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ABSTRACT 

To f a c i l i t a t e  t h e  t a s k  of o b j e c t i v e l y  comparing competing process  

op t ions ,  a  methodology was needed f o r  t h e  q u a n t i t a t i v e  e v a l u a t i o n  of 

t h e i r  r e l a t i v e  c o s t  e f f e c t i v e n e s s .  Such a  methodology h a s  now been 

developed and is  desc r ibed  i n  t h i s  r e p o r t ,  t o g e t h e r  w i t h  t h r e e  examples 

f o r  i t s  a p p l i c a t i o n .  

The c r i t e r i o n  f o r  t h e  e v a l u a t i o n  i s  t h e  c o s t  of t h e  energy pro- 

duced by t h e  system. 

The method permi ts  t h e  e v a l u a t i o n  of competing des ign  op t ions  

f o r  subsystems, based on t h e  d i f f e r e n c e s  i n  c o s t  and e f f i c i e n c y  of t h e  

subsystems, assuming comparable r e l i a b i l i t y  and s e r v i c e  l i f e ,  o r  of 

competing manufactur ing process  op t ions  f o r  such subsystems, which 

inc lude  s o l a r  c e l l s  oi modules. Th i s  process  op t ion  a n a l y s i s  i s  based 

on d i f f e r e n c e s  i n  c o s t ,  y i e l d ,  and conversion e f f i c i e n c y  c o n t r i b u t i o n .  

of t h e  process  s t e p s  cons idered .  
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1. INTRODUCTION 

The manufacturing methods f o r  pho tovo l t a i c  sol .ar  energy u t i l i z a -  

t i o n  systems c o n s i s t ,  i n  complete general it.^, of a  sequence of i n d i v i d u a l  

p rocesses .  This  process  sequence has  been, f o r  convenience, l o g i c a l l y  

segmented i n t o ' f i v e  major "work areas":  Reduction and p u r i f i c a t i o n  of 

t h e  semiconductor m a t e r i a l ,  shee t  o r  f i l m  gene ra t i on ,  dev ice  gene ra t i on ,  

module assembly and encapsula t ion ,  and system completion, i nc lud ing  in- 

s t a l l a t i o n  of t he  a r r a y  and t h e  o t h e r  subsystems. For s i l i c o n  s o l a r  

a r r a y s ,  each work a r e a  has  been d iv ided  i n t o  10  gene ra l i zed  "processes"  i n  

which c e r t a i n  r equ i r ed  mod i f i ca t i ons  of t h e  work-in-process a r e  performed. 

I n  gene ra l ,  more t han  one method i s  known by which such mod i f i ca t i ons  can 

be  c a r r i e d  ou t .  The v a r i o u s  methods f o r  each i n d i v i d u a l  p rocess  a r e  i d e n t i -  

f i e d  a s  process  "options".  This  system of processes  and op t ions  forms a  

two-dimensional a r r a y ,  which i s  he re  c a l l e d  t h e  "process  matr ix" .  

I n  t h e  s ea rch  t o  ach i eve  improved process  sequences f o r  producing 

s i l i c o n  s o l a r  c e l l  modules, numerous op t ions  have been proposed and/or  

developed, and w i l l  s t i l l  be  proposed and developed i n  t h e  f u t u r e .  I t  i s  

a  nea r  n e c e s s i t y  t o  be  a b l e  t o  e v a l u a t e  such p roposa l s  f o r t h e i r  t e c h n i c a l  

m e r i t s  r e l a t i v e  t o  o t h e r  known approaches,  f o r  t h e i r  economic l ~ e n e f i t s ,  and 

f o r  o t h e r  techno-economic a t t r i b u t e s  such a s  energy consumptiod, gene ra t i on  

and d i s p o s a l  of waste  by-products, e t c .  Such e v a l u a t i o n s  have t o  be a s  

o b j e c t i v e  a s  p o s s i b l e  i n  l i g h t  of t h e  a v a i l a b l e  in format ion ,  o r  t h e  l a c k  

t h e r e o f ,  and have t o  be p e r i o d i c a l l y  updated a s  development p rog re s se s  and 

new informat ion  becomes a v a i l a b l e .  S ince  each i n d i v i d u a l  p rocess  o p t i o n  

h a s  t o  f i t  i n t o  a  process  sequence, t e c h n i c a l  i n t e r f a c e s  b e r ~ e e n  consecut ive  
/ 

proces se s  must be  compatible.  Th i s  p l a c e s  emphasis on t h e  s p e c i f i c a t i o n s  



I '  f o r  t h e  work-in-process e n t e r i n g  i n t o  and emanating from a p a r t i c u l a r  

I p r o c e s s  o p t i o n .  

The o b j e c t i v e  of t h i s  p r o j e c t  i s  t o  accumulate  t h e  n e c e s s a r y  in -  

f o r m a t i o n  as i n p u t  f o r  such  e v a l u a t i o n s ,  t o  deve lop  a p p r o p r i a t e  method- 

o l o g i e s  f o r  t h e  performance of such  techno-economic a n a l y s e s ,  and t o  

perform such e v a l u a t i o n s  a t  v a r i o u s  l e v e l s .  

T h i s  r e p o r t  d e s c r i b e s  a  methodology f o r  t h e  o b j e c t i v e  comparati.ve 

e v a l u a t i o n  of competing subsystem d e s i g n  o r  manufac tu r ing  p r o c e s s  o p t i o n s .  

T h e . e v a l u a t i o n  c r i t e r i o n  i s  t h e  c o s t  of t h e  energy  d e l i v e r e d  from t h e  

system. A requ i rement  f o r  t h e  a n a l y s i s  i s ,  t h a t  t h e  subsystems o r  p r o c e s s  

o p t i o n s  t o  be  e v a l u a t e d  a r e  f u n c t i o n a l l y  comparable .  The e v a l u a t i . o n s  a r e  

based on d i f f e r e n c e s  i n  c o s t  and performance ( e f f i c i e n c y )  f o r  t h e  sub- 

sys tem d e s i g n s ,  and on d i f f e r e n c e s  i n  c o s t ,  e f f i c i e n c y  c o n t r i b u t i o n ,  and 

y i e l d  f o r  manufac tu r ing  p r o c e s s  o p t i o n s .  Only r e l a t i v e l y  few, summary 

t y p e  o f  d a t a  a r e  needed f o r  t h e s e  e v a l u a t i o n s .  Examples a r e  t h e  c o s t  of 

t h e  i n p u t  work-in-process,  t h e  combined y i e l d s  of a l l  subsequent  p r o c e s s  

s t e p s ,  t h e  t o t a l  of a l l  area-based c o s t s  e x c e p t  f o r  t h e  subsystem under  

c o n s i d e r a t i o n  (e .g .  t h e  s o l a r  c e l l ) ,  e t c .  S e r v i c e  l i f e ,  a f f e c t i n g  d e p r e c i -  

I 

a t i o n ,  and r e l i a b i l i t y ,  which cou ld  e x p r e s s  i t s e l f  i n  d i f f e r i n g  maintenancc 

c o s t s ,  have been c o n s i d e r e d  c o n s t a n t .  Three  examples of t h e  a p p l i c a t i o n  af 

t h e  methodology a r e  shown, two d e a l i n g  w i t h  subsystem d e s i g n  v a r i a t i o n s .  

The f i r s t  o f  t h e s e  i n v o l v e s  a  v a r i a t i o n  i n  s o l a r  c e l l  e f f i c i e n c y ,  t h e  

second v a r i a t i o n s  i n  b o t h  s o l a r  c e l l  e f f i c i e n c y  and module pack ing  f a c t o r .  

The t h i r d  example shows a  comparison of a  5 - s tep  p r o c e s s  of pn- junc t ion  and 

BSF l a y e r  f o r m a t i o n  by d i f f u s i o n  w i t h  a  2-s tep p r o c e s s  of i o n - i m p l a n t a t i o n  

accompl i sh ing  the  same change i n  t h e  work-in-process.  

v i i  



2. Technical Discussion 

Methodology 

for Energy-Cost Effectiveness Evaluation 

of Subsystem Design and Manufacturing Process Options 

for Photovoltaic Solar Power Systems 
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I n t r o d u c t i o n .  

One of t h e  i m p o r t a n t  a t t r i b u t e s  o f  a p h o t o v o l t a i c  s o l a r  energy c o n v e r s i o n  

sys tem i s  i t s  economic v i a b i l i t y .  The e v a l u a t i o n  of t h i s  a t t r i b u t e  is  r e g u l a r l y  

I1 performed i n  d e c i s i o n  making abou t  t h e  u s e  o f  such  a  sys tem i n  a  p a r t i c u l a r  

a p p l i c a t i o n , a s  w e l l  a s  i n  comparing t h e  m e r i t s  o f  one  p a r t i c u l a r  sys tem d e s i g n  

I o r  s o l a r  c e l l  p r o d u c t i o n  p r o c e s s  a g a i n s t  a n o t h e r .  The key a s p e c t  i n  such  an 

e v a l u a t i o n  is  t h e  compar ison of  t h e  c o s t  of  e l e c t r i c a l  ene rgy  produced by t h e  

p h o t o v o l t a i c  sys tem w i t h  t h e  c o s t  of  c o m p e t i t i v e l y  a v a i l a b l e  e l e c t r i c a l  energy.  

The u n i t  c o s t  c  of  t h e  e l e c t r i c a l  energy d e l i v e r e d  from t h e  p h o t o v o l t a i c  
En 

sys tem can  b e  e x p r e s s e d ,  f o l l o w i n g  r e f .  ( 1 ) .  a s :  

-1 
where C a r e  t h e  a n n u a l  o p e r a t i n g  c o s t s  [ $  y  1, C is  t h e  c a p i t a l  s p e n t  

0 P  c a p  

i n  a c q u i r i n g  t h e  sys tem [ $ I  and Y i s  t h e  e q u i v a l e n t  a n n u a l  c o s t  of  c a p i t a l  
c a p  

- 1 [ y  1 .  T h i s  e q u i v a l e n t  a n n u a l  c o s t  of  c a p i t a l  may, o u t s i d e  of  t h e  u s u a l  com- 

I ponen t s  of  i n t e r e s t ,  t a x e s ,  d e p r e c i a t i o n ,  e t c . ,  i n c l u d e  such  c o n s i d e r a t i o n s  a s  

d e s i r e d  p r o f i t ,  p r e s e n t  o r  d i s c o u n t e d  v a l u e  of l i f e  c y c l e  c o s t s ,  i n f l a t i o n  ad- 

j u s t m e n t s ,  e t c .  A s  t h e  " f u e l "  i n  a  s o l a r  energy u t i l i z a t i o n  sys tem i s  " f ree" ,  

t h e  o p e r a t i n g  c o s t s  a r e  e s s e n t i a l l y  reduced t o  t h e  maintenance c o s t s ,  a t  l e a s t .  

f o r  t h e  s m a l l e r  d i s t r i b u t e d  systems. And s i n c e  i t  i s  g e n e r a l l y  assumed, i n  t h e  

absence  o f  i n f o r m a t i o n  t o  t h e  c o n t r a r y ,  t h a t  t h e  sys tems  w i l l  b e  d e s i g n e d  and 

b u i l t  f o r  h i g h  r e l i a b i l i t y  and t h u s  r e q u i r e  l i t t l e  maintenance,  t h e  main tenance  

c o s t s  a r e  u s u a l l y  n e g l e c t e d  i n  comparison t o  t h e  c o s t s  of  t h e  c a p i t a l .  
E ~ d  is 

t h e  e l e c t r i c a l  ene rgy  u s e f u l l y  d e l i v e r e d  d u r i n g  a y e a r  f r o n  t h e  p h o t o v o l t a i c  

sys tem t o  t h e  l o a d .  



L - d - -C.C?l = 
En 'cap ELd 'cap r ;  [$kwh-'] 

C 

AC =a. ~ y c a p  
En E ~ d  

As 'cap 
i s  a  c o n s t a n t  f o r  a  p a r t i c u l a r  company a t - a  g iven  t ime ,  b u t  w i l l  

d i f f e r  from company t o  company, t h e  sys tem dependent  energy c o s t  d e t e r m i n a t o r  

i s  r e a l l y  t h e  q u a n t i t y :  . 

C 
r = ; I S  kwh-' y l  

'. ELd 
( 3 )  

which i s  t h e  r a t i o  o f  t h e  r e q u i r e d  inves tment  t o  t h e  energy d e l i v e r e d  p e r  y e a r .  

The e v a l u a t i o n  and o p t i m i z a t i o n  of t h i s  q u a n t i t y  i s  t h e r e f o r e  of pr imary i n t e r e s t .  

The Energy Del ive red  t o  t h e  Load. 

The energy ELd d e l i v e r e d  d u r i n g  t h e  y e a r  t o  t h e  load  is  c l e a r l y  r e l a t e d  

t o ,  a l t h o u g h  d i f f e r e n t  f rom,  t h e  energy E  d e l i v e r e d  by. t h e  p h o t o v o l t a i c  a r r a y  
0 

i t s e l f  t o  t h e  remainder  of t h e  sys tem.  For a  p h o t o v o l t a i c  a r r a y  of t o t a l  

2 
exposed a r e a  AA{m 1, E is g i v e n  by: 

0 

where nAr ( H ( t ) ,  T ( t ) )  i s  t h e  e f f e c t i v e  a r r a y  e f f i c i e n c y  i n  t h e  t ime  i n t e r v a l  

d t  around t i m e  t ,  w i t h  qA, b e i n g  dependent  on t h e  t e m p e r a t u r e  ~ ( t )  of t h e  a r r a y  

-2 
and on  t h e  i r r a d i a n c e  H ( t )  [kW m ] d u r i n g  t h a t  t i m e  i n t e r v a l ,  a s  w e l l  a s  on 

t h e  v a r y i n g  s p e c t r a l  d i s t r i b u t i o n  and t h e  a n g l e  of i n c i d e n c e  of t h e  l i g h t .  @ ( t )  

i s  a  f a c t o r  of magnitude between z e r o  and one ,  which d e s c r i b e s  whe ther ,  o r  

how much, energy  c a n  be d e l i v e r e d  by an  a r r a y  f o r  t r a n s f e r  t o  t h e  l o a d  o r  t o  

s t o r a g e ,  depending on t h e  e x i s t e n c e  of load  and on t h e  s t a t u s  of t h e  s t o r a g e  

sys tem d u r i n g  t h e  r e s p e c t i v e  t i m e  i n t e r v a l .  Eq. (41,  be ing  a  d e f i n i t e  I n t e g r a l ,  

can  be  expressed  a s :  



- 
Eo 

- rl 
' ~ r ~ ~ k  A r ,  s t d  Ld 8760; [ k ~ h * ~ - l ]  

f o l l o w i n g  t h e  custom of  r e f e r r i n g  t h e  o u t p u t  t o  "nameplate  r a t i n g " ,  o r  peak 

power o u t p u t  c a p a b i l i t y ,  which i s ,  f o r  t h e  s o l a r  a r r a y ,  e x p r e s s e d  by t h e  

p r o d u c t  of  t h e  expec ted  peak i r r a d i a n c e  H and t h e  a r r a y  e f f i c i e n c y  0 
pk A r ,  s t d  

measured under  s t andar 'd ized  c o n d i t i o n s  ( i n c l u d i n g  t h e  peak i r r a d i a n c e  H 
pk) 

The c o n n e c t i o n  t o  eq. (ft) i s  made v i a  t h e  " load f a c t o r "  fLd which is  t h e  r a t i o  o f  t h e  

o u t p u t  a c t u a l l y  d e l i v e r e d  d u r i n g  t h e  y e a r  t o  t h e  "nameplate  r a t i n g . "  fLd i s  

u s u a l l y  de te rmined  from t h e  r e s u l t s  of  a  sys tem s i m u l a t i o n  computer r u n  f o r  

a  one-year p e r i o d ,  which i n c l u d e s  t h e  s o l a r  energy a v a i l a b i l i t y  s t a t i s t i c s  - 
, . 

normal ly  wea the r  bureau d a t a  f o r  a  s e l e c t e d  y e a r  - and t h e  expec ted  l o a d  

s t a t i s t i c s ,  I d e a l  would b e  a  s i m u l a t i o n  run o v e r  t h e  sys tem l i f e  t o  d e t e r m i n e  

a n  f  
M 

v a l u e  which r e p r e s e n t s  t h e  a v e r a g e  o v e r  t h e  sys tem l i f e .  However, 

forward l o o k i n g  s o l a r  ene rgy  a v a i l a b i l i t y  d a t a  do n o t  e x i s t ,  and even forward 

l o o k i n g  l o a d  s t a t i s t i c s  w i l l  be  of  d o u b t f u l . v a l i d i t y .  A compromise cou ld  b e  

a backward l o o k i n g  s i m u l a t i o n  o v e r  a  p e r i o d  e q u a l  i n  d u r a t i o n  t o  t h e  sys tem 

l i f e ,  u s i n g  r e a l  d a t a .  The l i m i t e d  g a i n  i n  c o n f i d e n c e ,  however, g e n e r a l l y  d o e s  

n o t  j u s r i f y  t h e  a d d i t i o n a l  expense .  A one-year run i s  u s i ~ a l l y  f e l t  n e c e s s a r y  

t o  p r o p e r l y  i n c l u d e  t h e  s e a s o n a l  changes  and t h e  s h o r t  term m e t e o r o l o g i c a l  

v a r i a t i o n s ,  

The t o t a l  number o f  h o u r s  i n  t h e  y e a r  (8760 h ) ,  

m u l t i p l i e d  by t h e  load  , f a c t o r  f  r e p r e s e n t  .?n " e q u i v a l e n t  t ime" t d u r i n g  
Ld eq 

which t h e  a r r a y  could  have  o p e r a t e d  a t  peak power c a p a b i l i t y  t o  produce t h e  

same amount of  energy a s  a c t u a l l y  d e l i v e r e d .  I t  i s  a d d i t i o n a l l y  u s e f u l  t o  

d e f i n e  t h e  q u a n t i t y  p t h e  peak. power o u t p u t  c a p a b i l i t y  p e r  u n i t  a r e a  of  t h e  
pk' 

a r r a y ,  which is  s imply : 



The e n e r g y  E d e l i v e r e d  from t h e  a r r a y  d i r e c t l y  t o  t h e  l o a d  w i l l  
L d , d i r  

g e n e r a l l y  b e  less t h a n  E b e i n g  r e d u c e d  by t h e  power c o n d i t i o n i n g  s u b s y s t e m  
0 ' 

e f f i c i e n c y  n and by  t h e  f r a c t i o n  f  of  t h e  a n n u a l  a r r a y  o u t p u t  which  i s ,  
PC' S t  

i n  t h e  a v e r a g e ,  t r a n s f e r r e d  i n t o  t h e  s t o r a g e  s u b s y s t e m  : 

- 1 
E ~ d ,  d i r  = E~ ( 1  - f S t )  - npC; Ikwh-y I ,  (7 ) 

I n  a d d i t i o n ,  t h e  e n e r g y  E i s  d e l i v e r e d  f rom t h e  s t o r a g e  s u b s y s t e m ,  t o  t h e  
L d , S t  

l o a d  : 

where  nSt  is  t h e  e f f i c i e n c y  o f  t h e  s t o r a g e  subsys t em.  
. . 

I n  t h e  r e l a t i o n s h i p  o f  e q .  ( 7 ) ,  t h e  a s s u m p t i o n  i s  made t h a t  a l l  power c o n d i t i o u i n r  

o c c u r s  a f t e r  s t o r a g e .  O t h e r w i s e ,  t h e  e f f i c i e n c y  would h a v e  t o  b e  b r o k e n  i n t o  
. . FC 

s e v e r a l  terms. 

Summing e q .  ( 7 )  and (8)  y i e l d s  t h e n  t h e  t o t a l  e n e r g y  E  d e l i v e r e d  t o  t h e  l o a d :  Ld 

The e x p r e s s i o n  i n  t h e  b r a c k e t s ,  which  is  a f u n c t i o n  o f  t h e  l o a d  c u r v e  r e l a t i v e  

. t o  t h e  s o l a r  e n e r g y  a v a i l a b i l i t y  c u r v e ,  as w e l l  as o f  s y s t e m  d e s i g n ,  i n c l .  t y p e  

and  c a p a c i t y  o f  t h e  s t o r a g e  d e v i c e ,  c o u l d  b e  r e p r e s e n t e d  by a " s t o r a g e  t r a n s f e r  

f a c t o r "  T s o  t h a t  eq. (9 )  c a n  b e  w r i t t e n  as :  
S t '  

I t  h a s  t o  b e  n o t e d  t h a t  t h e  l o a d  f a c t o r  f  
Ld ' i n c l u d e d  i n  E i s  a l s o  d e p e n d e n t  

0 ' 
o n  t h e  same v a r i a b l e s  as T and g e n e r a l l y  i n c r e a s e s  w i t h  i n c r e a s i n g  f  and 

S t '  S t  



The sys tem power d e l i v e r y  c a p a b i l i t y  P which i s  u s u a l l y  l i m i t e d  by t h e  
s Y 

power c o n d i t i o n i n g  subsys tem a n d / o r  t h e  s t o r a g e  subsystem c a p a c i t i e s ,  can  b e  

r e l a t e d  th rough  t h e  f a c t o r  f  t o  t h e  a r r a y  peak power c a p a b i l i t y :  
Po 

The f a c t o r  f  may b e  s m a l l e r  o r  g r e a t e r  than  u n i t y .  
Po 

The s t o r a g e  subsystem c a p a c i t y  can  i l l u s t r a t i v e l y  b e  expressed  by t h e  

I t  e q u i v a l e n t  s t o r a g e  t ime" 
t ~ t  

which i s  t h e  t ime  i n t e r v a l  f o r  which t h e  s t o r a g e  

d e v i c e ,  when o r i g i n a l l y  f u l l y  charged ,  cou ld  p r o v i d e  energy a t  t h e  peak sys tem 

power d e l i v e r y  r a t e ,  u n t i l  d i s c h a r g e d  t o  a  p rede te rmined  minimum c h a r g e  s t a t e :  

E v a l u a t i o n  of t h e  Energy-Cost E f f e c t i v e n e s s  of Competing Subsystem Opt ions .  

The e n t i r e  p h o t o v o l t a i c  s o l a r  energy c o n v e r s i o n  sys tem i s  composed of  a  

network of  subsys tems ,  b a s i c a l l y  connected i n  s e r i c s  a c c o r d i n g  t o  t h e  energy  

f low,  a s  i n d i c a t e d  i n  F i g .  1. The i n d i v i d u a l  subsys tems  may be  d e f i n e d  i n  

any way which f a c i l i t a t e s  t h e  sys tem a n a l y s i s  o r  t h e  c o s t  d e t e r m i n a t i o n .  Thus, 

a f o u n d a t i o n  f o r  t h e  s o l a r  a r r a y  may be  c o n s i d e r e d  a  subsystem,  as a  c . i r c u i t  

b r e a k e r  f o r  sys tem p r o t e c t i o n ,  o r  a  b a t t e r y  f o r  ene rgy  s t o r a g e  may be .  C l e a r l y ,  

t h e  e n t i r e  sys tem c o s t  i s  t h e  sum of  a l l  t h e  i n d i v i d u a l  subsystem c o s t s  C ' i ' 
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and t h e  sys tem performance is  a  f u n c t i o n  of  t h e  performance of a l l  t h e  sub- 

sys tems .  F r e q u e n t l y ,  some subsystems a r e  n o t  d i r e c t l y  i n  t h e  l i n e  of  ene rgy  

f low,  a s  i n d i c a t e d  i n  F i g .  1 by subsys tems  3 .1  t o  3.14. For  a n  e v a l u a t i o n  as 

d i s c u s s e d  h e r e ,  i t  i s  b e s t  t o  combine t h e s e  i n t o  a  "subsystem group" which,  a s  

a whnle,  i s  i n  t h e  l i n e  of  ene rgy  flow. The c o s t  o f  t h e  subsystem group is  

t h e n  t h e  sum of  t h e  c o s t s  of  t h e  subsystems w i t h i n  t h e  group.  The e v a l u a t i o n  

of  t h e  c o s t  e f f e c t i v e n e s s  of a n  i n d i v i d u a l  subsys tem of t h e  group c a n  b e  per-  

formed by expans ion  of t h e  methodology o u t - l i n e d ' h e r e .  

I n  g e n e r a l ,  b o t h  c o s t  a n d - p e r f o r m a n c e  of  a  subsystem a r e  t h e  r e s u l t  

of  a n  e n g i n e e r i n g  d e s i g n  r rade-of f  i n  which t h e  performance c h a r a c t e r i s t i c s  

o f  a v a i l a b l e  d e v i c e s  and t h e i r  commercial  p r i c e s  a r e  c o n s i d e r e d ,  a s  w e l l  a s  

t!~e subsystem complex i ty  av< assembly c o s t .  I t  i s  t h e  purpose  of  t h i s  s e c t i o n  

t o  o u t l i n e  a methodology f o r  a s s e s s i n g  t h e  c o s t  e f f e c t i v e n e s s  of  such  t r a d e -  

o f f s  from t h e  v i e w p o i n t  of  t h e  c o s t  o f  t h e  energy  produced by t h e  sys tem.  

S i n c e  t h e  e n t i r e  sys tem (F ig .  1 )  c a n  b e  viewed a s  a s e r i e s  c o n n e c t i o n  

o f  s u b s y s t ~ m s  i o r  g roups  of s u b s y s t e m s , i t s  e f f i c i thncy  c a n  be  e x p r e s s e d  a s  

t h e  p roduc t  of t h e  e f f i c i e n c i e s  r l i  of  t h e  i n d i v i d u a l  subsys tems  o r  g roups  o f  

subsys tems :  



l c e p r e s e n t a t i o n  (13) i s  a  ~ z n e r a l i z a t i o n  t o  t h e  subsystem l e v e l  of t h e  ex- 

p r e s s i o n  c o n t a i n e d  i n  eq .  (9a )  where t h e  n v i  i n c l u d e  a l l  t h e  c o n t r i b u t i o n s  
. . 

c o n t a i n e d  i n  t h e  e f f i c i e n c i e s  n 
~ r , s t d '  %CC' 

and i n  t h e  quas i -e f  f i c i e n c i e s  

T and f  
Ld ' 

I n  t h e  second v e r s i o n  (eq .  Q 3 a ) ) ,  t h e  0  f a c t o r s  c o n t a i n  a l l  
S t  i 

t h e  d i r e c t  e f f i c i e n c y - l i k e  i n f l u e n c e s  of  each of  t h e  subsys tems ,  w h i l e  a l l  

i n d i r e c t ,  o r  second-order  i ~ , f l u e n c e s  a r e  r e l e g a t e d  L:-) t h e  "reduced l o a d  

f a c t o r "  
'Ld. 

The a p p l i c a t i o n  and p r a c t i c a l i t y  of t h i s  approach w i l l  b e  

r ecogn ized  l a t e r  i n  t h i s  ;laper. 
. , 

These subsystem e f f i c i e n c i e s  have a n  impact on t h e  d imens ion ing  of  t h e  

i n d i v i d u a l  subsys tems ,  and c o n s e q u e n t l y  on t h e i r  c o s t s ,  s i n c e  t h e  sys tem h a s  

t o  b e  d e s i g n e d  t o  s a t i s f y  a  g i v e n  l o a d  by s u p p l y i n g  a  c e r t a i n  E ~ d '  Thus, sub- 

sys tems  p l a c e d  n e a r e r  t h e  b e g i n n i n g  of  t h e  s e r i e s  connec ted  subsys tem c h a i n  

have t o  b e  dimensioned r e l a t i v e l y  l a r g e r  t o  a c c o u n t  f o r  t h e  l o s s e s  o f  s u b s e q u e n t  

subsystems.  T h i s  p r i n c i p l e  i s  r e c o g n i z a b l e  i.n eq .  (9a )  where t h e  a r r a y  o u t p u t  

E i s  l a r g e r  by t h e  i n v e r s e  o f  ' t l ie  p roduc t  fpC T S ~  than  tl:e erieryy ELd which 
0 

. . 
is  d e l i v e r e d  t o  t h e  l o a d .  

The d i v i s i o n  i n t o  subsystems can  be  p r a c t i c a l l y  pursued t o  t h e  s m a l l e s t ,  

s e p a r a t e l y  i d e n t i f i a b l e ,  f u n c t i o n a l  u r i t s  w i t i .  t!lei.r i n d i v i d u a l  e f f i c i e n c i e s .  

Th i s  s h a l l  b e  i l l u s t r a t e d  by example of t h e  p h o t o v o l t a i c  a r r a y ,  w i t h  i t s  

a r r a y  e f f i c i e n c y  which is  f r e q u e n t l y  c o n s i d e r e d  a s  composed of 
' I A ~ ,  s t d ,  

11 s u b a r r a y s "  which a r e  made up of  "modules". The module c o n t a i n s  a  group of  

- 
s o l a r  c e l l s  ( a  subsystem) which have a n  a v e r a g e  e f f i c i e n c y  

" ~ e ,  s t d *  I n  

s e r i e s / p a r a l l e l  c o n n e c t i n ?  t h e s e  c e l l s  of  s l i g h t l y  d i f f e r i n g  c h a r a c t e r i s t i c s  

i n t o  a  "matrix" ( a  s u b s y s t e n ) ,  a  s m a l l  l o s s  i n  p o t e n t i a l  power o u t p u t  i s  

i n c u r r e d ,  expressed  i n  t h e  " m a t r i x i n g  e f f i c i e n c y "  
'tqa 

The i n t e r c o n n e c t  

w i r i n g  i n  t h i s  m a t r i x  i s  a n o t h e r  s e p a r a t e l y  i d e n t i f i a b l e  subsystem w i t h  i ts  



J o u l e  l o s s e s ,  which a r e  accounted f o r  i n  t h e  "wir ing e f f i c i e n c y "  %i 
The 

e n c a p s u l a t i o n  forms two f u n c t i o n a l  subsystems.  ' T h e  f i r s t  i s  t h e  window, in-  

c l u d i n g  a d h e s i v e  o r  p o t t a n t ,  w i t h  i t s . o p t i c a 1  t r a n s m i s s i o n  l o s s e s ,  l e a d i n g  

t o  t h e  e n c a p s u l a t i o n  e f f i c i e n c y  
'IE*'' 

The second performance i n f l u e n c i n g  

a t t r i b u t e  o f  t h e  e n c a p s u l a t i o n  i s  t h e  h e a t  t r a n s f e r  t o  t h e  environment which 

d e t e r m i n e s  t h e  o p e r a t i n g  t e m p e r a t u r e  of t h e  a r r a y  which c o n t r o l s  t h e  i n s t a n t a n e o u s  

o p e r a t i n g  e f f i c i e n c y  of t h e  module. T h i s  e f f e c t  produces  an  "average annua l  

c o o l i n g  e f f e c t i v e n e s s  f a c t o r "  fCo ,  a  q u a s i - e f f i c i e n c y  w h i c h u s u a l l y  i s  i n c l u d e d i n t h e  

l o a d  f a c t o r  f  
Ld ' 

A t  t h e  s u b a r r a y  ( s u b s c r i p t  SA) and t h e  a r r a y  ( s u b s c r i p t  Ar) 

l e v e l s ,  m a t r i x i n g  and w i r i n g  l o s s e s  a r e  a g a i n  i n c u r r e d ,  s o  t h a t  t h e  c e l l  energy 

o u t p u t  w i l l  have t o  b e :  

The i n s t a l l a t i o n  o f  t h e  s u b a r r a y s  forms a n o t h e r  subsystem which i n f l u e n c e s  

sys tem performance twofold:  through t h e  s u b a r r a y  o r i e n t a t i o n ,  which may i n c l u d e  

one-or-two-dimensional t r a c k i n g ,  and through t h e  c o o l i n g  e f f e c t i v e n e s s .  Both 

of t h e s e  a t t r i b u t e s  form quasi - .ef  f  i c i e n c y  : fac to rs  which a r e  p a r t  o f  t h e  l o a d  

f a c t o r  f 
Ld ' 

S i n c e  t h e  o r i e n t a t i o n l t r a c k i n g  e f f e c t  is  a  d i r e c t  i n f l u e n c e  which can ,  

under  e x c l u s i o n  of v a r i a b l e  a tmospher ic  e f f e c t s ,  b e  a n a l y t i c a l l y  e v a l u a t e d ,  i t  

can  b e  b e n e f i c i a l  t o  e l i m i n a t e  t h i s  performance f a c t o r  from t h e  ( reduced)  l o a d  

f a c t o r  and a t t a c h  i t  as an  e f f i c i e n c y  f a c t o r  t o  t h e  i n s t a l l a t i o n  ( o r  t r a c k i n g )  

subsystem.  

Formal ly  a p p l y i n g  t h e s e  p r i n c i p l e s  by combining eq. (5), ( 9 a ) ,  and (13), 

y i e l d s  a n  e x p r e s s i o n  f o r  t h e  energy d e l i v e r e d  t o  t h e  l o a d ,  ELd, i n  terms of t h e  

subsys tem e f f i c i e n c i e s  and q u a s i - e f f i c i e n c i e s  q ' :  
i 



I n t r o d u c i n g  t h i s  e x p r e s s i o n  t o g e t h e r  w i t h  eq. ( 1 2 )  i n t o  eq. ( 3 )  g i v e s  t h e  

e n e r g y  c o s t  d e t e r m i n a t o r  r i n  t e r m s  o f  s u b s y s t e m  c o s t  and p e r f o r m a n c e  d a t a ,  and 

c o n s t a n t s ,  o n l y :  

F o l l o w i n g  t h e  approac l l  u sed  by R e d f i e l d  i n  h i s  " c o s t l ~ a t t  o p t i m i z a t i o n "  

(2) ,  t h e  p a r a m e t e r s  o f  a  s i n p l e  subsystem o r  s u b s y s t e m  g roup  k o f  i n t e r e s t  can 

h e  i s o l a t e d .  i n  e q .  (16 )  : 

- . 
o r :  



The e x p r e s s i o n s  Z and s t a n d  f o r  t h e  sum o r  p r o d u c t ,  r e s p e c t i v e l y ,  
i # k  i # k  

o v e r  a l l  v a l u e s  of i from 1 t o  N ,  e x c e p t  f o r  t h e  v a l u e  k. T h i s  form o f  r 

p e r m i t s  t h e  e v a l u a t i o n  of  v a r i o u s  d e s i g n  o p t i o n s  f o r  t h e  same subsystem,  o r  

group o f  subsys tems ,  w i t h  d i f f e r i n g  c o s t s  and e f f i c i e n c i e s ,  w i t h  r e s p e c t  t o  

t h e i r  i n f l u e n c e  on t h e  c o s t  o f  t h e  energy produced.  Such arl e v a l u a t i o n  i s  

p a r t i c u l a r l y  s i m p l e ,  i f  o n l y  C and vk a r e  v a r i a b l e s  o f  t h e  d e s i g n  o p t i o n s .  
k  

Then, a f i r s t  o r d e r  Tay lo r  expans ion  y i e l d s :  

I 
i # k  

I 

A r = B 0  i %- - , 2  
[ $kwh-lyl (18) 

'lk 

where  ACk and A n '  a r e  - p o s i t i v e  o r  n e g a t i v e  - d i f f e r e n c e s  a g a i n s t  t h e  b a s e  
k 

c a s e  i n  subsystem c o s t  and e f f i c i e n c y ,  r e s p e c t i v e l y ,  which r e s u l t  from t h e  

change i n  d e s i g n  of subsystem k. The c o n s t a n t  B i n  eq. (18)  i s  t h e  p r o d u c t  of 

t h e  f i r s t  two of t h e  t h r e e  terms on t h e  r i g h t  hand s i d e  o f  eq. (17a) .  A n e g a t i v e  

Ar i n d i c a t e s  a  r e d u c t i o n  i n  energy c o s t ,  and consec lumt ly  a  d e s i g n  improvement. 

I t  i s  r e a d i l y  a p p a r e n t  from eq.  (18)  t h a t  c o s t  r e d u c t i o n s  and e f f i c i e n c y  d e c r e a s e s  

c o u n t e r a c t  each o t h e r .  

The c o n d i t i o n  imposed f o r  t h e  d e r i v a t i o n  of eq .  ( 1 8 ) ,  t h a t  o n l y  Ck and n t k  

a r e  v a r i a b l e s  of t h e  d e s i c n  o p t i o n s ,  i s  i n  a p p a r e n t  c o n f l i c t  w i t h  s e v e r a l  s t a t e -  

ments made i n  t h e  precec'.i.q d i s c u s s i o n .  Thus, t h e  !.oc?d f a c t o r  can  b e  a f f e c t e d .  

by changes  i n  t h e  sys tem e f f i c i e n c y ,  p a r t i c u l a r l y  by changes  i n  t h e ' s t o r a g e  

t r a n s f e r  f a c t o r  T To make t h e  e v a l u a t i o n s  tractable, i t  is  p r a c t i c a l  t o  s t '  
I 

p roceed  i t e r a t i v e l y  by c o n s i d e r i n g  t h e  reduced l o a d  f a c t o r  f  a s  t e m p o r a r i l y  Ld 

c o n s t a n t  and r e - e v a l u a t i n g  i t  o n l y  a f . t e r  s e v e r a l  changes  i n  t h e  e f f i c i e n c i e s .  

T h i s  p r o c e d u r e  i l l u m i n a t e s  t h e  need f o r  t h e  d e f i n i t i o n  of  a  "reduced l o a d  f a c t o r "  



f l d  a c c o r d i n g  t o  eq.  (13a: which c o n t a i n s  o n l y  second o r d e r  e f f e c t s  o f  t h e  

e f f i c i e n c i e s  and q u a s i - e f f i c i e n c i e s .  The i t e r a t i o n  i s  f r e q u e n t l y  speeded 

by r e i n f o r c i n g  p r o p e r t i e s  of t h e  second o r d e r  e f f e c t s .  For i n s t a n c e ,  e f f i c i e n c y  

improvements t e n d ,  a t  cons  t.an t E t o  r e s u l t  i n  j.rtc-ceased l o a d  f a c t o r s .  
Ld ' 

The c o n d i t i o n  f o r  t h e  v a l i d i t y  of eq.  (18) f u r t h e r  r e q u i r e s  t h a t  C k 

and nk a r e  independen t  of t h e  d e s i g n s  of  t h e  o t h e r  subsys tems ,  and p a r t i c u l a r l y  

t h a t  t h e  d e s i g n  c h o i c e  of  subsystem k d o e s  n o t  i n f l u e n c e  c o s t s  and e f f i c i e n c i e s  

of t h e  remain ing  subsystems.  T h i s  c o n d i t i o n  can ,  i n  p r i n c i p l e ,  a lways  b e  

f u l f i l l e d  by j u d i c i o u s  c h o i c e  of  t h e  d e s i g n a t i o n  "subsystem k", s o  t h a t  i n t e r -  

dep,endent p a r t s  o f  t h e  sys tem a r e  i n c l u d e d  i n  t h e  same subsystem.  

A c'hange i n .  t h e  e f f i c i e n c y  of  one  subsys.tem a f f e c t s ,  however, t h e  sys tem 

a s  a  whole. While t h e  r e s u l t i n g  change i n  o u t p u t  energy E i s  a p p r o p r i a t e l y  
Ld 

accoun ted  f o r  i n  r , one o r  more of t h e  subsys tems  s u b s e q u e n t  t o  t h e  changed 

subsystem i n  t h e  c h a i n  may now b e  over-  o r  underdirnensioned,  and t h e  1oad.may 

no l o n g e r  b e  s u p p l i e d  a s  d e s i r e d .  Th i s  problem r e q u i r e s  c o n s i d e r i n g  t h e  sys tem 

o f  c o n c e r n  i n  somewhat more d e t a i l .  

The m a j o r i t y  of  t h e  f u n c t i o n a l  subsystems of  a  p h o t o v o l t a i c  s o l a r  energy 

c o n v e r s i o n  sys tem a r e  b a s i c a l l y  modular and t h u s  e s s e n t i a l l y  w i t h o u t  economics 

of  s c a l e ,  a t  l e a s t  w i t h i n  t h e  range  o f  concern  i n  a n  i n d i v i d u a l  d e s i g n  t r a d e -  

o f f  s t u d y .  The c o s t s  of  t h e s e  subsystems can  t h e r e f o r e  b e  e x p r e s s e d  as a  u n i t  

c o s t  t i m e s  a  q u a n t i t y  f a c t o r .  Such q u a n t i t y  f a c t o r s  a r e  t h e  a r r a y  a r e a  A 
A r  ' 

t h e  power h a n d l i n g  c a p a c i t y  P o f  some subsys tems ,  a n d ,  f o r  some energy s t o r a g e  

r e l a t e d  subsys tems ,  t h e  energy c a p a c i t y  E. G e n e r a l i z i n g  t h e  u s a g e  i n  r e f  ( 1 )  

and ( 2 ) ,  t h e  sys tem c o s t  can  t h e n  b e  expressed  a s :  



The area-based u n i t  c o s t s  C a p p l y  t o  t h e  a r r a y  r e l a t e d  subsys tems ,  in-  
AYk 

c l u d i n g  i t s  i n s t a l l a t i o n  and l a n d  c o s t s .  The power-based u n i t  c o s t s  c  
PYR 

a r e  connec ted  w i t h  t h e  power c o n d i t i o n i n g  and o t h e r  power h a n d l i n g  equipment ,  

a l t h o u g h  a p a r t  of  t h e  c o s t s  of t h e  energy s t o r a g e  subsys tems  can  a l s o  b e  

p r o p o r t i o n a l  t o  power, f o r  i n s t a n c e  th rough  t h e  c h a r g e  o r  d i s c h a r g e  r a t e s .  

The energy-based u n i t  c o s t s  c a r e  c o n c e n t r a t e d  i n  t h e  s t o r a ~ e  subsystem. 
E,m 

The remain ing  c o s t s ,  i n c l u d i n g  t h e  s y s t e m - s t a t u s  senso ' r s  and t h e  c o n t r o l  l o g i c ,  

r e p r e s e n t  t h e  " f ixed"  c o s t s ,  C ~ , n *  

Using t h i s  e x p r e s s i o n  (19) f o r  t h e  c a p i t a l  c o s t s  i n  t h e  energy c o s t  

d e t e r m i n a t o r  eq.  ( 1 6 ) ,  and s i m u l t a n e o u s l y  e x t r a c t i n g  tile i t e r a t i v e l y  c o n s t a n t  

reduced l o a d  f a c t o r  f  ' from t h e  e f f i c i e n c y  p roduc t  1'1 rli, y i e l d s  t h e  form: 
~ d  ' i 

It  w i l l  b e  observed t h a t ,  i n  g e n e r a l ,  f o r  e v e r y  i n d e x  i i n  t h e  sum, 

o n l y  one  o f  t h e  u n i t  c o s t  f a c t o r s  c  c 
A , i Y  P , i Y  '~ , i '  o r  C w i l l  b e  unequal  

F , i  

t o  z e r o .  An e x c e p t i o n  t o  t h i s  r u l e  is known t o  e x i s t  i n  c e r t a i n  advanced 

s t o r a g e  b a t t e r i e s  whose p r i c e  i s  based on a combina t ion  of energy and power 

r a t i n g .  Also ,  power conditioning subsystem groups  may c o n t a i n  f i x e d  c o s t  sub- 

sys tems ,  such as c o n t r o l  e l ements .  

I n  c o n s i d e r i n g  t h e  q u a n t i t y  f a c t o r s  A 
i ' Pi, and E s e v e r a l  p o s s i b l e  

i ' 
s i m p l i f i c a t i o n s  a r e  immediate ly  n o t i c e a b l e .  F i r s t ,  a l l  a r e a  based u n i t  c o s t s  

a r e  commonly r e l a t e d  e i t h e r  t o  t h e  a r r a y  a r e a  o r  t o  t h e  s o l a r  c e l l  a r e a .  The 



. l a t t e r  i s  c o n n e c t e d  t o  t h e  a r r a y  a r e a  t h r o u g h  t h e  p a c k i n g  f a c t o r  f  < 1: 
pg 

= f  . 2  
~8 AAr ; [m I (33.1 

Second,  eq .  (11 )  r e l a t e s  E t o  P t h r o u g h  t h e  e q u i v a l e n t  s t o r a g e  t i m e ,  and i S Y 

t h u s  p e r m i t s  combined t r e a t m e n t  o f  t h e  second  and t h i r d  t e r m s  of eq .  ( 2 0 ) .  

T h i r d ,  t h e  d i m e n s i o n i n g  o f  e a c h  s u b s y s t e m  i o f  power d e p e n d e n t  c o s t  i n  t h e  

c h a i n  is  d e t e r m i n e d  by t h e  s y s t e m  o u t p u t  s p e c i f i c a t i o n s  and t h e  e f f i c i e n c i e s  

o f  t h e  s u b s y s t e m s  s u b s e q u e n t  t o  i i n  t h e  d i r e c t i o n  of e n e r g y  f l o w ,  so  t h a t :  

P 
= ; [kW] N ( 7 2 )  

n na 
R = i+l 

T h i s  p e r m i t s  e x p r e s s i n g  eq .  ( 2 0 ) ,  u n d e r  u s e  o f  eq. ( 6 ) ,  ( l o ) ,  ( 1 1 1 ,  ( 1 3 a ) ,  

and ( 2 1 ) ,  and  u n d e r  a p p l i c a t i o n  of  t h e  s u b s c r i p t  Ce t o  t h e  c e l l  a r e a  b a s e d  c o s t s ,  

A r  t o  t h e  a r r a y  a r e a  b a s e d  c o s t s ,  a s :  

N ,- 

where  t i s  z e r o  o r  t depend ing  on t h e  e x i s t e n c e  o f  a n  e n e r g y  based  
S t , i  S t '  

c o s t  c o n t r i b u t i o n  i n  s u b s y s t e m  i. The f i x e d  c o s t s ,  shnwn i n  t h e  t h i r d  term 

i n  t h e  b r a c k e t s  o f  ec;. ( 2 3 ) ,  c o n t r i b u t e  t o  t h e  e n e r e y  c o s t s  i n d e p e n d e n . t . 1 ~  of  

t h e  s u b s y s t e m ' s  o r  t h e  s y s t e m ' s  pe r fo rmance .  They a r e  a l s o  t h e  o n l y  o n e s  ex- 



h i b i t i n g  any d i r e c t  economics df s c a l e .  

The f i r s t  t e r m  i n  t h e  b r a c k e t  of eq .  (23) can be  e v a l u a t e d  f o r  t h e  

impact  of d e s i g n  o p t i o n s  f o r  a n  i n d i v i d u a l  subsystem k i n  complete  analogy 

t o  eq. (17)  t o  (18) .  The second term,  however, r e q u i r e s  a s l i g h t l y  d i f f e r e n t  

t r e a t m e n t :  

Cnnsequent ly ,  f i r s t  o r d e r  Tay lor  expansion of eq .  (23) y i e l d s  t h e  t o t a l  c o s t -  

e f f e c t i v e n e s s  c r i t e r i o n  AT f o r  a  d e s i g n  change of subsystem k:  
I: 

where : 



and : 

b u t  i # k  

, . 

a r e  t h e  r e s p e c t i v e  " inves tment  p e r  ( u n i t  energy p e r  y e a r ) "  r a t i o s  f o r  a l l .  . . . .  

subsys tems ,  e x c e p t  subsystem k ,  w i t h  a r e a  based u n i t  c o s t s ,  combined; f o r  a l l  

subsystems p r e c e d i n g  subsystem k  i n  t h e  c h a i n ,  w i t h  power o r  ene rgy  based u n i t  

c o s t s ,  combined; and f o r  a l l  subsys tems ,  e x c e p t  subsystem k ,  w i t h  f i x e d  sub- 

sys tem c o s t s ,  combined. c o r r e s p o n d i n g l y  d e f i n e d  a r e  t h e  t o t a l  subsys tem i n -  

v e s t m e n t s :  

b u t  i # k  

and 

N 
= C 

'E, i f k  c p , i  ; [ $1  
i = P  

b u t  i # k  



which r e p r e s e n t  t h e  combined normal ized c o s t s  of  a l l  s u b s y s t e m s , e x c e p t  sub- 

sys tem k ,  w i t h  a r e a  based  u n i t  c o s t s ;  o f  a l l  subsystems p r e c e e d i n g  subsystem 

k i n  t h e  c h a i n ,  w i t h  power o r  ene rgy  based u n i t  c o s t s ;  and o f  a l l  subsys tems ,  

e x c e p t  subsystem k ,  w i t h  f i x e d  subsystem c o s t s ;  r e s p e c t i v e l y .  Examples o f  t h e  

a p p l i c a t i o n  of  eq. (25)  a r e  shown i n  t h e  s e c t i o n  e n t i t l e d :  "Examples o f  

A p p l i c a t i o n  of t h e  Methodology." 

It is  i n t e r e s t i n g  t o  n o t e  t h a t  t h e  t h r e e  terms i n  t i le  " c o s t  e f f e c t i v e n e s s  

c r i t e r i o n "  . A r  c o n t a i n  . t h e  " inves tment  p e r  ( energy  p e r  y e a r ) "  r a t i o s  f o r  t h e  
k  

remainder  o f  t h e  sys tem,  m u l t i p l i e d  by t h e  d i f f e r e n c e  between two terms which 

a r e  based  on t h e  r e l a t i v e  c o s t  change and t h e  r e l a t i v e  e f f i c i e n c y  change,  

r e s p e c t i v e l y .  I t  i s  t o  b e  n o t e d ,  however, t h a t  t h e  r e l a t i v e  c o s t  change 

is  based on t h e  c o s t  of  t h e  remainder  of t h e  sys tem.  w h i l e  the r e l . a l - i v ~  

e f f i c i e n c y  change i s  based on t h e  e f f i c i e n c y  of  t h e  subsystem under  e v a l u a t i o n .  

The e x p r e s s i o n  "remainder of  t h e  system" r e f e r s  h e r e  t o  t h e  subsystems w i t h  

e q u a l l y  based  u n i t  c o s t s ,  and ,  i n  t h e  c a s e  of power o r  energy based u n i t  c o s t s ,  

o n l y  t o  t h e  subsystems p r e c e d i n g  i n  t h e  c h a i n  t h e  subsystem b e i n g  e v a l u a t e d .  

For  t h e  " f i x e d  c o s t  subsystems",  t h e r e  is n.o e f f i c i e n c y  i n f l u e n c e .  

I t  may a l s o  b e  no ted  t h a t  t h e  c o s t - e f f e c t i v e n e s s  c r i t e r i o n  (eq .  ( 2 5 ) )  

c o n t a i n s  t h e  terms 

where t h e  r e l a t i v e  e f f i c i e n c y  change of subsystem k can r e f e r  t o  a  subsystem 

.of power based  u n i t  c o s t ,  b u t  i n f l u e n c e  t h e  c o s t - e f f e c t i v e n e s s  th rough  t h e  

subsys tems  of  a r e a  based c o s t  s t r u c t u r e ,  o r  v i c e  v e r s a .  The l a t t e r ,  i n v e r s e  

c a s e  i s ,  however, n o t  l i k e l y  t o  o c c u r  a s  a  subsystem o f  power based u n i t  c o s t  

is  r a r e l y .  fo l lowed by a  u n i t  a r e a  c o s t  based subsystem i n  t h e  p h o t o v o l t a i c  

power sys tem c h a i n .  



The " c o s t  e f f e c t i v e n e s s  c r i t e r i o n ' '  Ar p e r m i t s  t h e  e v a l u a t i o n  of v a r i o u s  
k 

subsystem d e s i g n  o p t i o n s  bo th  w i t h  r e s p e c t  t o  t h e i r  b e n e f i t  ( o r  harm) i n  

compar ison t o  a b a s e l i n e  d e s i g n ,  through t h e  s i g n  of  Ark, and w i t h  r e s p e c t  

t o  t h e  r e l a t i v e  m e r i t s  of t h e  d i f f e r e n t  o p t i o n s ,  th rough  t h e  magni tude of  A r  k' 

"Opt imiza t ions" ,  t h a t  i s  a  s e a r c h  f o r  A = 0 a s  d i s c u s s e d  i n  r e f .  (2),  w i l l ,  k  

w i t h  v e r y  few e x c e p t i o n s ,  n o t  b e  p o s s i b l e ,  s i n c e  t h e  r e l a t i o n s h i p s  between 

c o s t  and performance a r e  u s u a l l y  n o t  a v a i l a b l e  i n  f u n c t i o n a l  form and ,  more- 

o v e r ,  seem always  t o  b e  l i m i t e d  by t h e  contemporary ,  and o f t e n  r a p i d l y  chang ing  

s t a t u s  of  t echno logy .  " R e l a t i v e  e v a l u a t i o n s " ,  a s  d i s c u s s e d  h e r e ,  a p p l i e d  t o  

s p e c i f i c  subsys tem d e s i g n  o p t i o n s ,  a r e ,  however, r e a d i l y  performed.  

The method is  easy  t o  a p p l y ,  s i n c e  f o r  t h e  subsystem t o  b e  e v a l u a t e d ,  

o n l y  t h e  c o s t  and performance d i f f e r e n c e s  a g a i n s t  a  b a s e l i n e  d e s i g n  have t o  b e  

known, and s i n c e  t h e  o t h e r  needed i n p u t s  i n v o l v e  o n l y  a few summary d a t a  on t h e  

remainder  of  t h e  sys tem.  While i t  may b e ,  i n  some c a s e s ,  d i f f i c u l t  t o  o b t a i n  

e x a c t  d a t a  f o r  t h e  remainder  of t h e  sys tem,  i n t e l l i g e n t  e s t i m a t e s  w i l l  f r e q u e n t l y  

s u f f i c e .  When such  e s t i m a t e s  a r e  used f o r  t h e  c o s t  of  t h e  remainder  of  t h e  

sys tem,  e r r o r  e s t i m a t e s  shou ld  b e  made, a s  m i s - e s t i m a t i o n  of t h e  c o s t  c o u l d  

s h i f t  t h e  r e l a t i v e  impact  of t h e  competing t e rms  i n v o l v i n g  t h e  subsys tem c o s t  - 

and e f f i c i e n c y  - changes .  

E v a l u a t i o n  o f  t h e  C o s t - E f f e c t i v e n e s s  of Manufac tu r ing  P r o c e s s  Opt ions .  

While many of  t h e  subsys tems  i n  a p h o t o v o l t a i c  s o l a r  energy s y s t e m  a r e  

assembled of s t a n d a r d  components by common m e t h o d s , . t h e  s o l a r  c e l l s ,  t h e i r  

assembly i n t o  a r r a y s ,  and a t  a  l a t e r  t ime  pe rhaps  a l s o  t h e  energy  s t o r a g e  

d e v i c e ,  a r e  s p e c i a l l y  manufactured i t e m s  which r e p r e s e n t  a  s i g n i f i c a n t  p a r t  

of  t h e  t o t a l  sys tem c o s t .  S i n c e  p roduc ing  t h e s e  d e v i c e s  w i t h  t h e i r  h i g h e s t  

p o s s i b l e  performance a t  t h e  l o w e s t  p r i c e  i s  t h e  fundamental  c o n d i t i o n  f o r  



s u c c e s s  i n  l a r g e  s c a l e  i n t r o d u c t i o n  of  pho tovo l . t a i c  s o l a r  energy s y s t e m s ,  

compara t ive  e v a l u a t i o n s . o f  t h e  v a r i o u s  a v a i l a b l e  o p t i o n s  f o r  e a c h  s t e p  o f  

t h e  manufactur^ing p r o c e s s  sequence  need t o  b e  performed. A methodology. v e r y  

similar t o  t h a t  o u t l i n e d  f o r  e v a l u a t i o n  o f  t h e  subsystem d e s i g n  o p t i o n s  c a n  

b e  a p p l i e d  f o r  t h i s  purpose .  ' 

E v a l u a t i o n  methodo log ies  f o r  t h e  ' s o l a r  c e l l  and t h e  module m a n u f a c t u r i n g  

p r o c e s s e s  a r e  of g r e a t e s t  c u r r e n t  i n t e r e s t .  Both of t h e s e  "subsystems" have 

an area based  u n i t  c o s t  s t r u c t u r e ,  and c a n  t h e r e f o r e  b e  t r e a t e d  by t h e  same 

approach .    he q u a n t i t y  t o  b e  reduced  a s  f a r  a s  p o s s i b l e  is  t h e  " ihves tment  

p e r  ( u n i t  ene rgy  p e r  ' y e a r ) "  r (eq .  ( 2 3 ) )  which c a n  b e  e x p r e s s e d  a s  t h e  sum 

o f  v a r i o u s  sub-gammas f o t  t h e  d i f f e r e n t  subsystems:  

where  t h a t  f o r  t h e  subsystems of a r e a  based u n i t  c o s t s  h a s  t h e  form: 

A s  t h e  s o l a r  c e l l s  and t h e  modules a r e  among t h e  f i r s t  subsys tems  i n  t h e  c h a i n ,  

and a r e  n o t  preceded by power based subsys tems ,  o n l y  t h e  r ~ ,  i 
terms need t c  

b e  c o n s i d e r e d  f o r  a n  e v a l u a t i o n  of t h e  manufac tu r ing  p r o c e s s e s  f o r  o n e  of  t h e s e  

two subsys tems .  Thus, f o r  t h e  s o l a r  c e l l s  a s  subsys tem k ,  i t  is:  

b u t  R#k 

[ $ kwh-' 

1 8  



u s i n g  eq.  (26a)  f o r  s i m p l i f i c a t i o n .  The p roduc t  i n  t h e  p a r e n t h e s i s  of t h e  

f i r s t  te rm i s  independen t  of  subsystem k. . . 

The f a b r i c a t i o n  p r o c e s s  sequence f o r  subsystem k,  t h e  s o l a r  c e l l s ,  s h a l l  

b e  composed of P p r o c e s s  s t e p s ,  w i t h  t h e  i n d i v i d u a l  s t e p  p  c o s t i n g  c  on 
Ce,k,p 

t h e  b a s i s  of  u n i t  a r e a  of goo'd work-in-process ( p a r t l y  p rocessed  s o l a r  c e l l s )  

l e a v i n g  t h e  p r o c e s s  s t a t i o n .  The subsystem c o s t  c  however, is  based on 
Ce, k '  

t h e  a r e a  of  t h e  f i n i s h e d ,  good c e l l s  l e a v i n g  t h e  end of  t h e  s o l a r  c e l l  p r o d u c t i o n  

l i n e .  S i n c e  each  p r o c e s s  s t e p  is a f f l i c t e d  w i t h  a  c e r t a i n  y i e l d  y  t h e  amount 
P ' 

of  s o l a r  c e l l  a r e a  t o  b e  p r o c e s s e d  th rough  s t e p  p  h a s  t o  be  i n c r e a s e d  above , t h e  I 

f i n i s h e d  c e l l  a r e a  t o  make up f o r  t h e  y i e l d  l o s s e s  of t h e  subsequen t  p r o c e s s  

s t e p s .  Consequen t ly ,  t h e  u n i t  c e l l  a r e a  c o s t  of  t h e  subsystem k  c a n  be. e x p r e s s e d  

For  s o l a r  c e l l s ,  i t  h a s  been l o n g - s t a n d i n g  p r a c t i c e ( 3 )  t o  c a l c u l a t e  a n  i d e a l -  

i z e d ,  t h e o r e t i c a l  " l i m i t  e f f i c i e n c y "  
"k, ~ i m  

and t o  gauge t h e  s u c c e s s  i n  . 

d e s i g n  and f a b r i c a t i o n  of  t h e  " r e a l "  s o l a r  c e l l s  by d e t e r m i n i n g  t h e  v a r i o u s  

" l o s s  f a c t o r s "  4 which d e s c r i b e  t h e  d e g r e e  o f , a p p r o a c h  t o  i d e a l i t y  f o r  t h e  

i d e n t i f i e d , e f f i c i e n c y  i n f l u e n c i n g  pa ramete r s .  I n  v a r i a t i o n  o f  t h i s  p r a c t i c e ,  

R e d f i e l d  ( 2 )  a s s i g n e d  a l o s s  f a c t o r  t o  each of  the .  p r o c e s s  s t e p s  t o  f a c i l i t a t e  

h i s  "cos t /Wat t t '  e v a l u a t i o n .  Adapt ing t h i s  p r a c t i c e ,  t h e  e f f i c i e n c y  of t h e  subsystem 

k  c a n  b e  e x p r e s s e d  a s  a  l i m i t  e f f i c i e n c y  t i m e s  a  p r o d u c t  o f  l o s s  f a c t o r s .  



Each of  t h e  l o s s  f a c t o r s  
@ k ,  P  

i s  a t t r i b u t e d  t o  a  s t e p  i n  t h e  s e r i a l  sequence  

o f  p r o c e s s  s t e p s ,  and i t  e x p r e s s e s ,  by b e i n g  normal ly  l e s s  t h a n  u n i t y ,  t h e  

d e g r e e  t o  which t h e  i n d i v i d u a l  p r o c e s s  s t e p  c a u s e s  t h e  subsystem performance 

t o  d e v i a t e  from i d e a l i t y .  D i f f e r e n t  competing p r o c e s s  o p t i o n s  can  u s u a l l y  b e  

expec ted  t o  c a u s e  d i f f e r e n t  d e g r e e s  of d e v i a t i o n  from i d e a l i t y .  While f o r  

s o l a r  c e l l s ,  a  l i m i t  e f f i c i e n c y  n e a r  0.25 i s  u s u a l l y  d i s c u s s e d ,  t o r  t h e  module 

o r  p a n e l  assembly,  a  l i m i t  e f f i c i e n c y  of u n i t y  wil.1 be  p r a c t i c a l  t o  assume. 

Making u s e  of eq .  ( 2 7 a ) ,  (.29), ( 3 1 ) ,  and ' (32) p e r m i t s  e x p r e s s i n g  eq.  (30)  

i n  a form more conducive  t o  d e r i v a t i o n  of  t h e  c o s t - e f f e c t i v e n e s s  c r i t e r i o n :  

b u t  pfn 

b u t  p#n 

I n .  t h i s  form, t h e  t h r e e  c h a r a c t e r i s t i c  n t t r i b c i  t e s  $ k , n y Y n ,  and c  
Ce,k ,n  

of  p r o c e s s  s t e p  n  which i s  t h e  s t e p  t o  be e v a l u a t e d ,  have been i s o l a t ' e d .  . 
Applying a g a i n  a f i r s t  o r d e r  T a y l o r  expans ion  t o  t h e  inves tment  p e r  ( energy  

p e r  , y e a r )  r a t i o ,  t h i s  t ime  based on eq.  ( 2 8 )  and ( 3 3 ) ,  y i e l d s  t h e  c o s t  

e f f e c t i v e n e s s  c r i t e r i o n  A T  f o r  t h e  i n d i v i d u a l  s o l a r  c e l l  manufac tu r ing  

p r o c e s s  s t e p  n  : 



where I" 
A , i # k  

and C 
A ,  i # k  

a r e  used a s  b e f o r e  (eq .  (21a)  and (27a)  

e x p r e s s e s  t h e  f u l l y  y i e l d e d  c o s t  of  t h e  work- in-process  r e q u i r e d  a s  i n p u t  f o r  

s t e p  n  i n  o r d e r  t o  f a b r i c a t e  a  u n i t  a r e a  of  o u t p u t  work- in-process  from 
P 

t h i s  s t e p .  The f a c t o r  I y o  i s  t h e  p roduc t  o f  t h e  y i e l d s  of t h e  p r o c e s s  s t e p s  
A.  

9*=n+1 
subsequen t  t o  s t e p  n .  The i n v e r s e  of  t h i s  p roduc t  g i v e s  t h e  a r e a  o f  work-ill.- 

p r o c e s s  t o  b e  p rocessed  th rough  s t e p  n  i n  o r d e r  t o  o b t a i n  a  u n i t  a r e a  of  f i n - .  

i s h e d  p roduc t  (subsystem k ) .  The a p p l i c a t i o n  of  eq.  (34)  i s  demons t ra ted  on 

hand o f  a n  example i n  t h e  n e x t  s e c t i o n .  

S i m i l a r  t o  t h e  subsystem c o s t - e f f e c t i v e n e s s c r i t e r i o n  Ar t h e  manufactur , ing 
k  ' 

p r o c e s s  c o s t - e f f e c t i v e n e s s  c r i t e r i o n  A r  is  t h e  p roduc t  of a  v a r i a b l e  
k ,  n  

f a c t o r  and t h e  " inves tment  p e r  (energy p e r  y e a r ) "  r a t i o  f o r  t h e  remainder  o f  

t h e  sys tem,  i n  t h i s  c a s e ,  however, l i m i t e d  t o  t h e  p a r t  of  t h e  sys tem which is  

based on u n i t  a r e a  c o s t s .  The v a r i a b l e  f a c t o r  c o n t a i n s  t h r e e  terms. The f i r s t  

d e s c r i b e s  t h e  i n f l u e n c e  of t h e  d i f f e r e n c e  i n  c o s t  Ac o f  t h e  s u b j e c t  
Ce,k,n 

p r o c e s s  o p t i o n s  a g a i n s t  t h e  b a s e l i n e  c a s e ,  o r  a g a i n s t  a n o t h e r  o p t i o n ,  t a k e n  

r e l a t i v e  t o  t h e  t o t a l  c o s t  of a l l  o t h e r  subs'y'stems bf u n i t  a'rea based  c o s t .  

The impact  of  t h i s  r e l a t i v e  c o s t  d i f f e r e n c e  i s  magni f i ed  by t h e  i n v e r s e  o f  

t h e  p roduc t  of t h e  y i e l d s  of  a l l  p r o c e s s  s t e p s  which'  f o l l o w  t h e  s t e p  under.  

e v a l u a t i o n  (n )  i n  t h e  p r o c e s s  sequence  up t o  t h e  f i n i s h e d  subsystem k. The 

second t e r m  d e s c r i b e s  t h e  impact  o f  t h e  r e l a t i v e  change i n  t h e  y i e l d  o f  p r o c e s s  

s t e p  n  which would b e  i n c u r r e d  by s w i t c h i n g  t o  t h e  o p t i o n  b e i n g  e v a l u a t e d .  

Th i s  r e l a t i v e  y i e l d  change i s  m u l t i p l i e d  by t h e  c o s t  o f  t h e  i n p u t  work-in- 

p r o c e s s  t o  s t e p  n ,  d i v i d e d  by t h e  t o t a l . c o s t  o f  a l l  o t h e r  subsys tems  o f  u n i t  

a r e a  b a e d  c o s t s .  Agaia ,  t h e  impact  of  t h i s  term i s  i n c r e a s e d  th rough  

t h e  y i e l d s  of a l l  subsequen t  p r o c . e s s . s t e p s .  The t h i r d  te:rm f i n a l l y  i s  p r i n c i p a l l y  



t h e  r e l a t i v e  s o l a r  c e l l  e f f i c i e n c y  change r e s u l t i n g  from i n t r o d u c t i o n  of 

t h e  s u b j e c t  p r o c e s s  o p t i o n .  The impact  of t h i s  r e l a t i v e  e f f i c i e n c y  change 

i s  r a i s e d  above u n i t y  by t h e  r a t i o  of t h e  c o s t  ( p e r  u n i t  a r e a )  of  t h e  subsystem 

c o n s i d e r e d  t o  t h e  sum of t h e  u n i t  a r e a  c o s t s  of  a l l  o t h e r  subsys tems  of  a r e a  

based c o s t  s t r u c t u r e .  

Examinat ion of eq .  (34) shows t h a t  t h e  knowledge o f  t h e  " inves tment  p e r  

( energy  p e r  y e a r ) "  r a t i o  f o r  t h e  remainder  of t h e  sys tem i s  n o t  needed f o r  

c o m p a r a t i v e  e v a l u a t i o n  of d i f f e r e n t  p r o c e s s  o p t i o n s ,  a s  t h i s  r a t i o  is  a 

c o n s t a n t  f a c t o r  i n  t h e  c o s t - e f f e c t i v e n e s s  c r i t e r i o n .  T h i s  l e a v e s  o n l y  f o u r  

d a t a  r e q u i r e d  as c o n s t a n t  i n p u t s  f o r  t h e  e v a l u a t i o n :  t h e  c o s t  of  t h e  i n p u t  

work- in-process ;  t h e  c o s t  of t h e  f i n i s h e d  subsystem;  t h e  t o t a l  c o s t  of t h e  

remain ing  subsystems of  a r e a  based c o s t s ;  and t h e  p roduc t  of t h e  y i e l d s  of . 

t h e  s u b s e q u e n t  p r o c e s s  s t e p s .  The v a r i a b l e  i n p u t s  a r e  t h e  r e l a t i v e  changes  i n  

t h e  t h r e e  k e y - a t t r i b u t e s  of  t h e  o p t i o n  f o r  t h e  p r o c e s s  s t e p  t o  b e  e v a l u a t e d :  

c o s t ,  y i e l d ,  and e f f i c i e n c y  c o n t r i b u t i o n .  S i n c e  e x a c t  d a t a  f o r  t h e  f o u r  

c o n s t a n t  i n p u t s  may b e  d i f f i c u l t  t o  o b t a i n ,  i n t e l l i g e n t  e s t i m a t e s  w i l l  some- 
.. . , 

t i m e s  b e  s u b s t i t u t e d .  T h i s  p rocedure  a p p e a r s ,  a t  f i r s t  l o o k ,  a p p r o p r i a t e  a s  

t h e s e  q u a n t i t i e s  form c o n s t a n t  m u l t i p l i e r s .  However, t h i s  approach h a s  t o  b e  

a p p l i e d  w i t h  c a u t i o n  s i n c e  significant,mis-estimation cou ld  s h i f t  t h e  r e l a t i v e  

i m p a c t s  of  t h e  c o s t ,  y i e l d ,  and e f f i c i e n c y  t e rms .  T h i s c a u t i . o n  w i l l  b e  n e c e s s a r y  i n  

t h e  common c a s e s ,  where t h e  c o s t  of t h e  f i n i s h e d  subsystem under  e v a l u a t i o n  i s  

s m a l l  compared t o  t h e  t o t a l  c o s t  o f  t h e  remain ing  subsys tems  o f  a r e a  based 

c o s t ,  s o  t h a t  t h e  m u l t i p l i e r  on t h e  r e l a t i v e  e f f i c i e n c y  change would n o t  b e  

l a r g e  compared t o  u n i t y .  

It i s  c l e a r ,  t h a t  t h e  method o u t l i n e d  h e r e  f o r  t h e  s o l a r  c e l l  m a n u f a c t u r i n ~  

p r o c e s s ,  and expressed  i n  eq. ( 3 4 ) ,  a p p l i e s  e q u a l l y  w e l l  t o  t h e a r r a y  assembly 

p r o c e s s e s ,  e x c e p t  f o r  t h e  o m i s s i o n  of  t h e  pack ing  f a c t o r  f  i n  t h a t  c a s e ,  and 
Pg 

t h e  r e p l a c e m e n t  of t h e  s u b s c r i p t  Ce by s u b s c r i p t  A r .  



Examples of A p p l i c a t i o n s  of t h e  Methodology 

Two examples w i l l  demons t ra te  t h e  a p p l i c a t i o n  o f  eq.  (25)  i n  e v a l u a t i o n  

o f  d i f f e r e n t  d e s i g n  o p t i o n s  f o r  subsystem k.  

The subsystem under  c o n s i d e r a t i o n  s h a l l  be  t h e  s o l a r  c e l l .  The b a s e  c a s e  

is  a  c e l l  w i t h  a  c o n v e r s i o n  e f f i c i e n c y  o f  17.5% on t h e  b a s i s  o f  t h e  s o l a r  c e l l  

a r e a .  The f o l l o w i n g  r e l e v a n t  d a t a  f o r  t h e  b a s e  c a s e  a r e  known: 

T a b l e  I .  

Problem 1. 

A p r o c e s s  is  a n t i c i p a t e d  by which t h e  e f f i c i e n c y  o f  t h e  s o l a r  c e l l s  

c o u l d  b e  r a i s e d  t o  20%. How much more cou ld  t h e  s o l a r  c e l l s  c o s t  t o  pro- 
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Answer : 

. . 

a )  S i n c e  t h e  subsystem o f  concern  i s  of  a r e a  based c o s t s  o n l y ,  t h e  

second and t h i r d  terms o f  eq.  (25)  a r e  ze ro .  

b )  The subsystem k  c o n t a i n s  o n l y  c e l l - a r e a  based c o s t s ,  d e s i g n a t e d  by 

s u b s c r i p t  Ce, and no a r r a y - a r e a  based c o s t s ,  d e s i g n a t e d  by sub- 

s c r i p t s  A r .  Thus: 

. . c ) .  S i n c e  t h e  pack ing  f a c t o r  f  does  n o t  change w i t h  t h e  change o f  
p g  

c e l l  e f z i c i e n c y :  

I n  t h i s  c a s e ,  a l s o , .  i t  i s  i m m a t e r i a l  e i t h e r  module e f f i c i e n c e s  o r  

c e l l  e f f i c i e n c i e s  a r e  used ,  as t h e y  a r e  r e l a t e d  th rough  a  c o n s t a n t  

p r o p o r t i o n a l i t y  f a c t o r .  

d )  Wanted i s  knowledge of Ac f o r  
Ce, k  

A ,  i f k  

Transforming eq.  ( 2 5 ) ,  a f t e r  a p p l y i n g  p o i n t s  a )  t o  c )  above; y i e l d s  

then: 



e )  The e f f i c i e n c y  d i f f e r e n c e  An going from t h e  base  c a s e  t o  t h e  k 

new subsystem op t ion  i s  2.5%. A l l  o t h e r  numbers e n t e r i n g  i n t o  

t h e  r e l a t i o n s h i p  given i n  p o i n t .  d )  r e l a t e  t o  t h e  basd case.  Thus : 

2  < 
= + 20.44 $/m c e l l  a r e a .  

A 14% c e l l  e f f i c i e n c y  i n c r e a s e  t hus  j u s t i f i e s  a  332 c e l l  c o s t  i n c r e a s e  

f o r  equa l  energy c o s t  e f f e c t i v e n e s s ,  and any lower c o s t  i n c r e a s e  

y i e l d s  a  more c o s t - e f f e c t i v e  system. 

The maximum p r i c e  is  thus :  

Base p r i c e :  61.38 $/m2 c e l l  a r e a  

Maximum i n c r e a s e  + 20.44 $/m2 c e l l  a r e a  
81.82 $/m7 c e l l  a r e a  

Apply f p g  = 0.90: 73.64 $/m2 module a r e a  

2  
Module add-on c o s t :  23.50 $/m module a r e a  
Module c o s t  97.14 $/m2 module a r e a  

2  
A t  180 W - / m  o u t p u t ,  t h i s  corresponds t o  0.54 $/W 

PL pk' 

Problem 2  

I n  l i e u  of Czochra lsk i  grown wafers  assumed t o  be  used i n  t h e  base  c a s e  

given above, t h e  use  of  r ibbon  s i l i c o n  i s  a n t i c i p a t e d ,  r e s u l t i n g  i n  a reduced 

c e l l  e f f i c i e n c y  of 14%,  b u t  an increased  packing f a c t o r  of  0.92. How much 

lower would t h e  c e l l  c o s t  have t o  be  t o  provide  an a t  l e a s t  equa l ly  c o s t  

e f f e c t i v e  system? 



Answer : 

a )  P o i n t s  a )  and b )  o f  answer 1 s t i l l  a p p l y .  

b )  A s  t h e  packing f a c t o r  changes ,  

w i l l  have t o  b e  used.  

c )  Because o f  t h e  change o f  p a c k i n g  f a c t o r ,  and s i n c e  t h e  energy  

c o s t  d e t e r m i n a t i o n  i s  u l t i m a t e l y  based on t h e  a r r a y  ( o r  module) 

a r e a  r e l a t e d  c o s t s  and e f f i c i e n c i e s ,  t h e  e v a l u a t i o n  w i l l  have  t o  

u s e  t h e s e  l a t t e r  e f f i c i e n c i e s .  For  t h e  b a s e  c a s e ,  t h e  module 

e f f i c i e n c y  was 15.75%. For t h e  o p t i o n ,  i t  i s  1 4 - 0 . 9 2  = 12.88%. 

Thus, Aqk = 2.87%. 

d )  Under c o n s i d e r a t i o n  of  p o i n t s  2a)  and 2b) above,  and s o l v i n g  

f o r  

as i n  Answer 1, eq .  (25)  t r a n s f o r m s  i n t o :  

e )  The d i f f e r e n c e  i n  pack ing  f a c t o r  i s  +0.02,  compared t o  t h e  b a s e  

case .  O u t s i d e  o f  t h e  e f f i c i e n c y  d i f f e r e n c e ,  o n l y  d a t a  from t h e  

b a s e  c a s e  a r e  needed: 



< 2 
A c ~ ~ , ~  = - 26.07 - 1.36 = - 27.43 $/m c e l l  a r e a  

The maximum c e l 1 , p r i c e  f o r  e q u a l  c o s t  e f f e c t i v e n e s s  i s  t h u s :  

2 
61.38 $/m c e l l  a r e a  

-27.43 $/m2 c e l l  a r e a  

33.95 $/m2 c e l l  a r e a  

and t h e  cor responding  module p r i c e :  

. . . . ,  

C e l l s :  33.95 $/m2 0.92 = 31.23 $/m2 module a r e a  

.Module add-on c o s t '  
2 

+23.50 $/m : module a r e a  

54.73. $/m2 module a r e a  

2 
A t  128..8 W . /m .  o u t p u t , '  t h i s  c o r r e s p o n d s  t o -  $ 0 . 4 2 5 1 ~  ' f o r  . the  . 

pk pk 

-module .  . 

Checks t o  Problems 1 and 2:. 

Try 100 kW system:  
pk , 

Base c a s e :  

Area needed: l o 5  W : 157 .5  W /m2 = 632.9 m 
2 

pk . ,  . . pk 

Module p r i c e :  0.50 $/Wpk -+ 50,000 $ 

I n s t a l l a t i o n  e t c .  : 50 $/m2 -+ 31,645 $ 

T o t a l  81,645 $ 

Option 1: 

Module e f f i c i e n c y : .  18% 

l o 5  W : 180 W /m2  = 555.6 m 
2 

Area needed: 
pk pk 

Module p r i c e  0.54 $/wpk -+ 54,000 $ 

I n s t a l l t i o n  c o s t  e t c .  50 $/m2 -+ 27,780 $ 

81.,780 ' $  . . 



Option 2: 

Module e f f i c i e n c y  12.88% 

Area needed: 
2  l o 5  W : 128.8 W / m  = 776.4 m 

2  

pk pk 

Module p r i c e :  0..425 $/W. 
pk 

-+ 42,500 $ 

' I n s t a l l a t i o n  c o s t  e t c .  $50/m2 -+ 38,820 v . -... . . . $ 

A process  sequence f o r  s o l a r  c e l l  f a b r i c a t i o n  has  been proposed by .> 

Motorola f o r  1986, which inc ludes  two d i f f u s i o n s  f o r  pn-junction and BSF 

l a y e r  formation.  S t a r t i n g  wi th  a' t ex ture-e tched ,  c leaned wafer ,  a  t o t a l  

o f . 5  process  s t e p s  (spin-on s i l i c a  f r o n t ;  B C 1 3  d i f f u s i o n ;  spin-on s i l i c a  

back, pH3 d i f f u s i o n ;  s t r i p  ox ide  both s u r f a c e s )  5s needed t o  produce a  c l e a n  

wafer  ready f o r  t h e  next  p rocess  s t e p  (AR coa t ing ) .  

RCA has  proposed a  completely d i f f e r e n t  p rocess  sequence f o r  c e l l  

f a b r i c a t i o n  f o r  1986 which inc ludes  i o n  imp lan t a t i on  f o r  bo th  pn-junct ion 

and BSF l a i e r  formation.  The cond i t i ons  of t h e  wafer be fo re  and a f t e r  t h e  

2-s tep process  ( ion- implan ta t ion ,  a c t i v a t i o n  annea l )  a r e  equ iva l en t  t o  t hose  

b e f o r e  and a f t e r  t h e  5-step Motorola d i f f u s i o n  p roces s ,  except  f o r  p o s s i b l e  

d i f f e r e n c e s  i n  e f f i c i e n c y  r e s u l t i n g  from t h e  two processes .  S ince  t h e  

Motorola o v e r a l l  p rocess  sequence seems t o  .be t h e  l e s s  c o s t l y  one,  i t  w i l l  

b e  used as t h e  base  case .  Thus, i n ' l i e u  of t h e  d i f f u s i o n  p roces s ,  i o n  i m -  

p l a n t a t i o n  could be  i n s e r t e d  i n t o  t h e  base  c a s e  process  sequence. 

Quest i on  : 

One would l i k e  t o  know t h e  r e l a t i v e  c o s t  e f f e c t i v e n e s s  of t h e  2 competing 

process  op t ions  f o r  pn-junction and BSF l a y e r  formation.  



Answer : 

. . 
The c o s t s  and y i e l d s  f o r  t h e  2 p r o c e s s  o p t i o n s  a r e  known, a s  w e l l  a s  

. . 

t h e  c o s t s  and y i e l d s  f o r  a l l  t h e  o t h e r  s o l a r  c e l l  ,manufhctur ing p r o c e s s  s t e ,ps  

i n  t h e  b a s e  c a s e .  .The c o s t  d a t a  from t h e  2 companies have been normal ized  

t o  t h e  same economic b a s e  through a p p l i c a t i o n  o f  t h e  SAMICS s t a n d a r d i z e d  

c o s t  s t r u c t u r e .  No i n f o r m a t i o n  is ,  however, a v a i l a b l e  on t h e  e f f i c i e n c y '  

c o n t r i b u t i o n s  o f  t h e  2 o p t i o n s .  The e v a l u a t i o n  w i l l  t h e r e f o r e  b e  c a r r i e d  

o u t  by d e t e r m i n i n g  t h e  e f f i c i e n c y  d i f f e r e n c e  which would make t h e  2 o p t i o n s  

e q u a l l y  c o s t - e f f e c t i v e .  Equa t ion  (34)  is  t h e r e f o r e  t o  be  s o l v e d  f o r  

"k,n f o r  t h e  c a s e  = 0 ,  y i e l d i n g :  . . 

$ k , n  r k , n  , 

The i n f o r m a t i o n  d i s p l a y e d  i n  T a b l e  I1 i s  a v a i l a b l e  f o r  t h e  b a s e  p r o c e s s :  



T a b l e  I1 

* Uased on t h e  u n i t  a r e a  of work-in p r o c e s s  l e a v i n g  t h e  r e s p e c t i v e  p r o c e s s  s t e p .  
t Eased on t h e  u n i t  a r e a  of work-in-process l e a v i n g  group  o f  p r o c e s s  s t e ? s ,  o r  sub-process .  * 

Based on t h e  u n i t  a r e a  of  f i n i s h e d  prodtrct .  

P r o c e s s  S t e p  

1 
S t e p  

P r i c e *  

s /m2 

( 1 0 $ / k g )  

1 8  

1 .24  

0.66 

1 .58  - - 
2.28 

1. 

2. 

3. 

4. 

5. 

6. 

I n p u t  p o l y c r y s t a l  S i  

Shee t  g e n e r a t i o n  

Apply e t c h  s t o p  back  

T e x t u r e  e t c h  f r o n t  

Remove e t c h  s t o p  back 

Spin-on s i l i c a  f r o n t  

8 .  

9. 

10 .  

11. 

12 .  

13 .  

14 .  

15 .  

1 6 .  

2  
S t e p  

Y i e l d  

% 

NA 

(0.513m2 
kg) 

99.4 

99.2 s7:DiuiBi3:ai Spin-on s i l i c a  back - - '- 1 .94  2.28 -!!? 99.0 -- ': 98 .8  - -- 2.31  95.8 

D i f f u s e  pH3 f r o n t  2.49 99.0 

S t r l p  bo th  s u r f a c e s  - - - - - - - - - .  0.26 - - .- - - -- 99.8  - - - - - -  0.26  9.40 - - - -  90.5 10.39 - - - - - - -  
AR c o a t  S i  N 

3  4  
0 . 93  99.2 91.3 1 .02  - 90 .5  

Apply p a t t e r e n e d  r e s i s t  
f r o n t  1 .24  99.4 91.8 1 . 3 5  

P a t t e r n  f r o n t ,  s t r i p  back 0.26 99.8 92.0 0.28 

? I e t a l l i z a t i o n  7.05 97.2 94.6 7.45 

S o l d e r  c o a t  3.63 99 .8  94 .8  3.83 

E l e c t r i c a l  t e s t  1 . 66  94.8 100  1 . 6 6  15.59 15.59 73.95 

' 3  
Cumul . 

Sub-process 

% 

(0.505m2/kg) 

98.4 

99.0 

99.8 

A l t e r n a t e  Option:  

6a.  

7a.  

4  
Y ie lded  

S t e p  
P r i e t  5 
$/m 

I o n  i m p l a n t a t i o n  2 s i d e s  8 .22  99.0 99.0 8.30 

A c t i v a t i o n  a n n e a l  1 . 56  99.0 100  1 .56  9.86 - 98.0 N A N A 
A 

5 
Sub-process 

P r i c e ?  
$/m2 

i 9 . 4 1  1 9 . 8 1  

18.29 

1 .25  

0.66 

41.59 - - - 

8 
T o t a l  

P r o c e s s  
P r i c e  
$/m2 

86.7 -- 

6 
Fol lowing  

Sub-process 
Y ie ld  

x 

47.97 - - - - - - -  

7 
Y ie lded  

Subprocess  
P r i c e $  
$/m2 



T a b l e  I1 c o n t a i n s  a l l  t h e  i n f o r m a t i o n  needed f o r  s o l v i n g  eq.  ( 3 8 ) ,  which . 

is  summarized i n  Tab le  111. 

T a b l e  I11 i 

Thus : 



Resul t  : 

The RCA ion  implanta t ion  process  op t ion  thus  could have an e f f i c i e n c y  

c o n t r i b u t i o n  0.4% lower than t h a t  of t h e  Motorola d i f f u s i o n  op t ion ,  t o  

ach ieve  equal  c o s t  e f f e c t i v e n e s s  i n  energy genera t ion .  The ion  implanta t ion  

p roces s  would thus ,  a t  equal  e f f i c i e n c y  c o n t r i b u t i o n s ,  be very s l i g h t l y  more 

c o s t - e f f e c t i v e  than  t h e  d i f f u s i o n  op t ion ,  bu t  t h e  d i f f e r e n c e  i s  so smal l  

t h a t  t h e  two opt ions  r e a l l y  ought t o  be considered a s  equiva len t .  

It may a l s o  be noted t h a t  experimental  r e s u l t s  ob ta ined  a t  va r ious  

l a b o r a t o r i e s  i n d i c a t e  t h a t  t h e  expec ta t ion  of equal  e f f i c i e n c y  c o n t r i b a t i o n s  

from t h e  two process  op t ions  considered i s  j u s t i f i e d .  Thus, t h e  r e s u l t  of 

economic equivalence of t h e  two pa r ' t i cu l a r  op t ions  analyzed is '  r e a l i s t i c ,  

a s  f a r  a s  t h e  p r o j e c t i o n s  t o  1986 f o r  t h e  va r ious  c o s t  c o n t r i b u t i o n s  and y i e l d s  

can be  considered r e a l i s t i c .  

Check: 

Since t h e  e f f i c i e n c y  c o n t r i b u t i o n s  a r e  considered equal  f o r  t h e  two 

competing processes ,  t he  check can be performed o n ~ t h e  c o s t  and yield b a s i s  

a lone.  



Table IV 

I 
Base Case I Option Un i t s  

Input  work i n  process  
1 

on u n i t  a r e a  b a s i s  41.59 1 41.59 s /m2 

Yield i n  process  s t e p  95.8 1 98.0 % 

Needed inpu t  work-in-process j 

f o r  u n i t  ou tput  work-in- 
I 

1.044 1 1.02 
2 2 

process  m / m  
I - - - - - - . . - - -  + - - - - - - - 

Cost of i n p u t  work-in- 
p rocess  43.41 1 42.44 s /m2 

Cost of p rocess  s t e p  per  I 
u n i t  ou tpu t  work-in-process 9.44 9.86 s /m2 I 

I 

Cost of ou tput  work-in-process 52.85 52.30 $ /m2 

The op t ion  output  work-in-process is  thus  1% l e s s  c o s t l y .  With i t s  0.4% 

lower permit ted e f f i c i e n c y  c o n t r i b u t i o n ,  i t  becomes equ iva l en t  a t  t h e  sys- 

tem l e v e l .  A t  exac t  e f f i c i e n c y  e q u a l i t y ,  i t  would be  t h e  ( s l i g h t l y )  pre- 

f e r a b l e  process .  



CONCLUSION 

A q u a n t i t a t i v e  compara t ive  e v a l u a t i o n  i s  f r e q u e n t l y  needed of t h e  d i f f e r e n t  

d e s i g n  o p t i o n s  f o r  a  p a r t i c u l a r  subsystem i n  a  p h o t o v o l t a i c  s o l a r  energy con- 

v e r s i o n  sys tem,  o r  o f  t h e  d i f f e r e n t ' o p t i o n s  f o r  a  p r o c e s s  s t e p  i n  t h e  manu- 

f a c t u r i n g  p r o c e s s  sequence  f o r  such  a subsystem.  Such a n  e v a l u a t i o n  h a s  t o  b e  

f u n c t i o n a l ,  which means, based on t h e  c o s t  of  t h e  e l e c t r i c a l  energy produced 

by such  a  system. 

I t  i s  s e e n  t h a t  such  e v a l u a t i o n s  can b e  r a t h e r  e a s i l y  performed o n , t h e  b a s i s  

of  knowledge of  t h e  q u a n t i t a t i v e  d i f f e r e n c e s  of  t h e  key a t t r i b u t e s  o f  t h e  

p a r t i c u l a r  o p t i o n  under  c o n s i d e r a t i o n  f o r  a  subsystem o r  a  p r o c e s s ' s t e p  a g a i n s t  

t h e  a t t r i b u t e s  of a  b a s e l i n e  c a s e  o r  of  a  d i f f e r e n t  o p t i o n .  The key a t t r i b u t e s  

a r e  c o s t  and e f f i c i e n c y  f o r  t h e  subsystem,  assuming r e l i a b i l i t y  and s e r v i c e  l i f e  

t o  b e  comparable ,  and c o s t ,  y i e l d ,  and e f f i c i e n c y  c o n t r i b u t i o n  f o r  t h e  p r o c e s s  

s t e p .  The o t h e r  needed i n p u t s  a re '  r e l a t i v e l y  few and of  a  r a t h e r  fundamental  

n a t u r e ,  such  a s  t h e  inves tment  needed f o r  t h e  whole sys tem p e r  u n i t  of  ene rgy  

d e l i v e r e d  a n n u a l l y ;  t h e  t o t a l  c o s t  o f  t h e  sys tem e x c l u s i v e  of  t h e  subsys tem 

b e i n g  e v a l u a t e d ;  o r  t h e  c o s t  of  t h e  i n p u t  work-in-process t o  t h e  p a r t i c u l a r  

p r o c e s s  s t e p  b e i n g  e v a l u a t e d .  I n  many i n s t a n c e s ,  a d e q u a t e  e v a l u a t i o n s  c a n  b e  

performed by s u b s t i t u t i n g  e s t i m a t e d  v a l u e s  f o r  r e a l  d a t a  o f , t h e s e  q u a n t i t i e s .  

I t  i s  a l s o  noteworthy t h a t ,  p a r t i c u l a r l y  f o r  t h e  m a n u f a c t u r i n g  p r o c e s s  

s t e p  e v a l u a t i o n ,  a n  a n a l y s i s  on t h e  " c o s t  p e r  peak Watt" b a s i s  w i l l  o f t e n  b e  

a d e q u a t e  as a f i r s t  o r d e r  approx imat ion ,  s i n c e  t h e  l o a d  f a c t o r  which i s  t h e  

p r i n c i p a l  v a r i a b l e  i n  t h e  c o n v e r s i o n  t o  t h e  "cost: p e r  kwh d e l i v e r e d "  b a s i s ,  is 

a f f e c t e d  by t h e  e v a l u a t i o n  v a r i a b l e s  o n l y  th rough  second o r d e r  i n f l u e n c e s .  
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NEW TECHNOLOGY 3 .  

No new technology was developed d u r i n g  t h i s  q u a r t e r .  
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