e Fse_xt + I3 [Kps (Xm - X5) +Kos (Xm - Xs )] + Tred}
+0.5 q'rlr‘leqm +0.5 a qg‘qus + (Xm - xs)T Koi (im - Xs) - (Xdes - xm)T Kp2 Xm

~ T A
- (%28 - Rerw)' Kew Xetw . (53)

Using the matrix relationships [Asada,86;p.1371:

Mn-2Cn=0 (54a)
and

M-2C,=0 (54b)
in Eq. (53) results in
L= ah{- TheFrand + Jm[Kpm (Xs - Xm) + Kvm (Xs - %Xm )] |
+ Qo q’sr{ - T3¢ Foext + Jz[Kps (Xm - Xs) +Kvs (Xm - Xs )] + 1:red}
+ (Xm - XS)T Kp1 (Xm - Xs) - (Xdes - Xm)T Kp2 &m - (ﬁgﬁ‘) - felb)T Kep Xetp - (55)

Let Kpm = o Kps and Ky = a Ky, which means that the slave and master gains

are related by an arbitrary positive constant and that K; = Kpy = 0Ky Using
the definition of the master and slave Jacobians given in Egs. (38) and (41) and

recognizing that X =Jq yields xT=qTJT Eq. (55) can be further simplified to:

L= dn(- JmeFhana) +adl(- 1% Feex +Tred)T
- (%m - %s )T Kum (Xm - Xs ) - (Xdes - Xm)T Kp2 %m - (355 - Retw)’ Keo Ketp . (56)

Examine Eq. (56) under the following cases:

Case 1: Set Fsext = 0. This condition implies that the slave is moving in free
space. Using Eq. (48), Eq. (56) reduces to

L= q; { - J]x;\f [Kphand (xm - xdes) + Kvhand Xm]} +Q qf Tred
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~ Y A
- (Xm - Xs )T Kvm (Xm - Xs ) - (Xqes - xm)T Kp2 Xm - (igfg - xelb) KebXelb . (57)

Set Ky =Kphmd and recall the definition of the master manipulator Jacobian
given in Eq. (38). Eq. (57) reduces to:

" /\de ~ T A
L=- x%l Kvhand Xm - (xs - Xm )T Kvm (xs - Xm ) - (xelg - xelb) Keib Xeip + @ Cst Tred ,
(58)

Set Keip = & Kpsein  and use the definition of Teq from Eq. (28) to reduce Eq. (58)
to

L=- Xm thandxm' (Xs - Xm )T Kvm (Xs-Xm) 'akdamp‘ﬁQS . (59)

Eq. (59) shows that L is negative semi-definite. By LaSalle's Theorem
[Miyazaki,86], asymptotic stability is shown.

Case 2: Set Fsext = Kpgext (xs‘xE)+Kvsext Xs, which is the case when the slave

touches the environment at xg. Augment the Liapunov function in Eq. (46)
with an additional term:

Lo L+0.5xs-xg )T Kp3 (xs-xg) (60)

where Kp3 is a positive definite matrix. With Kpz = Kpnana and  noting  that
xg=0,L is written as

L= q;( - J}.anvhmd"(m +Vv Jmst) - q’.{( J}‘Kmt(xs - XE) + Jls.tKvsa(t xs)
= (xm - Xs )T Kvm (xm - Xs ) + (*s )T Kp3 (xs - XE ) - u‘kdamp QIQS . (61)

Let Kp3 = Kpsext and use the definitions of the master and slave manipulator
Jacobians. Eq. (61) becomes

L = qg;( - ngf thmdxm ) -o q’sr( JgKvse(t Xs ) - (xm - Xs)T Kvm (xm - "‘s) - akdmp ngs (62)
or

L = (- Xf KutaXm ) - & ( XIK g Xs ) - (%m - XoT Ko (%m - X9 - 0 Kamp@ids  (63)

Eq. (63) shows that L is negative semi-definite. Again by LaSalle's Theorem,
asymptotic stability is shown.

Application to the Kraft Master

Hardware. The controller was implemented on the Kraft master
controller, shown schematically in Fig. 2. The Kraft KMC 9100-MC is a
lightweight 6-DOF master arm designed, manufactured, and sold by Kraft
Telerobotics, Inc., of Overland Park, Kansas. Position is measured at each joint
by potentiometers. The first five joints are actuated by ac servomotors for
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Fig. 2 Kinematic diagram and Denavit-Hartenberg table for the Kraft master
manipulator.

force feedback. Wrist roll is not actuated. The Kraft arm is sold with the KMC
9100S electronics interface unit. Kress [Kress,90] has further details.

Implementation. In some ways, this section is the salient feature of
the paper. The control algorithm was programmed in the C language on a
Motorola 68020 with a 68881 floating-point coprocessor. The control algorithm
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was optimized by (1) factoring the Jacobians (see the appendix) so that
common terms were not recalculated and (2) using a special assembly
language routine that simultancously determines the sine and cosine of each

joint angle. When implemented, the master code ran at ~60 Hz, including the
communication overhead.

Torque vs applied signal was measured in the laboratory for each of the five
actuated joints on the Kraft master. A plot of the torque vs applied signal for
each joint of the Kraft manipulator is shown in Fig. 3.
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Fig. 3 Response of Kraft manipulator joints.

Figure 3 shows ~10% deadband in each joint. Some compensation is required to
optimize between good backdrivability and force sensitivity when using a
master with these levels of deadband. For a master having friction that
consists mainly of stiction and coulomb friction, a simple form of
compensation is an offset function, called the preload function (PLF), which is

the inverse of a deadband function [Gelb, 68]. The PLF function is shown in
Fig. 4.



17

signal out ?
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" -d

Fig. 4 Preload function for friction compensation.

An analysis was performed using describing function methods to determine
whether limit cycles would be present when applying the preload function. A
limit cycle is defined to be an initial condition-independent periodic
oscillation occurring in dissipative systems [Gelb,68]. Figure 5 shows a block

diagram of a single joint controller for the master. The following definitions
are helpful:

1. NLF is the nonlinear friction block comprising coulomb friction and
stiction (N-m).

Kp and Kv represent position and velocity gains.
KT is the motor torque constant (N-m/A).

Ji is the load inertia (kg-m2).

Kvf represents viscous damping (N-m/rad/s).
PLF is the preload function (A/rad).

O4s is the desired joint angle (rad).

® N oUW

OL and 6 are the output (load) angle (rad) and angular velocity
(rad/s), respectively.
9. 1/s indicates integration.

Fig. 5 Block diagram of a single master joint.
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Making the assumptions that the filter hypothesis holds and sinusoidal

waveforms are present, set 6L = A sinwt[Gelb,68]. Setting the input and load

torque to zero, the following equations must be satisfied for a limit cycle to
exist:

A(Ky+KTKy)+Annr=0 (64)
and
K KT (A/@)npr=AJL 0 (65)

b

where npr is the describing function for the PLF block and nDairF is the
describing function for the nonlinear friction block. Since Nmr and NarF are
both real positive functions, the only solution to Eqs. (66) and (67) is A = 0 and
O = arbitrary; therefore, a limit cycle will not occur [Gelb,68]. If, however,
there are significant amounts of backlash (not modeled in Fig. 5), then a limit
cycle might occur. This was not true when the controller was implemented on
the Kraft master arm.

The PLF was implemented on the master controller. For most of the
joints, the preload was set to ~10% except for the wrist pitch and yaw. For these
joints, the preload was reduced to ~5% to avoid a chattering at the switching
line between plus and minus preload. The PLF did not introduce any
instabilities, and it improved the force reflection.

Figures 6a and 6b show the high-level block diagrams of both the
master and slave controller, respectively.

MASTER CONTROLLER

Master Manipulator

= Jh [Kom X6 - Xm

Joint Torques
+ Kum (XS - Xm )] to
+ Tngay | Motor Torques
Drive Signal

Control Algorithm

o] O and W |q___|Quaternions Calc. | 2
Calculation Em, €

| Es» Eq)

From SLAVE
rom To SLAVE

Fig. 6a Master Controller
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SLAVE CONTROLLER

T Slave Manipulator
T = Jg [Kps (Xm - X)

1
+Kvs (km"xs)] :
+ Ts grav + Traj I
Drive Signal
| Joint |
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Damping ___* |
Tred |
|
S and W Quatelrplonf ’Calc. [ 3, Y |
| €s,Eg! |
R % {em,’émli +
m
1
m Master
Fro ° To Master

Fig. 6b Slave Controller

The dashed line represents a force/torque signal from the JR3 sensor and will
be discussed in the conclusion. The computational requirements are modest. A

single MC 68020 with a math coprocessor can easily perform the computational
requirements for each controlier.

Discussions Related to the Proposed Controller

Motivation for Using Euler Parameter. It has been shown that
the stiffness controller based on Euler parameters does not introduce artificial
singularity points and that stability is guaranteed, assuming passive models.
The purpose of this section is to motivate the use of Euler parameters to
represent orientation.

Angular positional differences for large displacements are not vector
quantities; therefore, the expression

f Ot - j gt (66)

has no meaning as a vector difference for large positional differences because
components cannot be subtracted, [Asada,86 and Yuan,88]. This is a
fundamental difference between linear Cartesian differences and angular
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differences. Euler parameters provide a means for defining an angular

difference in terms of the 52 vector. If @ is defined as the product of the (3x3)
matrix W of Eq. (44) and ®, then the expression

[cT)mdt- f gt = f (G - o 67

has meaning as a vector difference.

Further, the magnitude (Euclidean norm) of 8:: is proportional to the
sine of the half-angular difference between frames, as can be seen in Egs. (1)

through (3). For -small angular displacements, 8¢ is proportional to the
angular difference between frames, which is the feel an operator desires. As
the angular displacements increase, the sine function will act as a saturation
function, preventing the feedback of excessive forces. Large angular
displacements are possible on systems (most working systems have bandwidths

under 3 Hz.) that have appreciable tracking phase lag between master and
slave.

Gain Selection for the Stiffness Controllers. While both the
master and the slave incorporate a stiffness controller, the requirements are
different for robotic operation. For robotic stiffness control, the interaction
between the environment and the robot arm is specified [An,88]. For
teleoperation, the purpose is to reflect the environmental forces and stiffness
accurately to the human operator. The human operator will vary impedance
according to changes in the slave impedance [Hogan,85]. To achieve this,
the positional gain matrices for both the master and slave, Kpm, and, Kps» are
adjusted so that they are made large but not so large as to produce limit cycles
[Gelb,68].

A dichotomy exists when tuning a stiffness controller for a teleoperator
system. For an ideal teleoperator, the slave joint position should track the
master position and likewise the slave forces on its end-effector should track
the master forces on its end-effector. The mechanical equivalent indicates that
the master and slave should be tightly coupled and there should be zero
compliance between the two (or an infinite stiffness coupling the two). At
steady state, the operator stiffness will be reflected to the slave as shown in Fig.

7, where the operator is simply modeled as passive spring with stiffness Koper.
and the teleoperator stiffness is K,

Koper K —
P p } Ky KOIFI+_RL;

Fig. 7 Operator stiffness reflected to slave.

The equivalent stiffness Keg will in the limit approach Kgoper when K
approaches infinity. Since infinite stiffness is not physically achievable, K,
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should be set to as large a value as possible while avoiding limit cycles.
Compensators can be designed to allow large values of K, while avoiding limit
cycles (details can be found in [Jansen,90]).

Conclusion

This paper has presented a formulation of a controller for a teleoperator
system with dissimilar kinematics and force feedback. The controller is a
stiffness controller for both the master and the slave. A mathematical
problem associated with representing orientations using Euler angles has
been described, and Euler parameters are proposed as an alternative. Euler
parameters are superior to Euler angles not only because they do not introduce
artificial singularities but also because they are a natural representation for
force reflection. The basic properties of Euler parameters have been
presented, specifically those pertaining to stiffness control. The stiffness
controller for both the master and the slave has been formulated using the
Euler parameters to represent orientation. A Liapunov stability proof is
presented for the controller. Asymptotic stability is shown for two cases,
namely, the slave moving in free space and the slave in contact with the
environment.

The master controller is presently implemented on a 6-DOF, force-
reflecting Kraft master manipulator and runs at a loop rate of ~60 Hz. The
stiffness controller has worked well on the Kraft master manipulator. With
the Euler parameter formulation, no artificial singularities are present as with

the Euler angle formulation. Further, the magnitude (Euclidean norm) of 82 is
proportional to the sine of the half angular difference between frames as can

be seen in Egs. (1) through (3). For small angular displacements, 8¢ is
proportional to the angular difference between frames, which is the feel an
operator desires. As the angular displacements increase, the sine function
will act as a saturation function, preventing the feedback of excessive forces.

Force-reflection capability is enhanced by means of a force/torque
sensor on the slave. This signal is sent back to the master after suitable
transformations are made. Unfortunately for large force feedback gains,
instabilities have been observed due to noncolocation of this sensor and
phase-lag between master and slave.

The control algorithm can be extended using the manipulator Jacobian
and artificial potential functions to create artificial walls and surfaces defined
in Cartesian space to restrict operation in "forbidden zones." With proper gain
settings, these surfaces can be given a "repelling” feel such that the operator
must exert a strong force to pass through the surface. Dangerous obstacles
(e.g., avoiding contact with the robot base) can be defined in the master's
Cartesian space such that the operator cannot move the master to a location
that would drive the slave into the obstacle.

Appendix - Kraft Jacobian

The master Jacobian, 3], has been symbolically determined in the third frame
and checked by MACSYMA™ ([Symbolics,85]. Note that the third frame is a
convenient frame in which to formulate the Jacobian because, overall, the
terms are in their simplest form. For example, determining the Jacobian in
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the final (hand) frame would simplify the lower right (3x3) block; however,

the upper left (3x3) block would then be more complicated. Determining the

Jacobian in a frame preceding a spherical wrist seems to produce the simplest
form:

on3(dr5455%) drmayrosds  cgdgdt  s455k sk O
spe3sas5d6d) mtoyaycsseds aatossgls 0 sy O

sJ= sy3(dg-csdp)op3(az+esssds)ormy 0 0 Gss% s45%6 O (AD)
o 0 0 0 S4 455
o3 0 0 1 0 <
0. 1 1 0 €4 5455
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DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.



