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ABSTRACT

WeibulTs two-parameter statistical-distribution function is used to account for the effects of 
specimen size and loading differences on strength distributions of lithium hydride. Three distinctly 
differing uniaxial specimen types (i.e., an elliptical-transition pure tensile specimen, an internally 
pressurized ring tensile, and two sizes of four-point-flexure specimens) are shown to provide 
different strength distributions as expected, because of their differing sizes and modes of loading. 
After separation of strengths into volumetric- and surface-initiated failure distributions, the 
Weibull characteristic strength parameters for the higher-strength tests associated with internal 
fracture initiations are shown to vary as predicted by the effective specimen volume Weibull 
relationship. Lower-strength results correlate with the effective area to a much lesser degree, 
probably because of the limited number of surface-related failures and the different machining 
methods used to prepare the specimens.

The strength distribution from a fourth specimen type, the predominantly equibiaxially 
stressed disk-flexure specimen, is well below that predicted by the two-parameter Weibull-derived 
effective volume or surface area relations. The two-parameter Weibull model cannot account for 
the increased failure probability associated with multiaxial stress fields.

Derivations of effective volume and area relationships for those specimens for which none 
were found in the literature, the elliptical-transition tensile, the ring tensile, and the disk flexure 
(including the outer region), are also included.
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SUMMARY

The tensile strength of brittle materials is dependent upon both the size of the specimen 
being tested and the stress distribution within the specimen. Weibull’s two-parameter statistical 
distribution is used to account for these effects on strength distributions of lithium hydride by 
using the relationship

( v  Y  ' e.b

for failures related to internal flaws or

^E,A

for surface-related flaws, 

where

ffo =  Weibull characteristic strength, 
m  — Weibull modulus,
Vg =  effective volume,

= effective area.
Subscript A  and B  = specimen types or sizes.

Three distinctly differing uniaxial specimen types (i.e., an elliptical-transition pure tensile 
specimen, an internally pressurized ring tensile, and two sizes of four-point flexure) are shown 
to provide different strength distributions as expected, because of their differing sizes and loading 
modes. After strengths are separated into upper- and lower-strength distributions, the upper- 
strength distributions from all uniaxial specimen types vary as predicted by the Weibull-based 
effective specimen volume relationship. The effectiveness of the Weibull-based effective area 
relationship proved applicable only to low-strength distributions for two specimen types, and this 
applicability appears to be fortuitous. The association of higher strengths with volumetric and 
lower strengths with surface failure initiation is confirmed by fractography.

Lower strengths in the distributions are believed to result from surface-machining damage, 
and the effective area correlation was demonstrated for only two specimen types, the large four- 
point flexure and the ring tensile, because of an insufficient number of surface-related failures 
in the remaining specimen types. Different machining methods are required to fabricate the 
different specimen types, each producing a unique surface finish. Use of Weibull statistics requires 
identical flaw populations. The grains constitute the major internal flaw source, and the grain size 
distribution is uniform for all specimens; machining damage constitutes the major surface flaw 
source and would be expected to vary with the machining methods used.
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The two-parameter Weibull model cannot account for increased failure probability associated 
with the multiaxial stress fields of the fourth specimen type, the predominantly equibiaxially 
stressed disk-flexure specimen. Alternative theories need to be investigated for a solution to this 
problem since most components would experience biaxial stresses. Biaxial stresses produce 
appreciably lower strengths than do uniaxial stresses; thus, scaling from uniaxial-specimen data 
to biaxially stressed component sizes would provide nonconservative estimates of component 
strengths.



INTRODUCTION

The tensile strength of a brittle material is controlled by the size and distribution of both 
surface and internal flaws in the material. Consequently, the tensile strengths of brittle materials 
exhibit sampling size and loading effects that are substantial in some materials. Larger specimens, 
which have a greater probability of containing a critical size flaw, exhibit lower strengths than do 
smaller, geometrically similar specimens. However, loading effects can cause large bend-type 
specimens to exhibit higher strength values than do physically smaller, uniform-tensile specimens 
because a smaller portion of the bend specimen, the outer region, is more highly stressed. These 
effects are well demonstrated by the major differences in strength distributions in Fig. 1 from four 
widely differing tensile-strength specimen types.

The earliest and still the most widely accepted statistical theory of fracture that quantifies size 
and loading effects on strength was proposed by Weibull.'’̂  The simplest and most widely used 
two-parameter formulation of Weibull’s approach to describing the probability of failure, P, at a 
stress, a, for volumetric flaws is

( 1)
f  I a \ m

F  = 1 -  exp -  W dV
. J w

where the integral is the volumetric risk of rupture.

B y  = dV  .
(2)

Equation (2) is integrated throughout the entire volume that is subjected to tensile stress. The 
quantity is the size-dependent characteristic strength (at P  =  63.2%) for the distribution, and 
the exponent m is the size-independent Weibull modulus, representing scatter in the strength data 
and a measure of the flaw density of the material. High m  values, such as those existing in 
common metals, minimize size and loading effects in strength distributions.

When surface-related flaws are responsible for failure, Eq. (1) can be rewritten as

/* = 1 -  exp -  - dA
. J 1 %

where now the surface risk of rupture is evaluated over all tensile-stressed surface areas, with 
A and clA replacing V  and dV  in Eq. (2).
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SPECIMEN 
O ELLIPTICAL-TRANSITION TENSILE 
A  RING TENSILE •
□ FOUR-POINT BEND (LARGE)
•  BIAXIAL-DISK FLEXURE 
■  FOUR-POINT BEND (SMALL)

10
STRENGTH (MPa)

100

Fig. 1. Composite lithium hydride strength distributions from axiaUy loaded (elliptical- 
transition) tensile specimens, hydraulically pressurized ring tensile specimens, four-point-flexure 
specimens, and concentric-ring biaxial-disk-flexure specimens.



The effective volume Fg or effective a rea^£ , the parameters required for quantifying size and 
loading effects on strength, are

Ve =
/S ) "

and

looT

where a,, is the strength value reported for a test. Once or A^; has been evaluated for each 
specimen type, strength distributions from differing specimen types or sizes can be compared by 
using^

0.A ' E . B (3)

or

0.A

'O.B

! A  ^  ^E.B
^E,A

(4)

where subscripts A  and B  refer to the type or size specimens for which results are to be 
compared. Use of Eqs. (3) and (4) requires equal m  values for each distribution being compared, 
further implying equal flaw populations in all specimens.

Ideally, similar methods can be used to predict the strength distributions for components for 
which specimen data exist, again requiring identical flaw populations in each. Finite-element- 
analysis programs would be used to perform the stress analysis and to evaluate the necessary 
volume and surface integrations. Most complex components, however, are multiaxially stressed, 
requiring more advanced methodology than the two-parameter Weibull statistical-distribution 
function. Such methodology is currently receiving considerable attention, but no consensus has 
been reached on a method for handling multiaxial-stress-state effects.



TENSILE STRENGTH DISTRIBUTIONS OF UTHIUM HYDRIDE

MATERIAL DESCRIFnON

The material from which all test specimens were machined was produced by a warm-pressing 
method from powders having a broad particle size distribution, ranging from course powders 
>1000 fim to fine, submicron particles. The powders were produced by grinding cast billets. 
Thus, each particle is a single crystal, and the grain size distribution of the prepressed material 
corresponds to the particle size distribution of the starting powder. The temperatures employed 
in the subsequent warm-press operation were not high enough to allow grain growth, so the final 
material grain size corresponds to the starting powder distribution.

SPECIMEN DESCRIPTIONS

Four-Point-Flexure Specimen

The one-fourth-point, four-point-flexure test is the preferred test in U.S. Army Military 
Standard MIL-STD-1942(MR) for ambient-temperature strength testing of ceramic materials.'* 
The reported strength is the outer-fiber stress calculated from

3PL
^bAPt Abh‘

where P  is the break load. The remaining variables, along with the outer-fiber tensile stress 
distribution and dimensions, for both size specimens are defined in Fig. 2.

Weil and Daniel^ have shown that the effective volume and area for this specimen are

„  _ Lbh(m  + 2)
^EAPt A, -,̂ 24(m + 1 )

and

.  l {— ! —  * b\ . (6)
>  + 1 ) 2(m  + 1)

Both Eqs. (5) and (6) account for all tensile-stressed volumes and areas of the specimen that lie 
within the outer specimen supports.
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(a)

LARGE SPECIMEN 
b =  12.7 mm (0.500 in.) 
h = 9.35 mm (0.375 in.) 
L = 76.2 mm (3.000 in.)

SMALL SPECIMEN 
b = 8.00 mm (0.315 in.) 
h = 6.00 mm (0.236 in.) 
L = 40.0 mm (1.575 in.)

Fig. 2. Four-point-flexure (a) specimen geometry and (b) outer-fiber stress profile.



Ring Tensile Specimen

The ring tensile test, introduced by Sedlacek and Halden,® consists of a thick-wall cylinder 
internally pressurized to failure. A thin, rubber bladder separates the hydraulic fluid from the 
specimen, and fixturing is designed to absorb all axial load. A circumferentially uniform hoop 
stress that decreases in value with increasing radius according to is generated in the wall as 
shown in Fig. 3. The reported strength is the maximum inner-wall tensile stress calculated from 
the thick-wall equation

p

where P  is the pressure at failure and the remaining variables are defined in Fig. 3. A 
compressive component of stress is also present on the inner surface equal in magnitude to the 
pressure and decreasing to zero at the outer surface.

The effective volume and effective area for this specimen, derived in Appendix A, are

*2-2" _ Q2-2m

which includes the entire specimen volume, and

2 -  2m

^E.Ring 2 71 ah + ----- +
m

which includes both inner and outer surfaces and both ends. The compressive stress component 
is not considered to contribute to fracture in either derivation.

Elliptical-Transition Tensile Specimen

The elliptical-transition tensile specimen is a pure uniaxial tensile specimen with a straight 
cylindrical gage section, length L  and diameter d, and elliptical-transition regions that terminate 
in button-head gripping ends. This specimen is shown in Fig. 4, along with the idealized axial- 
stress distribution. When this specimen was tested in the hydraulically operated, self-aligning grip 
system developed at the Oak Ridge National Laboratory,’ measured bending strains in the gage 
section were less than 1%. Finite-element analysis of the elliptical-transition tensile specimen 
shows no significant stress concentrations in the transition region. The reported strength is
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(a)

a  = 9 .5 2 5  m m  (0 .375  in.) 
b  = 15 .875  m m  (0 .625  in.) 
h = 25 .4  m m  (1 .000  in.)

O b -

(b)

Fig. 3. Ring tensile (a) specimen geometry and (b) through-wall circumferential stress 
proGle. Axial stress is zero.
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LOADING FLATS

19.050 mm 
10.795 mm
19.050 mm 
12.700 mm

ELLIPSE
(a)

<Tb - -

/ I
K

(b)

Fig. 4. Elliptical-transition tensile (a) specimen geometry and (b) axial stress profile in the 
gage and transition regions.
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’ b,ETT
4P
%d}

where P  is the fracture load, d  is the cylindrical-gage-section diameter, and E T T  is the elliptical- 
transition tensile specimen. This minimum diameter is used whether the fracture occurred inside 
or outside the gage section.

The effective volume and effective area for the elliptical-transition tensile specimen, derived 
in Appendix B, are

E,ETT
nd^L  ̂ n d ^” f d  + 2b

/

1 - x^1 -—
4 2 „ J x=0 I N

2 - 2 m

dx (7)

and

ETT =
x=0

d  + 2b

/

1 -

\
x^1 -  —

I-2m

dx , (8)

with the variables defined in Fig. 4. Both and are expressed as integrals that are
evaluated numerically by using a Gaussian technique.® For the specimen dimensions of Fig. 4, 
both Eqs. (7) and (8) are evaluated as a function of the Weibull modulus, m, in Fig. 5.

Note that, in Fig. 5, m  values below about 10 drastically increase both and A eett- Thi* 
is true for all specimens. Consequently, there is an increased risk of failure in lower-stress regions 
outside the gage section, with the greater flaw density associated with low m  values.

Biaxial-Disk-Flexure Specimen

A  variety of biaxial-disk-flexure tests are found in the literature. These range from the 
application of a uniform pressure on a ring-supported disk® to the biaxial equivalent o f the three- 
point-bend test wherein a single-point load is applied at the center of a ring-supported disk.^®’“  
The concentric-ring biaxial-disk-flexure test’  ̂’'' used in this work is the biaxial equivalent of the 
four-point-bend test.

As shown in Fig. 6, load is applied uniformly to the concentric rings, creating a through- 
thickness-varying uniform equibiaxial stress state within the inner ring. As is also shown, the radial 
and tangential stresses differ considerably between the inner and the outer ring.

11
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20

a  = 19.050 mm (0.750 in.) 
b = 10.795 mm (0.425 in.) 
d = 19.050 mm (0.750 in .) 
L = 12.700 mm (0.500 in.)

18

C\J
16

CJ

14

12

10LL
LL
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10 15 20 25 300 5

16

14

12

WEIBULL MODULUS, m

CO
E
E

00o
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>

10 ^
o>
LU
>
t—o
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U.
Li.
LU

Fig. 5. Effective area and effective volume [Eqs. (7) and (8)] evaluated for the elliptical- 
transition tensile specimen of Fig. 4 as a function of Weibull modulus.
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LOADING RING DISK SPECIMEN

SUPPORT RING

a  = 76.20 mm (3.000 in.) 
b = 88.90 mm (3.500 in.) 
c = 38.10 mm (1.500 in.) 
h = 19.05 mm (0.750 in.)

(b)

0

0

(c)

Fig. 6. Biaxial-disk-flexure specimen geometry and outer-fiber stress profiles, (a) Disk 
specimen geometry; (b) tensile surface radial-stress profile; and (c) tensile surface tangential-stress 
profile.
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The reported strength is the maximum outer-fiber stress calculated from’^

3P (1 -  V )  ^  +  (1 +  V )  I n f ^
2a^

where P  is the load at fracture, u is the Poisson ratio (0.08), BDF  is the biaxial-disk-flexure 
specimen, and the remaining variables are shown in Fig. 6.

Polyaxial stresses existing in this test specimen present problems for Weibull statistics, which 
are purely mathematical models lacking in physical meaning. Considerable effort is being exerted 
to develop more realistic approaches, such as probabilistic fracture mechanics, but this effort is 
still in its infancy. In the derivations of the equivalent volume and area equations for the biaxial- 
disk specimen (Appendix C), Weibull theory assumes that only the normal stress acting on the 
flaw face contributes to f a i l u r e . B e t w e e n  the inner and the outer ring, this normal stress is 
assumed to be the larger tangential stress. The effective volume and area derived by using simple 
Weibull relationships for the biaxial-disk-flexure specimen are

'  E ,B D F
nhc 

2(m+l)
+ 2n

aLg j 2(m
h f  j _ ^  

^ l ) J r = c
r  G,(r) + [aZ, -  /-G,(r)] I 2r dr

and

Ê,BDF
2ti I 

Ir=c
aL,(l -  V )  -  r G,(r) (1 -  v^) + ^  [ I ,  -  r  G,(r)][ r  d r , (10)

where Lg is Roark and Young’s plate constant. 15

, c l l + v ,  a 1 - vLg = -  ( ------ In -  + -------
^  a I 2 c 4 1 - I -

and G^{r) and Gg(r) are variable functions'^ of the radius, r, defined as

GAr) =
4r

and

14



c | l  + v ,  r 1 - vGgif) = -  In -  + — —-
r 2 c 4

Equations (9) and (10) are evaluated in Fig. 7 over a typical range of Weibull modulus, m, for 
ceramic materials and the specimen size of Fig. 6. Again, both Ag  and are highly dependent 
upon m.

EXPERIMENTAL RESULTS, ANALYSIS, AND DISCUSSION

Strengths from the five different specimens are tabulated in Appendix D  and plotted in 
Weibull coordinates in Fig. 1. In Fig. 1, the superimposed straight lines are linear least-squares 
fits to the data. Nonlinearity is prevalent in both the large four-point-bend and the ring tensile 
distributions and is noted to a lesser extent in the lower portion of the other distributions. Also, 
there are major differences in the slopes of the distributions. These nonlinearities and inconsistent 
m values suggest that two or more flaw populations contribute to the failure process. Since two- 
parameter Weibull statistics are based on linear distributions, each data set was separated into 
upper and lower data sets by using the censored-data method of Johnson.^®’̂ ’

Low-strength points in the large four-point-bend specimen data were censored, and the 
remaining points were reranked and replotted. This process was repeated until the upper 
distribution appeared linear and m  was defined for this specimen distribution. The remaining 
specimen data sets were likewise censored until each upper distribution attained m values similar 
to the reference large four-point-bend m value. All points censored from the upper distribution 
make up the lower distribution.

The resulting upper distributions (Fig. 8) now meet the requirement of near-equal m  values 
for the application of Eqs. (3) and (4). Considerable differences remain in m  of the lower 
distributions (Fig. 9), and the nonlinearity in the ring tensile lower distribution indicates that more 
than two flaw distributions are likely present in the overall data set for this specimen. An analysis 
was not performed on either the elliptical-transition tensile specimen lower suspensions (which 
contained only two points) or the small four-point-bend specimen (which exhibited no surface- 
related failures). The variations in m  for the lower data distributions can be attributed, at least 
partially, to the low number of data points.

Fractography on four elliptical-transition tensile specimens verifies the association of high- 
strength failures with volumetric-related-fracture initiation sites and low-strength failures with 
surface-fracture initiation sites. The two highest-strength and the two lowest-strength elliptical- 
transition tensile specimen surface-fracture initiation sites (Fig. 10) correlate with the assumed 
relationship.

15
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a  = 76.20 mm (3.000 in. ) 
b = 88.90 mm (3.500 in.) 
c = 38.10 mm (1.500 in.) 
h = 19.05 mm (0.750 in.) 
V  = 0.08
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Fig. 7. EHective area and effective volume [Eqs. (9) and (10)] evaluated for the biaxial-disk- 
flexure specimen of Fig. 6 as a function of WeibuU modulus.
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SPECIMEN: 
ELLIPTIGAL-TRANSITION 
TENSILE 
RING TENSILE 
FOUR-POINT BEND 
(LARGE)

BIAXIAL-DISK 
FLEXURE

FOUR-POINT BEND 
(SMALL)

LU 4 0

10 100
STRENGTH (MPa)

Fig. 8. C om posite  lith ium  hydride s tren g th  d istribu tions o f  u p p e r  suspensions iro m  fou r 
tensile  spec im en  types.
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Fig. 9. Composite lithium hydride strength distributions o f lower suspensions from three 
tensile specimen types. Both the ring tensile data and the four-point-bend data remain nonlinear, 
an indication that multiple-flaw populations are still present.
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Fig. 10. Fracture surfaces of two lowest-strength and two hlghest-strength elliptical- 
transition tensile specimens, which confirm the association of low-strength failures with surface 
flaws and high-strength failures with volumetric flaws, (a) Surface-fracture initiation site at 16.9 
MPa; (b) surface-fracture initiation site at 21.9 MPa; (c) internal-fracture initiation site at 36.9 
MPa; and (d) internal-fracture initiation site at 41.3 MPa.

19



%

(c)

(d)

Fig. 10 (continued) 
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Table 1 lists Weibull parameters m  and Oq, the coefficient of determination for the data fit, 
the effective volumes and areas for each specimen type (with m =  11.8 and 5.5 from the large 
four-point-bend reference distributions), and the number of total and censored points in each set. 
These values and Eqs. (3) and (4) will now be used to quantify size effects on strength 
distributions from the five different specimens.

As shown by Quinn,^ a log-log plot of Oq v s  or A^; of Eqs. (3) and (4) with a slope of 
— 1/m, when plotted through the reference large four-point-bend data, should fit the results of 
the other specimens if the two-parameter Weibull theory adequately models size effects. The 
upper-suspension characteristic strength values from the ring tensile and elliptical-transition 
tensile specimens are in excellent agreement with the effective volume theory (Fig. 11), whereas 
ffg for the small four-point-flexure tests is slightly above the theoretical value. The characteristic 
strength for the biaxial-disk-flexure tests is well below the Weibull prediction.

The lower-suspension-data characteristic strengths (Fig. 12) are not as well defined by the 
effective area theory, because only two uniaxial-specimen-type data sets contained enough 
lower-suspension points to generate Weibull plots. The quantity for the biaxial disk is low, as 
expected, because of biaxial effects. Whereas the ring tensile Oq fits the predicted value, the 
nonlinearity in the ring tensile lower distribution (Fig. 9) indicates multiple-flaw distributions, thus 
invalidating use of the two-parameter Weibull function. Also, the ring tensile m  value is much 
lower than the reference value (Table 1), violating the assumptions of Eq. (4).

Surface flaws can generally be traced to machining damage, and machining methods differed 
for each specimen type. Both the elliptical-transition tensile and the disk-flexure specimen 
surfaces are single-point machined in a lathe, all surfaces of the four-point-bend specimens are 
milled, and the ring tensile fabrication consists of both deep, uncooled core drilling and final lathe 
finishing. Dye-penetrant studies on the ring tensile specimen have shown significant cracks 
remaining on finish-machined, cored surfaces, probably thermally generated during the coring 
process. These machining differences probably account for both the different lower-strength- 
distribution m  values in Table 1 and the multiple-flaw distributions in the ring tensile lower- 
strength distribution (Fig. 9).

The trend in effective area strength prediction (Fig. 12) is correct, but m  differences and 
nonlinearity in the ring tensile data (both related to machining differences), combined with the 
absence of elliptical-transition and small four-point-bend results, do not adequately prove the 
quantitative relationship between effective area and the characteristic strengths for the lower 
distributions.

Identical flaw populations are assumed when Weibull scaling is applied. Volumetric 
populations, which consist predominantly of grains, meet this requirement, whereas the variations 
in machined surfaces do not.
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Table 1. Weibull parameters for lithium hydride from the four specimen 
types after separation into upper and lower distributions

Specimen type

Weibull 
modulus, m 

(dimensionless)

Characteristic 
strength, oq 

(MPa)

Coefficient of 
determination,

(0-1.0)
Number of 

points

Effective 
volume, Fg 

(mm^)

Effective 
area, Ap  
(mm^)

Upper distribution: 
Four-point flexure 11.8 47.8 0.903 13 of 35 194“
(large)

Four-point-flexure 13.0 60.0 0.911 9 of 9 39“
(small) 

Ring tensile 12.2 43.3 0.877 16 of 35 670“
Elliptical-transition 11.3 36.3 0.927 10 of 12 4085“
tensile

Biaxial-disk flexure 12.9 25.8 0.935 32 of 36 4546“

Lx)wer distribution: 
Four-point flexure 5.5 35.0 0.958 22 of 35 623*’
(large)

Four-point flexure c c c O of 9 202*”
(small) 

Ring tensile 2.8 29.6 0.919 19 of 35 2557*
Elliptical-transition c c c 2 of 12 858*
tensile

Biaxial-disk flexure 7.6 18.9 0.942 4 of 36 9032*

K)N)

" Weibull modulus m = 11.8 from large four-point bend used as upper distribution reference. 
* Weibull modulus m = 5.5 from large four-point bend used as lower distribution reference. 

Inadequate data for Weibull analysis.
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Fig. 11. Effect o f effective volume on characteristic strength for the upper-suspension lithium 
hydride data. The solid line represents the theoretical relation, and points are experimental values.

23



Y-A 91-6371

«
Q.

OO

(5
2
UJ
crI— 
CO
g
1—
CO
cc
UI
I—

<
cc
<Io

FOUR-POINT BEND (LARGE)

RING TENSILE

m  = 5 .5

BIAXIAL- DISK FLEXURE

EFFECTIVE AREA, A^ (mm2)

Fig. 12. Effect o f effective specimen surface area on characteristic strength for the lower- 
suspension lithium hydride data. The solid line represents the theoretical relation, and points are 
experimental values.

24



CXDNCLUSIONS AND RECOM M ENDATIONS

D ifferent uniaxial tensile-strength distributions for different sizes and types of lithium 
hydride specimens are quantitatively explained by using the effective volume and, to a lesser 
degree, effective area concepts in conjunction with the Weibull two-parameter, statistical- 
distribution function. High-strength fractures are associated both theoretically and experimentally 
with internal-fracture initiation sites by using effective volume theory and fracture-surface analysis 
to identify fracture initiation locations. Limited numbers of lower-strength fractures and different 
specimen-machining methods associated with each specimen type prevented the making of 
definitive conclusions on the applicability of effective area theory to lower-strength fracture data.

The Weibull theory did not satisfactorily predict biaxial-specimen strengths from uniaxial- 
strength data. It is recommended that alternative theories be investigated for a solution to this 
problem. Since most components would experience multiaxial stresses, scaling from uniaxial- 
specimen data to component sizes can now be done only for simple stress states.
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APPEND IX  A

EFEECnVE VOLUME AND AREA DERIVATIONS FOR THE
RING TENSILE SPECIMEN

T H E  EFFECTIV E VOLUM E

For an internally pressurized, thick-walled vessel with open ends and external fixturing 
reducing axial forces in the cylinder to zero, the principal stress fields are a circumferential tensile 
component that varies through the wall as

and a compressive radial component equaling P, the internal pressure, at the inner radius a and 
decreasing to zero at the outside radius b. Only the tensile component will be considered as 
contributing to fracture. The quantity a(r) is redefined in terms of the reported strength a*, the 
maximum tensile stress occurring at the inner surface where r = a, as a(r) = abicP'lt^).

If we use the cylindrical-volume element d V  =  lirrh dr of Fig. A.1, the risk of rupture is

B = o(r) dV  =

r=a

2nrh dr ,

and the effective volume is the risk of rupture divided by the stress function thus,

fJr=a

/ 9\m
d r. (A.1)

which can be integrated either numerically or in closed form as

u 2 -2 m  _  „ 2 -2 m
   -----

2 -  2m

(A.2)
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dV = 2nrh dr

(a)

dA  ̂= 27cr dr

A® = 2jiah

A° =2nbh

(b)

Fig. A.1. DeGnition of volume and surface elements used to  derive effective volume and area 
for the ring tensile specimen, (a) Cylindrical volume element used for risk-of-rupture integration 
over the range r = a io b\ (b) annular surface element used for risk-of-rupture integration for 
ends and inner and outer surface areas subjected to uniform stresses.
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TH E EFFECTIV E A R EA

The effective area of the ring tensile specimen, is composed of three distinct regions,
the inner surface, the outer surface, and both ends, all subjected to tensile stress. The stress on 
each in terms of the reported strength is

and

( f  = Of, (inner surface) ,

</ =  ah(a^lb^) (outer surface) ,

a"(r) = af,(a^!r^) (each end) .

The effective areas for both the inner and the outer surfaces where the stresses are uniform 
on all area elements are simply the areas on which the stress acts, or

and

^ “E.Ring — '2'irah (inner surface)

Â E,ning =  ^ira^hlb (outer surface)

The risk o f rupture for the two ends combined, if we use the circular ring element 
dA^ =  2xr dr of Fig. A.1, is

’ r=a

a(r) dA‘ = 2
r=a

li tr d r  ,

which can be integrated either numerically or in closed form as

2 7 t
m (

°
1 -  m I N

U
L2m-2

which, when divided by the stress function (oJ oq)"', becomes the effective area for the two ends 
combined.
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The total effective area for the ring tensile specimen, is the sum of the components

^E .K n g  ~
U 1a h  + -------  +-------------b 1 - TO lfe2j>i-2

(A.3)
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A PPEND IX  B

EFFECTIVE VOLUME AND AREA DERIVATIONS FOR THE ELUPTICAI^
TRANSITION TENSILE SPECIMEN

TH E  EFFECTIV E VOLUM E

The effective volume of the elliptical-transition tensile specimen, is composed of two
parts, the center gage section (superscript a), where the stress is the reported strength a*, or

0° = Ob section),

and the transition regions (superscript b), where the stress in terms of the reported strength 
decreases with x, the distance from the uniform gage section, as

d * 2b

/

1 -

,

x^1 - —

(transition regions) (B.1)

Variables are shown in Fig. B .l.

Since the stress is uniform in the gage section, the effective volume here simply equals the 
volume of the gage section,

K  o r  ^ (goge section).
4

The risk of rupture for the two transition regions combined, if we use the volume element d V ’ 
of Fig. B .l, is

f i *  =  2
o W l

d  +  2 *

/

1 -
x^

1 -  —

h . l x - 0  4 I  > aV.
dx ,

which reduces to
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(j3 -dt>(x) = cja -t- 2b (1 - Vl”^ )

dvb(x) = f  [d^ -I- 2b ( l  - V l - | | ) ]  dx 

dAb(x) = Ttda [da + 2b ( l  - V T | | ) ]  dx

 ELLIPSE | | + ^ =  1

Fig. B .l .  D efin ition  o f  vo lum e and  su rface  e lem en ts  u sed  to  derive  effec tive  v o lup ie  an d  area  
fo r th e  ellip tical-transition  tensile  specim en.
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2

/ \m •a / Y

d * 2b 1 - x^1 -  —
«x=0 I N a y

2-2m

dx.

which, after being divided by the stress function becomes the effective volume for the
combined transition regions,

'E .E JT  2

>a f \

d * 2b 1 - x^1 -  —
Jx=0 I N aV.

2 -2 m

dx

The total effective volume for the elliptical-transition tensile specimen is the sum of the 
components V ' e . e t t  ^ ^ d  V ' ’ e e t t  >

' ÊETT
nd^L = ------  + n d ^

'a
d + 2b

r

1 -

Y

1 -  —
4 2 Vx=0 I N a^ll

2 -2 m (B.2)

dx ,

for which no closed solution could be found, thus requiring numerical-integration methods for 
evaluation.

TH E EFFECTIV E A R EA

The effective area of the elliptical-transition tensile specimen, A eett  ̂ like the effective 
volume, is composed of two distinct regions, the gage section and the transition region. Again, 
because the stress on the gage-section surface is everywhere equal to cr̂ , the effective area of the 
gage section equals the surface area of the cylinder,

■̂ £.£7 T ^dL (gage section).

The surface stress as a function o fx  in the transition region equals Eq. (B .l), and the area 
increment shown in Fig. B .l is
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dAE.ETT 71 d ^ lb

/

1 -

\

1 -  — dx

The risk of rupture, then, becomes

B*’ = 2ti
m

, x = 0

d^
/ \ 7

d  + 2b 1 - x^1 -  —
I N ,

d  ^ lb

/

1 -
x^ 

1 -  — dx ,
I N

which, when divided by the stress function (fffc/ffo)”* ^^d algebraically reduced, provides the 
transition region effective area.

■̂ E.ETT ~
i2m

x=0
d ^ lb

(
1 -

----------- V
x^1 -  —

I N

2m-l dx (transitionregions) .

The total effective area for the elliptical-transition tensile specimen, is the sum
andy4*££7Y>'''hich is

2m-1

(B.3)
‘̂ E.ETT v.dL + lnd^"‘

'a
d + lb

f

1 -

\
x^1 -  iL

x=0
dx ,

for which no closed-form solution could be found, thus requiring numerical-integration methods 
for evaluation.

36



APPENDIX C

EFFECTIVE VOLUME AND AREA DERTVATIGNS FOR THE
BIAXIAL-DISK-FLEXURE SPECIMEN

THE EFFECnVE VOLUME

The effective volume of the biaxial-disk-flexure specimen, is derived in two parts, the
region within the inner loading ring (superscript a) and the region between the inner and the 
outer loading ring (superscript b). Within the inner ring, the equibiaxial stress in terms of the 
reported strength varies linearly through the thickness as

0 ‘Cy) = {central region, r < c) .
h

Since the two-parameter Weibull function is incapable of incorporating multiaxial stresses, the 
biaxial effects on failure strength are ignored. With the circular-disk-volume element d V  = ttc^ 
of Fig. C .l, the risk of rupture for the central region is

o(y) dV“ =

,N2 , ^ ^
2 ^ 0

y=0
■Kĉ dy ,

which, when integrated and divided by the stress function becomes the effective volume
for the central region.

'E.BDF
nhc^

2{m + 1)
{central region, r < c) . (C.1)

Outside the central region, the tangential stresses a* are greater than the radial and, since 
the larger stresses contribute more to failure and only one can be incorporated into the Weibull 
model, the tangential stress component will be used exclusively in developing the effective volume 
and area for the outer region. If we use Roark and Young’s relationships for a simply supported, 
solid, circular plate with a uniform annular line load,' the tangential stress a(r,y) in terms of the 
reported strength value Uj, can be shown to equal

b. , ^ y 1-v^a,{r,y) = 2 j- —— 
h aU

1 ^
ll+v

-  /• G,(r) + -
6aL„

where p is the Poisson ratio, Lg is the Roark and Young plate function,'
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-dVa = 7tc2dy 
• dV  ̂= 2nr dr dy

-A® = Jtc2

- dA*’  = 2nr dr

2 ^

Fig. Q l .  Definition o f volume and surface elements used to  derive effective volume and area for the biaxial-<lisk-flexure specimen, 
(a) Disk and ring volume elements used for risk-of-rupture integrations for center and outer regions of specimen; and (b) inner effective 
area and outer ring area element used for risk-of-rupture integration for outer region of specimen.



, c J l + v ,  a 1-vL„ = -  1------ In
a \ 2 c 4

and G6(r) and G 9 (r) are variable functions of the radius, r, defined as

G«(r) =
4r

- f  -  1 + 2  In ^

and

c J l  + v ,  r 1 - v
^ 9 ^  = -  1-^;— In -  + — -—  r 2 c 4

1 -

The risk of rupture for the outer region is

B - L
o^(r,y) dV^ .

If we use the volume element dV^ = 2irr dr dy of Fig. C .l and the tangential-stress component 
ff the risk of rupture becomes

B, = 2n 2(1 -  v") m

haLg

which involves two variables requiring integration in parts. Rearranging as

B, = 2it
( \m fa

/
r

2(1 -  v )̂!m al^
r GAr)

haL^ )r=c ,1 1 + V ‘
h^V

’  5 5 ;
r dr

separates the variables, and the second integral in the above equation can be solved in closed 
form as
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/.w ... A- mr •'
y-o m + 1

The first integral requires numerical integration, so the risk of rupture for the outer region 
reduces to

B, = 2n
2 ( m + l ) r=c

aLa
1+v

-  r G,(r) [al, -  r G,(rm r  dr

which, after being divided by the stress function becomes the effective volume for the
outer region of the biaxial-disk specimen.

2\m

aLa I 2(m + l) r=c

al^
1 + v

-  GAf) h}\
6aLg

[aL,- r Gj(r)]^ r dr (C.2)

Finally, the total effective volume for the biaxial-disk-flexure specimen, is the sum of
Eqs. (C .l) and (C.2),

E.BDF ^—  I  -  r  G^(r) + —  \al^ -  r G,(r)ll r dr
2(/n + l )  [ a l ,  j 2(m + l )  [1  + v '  6 a L ,   ̂ ^  'Jj

TH E EFFECTIV E A REA

The effective area of the biaxial-disk-flexure specimen, A^gpp, like the effective volume, is 
composed of two distinct regions, the region within the inner ring (superscript a) and the region 
between the inner and the outer loading ring (superscript b).

Within the inner ring, the outer-surface equibiaxial stress is constant and equals the reported 
stress. Oh’, thus, the effective area is simply the area of the circle,

Ap gpp = Ttĉ  (center region) .
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Between the inner and outer supports, the larger tangential surface stress in terms of the 
reported strength is a function of r,

a ,  ^o,(r) = — d l4 \ -  V )  -  r  G i f )  (1 -  v2) +
oL^t^v h^r G,(r) v

6 6

where G lr) , G lr ) ,  and Lg are as previously defined.

If we use the surface element dA'’ = 2-wr dr of Fig. C .l, the risk of rupture for the outer area
IS

o(r) a U l - v )  -  r GJr)  ( l - v " )  +2\ 9aLgh \  h r GJr)  v
2 n r  d r ,

which, after being rearranged and divided by the stress function becomes the effective
area for the outer region.

i*> _
'^E.BDF ~  ■

a ”L; .r=c

a

A "  I i a L ^ l - v )  -  r  G^r) ( 1  - v ^ )  + G,(r)]| r d r .

The total effective area for the biaxial-disk-flexure specimen, g^p, is the sum of A°pgj)p and
E,BD F  >

^E.BDF ~ ! Z , ( l - v ) - r  G i f )  ( l - v ^ )  + v ^  [ L , - r  G^W] r d r . (C.3)

which requires numerical integration for evaluation.
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APPENDIX D

LITHIUM HYDRIDE TENSILE STRENGTHS FROM FOUR SPECIMEN TYPES

Elliptical-
Four-point flexure fMPa'l Ring transition Axial-disk

tensile tensile flexure
Large Small (MPa) (MPa) (MPa)

■17.5“ 5 1 .4  - 1 0 . 1 “ - 1 6 . 9 “ - 1 4 . 7 “
- 2 0 .4  5 1 .6  - 1 0 . 1  - 2 1 . 9  - 1 8 . 1
- 2 5 .9  5 3 .8  - 1 2 . 0  2 9 .1  - 1 8 . 3
- 2 5 .4  3 — 1 6 .8  3 0 1  —2 0 .5
- 2 6 .2  - 1 9 . 0  Wq 2 1 .0
- 2 8 .2  5 6 .7  _ 2 1 8  2I.O
- 3 0 .4  6 1 .2  _ 2 2 .1
-3 0 .6  6 1 .6  - 2 3 . 8  3 5 .2
- 3 2 .4  6 1 .8  - 2 5 . 6  3 6 .5

2 1 .4

2 1 .5

- 3 2 ;6  6 6 4  - 3 L 1  3 6 .5  2 2 .1
-3 2 .7  - 3 2 . 7  3 6  9  2 2 .7
- 3 3 .2  - 3 3 . 1  4 j ‘3  2 2 .8
3 6 .1  - 3 4 . 9  2 2 .8

2 2 .9-3 6 .4  - 3 5 . 3
-3 6 .8  - 3 5 . 6

-3 9 .0
-3 9 .4
-3 9 .6

2 3 .33 7 .0  - 3 6 . 0
3 7 .2  3 6 .4  2 3 .3
3 7 .3  3 7 .1  2 3 .4

3 7 .5  2 3 .8
3 8 .0  2 4 .3

3 8 .8  2 4 .8

3 9 .9  3 8 .9  2 4 .8

4 1 .0  3 9 .1  2 4 .8

4 2 .1  4 1 .0  2 4 .8
4 2 .6  4 1 .0  2 5 .2

4 2 .8  4 2 .9  2 5 .4

4 3 .3  4 3 .5  2 5 .6
4 5 .5  4 4 .0  2 5 .6
4 7 .9  4 4 .8  2 5 .6
4 8 .0  4 4 .9  2 5 .9
5 0 .1  4 8 .3  2 6 .6
5 0 .4  5 0 .4  2 6 .9
5 5 .0  2 7 .1

2 7 .4

2 7 .8

2 7 .8  

2 8 .0  

2 8 .2
3 0 .2

“ Negative values indicate suspended data points associated with surface-initiated failures; positive 
values are associated with internally initiated failures.
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