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To Trink

The Heart is the capifal of the Mind,
The Mind is a single State.
The Heart and the Mind together make

A single continent.

~Emily Dickinson
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Abstract

As a first step toward a computer model of a_bioﬁembrane-]ike
bilayer, a dynamic, deterministic model of a phospholipid monolayer
-has been constructed. The model moves bhOSpholipfd-like centers of
force according to én integrated law of motion in finite difference
form. Forces on'each phospholipid analogue are derived from the
gradient of the local potential, itself the sum of Coulombic and-:
short-range terms. The Coulombic term is abproximated'by use of a
finite-difference fbrm of Poisson's equation, while the short-range
‘term results from finite-radius,'bairwise summation of a
Lennard-Jones potential. Boundary potentials are treated in such a
way that the model is effectively infinite in extent in the.p1ane
of the monolayer, The two-dimenéiona1 virial theorem is used to
find the surface pressure of the monolayer as'a function of
molecular area. Pressuré-versus-areaAcurves for simulated
monolayers are compared to those of real monolayers. Dependence of
the simulator's behavior on Lennard-Jones parameters and the
specif%c geometry of the molecular analogue is discussed.
Implications for thé physical. theory dflphoépho1ipid mono layers and

biTayers are developed.

iv



Table of Contents

Dedication.

Vitae
Acknowledgements
Abstract

Table of Contents
List of Figures

List of Tables

I. BACKGROUND

A. Phospholipids and Biomembrane Structure ‘
| Models of Biomembrane Structure

The Nature of Phospholipid Molecules

B. Interactions of Phospholipid Molecules
E]ectrostaiic Interactions |
Electrodynamic Interactidns
Over]ap Interactions

C. Phys1ca1 Chemistry of Monolayers

Structure of the Air-Film-Water System
Measurement of Monolayer Properties
D. Simulation |
Stmulation in General
Elements of Molecular-dynamics Simulation

Deterministic.versus Statiéticé] Simulation

viii

11
14
20

21
28

30
32
35



vi

Table of Contents (cbntinued)

IT. CONSTRUCTION OF THE MONOLAYER SIMULATOR

A. The Particle-dynamics Program

General Plan of the Algorithm
The Equations of Motion

B. Calculation of Forces

Construction of the Coulombic Potential
Surface

Construction of the Non-Coulombic Potential
Surface .

Calculation of Potential Gradients

Application of Fdrces to the Mo]eéu]ar
Ana]ogue.

C. Calculation of Temperature, Surface Pressure,

and Molecular Area

| Temperature
Surface Pressure and Molecular Area

Generation of Pressure-Area Curves

ITI. COMPARISON OF EXPERIMENTAL AND SIMULATION RESULTS

A. Experimental Pressure-area Curves

B. ' Simulated Pressure-area Curves

C. Comparison of Pressure-area Curves

Page

37
40

45

67
69

70

71
74
79

83
86 -
95



vii

Table of Contents (continued)

IV. CONCLUSIONS
A. Adequacy of the Model

B. Directions for Further Study

APPENDIX A: Monolayer-simulation Program
Main Program (MD1.LU)
Subroutines
INIT
INIT32
‘INITSP
RANLOC
QDIST1
LUDEC3
FORCE1
FORCEZ
LJFOR2
- PRESS1
PHOTO
APPENDIX B:  Program to Solve Matrix'Equat{on.(LuoEC3)
APPENDIX C:  Program to Compute Potential Due. to an
| Infinite Array of Discrete Charges (PWSUM3)
APPENDIX D: Pressure-Density Isotherms for Imperfect
| Gas of Stockmayer Particles

BIBLIOGRAPHY

99
101

104

117
119
120
121
123
126
130
131
132
134
135
138

149

152
159



Figure

I.1

I.2

I1.1

IT.2

I1.3

II.5

List of Figures

Title ' . Page
Schematic diagram of dipalmitoyl phosphatidylcholine 8

Pressure-area isotherm for myristic acid on 0.01 N

HC1 at 290% 25
General flowchart for the particle-dynamics program 39

Schematic diagram of molecular analogues lying in the

x-y plane _ ~ 46

Schematic diagram of computational lattice, central

array, and image arrays - 49
Diagram of one x-y p1éne.in the computational lattice 56
Schematic diagram of the z-dependence of the

potential due to an infinite sheet of equal numbers

of discrete positive and negative charges lying in

Lthe x=y plane : .59

viii



III.1°

II1.2

IIT.3

I11.4

0.1

ix

List of Figures (continued)

~ Comparison of actual and approximate

potentials in the plane of the chargeé

Transformation of simulation results from pressure-

versus-temperature form to pressure-versus-area form
Experimental pressure-area isotherms

Simulation results: surface pressure as a function

of temperature at.fixed molecular area

Simulation results: surface pressure as a function

of molecular area at fixed temperature

Juxtaposition of experimental and simulation

isotherms

Pressure-density isotherms for imperfect gas of

Stockmayer particles

66

81

85

92

94

97

156



List of Tables.

Table Title

I1.1 Results of'direct-summation'ca]cu]ation of the
potential due to an infinite array of 8A x 8A cells

each containing one positive and one negative charge

63



"SECTION I

" BACKGROUND



Phospholipids and Biomembrane Structure
-Models of Biomembrane Structure

Since the middle of the nineteenth century, when
Nageli first suggested that ée11s may be encabsu]ated in a
membrane impermeable to some substances, much has been
learned of the structure of biological membranes.
Plasmalemmal and intracellular membranes from various
organs and organisms_genera11y have the following common
characteristics: |

(i) they are constructed in large part ffom lipids

and proteins,

(i1) their tHickness is onAthe order Qf 50 éngstroms,

(iii) they are more permeable to 1ip1d-so1ub1é
compounds than to lipid-insoluble compounds
(disregarding metabolically-energized transport).

In addﬁtion, electron-microscopic and X-ray diffraction
studies of various membranes, including sarcoplasmic
reticulum, erythrocytes, myelin, and retinal rods (Lee,
1975; Jain, 1972), have led to a structuré] model which is
very widely accepted among membranologists. In this
model, the membrane is visualized as a two-dimensional

matrix of lipid molecules in which proteins are‘embedded.



"The matrix is bi-lamellar in form, with the polar ends of
the lipids facing outward and the non-polar ends inward.
Whether the proteins lie on the surface of the matrix or
‘are.deeply embedded in the matrix is ndt entirely clear,
fhough'the latter arrangement may somet imes bé favored
thermodynamically (Singer and Nicolson, 1972).
Furthermore, it seems likely that some proteins éxtend
froh one side of the membrane fo the other, particularly
in view of the trans-membrane transport of jons known to
be mediated by such metab611ca]1y-powered, proteinaceous
pumps as the (Ca++ + Mg++)-debendént adenosinetriphos-
phatase of sarcoplasmic reticulum (Shamoo and .MacLennan, .
1974). Both proteins and lipids have some mobility in -
this structure (Cherry, 1976).
There are two energetic factors which favor the

'stabi1ity of this membrane structure: hydrophobic and
hydrophilic contributions to the free energy of the
system. More free energy is required to insert é
hon-po]ar moiety into a polar environment than into a
non-polar environment (hydrophobicity) and, similarly,
more free energy is required to insert a polar moiety into
a non-polar environment than into a polar environment
(hydrophilicity). If one were to move a lipid molecule
out of the bi-lamellar membrane so that the hydrocarbon

tails were partially exposed to the surrounding agueous



solution, the hydrophobic increase in free energy would be

approximately 1.2 keal/

mole for every pair of CH2
groups exposed . Since transfer of zwitterionic glycine
from water to acetone, a non-polar solvent, increases the

keal/noje (Singer, 1971), the

free ehergy by 6.0
hydrophilic increase in free energy which would result if
one moved the polar head of a phospholipid into the
non-polar interior of the membrane is estimated to-be

~ several ki]oca1or1esvper mole. NykT is about 0.6 kcal

at 300° K, so these stabilizing factors are five to ten
times larger than the}ma1 energies.

There are several ways to form molecular systems in
the Taboratory which.have structures somewhat similar to
the Tipid matrix of cellular membranes. One may form
multiple bilayers by dispersing phospholipids 1h water.
(Tanford, 1973), single bilayers by spreading a
phospholipid-decane mixture over a small aperture in a
submerged plastic cup and allowing it to thin until it
appears black (Jain, 1972), or single monolayers by
spreading phospholipids on the surface of a body of water
(Rothfield and Fried, 1975). Investigation of these
artific¢ial systems provides various types of information
on'physica1 processes which may be important in natural

membranes. In particular, the monolayer technique allows



one to measure several properties, such as the sur‘féce |
pressure of the film as it is expanded “or contracfed
- mechanically, and to derive some knowlege of molecular -
OrientationA(Adamson, 1976; p. 101), film-substrate

interactions, and intra-film interactions (Gershfeld,

1974).



- The Nature of Phospholipid Molecules

From a biophysicist's point of view, the most
important propefty of phbspho]ipid mo]ecu1es is that they
are amphipathic. In the literal sense, this means that
they have "two-sided feelings" or are affected in two
contrary ways. In the physical sense, this means. that
they have both polar and non-polar regions, the first
hydrophilic and the second hydrophobic. Figure I.1 is a
schematic diagram of a common phospholipid, dipalmitoyl
phosphatidy]cho]ine. The polar head group has a dipole
moment of approximately 19 debyes in vacuo, the
hydrocarbon chains which form the non-polar tail contain
16 carbon atoms and no carbon-carbon double bonds, and the
entire molecule has a weight of 733 daltons. The length
~of the fully-extended molecule is about 34 angstroms, the.
Tength of the fully-extended tails is about 22 angstroms,
and the minimal cross-section is about 5 angstroms by 9
angstroms.

Two facets of the conformation of phosphatidylcholine
and similar molecules are particularly relevant to
membrane studies: the orientation of the head-group dipole
and the extension of the tails. Both have receivéd great

attention in the literature: the first because the



Figure I.1

Schematic diagram bf dipa1mitoy1‘pho$phat1dy1cho1ine
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electrostatic interaction of the mo]ecu1esAin the lipid
matrix will be much different if their dipoles 1ie in the
plane of the matrix rather than~perpendicu1ar to it, and
the second because the surface area effectively occupied
by each mo]écu]e will vary according to the degree to
which the fai]s are fully extended and co-linear. The
question of dipole orientation remains controversial, but
quite understandably so, since the head group, being
exposed to the aqueous environment, is certain to be
affected very significantly by the temperature, ionic
strength, and pH of the solution, and by the state of the
1ipfd ﬁatrix as a whole. In the matter of tail
conformation in bilayers there is more agreement: the
tails are fully extended below the ca]ofimetrica]]y—
observed transition femperature (Hitchcock, et al., 1974),
but shqw'a'greater tendency to bend, especially at
1ecations near the terminal methyl group, above this
temperature (Lee, 1975). The transition temperature is
|owered if the ta11s contain carbbn-carbon double bonds;
it is raisedlif the tails contain mofe CH2 groues .
(Melchior and Steim, 1976). In monolayers, fhe
orientation of the 1ipids depends upon the surface
pressure: the tails are perpendicular to the film at high.
pressures end lie in theAp1ane of the film at low

_pressures (Gaines, 1966, p. 169). Furthermore, the
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transition temperature in monb]ayers increases as the
surface.pressure increases, but, except at very Tow
pressures, the tails are thought to'be fully extended
below that temperature and bent above it (Cadehhead, 1971).
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Interactions of Phospholipid Molecules

- E'l ectrost atic Interactions

Since phospholipid heads are polar, there is a
charge-chage interaction between them which may be

expreséed in-terms of the Coulombic potential:

(o} Qi Qj

ij- fme Fi3

$

where € is the permittivity and |

Q.

i

magnitude of the ith charge -

th th

ande

r..

i char ges

.distance between the i

Several common phospholipids, including phosphatidyl

et hanolamine and phosphatidyl choline, have one positive
'and one negative charge on each head group. 'Summing these
interactions in pairs, we obtain the total Coulombic:

~ potential for two such molecul es:

O - (11 1,1, ,
total  4me - ri3 T4 23 Tog

where charges 1 and 3 have val ueé of +¢ and charges 2 and

4 have values of -e.



12

We may use the Tast equation to compute a few -
representative, two-molecule interaction energies.

Suppose the arrangemeht were

+e(1) - - (3)+e
. . . a
-e(2) <4>-e ' l
f——b——f

Then, in a vacuum, with a=4A, we have

b (A) ®otal (J)

4 0.337 x 10718
8  0.607 x 1077
12 0.197 x 10712
16 0.88 x 10720

If one of the molecules were flipped end-for-end, so that

charges of unlike sign lay closer than charges of like

sign, ¢Eota1 would be of the same magnitude, but
opposite in sign. This interaction energy is clearly

dependent upon the orientation of the diploar head



13 '
groups. For separations greater than several dipole

lengths, it may be convenient to use a dipo]e?dipo1e

interaction energy of the form

DD o

- ab : . . _
77 = - . 3 (2 cos eacos eb - sin @, sin 8, cos (Qb - ¢a)),
mer
ab
where
Mas My 2 dipole manents of molecules a and b
" b = distance between dipole centers,

and ea, eb"¢a’ and ¢b describe the orientation
of molecules a and b (Hirschfe]dér, Curtiss, and Bird,

p. 849).
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- Electrodynamic Interactions

Let us focus our attention upon the saturated

~ hydrocarbon chafns of a phospholipid molecule. The

~ electronegativities of carbon and hydrogen are 2.5 and 2.1
on the Pauling scale and we may take the regions away from
the carbonyl group to be ﬁon-po]ar. These regions will
experience an effective binding force due to the
interaction of induced dipoles on neighboring chains.

This force is known as a dispersion force and it arise§ in

the following manner:

(i) a fluctuation in thé electron cloud of a given

molecule creates a short-lived dipole moment;

(i1) this dipole moment polarizes a region of a
neighboring molecule, creating a dipole moment

opposite in orientation to the first;

(iii) these induced dipoles attract one another.
The situation is somewhat more complicated than this since
‘the fluctuations at a given point depend upon spontaneous

fluctuations occuring at all other points in the system.
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It is thus the correlation between fluctuations that
- determines the magnitude of the dispersion force.
The salient features of the interaction energy due to

.dispersion are expressed by

where

polarizability of the ith molecule

Q
(1]

th th

molecules.

s and j

i distance between the i

The po1arizabi1ity tells one how chh induced dipole
moment appears when an external field is applied. If the
polarizabilities are small, then the .dispersion
interaction must also be small, since it depends upon
field-induced distortions of electron clouds.

There are twn hasic methnds of calculating the
magnitude of the dispersive interaction. . The first of
these is derived fraﬁ the equations for'the dispersive
interaction between two pojnt particles in a vacuum. Iﬁ
order to obtain W,.. for extended bodies, one assumes

that the total interaction is the sun of interactions
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between pairs of subunits making up the system (Hamaker,
1937, London,'1930a). It is known that this method is not
rigorous. |

The other method for calculating the dispersive
interaction is based upon work of Lifshitz and co-workers
* (Lifshitz, 1956; Dzyaloshinskii, et al., 1961) in which
the interacting bodies are treated as continuous media.
The interaction is considered to take place through a
fluctuating electromagnetic field present in the interjor
of materiaT bodies and extending beyond their boundaries.
This set of local fields is then treated as an
electromagnetic field covering the entire system (Brenner
and M Quarrie, 1973). This theory is thought to be.
rigorous, but its extehsion to non-planar géometries is’
difficult. | |

In order to obtain some estimate of the size of
dispersion energies in bilayer systems, we revert to an
application of the London-Hamaker summation technique
(Sa}em,'1960, 1962). Consider two parallel, saturated

hydrocarbon chains where-

L = length of chain

A = length of subunit in chain

N = number of subunits.in chain

D z'distance between chains ‘ - (D > A).
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By assuming that individual subunits have an interacfion .

" energy of the form

A
W, =— ,
T4
where :
d = distance between subunits
A = Hamaker "constant",

“the interactions between all subunits are summed to give

. [ 1(£\¢]
dis 4)\205 3 tan D 1+ L2/02 .

This becomes, for D<<L,

_ 3mAL _ 37mAN
dis  gy2p5  gy\p°

W

The subunit to be used in the calculation is
H

/
C-C

wi‘th >\=1‘.26/3. The interaction between two subunits,
Whond? is obtained by corﬁputing the following bond-bond
interactions, |
CC ---- CC (1 interaction)
" CH ---- CH (4 int‘eractio'ns.)

CC ---- CH (4 interactions)
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according to

i '1

PR L S -
bond d <(fri)2> <(§Y‘;‘)2>
i L

where the primes differentiate one bond from another,

<(§?1)2
;

(2?1)2 in the ground state, and rj and rj- refer

i : ’

to electronic coordinates of the bonds. This expression

> is the expectation value of the operator

is an approximation of London's formula for the
-dipole-dipole contribution to the dispersion energy of two
- molecules {London, 1930b).

Using experimental values for the mean bond

polarizabilities and calculating <(§?1)2> for the
‘ , i
C-H and C-C bonds with local bond wavefunctions, Salem

arrived at
kcal
we = " 1.34 x 10° mole (d in angstroms).
i 3
d
Hence, for two chains
. ; 3 keal
_ 3mAN -N (1.24 x 10 mo1e) (D in angstroms,
Wiis =5 5 = 5 ‘ |
8\D . D D<<L).

N is the number of subunits, but N is equal to the number
of carbon atoms in the chain since each carbon atom
belongs to two subunits. Then, if we use values of 4

angstroms for D and 18 for N, we have, for two molecules,
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o 3 keal a9 _J
‘ . - 18 (1.24 x 10 m_o1—e (4.19 VC—E])
Mgis = 5
Ny (4)

0.13x10% g |

- where NA'is Avogédfo's number . ’

The attractive term of the Lennard-Jone§ potential
will be used to simulate the dispersive interaction of
phospholipids. The maximum depth of the potehtial well,
B, should have a magnitude not greatly different from
the value of wdis just calculated..

It should be menfioned that interactions between
permanent charges and induced dipoles also contribute to
the electfodynamic interaction energy. For mo]ecu]es of
net'charge C, polarizability a, and dipole moment 1y,
the 1éading‘term for this interaction is Cza/r4 and
‘the second term is uaa/rs. However, for neutral

molecules, the r'4

term disappears and the"r'6 te?m
may be accounted for in the attractive bortion qf-the
Lennard-Jones potential (Hirschfelder, et al., 1954,

p. 987).
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- Overlap Interactions

A third category of interaction is caused by overlap
of the electron clouds of néighboring molecules. In |
quantum-mechanical terms, electrons areAForced, by the
Pauli exc]usion'princip]é, to occupy orbitals of higher
energy as the molecules approach; this leads to a
repulsive fofce between them. :

The details of this interaction, also known as the
va]énce force, are quite complicated (Hirschfelder,
Curtiss, and Bird, pp. 26, 917). For my simulation
purposes, it is sufficient that the repulsive force
increase rapidly as the intermolecular distance decreases

beyond a certain value; the‘r'}g term of the Lennard-Jones

potential will serve this function.
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I. C. Physical Chemistry of Lipid Monolayers at the Air-Water

Interface
~Structure of the Air-Film-Water System

- The study of the surface phenomena of Tliquids has
engaged many scientific luminaries since the seventeenth
~century, among‘them Young, Lap]aée, Gauss, Poisson,
Kelvin, Maxwell, Gibbs, and Rayleigh (Rayleigh, 1910). In
this century, the work of Langmuir, Harkins, Adam,
Dervichian, Joly, Ridea],.and Gorter has formed the basis
A'of current,understanding'of'fi1ms spread'at the air-water
interface (Gaines, 1966). |
Since water consists of polar molecules and air of
nonpolar molecules, it is to be expected that amphipathic
substances might form'stab1e layers at thé air-water
interface. A molecule with its hydrophilic part in water
and its hydrophobic part in air is in a state of Tower
energy than would be the case ff it had both parts in
either water or air. As a result, molecules at the
interface are resistant to both solvation and
evaporﬁtion. In fact, Benjamin Franklin noted that 4
teaspoonfu1 of 0i1 would exert a remarkable calming effect

as it spread to cover a half-acre of water surface

AN
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(Franklin, 1773).. No more data afe.needed to show that
such 0il films are extreme]y’thih: the volume of oil,
about 5 cubic centimeters, divided by thé area cpvered,
about 2000 squake meters, gives a thickness of 25 .
angstroms.

Modern film-balance experiments measure the
horizontal pressure required to constrain the film to a
certain area. Such experiments have demonstrated that
many amphipathic substances, fatty acids and alcohols in'

vparticu]ar, form stable films one molecule thiék.
Fﬁrthermore, since fatty molecules of various chain
1engtﬁs have the same Timiting area per molecule, the
molecules are.oriented with Tong axis approximately
perpendicular to the interface, at least at high surface
pressures (Langmuir, 1917). Work hy Adam and other§ has
shown that spontaneous spreading of an unconstrained film
results from an attraction between film and substrate
molecules qfeafer'than the mutual attraction of film
molecules. In addition, the film molecules lie parallel
to the interface at very low surface pressures (Adam,
1968, pp. 57, 212).

Between tﬁe high-pressure, perpendi;u1ar and
low-pressure, parallel configurations Ties an intermediate

condition in which the fi]m.mo1eCU1es show resistance to
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compression greatef than in the parallel configuration but
less than in the perpendicular. This leads to
pressure-areaAiﬁotherms such .as the one in Figure I.2 for

myristic acid. There are five distinct regions:

I - region of high-pressure, perpendicular
configuration often labelled "condensed";
II - transition region;

IIT - intermediate region often labelled "expgnded";
IV - transition region; and, |
V. - region of low-pressure, pafa11e1 configuration
often labelled "gaseous".

The "condensed" phase of the monolayer is one of very
tight molecular packingQ "The isotherm‘is approximately
linear, very steep, and often.eXhibits a nearly vertical
segment as the.afea per molecule approaches the area of a
cross-section normal to the molecule's long axis..
Hydrocarbon thain-1ength and femperature have only slight
effect on the isothefms of cdndensed films of fatty
alcohols and unionized fatty acids of fourteen to twenty
carbons.  However, branched or unsaturated chains will
usQa]]y prohibit formation of condensed films (Gaines,
1966, p. 233). | |

The "expanded" phase of the monolayer and the

transition to it from the "condensed phase" are poorly
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Figure 1.2

Pressure-area isotherm for myristic acid
on 0.0IN HC1 at 290%
(af ter Adam and Jéssop, 1926)
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understood. Experiments with unsaturatéd fatty acids
(Adam and Jessop, 1926;’Nutting and Harkins, 1939) show
that the expanded 1imb of the isofherm is raised very
slightly by increased temperature of decreased chain
length. The transition region, however, is much more
affected: the transition to the "condensed" phase occurs
at significant]y higher surface pressufes. In qualitative
terms, this behaviour'may bé explained by taking the
"expanded" phase to consist of_more-oréless’vertica11y
oriented molecules whose hydrocarbon chains are moderately
free to bend and twist about carbon-carbon bonds-so that
the area per moIgcu]e is abQut twice the cross-sectional
area. At higher temperatﬁres, these motions being more
pronounced, additional pressure must be applied to
condense the film. .Shorter chains have less attraction
for one another and méy f}op‘about more violently within a
given volume, so again more pressure must be applied. It
should he noted thét the expanded region of myristic acid
isotherms -can be fitted with |

kT

T-m_ = ,
o} A-Ao

where no'is a negative constant and Ao depends

linearly on temperature (Langnuir, 1933). Adequate
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theoretiﬁal justification of this equation has not yet
‘been developed.

The "gaseous" phase of the monolayer occurs when the
molecules are so far apért that they exert virtually ho
force on one another. The molecular area in this region
is extremely large, befhaps several thousand square
angstroms, and some systems are known to follow the
two-dimensional-gas equation (Adam and Jessop, 1926):
S
The transition from "expanded" to "gaseous" phases is

marked by a constant surface bressure of approximately 0.1
dyne/cm aslthe film molecules, having been compressed to a
certain density, adhere more closely due to their mutual

attraction.
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-Measurement of Monolayer Properties

Monolayers are most bften constructed in the
laboratory from a solution of the film-forming substance
“in a highly volatile, water-inso]ub]e'solveat, such .as
n-hexane. In most situations, essentially all of the
solvent will evaporate within a few minutes, so monolayer
properties will be unaltered by its use (Gershfeld,
1974).’ The film is formed by depositing a small amount of
this solution on the surface of highly purified water; -
precautions are taken to minimize contamination of the
surface by dissolved and airborne impufities; The
temperature of the system is also controlled.

If we know the molecular weight of the film-forming
substance, and if we carefully measure both the area of
the constrained film and the amount of substance added, -
then we may easily cé]cu]aﬁe the film's surface area per
mo]ecu]e.. It can be verified experimentally, in most
cases, that the constrained film covers the surface
uniformly and that the amount of film-forming substance
dissolved in the substrate is minute (Gaines, 1966).

There are two principal methods for measurement of
the film's surface pressure: the Wilhelmy and Langmuir

techniques. In the former, a thin plate of known size and
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density is suspended vertica]]ylin the liquid so that it
pierces the surface. The force on the suspending cord
depends on the size of the submerged portion of the plate
énd on the surface tension of the liquid. Spreading a
monolayer on the surféce will change the surface tension
and, if the suspending force is constant, thé
surface-tension change can be computed from tHe measured
change in the plate's vertical position. Alternatively,
the surface-tension change may be computed from the
measured change in suspending force when tHe vertical
position is held constant. The surface pressure is the
difference between the surface tensions of the pure and
film-covered liquids.

The Langmuir technique (Langmuir, 1917) measures the
force on a floating partition which separates film-covered
surface from c]eén surface. The float is connected by a
rigid‘vertical member to a tofsion wire; after
calibration, the horizontal force which brings about a
given ahgu]ar displacement from the vertical is known.

-Division of this force by the length of the float gives

the surface pressure of the film. -
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Simul ation
- Simulation in General

Simu1atioﬁ is the mimicry of -one system by another.
Of course, what shall be taken as mimicry depends upon the
nature of these systems and the goals of the
1nvestigator. One may want to mimic one, several, or many
characteristics of the original system. One may require.
that the simulator's internal processes be based on the
same principles as the internal processes of the simulated
system. Simulation‘bf-physfcal systems most pften foT1ows
this approach. A1ternat1ve1y, one may simply réquire that
both systems produce similar output from similar input,
regardless of internal processes.

Simuiation of physicaT systems can be useful in two
ways: o

(i) it can test the adequacy of explanations;

(ii) it can provide information which is difficult to

| obtain from physical experiments.

Our explanations can be tested because simulator
construction often demands that the principles. which we
believe to be operative in the simulated sysfen be made

explicit for implementation in the simulator. If the
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simulator built on the basgs of these principles fails to
mimic the original system correctly, we may suspect a f]éw
in the exp]anation.. Simulators which accurately mimic a
physical system can often be used to study aspects of the
'system which are not.easi]y'observabfe, such as . the
dynamics of certain subunits, behavior at extremes of
temperature or pressure, or behavior over very éhort or
very long periods.

Evaluation of a simulator requires that the verécity
of its mimicry be judged. What shall be taken as veracity
depends, 1like the description of mimicry, upon the nature
'of the systems and the goals of the investigator. In
- general, simulation of physical systems, especially
molecular systems, requires a high degree of correlation
between simulator output and 1ab0rat¢r,y data on the |
béhavior of the rea1‘system; we cannot ignore any areas in'
which they diverge significantly. Interpretation of
simul ator behavior outside the realm of known correlation

must be done pfudent]y.
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- Elements of Mo]ecular-dyhamics Simulation

Moiecu]ar dynamics is a determinfstic simulation
méthod in which objects follow Newton's equation of motion
while interactfng via a force Taw. The objects that we
speak of here are analogues of physical objects; they may
correspond to particles or to assemblies of particles. In
either case, movement is determined by a finite-difference

equation of motion:

~ . . (at)”
Ope1 =9y t 9, B+ q, 2 : s
where
q, = . generalized coordinate oflav
~ certain object at time t,
At = size of the time interval
t, = t0«+ nAt : >

and &h and ﬁh are the first and second time
derivatives of the coordinate at time tn. To obtain

this equation, we integrate

dt?

twice with respect to time, requiring that q and q have
values of &n and qn at time t . Hence, given g, q,

and q at time t,, we are able to find q at time th+1.
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The values of &n and hh can be obtained in

several ways. For first-order accuracy, we may use

9 = 7 (qn = 9p-1 )
F .

SI: (‘"Il—‘

4, =

Then the equation for In+1 becomes

QGne1 = 20 = dpo1 * fﬁ | Lé%li
where
Fn = force along generalized-coordinate
| axis, on a certain object at time tnn
m = mass of the 6bject ‘ R

For higher-order accuracy, we may use more complicated

formulae for an and a; (Schofield, 1973):

. At ' )

9% = 9-1 F &m (2 Fn *5 Fnal Fn-Z)
S |

A =3 (4 Fp - anl)

In this case the equation for Un+1 becomes

: at?
9n+1 =q, taq, At +gy (4 F, - Fn-l)

The force law governing the interaction of the
analogues in a molecular-dynamics simulation is chosen
~according to the nature of the real objects fhey
rebresent. If the objects are poiht charges, then the

force between two of them has the familiar Coulombic form:
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Qi Qj s
-l?c =_____2____.'-'__._L
ij . 4me rij i3
where € is the permittivity and
Qi = magnitude of the $Eh point
charge
¥,. = vector of magnitude r.. f
rij = vector of magnitude rij rom

the iiﬂ to the th charge

If the objects are uncharged molecules, then the force 1aw
must contain components ref]eéting both the attraction due
to'electrodynamic influences and the‘repu1sion due to
electron-cloud over]ap; This force may be expressed as
the gradient of one of several potentials: the
Lennard-Jones, the Kihara, or the Buckingham potential,
for example (Hirschfe]dér, Curtiss, and Bird, 1964,

PP . 31—35). In the case of the Lennard-Jones 6-12

potential,

2AJ . o 4L
Fij = -V Qij
12 6
T [EEL TR
1] 1J
where
B = maximum depth of the potential well

value of rij at which the

potential equals zero

Q
1]
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- Deterministic versus Statistical Simulation

In deterministic, molecular-dynamics simulation,
thermodynamic properties are derived from molecular
properties by averéging them over all particles and over

time.. That is, the thermodynamic property, B(ko,M,N) is

given by A
k=k0+M i=N -
ry \ _ 1 1 k
PlkoaMaN) = gt (T E P1>
k=k0 i=1 i
where

P? = the microscopic property of

particle i at time kaAt,

N - = the number of particles in the
system,
M+l =

the number of time-steps over which
averaging is done. |
A11 particles in the simulation contribute equally to thev
determination of P. |

In contfasf to detérminist{c methods,
non-determiniétic simulation obtains thermodynamic
properties by averaging molecular properties over
statisticofmechanica1 ensembles. If we use canonical
ensembles, the thermodynahic property is given by

(Metropolis, et al., 1953)
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5 - JPewm (-EAT) dv
rexp (-E/kT) dvPN ,
where | ' |
E = potential energ; of a system in the
| ensemble |
dVDN' = element of phase space for D space

dimensions and N particles per
system. |
In such simulation, fhfs integration is not carried out
over 511 possible states, but over only a sample of them.
This makes the computation less time-conshming, but the
choice of sample must be performed very carefully in order

to adhere to the principles of statistical mechanics.



SECTION II

' CONSTRUCTION OF THE MONOLAYER SIMULATOR
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The Partic1e-dynamic§ Program

- General Plan of the Algorithm

There are six basic steps in the repetitive algorithm
which moves the molecular anaTogues through space. We |
begin the simluation with a preliminary step which is not
repeated: |
| (0) sef initial positions and velocities of

ana]ogues.v
We then enter the eyc1iC'portion of the simulation:

(1) p]ace charges at interstices of computetional

lattice, |

(2) approximate the solution to Poisson's equation

for the Coulombic botentia] at the interstices,

(3) calculate the Lennard-Jones potentials in the

‘regiph of eaeh center of force,

(4) calculate the force components acting upon each

analogue,

(5) calcuiate‘new positions and velocities after a

small time increment,

(6) calculate the temperature and surface pressure

of the system.
Steps (1) through (6) are then repeated a thousand times

or more. .
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Figure II.1

General flowchart for the partic]e_dynamics‘program
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- The Equatjons of Motion

As was mentioned in the introduction, the equations
of motion consist of formulae which allow one to calculate

new velocities and positions on the basis of old

velocities, old positions and forces at the old

positions. The equations may be written in various forms,

all of ‘which are finite-difference expansions of the

function f(t + At) in a Taylor series about f(t). The

complete expansion has an infinite number of terms:.

At2 3..,

CF(t + At) = F(t) + atf(t) + &L F(t) + %}i Flt) + .-

2!
Using x, for x(nat), v, for the first time-derivative

of x, evaluated at naAt, and a, for the second

-time-derivative, we may write

vn+1 = vn + Atan

2
- At®
Xpel] = Xp ¥ ALV + 2 % -

This set of equat16ns makes no use of derivatives of the .

acceleration and so.includes only terms out to At in

2
n+l°

More accurate equations may be derived which

n+

incorporate derivatives of the acceleration by use of

finite-difference approximations. If we include terms out

2

to At

in both Vos1 and x we obtain

n+l1:



2 .
_ At~ Aa
Vel = Vp FOtR + =5 (Kf)n
2 ,a_ ,4-4a
_ At® (“n+l “n-1)
=Vt Atan(* 2 20t
_ At (a_,+4a -a_ ,)
=V, t 7 n+l n n-1
and
X = x_ + Atv_ + At2 a
n+l n n 'T n

Furthermore, if we include terms out to at3 in both-vn+1

and Xa+1> W€ obtain

L2 3
v =v_+ Ata_ + At Aa + At A Aa
n+l = i nC S5 GEh 6L (Zf)n] n

= Vn * €£ (an+1 * 4an - an-l)

+ At3 [ 1 (an+l' a4 4 an-l)]
6 Lzat ‘™ &t 5

=vpta (Zan+1 *+ 5a - an-l)
z 1 1

n
and
Xnel = % ¥ Atvn-+ AEE 4 ¥ éﬁi (A2
2 6 ‘At’n
=X, + Aty o+ AEE a + At3 (%n = -1)
2. " 76 At
= X+ Aty + Atz (4a_ - a_ )
n no =g n n-1/-

Note that 341 does not appear in the expression for X0+l

since forces are determined by position in the simulation.
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The accuracy of these equations of motion is c]eariy
dependent upon the size of the time step, At. Since the
motion of a particle is determined by the force it
experiences at a given position, and since this force is
calculated only at a limited number of posftions, it is
crucial that the force not change drastically from one
computed position to the next. Otherwise, unacceptably
Targe errors in the computed trajectory might result. |

We can estimate the appropriate size of At if we
assume that the force should vary by no more than 10%
between subsequent positions énd that the force has the

form

Flr) = =
r rn

Then the change in F, AF, is given by

AF = Ar-éE .

r
or

Ar‘éE

0.1 F(r) 5

Thus,

0.1 Elr)
= &F/ér

Ar

= 0.1 (- )
Forces which vary as r" will change most rapidly for
small values of r. If we take the distance of closest:
approach to be one angstrom, then the largest allowed

change in r, using the 10% 1imit on the change in F, is
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| Ar| = % x 1071

max
Then the maximum size of the time step will be

- lar]

~Atmax —_
ravg

The average velocity of a particle of mass M in an

assembly at temperature T is

ravg.= /kT/M

so that rayg is approximately 50 m/sec if M is 800
daltons and T is 300° K. We then find that

13

At = % x 107" seconds

max
Time steps of 10']6'to 10713 seconds are used in most _
molecular-dynamics calculations.

When oné simulates an.iso1éted system of particles
whi ch 1ﬁteract vlia conservative forces, the most important
test of the equations of motion is the degree to which the
total energy of thé system is conserved. In the case of
one rotational and two translational degrces of freedom,

the total energy of N particles of mass M and moment of

inertia I is
_ M2 M:2 1:2 o
Etot "2 [?Xi tYito ot Pi<xi’yi’ei)]

=

Pi(xi,yi,85) is the total potential energy of
the ith particle; it is related to the Coulombic and

Lennard-Jones potentials by
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Pi(xi’yi’e‘i) Z Q ¢ ( 1J) + Z ¢LJ(xik’yik) ’

J
where Q. is the magnitude of the Jiﬂ charge on the

th part1c1e, the summation on j is over all such

charges, and the summation on k is over all Lennard-Jones

th particle. The position of the

th

force centers on the i=—

nth force center on the mth m— particle is (x

mn>Ymn) -
Pi's dependence upon the positions of all particles in-
the'system has not been expressed explicitly here.

The degree .to which Etot remains constant during a
simulation is a complex function of the'force laws,
equations of motion, partic1e'density, and time-step size
- chosen for the simulation algorithm. Since increases in
the constancy of Etof are attained, in general, by the
use of higher-order equations of motion and .smaller time ,
steps, thus requirjng more computer time to simulate a
given system, exact constancy is not a practicable Qoa].
;t is practica], however, to construct the algorithm so
that Etot will show fluctuations of only a few percent

about some average value as the system evolves in time. -
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iI. B. Calculation of Forces -

- Construction of the Coulombic Potential Surface

In its simplest form, the problem to be sé6lved is
this: find, as a function of position, the potential due'
to an infinite”plane of discrete charges in free space.

We have several additional constraints:

(i) the molecular analogues consist of coupled pairs
of point charges; coupled charges ("brother
charges") do not interact;

(ii) the infinitude of the plane of charges is
generated by rep1ica£ing a small central square
in two dimensions. The net charge in the
centra1 squaré aﬁd in each of its images is zero;

(iii) the charges do not move out of the plane.
This situation is pictured in Figure II.2.
In order to compute a suitable solution for this

problem, we must solve Poisson's equation:

Vo(x,y,2) = - Il'"_g' P(x,¥,2),



Figure II.2

. Schematic diagram of molecular analogues

lying in the x-y plane
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where ¢ is the potential, p the charge density, and

e the pgrmittivity. In order to compute a solution
.quick1y enough to make dynamic simulation feasible, we
shall solve the equation at only a finite number pf
points. These points will be the interstices of a
three-dimensiona1‘1attice enclosing the central square, as
shown in Figure II.3. a,B, and y will be the

numbers of points along the x,y, ana Z axes; there will
therefore be (aBy) points in the lattice.

To further enhance the speed of computation, we shall
require that_al] charge be distributed upon the
interstices of the lattice. If is- thus important that
(aBy) bé large enough to prevent significant distortion
of the problem as it is converted from continuous to
discrete form. Each charge on thelmolécular éna1ogues
wi11'be appbrtioned to the four nearést‘1attice points by
two-dimensional linear weighting. |

In discrete form, Poisson's équation may-Be written

for each lattice point as

1, 1 1 1
-h—z(cbw-2¢p+¢e) + h—2(¢N-2¢P+¢S) + @(¢U-2¢P+¢D) = - 70,
: y

where
QP = charge density at lattice-point P
¢p = potential at lattice-point P
Oy = potential at the 1att1ce-point one point

away from P in the negative x direction
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Figure II.3

Schematic diagram of computational lattice,

central array, and image arrays’
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potential at the 1attice-poiht one point

op =
away from P in the positive x direction
hx = distancé<between'1attice.points in the x
d1rect1on
bgs Gy b y? ¢p> y» and hy are defined s1m11ar1y

for the y and z directions. This equation is derived by
| calculating gradients on the basis of functional values at

a point and at its six nearest neighbors. Higher-order -
equations may be derived by iné]uding'more distant points
in the calculation,

If we write the discrete equation for each lattice

point, having labeled them serially from 1 through
(0BY),

(aBYy) unknowns:

we obtain a system of (aBy) equations in

1 1 P 1 -~
‘2‘(4’1 -5y 70 Wragy) o pl01ay 20ty )+ 04720100 ) = g
"x y 2
L—( -2¢ ) + l—( 26+ ) + 1 (6.,,,-2 +¢. ) = :82
2 2-8y %2 024py 2 Poay™o02M2y) T T 0241702 M02.1) 7 T
X y ' z ‘
Lo -20 .+ Vo LG 20 )
pe oBy-8y “TaBy TaBy+By 2 oByty ~ToBy aBY Y
X ‘ y
Lt 1) - Y,
h2 q)OLB*{+1' aBy ‘afy-1 Ine °

z
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where a tilde marks those potentials lying outside the
1 lattice. Boundary conditions must be specified which
determine values for these external potentials, either
"explicitly" or "implicitly". If the conditions are "explicit",

: -
numerical values are'provided and terms like ;E¢1-By
may be transferred to the right side of‘the first
equation. If the conditions are "implicit®, the external
potential is giVen in terms of one of the (aBy) internal
botentia]s. In both cases we may write the system of

equations as a single matrix equation:

A = Q
where ‘
¢ -—
¢ = f
| ®agy
-Q | -
i Q3
: Q = .-_J'._. M
dne |
| %osy |

A~

and A is an (aéy Xia.B'y‘) matrix whose elements are derived
from the left sides of the equations.
Before discussing the boundary conditions used in the

simulator, let us see how‘the‘matrix equation is solved
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for the potentials. We first decompose R into two
math‘ces, ’ .

A = L0,
where all of E's elements are zero above the main diagonal
and all of a's elements are zero below the main diagonal.
In addition,. E's main-diagona] elements aré all equal to
one. We now have: |

o) =a ,
or, writing E for G$,< -

Le=Q.

This equation corresponds to the system of equations

116 Y

T2160* 12262 =9

13161 * 1326 * 13363 = Q3

In1C1 * TnaS2 * TngCa* -o- Ty = Qy s
where

N = aBy

Since we know 111 and Qj, we can so]ve.the'first
equation for cj. We can then solve the second eqﬁation.
: for ¢y, then the third for c3, aqd s0 on until we know
all the elements of E. This procesé»is called forward

‘substitution. We then solve
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Up = ¢
for ¢. The system of equations has similar structure:

Uppbp * Uppdp + U303 + o F Uppndy = Cq

Un-2, N-2PN=2 ¥ UN-2,N-1%N-1 * UN-2, NN T CN-2
Un-1, N-10N-1 * UN-1,NON T Cn-1
UnNON = CN

This time we so]ve the last equation for ¢y, then the
next-to last for ¢N_1;‘and-so on until we know all the
elements of ;. ,fhis process is called backward
substitution. Now that we have $, we have reached our
goal: we know the potential at all interstices of the
computational lattice.

Treatment pf the x and y Bpundaries in the monolayer
simulator makes the system periodic in the x and y'
directions. This is accomplished by implicit boundary
cbnditions which make pofentia]s at points a distance hX
or hy outside the centra1 array equal to the potential

at the nearest point of the array. The same is true for

points in planes para]]é] to the central array. That is;

~

¢P-BY = o (western boundary)

~

¢

!
=g

(eastern boundary)

p+By  °p
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~

¢P*Y (northern boundary)

]
=g

~

¢P-Y ¢p (southern‘boundéry)

Figure II.4 depicts this situation for one x-y plane of
the three-dimensional lattice.

- The z boundary of the simulator is treated in
different fashion since all charge lies in the monolayer
plane; periodic boundary conditions would simulate an
infinity of parallel monolayers, not just one. We
therefore.attempt to specify an implicit boundary
condition which is consistent with the way in which»the
actual potential falls off with increasing distance from
the monolayer plane.

Without performing any calculations, we may say the
fo]]oWing things about the potential due to an infinite
sheet ol eyual numbers of discrete positive and negative
_charges lying in the x-y plane:

(i) the potential will be zero at an infinite
distance from the plane;
(ii) the gradieht of the potential wi11‘a1so be zero
at infinite distance; |
(iii) if ¢(x,y,z) is plotted versus z, the profile
will béginﬁat 2=0 with some positive or negative
value, dependent-upon x and y, and approach zero

smoothly as z increases.
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Figure II.4

Diagram of one x-y plane in the computational lattice
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Figure II.5 shows ¢(x,y,z) as a function of z.

Further analysis results in the following points:

(iv) If we compare the slopes of thé o(x,y,2)
curves at a fixed va]ue_of Z, we can expéct
great variation for small values of z and much
less varjation for large values.

(v) If the ¢(x,y,z) curves go to zero at
approximately the same value of z, then,
considering two curves which approach the z axis
from the same side, the curve which lies further
from the z axis will have a slope of greater
absolute value.

Using (v) we may write
%% « = ¢(x,¥,2) = -k(x,¥,2) #(x,y,2)

Point (iv) suggests that k(x,y,z) may be approximated
by a constant for fixed z, if the value of Z, Z.,

is relatively large.

1o
Then 82| k olxay.z.)
Z-ZC

There is a way to construct an implicit boundary
condition on z which gives normal derivatives of this form
at the x-y planes bounding the computational lattice. We
make potentials af external points a distance hz away
from the boundary planes equal to a fraction of the

potential at the nearest point on the boundary plane.



58

~

Figure II.5

Schematic diagram of the z-dependence of the potential
due to an infinite sheet of equal numbers of discrete

positive and negative charges lying in the x-y plane
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That is,

Ppel = W¢p (upper boundary)
o ép-l = w¢p ‘(1ower boundary),
where .
0<wxl

Then the slope at point p in the boundary plane will be

%% = Ops1 - % .

p h,
Thus
A wo -
-:? ¢Eh ¢E
Az D 7
1-w
= - (+)9, -
hz D
= -kC¢p‘ s
where
= 1w
kC =
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To test the validity of the assumption that

az 227

d :
—9 - -kcrb(xxyszc)
C .

for sufficiently large z., ve cohsider the potentia1,due
~to an infjnite array of square cells which have an edge
length of 8 angstroms aﬁd contain one positive and one
negative charge separatéd by 5.65A. Table II.1 shows the
results of direct-summation ca]cufations_of the potential
at various points (see PWSUM program in Appendix C).‘ The
last column on the right shows a number which is directly -

proportional to kc, since

Al
-k & L) = f:fllf%l
c'zZ 32 727 hz
and
k '= LA(Z].,ZZ) .
€ hy ¢zl

Wlhen we are only 4A away from thc plane of charges we see
that the A/4 ratio varies fom 0.3015 to 0.3266. When

we move out to 8A and use an h, of 2A rather than 1A, as
is more reasonable for the simulation, the A/6 ratio
varies from 0;53406 to 0.54291. It appears that kc is -

appfoximate]y constant.
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Table II.1

Results of direct-summation calculation of the
potential due to an infinite array of 8A x 8A cells

each containing one positive and one negative charge
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X 4 Z, &, )’(‘-“.\120 P(x.,Y,Z,) 9_%:_‘:@
(R) (A) () ) (volis) (volts)

g8 3+ & S 4022\ 2334 - 0.n94

] 1e8¥ 2.0 0.3224

b 3.4489 2.3%0  0.32tk

4 1.4385 3o 0.3200
2 0 .47 0.3031 0.301S

g 3 8 lo  o8dis oWl ostzR
3 | 081363 03393 o059\
o 0380 - 0.32851 0.54291
4 0.4076} 0.134F 0.5A\84
2 0.09660 0.0450\ O 5¥0k



64

In order to see how much error is introduced in the

calculation of the potential by the assumption

afb L _1'\1‘/ ’,.{ '
82 . keolx,y,z) = o alx,y,2 )

e must compare the free-space potential obtaired by
direct summation with tHe potentials calculated using this
assumption. In Figure II.5, we plot such-potent1a1s for a
case which should show the approximate potentials in the
worst possible light, fhat is, along a line in the x-y
plane passing within one angétrom of one of the positi&e
charges. Even though the assumption is quite inaccurate

for such small values of z approximate notentials C

Zos
and E lie within ten percent of the free-space potential
(A} and their gradients agree rather well with those of A
forAQ less than 5A. When the potential is calculeated at
points very close tn the charge (within 1.732A for x
between & and 8A), and especially on the houndary of the
Tattice, agréement is poorer. These condificns de not
occur in the dynamic simulation. Furthermecre, when'zC

s small, a decrease in w improves agreement, while, when
Z. is large, an increase inw improves agreement. This
is to be expected, since the §1ope of &(x,v,2j, as a

function of z, decreases in absolute vaive as z is

increased.
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Figure I1.6

Comparison of actual and approximate

potentials in the plane of the charges
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~ Construction of the NonfCoulombic Potential Surface

In contrast to the particle-field interaction used to
construct the Coulombic pbtential surface, we shall use
‘direct summation of particle-particle interactions to |
construct the hon-Cou]ombic surface. This is méde
feasible by the rapid decrease in strength of these
interactions as the inter-particle distance increases.

For example, using the Lennard-Jones 6-12 potential,
oY = 4#[(—‘_’7)12 - F‘?—_)G]',
. iJ 1]

We may tabulate the' decrease as follows:

L
O/rij ¢ij

2.0 160288
1.5 473.48
1. 0
0.5 -0.615 x 10-1g-
0.1 -4.0 x 10-69
0.01 -4.0 x 10-14g

We see that the potentfa] differs from zero by only
4 x 10‘63 at a distance of 10 o. ' We may therefore
. truncate the direct summation of @%g over all j at some

maximum distance R. That is, .
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LJ g 12 g 6}
ol = — - (= )
“i,total 4Ba1§ j [(rij) (rij)

. 12 g 6
s 1 [ - (290

If o were 4 ﬂ, R 100, and the average area per

molecule 50 ﬁz, one would compute only some 200

LJ
i,total"

50 interactions would be needed. Of course, we must

‘ihteractions to obtain ¢ If R were 50, only

pérform the same calculation for each force center in the

system.
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- Calculation of Potential Gradients

Having computed the value of the Coulombic potential
af each of the computational-lattice interstices, we A
calculate the x and y gradients of the pdténtia] at the
actual location of the IEﬂ charge using wefghted
| averages of the potentials at the four nearést'1attice

points. Thus

E

A
(32)

>
=y
<

S - v Lo !éil)(¢5E'¢sw) + 5 )(¢NE‘¢NW?]

)}

<Z§)§ -+ [o- lél))(¢ij?sw) . (& i’)(¢NE'¢SE)]

>
>

where the neighboring potentials are labelled NW, SW, NE,

SE, and (X(I),Y(I)) is the position of the 1! charge

relative to the southwestern lattice point. The gradient

in z is omitted since the molecular analogues are

Eonstrained to 1ie in the plane of the monolayer.
Gradients of the non-Coulombic potential are found in

the same way, requiringbthe potential to be calculated not

at the location of the jh force center, (xi, yi)’

but at four near-by points: (xi+s, yi), (xi-s, yi),

(xi, y;*s), and (xi,.yi-s). Thus

'(AQ)LJ - o(xi*s,ys) - d(xi-s,y5)
i1 , 2s

()L o olxi5¥%8) - o(xy,;-5)
Y X; Yy 2s
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-.App1ication of Forces to the Molecular Analogue

We are now able to write expressions for the
resultant forces and the torque on a simple dumbbell-type
analogue whose Coulombic and Lennard-Jones force centers
lie atop one another’at either end of a rigid rod of
" length L. If we label the rod ends A and B, the force

components will be:

A _ A AdpyLJ
Fy = - (Zg)g - (Z%)A

B _ A LJ
Fx C T (_Q)B B (Zg)B
A _ A Ld
Fy = - (Zg);_- (_9)

B _ Ady\LJ
Fy = - (_Q) - (23)3

' The force components at the center-of-mass of the analogue

will be:
. X X X
FEM = gA oy g
y y y

Finally, if we take the center-of-mass to lie at the
midpoint of the rod and assume the rod makes an angle 6
with the pdsitive X-axis, then.the magnitude of the torque
about the center-of-mass is:

cM A

M _ L : A B.s =B
T3 (Fysin g - chos o - Fsing+ chos 8) -
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Calculation of Temperature, Surface Pressure, and

‘Molecul ar Area

- Temperature

When dealing with a system of N particles, each with
D degrees of freedom, one may write the total kinetic

energy of the system as

)
Ein = 7 NKT

by the equipartition theorem. Since

+

(

2.
Yj

22

N —

.2
.+
X

o=
=

N
i =L
kin i=1

for a system of N particles having mass M, moment of
inertia I, one rotational and two translational degrees of

freedom, the average téemperature of the system is

2

2
it Wy

i

T =1
3KN

2)A.

(Mx + Iéi

1

e =2

Each of the velocities in this equation is available
during the simulation, so T may be calculated af éach time
step at which the velocities have been computed.

How might one expect the ca]cu1afed average
temperature to behave? At the beginning, just after the
and]ogueé have been placed .on the central square,'they
will have a total energy determined by their initial

positions and velocities:



' N
=0) = M2, M. L
Egor (£<0) '1.51( 2 %10" 2 Y10 * 2 S0l Pi (X 0¥ ge2i)

Suppose that we choose to make all initial velocities
zero, so that the initial total energy depends only upon
initial positions:

(t=0) =
1

E P.(x

11 io’yio’zio)

M=

tot

Unless the initial positions have been chosen so that each
of the N partié]es lies at a lTocal minimum of the
‘potentia1 surface, the particles will be accelerated and
some potential energy will be converted to kihetic

energy. At t = nAt,

N
E t=nat) = ¢

I1:2
tot ( nt? ein)+ Pi(xin’yin’ein) .

- Since 'the change in kinétic energy is a complicated
function of the shape of the poteﬁtia] surface and the
particle pbsitioﬁs, it is . 1ikely that the amount of energy
transformed into kinetic energy will not give the system a
temperature very hear that of the physical monolayer,
about 300° K. We can therefore expect that it will be
necessary to modify the énergyvof the system to bring the
temperatufe into the appropriate range. We can most
easily do this by adjusting the magnitudes of the velocity

components at various times. This energy modification is
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done. gradually over a period of several hundred time
- steps. After this "equilibration period", the system
~ temperature should show fluctuations of only a few'percent

about the desired average temperature.
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- Surfacé Pressure and Molecular Area

Surface pressure is the force per unit length that a
monolayer exerts against the boundaries which confine it
to a certain area. In molecular-dynamics simulation, it
is possible to compute this pressure from either the
collision rate (Alder and Wainwright, 1959) or the virial
theorem of Clausius. We shall use the virial method here,
but we shall need to derive the theorem in two-dimensional
form, rather than the standard three-dimensional form
(Mason and.Spurling, pp. 18-22).

We begin the derivation with a manipulation of the
6rdinary expfessidn for the kinetic ene?gy associated with

the generalized coordinate q:

ni? = 3(% @d) - 0 & @)

"
roj—
Q.I a
+
P
0
o
L
|
N
Qo
o
(..'.
~—~
o
a
o

where Pq is the generalized momentum and Fq the
force. We apply this expansion to the expression for the

total kinetic energy given above:



N .

Nom2 . m2 12
Bein =5, @ X F 295 v 2 )

N
_1d
Tzar B Py T YiPyi T BiPei)
LN
m7 Pt viFyg  8iFei)

If the first term on-the right is averaged over the
interval t, we find that it approaches zero as T is

made arbitrarily large, since

+y:p.. * eipei) dt

‘ T T T
( %iPril T YiPyi| * ®iPei | )
and each term in the last sum is finite (Jeans, bp.

129-30). Using bars to indicate time averages, we now have

P ViFyi® 8iFei) |

It ™M=
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We next separate the ekpression on the right, called
" the virial by Clausius, into two parts, one involving the
forces exerted on the monolayer molecules by the
boundaries and the other- involving intermolecular forces.
When dealing with the bbundary portion, it is convenient
to sum over the 2N force centers rather than the N ceﬁters
of mass so that the angular term does not appear

explicitly. Hence

N

-1

Bin™ =2 2 5P * ¥ifyi* 8Feidin
"7 5 O i yidbng

We may write the last term as the dot product of
force-center positions and forces exerted upon the
molecular force centers by the boundaries:

2

L KaFxs * YsTybng =

Wtz

1
-5
J
These forces are equal and opposite to the force per unit
. length exerted upon the boundaries by the molecules, so we

may transform this sum into an integral over the length of

the boundaries using the surface pressure, II:

F.oF.) = % [ (Femde

2

M=

L
2

[}
—

[}

[ &)

J
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" where n is the unit vector outwardly normal to the

boundary at,?. If we take B to be the angle between the -
x unit vector and ﬁ,'then this integral can be evaluatéd
as follows:

% [ (F-mn)ds = %Hfb(X§ +.y9)-(COSB§ + sinsy)zggg

='%Hf(xdy + y%%?%dy)

=1 zdxy de
- ? HI Xd.y + .Y( dﬂ,)(dy)dy

b

= 5 1f (xdy-ydx)
=TA ,
where A is the area enclosed by the boundaries. Green's
theorem in the plane was applied in‘the final step.
" We have now obtained a useful relation between the
average kinetic enérgy, the surface pressure, the area,
and the intermolecular forces:

N .
2 XiFxit ¥iFyi* 84Fgs

)

n _ 1
Ekin = TA - 7 ; im .

Since Ekinis %NkT by the equipartition theorem, we seé that

_ 3 (N 1
n-—(ﬁ)kT»&—

5T (x;F .+ y.F .+ 8.F..)

11 xi” Jityi YiTei’lim .

"W~ 2

1‘
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This equation is used to compute the surface pressure
since positions, intermolecular forces, and temperature
are all available during the simulation.

Molecular area is the average area occupied by each
molecule in the monolayer. For the simulation, it is
simply the area of the central square divided by the

number of molecules found there.



- Generation of Pressure-area Curves

Using results from the simulator, we want to plot
surface pressure (II) versus molecular area (Am) for
systems at several temperatures. That is, we want to plot
isotherms in the H-Am plane. Since it is difficult to
"equilibrate" the simulator precisely at a given
temperature for different values 6f Am, we follow a
two-step precedure. First, we perform simulations for
several values of Am at various temperatures in the
275°K - 325°K range and plot curves of constant A_
in the I-T plane. Second, we choose several
temperatures to be used for isotherms, find fhe T values
for these temperatures from the conStant-Am curves, and
plot these I values in the I-A p1aﬁe. This

transformation of data is depicted in Figure IIL.7.
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Figure II.7

Transformation of simulation results from
pressure-versus-temperature form to

pressure-versus-aread form -
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SECTION III

COMPARISON OF EXPERIMENTAL AND SIMULATION RESULTS
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Experimental Pressure-area Curves

In order to compare experimental and simulated
pressure-area isotherms, we plot, in Figure III.1,
experimental results for dipalmitoyl phosphatidylcholine
at the air-water interface (Hui, et al, 1975).7 fhe'fi1ms
were spread on 10 mM NaCl, pH 7.4, and pressure-area data
were obtained by the Langmuir method. Similar results
have been obtained by Phillips and.Chapman (1968) and
Vilallonga (1968).

These isotherms are very similar in shape to the '

myristic acid isotherm shown in Figure I.2; they exhibit

the" expanded", "trqnsition“, and "condensed" regioné'
discussed in Section I.C. As expected, condensed
behaviour for these double-chain molecules occurs at a
molecular area approiimate]y twice as large as for |
single-chain myristic acid. 3NkT/2A is also plotted in

Figure III.1 for comparison..
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Figure III.1

Experimental 'preséure—area isotherms
- for dipalmitoyl phosphatidylicholine
(after Hui,et al,1975)
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Simulated Pressure-area Curves

Before discussing simulated pressure-area curves, it
is important to cohsider the effect of vafious_parameters
upon the behaviour of the simulator. Of particular
importance js the ;ut-off radius used in the calculation
of the Lennard-Jones potential. Experiments were
performed at low, intermediate, and high deﬁsities with
radii of 4, 10, 20, and 40 angstroms. Temperatures and
pressures computedbat a given time differed Sy less than
one part in ten thousand for radii of 10, 20, and 40
angstroms. Since computation time for this porinn of the
algorithm increases as the fourth power of the cut-off
radius, the smallest of these radii, 10 angstroms, was
chosen for general use. |

The size of the time step used in numerical

" integration of the equations of motion is also important.

16 13

While it should be in the range of 10°~ to 10

seconds, the most appropriate value depends upon the
integration algorithm and the size of the intermolecular
forces. Steps of 0.1, 0.25, 0.5, 5.0, and 10.0 x 1071

seconds were tested at the extremes of molecular density.

15

Those above 1.0 x 107" seconds caused rapid growth of

the system's total kinetic energy. When a value of 0.25 x

\-15

10 seconds was employed, the kinetic energy remained
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within 3 percent of its average value over a period of
1000 time steps.

The dependence of pressure-area resﬁlts upon the
fineness of the computaional lattice was also tested. The
distance between lattice points was given values of -
11.3846, 1.6364, 2.0000, and 2.4444 angstroms; results were
compared at constant molecular area. Pressures computed
with one of the first three disténces differed by only 4
percent, while thé last distance led to a 27 percent
alteration. A distance of 2.0000 angstroms was chosen as
the standard value.

In order to verify that the matrix calculation of the
Coulombic interaction based on Poisson's equation gives
realistic dynamic results, this interaction was calculated
in a direct,'pair-wisé fashion in scveral experiménts.
Cut-off radii of 10, 20, and 40 angstroms (2.5, 5, and 10
times the length of the molecular analogue) were used;
pressures deviated from Péisson-based results byi
approximately 11, 3, and 1 percent. This implies that,
when the cut-off radius of the pair-wise calculation is
sufficient]y'1arge, the Poisson-based and pair-wise -
results are in close agreement. As was mentioned above,
the pair-wise calculation with aArelatively large cut-off
radius is much more time-consuming than the Poisson-based

calculation.
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The pressure-area characteristics of the 32-molecule

, System were relatively insensitive to the precise natufe
of the non-periodic boundary condition applied to thé
potential on the xy-planes lying at a fixed distance above
or below the plane of charges. 'The parameter which:
'deternﬁnes the gradient of the potential at the boundary,
W, was given values of 0.95,0.85, 0.75, and 0.60; the
boundary was located at 6,12, and 24 angstroms from the
chafges. A boundary condition of zero potential was
tested at 12 and 24 angétroms, corresponding‘to the
lTocation of a grounded, conducting plate at these
distanées. The largest variation in all of these results
-was 2 percent; in most cases it waé'substantial]y less
than thié. The insensitivity of - the results to variation
of such parameters is probably due to two facfors: the
net charge on the plane is zero and the analogues are
constrained to lie in the b]ane.

As one might expect, the simﬁlation results did show
substantial dependence upon those factors which affect the
size-of the intermolecular forces directly. These are the
relative permittivity for the e]ectrdstatic force, aﬁd the
well depth and distance parameters of the Lennard-Jones
potential for the electrodynamic and overlap for;es. The
relative permittivity, which is about 80 in bulk water at
298°K, was given values of 80, 60, and 40 in experiments

of low, intermediate and high molecular density. .
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Decreasing the permittivity from 80 to 40 caused an
increase in pressure of approximately 11 percent at each
:density; a decrease from 80 to 60 caused a 4 percent
increase. Such increases move the simulated pressure-area
curves away from the'experimental curves.

The distance parameter of the Lennard-Jones potential
was varied from 3.0 to 6.0 angstroms at several molecular
densities. Values of 3.0 and 4.0 angstroms result in
pressures which differ by less than one percent, while
values of 5.0 and 6.0 result in pressures which are 8 to
12 percent higher. This result and theoretical
investigation of hydrocarbon-chain interaction energies
(Shapiro and Ohki, 1974) suggest that the 4.0 angstrom
value fs fhe most appropriate.

The well depth of the Lenhard-anes potential is
expected to be approximately 0.26 x 10-22_jou1es’

(Shapiro and Ohki 1974). Simulations were run with values -

of 0.10, 0.26, 0.53, 1.06, and 2.12 x 10~%

joules. The
three smallest values gave results which were not
significantly different, while the two largest caused
pressure results to be about 4'and 7 percent lower at
molecular areas of 40.5 and 50.0 square angstroms per
molecule. At higher molecular areas, the 1.06 and 2.12 x

10'22

joule values did not change the.pres;ure results
appreciably. A value of 0.53 x 10722 jou1es was used in

most exper iments.
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The simulation pressures obtained using a cut-off -
radius of 10 angstroms for the Lennard-Jones 12-5

15

potential, a time step of 0.25 x 10"~ seconds, a

Tattice distance of 2.0 angstroms, a relative pekmittivity
of 80, Lennard-Jones parameters of 0.53 x 10'22 joules

and 4.0 angstroms, a value of 0.95 forlw;.and a z-boundary
location of 6 angstroms are plotted in Figure III.2 as a
function of temperature at fixed molecular areavand in
Figure III.3 as a function of molecular area at fixed
temperature. 3NkT/2A is also plotted in Figure III.3 for

comparison.
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' Figure III.2

Simulation results: surface pressure as a
function of temperature at fixed molecular area

(see text for parameter values)
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Figure III.3

Simulation results: surface pressure as a
function of molecular area at fixed temperature

(see text for parameter values)
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ITI.C. Comparison of Pressure-area Curves

Figure III.4 combines the experimental and simu]ation
results for ease of comparsion. We note the following
similarities: |

(i) The slopes of the steepest portions of the
| curves have approximately the same value.

(ii) The magnitudes 6f the simulation pressures lie
close to the experimental pressuresAfdr
"molecular areaé greater than fifty square

" angstroms. | ‘
(iﬁi) The variation in simulation nressures with
- temperature at the'same molecular area is. of
the same order of magnitude -as the variation

in experimental pressures.

We also note the following dissimilarities:
(i) The “"transition" regions of the experimental
"isotherms do not appear in the simulation
jsothers. |
(i1) Portions of the experimental isotherms lie
below 3NKkT/2A; thé simulation isotherms 1%e
entirely above this value.
The implications of these similarities and

dissimilarities are discussed in Section IV.A.
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Figure III.4

Juxtaposition of éXperimenta] and

simulation isotherms
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'SECTION IV

" CONCLUS IONS
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IV.'A. Adequacy of the Model

The simu]atibn results show that:

(i)

(§4)

(111)

Realistic mode]ing of some monolayer properties
is-feasible using the molecular-dynamics
technique.

Qualitative agreement in magnitude, slope and
temperature dependence of pressure-area ‘
jsotherms can be obtained, even whenlthe
mplecu]ar analogue is a very simple linear
dumbbell with coincident Coulombic and
Lennard-Jones force centers.

The model based‘on this simp]e analogue shows
no tendency to simulate the highly
temperature-dependent transition regions of the
pressure-area isotherms, nor are simu]ated‘
fsotherms comp]etely realistic with respect to

an ideal-gas isotherm of 3NkT/2A.

The deviation of simulator isotherms from realistic

isotherms is qd{te Tikely the consequence of the coarse

manner in which the hydrocarbon tails of the phospholipids

were mnde]ed: their extension in the z-direction was

suppressed and their ability to flail about was ignored.

Ways- in which these shortcomings might be remedied are .



100

suggested in Section IV.B.
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IV. B. Directions for Further Study -

Of primary- interest in additional work is refinemeht of

" “the the molecular analogue. Several improvements appear

feasible:

(i) A three-dimensional analogue could be designed.

(i)

(iii)

This might consist of two coupled chains of force
centers, perpendicular to the monolayer plane,_with
an electrostatic center constrained to lie in the
plane and e]ectrodynamic~cen£ers out of the plane.

Initial simulations would compare the behaviour ofl

"the linear-dumbbell and coqpled-chain analogues

with chains constrained to be linear and parallel.

Later simulations would allow bending of the chains.

The constraint that the analogue have zero net
charge could be relaxed. This must be done with
care, since it would require that counterbalancing

charge in the aqueous phase be modeled .

A more complex model for the polar head group could
be developed. It might include, in a static or
quasi-static arrangement, water molecules which may

be associated with the head group.
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Attainment of these goals would certainly require algorithms
which are extremely efficient in their use of computer memory

space.



‘APPENDIX A

MONOLAYER-SIMULATION PROGRAM



Crxxxx PROGRAM

(G336)
(3087)
(GC38)
(3829)
(Co15)
(811
(2212)
(3013)
(0314)
(g9815)
(3316)
(2317)
(C2128)
(8319
(053271

WD
(2322)
(0g23)
(3024)
(2g2s)
(G2e28)
(0G27)
(2228)
(252%9)

(duﬁu)
(CO41)
(72342)
(384 3)
EARRAD)]
(3245)
(37346
(2047)
(2Tag)
(C346)

(2257

(2252)
(5595

34)
e a33)
(T256)
(Z257)

(CT58)

OO OO OO TN AT T OINMDOTOOOOOOOTOOOTOODOOYYCYO

TITLE: #D1,.LU Xk kokh
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Cx**xx PROGRAM TITLE: ™D1.LU *Ekk K
C***** NOTES LR X & & 1
1TL =NUMBER OF TAILS IN THE ARRAY
XCM(I) =X=-POSITION QF THE CENTER 0F MaSS CF THE TITH MOLFCUL
- (ANGSTROMS), 1=2,4,6,...,1TL
VXCM(T) =X -COMPONENT OF THE VELOCITY OF THE CENTER NF MASS n
TTH #OLECULE (ANGSTROMS/SECOND)Y, I=2,4,6,...,17L
AxCw =x-CN¥PONENT GF THE ACCELERATION OF THE CENTER OF MA:

OF THE ITH MCLECULE (JOULES/ANGSTRCM), I=2,4,6,...,
YCM(I), VYCM(I), AND AYCM ARE DEFINED SIMILARLY,

VEMS —AVERAGE VELOCITY VALUE ASSIGNED TC VYCM AMD VYCM
C(ANGSTROMS/SECOND) . i

KVXSGNCI) =ALGERRAIC SIGN CF THE RMS VALUE ASSIGKED TO VXCM(I)

KVYSGN(I) =ALGEBRAIC SIGN OF THE RMS VALUE ASSIGNED TO vyYC¥(I)

VXPD1 =POTENTIAL AT THE POSITION ORTAINEC BY ADDING DELTA
X-CONRDINATE GF THE ITH TATL,I1=2,4,4,...,1TL.

vYXenpr1 =84S ABCVE, FOR THE (I-1)TH TalL,

vxmpl : =SPOTENTTAL AT THE POSITION QBTAINED BY SUBTRACTING D

FRGM THE X~CCCRDINATE OF THE ITH TAIL, 1=2,4,6,...,
VYPDI, VYMDI, VYPDIT, VYMDI?®, AND VXMDI1 ARE DEFTNED SIMILARLY,.

DYDXI =GRADTENT OF THE POTENTIAL IN THE X=DIPECTINN AT THE
POSITICN OF THF TTH TAIL.

THETACD) =ANGLFE WHICH THE ITH MOLECULE ™“AKFS WITH THE ¥-AYXIS
(2AD TANS) ’

THEXNQ(T) =MIDIFIED FOR™® OF THETA(I) WHICH TS ALWAYS LESS THAN
RADIANMS

VTHETA(L) =ANGULAR VELOCITY QF THE TTH MOLECULE (RADTIANS/SFCON

ATHETA =ANGULAR ACCELERATION CF THF ITH MCLECULE (RADTANS/S

TE*PYX =TCMPERATURE CALCULATED FRC™ THE X-COWMPONENTS OF THE

' VELOLITIES (DEGREESS XELVIN)

TEMPY " =TCMPIRATURE CALCULATED fROM THE Y-COMPANENTS NF Tuc
VELOCITIES (DEGREES XELVIN)

TEMPR STEMPERATURE CALCULATEN FRCM THE RCTATTONAL VELOCTTI
(SEGREES KELYIN)

TEAR =TEMPERATURE CALCULATED RBY SETTING 1,.5KT FaUAL T TH

OF THE X, Y, AND ROATATIONAL KIMETIC FNERGIES. TRAR
ALSC THE ARITH®ETIC AVERAGE 7F TEMPX, TEMPY, AND TF
(TEGRELS KELVIN)

MCONT ' =SWITCH INDICATER CONTROLLING INFUT CF XC™, YC¥,
THE#D, XC¥P, YCH#P, AND THETAP FROM TAPE. IF MCONT=
TUEN THESE PARA ’FTERS ARE NOT ACCEFTFD FRPOM TaPeg,

MSAVE =SWITCH INDICATOR CONTROLLING STORAGE TF XC%, YC*,

THE®G, XCMP, YC¥P, ANC THFTAP ON TAPE. IF MSAVF=0,
THEN THESE PARAYETERS ARE HOT STORED.

NREC1T =INDEX CF THE TAPC RFECCRD Tn BF READ WHEN THE PROGRA
' TS RUN IN CONTTINUATICH MODE. IF »cONT=2, SCT MCEC1=
NRECZ "zINDEY OF TYHFE TYAFE RECCOD PRECENING THE RECHAN TN P
WRITTEN UPCN WHEXN THE PROGRAM TS RUN IN ¢AVr vONF .
YNTCGE?*? KZIREAD,KTSAMF KSWRTT , K2ZEXST, KEIUFD,CHRFLS(2), ,NMESH

R,ESFNTF
LOGICAL STOPSW
PARAMETER (NTL=C64,NMESH=Z17E3)
IFPLICIT REAL*2 (A=G,0-7),INTEGFR (H=N) ,
COMNON//XT(NTLY ,YT(NTLY ,GFESH(MIESH) ,DHC,OHY A, ¥ESH, ITL,HALPHA A
TBETA,NGAVYA, N, M, MI®,S1,53,0MCE68 ,E0STR,YH,PHIMSH(NYESH) ,KRSW, kRS>

2,KRSWZ, KPSWL, KRSKS,KOSWS ,KOSWT ,KRSW2,KASNT, KR WA, XOSWS ,KASWA,S,SCF

T,EAM7 ,LUSHT,LYSY2,LUSH2, LUSWEL,LUSHS, LUSHA,FLJFAC, FMAX,LISWT, LISY2,
GLISHI,LISHL ,LISHS , LISWE,BDSAV (S, NTL) '
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L i) DIMENSION XCMINTL),VXCM(NTL),YCHM(NTL) ,VYCH(NTL), THETA(NTL) ,VTHETA(
(Tue) INTLY,AXCNTL) LAY (NTL) ,ATHONTL) L XCMP(NTL) ,YCHMP(NTL) ,THETAP(NTL) ,THEM
2261) 20 (NTL)Y, ANGLE(NTL) ,FYACGS2) ,F8B(202) ,F¥C(036) ,ENDFIL(SE
(0062) 2),STX(IDGS) ,STY(1G0S) ,STRE1CHS) ,STR(1C05) ,DSTR(ICIS) L EXTOT(100%)Y,
(C583) LEFTOTLACTS) ,ETOTCICO5)Y,SPICICTS) ,FTIXCM(NTL) ,FTYEMINTL)Y ,XJ(3),YJ(3)
(C064) S,AXP(NTL) ,AYPINTL) ATHRP(NTL)

(3565) DATA XSREAD,ASSAMF , KSWRIT,KSRDWR , KSEXST , KSTUFD/1,0,2,%2,64,0/

10466 4 NATA ESFNTF KSCLOS/1S,4/ ‘

(3G67) DATA CHRPAS/D, 13/

(2748) CALL ATTDEV(12,7,8,2)

(3069) c CALL OPENSA(CASREAD+ASSAMF,  "DLUBAT! ,7,5)

(2079) C CALL CPENSA(ASWRBIT+ASSANMF, '¥DLUCPT',?7,7)

8Gg71) C CALL OPENZA(ASREAD+ASSAMF,'ELN"',3,8)

(2072) CALL SRCH$$(KSRDWR,'MDLUDATA',2,5,0,0)

(3373) CALL SRCHSS(KSWRIT,'MDLUOPTA'!,R,7,2,0)

(C574) C CALL SRCHSS(KIREAD,'ELY',3,R,5,0

(2675) CALL TSRCSS(KSREAD,"MATOIX 42>ELUA',8,CHFRPCS,C,0)

(3076) TCPU1=cTI%sA(CPUTIM)

(2377) TCPUN=TCPUA

(4078) Crardx SEPITLHFS *ikixnn

(2079) C *NAME * *IF SWITCH=1, THEN=* _

(2320 C ¥ ST URITE T,X1 (1), Y 1(I), THErOC(D)

(2o21) C Sy 2 WRITE FORCES, VTHETA, 2 ATHFOD

(2522) C ¥SW3 WRITE DTHEVY, DTHEVN, DTHEA, % DTHEAM

(00e3) C YSWL INCLUDE L=-J FORCES o

(02€4) C ¥SuS WRITE POSITINNS R VELOCITIES AFTER EACH TIWME STEP
n02S) C NSy 4 REVISE DATA YALUES FOR NFXT RUN FRONM TERMINAL
(2724) C Sy 7 WRITE I ,FXT, FYL, FLJXI, FLJIYI

(CGR7) o MSY A USE V(N)SV(N=1)+DT*A(N=1) IN PLACE 7F

DOEE) c V(N)I=(Y(N)=X(H=1))/DT

(DTRG) C IF ¥SW® = -1, USE ALTERNATF DYNAMIC ALGORITHM
(Gaod) c MSWGC -~ APPLY TRANSLATICNAL AND ROTATICNAL FRICTTON
(2091) C ’S:af ‘ ENARLE FORCFS (SEE LOOP 4235}

(T¢%2) € MEW 1 MODIFY YELODCITIES ACCOSDPING TO TEMPERATURE

(£293) ¢ PARTITION (AFTER 372) :

(00%4) C MSW12 MODIFY VELOCITIES TC FQRCE TBAR TO0 LIF

(0365) C ZETWEEN TBARMY AND TBARMM (AFTER 3773)

13556) C M3 USE SUBRNHTINE INIT32 IN PLEZCE OF IMIT

(2097) ¢ IF ¥Sw13 = =~1, USE SUBRCUTINE INITSP

(Z3G3) C MSW1Y CO¥PUTE COULOMBIC FORCFS IN LJFZRZ

(C399) C RATHER THAN LUDEC. ' :

(G120 C MCONDS READ INITTIAL DATA FCR MNDT.GT.D FRO¥ DISK (¥DLUDAT
2101 c ¥CONTP READ TMITIAL DATA FOR NOT.GT.D FROW™ TAPF

(2152) C mSAyYDS WNRITE FIKAILL DATA FOR NOT=NDTMAX TO DISK (MDLUDAT)
(29733 c ¥SAVTP WRITE FTINAL DATA FOR NOT=NDTMAY T2 TAPF

(2124) C ISUFSY - MODIFY DT VYIA DT=DT+DTFAC

(5178) Crrxnd COMTROLS *xxkxh

(2126) C NCYOLE NMUMBRER OF TIMES A CYCLS OF NDTMAX STEPS HAS REEM
(21:57) ¢ RUN AND WRITTEM TO DISK (MDLUDAT)

(2178) " MDTOFF _ TI%E STEP AT NHUICH VEL2CITY CONTRCL 1S DIS2BLEN
10179) ¢ NDTINC - NUMRER GF TIME STEPS FOR WHICHK VELCCITY COMTRAL
(2118) C IS RE=-ENABLED

£3111) Crrext REAND DATA FILE «+x#x

( 2) RKFEAD(DS,CAT1) MDTENT MOTEC?  NDTEDE, MCONTP ,MSAVTE N2ECT,NREL?, 24N
(.03 TFAX, PANFAY,RAMFAT KX¥2aY , KYMAX KTMAX,IPRIRT, J°°Ir.,VD“INT -
(5114) EEAD (RO L0328 (rvcc‘) —1,36) "
(3115) C READ(Q?,QG’&) (rMa(r ),1 68 ,102,2) ' -
(2116) c READ(ID , DO44) (FRR(IY, 126 8,1-2,3) ' -
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{ 7)
(e118)
(C119)
(5128)
(0121
(2122)
(7123%)
(2124
(21929%)
(T126)
(2127
(128>
(3129%)
(21338)
(C131)
(2432
(21323)
(213%4)
(0135)
(J136)
(85127)
(2128)
(7113G)
(5147)
(2141)
(2142)
(2143)
(C144)
(C145)
(21486)
(C147)
(5148)
(0149)
(J153)
(2151)
(7152)
(C153%)
(3154)
(315%)
(3156)
(21572
(5158&)
(2159)
(2160)
(C151)
(Z1462)
(5143)
(2164)
(2155)
(31586
(2147
(3148)

(5169)

¢ o)
1)

(2172)

(2173)
(Z174)

[ )

)
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READ(CG,Q0018) (FAC(TI),1=104,142,2)

READ (DG ,0018) (FMACT),I1=104,142,2)

READ(TC,0018) (FMB(I),I1=1C4,142,2)

READ(SG,0C21) A,9,G,PLMASS ,EPST

READ(19,0023) DEPTH,DIST,DELTA,ZAMBDA,RLJ¥AX,DT, NDT¥AX
READ(LG,0C25) ITL,IMX,IMY,MESH,DHC,DHNM

READ(RC,S$10) NALPHA,NAETA,NGAMMA,ST,S3,0MEG?
READ(TG,923) EPSIR,FMAX,SPCFAC,FLJFAC,VSCFAC,FRICT,FRICR

QEAD(T9,927) ¥Sy1,%54W2 ,MSW3,MSW4L,MSWS,M5W6,HSW7 ,MSWE ,MSWG,

LMSW11,MSW12,MSW13,MSW14
READ(CS,511) KRSWT,KRSW2,KRSW3,KRSW4L,KRSWS,KRSUWE
READ(F9,911) XKQSW1T,KRSW2,K0S%W3,KASWAL KRSWS ,XASWE
READ(Z9,911) LUSWI, LUSWZ2,LUSW3, LUSWS , LUSWS, LUSUA
REAC(CG,911) LJSW?T,LJISW2,LIS%W3,LUISWA, LISWS , LISWE
READ(T9,612) TBARMX,TEBARMN,TFACYX ,TFACMN ,MDTOFF ,NDTINC
READ(0G,929) NTFAC,BUFFAC,NDTRT1, NDTNT2,NOTLY
READ(LSG,911) MCONDS , MSAVDS NCYCLE
RNDATE=DATESA(DATE)
ONTIME=TIMESA(TTME)
WRITE(11,802)
WRITE(11,924) RMDATE ,ONTIME

Cxaxxx WRITE DATA FILE k%%

IO OO

15

WRITEC(11,80R)

WRITE(11,801) NOTERT, NDTEQZ2,NDTECZ2, MCONTP , MSAVTF NREC1T,NRE
TFAX,RANFAY RAMFAT ,KXMAX , KYMAX KTMAX ,IPRINT ,JPRINT KPRINT

WRITE(11,938) (FHAC(I) , 1=1,36)

WRITE(11,C014) LFMA(TY) ,I=68,102,2)

WETTE (11,7014 (FMR(T),1=68,102,2)

CWRITE(TT,CC18)(FMC(I),1=104,142,2)

WRITE (11, CC138) (FMA(T)Y ,1=174,142,2)

WRITe (i1, T718) (FMR (1), 1=1046',142,2)

WRITE(1Y,0021)A,P,0,PLMASS EPST

WRITE(11,0723)NEPTH, DIST, DELTA, ZAMEDA,RLIMAX,DT NDTVAX

WEITE (41, 0025) 1TL, 1#X, IMY, MESH, DHC,DHY -

WRITE(T1,G1C)MALPHA NBETA, NGA¥MA,S1,S3,CMEGA

WRITE/*1,G23)YEPSIR,FMAX,SPCFAC, FLJFAC,VSCFAC,FRICT,FRICR

WRITE(11,527)%Su1,MSW2,MS W3, MSWk, MSNS,¥SWh, MSH7  MSiis , MSWS,
EMSWTY,MSUTZ,mSWTE , M3WT4

WRITE(11,911)KRSUT ,KRSW2,KRSW3,KRSWL,KRSWS  KRSUWA

WRITE(11,611)KA5YT,KQSH2,KASW3,KASWL, KGSWS , KRSUWE

WRITE(TT,9%0 1) LUSWT ,LUSW? ,LUSWE ,LUSWSL , LUSWS , LUSYA

WRITE(Y1,9*1)LIS5WT,LISW2,LUISW3E, LUISWa, LISWS, LISWE

WRITE(11,G12) TRARMY , TBARMN , TFACYY , TFACHKN NDTOFF NDTINC

WRITE(11,929) DTFAC,BUFFAC,HDTOTT, NDTDT2,NDTLY

WRITE(TT, 211) »COMDS, MSAVDS, NCYCLE

Crxnnr CONSTAMTS =#rrx

NSNALPHRA=MRETA+NGANYMA
M=NBETA+NGAVMA :
HIM=(NGAMMA+1) /2
MMOLEC=DRLF(FLOAT(ITL/2))
DMAVCG=4,.270+23
STZ¥SH=DHF & (MESK=1)

YH=OHM»
YSPACE=SPCFACHSIZHMSE/(IRX/2)
YSPACCS=SPCFAC*SIZMSH/IMy
AMESY=STZMSHXST7MSH

RH=A+ (IRY=1) % (A+P &7 ED+00)
W=(I¥X/2=1)x0,.1732051D+01#*5

MW,

C2,RAN

*SW1T,

'
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76)
77)
78)
79)
50)
21)
22)
1)
84)
85)
86)
87)
38)
29)
198)
'51)
192)
193)
154)
195)
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198)
159)
270)
221)
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DELTAN=-DELTA

STB(D)Y=2,00+00
TWOPI=0_€628231853070+01
ADP=A*C . SD+00

FCoR=3.2321902D~ 1?/(EP§IR*A*A)

PLINER=PLMASS* (1, SN+0TxA)*x*x1 20401 O /*KG,.SQ.ANG.*/
FRTIOM=FRICT/PLMASS /*XG PER SEC OVER KG*/

FRROI=FRICR/PLIMER /*KG.SQ.ANG. PER SEC QVER KG.SQ.ANG.*/
DXLJ=C.10=014Dux ‘
DYLJ=0.1D=C14D K™

TE¥YP=TBARMX+3,12504C1

BUFFZN=DHM*BUFFAC

SAFEZN=STZMSH-RUFFZN

DTORIG=OT

DTSED2=DT*DT*0.5D+A0

KWPIT=7

NWRTT=7

KSTINT=C

JSTINT="

MCTBMN=!
NCTBMY="

l 1 1,,.} '

Crrxxxrx SUTITCH GVEPQIDFS

TF(¥SWT4.EG.1) LISWT=1

Crxxxx INTTTALTZE APRAYS

( (“

0o 20 1=1,1TL
AX(IY=0,00+07
AYCIY=AX(I)
ATHCTY=AY(I)
AXPLIY=AX(T)
AV (IY=AX(I)
ATHP C1)=AX(Y)

C***** READ IMNITIAL AND PRICR POSITIONS FROF TAFE (CPTICNAL)

&7

3G

IF (#CONTP .EQ. D) GG TO 33
DN 27 L=1,MPECHT
READ (2) XC™,YCH,THETA,THEMD
READ (3) XCMP,YCMP,THETAP
READ (3,END=27) %0T
COMTINUE
NDTP1=NRT+1
WRITE (17 ,G028&8) NDT
WRITE (11,0026) (I, XCV(TI),YC¥ (L), THEMC(I) ,THETA(T) , 1=2,142,2)
IF(MCONDS.EG.C)Y GO TH 33

CHxrxxkx REAND INITIAL AND PRICR POSITIONS FRGM DISK (CPTICNAL)D

D0 32 €=1,NCYCLE
READ(:0,930) CRODAT, NOT
PRINT 921 CRDDAT_ NDT
531 1=2,17L,2
REED(CY,032) XCWM(I),YCM(I),THETACI) ,THERQ(T)
READ(DS,332) XCYP(I),YCMF(I),THETAP(I)
READ(CG,032) AX(I),AYC(I), ATH(I)
REAL(DQ,932) AXP(I) AYP(I) , ATHP(I)
2EAD(LG,932) UXCM(L),VYCM(I),VTHETACT)
PEAD(i1Q,932) TBAR,TXFAC,TYFAC,TRFAC
TEMPY=TXVFAC*TRBAR )
TENPY=TYFAC*TRAR
TEMPRE=TRFACKTEZAR
VCOEY1=YSCFACHDIGRT(TBARMMN/TEYPY)
VCORYT=VSCFAC*DSART(TRARMN/TENPY)



*** PROGRAM

23

1234)
12352
1236)
2230)
P2rE)
239
1242)
26 1)
5242)
3243)
1244)
3245)
1246)
1267)
12498
s249)
2254)
2251)
2252)
3253)
5254)
225%)
1258)
G257y
52582
2259
£24T)
£241)
£242)
"\/7)
3264)
d245)
0266)
2267)
32682
2269)

V278

Z271)
A272)
G6273)
2274
L275)
13276)
C277)
'““7“)
(3279
{”289)
(2221

T

ITLE: Mn1 ., L Tk ok Kk
108

VCORRT=VSCFAC*DSGRT(TRBARMN/TEMPR)
VCORXZ2=VSCFACXDSGRT(TZARMX/TEIPX)
VECRY2=VSCFACKDSERT(TRARMX/TEYPY)
VCO2R2=VSCFAC*DSERT (TBARYX/TE¥PR)
WRITE(11,930) CRDDAT, NDT
PRINMT 931 CRDDAT, NDT
2N 9731 1=2,17L,2
WRITE(11,932) xCM(I),YCM(I), THETAC(I) , THEMOCT)
WRITE(11,632) XCMP(I), YCMP(I),THETAF(I)
WRITE(T1,932) VUXCM(I), VYCM(I) AX(D) ,AY(D)
GH TO 111G

Crx*x*x SET INITIAL POSITIONS AND VELCCITIES FOR CFMTERS OF MASS

9C31
22
34
26
g
3¢
Crixk4
&s
oL
g
Q¢
100
171
Chreshnx
c .
C *
[ *
C *
1"Mé
C *
C
C
C
€
€
C

IF (MSW13) 34,36,373
CALL INITSP(XCM, YC¥M, THETA, VXCM VYCM, VTHETA, THE®C,FMC) .
GO TO 25

CALL INIT(TMX,TWY,A,B,ADZ,XSPACE,YSFACE,XCM,YCE,THETA,VXCM,VYC¥,

VTHET &, THENMO)

GO TO0 =S

CALL IMIT32(XxC#,YCF,THETA, VXC¥, VYCM JTHETA ,THEMC ,A)
RANDCMIZE INI TIHL P“S'TIONS

PRINT 910

CALL RAMLDC (XCM,YCM, A,J,THETA TWOPI,RANFAX,RANFAY RANFAT)
D¢ T0%A I=2,1T7L, 2

THEMO(I)=THETA(I)

MOTP1T=1

NDT =0

NDRTINI=NDT .

CALCULATE xCM(I), YC¥(I1), AND THETA(I) FCR EACRH MOLECULE AFTER
TIME INCREMENT OF DT HAS ELAFSED,
STATEMENT 112 IS THF RE~FMTRY POINT- FOR ADDITICNAL TIME STEPRS;
STATEYENT S5G1 DIRECTS THE RETYRN TO 11C.
SET IBUFSW AMD DT T OPIGIPBL VALUES.

IgUFSR="

DT=CTCRIG )

PMNDTIP=MOD(NDT,IPRINT)
CHECK FCOR EXISTENCE OF FILE MDLUL.CHK; IF IT £XISTS, WRITE

THE VALUIE CF NDT THERE, THIS ALLOWS ONE TO LEASN THE CURRENT
STATF CF THE STMYULATION WHFN IT IS RUNNMING IV SAaTCH YODE,
CALL SHCHZS(KSEXSTH+XTIUFD, *¥DLU..CHET ¥ T _C _ANCKECK)

IF(NCHECY JEQLESFNTFY 62 TO 115

CALL SPCHS3(XTWRIT, 'MOLU.CHK',?,0,2,0)

WRTITE(13,0821) NOT

CALL SPRCHIS(rsCLOS,'*MDLU.CHK®,R,9 1

* FIND POSITIOMS OF FORCE CENTERS FROM (C-M AND

AMGUL AR PASITIOMNS.

11S ne 1840 1=2,17L,2

AD?COS=4D2*DCOS(THF¥O(I))

ADR2STIM=AD2+NSIM(THENO(I))

Y1CI)=XCM(IY+ADICS

Y1(I)=YLM(I)+ADZSIN
XP(1=1)=y(CM(1)Y=-an2CeCs

Y’("‘) YOR(TI)~AD2SIN

*SET IBUFSW TO 9HE% TF AMY FORCE CENTER LIFES WITHIN RUFFIN
NF A BOUNDARY,

TFOCXT(T) LLELRUFFINY AR (XIC(I).GELSAFEZK)) IBUFSW=1
IFCCYICD)LLELRUFFINY LORL(YM(I) ,GE.SAFEZNY) IBUFSW=1
TECXT(I=1) JLELBUFFZM) JOR. (X1 (1-1) ,GE.SAFFEZ*)) TRUFSW=1
TFCCYT(T=T)Y \LE.RUFFIN) CR. (YT (I=1).GE.SAFEZNV)) TR{FSH=

A
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109
g1 140 COMTINUE
92, C % MCDIFY DT IF IBUFSW HAS BEEN SET TO ONE ABOQVE
2) IF(IBUFSY.EQ.T) GO TG 165
24) DT=DT*DTFAC
95) WRITE(11,935) DT, MDT

96) C * REACTIVATE VELOCITY CCNTROL IF IT HAS BEEN NDISABLED

97) AND TBAR HAS EXCEEDED TRARMX BY 25 PERCENT.

g8) 165 IF((NCT.GELNDTOFF) JAND. (TBAR GT.TEMXP)) NDTOFF=NDT+NDTINC
99) 165 CONTINUE

280) C * PRINT PHNTO AT SELECTED TIMES

[ M}

01) " PRINT $22 NDT

22) IF(¥NDTIP.NE.O) GG TO 168

23) . CALL PeQTO (NDT)

04) _ WRITE(11,937) NCTBMN, NCTBRMX

S) o * CHANGE VALUE OF DT AT NDTDT1 AND NDTDT2

6) 168 IF((NDT.EQ NDTOT1).0R.(NDT . EG.NDTCT2)) DT=DT=*DTFAC

27 C - * CALL RDIST AND LUDEC

R PRINT 915

39) CALL QDPISTY

1) PRINT Q14

11) ' IF(™SW14,.FQ.0) CALL LUDECZ .

112) LUsSW*=1 ’ .

113) c * BASIC DYNAMIC CALCULATION (DO-LCOP 420)

114) PCTNT=0.0D0+00 /* SET PE COUNTERS T2 ZERC. +/

1y 15) PLITOT=2,.CD+00

116) PCTATOD=C.00D+00

17D . 180 pC 480 1=2,1TL,2

18) 1#1=1-1 ‘

i19) € *2ERQ ALL FORCES AND POTENTIAL GRADIENTS

120) FYI=0,00400

b21) FYI-(,0D4+72

122) FLIXYI=0,.CD+0C

£23) FLIYI=C .20+ 20

124) BYDX =0, 7040

825) DYDY T=0, 00407

§24) PYDXIT=0.0N+072

8272 pyoyY I1=C.00+08

528) IF(YSUATLER.T) GO TO 258

529) TEF ((¥SWT.EQ.D).OR(MODINDT,IPRINT).GT.(D) GO TO 254

£52) WRITE (11,7186) IM1,X7(IN%T), Y1 (IM1), THEMQCIMY)

331) WRITE (11,01858) I,%x1(1), Y1(1) THERQ(T)

§32) C *CALCULATE ovoy AND OVDY FC? I-1.

£33) 220G IF(¥SYW14 ERLTY 50 TO 21¢

£34) . CALL FORCE?Y (I1M1,FXI, FYI,SIZMSH,PCAVI,FCTOT)

555) FYT=FXI=FCORANIOS(THEMG(INTY) /* BROTHUER-CHARGE CORRECTION
x38) FYI=FYT=-FCOR*DSIN(THEMO(IM1)) /% EROTHER~-CHARGE CQORRECTION
237) 210 IFC(MSWL.EQ.1) JANDL(NDT.GEJNDTLIY) CALL LJFCR2(IMT1,DYLJ,DYLY,
£33) xa PTH,DIST,RLIMAX, FLIXT, FLJYI,FCXI, FCYT,sr’MSH,PLJﬂVI,PLJT“T PCavVY
239) CTOTD)

243) IF(MSWI4.EQ.T) GO TQ 215

541) , FXI=FCXT

242) FYI=FCY!

343) PCAVI=PCAVID

341 O PCTOT=PCTOTD

AN 215 TF((MSW?7.EQ, 1) ANDL(¥NDTIP.EG.T)) WRITE(T1,G65) T1,FXT,FYI, FLY
346) . &XI,FLJYI,FCXI, FCY! ,

247) T DMOXIT=rXIH+FLYXT  /xICHIFS PER ANGSTROM=%/

347) DYDNYIA=FYI#+FLJY]



*xxx PROGRAM TITLE: MD1.LY * Ak A

g3

4353
2351)
3352)
9353)
2354)
2355)
23%56)
2357)
0358
035%)
0362)
0341)

3362)

0363)
3364)
2765)
1346)
23A7)
23638)
026%)
39372
2371)
0372)
2373)
G376)
3375)
2376)
32377)
£378)
d37?)
3383
T381)
TIE2)
P?9?)
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1=
O
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Iy
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N
b ‘;‘
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o U'l
~

My O

225

[N}
(O
]

110

*CALCULATE DVDX AND DVDY FOR 1I.
TF(”SW14.EQ,1) GO TO 227 ,
CALL FORCET (I, FXI,FYI1,SIZMSH,PCAVI,PCTOT)
FXI=FYXI-FCORADCNS(THEMOC(I)) /* BROTHER-CHARGE CORRECTICN »/
FYI=FYI-FCCR*DSIN(THEMC(I)) /% BROTHER=-CHARGE CORRECTION */
TFC(MSWSE ER,.T) JANDLUNDT .GE JNDTLJ)) CALL LJFOR2(I,DXLJ,DVLJ,DE
&PTH,DIST, RUJMAX, FLIXT, FLJYI, FCXI,FCYT,SIZMSH,PLJAVI PLJTNT,PCAVID,
RPLTOTD)
IF(¥SWI4.EQ.D) GO TO 225
FXI=FCXI
FEYI=FCY!
PCAVI=PCAVID
PCTOT=FCTOTD
IF((MSW7.EQ, 1) .AND.(MNDTIF.EQ.0)) WRITE(11,595) I,FXI,FYI, FLJ
&XI, FLJYI, FCXI, FCYI
DVOXT=FXI+FLJIXI /*JOULES PER ANGSTRQOM#/
DYDYI=FYI+FLJYL
FTYCHM(IMTI=DUDXIT
FIXC¥(I)=DVYD¥XT
CFTYCM(IM1)=DYDYI
FTYem{}p)=pvDYl
*SAVE ACCELERATIONS
AXPLI)=AX(T)
AYP(I1)=AY(D)
ATHR(I)=ATH(T) ‘
AX(TY=AXCM ' -
«v(x) AYCHM
ALCULATE ATHETA IN TWO STEPS TO AVOID FLOATTNF POINT QVERFLOW
*DLI\EQ HAS BEEN EXPRESSED IN KG*SQUARE ANGSTRO¥ UNITS
*POSITIVE TORQUES ARE TAKEN TOQ BE THOSE MHICH CAUSE CCW RO0TATIO
ATHHODS(R,1IN+11+A/ (D L20# 01 #PLINER))* ((OVOYIT=DVOYI)+DCOS(THEM
10(1))+(DYOXT- DVhXT1)*n§T“(THFM0(I)))
ATHETA=ATHAND*3.1D+11
AYCM=((=DVDYXI=-DVYDYTI1)/PLMASS)*0_1D+21 /*ANG. PER SQ,SEC.*/
AYCY¥=((=-0VDYT=DVLYI1)/PLMASS)I*C_ 1D+21
*APPLY TRANSLATIONAL AND ROTATIONAL FRICTION
TF(®SWG.FR.N)Y &0 TO 33N :
AXCMZAXCMeFETDWAVXCM(T)
AYCH=AYCM=FRTD®*YYCM(T)
CATHETA=ZATHETA-FRRDI+VTHETA(I)
*CALCULATE YECLOCITIES (ANGSTROMS PER SECOND, RADIANS PER SECOND
IF (NDTLEQ.D) G0 TO 412
IF (mSW&)Y 240,360,356G
VXCN(I)=VXCN(I)+DT*(D.ZD+G1*AXC¥+O SD+T14AY(I)-8%XP(T))
VYCY(T)zVYCYLTI+DT*(C,20+CT1*AYCN+0,SD401%xAY(I)-AYP (1))
VIHETACT)SYTHETACID+DT# (0. 2D+ 1+ATHETA+D 59*51*ATH(i)-ATHP(T
£)) :
6o T0 270 ‘
VXCMCI)=VXCX(I)4DT*AXCH
VYCM(I)=VYC¥(I)+DT*AYCY
VIHETACTI)=YTHETA(TY+DYYATHETA
50 TQ 3702
VIXCE(I)Y=(XCM (I =XCMP(I)X /DT
VYOMTYI=(Y(»(I)=YCYE(I)) /DT
VTHETA(I)=(THETA(T)-THETAP(I)) /DT
IFC(NDTLLELCHDTEDT42)) . OR (NDT.GELNDTCFF)) GC T 385
IT(MSWAIT.EQ.T) A5 T2 325
C %#ODIFY VELOCITIES ACCORDING TO TEMPCRATU“F PAPTTTIA‘



Cx***x PROGRAM TITLE: - MD1.LU Akk ok k

111

( i7) c *AT LAST TIME STEP

(0478) IF ((TXFAC.GT.TFACMX).ORL(TXFAC.LT.TFACHN)) VXCH(I)=VXCM(II/T
(C479) 1XFAC. '

(3417) IF ((TYFAC.GT.TFACKX) . OR.(TYFAC.LT.TFACYXN)) VYC™(I)=vYLM(I)/T
(C411) 1YFAC

(2612) IF ((TRFAC.GT.TFACMX).OR.(TRFAC.LT.TFACHEN)) VTHETACI)=VTHFTA(
(2413) 11)/TRFAC

(J3414) 317s IF(MSW12.EQ.9) GO TO 385

(3415) C *MODIFY VELOCITIES TO FORCE TBAR T0 LIE RFETWEEN

(3418) C *TBARMX AND TEARMN

(24417) IF(TBAR.GE.TEBARMY) GG TO 380

(2418) YXCARCI)=VXCM(T)*YCaRX?

(N419) YYCH(I)=YYCM (1) *VCOR Y1

(0420 ‘ VIHETA(T)=YTHETA(T)*VCORR

(C421) TF(I.MEL2) GG TO 387

(3422) MCTRMM=NCTRMN 4+

(2423) WRITE(11,933) NDT,VCORX?1,YCQRY1,VCORR

(N424) 380 TF(TBAR.LF.TBARMX) GC T9 322S ’

(2425) YXCH(I)=YXCM(T)*YCORXYZ

(34626) , YYCM(I)=VYCM(LI)*VCORY2

(C4L27) © VTHETA(T)=SWTHETA(I)*VCORR?

(2428) TF(T.NEL2) &2 TN 385

(3429) NCTBMX=NCTAMX4+1

(0430) WRITE(11,934) NDT,VCORX2,VCCRY2,VCORR2

(2431) c *SET VELOCITIES TO ZERGC AT CERTAIN TINME STEPS

(54632) 385 NDTPP=MDT+1

(3433) . TFC(NDTPP_EAQ.NDTEGT) . OR.(NDTFP . EQNDTES2) .00 (NDTPP _EQ.NDTE 3
(34634) 1)) G0 T 410

(0435) GO TC 412

(C436) 413 YXCM(I)=G.0D+0

(0437) MYCH(IY=D,In+GH)

(2438) VTHETA(T)=D TR+ GE
C(T436) C *STORE VALUES OF THETA(I), XCM(I), AND YC¥(1) EEFORE CALCULATIN
(34410) 412 THETAP(T)=THETA(T)

(2441) XCMP(I)=XCM(T)

(2442) YEMBLI)=YCM(T)

(3443) C *CALCULATE NEW C=% PQSITICN

(C444) EYOUM=AXCH

(2445) AYDUNMZAYCH

(2446) CATHLUM=ATHET A

(3L47) IF (¥S®2.65.0) 60 TO 460

(2443) ' AXDU¥=(D . AD+T1+AXCM-AX (1)) /0. 3D+ 01

(24649) AYDUNM= (D LD+0T+AYCY=AY(T))/C .30+

(345%5) ATHDUM=(D.4D+ D1 *ATHETA=ATHE(I))/0,.30+41

(2451) CoLe XCACTI =Y CM(IYH(NT+VACM(T))+AXDUMALTSOD2

(2452) O YCHATYSYCM(I)H(NTHYYLM(TI))+AYDYM*DTSGD2

(2453) ' TR(¥AW2.EQ,1) WRTITE(11,0423) (1,DVDXI,0VRYI, DVDXI1,DVDRYI1, VTH
(2454) RETACT) ,ATHNQD) |

(35455) DTHFV=DT*VTEFTAC(I)

(8456) OTHEYN=DMOD (DTHEV,TUGPI)

(3457) DTHEA=ATHDUM*DTSQDL

(243%) DTHEAN=D¥OD(PTHEA , TWOPT)

(2459) TF(MSWILEQ,.1) WRITE (11,06429) (DTHEV,DTHEVH,CTHEA, DTHEAX)
D THETACIY=THI®OCT)+DTHEVRIDTHEAN

Co=21) THE®Q(I)=0#0D(THETA(CI) ,THOP)

(04662) ANGLELL)=THEMA(T)*G,.572957765D+52

(7463) ¢ *RERDSTTICN MOLECULES WHIOH HAVF (=M QUTSIDE CENTRAL ARRAY

(3464) . TROXCHMOTI) GF.C.O0+02) GO TO L70



Cexxx*x PROGRAM TITLE: MDY.LU * ok k& ok

¢ 5)
(. %)
(2467)
(J344K8)
(54€9)
(3472)
(C471)
(2472)
(3473
(2474)
(2475)
(7478)
(2477)
(0478)
(£479)
(3432)
(2681)
(3482)
(3433
(G484)
(C425)
(Z4E6)
(2487)

(G4E8)

(246429)
(2460)
(0451
(3492)
(3493)
(3494)
(5495)
(3LG4)
(54727)
(042R)
(2499)
(2528)
(2521
(J522)
(2532)
(2534)
(2535)
(2526)
(2527
(0sSGe)
(3579)
(0S1)
(Gs11)
(3512)
(£513)
(514)
(1515)
(2576)
(5517)
(g7
(4 )
(0s2)
(24521)
(3522)

470

472

L74

C 479
LED

112

YCM{I)=XCM(I)+SIZMSH
XCH¥P(I)=XCHAP(I)+SIZ¥SH

GN TO 472 .

IFC(XCM(I)=STZMSH) LE.O.CD+CC) G0 TO 472
YCMOI)=XCM(I)=-SIZMSH

YCMP (I)=XCMP(I)=-SIZ%SH

TFCYCM(TY GE.Q.QD+00) GQ TC 474
YCM(I)=YCM(I)+SI7MSH
VOMP(I)=YCHMP(I)+STI7ZMSH

G0 TO 4LKT

IFQCYCM(I)=-SIZMSH) LLE.C.OD+(C) GO TO 437
YCM(I)=yYCM(I)=-SI7MSY )
YCMP(I)=YCMP(I)-SIZ¥SH

PRINT 005 I,XCM(I),YCM(1)

CONTINUE

{*x*%x% UPDATE MNDT, THE NUMBER OF TIME INCREMENTS WHTCH HAVE ELAPSED

4Q¢

NCT=NDT+1

Cxxxxx CALCULATE TEMPERATURES, DIFFERENCES % CORRECTION FACTORS

512

wn
—~
(¥

PRINT G618
TEMPX=0,.0D+010
TEMPY=C ,OD+0D
SVYXSG=0,0D0+00
SYYSe=0,.704210
ne STPR 1=2,1TL,2
SYXSA=SYXSE+(YXCH(I)**2) /x5SO ANCE. PER SQ.3EC.=*x/
SYYSA=SYYSQ+(VYCHM(TI)*x2)
TEMPX=(PLYASS*SVYSR) /(O ,138044D-T2*1TL/2)
TEMPY=(PLMASS*SVYSR) /(D 138C440=-02%xT1TL/2)
somMso=0G,3n0+00
DO 512 1=2,1TL,?2
SOMSQ=SOMSAQ+(VTHETA(I)*+2)
TEMPR=(PLINERASOMSU)Y /((,690220=-C32TTL)
TEAR=(TEPFX+TEMPY+TENMPR) /T, 30+01
ITFC(NDTULELCNOTET+1)) JORL(TEAR . LT.O.1D=-10)) €0 TG0 515
TXFAC=TEMPY/TRAR ‘
TYFAC=TFMNPY/TRAR
TRFAC=TEMPR/TRAR
TF(MSWI2.62.05) GC TO 515
VCORXT=YSCFACKXDSORT(TRARMN/TENPYX)
VLORYA1=YSCFAC*DSORT(TRARMN/TEYPY)
VCORRI=VSCFAC*DSART (TBARMN/TEYPR)
VCORX2=VSCFAC+*DSORT(TBARMY/TEYPY)
VCARYZ=VSCFALADSART(TRARMY/TEMPY)
VCORR2=VSCFACADSRRT(TRARMY/TEX¥PR)
NCTDEL=NDT=-NRTINT
STX(NDTDEIL)Y=TE¥PY
STY(NDTDEL)=TEMPY
STE(NRTREL)=TRAR
DETB(NMDTNEL)=STR(NDTDEL)~STB(NDTDEL=-1)

C*x+xx COMFUTE KINETIC, POTENTIAL, AND TOTAL EMERGIFS (JOULES)

EXTOT (HDTDEL)=S.15D+0 1 #DYOLFC+72 . 128044D=224TRAR
EPTAT(NDTNEL)=PLITAT+0 16D=1R4+pCTQT

* CONVERT ENSRGTSS TO KILOJQULES FER MOLF
ERTOTCNDTOELY=EXTOTI(NDTOEL) /RMOLEC * DHAVAG
ERTAT(NDTDELI=FRTOT(NDTDEL) /D¥OLEL * DNAVOG
ETOT(MDTDEL)=EXTOT(NDTDEL)I+EPTOT(NDTDEL)

Crewdd FIND SYSTEM CENTFR-QF=-MASS AND CALCULATE °+v IN ERGS



Cxx*xx PROGRAM TITLE: MD1_LY Kok ko

23
vusih)
(2525)
(5S264)
(3527
(C528)
(5529)
(2520
(3521)
(GS32>
(2533)
(8534)
(2535%5)
(0536)
(3537)
(2S35)
(25729)
(3544)
(Z541)
(3542)
(3543%)
(2544)
(2S45)
(3546)
(5547)
(05S48)
(2549)
(Zs5¢
(3551)

(73552)
(3553)
(2554)
(253%)
(7556
(3557)
(25%58)
(2556G)
(2547)
(2561)
(55462)

(85632)°

(-544)
(72565)
(73566)
(0S47)
(C568)
(C549)
(3577
(3571)
(E572)
(2573)
(3574)
(fi15795)

113

CALL PRESST (XC™,YC¥,CMXSYS,CPYSYS, TBAR,PVERG,FTXCM, FTYCM)
Cxxx** CALCULATE SURFACE PRESSURE AND AREA PER MALECULE
" PIPRES=FVERG/AMFSY /* £RGS PER S8.ANG. */
SPTI(NRTDEL)=PTPRES*1,0D+16 /* DYNES PER -C™, *x/
AYOLEC=AMESH/DMOLEC
Cxi%x*x*x WRITE PARAMETERS ANMD INTERMEDIATE RESULTS
IF (KWRIT .GT. 2) 69 TO 3533
IF (NPT .GT. NDTP1) G6C TO 533
WRITF (11,8(08)
WRITE (11, S21) A,B,R,PLMASS,PLINER,EPSI
522 WRITE (11, 523) DEPTH DIST,DELTA,ZAMBDA, RMAX DT, NDTWAX
528 WRITE €11, S26) ITL,I™Mx, 18y _
530 WRITE (11, 531) RANFX" RANFYO,RANFTO,¥COMT,MSAVE,NRECT,NREC?2
523 IF(MSWS.FOR.T) GO TO 5.1
IF(NDT.FOQ.1) GO TN 574
IF(MOD(MDT,IPRINT).GT.O) GO TC 591
534 WRITS (11, 527) MNRT, DT
WRITE (41, S39) ’
WRITE (11, S&1) (I, xXCM(T),YCM(I), THETA(L),THE®OCT) ANGLE(I), 1=2,1T

1L,2)

WRITE (11, 545)

WRITE 1, S47) (I, VXCM(I), VYCM(I),VTHETA(I),1=2,1TL,2)

42ITE , 552). TEMPX ,TENPY,TEMPR,T2AR,PVERG,CMXSYS,CFYSYS, PIPRES,
TAMGLEC '

5901 TF(MOD(NDT,JPRINT).GT.0) GO TG 5922
CSTINISJSTINI*JPRINT+
JETINI=JSTINI+1
WRITE (11,854)
DL SH? K= rcrrux JNDTDEL ,KPRINT
cPkDTI K+NDTINT
592 J2TTE(11,095) KPMﬁTI EKTGT((),EPTPT(K) ETGT(X),STE(X),DSTa(k),
&QST(K)
Craxax ALLOYW SYSTEX TO EVOLVE FOR BNCTHER TIME INCREMENT IF NDT 4AS
C # NOT REACHED ITS MAXIMUM, STCP TF FILE #DLU.STOP EXISTS.
593 CALL SRCHES(KSEXST+XTIUFD, "¥DLU,STOPY 0,7, 0 HNSTCP).
© TF(NSTAP.NE_ESENTF) GO TO 594 '
IF (NDTLLTLNDTMAXY GO TO 110
Cavwrwx WBITE FINAL RESHLTS
C *# PRINT PHOTO OF POSITIONS AT PENULTIMATE TIMFE-STEF
5G4 CALL PHOTO (NDT=1)
WRITE (11,996)
WRITE (11,964)
D S96 K=1,NDTREL,KPRINT
KPNDTT=K+NDT.INT
5G4 WRITE(11,995) KPNDTI_ EKTOT(K),EPTOT(K), ETOT(K), STH(X) , DSTB(K),SP
21 (x)
If (wnohr 6T.C) G0 TO S9%8
WRITE q** 50?) ,
598 WRITE (11,59G) FRANFAX,RANFAY,RANFAT,STX(NDT),STY(NBT),STR(NAT),
18(M01),STxMY(wnT) ﬂvMR(rm),swA (NDT)
NRGRIT=1
€CC IF (MSAVTP,EQ . 3) 6N T0 615
Cav+*+x NRITE FTINAL AND FRIGR POSITIONS TO TAPE (QPTIONAL)
AT TF O (NRFCY .50, NRFC2) 60 TQ D410 '
602 DO 2606 L=VRECT,MREC?
‘READ (3) SuMT,ouM2, ouMe, puMs
READ (3) AUYS Durg nuwy
READ (T ,FEND= £04) [uwme

YOO



Cxxx+*x PROGRAM TITLE: m®mD1.LU R XS

81)
Lo f2)
(3533)
(CS5R4)
(35&5)

(1586)

(2587)
(3538)
(3529)
(259
(8591)
(25922
(3593)

(3594) -

(4595)
(49596)
(£597)
(3592)
(35G9)

(3601)

(2621
(2622)
(26733)
(8674)
(3635)
(2626
(2627)
(0678)
(3639)
(2613)
(0611)
(06125
(2613)
(3614)
(0615)
(3614)
(Ce17)
(4618
(0619)
(56202)
(2621)
(3622)
(2623)
(S624)
(2625)
(2A26)
(3627)
(C62%)
(2629)
(2632)
(Z631)
(C632)
(7633)
! i4)
I 15)
(2636)
(2h37)
(263%2)

616
610

615

114

CONTINUE
WRITE (3) XCM,YCH,THETA,THEMO
WRITE (2) XCMP,YCMP,THETAP
WRITE (3) MDT

IF("SEVUDS.ER.O) GO TO 619

Cx*axx WRITE INITIAL AND PRIOR POSITICNS TO DISK (OPTIONAL)

617

610

Crkkhs

740

CPDATE=DATESA(DRTE)

WRITE(39,925) (RDATE,NDT,JSTINI

DO 617 1=2,1TL,2
WRITE(OG,932) XCM(I),YCM(L),THETACI)  THEMO(I)
WRITE(D9,932) XCHP(I),YCMP(I),THETAP(I) .
WRITE(DS,532) AX(L),AY(I),ATH(D)
WRITF(G9,932) AXP(I),AYP(I), ATHP(I)
WRITF(0G,922) YXCM(I),VYCH(I),VTHETA(T)

WRITE((19,632) TEBAR, TXFAC,TYFAC,TRFAC

KWRIT=1 : :

TCPUF=CTIMSA(CPUTIM)

TCPU=TCRUF-TCPU

PRINT 904 TCPU

OFTIME=TIMESA (TIME)

WRITF(11,9348) RNDATE,ONTIME,QF TIME

WRITE (11,904) T(CPU

* REVISE SELECTED DATA FOR NEXT RUN FRCM TERMINAL

IF(MSWH.EQ.C) 6O TO 999

PRINT 724

PRINT 926

READ(1,%,ERR=G99) ¥SW&,DEPTE,DIST,DHC, DHM, NDT#AX

PRINT 925 ' ,

READ(T ,*,ERR=9CGQ) T JTBARMX  TRARMN,TFACHY ,TFACMN EPSIR

PRINT 028 '

PEADRCYT , + FOR=9QCC) MSWL , MSWR MSWE MSWIT MSu1T MSK12

IF(MSUEL EG.-T1) GO TO 390 : '

60 T2 15

Crxxxx FCRMAT STATEMENTS

14
18
21
23
2%
28

29
18¢

623
L2G

5¢1

523

529
5321

537

FORMAT (1RF4.1)

FORYAT (20F4.1)

FORMAT (2F1C.4,4D15.4)

FORMAT (101544 ,4010.6,1D15.4,116)

FORMAT (415,2D1%5.7) .

FOPMAT (1HT,*' PREVIOUS CALCULATIOMS CCVERIMNG ',16,' TIME TNCREW
1ENTS PROVIDE THE FOLLOWIMG INITIAL VALUES OF xC#, YCM, THEMO, 2MD
PTHEETALY /1) '

FORMAT (1M ,2X,13,6%X,D1S.8,6Y,015.8,6X,015.5%,6X,D15,8)

SOIMAT ( 2%,%T =9, 12, 6X,'X1(1)=",015.8,6X%,'Y1(1)=",D15.23,6X,'THE
1MOCI)="',D15.2)

FORMAT (1H ,S5%,13,6(5%,B15.8))
FGRYAT (MTHD,8X,L(5X,D15.8))

FCR#&T (1HG,'A . =' _F10.4/C1HD,'B =Y FTL .4/ (C1HT 00 =',p
T1C.4) /T CYHD TP MASS=" D15, 4)/ (THT VDL INER='Y,D1S5,4)/(IHTZ,'EPST =70
115.4))

FCR¥AT (MHQ,'CEPTH =V, D15 .4/ (THE,'"DIST =", F10 4)/ (14D, 'RELTA =9 ¢
TIC. L)/ (THE, YZAMBDA= L F13.4) /(18T ,'R¥AX = F17.6)Y/(1HL,'DT =',D

115,47 AR, vu0TMaY=" _16))
FORMAT (140, *1TL =V I3/ (AHG, Y Tmx =V, (HEG, PIMY =1, 12
FORMAT (1HT, '"RANFX0=*,D1S.4/ C1HT,'RANFYQ=",015.4)/CIHI ,"RANFTO=" 1
115,46/ IR0, Y RCONT =Y, I3)/ (THT,®SAVE = T3)/ (THG,"NRECT ="', T1%2) /('
2 ,VNREC2 -, IZN ,
FORMAT (1HO,' AFTER ',Th,' TIME. INCREMFNTS OF V,E15.4,% SECUNDS



P

* PROGRAM TITLE: ®D1.LU Tk ok ok

115

1,THE POSITIONS AND TEMPERATURES ARE AS FOLLOWS:' //)
SZTQ  FORMAT (1HT,4X, T, 11X, ' XCPCI) ', 15%, YCM D) ', 14X, *THETACT) ", 13X
1, THEMQCI) Y, 13X, *ANGLECI) " /)
S41 FORMAT (18 ,2X,'3,4%,D15.8,6¥,D15.82,6%,D15.8,6X,D15.8,6X,0D15.°8
S45 FCRMAT (THO,6X, " T, 10X, "UXCMCI) ', 14X, "WYCMCI) ", 12X, "YTHETACI) //)
547  FORMAT (1H ,2Y,13,6%,015.8,6X%,D15.8,6%X,015.8)
552 FORMAT (1HO,'TEMPX=',D1S5.R/(1HG,'TEMPY=",015.2)/ (1L, 'TE®PR=",D1S..
18)/(1HG, 'TBAR =',D15.8)/(1HO, '"PVERG=",D15.8)/ (1H(, ' CMXSYS=*,n15.¢8
2/ (1HO, 'CMYSYS=",D15.8)/ (140, *PIFRES=" ,D15,8)/(1HC, "AMOLEC=",D15.2)
7) ' : :
567 FORMAT (TH1,4X,"RANFAX',6X,'RANFAY',6X, "RANFATY 6X, "TEMPYT 7Y 'TEM
1PY',7X, " TEMPRY, BX, " TRAR' ,7X, " TX=TY',7X,*TY=TR',7X, ' TX=TR" //)

5990  FORMAT (1HD,10(1%,D11.4))

201 FCRMAT (713,3012.5,613)

B2 FORMAT (1H _taxaxxt)

TS FORMAT (1HO,'#**#»x% QUTPUT FROM MAIN *#*%+t)

G4 FORMAT (10X, '*x%**x END LOOP 620')

Q02 FOIMAT (10X, t#xxx* END LOOP 63C°*)

902 FORMAT (10X, '#%#%* END LCOP A4LD') .
G4 FORMAT (1M ,0GX,"+xxxx TSTAL CPU TIME =  ',D15.7,' SECCNDS')
©Cn FOR®AT (15Y,75,2Dp15.8)

06  FORYAT (10X,15,6010.3)

Q67 FORWMAT (10%,15,4015.3)

98  FORMAT (15X,15,4D15.8)

S0 FORMAT (313,2024.16,015.7)

911 FORMAT (617%)

%12 FCR™¥AT (4D15.7,215)

G133 - FORWAT (3D15.7)

914 FORMAT (1H1,2x,'M=1 _15,5x,'N=",15,5X%,°'S="!_F8_.5,5%X,"'SCF="_,FR.5,5%
&,'GAMZ=" ,FE8.%) ’

F15 FORMAT (10X, *** ENTER QDIST1*Y)
916 FORMAT (10X, "% ENTER LUDEC3')
G417 FORMAT (10X, Y** ENTER 427 LOQF')

G18 FORMAT (10X, "»*x CALCULATE TEMPERATURES?Y)

G119 FORMAT(ICX, **#%x FHTER RAMLOC')

G20 FORMAT (10X, %% [ X=!,15)

221 FOQM5T(IS)

627 FORWAT(SX Y **x NDT=F ,15)

G232 FORMAT(7D11.3)

924 FCR#AT(2X ,"#x%x* ENTER NEW VALUES FCR MSWé&,DEPTH,DIST,DHC,DHM, ND
RTMAXY)

Q25 FORHMAT(2X, " *x+%x* ENTER NEW VALUES FOR DT . STEARMX , TBARMN , TFACH
&Y, TFACMN,EPSIRY) '

G926 FORMAT (10X, 'SET MSWé& TC -1 CR 7 TO EXIT NOW O0R AFTER NFXT RUM")

527 FORMAT(1413)

Q28 ERRMAT(2X, ' *x*xx*x ENTER NEW VALUES FOR ™SW4(LJ), MSHP(VEL . ES.), *
ESWR(MSHLOR), MSWIL(FORCES), MSWIT(MOD VELL.TFAZ), ¥Su12(vY0D _VEL ., TRA

SRV .
©20  FORNMAT(2015.7,315)
G2 FORMATCA9,215)

621 FORMAT(SX,'+%x DATA DATE AND NOTNMAX:',A9,5X,T15)

G32  FORNMATI(4D15.10)-

¢33 FORMAT (X, " *%x*x TRAR LESS THAM TRBARMN AT NOT=',IS,t'; YCORYX1, VC
LCRY1, & VCORPY WFAE: P, 3D12.4) ,

43¢ FORYAT(1X,**x*x*x+» TSAR GREATER THAN TBARMX AT NDT=',I15,'; VCORY?,
g VCNRYZ, & VCORRZ WERF: ',3D12.4)

G 39 FORMAT(IX, ' xxxxx DT CHANGES TO ', n12.64,' AT NOT=! _T5)

93¢ FORMAT (A9,2015.7)
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3700
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S732)
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1736)
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G37  FORMAT(1X,'**%*%x%* NCTBMN & NCTEMX ARE:',2X,216)

938  FORFAT(2010.3,D15.%,3012.3) . :

004 FORMAT (1H1,3X,'NDT?,2X,YEXTCT (KJ/MOLE) ', 2%, "EETOT (KJ/MOLE)?',?2
1X,*ET0T (KJ/MOLEY',3X,'TBAR (LDEG.KEL.)',5%,'DELTA TBAR', 4% ,'PIPRES
2 (DYR/CMYY /1) - ‘ :

995  FORMAT (  2X,15,2%,015.8,2%,015.8,2X,015.8,2%,015.8,2¥%,015.8,2
1X,015.8) .

9G4 FORMAT ("1 x+%x%x FINAL TIME-CGURSE OF EXPERIMENT akxx4x!')

259  STAP -
‘END

(R ZE S A XS E RS RS RS Ss RS RS R RS SRR R s R s RS EARRSSRREER SRS SR S
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_*************k******** ﬁ*t********'**************************************
SUEROUTINE IMIT(IMX,IMY,A,R,AD2 ,XSPACE,YSPACE,XCM,YCM, THETA,VXCH
R, VYC®, VTHETA, THEMD) : : .
x PURPOSE: ARRANGE ITL/2 MOLECULES IN CHECKERSQARD PATTERN,

¢

¢ X =TWICE THE MUMTER CF MOLECULES ALONG THE ¥-AXIS
C imy =NUMBER OF HORIZONTAL ROVS 2F MOLECULES (EVEN)
¢ ITWC =NUMBFR CF TAILS IN TWO HORIZONTAL RCWS

C

* DCCUMENTATION:

INTEGER*2 NTL,MMESH

PARAMETER (NTL=T84,NMESH=1083)

IMPLICIT RFAL*? (A&~G,0-2),INTLGER (H=N)

COMMON//XT(NTL) ,YT1(NTL) ,QMESH(MMESH) ,DHC,DHM,C, VESH, ITL NALPHA N
16ETA, NGAMMA N, M,N7%,51,S3,0MEGA,EPSIR, YH, PHIMSH(NMESH) KRSW1 ,KRSK?2
2,¥RSH3,KRSW4L,KRSWS , KRSWA , KASWT,KQSW2,KASNZ KESW4L , KASWS ,KASWE,S,5CF
2,58M7 ,LUSWT,LUSWZ ,LUSW3, LUSWL , LUSWS ,LYUSWE, FLIFAC, FMAX, LJSWT, LISW2,
LLISWE,LISWSL ,LUSWS ,LISW6E,RDSAV (R, NTL)

DIMENSTON XCM(NTL),YCM(NTL),THETA(NTL) ,UXCM(NTL), VYC“(NTL) YTH
RETA(NTL) ,THEMQ(NTL)
Cxxx X POSTTIOMS
2T OITROS2+IMY -2
439 Do GUR7 g=2,10X,2
c YCM(J)=(J72=-1)*0.17320510+01#*R
XCM(JI=D . SD+O0*XSPACE*(J=-1)
LIMIT=(IMY/2=-1)%xITu0+J
NQ TC037 K=J,LIRIT,ITHO
sk 4 XCH(K)=XCM(J)
I¥XP2=1IMX+2
DO S044 J=IMXP2,1TW0,2
C XNCM(JY=(J/2-I¥%/2=-0.5)*(.17320510+01+8
XCY (JY=YSPACEX ((J=1I#M¥%)/2)
LIMIT=(IMY/2=-1)+1TUD+Y
DO LG ¥=J , LIMIT, TTHG
A XCM(K)Y=xCcu ()
Crx* Y POSITIGNS
11=0
12=C
I13=1

54 DC Gh67 J4=2,17L,2

C YCR{J)=ADR2+4(I3-1)*x(A+R/2)
VC“(J) Q.SD+“J*V§PACE+YSPACf*(13 1)+1.000+20
=11#1
IF (12.60.1) GO TO 71C60
IF (X1 EQG.INMX/2).GO TC C62
: GC 7O NGE7
TGed IF (I1.€60.71%X/2=1) 60 TO 2{64

2261 G0 To COAT

TLhe 12=1

7763 6O TC CGé5S

T 64 12=0

5065 11=3

LY 13=13+1

t0e7 COGNTINUE
B G2 TG DhEn

G708 nC L0072 1=48,142,7
a7 ACHCTI)=FNC(Id*T . 17320510451 +8
N 4 YCY(I)=FYA(I)*A+FFRBR(T) %R

Crs» VYELGCITIES AND ANGULAR POSITIONS
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08C DO CL&6 U=2,1ITL,Z
) VYXCM{J)=C.CD+0C
vyyce(g)y=0.00+07
THETA(J)=0.15728p+01
VTHETA(Y) =0 . 00+GT
) THEMO () =THETACY)
086 COMNTINUE
SO0 RETURN
END

Chrhkthhhhhskhkkhkhhhkihhhkhhk *************************************’*********
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-Li*************************************i********i******i****************

SURROQUTINE INITZ22 (XCM, YCM, THETA VYXCM_ VYYCM VYTHETA , THEMQ, A)

* PURPOSE ARRANGE 32 MOLECULES IM TRIANGULAR LATTICE ON
SAUARE CENTRAL ARRAY.
* DOCUMENMTATION: MOTES, FAGES S20.21 - 520.2%.

INTEGER*2 NTL,MNMESH

PARAMETER (NTL=0h4 ,NMESH=1377)

IMPLICIT REAL*S (A=-G,0-1),INTEGER (H=N) :

COMMON//XT(NTL) Y1 (NTL) ,QMESH (NMESH) ,DHC,DH™, B ,MESH,ITL, NALPHA N
1RETA, NGAMMA N, M, MIM,51,S3,0MEGL ,EPSIR,YH, PHIMSH(NYESH) ,KRSW1 ,KRSW?
2,KRSW3,KRSWA , KRSWS,KRSWH ,KOSWT,KOSW2,KQSW3 ,KASWL , KASWS ,KOSWL,S,SCF
3,GAMZ ,LUSYWT,LUSW2,LUSWI , LUSW4 ,LUSWS, LUSWA, FLJFAC,FMAXY,LJSWT,LJSW?,
LLJISW3E ,LJSWa,LJSHS,LISWE,ODSAV (R, NTL)

DIMENSION XCM(NTL) , YCM(NTL) ,THETA(NTL) ,UXCM(NTL) ,YYCM(NTL) VTH

EETA(NTL)Y , THEMO(NTL)
Crhkhdx COMNSTAMTS *rkask

SIZMSH=NHM+NBLE(FLOAT(MESH=-1))

R=1,1D+C0O*STZ%SH

CLX=(SIZMSH=2.2D0+00*R)/7.5D+010

AR2=0,50400%

SMDS=0.2D+CC*STZMSH .
Cr*xxx SET UP FCQUR ROWS OF EIGHT MOLECULES EACH.

S OO

C Y CCORDINATES FCR THE NEGATIVE ENDS OF THE
€ MOLECULES ARE GIVEN BY
c YHEG = I # 0.20407 % SI1zZMSH  (I=0,1,2,%).
C X CONRDINATES FOPR NFGATIVE ENDS ARE GIVEN BY
¢ YNEC = R o+ JeDLX  (J=0,1,2,...,7).
c ANGULAP CNORDINATES ARE EITHER €0 QR 3NT DEGREES
C (1.3472 0OR 5.23%340 RADTANS) WRT THE X-AXIS.
no 25 MROW=1,4
YRNEG=NROW*SMNS
NEMINT=24(NRNY=1)I %14
NCMFINSNCMINI+TYG
DN 1T ONCHMEMNCWINT L NCHFIN,?2
NCT=(NCM=NCMIMT) /2
NCTP=NCT4? '
FPHETA(RNCM) -1..0472D+20 :
IF(HOD(NCTR,2) . EC.1) THETA(NCM)=S.236004C0
YNEG=R4NCT*DLX :
YO (NCM)ISXNEGHANZ2DCOS(THETA(NCH))
1c YOH(NCRM)I=VNEGHADZ*DSIN(THETA(NCM))
20 CONTINUE

Cx»xsx SET VELOCTTIES AND THEMO ARRAY
S bG 20 9=2,1T7L,Z
YXCMELY=0,00+010
VYCM ()Y =0,0D+ 00
VTHETACL) =D ,20+50
THEMG(J)=THETA(J)

kAt CCNTINUE
SCT - RFTURN
tND

Ct***ii*****i**t****t*********i***i**********i*****i****i*i*t***********
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r**ﬁ*it*,#******t*t**********************v*********tt**********r*i*t****t

SUBRCUTIME INITSP (XCM,YCM,THETA, VUXCM,VYYCM,VTHETA,THEMD,FMC)

* PYRPOSE: ARRANGE UP TO SIX MCLECULES ON SQUARE CENTRAL ARRAY
WITH SPECIFIED POSITIONS AND VELQCITIES.
* DOCUMENTATIGCN: NOTES, PAGES 520,26 - §520.2°%. :

INTFGER*2 NTL_ NMESH .

PARAMETER (NTL=TK4 NMESH=1T23)

IMPLICIT REAL*2 (A-G,0- Z),IVTEGFR (H=N)

CO%YON//X1(NTL),Y1(\TL) QMESH(MMESH) ,DHC ,DH® ,Q, MESH, ITL NALPHA N
18ETA,MGAMMA,N,M,MZM,S1,SZ,OMEGA,FPSIR,YH,PHTMSH(NVESH),KQSNT,K?SM?
2,KRSH3 KRSWL , KRSWS , KRSW6E ,KGSWT, KASW2 ,KASW2 ,KASWL ,KASHS ,KASW6,S,SCF
3,6AM2,Lusw1,Luswz,Luswz,Luswé,Lust,Luswé,FLJFAC,FMAX,Lsz1,LJSH?,
LLJSWI ,LJISYWA ,LJISWS ,LISWE,ADSAV (], NTL)

DIMENSTICN XCMONTL),YCM(NTLY, TF‘TA(NTl) X CMONTLY ,VYCMUINTL), VTH
EETA(NTL) ,THE®Q(NTL), FNC(’A)
Cxrku+ CﬂNSTANTS 2 XX 2
Cr*xxsx SET POSITIONS, VELOCITTES AND THEMQ ARRAY
PO 10 J=2,ITL,2 '
JP=(J/2-1)*6
XCM(I=FMC(JP+T)
YCMOIISFMC(JP+2)
CTTRETA(II=FMCOIP+I)
YXCHOI)=EMC(IP+4)
VYCH(JI=FRCLIP+S)
VTHETACJ)Y=FNC(JP+4)

Y Y

1¢ THESO (J)=THETACJ)
5G5 RETURY :
END

AR EE R PR EEE FE S E R R R R T R R R R R R Ry g g R e L L R R R R d
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C

2 EeEaEesNaNala!

SURRQUTIME RANLOC (XCM,YCM,A, R, THETA,TWOPY RAMFAX, RAMFAY RAMFAT)
INTEGER+*2 NTL, NMESH
PARAMETFR (MTL=C64 ,NMESH=1083)
IFPLICIT RFEAL*E (A=-G,N=7),INTEGER (K=N)
COMMON//XT(NTL) ,YT(NTL),QMFSH(NMESH) ,DHC,DHM,G  MESH,ITL,NALPHA K
1RETA, NGAMMA M, M MIM,51,53,0MFGA,EPSIR,YH, PHI¥SH(NMESH) ,KRSWT,KRSW?
2 KRSW3,KRSW4L , KRSWS,KRSWA,KGSWT ,KOSW2 ,KAGSW3,KASW4 ,KRSWS ,KASW6,S,SCF
T,6AMZ ,LUSYT ,LUSW?2 ,LUSHE, LUSWA , LUSKS ,LUSWA ,FLIFAC, FMAY LJSYT,LUSH2,
4LJSNJ,LJSW4 LISWS , LISK6 GDSAV(S,VTL)
2010 DIMENSION XCV(NTL) YrV(NTL) THETQ(NTL)
*kkkd SWITCHES (KPSW'S) hhdhd
*INDEY* *TF SWITCH=1, THEN*
WRITE XCM, YC™¥, ANDO THETA BEFORE RANROMIZATON
WRITE XCM, YC¥, AND THETA AFTER RANDOMIZATON
NOT IISED
NAT UISEN
. NOT USED
£ ‘ NQT USED
WRITF (11,4C0C)
IF(KRSWT.EQ.0) GO TO
WRITE (11,601)
ne 20420 T=1,77TL .
2028 WRITE (11,402) I,XCMCI),YCH(I),THETA(CD)
2750 RAX=RND(1D) ’
2051 DG 2043 1=2,7TL,2
CRMY= RhD(L)
ANX=DELFE (RNY) ’
IN=RNY %17

W NN

N
W
[}

2054 MODIN=MOD(IN,2)

255 IF (MODIN_LT.0.1) GO TO £1SK

2056 TRMY, == :

2057 GO TO 2040

2CS% roNx=+1

FAM AN XC¥(I)= XC“(T)+IR\X*RNY*L.865r255*Q*RAVFA\
GC TO 2363

2061 WRITE (11,2042) (1. IRNX,RNX . XCM(I))

2062 FORMAT (TH ,S%,13,5%,13,5%,215.2,5%,015.9)

2063 COMTTINUE :

2107 DC 21123 1=2,1T7L,2
PMY=RND (D)
REY=DBLE (RNY)
ITN=RNY*1{

2104 MODIN=MOL (IN,2)
2105 IF (MODIN.LT.D.1) 65 TO 2108
2106 IRNY==1
2507 60 T0 2110
2408 IRNY=+1
241¢ VE¥(T)=Y (M (1) +IRNY*RNY®RANFAY*(A+R)/?
6C TC 2113 :
2111 GRITE (11,2412). (7,IRNY,RNY,YCH(I))
2112 FCRRAT (10 ,SX%,17,5%,13.5%,015.9,5X,015.5)
BEA IR COMTINUE

210 De 2270 1=2,17L,2
RNT=RND()
ENT=DELE (RNTY

2225 TN=ENT =T



Nt N N N N N N N N N N N N S N N N SN S o

122

2230 MODIN=MOD(IN,2) :
2235 IF (MODIN .LT. G.1) GO TC 2258
2243 IRNT==1
2245 GO YO 2255
2250 IRNT =41 i : .
2255 THETACI)=THETACI)+IRNT*RNT*TWOPI*RANFAT
GO TG 2278
2260 WRITE (11,2265) (I,IRNT,RMT,THETA(I))
2265 FORMAT (1H ,5%X,13%,5%,13,5%,P15.9,5X,015.%)
2275 - CONTINUE '

IF(KRSW2.,ER.O) GO TC 2570
WRITE (11,401)
DO 293 I=1,1TL

290 WRITE (11,402) I,XCMCI),YCM(I), THETA(L)

400 FCRMAT(T1HT, Vax+xx QUTPUT FRC¥ RANLOC *%*#x?)

L0 FORMAT (THT, X, #1%x7 6X " *XCH(TI) % OX " *YCHRCI)*® X, "*THETA(T)*")
T2 FORMAT(1H(G,5%,15,3(2%,D15.7))

2530 RETURN
END
EEEEX R R R RS R R RIS RSS20 AR ettt ERi iR SRRl R &)
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C***A**********‘***tii*i****ii**********t********i***t*****t**************

SUBRCUTINE QDI
INTEGER*2 MTL,
PARAMETER (NTL
IMPLICIT REAL*
COVMON//X1(”TL
1BETA, NGAMMA N 8,
Z,KRSNE,YDQUA KRS
3,6AMZ ,LUSWT , LUSW
LLJSWI ,LISWL, LJSY
DI®ENSTON DUMM
TCPUT=CTIMEA(C
READ(D2,220) M
SWITCHES (YQsw!
*INDEY® - *TF
1
2
3
4
S
A
xhknxkd CONSTANTS *x+xx%x
IF((KQSH1.EQ. 1)
TRITE (11,405
IF(KASWZ.EQ.T) 6
WRITE (11,47532)

LOR.(KQSW?Z.EQ

ST
MMESH .
=64 ,NMESH=10E3)
g2 (A-G,N- Z),I\TEGER (H=N) .
Y, V1(NTL) QMESH(NMESH) ,DHC,DH¥,Q, ¥YESH,ITL, NALPHA N
h7ﬂ $1,S3,0MEGA _EFSIR,YH, PHI”’H(V"ESP) KRSW1 ,KRSYW?2
WS, KRQNb KGSh1 KstZ xc<w?,xcqv4 ¥RSWS, KGSWé,S,SCF
2,LUS%3 LUSWA LUSMS,LUSU6,FLJF5C,F”AX,LJSW1,LJSNE,
S,LISWE,BDSAV(E, NTL)
(13)
PUTIM)
GAMMA ,ZH ,OMEGA, TOL
S) Akt kH>
SWITCH=1, THEN*
MRITE ALL VALUES OF QMESH AND PARTIAL SumMam*s
WRITE INPUT VALUES OF X7 AND Y1

WRITE INTERNAL PARAMETERS FOR LOCP 170

WRITE SUM OF MESH CHARGES (SUMA™) AT EACH TIME STE
RO NGT ASSOCIATE CLOUDS WITH CHARGES
NOT USED :

1) .ORL(KASW3.EQR.1T).OR.(KASWL.EQR.T)) W

o T0 52

De 4S5 I=1,1ITL
L5 WRITE (11,400) I, X1(1), Y1(I)
54 DO 67 K=1,HM '

AT amr
DHCS=
DEMS=
DHC2TN
DHM2IN
TF(kQ

pDC 173 I=1

*

SHCKY-0.0D+00
D.R+NTADHC
C.H0+CE*DHM

ADFT/ (DHC*DHC)
104(‘1/({)“#’*0&1»‘)
Suz.f L1) WRITE (11
LITL
ph=nNUMBIRED FORCE CFNTERS ARE
ISTEN=(=1)*%x]
QISIGN=R*DRLE(FLOAT(ISIGN))

u_"e

,436)

IM=TRINTAXT1 (I /DHM) +

JMZIDINT(Y1(I)/Drw)+
RX=DM™ODIX1(1),DHN)
RY=220ND(YT (L), DHY)
IT(KGSWS.EQ.YY 0 TC 7C
TF (RX JLE, DHUMS) GO TO 47
tLx=1
My=1
IMP=IM+1
GG TO 62
Lx=¢
MYX=-1
IMP=1¥~1
IF (RY _LE. NHMS) GO TO 64
Ly=1 '
y=1
J¥n=Jgm+1
GO TQ AS

NEGATIVE,

EVEN POSITIVE,
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g 64 LY

uloy? --1

J4961) A JMP-JM-1

3362) 65 SX=LX*DHM=MY%RX

R363) SY=LY#DHF=MY+RY

64) FIJ=DHC2IN*(DHCS+SX)*(DHCS+SY)

2265) FIPJ=DHC2IN* (DHCS=SX)*x (DKCS5+SY)

Ji366) FIJP=DHC2IN* (DHCS+SXI*(NHCS-CSY?

3067) ) FIPJP=DHCZIN*(DHCS=SX)* (DHCS5~SY) ,
£Cag) C * I1F CHARGE HAS FALLEN OUTSTIDE ARRAY, PLACE IT CN EDGE
3069) IF((IMP-MESH) 6T .0) IMP=MESH

a7, IF(IMP.EQ, D) IMP=1

2071) ‘ IF((IMP-MESH) .GT. () JMP=MESH

n072) IF(JMP.FQ. D) JMP=1

£a7z3) ILINTO=NIM+ (IM=1)*M+ (JM=T)*NGAMMA

0274) JTLINIO=NTZMS (IMP=1) M+ (JM=T)XNGAMFA

237%5) ILINCI=NIM+ (IM=1) %M+ (JMP=1)*NGAVMA

£276) TLINTI=NZM+(INP=1)*M+ (JMP=1)*NGANMA

5277) GD 10 27

?2?8) 7 DHMMRX=NHM=-RX

DHMMRY=DpUM=-TY
FIJ=DHM2TN*DHMMRX * DHMMRY
FIPJ=DHM2IN*RX+DHMMPRY
FIJP=DMM2IN+DHMMRY *RY
FIPJP=DHM2IN*RX %3 Y
ILTNGOSNZM4 (IM=1) %M+ (JM=T) ¥+ NGANMA
TLINTCSTLING(4M

20886 TLINTA=TLINTOHNGAMMA,
2037) ©OILINTA=TLINGY+M
c . * PRESERVE THE VERTICES & FRACTIONS FOR EACH CFAR E IN QDSAV

80 R0SAV(T,I)=ILINGE
: QnSAV(2,1)=TLINTT
ANSAVIZ,T)=TLING
GDSAV (4, T)=TLINY
DDSAV(S,I)=FIJ
QpSAV(H,I1)=FIPJ

9995) . ODSAV(7,I)=FIJP
HHYE) ORSAV(E,T)SFIPYP
3097) € * ASSIGN CHARGE FRACTIONS TO VERTICES

598&) . QMESH(TLINOD)=G¥ESH(ILINCO)+FIJ#GISIGN

3099) OMESH(ILINTT)=AMESH (ILINTIC)+FIPI*QISIGN
J170) . OMESHCILING1)Y=SOMESH(ILINC1)*FIJP*QISIGN
2171) OMESU(ILINT1)=QMESHCILINIT)+FIPJP*QISIAN
£152) . TF(XRSW3I.EQ.0) GO Ta 100

9143y . WRITECT1,401) I, 1%, 0¥, IMP,J¥P ,RX, Y, FIJ,FIPJ,FIJP,FIPJP,OMFESH(
T104) TILINGD) ,AMESHOTILINTGY ,QMESH(TLINCT) ,@MESHCILINTT)
3135) 160 COMTINUE

2126) SyUMEM=G_12

31737) IF(KGSW1.EQ.1) WRITE (11,406)

017e) , DC 270 ¥=1,NMESH, 1D

£129) KkM1=K-1

2113) SUMT=0,00+00

1111) Do 193 1=1,10

4 IP=14+KMe

o1, TF(IP.GT.KMESKE) G2 TC 195

0114) UM (T)=G¥ESH(IP)

T119) 160 SUMI-SUMTHDUY (T

2116) 195 SUMGM=SUMGM4SUM T



(".447)
( 2)
(2119)
(G120
(3121)
(3122)
(1123)

(7424)

(3125)
(G126)
(3127)
(2128)
(3129)
(231390)
(0131)
(3132)
(2132)
(2134)
(51135)
(5136)
(3137)

(2138) .

457
L2¢
421
Lz2

23
424
SGO
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IF(KGSWT.EQ.T) WRITE (11,402) K#M1,Suma®, (dUMI(I),I=1,10)
COMTINIE ’
IF(KQOSA4 EQ 1) WR!TE(11,407) suxgm

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
1ERFIP 0

(1HG,13,2(2%,D15.7))

(1H&,§T3 1ﬂ 11.4)

(P2 ,15,2%,0312.5,1G011.4)

(1HG,'*I*‘ 6%, '*!1(1)*' 1PX,'*Y1(I)*')

(THC, " +T #IR+JNINMPJMPY AX,'*PX* sTXLVERY*Y S, VHFLIyxt 46X,

,SX,'*F!JF*',SX,'*FIPJP*',SX,'*QHESH(CO)’,1x,'*OMESH(1Q)',

21X, THQMESH(D1) Y, 1X, Y XQRESH(11) ")

FORMAT
FORMAT
TK+1C) = ")
FORMAT
FORMAT
FORMAT
FORMAT
FORRAT
FOEMAT
RETURN
END

(1HO, Y *x*x+%* QUTPUT FROM QDISTA #awwx?)
(THC,1X, P*Kx !, SX, "*#SUMAN* T 6%, ' *OMESHIK+1) THROUGH GMESH (

(1HZ,6X,*'SumamM=",p15_8)

(10X, v %x 9HC21N=',D15.8)

(10X, V%% DHC ,D15.2)

(T, ' %% *YLYNHF* *TLINAOx xTLINQOY* *IL!N11*')
(TG ,81X,4(5X,18))

(10X ,%%*x T, pym X1,8Y1T ARE:*',13,3D015.2)

C***t******f*****i**t******‘*******************i************t****f*******



( 1
4 2)
(20C3)

. (D204)
- (2325)

(D006A)
(2257)

(a00n8)

(2209)
(C019)
¢J311)
(7312)
(3013)
(30016)
(J3015)
(2016)
(2017)
(131 2)
(5319)
(5322)
(23821)
(2022)
(2023)
(3024)
(3625)
(2026)
(2027)
(2028)
(2029)
(22370
(35%31)
(2032
(33733)
(3034)
(7935)
(2024)
(3937)
(iG338)
(2239)
(245462
(48481)
(3342)
(134 3%)
(2344)
(7345)
(5046)
(3247)
(22438)
(T34G)
(2050)
L351)
(2252)
(2453
(rnner)
(3 )
(3u56)
(2357)
(5258)

126

c**************************i**k*************i**i****************i*******
SUBROUTINF LUDEC3 . ‘
INTEGER*2 NROWS,MNCOLS,NTL,NMESH
PARAMETER (NTL=T64 ,NMESH=10%3 ,MROWS=1083,NC0LS=58)

c * MALPHA, NBETA, AND NGAMMA ARE TAKEN TO BE 0DD.
C *» NOTE THAT NROWSSNMESH=NALPHA*NEETA*NGAMMA
¢ . NCOLS=(NBETA*NGAMMA) +1

IMPLICIT REAL*R(A=G,0=2),INTEGER(H=-N)

COMMON//X1(NTL),Y1(NTL),QMESH(N&ESH),DHC,DHW,G,ﬂESH,lTL,NALPHA,N_
1BETA,NGAMMA N ,M,M2%,51,53,0MFGA ,EESTR,YH,PHIMSH (NVMESH) ,KRSWT ,KRSW?
2,KRSW3,KRSW4, <9545 KRSWA,KOSWT,KOSW2,KASKW3 ,KNSW4 , KRSWS ,€KQSW6,S,SCF
3,6AM7,LUSWT,LUSW?, LUSHZ, LUSHA, LUSHS,LUSWE, FLIFAC FMAX,LISWT,LISH2,
ALszs,Lsza,Lszs,Lszé,QDSAv(S,NTL)

C COMMON  /A/ A(NROWS ,NCGLS)
_ComMMON  JEL/ EL(NROWS ,NCOLS)
common  Ju/ S U(NROWS  NCQLS)
DIYENSION UINV(NROWS),DU®T(15)
C DIMENSTION APHI(NROWS)

TCPUI=CTIMSA(CPUTI®)
Ak SYUITCHES (LUSWUS) *rwxs
*INDEX* *IF SWITCH=1, THEM*
‘ EL AND U ARE NOT READ FROM ELU
CALCULATE APHI AND WRITE QMESH, APHI, DIFFI, PHI¥S
WRITE PHIMSK IN CENTER XY=PLANE
WRITE PHIMSE FRGM WEST TO EAST
WRITE PuIMSH AND UINYV AFTER FORWARD SURBSTTTUTION
NOT USED P

> B AW 2 TV o SENPN RN AN Y

C
€
€
¢
C
¢
C
C
C

*xktkx CONSTANTS *nxskaxsk
NAB=MALPHA*NBETA
NGPI=NGAMMA +1
NGHISNGAMMA =T
NGTEN=NGAMMA*1D
NP1=N+1
NV =NLW )

NMZIM= MWM M

¥MP1=M4

MMMGE=M-MGAMMA

QRICMA=2 . x (1, *°1453)

STu==51

S3N==S3

DNEGT=-1.

SZINNM=STIN*OMEGA

EPYH=FPSIR*YH

RS1S3=0SART(S1*S3)

CHP=0_.1n+01

CLUFAC=C.11 29943503n+22*RS1S3*CNP/EPYH

C * YALUE OF 4 TNSERTED INTO nMESH vy GDISTY.

IC=NZM™+ (N=-MNGAMMYL)/?

Cxxxdx SET UP Q VECTOR +hx++
pe "S 1=1,M

QFCSH{I)=GMESH(I)*QLUFAC

{5 PHIMSH(T)=GMESH(I)

IF(LUCWT . EQ 1) 62 T0 108

S Cwxx+x READ EL AND U FRQO™ FILE ELU *t**&

RELD(12) CRDELV,MALELYU,NBEELY , MGAELY, MELU, MELY , K8ELY,KI1ZELU
RELD(12) OMELY, 91ELH,~3ELU,C°SELU YHEL!U
PRINT 311 CRDELU, NALELU, NBFELU,NGAZLU,YELY, V‘Lb KEELY,KT1TELY



¢ 2)

(00672)

(€} 61)
(J0A2
(3u63)
2064)
(29465)
(3046)
(3367)
(2068)
(20569)
(3372)
(2371)
(0072)
(3073%)
(29374)
(2375)
(5076)
3377)
0a78)
(9979)
3280)
("0e1)
(3382)
(35832)
2024)
(128%)
2236)
(33R%7)
(9383)
(2339)
(0322)
(330%1)
(3992)
(3573)
(2094)
(35%5)
(1596)
(733897)
(3298)
(23%9)

(3178)

(3131)
(2152)
(3123)
(1174)
(310%)
(3126)

127

(7178)
(1129)
(311¢)
(7111)
{ 2)
e 3)
("114)
(5115)
(7114)

1{2

Crxhxk

163
108

Y
o I o |
0~

118
118

119
12C

Chardnt

127
126

PN
E SRR
Dol

Crrrh

164
165

C
166

C*****

127

PRTNT 213 ONELU ST1ELY, sJELu EPSELU, YHELU
WRITE(11,245)
WRTTE(11,311) CRDELU,NALELU, NREELU, NGAELU,NELU,MELY,
WRITE(11,313) JMFLU,51ELU SBELU EPSELU,YHELU
po 192 J=1,MP1
PO 102 I=1,H
READ(12) EL(I,J), U(I,J)
TCPU2=CTIMSA(CPUTIN)
TCPU=TCPUZ-TCPU
PRINT 372 TCPY
FORWARD SURSTITUTION *xax%
PO 192 1=1,N
UINVT)=1.0/U(CL,1)
0o 127 r=1,N
IF(I.EQ.1) G0 TO 118
IF(T.GE.MPT1) GO TO 1C7
LMAX=I=1
50 T 1€9
LMAX =M
9C 115 L=1,LMAX
IML=T~-L -
LP1=L+1
DHINMSH(I)=PHIMSHC(I)-EL(IML, LP1)*PHIVSH(T“L)
TF(LUSWS.EQ.Z) 60 TO 120
WRITF(11,255)
WRITE(11,229) I,PHIMSH(TI) , IHINV(I)
CONTINUE
BACKWARD SUESTITUTION *xa%xx
DO 147 I=1%,1
IREV=NPT~1
TFLT.EQ.1Y G TO 140
CIF(I GE.MP1Y GO TO 127
L¥aX=1-1
an Te 129
LMAY=M
DO 130 L=1,LMAX
IREVPL=IREV+L
LPT=L+1
PHIMSH(IREV)=PHIMSH{IREUW)~U(IREV,LP1)*PLHIMSK (IR
PHIMSHCIREV)=PHINMSH(IREV)Y+UINV(IREY)
IF(LUSW2 ,ER,C) 60 TQ 170
CALCULATE A*POTENTIAL (NOW INACTIVE) xatxx
BO 166 I=1,¥
APYTI(TI)=0. 10
IF(I.EQ.1) GN TQ 165
IMI=T-1
n-164 ¥=1,1%1
IMKP1I=T =K +1 .
TF(IMYPI.GT.%P1) G0 TQ 164
APHI(I)=APHI(I)+A(K,IMKP1)YXPHIMSH(K)
CCMTINUE
BN 145 K=T,N
KMTIP1=K=-1+1
IT(XMIPY,.GT.%E1Y GO TOQ 146
APHIC(T)=APHI(IY+A(I KMIP1)Y*FHIMSH(K)
O CONTINYUE.
wRII GVESH, APHT, DIFFI, AND PHIMSH (MOW INACTIVE)
D*TL(11 7(' .

SELU,,KT10ELU

EVPL)

* Kk kkk



{ V7))
(5118&)
(111 9)
(3129
(3121
(C122)
(2123
(3124)
(9125)
(G126)
(3127)
(21238
(2129)
(3133)
(23131)
(2132)
(3133)
(1134)
(2135)
(2126)
(3737)
(2134)
(5139)
(2143)
2141)
(13142)
(3143)
(3144)
(2145)
(Z2146)
147)
(11468)
(3149)
(2153)
(2151)
(3152)
(3153)
(2154)
(J* 2 5)
(2158)
(Z157)
(Z158)
(C159)
(3163)
(2161)
(3162)
({11A3)
1154)
(2165)
(2146)
(Z21487)
3168)
("149)
| ‘Q)
.. 71)
(3472)
(31734)
(2174)

™~
2l

[}
'
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DO 167 I=1,N

DIFFI=QMESH(I)=-APHI(I)

WRITE(11,268) I,8MESH{I) ,APHI(I), DIFFI PHIMSH(I)
IF(LUSW3 . EQ.2) 60 TO 174

Crxxxx WRITE POTEMTIALS IN CEMTER XY-PLANE #**%xx%

WRTTE(11,292)
IMAX=NZM+N-NGAMMA
6O 173 I=N7M,IMAX,NGTEN
nNO 172 K=1,17 . ‘
IP=I+(K=1)*NGAKMA
IF(IP.GT.IMAX) IP=IMAX
DUM1(K) =PHIMSH(IP)
WRITE(11,233) T1,(RhUMTI(K),K=1,10)
IF(LUSKA.EQ.D) GO To 173

Cr*x*%*x YRITE POTENTTIALS FOR WEST=-TO-FAST PROFILE TN CENTER XY-PLANE #x>xx

WRITE(11,293)

1mvm—~zm+mwws/2

IMAX=IMINSNNM

DC 176 I=IMIN,_ IFAX,M
WRITE(11,233) T,PHIMSH(I)

Cr*x*x WPITE POTEMTTIALS FOR SCUTH-TC-NCRTH PROFILE IN CENTER XY=PLANE **x

WRITE(11,294)

IMIN=NZMeNNM/ 2

IMAX=INMINEYMNG

DO 177 I=IVIN,INMAX,NGAMMA
WRITE(11,233) T,FHIMSH(I)

CONTINUE

*%x FORMAT STATEMENTS. *#kdxx

FCRMAT(1H ,Z2X,*THE CPU TIME USED CN THIS JOE WAS ',024.16,' SEC
£.")

LNV UR N RN S o 8
Y O N

SN N -

VRV RIS BN AT N

-~

3~y
~
(Wa)

LN

FORMAT(TH ,2Y,.'DTAGONAL',IS)

FORMAT(1H

T15.,2824.16)

FORMAT(3ID24.16)

FORMAT (1H
FORMAT (1H
FCRMAT (1H

FOOMAT(1H ,

FORMAT (44

FORMAT (AEC

FORMAT (1H

L15X,1D024.16)
L15X,4D24 ,16)
,2x,15,2x,7@o12.s>

2%, 313, 2024.16,015,7,2024.16)
L, PSUM_GT (T, 1) FOR I1=',13)

,'***** CUTPUT FROM LUDECZ #axxx')

S2Y,"THE VALUES PF NALPHA, MBETA, NGAMMA, ST, S3, 0MEG

2A, ESSIR, AND YH ARE:?)
FORMAT(THC , X, "*#T* ", 7X, "*PHIMSH(II* ", 14X, " #UINV(I)* ")

FORMAT (1H
FORMAT (1H

L14,2%,D24.16,3(5X,D24.14))
LCX, Yexwx Q VECTOR *#%%? QY takxx A & POTENTIAL »x*xt,

E8X , "knx NIFFEREMCE ***x' AX V¥xxx POTENTIAL VECTLR wxxxl)

FOPMAT (1H

FORMAT (1H
ELCWS: )
FORMAT (1Y

,2X,"% THE VALUE OF THE CHARGE AT THE CENTER OF THE ARR
RAY 1S' ,1024.16) A
,2X," THF POTENTTALS IN THE CENTER YY-PLANE ARE AS FAL

,2%," THE POTENTIALS FOR THE CENTRAL WEST-TO-EAST PROF

&ILE IN THE CENTER XY-PLANF ARF AS FOLLOWS: ')

FORMAT (1H

,2X,' THF POTENTIALS FOR THE CEHTDAL SQUTH=TO=NNRTH PR

ROFTLE IN THE CENTER XY-PLANE ARE AS FOLLOWS: %)

FORMAT (14X
FORMAT (10X,
FORMAT (10X

&)

FORMAT (10X,

L'A SET LP OAND MODTFIED AFRTER

SO16.8," CPRY SEC.Y)
YEL AND U PEAD &FTER  V,D16.ER Bu SEC. ') :

,'"PRODUCT OF EL AND ! FOUND AFTER P16, t CPY SEC,

"FORWARD AMD BACKWARD SUSSTITUTTGHN CCMPLETED AFTER



75)
. 76)
(2177)
(5178)
(3179)
(2129)
(Z181)
(0122)
(0183
(7184)
(2135)
(2186)
(5127)

{15
5C6
)

WLJLN

20E
31GC
311
312
213

SiG -

129

,D16.8,% CPU SEC.'")

FORMAT (10X, 'A+PCTENTIAL CALCULATED AFTER ',D14.8,' CPU SEC.')
FOPMAT (10X, "POTENTIALS WRITTEN AFTER ',D16.8,' CPU SEC.')
FORMAT(1SX,'LN0OP 87 COMPLETED WITH K = ',I4,' AFTER',D16.8," CPU

SEC. ™)

FORMAT (20, 'EL(K,KP) = !,D24.16)

FORMAT (A9,715) .
FORMAT (1H 10X, '*x €L PARAMETERS: ',A9,715)
FORMAT (5015.7) '

FORMAT(IH ,29X%,5015.7)

RETURN :

END

Ci***********************t*******ti*****‘k****t*********t*********i******



( 1)
(cac2)
(3g0432)
33:4)

N50%)
(“0 16)
GUGAND ]
(3358)
(2059
(2012)
(0011
(0512)

(r‘-\aj

- -~

(23014)
(Z015)
(“316)
(2C17)
(0318)
('“QQ)
(£020)
(3821
(2322)
(Us23)
(2324)

(5525) -

({":'526)
(2027)

(0C28)
(4429)
(2233)
(383713
(5332)
(4J33)
(5C034)
(2235)

(3236)

4577
a-fﬂ)
(23539)

(2CL5)

(2341)

(3942

(534 3)

(3044)

(1465)

(3366)
3247)

(2C48)

(2249)

(305%)
(3051)

C(3252)
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SUBROUTIME FORCE1T (I, FXY,FYI,SIZMSH,PCAVI, PCTAT)
*OBJECTIVE: . CALCULATE FORCE COMPOMENTS AT (X1(1),Y1(1)) FfFROM™
MFSH POTENTTIAL USING WEIGHTED=-AVERAGE METHOD.

*DOCUMENTATION: NOTES, PAGES SC2-5CS.

INTEGER*2 NTL,MMESH ' :

PARAMETER (NTL=064, NMESH 1083)

IMPLICIT REAL*® (A-G6,0-2),INTEGER (H-N)

COMMON//X1(NTL),Y|(“TL) QMESH(NMESH) ,DHC,DH¥,Q ,MESH, ITL,MALPHA N
1RETA,NGAFMMA, N2ZM,S1,83,0MEGA EPSIR, YF PHI"'H(N"ES“) KRSW1,KRSW?Z
2, KPsu% <psw4 rstS KRS wé Kasw1 KQSHZ Kasw SKASWL  KBSWS ,KASW6E,S,SCF
3,6AM2 ,LUuSK LUSJL,LusuB,LuswL Lust,Luswé,FLJFAC,FMAx,Lsz1,LJsu2,
ALJsuz,LJSwa,LszS,LJSwé,aDSAv(a,NTL)

FRACX=D¥OD(X1(I), DHM™) /DHM

FRACY=DMOD(YT (1), DHM) /DUN

th”'N7V+M*TD*HT(Y1(T)/”HM)+NGAVMA*IDINT(Y1(I)/DH”)

MPMW=NDSU+NGAMMA

NPSE=NPSW+M

NPNE=NPSE+NGAMMA

TFCOMT (I LT QLGD4C0) JORL(XT(I).GT.SIZMSH)) GO 70 57

50 TD &0

NPSE=NPSW

MPNESNPMY : .

IFCCYT(I) LT O.00+400).0RL(YTI(I).GT.SIZMSH)) GO TC 772

GO TQ 8%

NPNW=NPSY

"JPNF""’DQE

FYI=(0 ., 10+4C1~FRACY)I*(PHIMSH(NPSE) - PHIMSH(NPcu))+F«ACY*(PHI*SU(”P
INEY=PHIMSH(NPNW)) . .

TYI=(5,1D+T1-FOACX) > (PUIMSH(NPNL)~PHI®SH(NPSY)II+FRACX*(PHIMSH (NP
INE)=PHIMSH(MPSE)) .

FXT=0.1ED=184FXI/DHM  /*JOULES PER ANGSTROM=*/

FYI=0,14D=18xFyY1/DuN

PXI=(3.1D+01-FRACY)*(PHIMSH(NPSE)+PHIMSH(NPSW))+FRACY*(PHIMSH (NP
INE)+PHIMSH(NPNY)) :

PYI=(Z.1D+Z1~FRACX)I*(PHIMSH(NPNW) +PHIMSH(NPSWHW)I+FRACYX*(PHIWSH (NP
INEY+OHIMS(NPSE)) ‘

PCAVI=D 250+400*(PXI+PYI) /*VOLTS*/

FCTQT=RPCTOT+PCAY] '

TFCCFXT.GTLFMAY) ORL(FYT,.GT.F¥AX)) PRINT 403 T1,fXI,_ FYL

PRINT 4C0 T, FYI FYI  X1(1),Y1(1) '

PRINT A1 uPsw,NPMw,NPxF,Jr%F FRACX , FRACY

PRINT 472 PHIMSH(NPSW) , PHI#SH(NFPMNW) PHTMSH(NPNE) ,PHIMSH(NPSE)

FORMAT (10X, 15,4019.8)

FOARMAT (15X ,415,2D015.8)

FORMAT(ISX,4015.R°)

FCRM™MAT('>>> FORCES EXCEED FMAX IN FORCET. I=',13,2%,'FXI=',pi11,
14 ,2X,FyI=',D11_.4)

RETURM o -

END

Crrrdrhk AR AAARAF AR KA AR A K F AR AR AR K AAR S A A A F AKX ST A AI AR A X AR A AXA AR A AT AR LA > Aok & d %
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(2222)
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(5024)
(5025)
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SUPROUTIME FORCE2 (I,XCM,YCM, FXCMI,FYCMI)

X0RJECTIVE: CALCULATE FORfE COMPONEMTS AT (XCH(I),YCM(I)) FROW
MESH PCTENTIAL USING WEIGHTED-AVERAGE METHOD.

INTEGER*2 NTL,NMESH

PARAMETER (NTL=064,NMESH=1283)

IMPLICIT REAL*2 (A=-5,0-7),INTEGER (H=N) ,

COMMON//XT(NTL), YT (NTL) ,QMESH (NMESH) ,DHC,DHM,Q,MESH, ITL,NALPHA N

1BETA,NGAMMA ,N,M, NZM,S1,S3,CMEGA,EPSIR,YH, PHIMSH(NNESH) KRSW1,KRSW?
2,KRSWZ,KRSW4, KRSWS,KRSWE,KOSKT, KGSW2,KOSW2 ,KASW4 ,KASWS ,KOSW6,S,SCF
3 GAMZ,LUSH,LUSW2,LUSH3 LUSWA LUSWS,LUSWA, FLIFAC, EMAX,LISWI,LISW2,
ALUSHILLISUL  LISWS,LISH6,DSAV (], NTL)

DIMENSICN XCM(NTL) ,YCM(NTL)
FRACX=D*0OD(XCM(I), DEM) FUHM

FRACY=DMOD(YCM(I), DEM) /DHM

PRINT 47C I

PRINT 472 x(CM(I),YCM(I), DHY¥

NPSHW= NZF+M*IPINT(XCN(I)/DHM)+NGAMMA*IDINT(YC“(T)/DHM)

- PRINT 471 1

MPNW=NPSWU+NGAMMA

NPSE=MPSW+M

NPNE=NPSE+NGAMMA

FXI=(2.1D+401=-FRACY)* (PHIMSH(NPSE) PHIMSF(NP‘W))*FQACY*(PHIAQP(VP

INEY=FHIMSH(NPNYY)

FYI'(Q.1D+“1°F°ACY)*(PH1NS”(VPN )=PHIMSH(NPSW))+FRACX* (PYIMSH (NP

TNE)=PHIMSH(MPSE))

FXI=(.1€D=18*FXTI/DHY¥

FYT=0_16D=12+FY1/DR¥

TFCCFXT _GT . FMAX) OR_(FYI_GT.FMAX)) PRINT 4T3 1, FXI FYl

FORMAT (15X, '*%x NPSW REACHED WITH I=',1%5)

FOQ”AT(1SX,'** NPSW COMPLETED WITH T=',15)

FORMAT(25%,3D15.%8) .

FCR™AT ('>>> FORCES EXCEED FMAYX IN FQRCEZ. 1=%,13,2X,'FX1I=t_ 011,

14 ,2X,'FYI=',D11,4)

RETURNM
END

Cb*f*i*i**?#**i'*******iﬁ***i*******i*******************i****************
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YOO N OY DY
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CHhrAXANARAARF A ARIRIAKA R AN IAR AR A AR ARA R AR A AR AR AN R AR R A SRR ARk ARk RN kX

SURRQUTINE LJFOR2(I, DX, DY, DEPTH, DIST, RLUMAY  FLIXI, FLIYI FCXT _ FCY
11,STZMSH, PLJAVI FLJTOT,PCAVID,RCTOTD)

C *ORJECTIVE : CALCULATE PAIR=-WISE LJ INTERACTION.
C : CONLOMRIC INTERACTIONS MAY BE CALCULATED WHEN
C .~ LJ AND COULCPMBIC FCRCE CENTERS COINCIDE.
c *METHOD = TEQMINATE CALCULATIONS AT GISTANCE OF RLJMAX.
¢ . OPERATE IJPAN X7 AND Y1 ARRAYS; THESE 8RE NOT
c UPGATED UNTIL NEW C=% POSTTIONS Foo ALL MOLECULE:
c HAYE REEN CALCULATED, ‘ :
C *RESTRICTIONS: X AND Y DIMENSIONS OF THE ARRAY ARE TAKEN TO BE
¢ EGUAL.
c *DOCUMENTATION: NOTES, PAGES 518-520.0.3%.
INTEGER#2 NTL,NMESH
PARAMETER (NTL=064, NMESP 1083)
IMPLICIT REAL*® (A=6,0-7),IKTEGER (H=N)
COVMOV//X1(NTL) Y1(VTL) QMESH(NMESH) ,DHC,DHY,Q,¥ESH, ITL,NALPHA N
1BETA, NGAMMA N, M, N7M, 81,53, OMEGS, FPSTR, YH, PUIMSH (NFESH) ,KRSWT, CRSW2
2, vnsuz,rncwa rRs (S, KPSWE, KOS, KOSH2,KASHZ, KR WA, KASHS, KASWE .S, SCE
2,6GAMZ,LUSWT,LUSW2 ,LUSH3,LUSHE, LU°H5 LbSNé,FLJFAC,F”AY LISWT,LISH2,
AL ISNT . LISHE LISHS . LISkb,aDSAY (R, NTL)
DIMENSION X J(3),YJ(3)
bxxkk SWITCHES (LJISW'S) #xes+
*TNDE YA *TF SWITCH=1, THEN*
1 CALCULATE PAIR-WISE COULOMBIC FORCES
2 MCT USED
z NOT USED
4 '\!CT I'SE’\
S NOT USED
A NOT USED

VLIFPX=,0D+C0
VLJ¥x=7.0n+00
VLJPY={ On+CC
VLI¥MY=0,00+C0
VCPX=C,CD+2D
VEMX=C,.004CC
VCPY=0,0p+20
vemy=o,70+0(
FCXI=0,T0+00
FCYT=0.0D+00
SMSH2P =0, 2D4014SIZMSH4DHN
DHMN==DUHM
OD4PEP=(Q*7.80018050422) /EPSIR  /*VOLT ANGSTROYS«*/
IMND2=M0D(1,2)
IPM1-I+(")**(1*!MOQZ)
DC SQ 4=1,1TL
¢ *CENTERS CONSTIDERED ARE THE CENTRAL ONE R TTS & ANEAREST IMAGES,
XJ1)y=x101)
XJ(2Y=SMSHZ2P=-Y1(J)
S AJ(E)=DHMN -1 ())
YI(1)y=y1(h
YI(2)=SMSH2P=Y1 ()
YJ(Z)=numMN=YT ()
pe 55 k=1,3
PG S2 L=1,3
IF((K.EQ,.T).AND.(L.EC, 1) AND.((J.EQ.T) . 2R, (J.EQ.IPMT))) GF



59)
268D
(4561)
(1562)
(C363)
(2364)
(2565)
(GCA6)

(0067)

(2068)
(G369)
(2077)
(2371)
(05072)
(0073)
(C074)
(£275)

51276)
(5077)
(0273)
(G079)

(2089)
(3231)
(3582)
(20%3)
(3584)
(g0es)

(39n8>
(2326)
(22973)
(33%1)
(£792)
(2393

(2094)

2295)

(3296)
(5697)
(2298)
(2899)

133

IF(DABS(XJ(KI=-XT1(I)) . GT.RLJFAX) GC TO S5(
JF(DABS(YJ(LY=YT1(I)) .GT.RLIMAX) GC T2 53
XIJSR=(DABS(XJ(K)=-XT1 (1)) **3 2p+(1
YIJSG=(DABS(VYI(L)=Y1(I)))**0 2D+
RIJ=DSQRT(XIJSQ+YIJSEQ)
IF(RIJ.GT . RLIMAX) GO TO 5¢
RIJPX=DSART ((DABS(XJ(K)=XT1(I)=DX))*x*2.2D+(01+Y14S8A)
RIJMY=DSART ((LABRS(XJ (K)=XT1(I)+DX))I**] 20+T1+4Y1JSQ)
"BTIJPY=DSORT((DABS(YJ(L)=YT(I)=DY))**7 2D+ C14X1JS2)
RIJMY=DSGRTC((DABS(YJ(L)=YT(I)+DY))#*C 2D+4C1+4%X1JS8)
VLJPX=VLJPX+DEPTH*((DIST/RIJPX)**O.120*@2-0.2B+G1*(WIST/RIJPX)
T1x*0,.SD+011) ‘
VLMY =VLIMY4DEPTH* ((DIST/RIJMX)I**C.120+402-0.20+01+(DIST/RTIMX)
1%*x0_.50+31)
VLIPYSVLIPY+DEPTH* ((DIST/RIJPY)*x*0 120402 -0.2C+01*(RIST/RTIIPY)
1%20_.50+2%)
VLMY= VL'MY*DEPTH*((DIST/RIJ"Y)*#_..hD+02-O 20+C1+(DIST/RIIMY)
1+%C_50401) .
TF(LISWTI.ER.D) GO TO 50 .
o *ODD=-NUMBERED FORCE CENTERS ARE NEGATIVE, EVEN PCSITIVE,
JSIGN=(=1)%*y
CJSIGN=QD4PEP+DRLE(FLOAT(JSIGN))
VCPX=VCPX+QUISIGN/RIJPX
VCHX=VCMX+0JSIGN/RIJMY
VCPY=VCPY+QJSIGN/RIJPY
VCHMY=VCMY+QJSIGN/RIIMY
53 CONTTNUE A
FLUXT=FLIFAC*O.SD+00% (VLJPX=VLJIMX) /DX - J*JOULES FER ANGSTRNM=/
FLIYI=FLJFACAD SD+O0#(VLJPY=-VLJI¥Y) /DY
“PLIAVI=O 250430+ (VLIPX+VLINMX+VLIPY+VLINMY) /*JOULES*/
PLITOT=PLITOT+PLIAYIT
FCXI=0,160-18+2,SD+00* (VCPX=V(MY) /DX
FCYT=0,16D=13+2,5D+00*(YCPY=YCMY) /DY
PCAVID=C.2SD4 00 (VOPX+YCMY+VCPY+VERY)  /*JOULES+/
PCTOTD=PCTOTN+PCAVID '
IFCCFLIXI L GT.F¥AX) JORL(FLJYT.GTLFMAX)) PRINT 4iC I,FLUXI,FLJYI

440 FORMAT(*>>> FORCES EXCEED FMAX IN LJFOR2. 1",IJ,ZY,'FLJXI=',D1
T1.06,2X,"FLIYI=Y ,D11.4) :
S5GG RETURYN
END

BEE SRR SR E R R R R R E R N e R R R R R R TR EE E R R R I PR R IR I vy



l IR D]
teud?)
(2022)
(2C34)
(3005)
(2C36)
(27
(2008)
(2029)
(4513
(c2C11)
(9212
(23213)
(3014)
(13515)
(2816)
(92817)
(2018)
(0G19)
(370
(2221
(c222)
(2023)
(£024)
(5925)
(0424)
(3327)
0o2e)
,u29)
(203322)
(L3471
(0232)
(02%3)
(5G34)

~879)

-

(2038)
(6337)
(5238)
(5039)
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C**‘k****i**************i‘***:ﬁ******i**************t**********'*******A*****

SURRQUTIME PPESST (Y%CM,YCM,CMXSYS,CMYSYS,TRAR,PVERG,FTXOM, FTYCM)

c *0BJECTIVE: CALCULATE SYSTEM PRESSURE USING VIRIAL THEOREM

INTEGFR#*2 NTL,NMESH

PARAMETER (NTL=C64,NMESHS10R3)

IMPLICIT REAL*8 (A-G,0=7),INTEGER (H=N)

COMMON//XT(NTLY , Y1 (KTL) ,QMESH (NMESH) ,DHC,DHM,Q,%ESH, ITL,NALPHA N
1BETA, NGAMMA,N M, NZ¥,S1,S3,0MEGA, FPSIR,YH, PHIMSH (N¥ESH) ,KRSW1,KRSW?
2,KRSW3,KRSWA ,KRSWS ,KRSWE, KOSW1,KQASW2,KASWZ,KBSWh ,KQSHS KRSW6,S,SCF
30 GAMZ L LUSWT,LUSW?,LUSK3, LUSWA ,LUSKS, LUSWE, FLUFAC, FYAX, LJSut,Lysw2,
GLISHI . LISHL, LISWS . LJSHE.ADSAV (A, NTL)

DIMENSION XCM(NTL), YCRONTL), FTXCMINTL) , FTYCMINTL)

Cxkuexxw COHSTAMTS k*sxx

N¥QOLEC= ITL/Z
cMxsSYsS=C_.p+00
CRYSY —?.P9+Qg
RONTF=0.00400

Crvxx*x FIND SYSTEM CENTER-OF-MASS

pr 27 T=1,ITL,1

CMYSYS=CmUSYS+x1(1) .

- 28 CHYSYS=CMYSYS+YT1 ()
CHYSYS=CMYSYS/ITL
CMYSYS=CMYSYS/ITL
Cxx*xx CALCULATE DNT PRGDUCT OF POSITION AND FORCE VECTCRS
DO 30 T=2,ITL 2 '
IM1=1-1
paorr RDOTF+FTXCM(IMT)*(X1(I%1)~ CNXSYS)+FTYC“(IN1)*(Y1(I“1)°C"
8YSYS)

"DOT“PDOTF#FTYCM(I)*(X1(Y) C¥XSYS)+FTYCMCII*(YT(I)=-CMYSYS)

¢ WATTE(11,400) ROGTF, FTXCM(I) ,FTYCHM(I),(¥XSYS, CMYSYS
3 CONTINUE o '
Crx*+*x*%x CALCULATE P*V IN ERGS (PT*A = 1.54#NKT + { _,5*RDOCTF)
PYERG=1 ‘“+“L*N“0L=C* LA3&D=15*TRAR+(Q.SD+07*RDOTF
FRINT 4710 'RDATF, FTXFV(ITL) FTYCHM(ITL) ,CHMYSYS,CMYSYS
IR FNDMAT(ZK 5011 3)
SCO RETURN
END

C-k*****************,**************t**i*'k"&**********:lrtit**t*t***i**t*****i
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(2SR SEAR S SRS At Rttt s Rt Rt RS tEl sl S

C *
o *

SURRQUTIMNE PHOTO (NDT) ‘
PURPOSE: PLAT PCSITIONS OF PARTICLES GIVEN ¥ AND
Y COORDIMATES.
INTEGER*2 WNTL,NMESH
PARAMETER (NTL=064,NMESH=1083) ,
IFOLICIT REAL*8 (A=G,0-2),INTEGER (H=N)
COMMON//XT(NTL) , Y1 (NTL) ,@MESH(NMESH) ,DHC,DH¥,Q,¥ESH,ITL, NALPHA N

19 ETA,NGA¥MA ,N,M,NMZM,S1,S3,0MEGA , EPSIR,YH,PHIMSH(NMESH) KRSWT ,€RSW2

2

LKRSW3,KRSWL ,KRSWS,KREW6,KASKHT,KASW2 ,KASW3 ,KASWL,KASHS ,KOSW6,S,SCF
3,

GAMZ,LUSHT,LUSW2 ,LUSWS ,LUSWA4 , LUSWS, LUSWE, FLJFAC,F®AX,LJSWT,LISW?2,

GLISWE ,LISWG , LISHS ,LISW6,3DSAY (], NTL)

Crrxnn

Crrkh &

14

e

36

Crrhk 4

45
Chhwrn

o
Crkaha

271

DIMENSION KCELL(32,62),LIT(72)
DATA KSTAR/'*'/,KSPACE/Y "/, KDOT/*."/ ,KPOS/ 4"/ KNEG/ ="/
DATA LIT(N1) ,LIT(23),LITCOS) , LIT(O7) LIT(29)/ Q" , 1", 72 '3 141y
BATA LIT(11),LIT(13),LITCIS) , LITC17),LIT(19) /15, 161,17 181 191y
DATA LIT(21),LIT(23),LIT(25),LIT(27),LIT(29)Y/ YA 1R 1Cr 10t tgey
SATA LIT(31),LIT(33),LITC35),LIT(37), LIT(3G)/ EM 1G" YU YT 1y
DATA LITC(61) ,LTITC(L2Y ,LITCL5) ,LITCL7) LITCLO) /K LY, ' 'yt 1t/
DATA LIT(S1),LIT(53),LIT(55),LIT(S57) LIT(SO)/ Pt Q1 1Rt 151 17ty
DATA LITCAT) ,LIT(A3Z) ,LIT(ES) ,LIT(A7) ,LIT(LQ)/Pur, tyt tuyr sys
OATA LIT(71)/%2°/
TCPUT=CTIMSA(CPUTIN)
CONSTAMTS #xt%x
CELLX=DHM* (NALPHA=1)
CELLY=DHN*(NRETA=1)
SCALEX=0.3D+02/CELLX
SCALEY=0.20+402/CELLY
CLEAR XCELL AND SET SOUNDARIES sxwx»
DO 10 J=2,61
bo 10 1=2,31
KCELL(T,J)=KSPACE
DO 2% 1=1,32
KCELL(I,1)=KSTAR
KCELL(I,A2)=¢STAR
00 20 J=2,A1
KCELL(T,J)=KSTAR
KCFLL(32,4)=KSTAR
MODTFY KCELL ACCORDING TG PCSITICNS *x#xx
DO 47 T=2,1TL,?
ITM=1-1
NROWI=31=IDINT(Y1(I)*SCALEY)
MCOLI=2IDINT (XT(I)*SCALEX) +2
NCOLIP=NCOLT+1 :
KCELL(NROWI,NCOLT)=KPOS
CCELL(MPOWI , NCOLIP)=LTT(IM)
MROWI=31=IDINT(Y 1 (I=1)*SCALEY)
NCOLT=2*TDINT(X1(I=1)*SCALEX)+2
NCOLIP=NCOLI+1
KCELL(NROWT,%COLT)Y=KHNEG
CCELL(NROWI, NCOLIP)=LTIT(IN)
WRITE XCELL #xes
WRTTE(11,272) NnT
NG 55 1=1,32
WRITF(11,201) (KCELLCI,d),d=1,62)
FORYAT STATFNMENTS xeskx
FORBAT(IH ,62A1)

Tt Ty tyey



( :9)
(suol)
(2241)
(2062)

136

262 FORMAT('1#xx#x CUTPUT FROM PHOTQ AT NDT= ', 15,7 *xxxx?)
SGO RETURN :
END

CCExrhkkkd Rk khokhkkokk ok ko kK IZE R RS EEEET SRR LIRS R RS R SRR R R RL SRS RERREERERE SRS R



APPENDIX B

PROGRAM TO SOLVE MATRIX EQUATION



Cx*xxx PROGRAM TITLE:

( D)
(2und)
(204 3%)

(£813)
(2514)
(5015)
(37114)
(Z317)
(2014)
(3019)
(5520
(3521

5022)

(c¢23)

[}
(7052)
(0057)
C 4
¢ 5
(7256)
(7257)
(2755

LA S '

LUDECSH
138
Crx*x*xx FROGRAM TITLE: LUDEC3 *%xx*%*
* LUDECZ DIFFERS FROM LUDECZ2 IN THAT
€L AND U ARE WRITTEN TO FILE FELU.

Y OO SOOI OO0

Crhihw

1

Crursx* SmITCPrS

Oy OO O

CMTO MO0

* * A+ % ¥ % »

ek kxx (S

PRCD DISABLED T9O SAVE SPACE.

BOUMDARY CONDITIONS CN Z: (SWITCH=XSWE;
PHT (U)=0MEGA*PHTI (P)
PUI(U)=(1+0MEGAY*PHT(P)=-0OMEGAXPHI(D)Y  (RACKWARD DERIVATIVE)
MUST BE SET 70 1.0 IN BACKWARD DERTVATIVE FORM,
1F THE 7=0 PLANE SEFES THE SAFF ENVIRGHMENT ABOVE

SEE PAGES 35C.1 - 350C.16)
OR
NOTE THAT OMEGA

SY¥METRY IN Z:

AMD BELOW, THEN COMPUTATICNAL EFFORT MAY BE HALVED
Y DEALING ONLY WITH THE UPPIR PORTIQON OF THE
PRISM. SET KSW1MT ERSUAL TO ONE IN THIS CASE.

357,29
NEETA=21,%

SEE NOTES, PAGES 350.17 =
PARAMETERS SHOWN ASSUME THAT NALPHA=21,
NOTE THRAT NROWS=NALPHA*NEETAXNGAMMA
NCOLS=(NSETAXMGAMMNA) +1
NRI=NALPHA
NCA=NRETA .
NCTE THAT CHAGGE COCRDINATES MUST BE CORSISTENT
OF MNALPHA, NBETA, NGAMMA, AND KSWTI.
INTEGER*2 NRGWS,NCOLS,nNR1,NC1
PARAMETER (NROWS=1323,8C0LS=64)
PARAMETER (NR1=21,NC1=21)
IT#PLICIT REAL*S(A=G,0- Z),INTFCEQ(H-N)
INTTGERX2 ASREAD ,ASSAMF ASWRIT,ATRDWR
comsoN  /a/ A(NPOWS NCOLS)
cowmon /FL/ EL(NROWS ,NCOLS)
Com¥nN  Ju/ U(NROWS ,NCOLS)
CO¥MON. [FTCD/ FRODINOAWS ,NCOLS)
NIMENSION DINY (NROWS), B (NROUS)
CIMFNMSION ATM(NROWS),APHI (NROUT)
DIVENSTION TQG(NCT,NRT) ,YWE(NCT),VYSN(KET)
DATA ASPEAD , ASSAMF ASYRIT,AS]DWR/T1,5,2,7%/
CALL ATTDEV(12,7,3%,%)
CALL CFENSACASREAD+ASSAMF, *LUDATR',5,5)
CALL OFPENSA(ASWRITHALSAMF,'LYUZARTR',?7,7)
CALL GFENTA(ASSDUHRHFBSSAME PILURY 4,7)
TCEWISCTINEA(CTUTI®)

NALPPA, NBETA, AND NGAMMA ARE
READ(DT,270) MALPHA,MRETA,NGAMMA,
ocAn(’ ,227) KSKT1,KSW2,KSHE,KSus

EAD(T EPSIR,YH

NGAMMA=CTZ;

WITH VALUES -

Tavey TO BE DD wesxw
<1,53,0¥%rGe
LESWS ,KSWh,ZSWT7 ,KSHE,KSWO , b syl
,227)
(KSHPS) wxxs+
ATHDEY * *1F SHITCH=1, THEN®

1 CALCULATE PBRCFILFS ON
CALCULATE ADET sND
LEITE Q4 IN CENTOR
WRITEZ & FRU™ WEST TO
WRITE Q@ AND ULINY AFTER FCRWASD SURST!
WOITC EL AND @ TQ FILE FLy
EL END & TOOFILE FUft:
USE RACCKWARID-NERTVATIVE ‘
FIND PRODBUCT 0F LCL AND 1)
TREAT PROBLEM AS SYMMETRIC

1/8 21875
WRITE QIM, A
XY=-PLANE
EA=T

FEI, DIFFT, °

AV

S

TUTION

-J

WRITE STHoy

3¢ on 7

WRTTE
Iy 7

STOF (ALSQ

SET ¥&

s IR

8,PR0D 0L, U

a
3

TAMTS +**k+
MaNALPHARMBETAYNTAMYL
MoMEFRTAMGEMNA

NAP=NALPFA-NDRETA



Cx**x+* PROGRAM TITLE: LUDE(CZ **x+kx

{ 1G)
(uvod)
(2C061)
(:2282)
(3043)
(3£64)
(2055)
(::?6)

(5272)
(2E732)
(2C74)
(8375)
(2278)
(S577)
(3C78)
(2279)

(5GR6
twn?7)

(27493)
(235G4)
(C0295)
(34396)
(C0e7)
(12%5)
(S5E6)
(3133
(z121
(2132)
(Z173%)
(3124)
(C105)
(2126)

Z1C7)

139

NGPI=NCAMMA +1

MGMI=NGANMA=1

NAFID2=(NALPHA+1) /2

MREI1DZ2=(NRETA+1)Y/?

RPT=N+1

NMM TN - m
NN MR -0

MP1=M+1

MENC=M-MGA¥MA

SIGMA= 2D+ C01* (£ 1D401+51+4S3)

S1N=-51

S3M==83

DNEGT=-0., 10+

SINCM=SIN*OMEGA

EPYH=FPSTR*YH

RS193=0SRART (S1*S3)

C=14,3P688751D+ 3 /EPYH

NZM=NEP1/2

IC=MP1/2

IC7EQTI=IC-NGM1/7

ODFAC=C.SD+CC :

IF(KSW3I.EQG.T1) BDFAC=(0 . 1D+31~-0NFEGR) *T S0+ 0
WRITE(11,249)

WRITE(14,252) |

WRITE (11,224) NALPHA, NRBETA_ HNGAF¥MA,S1,S3,0MFGA,EFSTIR,YH
WRITE(11,251) KSW1,KSWZ, rsv’ KSuwb, chs KSWh ,KSW7 ,KSW3,LSUI, KSH1T

Cesexxt SET UP & VECTOR.*t***

(a]

OO AN ANOOOONOO00 0™

a5

CHP=0. 10401
DO 5 I=1,H
RINCI)=C.C0+00
3 (1)=0Tx (1)

* THE VALUE OF QUNIT IS DERIVED GN PAGES 4q°‘45? CF THESTS NOGTES,

x®

THE VALUE CEPENDFNT UPON S1, S3, CPSIR, AMD Y IS USED ORDIMARILY

CUNIT=18C,7000ACSD4R0*RST1SI*CNF/EPYH :

QUNTIT=97 RCS4D+00 /NGAMMA
RIN(OC4)=GUNIT*0, 44D+010
CINC(T11)=QUNTIT 7 140400

NAIN(ORTI=QRUNIT+T, 14D+ T

*CHARGES AT (S5,5),(22,30),(25,5),€40,30),(5%,45),035,45),(22,40),

(45,15)

GIN(ICS)Y=QUNIT

GIM(LS1)==QUNIT

CIN(SCS)Y=QUNIT

GIN(RLT7Y==2UNIT
IN(121)==aYyNTT

QIN(775)=GUNIT

NINCLAGY=QUNTT

QIN(R27)==3UNIT

Q(1592)=QINC129)

G(LS1)=QIN(LS 1)

G505)Y=CIN(525)

RRL7)=0INCE4T7)

G(181)=GTN(1R81)

G(775)=01IN(775)

RLEGY=AIN(LED)

0(F20)=0IN(E2T)

A(HARGF AT (CENTER

1C9=1¢



Cx*xx* PROGRAM TITLE:

LUDEC? #%dkax

R

(s,

5

REPLTCATION

,5) ZI-SYMMETRIC CASE

* &k k x*

XAk RN

1)=8(1,1)+S3H0¥

140

[ 17) c . IF(KSWIT.EQ.1) TCO=ICZER1
(utl8) ¢ OINCICA)=OUNIT

(G113 C QUICO)=RINCICQ)

<L1 0) C *CHARGES AT (2,2) AND (5,6) FQ

(-121) QIN(?1)=0UNTT :

0122) AIN(31)==GUNIT

(2123). R(51)=0IN(ST)

(2124) N(31)=QIN(3T)

(2125) Crx*x*x SET UP MNORMAL ELEMENTS COF POISSON 8
(3124) Do 17 J=1,MP1

(3127) po 10 1=1,

(£3128) 16 4(I,J)= c +510

(2129) DN 20 I=1,M

(0130 20 A(],1)=SIGMA

(2131) DO 30 ¥=1,MAB

(2132) KG=NG AM;A*((-H

(£133) INI=KG+1

(2134) I%AX=KG+XNEM

(2135) DO 3T I=INI,IFAX

(0136) 0 ACY,2)=53H

(21T7) IF(raws.CQ.0) G0 10 27
(£138) IHAY=ND1=NGAMMA ,
(51329) DO T4 T=1,1IFAY, NGAUNA -
(2167) 34 CACLLZY=ACL,2)-53n0m
(31461) 37 DO 40 ¥=1,MALPHA

(31462) Ke=M*(K=1)

(2143) INI=KG+1

(P1464) T¥AYX=SKG+MMNG

(3145) DG 47 I=INT,INAX

(2146) 4G ACT , NGP1)Y=DNEGH

(7i147) DOOSO I=1 MMM

(2145) 50 ACT, #81)=51K

(3143) Crxarx NODIFY ELEMENTS USING FLIPPING
(2158 I¥aAY =N=NGM®1

(2151) IF(KSWF.EQ.1) SINQM=SINOM+STIN
(215%2) DO OS2 T=1,IMAY, NGAMMA
(71583) TE=T+NGM T
{T154) TE(ESWIT  EQ, D) AC(T,
(3155) TFCvYSWT1JUEQ,TY AC1,2)=AC1,2)/EDFAC
(3156) 52 ACIP, 1)=A(1IP, 1)+°7vqn
(2157) DO S7 J=1,MGANMA

(1138) I¥AX=MMNE

(3159) NS ST I=J, IHAX, NGAMMA
(3162) ID=Janmy

(3141) . ACT,1)=ACT,1)+81N
(Z142) 53 ACIP,1Y=A(IP, 1)431Y
(2463) RN '

(2164) CIYAx=NMM 4
S(3145) BC 56 I=TMIn, IMAY &
(2166) TR I+MMNG

(3167) 55 AT, 1Y=A(T, 1>+~aset'
(7145) €4 ALIP,1)=A(IP,1)+408E01
(7149) 57 LOMTINUFR .

| ) TCPL2=CTIMSACCRITI®)

{ 1) TCPRUI=TCRUR-TCRIY

(3172) PRINT 271 TCPY

(3173%) KRITF(11,371) TCPU

(Z174) CALCULATYT FL AND 1] &##ikx

Cres sk



Cxvxxx PROGEAM TITLE: LUDEC? xx&x+

( 'S)
(G178)

(2177

(2178)
(3179)
(3187)
(3181)
(31282)
(51%3)
(31&4)
(G185)
(G186)
(3187)
(2138)
(2189)
(1190)
(3181)
2192)
(5193)
(2194)
(4195)
(3196)
(2197)
(3198)
(2199)
(2237
(2221)

(2211)
(121¢)
(3213)
(3214)
(5215)
(2216)
(G217)
(0217)
(7219)
(3227
(2221)
(3222)
(c2z3)
(3224)
(3225)
(1225)
(3227)
«
(ect)
(£237)
(3231)
(3232)

o
}

66

68

71

72
75

&3]

G2

141

DO AT J=1,N
ELCS,1)=0.10+1
pe 8L ¥=1 N
KPM=X +#
(M=K -1
K¥vm=g =+
NG &4 J=K KPM
JP=J=-K+1
SUMLU=0.0D+00
IF(K.ER.T1)Y &0 TG 64
DG 42 1=1,Kk#1
Ja=J=-1+1
TFCJO.GT.MPT) GO TO 62
CR=K~I1+1
SUMLU=SUMLU+EL (I, KGY*U(T,4Q)
COMTTINUE
UK, JP)Y=A(K JP)Y~-SUMLY
IF(K.EQ. M) G2 TC =20
INI=1
TFIK.GT.M) INTI=KMH
DO 75 J=1INI,K
FP=K=J+2
J#1=J0-1
SUsLU=0,0p+00 :
IFLJ.ER.TY G0 To. 71
Do 70 1=1,4"1
¥R=K=-147
IFCKD .GT.®P1) GO TOQ 77
JR=}-14+1
SUMLL=SURLU+FL(I, KO »11(T,J8)
CONTINUE :
Jo=J :
FETAC=C.10¢01 o
TCCCKSWRLEA 1) L AND.(KPL.EG.2)) GG To 72
o T0 75 ‘ T '
IF(yP=2) 75,72,7%S
JD=N-
Jo®1=Jp-1
TE((KSWIT PRI LAND. (MOD(JDOMT, NGANMA) LER.T))
ELC(I, XPI=(FEFACXACID,KP)=SUMLUW) /U(J, 1)
MTEST=MOD (K, 1720)
TE(NTEST.GT.T) G& TQ 25
TCPUP=CTTI™SACCPUTIM)
TCPY=TCPU2-TLPU
PRINT 357 ¢, TP
WRITE(11,307) X, TCPU-
FRINT 308 FLIK,KP)
WRITE(T1,300) FL(X,¥?)
CONTINUE
TCPURECTIMIA(CRYUTIN)
TCPU=TCBYP2-TCRPU1
PRINT 772 T1CPU
WRITE(11,302) TCPY
BooQ2 1=1,8
UTHVCTY=T 10+31/70C1, 1)
IF(ESYT E2.2) 6GC T2 120

Cok#ss FIND THF PROGUCT OF EL AND U (NOk DISARLED) 4xx+4

€ 93

WRITE (11,222)

FEFAC=BDFAC



Cx*x*xx PROGRAM

33)
AANved 24)
(2235)
(3236)
(3237)
(2238)
(71239)
(C243)
(2241)
(G242)
(72243
(S244)
(2245)
(C246)
(2247)
(3248)
(C249)
(3250)
(2251)
(3252
(£253)
(0254)
(3253)
(£25¢6)
(3257)
(025%)
(2259)
(0260)
(0261)
(2242)
(2263)
(G264)
(5265)
(3256)
(0247)
(7243)
(13269)
(G27C)
(35271)
(2272)
(2273)
(C274)
(027%)
(2276)
(2277
(0278)
(527
(3283)
(2281)
(5292)
(0253)
(C224)
(5289)
' 56)
Ca7)
(228%)
(Z269)
(325 2)

c

G

&

TITLFE: LUDECZ *%ki*
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be 96 I=1,n
DG 96 J4=1,MP1
PROD(T,J)=0.0
oo 96 r= 1,1
IMK=1=-X
IPRM=TIMK +1
TFCIPRM.GT.MPYY GG TG G4
JIPRM=TMK+)
[F(JPR™ _GT.MPT) GO TO 94 2
PRODC(I,J)=PROD(T, J)+EL(K IPRM) %Y (K, JPRM )
CONTINUE

Cxr*x* WRITE A, PROD, EL, AND U (NCW DISABLED) ##%4++

OO D

r

g
1
**

g
C

102

Y DYM OO

* * K

WRITE(11,254)
ng G8& J=1,%p1
YRITE(11,22%) U
D 98 I=1,M :
WRITE(11,232) A(I, M), BRCD(CI, ), ELCL, ), 001,
IF(KSHE.EQ.T) 6o TQ 105
WRITE FL AND U T0 FILE ELU *%+*>*
CRDATE=DATESA(DATE)
WRITE(12) CRDATFE_ NALPHA NBETA, MNGAMMA, N,M, KSWR ,KSW1D
WRITE(12) SMEGA,S1,53,EPSIR,YH ‘
no 102 J=1,mp1
DO 132 1=1,M4
WRITE(12) EL(I, N, UCI, )
CALL RUNDSLA(E)
READ(12,310) CRDELU,NALFLU,NBEELU, NGAELU, NELU,MELU
RcAD(17,311) OMSLY,STELU,S3FLU, EPSFELU,YHELY
PRIMT 2103 (CRDELN, NALELU,NBEELU,NGAELU,NELU, ®ELL
PRINT 311 OMELY,STCLU,S3ZELL,ERPSELU,YHELY
TCPUR=CTIMTA(CPUTIMY
TCPU=TCPUZ-TCPU
PRINT 273% TCPU
WRITE(11,3032) TCPU
TFCESH7 . ER.T) 60 TO 218

Crxrxre FORWARD SUEBSTITUTIOR #d+xwxik
1345

-
[of N v

0O~

[ Y

AN
* OO

-

—_ 3

Cx*

Ny ro

3

0~

L R 4

DC 120 T=1,N
IFCI.E0,.1) GN TG 11R
TFLLLGELMPYY 6O TO 1327
LEAX=T~1
G0 70 1{¢
LAY =HM :
20 4170 L=1,LAAY
IML=T-L
LP1=L+1
GCIY=QACI)=EL(IFL,LE1)*Q(IML)
IF(KSYS.EQ.C) 6D TO 120
WRITECT1,220) QCIY, uldvery -
CONTIMUE
EACKWARD sunsrxTurlor *okhkox
DC 140 TI=1,
!F[V“NP1-I
TF(I.FR.1TY 62 TO 143D
TFCT.GE.MF1) GO T0Q 127
LMAX=1-1
50 TS 1209
LAY =M
NG 130 L=1,LMAX



Coaxns PROGRAM TITLE: LUDEC3 #kaww
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¢ 31y ‘ ' IRFYPL=IREV+L
(uev2) LP1=L+?
(3293) 120 N (IREVI=Q(IREV)I-U(IREV,LP1Y*Q(IREVPL)"
(2294) 145 . Q(IREV)=Q (TREV)*UINV (TREV)
(5299) TCPU2=CTIMTA(CPUTI™
(2296) © JCPU=TCPUZ-TCPU
(2297) , PRINT 304 TCPU
(3262) WRITE(11,354) TCPU
(2299) IF(¥SW2.EQ.T) GC TO 17C
(2320) Cxaxsex CALCULATE A*POTENTIAL *ax%x
(3301) DO 166 I=1,% :
(232822 APHI(I)=C.0D+TD0
(89302) IF(I.ER.1) GO TO 165
(0374) IMi=1-1 ,
(23725) C * FOP ELEMENTS CF A LYING BELCW THE MAIN DIAGCNAL:
(0306) DA 164 K=1,111
(23287) ' IMKPT1=T-K+1
(9348) IFCIMKPT.GT.MP1) GO TO 164
(33729) K D=K
(832140) FEFAC=0 1o+“1
(JZ211) C IF{(KSWUR,ER.T).AND.(TMKPT1.FQ3.2)) KD=N=-¥
(2312) . 1F(IMNKPTI=2) 162,163,162
(0213) 16C KD=N-K
(3%14) " KDBM1=KD-1 : A
(2315) IFC(KSWTID.EQR 1) JAND. (MOD(KDMT ,NGAMMA) EQ,C)) FEFAC=BDFAC
(3316) 142 APHICI)=APHI(IY+FEFAC*A(XD ,IMKP1)*G(X)
(2317) 164 COMTINUE
(3273) C * FOR ELEMENTS OF & LYING IN CR ABNVE THF MAIN DIAGONAL:
(3319) 169 D% 166 K=TI_N '
(503270) KkmiPtI=K-1+1
(23321) TF(KMIPY GT.MP1) GO TO 166
(2322). ‘ APHY(I)=APHI(I)Y+A(I KRIP1)*xG(K)
(02222 146 CONTINUE
(0324) : TCPU2=CTIMTA(CPUTI®)
(32?75) TCPUSTAPU2-TCPYY
(3326 PPINT 305 TCPU
(3327) WRITE(11,305) TCPY

322) Crxxxd WRITE QIM, APHI, DIFFI, AND G #wxxx
(CR29) WRITE(11,297)
(2327 BOo 1A% I=1,%
(3331) BIFFI=QINC(I)=-aPHIC(I) :
(0222) 1¢8 WRITE(11,2A0) T,QINCI), APHICI), DIFFL,2CD)
(0333 170 IF(KSUW3I.EQ,C) GN TO 176
(2334) Crxwx+x WRIT: FOTEMTIALS IN CENTER XY-FPLANE #ddx»
(0335) ‘ WRITF(11,292)
(33316) ITMAX=SNIM+N=-NGAMNMA
(2337) DO 172 I=NZIN,TMAX, NGAMMA
(3338) 172 WRITE(T1,233) 7,4(1)
(£339) 174 TF(KSK&L . EQ.C) 60 T2 1792
(2324) Cxxddx WRITE POTENTTALS FOS WEST=TO-EAST PROFILE IM CENTER XY=SLANE x+*x+
(2341) ' MRITE(11,293)
(53342) TRINSNZNEMMNG/2
(0343) IMAXSTHINENYM
0 4) ‘ DO 174 I=IWIN,_ INMAX M
( v S) DIFFA=0_ DD+
(2346) IMM=1-M
(5247) TF(T.GT.IMINY DIFFR=G(I)-0(Iim)

({348) 176 WRITE(11,23S) I,QR(1I),DIFFQ



CAx**+* PROGRAM

( .3)
(uss50)
(3351)
(3352)
(2353%)
(C354)
(3355)
(N356)
(0357)
(0353)
(C35%)
(0360
(3381)
(3362)
(0363)
(724A4)
(0365)
(5268)
(3367)
(0363)
(5349)
(R70)
(2371)
(0272)
(7373)
(2374)
(G375)
(2376)
(C277)
(2373)
(3379)
(6336)
A1)
J332)
(2333)
(0384)
(2385)
(2324)
(5?7
C(TEIRE)
£339)
(c39m)
(C351)
(2392)
(03293)
(22G4)
(£395)
(2366)
(Z3¢7)

Chxrkx

Cr*+x*x CALCULATE POTENTIAL PROFILES ON
THE X-LOCATIOA
* JYPRG DETERMINES THE Y-LOCATICN GF THE

C
C

177

178

188

TIT

*

LE: LUDECZ2 **k*xx*

144

WRITE(11,294)
IMIN=NZMENMM/ 2
I¥AYSIMINNMYNG
DO 177 I=IXIN,IMAX, NGAMMA
DIFFR=0.00+00
IMMNG=T=-NGAMMA
IFCI.6T.
WRITE (11
TCPU2=CTIMSACCPUTIM)
TCPY=TCPU2~-TCPUT
PRINT 306 TCPU
WRITE(11,306) TCPU
COMTINUE
TF(KSW1.EQ.C) GO TO 213

IXFRC DETEGMINES

IYPRO=NAP1D?
JYPRO=SKNRPID?
DC 1RG0 TI=1,NALPHA

D¢ 1850 9=1,NBETA
16(1,4Y=0

10(4,5)=1
I18(4,9)=1
18¢190,5)=1
TR(1G,7Y=1
ne 186 K=1,NALPHA
DG 126 I=1,NA&ALFHA
"DY=T-¥
DG 1R4.J=1,K8€E
IFCIQCL, ). E
nNY.=1=-JYPPAO ,
IF(L.EQ.JYPRD)Y GO TO
GO TQ 183
YINC=T.1D0+18
IF(T.EQ.KY GG TO 184
P=NSGRT(CY*A*24DY*%2)
VINC=(C*T0R(I,d)) /P
VWE (K)YSVUWE(K)+YING
CONTINUF
162 L=1,NBETA
DG 192 J=1,NBFTA

Dy=J-L _

DD 102 I=1 ,NALPHA
IF(IQ(I Jy.
DYy=1-1IXPPRN
IF(I.EQ.IXPRQ) GO
GO 10 170
YINC=2,10¢18
TF(J.EQ.LY G0 TO 164
R=DSART (DY %x=x2+NY*22)
VINC=C(C»IG(T,0)) /P
VAN (L)aVSH(L)+UING
CONTINUF

WRITE(11,295)
NN TG4 K= MALPHA

DIFFY=C.0N+0T

TA
&. 2) 60

DaQ

TO

G.&) GO TG

WRITE POTENTIALS FOR SOUTH=TO-NORTH

CH

TO 184

182

162

1r&

FROFILE

I¥IN) DIFFQ=Q(I)-Q(IMNG)
,235) 1,6(1),DIFFQ

ARGE=-RY-CHARGE,
OF THE SOUTH=-TC-NQRTH

IN CENTER XY=PLANE **=*

1/R BASIS *xxw%

PROFILE

WEST=-TG-EAST PRCFILE



Caxrsk* PROGRAM TITLE: LUDECZ *xxxx
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( 7) TF(K.GT.1) DIFFV=VWE(K)=YWE(K=1)
(e 8) 154 WRITE(11,235) K, YWE(K) , DIFFY
(0429) WRITE(11,296)

(2410) PC 196 L=1,NPFTA

(0611) . DIFFY=0,00+4G(

(G612). TF(L.GT.1) DIFFV=VSN(L)=-VSH(L-1)
(L413) 166 WRITF(11,235) L,VSNCL)Y , DIFFV
(7414) Cxx*xwx CALCULATE FOTENMTTALS AT POINTS MEAR CHARGES CN 1/R PROFILES *kx+x
- (2415) - WRITE(11,297)

(CL18) D0 204 1=1, NALPHA

(54617) DC- 204 J=1,NRETA

(5418) ‘ IFCIQ(T,J).2Q.3) 60 TO 24
(0419) IFGJL.EQRLIYPRO)Y GO TO 2°7¢
(0423) 606 TO 204

(0421) 206G 19=1

(G422) PX1=IP~0Q,50+5{

(2423) Px2=1P+C.S50+30

(Z424) Vvi=0.00+30

(Caes) v2=C.004+00

(C428) ' DO 202 ¥=1,NALFHA

(2427) DO 202 L=1,NPETA

(7428) IFCIQY,L).EQ.2) 6GC TO 2{2
(2429) DY1=K-Px1

(C437) DX2=X=-PX?2

(34731) DY=L=JY¥RQ

(G432) R1I=DSGRT(DXT1%x%2+DY*x*»2)
(T4633) VIMCI=(C*TIQ(K, L)} /P
(3434) VI=V1+y INCH

(£4325) R2=DSART(DY2*+2+DY**2)
(G436 VINC2=(C*I0(K , L))/P2
(G437) V2=VY2+4VINC?2

(Z4378) PARYA CONTIMUE

(24273) DIFF1=2.00+00

(G447) IF(IP.GT.1) DIFF1=VI=VWE(IF=1)
(C441) DIFF2=0,00+4C0

(Z4642) IF(IP.LT.NALPHA) DIFFZ2=VHE(IP+1)=V2 "
(443) WRITE(11,236) 1P, V1 ,DIFFT, V2, DIFF2
(746 4) 254 CONTINUE

(344S) WRITE(11,298)

(Ch46) DO 217 J=1,MBETA

(L647) ne 219 I=1,NALPHA

(2648) IFCIG(Y,J).ER.3) G0 TO 217
(24493) 1F(I.EQ.IYPRD) GO TO 27¢€
(0457) 60 TO 217

(3451) b JP=1

(3452) PY1=4P-2.5D+00

(¢453) PYZ=JP+C.50+°N :
(2454) v1=0,20400

(2455) y2=0.00+020

(2456) D0 208 K= ,NALPHA

(5457) DO 278 L=1,N2ETA

(2458) IFCIO(K,L).EO.C) GO TO ¢TR
(24659) _ Dyt1=L-°v1

( ) DY2=L=PY?2

( 1 , DX=k=IXPRO

(L462) R1=DSORT(DX**2+4DY1*+*2)
(2443) : VINCI=(CxIQ(X,L))/R

(4h44) Vi=V1+VTINCA



Cxxxxx PROGRAM

! ¥5)
(L4646)
(24647)
(C4468)
(CAAS)
(2470)
(3471)
(Caz2n
(£473)

(T474)

(G475)
(3476)
(Ca77)
(0473)
(G479)
(5e2l)
(C431)
(3422)
(C04832)
(Z434)
(3435)
(24636)
(2427)
(3488)
(24859)
(2432)
(34%1)
(7492)
(3493)
(S494)
(74735%)
(C495)
(24727)
(C458)
(242G)
(£529)
(C501)
(25722)
(2523)
(2574)
(2525)
(3576
(CS27)
(70538)
(3529)
(CS10)
(7s11)
(3512)
(2513)
(3514)
(3515)
(2516)

(ns17)y.

{ 3)
(:-19)
(35208)
(2521)

(2522)

2T e

~ny
C
~

PSRN
[
N >

TITLE: LUDECZ %*#xxwn
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R2=DSQART(DX**x2+DY2**x?2)
VINC2=(C>IQ (X ,L))/R2
V2=Y2+VINC? '
COXNTINUE
DIFF1=2.00+400
IF(JP.GT.1)Y DIFF1=V1=VYSN(JP-1)
DIFF2=0.00+C10
FFOJP.LT.NBETA)Y DIFF2=VSN(JP+1)=-Vv?
WRITF(11,234) JP, Vi1, DIFF1,VZ,DIFF2
CONTIMUE

TCPUZ=CTIMTA(CPUTIM)

TCPU=TCPU2-TCPU1

PRINT 379 T(CPY

WRITF(11,309) TCPU

TCPUZ2=CTIMTA(CCPUTIM

TCPU=TIPY2-TCPUM

WRITE(11,223) TCPU

FORMAT (313,2D24.14,015.7)

FORMAT(IGIR)

FORMAT(2D24 .16)

FORMAT (1H ,?2X,"**THE C2U TIME USED ON THIS J03 %AS ',D24.16,' S
REC.')

FOPAT (1H _2X,"DIAGCNAL',IS)

FORMAT(3D24.16)

FOQRMAT(IH ,15X,1D024.16)

FORMAT (1H ,15%,4D24.148)

FORMAT (1M ,2X,15,10%,1024.1¢€)

FCRMAT(1H ,2X,313,2024.16,D15.7,2D24.14)

FORMAT(I1H ,2%X,15,17%,2024.16)

FORMAT(IH ,2X,I5,17X,64024 .16

FORMAT (TH ,2X, 'SuM_ T _U(I1,1) FORrR I=',1I3)

FORNMAT (M 2X, *»4kx+ LUDECI CGUTFUT **xxx1)

FOPMAT (1Y ,2X,'THE VALUES NF NALPHA, MFETA, NGAY™A, S1, S3, NMFG
RA, EOSIR, &ND YH ARE:?)

FOOMAT(IH ,2X,'SWITCH VALUFS: ',1013)

FORMAT(IH T4 ,2Y,D24.14,3(5%,024.16))

FORPMAT(1H 00X, '+xwx R VECTOR *wxx! Gy txxx> A # PCTENTTAL +%ex?
QB Y, "axkd DIFFERENCE *#www? ) taxxx PATENTTIAL YECTAR wrexanl')

FOPMAT(1H ,2¥%,"' THF VALUE OF THFE CHARGE AT THF CEMTFR NF THE ARR
2AY IS' L1D24.164)

FORMAT (1M 2%, THE POTENTIALS IN THE CENTER YY-PLANE ARE AS FNL
gLCWS: ) ‘

FOR®AT (1H ,2X,' THE POTENTIALS FCR THE CEMTHAL WEST-TO-EAST PROF
%1LE IN THE CENTEPR XY-PLAME ARF AS FOLLCOWS (WITH DIFFERENCES): ')

FORMAT(1H ,2Y,' THE POTENTIALS FOR THE CENTRAL SCUTH=-TO=-MORTH PR
ROFILE IH THE CEMTER XY-PLANE ARE AS FCLLOWS (WITH DRIFFERENCES): 1)

FOR¥AT(TH _2%,'THE WEST-TO-FAST PROFILE CALCULATED ON A CHARGE-R
SY-CHERGE, 1/P BASIS TS GIVEM "ELOW (WITH SEQUENTIAL DIFFERENCES) !
%)

FOPMAT(1K ,2X,'THE SOQUTH=-TO-NCRTH PROFILE CALCIHLATEND NN A4 CHARGE
£=BY-CHARGE, 1/R RBASIS IS GIVEN GFLOW (WITHY SEQUEMTIAL DIFFFRENCES)
L")

FORMAT (1R 2% ,'"THE POTENTIALS AT POINTS ANE-RALF UNIT § & ¢ 0F
ZHAFGES 0N THE W= PPOFTIF ARF: (WITH MEXT=PNIMT NTFFIRENCES)')

FORWATIAH L2X,*THE POTENTIALS AT OQINTS ONE-HALF UNMIT S & M 0F ¢
SHARGES CM THF S=M PRGFILE ARE: (WITH NEXT-POIuT RIFFERENCES)')

FORMAT (10X, Y +%A SET UP AKD MOOSIFTED AFTER  ',D14.%,' CPU SEC.Y)

FOR=AT (10X, "**EL AND 4 CALCULATED AFTER  ',514.°,' CPU SEC.")
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( 3) N3 FORMAT (10X, tx*EL AND U WRITTEN TO ELU AFTER ',016.8,' CPU SEC.
(usz4) &Y) . '
(3525) G4 FORMAT (10X, "**FORWARD AND SACKWARD SUBSTITUTION COMPLETED AFTER
(£526) gY,D1A .8, CPU SEC.Y)
(3527) 305 FORNMAT (10X, **#*A+POTENTTIAL CALCULATED AFTER ',D16.R,' CPU SEC.Y)
(2528) 06 FORMAT(ITDK , P *+POTENTTALS WRITTEN AFTEPR ',016.5,' CPU SFECLY)
(Z529) 237 EORMAT(1SX, '+#*xL.30P 8% COMPLETED WITH ¥ = ', I4, " AFTER' D16.2,"' C
(2S24 gPU SEC.*) : .
(25321) 208 FORMAT (20X, **+CL (K KP) = ' _D24.16)
(55322) ne FORMAT(1DX,"*%x1 /R PROFILES WRITTEM AFTER ',b14.8,' CPU SEC.")
(5523) e FOR®AT(AG,7TS) .
(C534) 1 FORMAT(SD15.7)
(2535) san STnP -

(2536) END



APPENDIX C

PROGRAM TO COMPUTE POTENTIAL DUE.TO
AN INFINITE ARRAY OF DISCRETE CHARGES -



Cx*x*x PRGGRAM TITLE: PW

( 1)
(ot
(J3433)
(35]4)
BRIVEY)
(uuué)

(5011
(1512)
(3813)
(S5C14)
(2G15)
(231%8)
(2C17)
(GS18)
(92019
(3520)
(821)
2)

(Ju~

3523)
(5524)
2323)

3575)

(5564)
(L3G65)
(Tuss)
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APPENDIX D

PRESSURE-DENSITY ISOTHERMS FOR IMPERFECT
GAS OF STOCKMAYER PARTICLES



It may be of interest to investigate the behavior of the
pressure-density isothérmS‘of an imperfect gas of Stockmayer
particles: that is, point-partﬁc]es whose total interaction energy
'is the sum of the Lennard-Jones 6-12 interaction energy and the |
~interaction energy of two point-dipoles. Writing the virial
expansion in terms of the number of moles per unit volume (z),

we have

(1 NET sz + (MM - ...,

where N is Avogadro's number. We shall truncate this
expressjon after the third term, so that we may'use published
analytical results for the Stockmayer energy (Hirséhfe]der, et
al., 1954, pp. 209-222, 1147-1149, 1154). The second virial
coefficient, B(T), is obtained from integrals ihVOlving the
interaction energy of two particles, while the third virial
coefficient, C(T), is obtained from integrals invo]ving‘thé
_interaction energy of three particles (Hirschfe]der, et al.,
1954, pp; 148-153). The'two-partic1e Stockmayer interaction

energy has the form (Hirschfelder, et al., 1954, pp. 210-111)

(2) U= 4E[§§)lz— (;)é] - %32 [ﬁcosxlcosxz‘— sinxlsinxzcox(yzfylﬂ R
where d i5 the dipole moment; X1s. %05 Y15 and Y, describe

the orientatibn of the dipole; E and s determine the depth and
position of the Lennard-Jones energy minimum. Hence, the viral
coefficients are dependent not only upon T, but also upon E, s, and

d.
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Equation (l) is a cubic relation between P and z, so we may
expect, for certain values of B(T,E,s,d) and C(T,E,s,d), that as
many as three distiﬁct values of z will correspond to a single
value of P. Since P(z) is a thermodynamic state-function, the
P-to-z correspondence must be one-to-one. This means that the
portion of the P-z curve which shows more than one value of z
corresponding to the same value of P must be modified. A straight
line parallel to the z-axis is ordinari]y used to connect the two
single-valued part; of the P-z curve; this segment marks a phase
transition.

From the algebra of cubic equations, one can show that the
transition region wi]} not appear unless 82'15 greater than 3C.

- For purposes of illustration, we may satisfy this condition by
giving T,E,s, and d the following values: 403.27°K, 0.3975 x 10743
ergs, 4.0A, and ?2.685 debyes. In this case B(T,E,s,d) is found to be

3 6.

-1.1281 x 10%ecm® and C(T,E,s,d) is found to be 3.8417 x 103cm®;

equation (1) then becomes

P = z(3.3502 x lOlOergs)(l.O—llz.SIZcm3 + 3841.7 22 cmﬁ).

This relation is plotted in fidure D.1. In contrast, when E,s

and d remain the same,bbut T is 460,88°K, we.find that 82

is not greater than 3C, ' In this case, B(T,E,s,d) is found to

2_3 3

be -0.86188 x 10%cm® and C(T,E,s,d) is 3.48422 x 10° cm®; equation
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(1) becomes

P = 2(3.8288 x 10'0rgs) (1.0 - 86.188 z cm® + 3484.22 2° cnP).

This relation is also plotted in figure D.1.

The values of E,s; and d used here are 300, 1.0, and 0.1413
times the values used in the moiecular—dynamfcs4simu1ation.
However, the simulation did not use the Spherical}y—symmetric
pértic]es with embedded point dipoles which were used in this
simple, virial calculation. Furthermore, if one assumes a film .

thickness equal to'thevlength of one:fully-extended
phospholipid molecule, the molecular areas in the simulation

3en3 to 1.25 x 10‘3cm-3)

which are quite far from the transition regidn shown in figure

correspond to values of z(0.5 x 10" “cm™

D.1.
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. Figure D.1

Pr‘essure-density isotherms of an imperfect

gas of Stockmayer particles
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