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ABSTRACT

Weibull’s two-parameter statistical-distribution function is used to account for the effects of
specimen size and loading differences on strength distributions of lithium hydride. Three distinctly
differing uniaxial specimen types (i.e., an elliptical-transition pure tensile specimen, an internally
pressurized ring tensile, and two sizes of four-point-flexure specimens) are shown to provide
different strength distributions as expected, because of their differing sizes and modes of loading.
After separation of strengths into volumetric- and surface-initiated failure distributions, the
Weibull characteristic strength parameters for the higher-strength tests associated with internal
fracture initiations are shown to vary as predicted by the effective specimen volume Weibull
relationship. Lower-strength results correlate with the effective area to a much lesser degree,
probably because of the limited number of surface-related failures and the different machining
methods used to prepare the specimens.

The strength distribution from a fourth specimen type, the predominantly equibiaxially
stressed disk-flexure specimen, is well below that predicted by the two-parameter Weibull-derived
effective volume or surface area relations. The two-parameter Weibull model cannot account for
the increased failure probability associated with multiaxial stress fields.

Derivations of effective volume and area relationships for those specimens for which none

were found in the literature, the elliptical-transition tensile, the ring tensile, and the disk flexure
(including the outer region), are also included.

vii



SUMMARY

The tensile strength of brittle materials is dependent upon both the size of the specimen
being tested and the stress distribution within the specimen. Weibull’s two-parameter statistical
distribution is used to account for these effects on strength distributions of lithium hydride by

using the relationship
m
%.4 _ [VE,B]
9.5 Vea

for failures related to internal flaws or

for surface-related flaws,
where

o, = Weibull characteristic strength,

m = Weibull modulus,

Vi = effective volume,

A = effective area,

Subscript A and B = specimen types or sizes.

Three distinctly differing uniaxial specimen types (i.e., an elliptical-transition pure tensile
specimen, an internally pressurized ring tensile, and two sizes of four-point flexure) are shown
to provide different strength distributions as expected, because of their differing sizes and loading
modes. After strengths are separated into upper- and lower-strength distributions, the upper-
strength distributions from all uniaxial specimen types vary as predicted by the Weibull-based
effective specimen volume relationship. The effectiveness of the Weibull-based effective area
relationship proved applicable only to low-strength distributions for two specimen types, and this
applicability appears to be fortuitous. The association of higher strengths with volumetric and
lower strengths with surface failure initiation is confirmed by fractography.

Lower strengths in the distributions are believed to result from surface-machining damage,
and the effective area correlation was demonstrated for only two specimen types, the large four-
point flexure and the ring tensile, because of an insufficient number of surface-related failures
in the remaining specimen types. Different machining methods are required to fabricate the
different specimen types, each producing a unique surface finish. Use of Weibull statistics requires
identical flaw populations. The grains constitute the major internal flaw source, and the grain size
distribution is uniform for all specimens; machining damage constitutes the major surface flaw
source and would be expected to vary with the machining methods used.
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The two-parameter Weibull model cannot account for increased failure probability associated
with the multiaxial stress fields of the fourth specimen type, the predominantly equibiaxially
stressed disk-flexure specimen. Alternative theories need to be investigated for a solution to this
problem since most components would experience biaxial stresses. Biaxial stresses produce
appreciably lower strengths than do uniaxial stresses; thus, scaling from uniaxial-specimen data
to biaxially stressed component sizes would provide nonconservative estimates of component
strengths.



INTRODUCTION

The tensile strength of a brittle material is controlled by the size and distribution of both
surface and internal flaws in the material. Consequently, the tensile strengths of brittle materials
exhibit sampling size and loading effects that are substantial in some materials. Larger specimens,
which have a greater probability of containing a critical size flaw, exhibit lower strengths than do
smaller, geometrically similar specimens. However, loading effects can cause large bend-type
specimens to exhibit higher strength values than do physically smaller, uniform-tensile specimens
because a smaller portion of the bend specimen, the outer region, is more highly stressed. These
effects are well demonstrated by the major differences in strength distributions in Fig. 1 from four
widely differing tensile-strength specimen types.

The earliest and still the most widely accepted statistical theory of fracture that quantifies size
and loading effects on strength was proposed by Weibull."? The simplest and most widely used
two-parameter formulation of Weibull’s approach to describing the probability of failure, P, at a
stress, ¢, for volumetric flaws is

’ (1

B, - f (;";] dv . @
v

Equation (2) is integrated throughout the entire volume that is subjected to tensile stress. The
quantity o, is the size-dependent characteristic strength (at P = 63.2%) for the distribution, and
the exponent m is the size-independent Weibull modulus, representing scatter in the strength data
and a measure of the flaw density of the material. High m values, such as those existing in
common metals, minimize size and loading effects in strength distributions.

When surface-related flaws are responsible for failure, Eq. (1) can be rewritten as

where now the surface risk of rupture B, is evaluated over all tensile-stressed surface areas, with
A and dA replacing V and dV in Eq. (2).
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Fig. 1. Composite lithium hydride strength distributions from axially loaded (elliptical-
transition) tensile specimens, hydraulically pressurized ring tensile specimens, four-point-flexure
specimens, and concentric-ring biaxial-disk-flexure specimens.



The effective volume V or effective area A, the parameters required for quantifying size and
loading effects on strength, are

B
V= 4
(05 /90)"
and
B
Ap = —4
(95 /09"

where g, is the strength value reported for a test. Once ¥V or A has been evaluated for each
specimen type, strength distributions from differing specimen types or sizes can be compared by
using

1
o4 _ ( E»B); 3)
Oo.8 Ve
or
A 1
%.,4 _ E,B],. 4)
99,8 Ag 4

where subscripts A and B refer to the type or size specimens for which results are to be
compared. Use of Egs. (3) and (4) requires equal m values for each distribution being compared,
further implying equal flaw populations in all specimens.

Ideally, similar methods can be used to predict the strength distributions for components for
which specimen data exist, again requiring identical flaw populations in each. Finite-element-
analysis programs would be used to perform the stress analysis and to evaluate the necessary
volume and surface integrations. Most complex components, however, are multiaxially stressed,
requiring more advanced methodology than the two-parameter Weibull statistical-distribution
function. Such methodology is currently receiving considerable attention, but no consensus has
been reached on a method for handling multiaxial-stress-state effects.



TENSILE STRENGTH DISTRIBUTIONS OF LITHIUM HYDRIDE

MATERIAL DESCRIPTION

The material from which all test specimens were machined was produced by a warm-pressing
method from powders having a broad particle size distribution, ranging from course powders
>1000 pm to fine, submicron particles. The powders were produced by grinding cast billets.
Thus, each particle is a single crystal, and the grain size distribution of the prepressed material
corresponds to the particle size distribution of the starting powder. The temperatures employed
in the subsequent warm-press operation were not high enough to allow grain growth, so the final
material grain size corresponds to the starting powder distribution.

SPECIMEN DESCRIPTIONS
Four-Point-Flexure Specimen
The one-fourth-point, four-point-flexure test is the preferred test in U.S. Army Military

Standard MIL-STD-1942(MR) for ambient-temperature strength testing of ceramic materials.*
The reported strength is the outer-fiber stress calculated from

3PL
4bh?°

O4.4pt

where P is the break load. The remaining variables, along with the outer-fiber tensile stress
distribution and dimensions, for both size specimens are defined in Fig. 2.

Weil and Daniel® have shown that the effective volume and area for this specimen are

_ Lbh(m + 2)
VE.4P! - 4(m + 1)2 (5)
and
h m+ 2
A, = ) 6
E.4b L(m+1 +b) 20m + 1) ©

Both Egs. (5) and (6) account for all tensile-stressed volumes and areas of the specimen that lic
within the outer specimen supports.
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Ring Tensile Specimen

The ring tensile test, introduced by Sedlacek and Halden,® consists of a thick-wall cylinder
internally pressurized to failure. A thin, rubber bladder separates the hydraulic fluid from the
specimen, and fixturing is designed to absorb all axial load. A circumferentially uniform hoop
stress that decreases in value with increasing radius according to a%r? is generated in the wall as
shown in Fig. 3. The reported strength is the maximum inner-wall tensile stress calculated from
the thick-wall equation

Ob.Ring = P,

where P is the pressure at failure and the remaining variables are defined in Fig. 3. A
compressive component of stress is also present on the inner surface equal in magnitude to the
pressure and decreasing to zero at the outer surface.

The cffective volume and effcctive area for this specimen, derived in Appendix A, are

p2-Im _ g2-2m

V. = 2nha®" ,
E.Ring T 2 -2m
which includes the entire specimen volume, and
2 2m
AER‘.n=21tah+a—h+ 1 a - a?|[,
> g b 1 p— m b2”l—2

which includes both inner and outer surfaces and both ends. The compressive stress component
is not considered to contribute to {racture in cither derivation.

Elliptical-Transition Tensile Specimen

The clliptical-transition tensile spccimen is a pure uniaxial tensile specimen with a straight
cylindrical gage scction, length L and diameter d, and elliptical-transition regions that terminate
in button-head gripping ends. This specimen is shown in Fig. 4, along with the idealized axial-
stress distribution. When this specimen was tested in the hydraulically operated, self-aligning grip
system developed at the Oak Ridge National Laboratory,” measured bending strains in the gage
scction were less than 1%. Finite-element analysis of the elliptical-transition tensile specimen
shows no significant stress concentrations in the transition region. The reported strength is
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Fig. 3. Ring tensile (a) specimen geometry and (b) through-wall circumferential stress
profile. Axial stress is zero.
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Op.ETT =

where P is the fracture load, d is the cylindrical-gage-section diameter, and ETT is the elliptical-
transition tensile specimen. This minimum diameter is used whether the fracture occurred inside
or outside the gage section.

The effective volume and effective area for the elliptical-transition tensile specimen, derived
in Appendix B, are

\ , a A\J22 .
Ve err nd’L + nd f d+ 2b[1 - l—x—] dx ™
* 4 2 a?
x=0
and
a 5 1-2m . 3
A gy = ndL + 2nd?" d+2pf1- |1-%X dx , ®)
, x=0 a’

with the variables defined in Fig. 4. Both Vi and Ag prr are expressed as integrals that are
evaluated numerically by using a Gaussian technique.® For the specimen dimensions of Fig. 4,
both Eqgs. (7) and (8) are evaluated as a function of the Weibull modulus, m, in Fig. 5.

Note that, in Fig. 5, m values below about 10 drastically increase both Vi g7 and Ag . This
is true for all specimens. Consequently, there is an increased risk of failure in lower-stress regions
outside the gage section, with the greater flaw density associated with low m values.

Biaxial-Disk-Flexure Specimen

A variety of biaxial-disk-flexure tests are found in the literature. These range from the
application of a uniform pressure on a ring-supported disk® to the biaxial equivalent of the three-
point-bend test wherein a single-point load is applied at the center of a ring-supported disk.!%!!
The concentric-ring biaxial-disk-flexure test'>!* used in this work is the biaxial equivalent of the
four-point-bend test.

As shown in Fig. 6, load is applied uniformly to the concentric rings, creating a through-
thickness-varying uniform equibiaxial stress state within the inner ring. As is also shown, the radial
and tangential stresses differ considerably between the inner and the outer ring.

11
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Fig. 5. Effective area and effective volume [Egs. (7) and (8)] evaluated for the elliptical-
transition tensile specimen of Fig. 4 as a function of Weibull modulus.
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Fig. 6. Biaxial-disk-flexure specimen geometry and outer-fiber stress profiles. (a) Disk
specimen geometry; (b) tensile surface radial-stress profile; and (c) tensile surface tangential-stress
profile.
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The reported strength is the maximum outer-fiber stress calculated from'?

3P a? - ¢? a? a
o =—1|1-v) —+(1+v)1n(-—),
BEDF " amp? 2a®  b? c

where P is the load at fracture, v is the Poisson ratio (0.08), BDF is the biaxial-disk-flexure
specimen, and the remaining variables are shown in Fig. 6.

Polyaxial stresses existing in this test specimen present problems for Weibull statistics, which
are purely mathematical models lacking in physical meaning. Considerable effort is being exerted
to develop more realistic approaches, such as probabilistic fracture mechanics, but this effort is
still in its infancy. In the derivations of the equivalent volume and area equations for the biaxial-
disk specimen (Appendix C), Weibull theory assumes that only the normal stress acting on the
flaw face contributes to failure.'* Between the inner and the outer ring, this normal stress is
assumed to be the larger tangential stress. The effective volume and area derived by using simple
Weibull relationships for the biaxial-disk-flexure specimen are

a »
_ _mhc? . 1 - v\ h al, . hv _ 9
Vesor 2maD) 21:( oL, ] 2m s D) [,.:c {1 - r G(n 6aL, [aL9 rG9(r)]} 2r dr

and

a

f {aL9(1 SV - r G (- v+ "Tz" (L, -r G,(r)]} r dr, (10)
r=¢

_ 2
Apppp = TC* +

a"Lg'

where L, is Roark and Young’s plate constant,!

and G4(r) and G,(r) are variable functions'® of the radius, r, defined as
6 = < |[<)-1 +21n£]
¢ 4r \\r c

and

14



Equations (9) and (10) are evaluated in Fig. 7 over a typical range of Weibull modulus, m, for
ceramic materials and the specimen size of Fig. 6. Again, both 4; and V;; are highly dependent
upon m.

EXPERIMENTAL RESULTS, ANALYSIS, AND DISCUSSION

Strengths from the five different specimens are tabulated in Appendix D and plotted in
Weibull coordinates in Fig. 1. In Fig. 1, the superimposed straight lines are linear least-squares
fits to the data. Nonlinearity is prevalent in both the large four-point-bend and the ring tensile
distributions and is noted to a lesser extent in the lower portion of the other distributions. Also,
there are major differences in the slopes of the distributions. These nonlinearities and inconsistent
m values suggest that two or more flaw populations contribute to the failure process. Since two-
parameter Weibull statistics are based on linear distributions, each data set was separated into
upper and lower data sets by using the censored-data method of Johnson.!!

Low-strength points in the large four-point-bend specimen data were censored, and the
remaining points were reranked and replotted. This process was repeated until the upper
distribution appeared linear and m was defined for this specimen distribution. The remaining
specimen data sets were likewise censored until each upper distribution attained m values similar
to the reference large four-point-bend m value. All points censored from the upper distribution
make up the lower distribution.

The resulting upper distributions (Fig. 8) now meet the requirement of near-equal m values
for the application of Egs. (3) and (4). Considerable differences remain in m of the lower
distributions (Fig. 9), and the nonlinearity in the ring tensile lower distribution indicates that more
than two flaw distributions are likely present in the overall data set for this specimen. An analysis
was not performed on ecither the elliptical-transition tensile specimen lower suspensions (which
contained only two points) or the small four-point-bend specimen (which exhibited no surface-
related failures). The variations in m for the lower data distributions can be attributed, at least
partially, to the low number of data points.

Fractography on four elliptical-transition tensile specimens verifies the association of high-
strength failures with volumetric-related-fracture initiation sites and low-strength failures with
surface-fracture initiation sites. The two highest-strength and the two lowest-strength elliptical-
transition tensile specimen surface-fracture initiation sites (Fig. 10) correlate with the assumed
relationship.

15
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Fig. 7. Effective arca and cffective volume [Egs. (9) and (10)] evaluated for the biaxial-disk-
flexure specimen of Fig. 6 as a function of Weibull modulus.
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Fig. 9. Composite lithium hydride strength distributions of lower suspensions from three
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Fig. 10. Fracture surfaces of two lowest-strength and two hlghest-strength elliptical-
transition tensile specimens, which confirm the association of low-strength failures with surface
flaws and high-strength failures with volumetric flaws, (a) Surface-fracture initiation site at 16.9
MPa; (b) surface-fracture initiation site at 21.9 MPa; (c) internal-fracture initiation site at 36.9
MPa; and (d) internal-fracture initiation site at 41.3 MPa.
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Fig. 10 (continued)
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Table 1 lists Weibull parameters m and g, the coefficient of determination 7 for the data fit,
the effective volumes and areas for each specimen type (with m = 11.8 and 5.5 from the large
four-point-bend reference distributions), and the number of total and censored points in each set.
These values and Egs. (3) and (4) will now be used to quantify size effects on strength
distributions from the five different specimens.

As shown by Quinn,? a log-log plot of g, vs ¥ or A of Egs. (3) and (4) with a slope of
—1/m, when plotted through the reference large four-point-bend data, should fit the results of
the other specimens if the two-parameter Weibull theory adequately models size effects. The
upper-suspension characteristic strength values from the ring tensile and elliptical-transition
tensile specimens are in excellent agreement with the effective volume theory (Fig. 11), whereas
0, for the small four-point-flexure tests is slightly above the theoretical value. The characteristic
strength for the biaxial-disk-flexure tests is well below the Weibull prediction.

The lower-suspension-data characteristic strengths (Fig.12) are not as well defined by the
effective area theory, because only two uniaxial-specimen-type data sets contained enough
lower-suspension points to generate Weibull plots. The quantity o, for the biaxial disk is low, as
expected, because of biaxial effects. Whereas the ring tensile o, fits the predicted value, the
nonlinearity in the ring tensile lower distribution (Fig. 9) indicates multiple-flaw distributions, thus
invalidating use of the two-parameter Weibull function. Also, the ring tensile m value is much
lower than the reference value (Table 1), violating the assumptions of Eq. (4).

Surface flaws can generally be traced to machining damage, and machining methods differed
for each specimen type. Both the elliptical-transition tensile and the disk-flexure specimen
surfaces are single-point machined in a lathe, all surfaces of the four-point-bend specimens are
milled, and the ring tensile fabrication consists of both deep, uncooled core drilling and final lathe
finishing. Dye-penetrant studies on the ring tensile specimen have shown significant cracks
remaining on finish-machined, cored surfaces, probably thermally generated during the coring
process. These machining differences probably account for both the different lower-strength-
distribution m values in Table 1 and the multiple-flaw distributions in the ring tensile lower-
strength distribution (Fig. 9).

The trend in effective area strength prediction (Fig. 12) is correct, but m differences and
nonlinearity in the ring tensile data (both related to machining differences), combined with the
absence of elliptical-transition and small four-point-bend results, do not adequately prove the
quantitative relationship between effective area and the characteristic strengths for the lower
distributions.

Identical flaw populations are assumed when Weibull scaling is applied. Volumetric
populations, which consist predominantly of grains, meet this requirement, whereas the variations
in machined surfaces do not.
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Table 1. Weibull parameters for lithium hydride from the four specimen
types after separation into upper and lower distributions

Coefficient of

Weibull Characteristic | determination, Effective Effective
modulus, m strength, o, r Number of volume, Vg area, Ag
Specimen type (dimensionless) (MPa) (0-1.0) points (mm?) (mm?)
Upper distribution:
Four-point flexure 11.8 478 0.903 13 of 35 194°
(large)
Four-point-flexure 13.0 60.0 0911 90f9 397
(small)
Ring tensile 12.2 433 0.877 16 of 35 6707
Elliptical-transition 11.3 363 0.927 10 of 12 4085°
tensile
Biaxial-disk flexure 12.9 258 0.935 32 of 36 4546°
Lower distribution:
Four-point flexure 5.5 35.0 0.958 22 of 35 623°
(large)
Four-point flexure c c c Oof 9 202°
(small)
Ring tensile 2.8 29.6 0.919 19 of 35 2557
Elliptical-transition c c c 20f 12 858"
tensile
Biaxial-disk flexure 7.6 189 0.942 4 of 36 9032

¢ Weibull modulus m = 11.8 from large four-point bend used as upper distribution reference.
* Weibull modulus m = 5.5 from large four-point bend used as lower distribution reference.

¢ Inadequate data for Weibull analysis.
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- Fig. 11. Effect of effective volume on characteristic strength for the upper-suspension lithium
hydride data. The solid line represents the theoretical relation, and points are experimental values.
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Fig. 12. Effect of effective specimen surface area on characteristic strength for the lower-
suspension lithium hydride data. The solid line represents the theoretical relation, and points are
cxperimental values.
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CONCLUSIONS AND RECOMMENDATIONS

Different uniaxial tensile-strength distributions for different sizes and types of lithium
hydride specimens are quantitatively explained by using the effective volume and, to a lesser
degree, effective area concepts in conjunction with the Weibull two-parameter, statistical-
distribution function. High-strength fractures are associated both theoretically and experimentally
with internal-fracture initiation sites by using effective volume theory and fracture-surface analysis
to identify fracture initiation locations. Limited numbers of lower-strength fractures and different
specimen-machining methods associated with each specimen type prevented the making of
definitive conclusions on the applicability of effective area theory to lower-strength fracture data.

The Weibull theory did not satisfactorily predict biaxial-specimen strengths from uniaxial-
strength data. It is recommended that alternative theories be investigated for a solution to this
problem. Since most components would experience multiaxial stresses, scaling from uniaxial-
specimen data to component sizes can now be done only for simple stress states.
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APPENDIX A
EFFECTIVE VOLUME AND AREA DERIVATIONS FOR THE
RING TENSILE SPECIMEN
THE EFFECTIVE VOLUME
For an internally pressurized, thick-walled vessel with open ends and external fixturing

reducing axial forces in the cylinder to zero, the principal stress fields are a circumferential tensile
component that varies through the wall as

and a compressive radial component equaling P, the internal pressure, at the inner radius a and
decreasing to zero at the outside radius b. Only the tensile component will be considered as
contributing to fracture. The quantity o(r) is redefined in terms of the reported strength g, the
maximum tensile stress occurring at the inner surface where r = a, as o(r) = g,(a’/r).

If we use the cylindrical-volume element dV = 2qrh dr of Fig. A.1, the risk of rupture is

b m
m 27,2
B:f 2(_’2] dV=[ _"M] 2nrh dr
v % %

a?\" A1)
VE,Ring = 2nh fr=a r [—2—) dr, (

which can be integrated either numerically or in closed form as

_ o BT — g27Im (A2)
Veans = 2000 T
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>

dAC = 2rr dr

Fig. A.1. Definition of volume and surface elements used to derive effective volume and arca
for the ring tensile specimen. (a) Cylindrical volume element used for risk-of-rupture integration
over the range r = a to b; (b) annular surface element used for risk-of-rupture integration for
ends and inner and outer surface areas subjected to uniform stresses.
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THE EFFECTIVE AREA

The effective area of the ring tensile specimen, A g, is composed of three distinct regions,
the inner surface, the outer surface, and both ends, all subjected to tensile stress. The stress on
each in terms of the reported strength o, is

o = 0, (inner surface),
o® = o,(a*b?) (outer surface) ,
and
o°(r) = a,(a¥?) (each end) .

The effective areas for both the inner and the outer surfaces where the stresses are uniform

on all area elements are simply the areas on which the stress acts, or
A°g ping = 2mwah  (inner surface)
and
AP ping = 2ma’h/b  (outer surface) .

The risk of rupture for the two ends combined, if we use the circular ring element
dA® = 2ar dr of Fig. A1, is

b
|
r=a
which can be integrated either numerically or in closed form as
o, \" 2Zm
B¢= 2n [ 9% a - a?|,
1 -m|o, p3m-2

which, when divided by the stress function (g,/0,)", becomes the effective area for the two ends
combined,

b
E(L)rdAc = 2] [0__”(‘12/’2)]-21“& .
% rea %




(4
AE,RIM =

2x a™
1 -m|pm2

- a’) (two ends) .

The total effective area for the ring tensile specimen, AE,R,-,,g, is the sum of the components
A% Ringy A5 Ring a0d A p,,., Which is

a’h 1 a (A3)
AE,Ring = 2n[ah+T + - m ( - a2 .

32



APPENDIX B
EFFECTIVE VOLUME AND AREA DERIVATIONS FOR THE ELLIPTICAL-
TRANSITION TENSILE SPECIMEN
THE EFFECTIVE VOLUME

The effective volume of the elliptical-transition tensile specimen, Vg g, is composed of two
parts, the center gage section (superscript a), where the stress is the reported strength g, or

o® = 0, (gage section) ,

and the transition regions (superscript b), where the stress in terms of the reported strength
decreases with x, the distance from the uniform gage section, as

2
d*e,

obx) = (transition regions) . (B.1)

2
d+2b(l— 1- X
aZ

Variables are shown in Fig. B.1.

Since the stress is uniform in the gage section, the effective volume here simply equals the
volume of the gage section,

nd’L

Verr = (gage section) .

The risk of rupture for the two transition regions combined, if we use the volume element dV*

of Fig. B.1, is
a
2
Bt =2| [°® dV"=2f k] d+2b[l- 1-1‘—]
v Oq x=0 4 a2

which reduces to
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| |
dx
N | {7
B3
Y

A\

3 —=)

//
jc’

L dbx)=d@+2b (1-v1-5) -

— dvP(x)=F [d@+2b (1-V1-% )]zdx

™ dAb(x) = nd? [d2 + 2b (1 - 1- )] ox

7/
N o 7

‘—-—’

2

ELLIPSE + g—z =1

Fig. B.1. Definition of volume and surface elements used to derive effective volume and area

for the elliptical-transition tensile specimen.
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p_ T °b~
Bt = = d™| =
2 o,

a 2-2m

‘ 2
f d + 2bj1 - l-—]] dx ,
x=0 a’

which, after being divided by the stress function (0,/d,)™, becomes the effective volume for the
combined transition regions,

a 2-2m
2
Vé’.m=’—2‘d2'"] d+2b[l— 1--"—2)] dx .

x=0

The total effective volume for the elliptical-transition tensile specimen is the sum of the
components Vg i and Vg prr

2-2m (B.2)

a
Vo . nd’L  nd™
EETT © T4 * 2

for which no closed solution could be found, thus requiring numerical-integration methods for
evaluation.

THE EFFECTIVE AREA

The effective area of the elliptical-transition tensile specimen, Ag g1, like the effective
volume, is composed of two distinct regions, the gage section and the transition region. Again,
because the stress on the gage-section surface is everywhere equal to g,, the effective area of the
gage section equals the surface area of the cylinder,

Agprr = ndL  (gage section).

The surface stress as a function of x in the transition region equals Eq. (B.1), and the area
increment shown in Fig. B.1 is

35



b
dAE,m =T

2
d+2b(1— 1-"—]}4::.

The risk of rupture, then, becomes

which, when divided by the stress function (o,/05)" and algebraically reduced, provides the
transition region effective area,

Ag grr = 2m dx (transitionregions) .

The total effective area for the elliptical-transition tensile specimen, A grr, is the sum of 4°; g
and A”; p;7, which is

2 2m-1

AE,E" = ndL + 2nd™ J .
X=

i (B3)
a

2
d+2b[1— 1-%

for which no closed-form solution could be found, thus requiring numerical-integration methods
for evaluation.
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APPENDIX C

EFFECTIVE VOLUME AND AREA DERIVATIONS FOR THE
BIAXTAL-DISK-FLEXURE SPECIMEN

THE EFFECTIVE VOLUME

The effective volume of the biaxial-disk-flexure specimen, Vi gy, is derived in two parts, the
region within the inner loading ring (superscript a) and the region between the inner and the
outer loading ring (superscript b). Within the inner ring, the equibiaxial stress in terms of the
reported strength ¢, varies linearly through the thickness as

‘() = %ob (central region, r < ¢) .

Since the two-parameter Weibull function is incapable of incorporating multiaxial stresses, the
biaxial effects on failure strength are ignored. With the circular-disk-volume element dV* = wc?
of Fig. C.1, the risk of rupture for the central region is

Be- [ 20) gye .

Y 9 y=0 %

which, when integrated and divided by the stress function (o,/0,)™, becomes the effective volume
for the central region,

whe?

—————  (central region, r < c) . (€D
2(m + 1)

V;.BDF =

Outside the central region, the tangential stresses o, are greater than the radial and, since
the larger stresses contribute more to failure and only one can be incorporated into the Weibull
model, the tangential stress component will be used exclusively in developing the effective volume
and area for the outer region. If we use Roark and Young’s relationships for a simply supported,
solid, circular plate with a uniform annular line load,' the tangential stress ¢(r,y) in terms of the
reported strength value ¢, can be shown to equal

» 1-v? alL o,hv
o, (ry) =2 -Z— oL, [ob {T:% -rGn+ 6baL9 [aL, -r G,(r)] s

where p is the Poisson ratio, L, is the Roark and Young plate function,’
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———A A
[ 1~~~ ay A AN, h
0 /1/ __//
R/ AN }
dr
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SUPPORT RING —/

b ———]

dva = nc2dy
dvP = 2rnrdrdy

Aa=1tC2 o— C —p]

T {
w2k

Z A2 - c?

a —»

dAP = 2nr dr [————— b

Fig. C.1. Definition of volume and surface elements used to derive effective volume and area for the biaxial-disk-flexure specimen.

(a) Disk and ring volume elements used for risk-of-rupture integrations for center and outer regions of specimen; and (b) inner effective
area and outer ring area element used for risk-of-rupture integration for outer region of specimen.



L9=— 1+v1ng+1-v1__(.:2 ,
a| 2 c 4 a

and Gg(r) and Gy(r) are variable functions of the radius, r, defined as

e eV _ 4., r
Gs(r)-4r[(r) 1 21n]

and

1+v r 1-v c
et frrm s 1 -]

The risk of rupture for the outer region is

Bb-[ m]- avh .

%
If we use the volume element dV* = 2ar dr dy of Fig. C.1 and the tangential-stress component
o/, the risk of rupture becomes

b 2(1-v

B, =2n

[aL9 -r G(r)]} rdrdy,

( ] f,_c y=0 m{—v'rG(r)+

which involves two variables requiring integration in parts. Rearranging as
H2

m a m
(%Z] [ _ {[f—f’;—r Gs(r>]+ K p G9<r)]} f Y™ dy
r=¢ y=0

separates the variables, and the second integral in the above equation can be solved in closed
form as

_y2
B - 27|20 = ¥)
haL,
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m+ 1
W gy DL

y=0 m+1

The first integral requires numerical integration, so the risk of rupture for the outer region
reduces to

m a m
b_ 1-v2\" & ) al, _ . h2v _
B, = 21:( oL, ] 2D [00] f . {[——lw r Gs(r)] 6aL, [aL, r G,(r)]} rdr,

which, after being divided by the stress function (g,/0;)", becomes the effective volume for the
outer region of the biaxial-disk specimen,

a »m
b _ o (1-v3)"  h al, LB _ (C2)
v, = 211'( oL, ] 2 D) ] i {[—1 +v r Gs(r)] [aL9 r G,(r)]} rdr.

Finally, the total effective volume for the biaxial-disk-flexure specimen, Vg ppp, is the sum of
Egs. (C.1) and (C.2),

a m
_ mhc? . 1-v3\" & alL, _ +hzv _
Vesor = 3men) 2“( aL,) 2(m+1) Lo {l+v G g T G9(')]} rdr.

THE EFFECTIVE AREA

The effective area of the biaxial-disk-flexure specimen, A gy, like the effective volume, is
composed of two distinct regions, the region within the inner ring (superscript a) and the region
between the inner and the outer loading ring (superscript b).

Within the inner ring, the outer-surface equibiaxial stress is constant and equals the reported
stress, g,; thus, the effective area is simply the area of the circle,

A;,Bpp = nc?  (center region) .
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Between the inner and outer supports, the larger tangential surface stress in terms of the
reported strength g, is a function of r,

aLh®™  h’r Gy(r) v

02D = —2 laLy(1 - v) - F G (1 - v?) + - :
al, 6 6

where G(r), G4(r), and L, are as previously defined.

If we use the surface element d4® = 27 dr of Fig. C.1, the risk of rupture for the outer area
is

2 2 »
“"(')rdﬂ ] l [aLg(l -v) = r G4r) (1-v?)+ aL96h v B (;69(’) v]} 2nr dr,

which, after being rearranged and divided by the stress function (g,/0,)”, becomes the effective
area for the outer region,

a

2n 2 hz "
- Ly(1-v)-r Gy(r) (1-v )+v?[L9—r G,(r)] rdr
a"Ly Vr=c

AB.BDF =

The total effective area for the biaxial-disk-flexure specimen, Ag ppp, is the sum of A% gpr and
A E,BDF »

Ag ppp =T+ iLg f {019(1 v)-r Gy(r) (1- v2)+v— [L,-r Gg(r)]} (C.3)

which requires numerical integration for evaluation.
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APPENDIX D

LITHIUM HYDRIDE TENSILE STRENGTHS FROM FOUR SPECIMEN TYPES

Elliptical-
Four-point flexure (MPa) Ring transition Axial-disk
tensile tensile flexure
Large Small (MPa) (MPa) (MPa)
—-17.5° 51.4 —-10.1° -16.9° —-14.7°
—-20.4 51.6 -10.1 -21.9 -18.1
-259 53.8 —-12.0 29.1 —183
-254 56.3 -16.8 30.1 =20.5
-26.2 567 -19.0 339 21.0
—28.2 . -218 21.0
~304 61.2 —22.1 34.0 514
-30.6 61.6 ~23.8 352 '
~32.4 61.8 =256 36.5 21.5
-326 66.4 ~31.1 36.5 22.1
~327 ~327 36.9 22.7
-33.2 -33.1 413 22.8
-36.1 —-34.9 ~ 22.8
-36.4 -35.3 22.9
-36.8 -35.6
~37.0 -36.0 233
-37.2 36.4 233
—ggg 37.1 234
—20. 37.5 23.8
T30 38.0 243
-396 388 24.8
39.9 38.9 248
41.0 39.1 248
421 41.0 248
42.6 41.0 252
428 429 25.4
43.3 43.5 256
45.5 44.0 25.6
47.9 44.8 25.6
48.0 44.9 259
50.1 48.3 26.6
50.4 50.4 26.9
55.0 27.1
27.4
278
27.8
28.0
28.2
30.2

“ Negative values indicate suspended data points associated with surface-initiated failures; positive
values are associated with internally initiated failures.
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