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I. INTRODUCTION \
A

In my[Iecture I shall discuss some recent work on solutions \
to classical Yang-Mills theory. The investigations that I shall
summarize study the field equations with static, external [nonj///
dynamical] souzsfi)/ The physical, quantum-mechanical signifi-
cance of such solutions has not thus far been as profound és
that of solitons, where sources are dynamical i.e. monopoles
with Higgs-field sources; nor as that of instantons, where
sources are absent but the equations are continued to imaginary
time. Nonetheless the new results are interesting in their
differences from the Abelian counterpart and should suggest in-
tuition about the physical content of non-Abelian gauge-quantum
field theory. Moreover, structurally the equations are suf-
ficiently intricate to provide a most interesting example of
analysis in mathemétical phvsics.

There is now avallable a varlety of solutions for rev1ew,
but only recently did a pattern emerge which allows for a com-
prehens1ve description. A summary of this is presented in
éection IT. Section III is devoted to an account of stability
properties. I begin by recalling the~theqry of stability — a

subject widely studied by physicists in former times, but now,

in its general form, largely forgotten. The general theory

does not rely on minima of the energy and is found to be ap-
plicable to the Yang-Mills model. It comes as no surprise. that
the non-Abelian structure lets the gauge theory share with a

top the phenomenon of stable configurations which do.not mini-
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mize the energy. The Section concludes with a description of

work in progress which
tions. Finallyfé list

ther research comprise

II. SOLUTIONS TO

A.

assesses the stability of various solu-
of open questions and problems for fur-

the concluding Section IV.

YANG~MILLS THEORY WITH SOURCES

Preliminaries

The field egquations with which we are concerned are

F'W = YA v_

B F* =

TVo

< (J | (2.1a)

2°A™ + LA" A”] (2.1b)

P

) :
0?41« = ;’L« t LA/K) (2.1c) -

We study the SU(2) theory with coupling strength scaled to

unity and use interchangeably component notation and anti-

Hermitian matrix notation; e.gq. Py’ a=1l,2,3; p=pa0a/2i, o8=

Pauli matrices. The source p is taken to be a given,.time-in-

dependent function, atp=0. Eq. (2.la) carries with it an in-

tegrability condition: the right-hand side must be covariantly

conserved. In the present circumstance that requirement re-

duces to

LA®,

(,;] = 0 (2.2)

The energy of the system is given by a positive, gauge-

invariant formula.

- ~y . :
Joo = L z
€ = 2 Sc@w Eo + Eak (2.3)
L ©

:—.. ;_ A J“Q
S S



-3-

The class of solutions which I shall here be describing is
delimited by the requirement of finite energy. This means
that sources must also be well-behaved; a condition which will
not be spelled out in detail, beyond noting that point sources
are excluded; p is an extended function.

We shall need a Hamiltonian formulation for the field
equations (2.1); since they are locally gauge invariant this
is not straightforward. In order to overcome the familiar
difficulty, we do not pick a gauge; rather we take the vari-
ations used for obtaining the equations of motion to be don—
strained by Gauss' law, which is the v=0 component of (2.1la).
Specifically we take the Hamiltonian to 001nc1de with 8
viewed as a functlonal of independent variables of E and X,

while B is constructed in the usual way from A.
-—

B VX A ' iiouoc_ Ab'x Ac_ (2.4)

-E is identified with the canonical momentum conjugate to R,
and the constraint of Gauss' law is imposed with the help of a
Lagrange multiplier, here called Ag. Hence unrestricted vari-

ation can be performed on

8 g gd'f ( 6'- E " Eaoe Ab P&.) (2.5)

In this way the Yang-Mills equations are obtained.

038 L Fefoe s Ao Bupo
[\0 : (2.6a)

Gauss' law constraint
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D E&f 88 = V=& Bcg_ Eabe Ab* BC_‘ Save ASJ t.c,

(2.6Db)

Ampeére's law

- -y

— — | —>
Bt A(f - é;_ = = Eo‘_ = VAOQ,"' lave Ab Ag. (2.6c)

-

' 8 E‘*‘ Definition of Ea
Note that static solutions [all time-derivatives vanish] are
critical points of the energy, subject to the constraint of
Gauss' 1aw.l’2

Presentation of solutions is complicated by the gauge co-

variance Qf (2.1): if a¥ solves the equations with source p,

then the equations with a gauge-rotated source p'

/)' - Ut p U (2.7a)

are solved by gauge transforming the previous.

f - -

A'M:U’A”(/,L U av L/ (2.7b)
[Here U 1is an SU(2) matrix.] Two solutions related as above
describe the same physical situation and we shall view them as
the same solution but presented in different "gauge frames".
Frequently we shall speak of an "Abelian gauge frame" — one in

which the source points in the third direction.

(3cz, = Jaz; g 'A | (2.8)
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of course. results for gauge invariant éuantities, like the
energy, are frame independent.

In addition to the above gauge covariance, there is pre-
sent also a gauge invariance with respect to gauge transforma-
tions which leave the source unchanged. From (2.2), we see
that gauge transformations with U constructed from A° are
of this type. Thus it is always possible to pass to the tem-
poral gauge where AO vanishes, without changing the gauge frame.

Solutions naturally fall into two classes: those that exist
for arbitrary sources and those that require a critical, finite

source strength. We list these in turn.

Four different types of solutions will be discussed in
this Section, two static, two time—dependent. The latter pro-
vide.a well-defined generalization of the former.

The most obvious Yang-Mills solution is the static Coulomb
one which is readily presented in the Abelian gauge frame, where

it is given by the regular solution to Poisson's equation.3

B | ..
Ac; = C%s X% (2.9a)
73"; = O | (2.9b)

(3; —é_l Cc{, | . (2.9¢)

An alternate description, still in the Abelian gauge frame, is

gotten by passing to the temporal gauge.



Ac(?(, = O (2.10a)
— = . :
Ao = Gva:s VIt (2.10b)

The energy of this, according to (2.3), is the familiar Coulomb

expression.

j“ 4 {ppds 94

gl-r l"._ "ol (2.11)

Note that in the Abelian frame, the solution vanishes with the
source. |

The next solution is a time-dependent generalization 6f the
above. It shares with the Coulomb solution the [gauge-invariant]
pfoperty that the magnetic field vanishes. - From Ampére's law
it follows that, in the temporal gauge, vanishing B implies
a static electric field. Egs. (2.4) and (2.6c) reéuire the
electric field to be [gauge equivalent to] a gradieht of a

scalar [matrix] function &, which further must satisfy

[ﬁ@, ﬁ@l | | (2.12)

Thus we have, for ¢'s satisfying (2.12),

f
A ° = O ‘ (2.13a)
Al = f]@t | | (2.13b)

The source which gives rise to such a field is determined by

Gauss' law.



v"- C@ - <_(>’ | | ‘(2.l3c)

There are as many configurations in the above category as there
are functions ¢ consistent with (2.12). However, our interest
is only in those for which p' is gauge equivalept to the Abelian
frame formula (2.8); only.then are we dealing with solutions to

the same problem as the Coulomb one.
} it ‘ "3 y -
(‘ (/{O U u U + (2.14)

When (2.14) holds, we can express the solution in the Abelian

frame, in the temporal gauge. _
© | ‘ .
A = 0O ' (2.15a)
— - - = )
-Et-UTVV

i\

(2.15b)

A
E =-U"y $ | (2.15¢)

The energy of the above is given by a Coulomb-type formula.

O T r ) Pu (F')
E- 3 e p el - 5 ae P )

s'l l

~

(2.16)

To recapitulate, the solution for a given source (2.8) is
constructed by choosing a gauge function U, computing p' from
(2.14); ¢, from (2.13c); and finally, the potentials from (2.13a)

and (2.13b) or (2.15). When (2.12) is met, one has solutions
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which in general are essentially time—déﬁendent — a time-trans-
lation cannot be compensated by a gauge transformation. The
only member of the family with gauge-artifactual time-dependence
is thé Coulomb one where U=I. By contihuously deforming I to
'U, one passes continuously from the static Coulomb solution to

its time-derendent géneralization.

Oour third solution is again static, but it differs from
the Coulomb oné-by the property that in the Abelian frame it

does not vanish with the source; rather it becomes a pure gauge.

M ' -
A = U ! (':\i'M u : (2.17)
_ ZeTo

SwwYee
[In the absence of sources, finite-energy solutions are neces-

sarily trivial;6 thus the potentials either vanish or are pure
gauges.] A closed expression for this solution has not been
given; only a formula perturbative in the SOurce is available.
So that we can speak of orders. of perturbation, we shall take
the source to be 0(Q) where Q is a convenient scale of magni-
tude for the source. [For exaﬁple, Q can be an overall fac-
tor.] This solution is most economically presented by first
transforming out of the Abelian frame with the gauge function

U, occurring in (2.17).
! VAL AR

In the new frame, the vector potentials vanish with the source.

Perturbative‘formuléé for them are2
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Alo = @ t O(Qs) (2.18b)

__.),

A = é—z_ [@, ‘*7?@] t O[Q (/) (2.18c)
Cﬁ = ‘é—z ()’ | (2.184)

Primes remind that the quantities are displayed in a non-Abelian
frame. The gauge function U is not arbitrary but must be cho-
sen so that the consistency condition (2.2) is saisfied. It is

a consequence of that equation and of (2.18b) that we must have

- 2 _
‘_@ ‘ v @] =0 . (2.19)
J :
The following is the temporal gauge equivalent to. (2.18).

A°= O o | (2.20a)
A= Vet + (3t e 5 )[$,V]+O(@)
‘ (2.20b)
The electric field is 0(Q),

_-ﬁé—t[(ﬁ) ﬁ@sj fO(Qg) (2.20c)

and the magnetic field is 0(Q2?).

o

B = V'xL$ vd]rO(@)
%ﬁi = \//\/ (2.204)

[The time dependence in (2.20) is of course a consequence of

the gauge choice, as comparison with (2.18) shows.] 1In the
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primed frame, the solution appears similar to the Coulomb one
(2.9) or (2.10), save that the non-vanishing commutator [@,3@]
prevents the expreséions from closing. Hence we call the above

a "non-Abelian Coulomb" solution to contrasf it with the

"Abelian Coulomb" discussed at the outset. The energy further
exhibits similarities with the Abelian Cqulomb case. The formula

to lowest order in Q follows from (2.3), (2.183) and (2.20c).
e _ _J, I} ._1 /
£-3fee e + O(QY)

L D420 Pa(T) D () .

v (7471 200l Oa)

B
(2.21)

"

A specific example of a non-Abelian Coulomb solution is
given when the source in the Abelian frame is spherically sym-

metric.

(OCL = Jas E? (+) (2.22a)l

One then verifies that (2.19) is satisfied with the charge den-

sity in the radial frame;
¢ A :
(OL.‘(, = T« ?— (+) . (2.22b)

i.e. U is the gauge transformation which rotates the third
axis into the radial axis. A further interesting feature is
that the present solution carries less energy than the cor-

responding Coulomb one.7
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=1 e ds i‘”%'i Ly aYl G
d SC + O(Q )<gc;

gN [+

(2.22¢c)

The fourth and last solution, that I mention in this sub-
Section, generalizes the static non-Abelian Coulomb in a time-
dependent fashion, quite similarly to the way that the second
solution, Egs. (2.13), generalizes the Abelian Coulomb. It is
constructed by choosing an arbitrary gauge transformation U

and transforming the source once again.

T3} V4 —
(Q." = U(O ()™ | (2.23)
We use double primes to distinguish this source from p — the
source in Abelian frame — and from p' — the source in the
gauge transformed frame where the non-Abelian Coulomb solution

has a simple perturbative expansion, see (2.18) or (2.20).

Next we take the regular solution of Poisson's equation

qb“’—‘- o ' (2#4)
v '

and build the time-dependent solution perturbatively in ¢, in

the temporal'gauge..5

Al
A (2.25a)

VPt (Ee g )(0$,78)-T06,0:))
o(a

+ ) -
(2.25b)
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One readily computes the electric field, which is 0(Q).

E'--9- (16,7178, 1°61)+ O(Q*)

(2.25¢c)
The 0(Q?) magnetlc field

Eﬂl = " x [@ \7 éb:l + O(Qg) (2.25d)

is of the same form as in the statlc non-Abelian Coulomb solution,
(2.204) which_is here included when U=I. Just as in the Abelian
situation, by continuousiy changing I to U, we obtain a con-
tinuous deformation of the static non-Abelian Coulomb into its
time-dependent generalization. 1In beth cases the magnetic field
retains the same form during tﬁe deformation. Once again, the
0(Q?) energy is given by a Coulombic formula, as follows from

(2.3), (2.24) and (2.25c).

£ m Pl OcaY
8_1'_"_ o /Du(i)pa ',fO[&u')

i

2! (2.26)

The similarities between the four solutions should be ap-
parent. Indeed, if for different gauge frames a common [un-
primed] notation is used, a master formula which presents all

four may be given.5 Define first the vector C.

[ CP @3 C,'EJ @:‘-‘-}’—7_() (2.27)

"Then, in the temporal gauge, set,

i
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/xo = O ; ' . |
_VJ_L W()t + (ét’wéﬂ?x V X EJ

>
f]

' (2.28)

The static, Abelian Coulomb has vanishing E, while vanishing
VxC leads to its time-dependent generalization as is seen from
(2.12) and (2.13). Furthermore, according to (2.19) and (2.20),
vanishing Ve corresponds to the static, non-Abelian Coulomb
solution while its.time-dependent generalization (2.25) has

no restrictions on G. For the first two solutions (2.28) is
exact; for the last two it is accurate up to 0(Q%). The 0(Q2)

formula

(o :VL"" F"" + O[@V) (2.29)

~gives the complete energy for the exact solutions, ‘and the 0(Q32)

contribution to the perturbative ones. For the two static solu-
tions, the quantity in (2.29) is stationary égainst variations

. . . 8
of Pa which preserve its length [gauge transformations]. The

Coulomb solution is seen to maximize (2.29).

C. Sources with Critical Strength

When the source strength Q increases, the previous solu-
tions continue to be present. - For the Abelian Coulomb, and its

time-dependent generalization, the closed expressions given



above hold for arbitrary Q. For the non-Abelian Coulomb with
its time—dependent_generalizatiah, one must calculate pertur-

A batively terms higher drder in {Q; a tedious procedure with un-
known convergence properties. Alternatively one can do numeri-
cal computations.

Furthermore as Q increases, solutions appear which re-
quire a critical, minimal source strength to support them. Very
little is known about these, and the numerical method is presently
the only effective means of investigation. We review one such -

example.z'9

When the sourée is radially symmetric, as in (2.22a), we
have the spherically symmetric Abelian Coulomb solution. Also
by‘passing to the radial frame (2.22b) we Can exhibit the per-

turbative non-Abelian Coulomb solution. By iterating‘Eés. (2.18)

a few orders in Q, it is found that the form of the potentials

remains within the following Ansatz.

A ,
A% = T U %{*/,- )

2 Y A (2.30a)
—> A = ‘ _ )

= 'ry:_a' iR [OL(T/\%)-J‘]
2¢ N : (2.30Db)
Here r 1is a length scale. In this sub-Section we shall always
o

remain in the radial frame,

P .
('\Ci': %0{«{“/"“0) | (2.31)

3

hence primes on the potentials are dropped. = The above Ansatz
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is postulated for the complete static solution and the mode
functions satisfy the following non-linear differential equations,

which are all that remains of Gauss' and Ampére's laws. -

I a® .
= ‘{ Xz 4 = XS‘. : (2.32a)
-a" + a*-1 - CL (:) (2.32b)

Aillfunctions depénd qnly on x=r/ro, and the dash indiéates dif-
ferentiation with respect to that variable. More.genefal radi-
ally symmetric Ansdtze can be given, but it has been proven

that static, radial solutions necessarily fall into the above
restrictions.2 l[We emphasize that the Abelian Coulomb solution
does not lie within the Ansatz (2.30),and cannot be found in the
solutions to (2.32); in the radial frame, the Abelian Coulomb
soiﬁtion is not radially symmetric.] Requiring finiteness of

the energy

g/: LI"PS(QX (CL}L (in)"fl( 427_J

(2.33)
— the above is the form that (2.3) takes within the Ansatz
(2.30) — imposes boundary conditions at tﬁe origin and at
infinity. At the origin the potentials must vanish rapidly:
£(0)=0, a(0)=1, A%(0)=0, R(0)=0. At infinity two types of be-
havior are éllowed: type I, where the potentials vanish as in

the origin; type I1II, where the vector potential tends to a non-
Ao
trivial pure gauge, a(w)=-1, 2~ iE%E = -(ig-r)$(-io-r). The

oo
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type I solution is the previously perturbatively encountered
non-Abelian Coulomb [a=1+0(Q?), hence a never equals -1].
The type II is aAnew, non-perturbative solution.

Numerical computation confirms Fhe,above, with the further
surprise that type II comes in two branches, once Q exceeds
..a critical magnitude.2 Hence we call this the "bifurcating”
sblution- Fig. 1 shows a plot of the ehergy versus source
strength fof solutions withAa delta—shéll charge density.

A /«u— V. :
(Qo,: X 3 Jlr- o ) (2.34)

The Coulomb parabola [which does not lie within the Ansatz] is
also exhibited for comparison. Note that the non-Abelian Coulomb
[type I] carries lower energY'than the Abelian Coulomb for all

Q, even outside the perturbative regime. The bifurcation poiﬁt
where the two type II solutions first occur is found numericélly
to be Q = 5.286. In Figs. 2, 3 and 4 the mode functions f and

a are displayed for the various‘solutions,

III. STABILITY IN DYNAMICAL SYSTEMS

A. Review of the General Theory

We consider a time-translation invariant system whose
equationsﬂéf mdtion for the 2N dynamical variables Pn and Qn’
n=l)...,N, can be obtained from a Hamiltonian H(P,Q), which  is

also the conserved energy E?.
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b . - ot(hQO)
" QG
Q.= O H(P @)
A cb?n (3.1)

A static solﬁtion, one for which P and é vanish, is a criti-

cal point of H, and vice versa, stationéry‘points of the energy

define static solutions. [An over-dot means differentiation
with respect to time.]

We wish to ascertain whether a static.soiution‘{P(s),Q(s)}
is stable. "Stable" by definition will mean the following:

(s) (s)

Take a configuration of the form {P'~"+8P, Q'°’'+8Q}, substitute

(s)

in (3.1) and linearize about {P ,Q(S)} to obtain linear equa-
tions for the fluctuating quantities {8P,8Q}. When the linear
equatibns produce exponential growth in time for the fluctua-
tions, the solution is unstable; otherwise, it is stable. 1In
other words, for stable motion the small quantities {&P,d8Q}
fluctuate harmonically in time with real frequency, wﬁile com-
plex frequencies signal instability.

The above criterion for stability is also in accord with
quantum-mechanical ideas. The first quantum correction to the
energy cf a state involves’the fluctuation frequencies. That
quantity must be real for the state to be quantum-mechanically
stable.

Note that growth in time of thé fluctuations smaller than

exponential, say polynomial, is not a sign of instability. 1In

such a circumstance, the eigenfrequencies are degenerate, but
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still real, and the quantal energy'remains real.

An intuitively appealing idea is that stability should be
connected with minimizing the energy: the static ' solution which
is a stationary point should also be a [locall] minimal point.
More precisely, the minimality condition is the requirement
that only non-negative eigenvalues occur for the quadratic
Hamiltonian matrrx,ZH?, defihed by expanding H(P,Q) about
{P(s),Q(Sy} and retaining quadratic terms in {6P,8Q}. [Linear

terms vanish since the expansion is about a critical point.]

HiR @)= H(P™, Q) +
3 8% Tow 8 P+ SR, Guw, mm 4 S Q0 Vo I
=HOP, G ‘%X%Xf- . e
T G , |
%_Fe__ E_ \/ / , (3.3)

[The tilde indicates transposition.] The minimality condition

wn

demands '
det (- X1)=0 = A20O ey
In fact minimality is a sufficient condition for stability
— a result, known as Dirichelet's theorem, which will become
apparent below — but by no means is it a necessity.lo There
are indeed familiar physical systems [tops,'gyroscépes, plane-

tary configurations] which are stable, even though their energy
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is not locally minimal. To derive a more general criterion

we expand (3.1) -around the static solution and find

%X:_L;Zf( (3.5)

| O -<I. . |
‘Z: (CI 0O > j (3.6)

By making a monochromatic Ansatz for X,
-ttt
XZ e X . (3.7)

we recognize the [constant] x as simplectic eigenvectors of

f}i with simpléctic eigenvalue w.

?ﬁex :-‘ wy X | N (3.8)

It is clear that our definition of stability requires the w's

be real; this is known as Liapunov's theorem.lo

A ' ] ' ' S
dtzi(oéef*W02)=O—°f>.w U%-“ve . (3.9)
The point is that (3.9) is in general different from (3.4) and
can be satisfied when (3.4) fails.

If (3.8) is premultiplied by x+, where the dagger'indicates

transposition and complex conjugation,

'KT%)(z (/\JXT?X (3.10)
we see that the left-hand side is real, S%;being real symmetric,

‘ + . \ .
hence Hermitian. Also x nx is real since n is Hermitian, and

we conclude that w can fail to be real only when xfg?x and
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x+nx vanish. So when zﬂ?is positive definite, w'is real and
Dirichelet's theorem is established: minimality implies sta-
bility. But of course w may be real withoutw being positive
definite.

One may consider n as a metric in the vector space of the
x's. Then (3.8) is the condition that xTQ?x be stationary
against variations of x which preserve the simpiectic length
xfnx. Instability can occur only Wheﬁ there are zero length
simplectic eigenvectors of'g?{ The eigenvalue equation in (3.9)
is relevant to the program of diagonalizing G?aby simplectic
matrices, just as the corresponding equation in (3.4) arises
when diagonalizing with orthogonal matrices. [A matrix M is
simblectic when ﬁnM=h.]

The conditions (3.4) and (3.9) are clearly different, and
no simple relationship exists between the two in the general
case. In practice, we can specialize somewaht. Firstly,the
kinetic energy matrix T in (3.2) and (3.3)vis taken to be
positive definite; with an appropriate definition of coordi-
nates, we may choose it to be the identity. Secondly, the off-
diagonal matrix G arising from mixed p-g terms in the Hamiltonian,
which are frequently called gyroscopic or Cpriolis terms, is
always anti-symmetric, when the theory is derivable from a
Lagrangian. The reason is that any symmetric piece in such
velocity dependent forces corresponds to a total time-derivative
in the Lagrangian and may be dropped. Thus we are led to a

simpler form for %




Ethere exist stable static solutions which do not minimize the

-2]1-

t= (o ©
e v
a.:_G V vV (3.11)
With thlSt#; ‘the minimality condition (3.4) reduces to
it € 56#0—%)(\/-)1)): O=> A%0 can

while the stability condition becomes
‘ ’ K ‘ A A ‘
-~ A "
M(~GG‘ZCV\)G~ +V~NLI)=O:=> w wek (313

When gyroscopic forces are absent the two conditions coincide
and w? may be identified w1th A In that case 1nstability oc-

curs only for imaginary w. In the presence of gyroscopic terms,

enérgy, while instabilitv can exist with complex w. When q?ﬁ?
is as in (3 11), the condition for instability, x+nx—0, is

equivalent to

%\e o = ¢ CY@V:— G’nm g@m
SAn SQn

We shall use the phrase "gyroscopic stability" when we

(3.14)

wish to distinguish this form of stability from the more familiar
energetic stability". A hint for gyroscopic stability occurs
when we can find arbitrarily close to a static solution harmonic

fluctuations that lower the energy. As we shall show, such con-



-22-

figurations exist in the Yang-Mills theory. Instability would
be indicated when there are, arbitrarily close to the static
solution, time-dependent solutions which decrease the energy
and grow exponentially in time.

To conclude this review of stability theory, let us remark
that although we discussed 'Dirichelet's sufficient condition
in terms of the energy constant of motion, a similar criterion
can be formulatea by referéncé to other consﬁants of motion.
This generalization is useful when analyzing solutions invariant
with respect to the symmetry transformation which is associated

with the constant in question.lo'

B. Stability Analysis for Yang-Mills Theory

We turn now fo the stability analysis of static solutions
for the Yang-Mills.equations; but before we use the ideas sketched
above, we musf recognize that there are two ways in which the
Yang—Milis field theory differs from thg simple Familtonian.
Firstly, rather than 2N degreés of freedom, there are an in-
finite number. This causes matrices to be replaced by differ-
ential operators, summations by integrations, etc., thus raising
questions of convergeﬁce and uniformity. We shall not concern
oﬁrselves with this complication, even thbugh there will be oc-
casion to refer to it in thé course pf ouf development. _éecondly,
the Hamiltonian formulatién now has constraints. This has al-
reédy been dealt'with ithection II; Here we obsérve that the

small fluctuation equations, which follow from (2.6) by linear-



izing around a static solution Ag, are

O= D SEu t fwwe Eot SAL
zcm E>b 0_6 s X d B + Sab ¢ t cf/f
- gubc. Bbx crAc,

(3.15b)

SE; ob Lo & Ab Oécua_ JAZ (3.15¢)

> . > . .
dBa is short-hand for‘zyabXGAb. The quadratic energy( obtained
by expanding (2.3) around the static solution, and using the

Gauss' law constraint for the fluctuations,

8(2): éfcé%’ (SE )2+ 2 SES (fuce AD) JAS |
IS BLY - SAL (Y Eua BE)EAL

(3.16)

is precisely of the form (3.11). 1In particular, an anti-sym-

metric gyroscopic term is present.

G": d‘u (- )gmac/q (3.17)

Egs. (3.15) can also be obtained by taking (3.16) to be the
quadratic Hamiltonian, and varying it subject to the constraint
(3.15a) which is implemented with the help of a Lagrange multi-

. o} . C s
plier GAa. In other words,unconstrained variations are performed
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on

.é[z): 8[L)- J‘CQ'T—‘) SAz_(oaa' A_é;"f-émoc E;‘ rf/?(_)

o
(3.18)

and Egs. (3.15a), (3.15b) and (3.15c) emerge respectively as
o (2)
@

J(CMZ) (3.19a)
.cg é?(Z)

S(8A)

, = g?‘“ (3.19¢)
N T - — :
desfa™ " o Ee.)

With a monochromatic Ansatz for the time-dependence, the above

-
—

(3.19b)

3 SE, =

take on the form of a simplectic eigenvalue problem, equivalent

to stationarizing 62(2), subject to the constraint that the
)

-5
B
simplectic length of GKaJ be fixed, and subject to the con-
a

straint of Gauss' law for the fluctuations. In short, the Yang-
Mills model is seen to fit the general theory quite nicely.
Before making use of thesé equations to analyze stability,
we comment on their properties. - An integrability condition
follows from (3.15b). By taking the covariant divergence, one

finds that the infinitesimal version of (2.2) must be satisfied.

Save SA% Pe = O | (3.20)

Also vice versa: (3.20) and the integrability condition on

(3.15b) imply, together with (3.15c), that the covariant time-
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derivative of the right-hand side in (3.15a) vanishes.

Egs. (3.15) possess a local gauge invariance.
. )

(S E;Og.—;§ CS EEZL‘" fube iEig ESQL

(3.21a)‘
; O
SAL™ A%~ %O ~Enoc A B
(3.21b)
) LY ~—
Cg. ACL “—) CT AC‘A 1 v 9&_‘- acuo(, Ab 9(;_ (3.210)
: .21c

Here ea is a local function which must be parallel to the source.

Sawe O (JC =0 (3.22)

[There is also a gauge covariance: a gauge transformation on
the background fields is compensated by a homogeneous gauge
transformation on the fluctuating quantities. We shall not
make use of this property.]

It is clear from (3.20) and (3.22) that the external
charge density defines a direction in group space which we

can call the "electromagnetic" direction, while the orthogonal

(o)

directions can be termed "charged". Thus Ag, dAa

’ ea and pa
all lie in the electromagnetic direction and vanish in the

charged direction. This reduces the allowed gauge transforma-
tions, in that the last term in (3.21b) must vanish. Observe
also that the gyroscopic term (3.17) affects only the charged

direction; the electromagnetic fluctuations are free of gyro-

scopic terms.
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It is possible to derive a gauge invariant fluctuation

equation in the following way. The quantity
— — %) -~

—) — o

= -V, SAe- Do A

(3.23)
is'gauge invariant with respect to the gauge transformations
(3.21). Then by taking a covariant time-derivative of (3.15b)

we arrive after some steps at

o c = —> — _— ‘ B’ -
@Ctb ob\oc_ e(‘. t @ab X ‘78‘0(_ X ec— Eabe pX ec.

, - =) = ~ = -
@co \0- 62;5 ‘380”4' 98&;; Ce F ‘%ab ”@ba' C/c

1Y b

=0 .28

[This is most readily obtained in the GAO;O gauge, which can
always be achieved with the transformation (3.21b).]

Eq. (3.24) is gauge invariant and involves the uncon-
strained variable ga' It is remarkable that such an equation
can be derived; the possibility to do so is intimately linked
with the existence of an external charge density which defines
a direction with respect tb which the small fluctuations are

constrained by (3.20).5

For the Abelian Coulomb solution, the general stability
theory is easily applied. The small oscillation equations are

best presented by introducing complex quantities in the charged
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direction.

L5 =
E|+LEZ)
- !‘-—7

(Al FLAz)

(& +i¢e,)

SE =
e

-
e

I

M- Pl S

(3.25)
Eq. (3.24) in the electromagnetic direction decouples completely,
D, €3 FVxvVxe; = 0O - (3.26)

while in the charged direction we have simply

(% i) € rTxdr€= 0
V'g=-¢

The electromagnetic fluctuations are free; the charged ones des-

(3.27)

cribe the motion of charged vector mesoné in an external elec-
tric field with a potential ¢..%

Detailed analysis of the equations can be performed in
frequency space. Note that the electromagnetic equation in-
volves w? as an eigenvalue of a Hermitian operator, hence if
is real. Only the isshe remains whether w? is positive or
negative. In the charged equation there appears (w-¢)2 and

2

w® can be complex; it is not related to the eigenvalue of a

Hermitian operator. This difference reflects the fact pre-

viously remarked upon: in the electromagnetic direction there

are no gyroscopic terms, hence stability is equivalent to mini-

mality. In the charged direction, the gyroscopic terms are
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present; they are responsible for the more complicated equation.
The electromagnetic fluctuations are obviously stable.
Those in the charged directions are. stable in thé absence of
the external potential and by continuity they reméin stable
for a sufficiently small external potential.3 As the external
charge density increases in strength, an instability is ex—
pected to appear. This is not the inétability of theAKleinj
Gordon equation in an 1/r [Coulomb] potential, which has pre-
viously been remarked upon, and whiéh is a consequence of the
[presumably unphysical] singularity at the origin.12 In our
examples the potentials are non-singular. Instead it is the
instability of the Klein-Gordon equation in a strong external

field.l3

Explicit computation with the delta-shell source,

q = %2 G(r—ro), confirms the above remarks; instability sets
o _ ,
in at Q= .5

In spite of stability for weak sourceé, we expect as a
consequence of‘the gyroscopic terms to find modes which, though
harmonic, lower the eneragy. Theée can be readily exhibited,
without passing to frequency’space. We remain with the first-
order equations (3.15), and seek a solution with 6§a=0. ‘In
that case the charged éortions of‘(3.15), with an Abelian

Coulomb solution as the background field, reduce to

O=V.SE-i §A-Tg
0= (0 tiQ)SE

(3.28a)

(3.28b)
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SE = - (% FCg)SA

(3.28¢c)
= -~ .
SR = YxSA=0
- (3.284)
The solution of (3.28b) and (3.28c) is
- - ) - - t -
[a° (F) +toy (s )]Q/‘?Q ‘ (:WT) (3.29a)
-
, = - - |
SE () w-it PIT) (3.29b)
and to satisfy (3.28a) andv(3.28d) we must have
- ) '
G, = VO (3.29¢)
- ] ~> = -
a, =-teVg- ¢ ¥ (92() (3.294)

where 6 is an arbitrary function. Finally there is one more
condition: $-l(eq) must be parallel to $¢, which can be easily

achieved, for example by setting 06q=V3F(¢), where
trary.

F is arbi-
Thus equations (3.28) can be satisfied in terms of one
function.

The gquadratic energy (3.16) is seen to be negative.l4

g(?): f[(?g) . (36%) - lG[L(‘}) (?)J

~ g_%— J(_(/«\dw\l q,(")ct(f) ‘9(")"@( ,)'2"

(3.30)
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This rather peculiar fluctuation'gives evidence that the Coulomb
solution is gyroscopically-stable since the energy decreases
below its Coulomb value.5 Note from (3.29), the linear growth
of the fluctuation with time, which however does not produce
instability. Because the frequency'ié position dependent, it

is not clear how to locate this mode among superpositions of
functions with definite frequéncy. Nevertheless we héve en-
countered it already! It is merely the time-dependent generali-
zation of the Abelian Coulomb soiution, Egs. (2;12)-(2.16),

when the latter is brought arbitrarily close to the static solu-

tion.15

The energy formula (3.30) can now be recognized as the
0(62) contribution to (2.16), when the source p' is a gauge trans-
formation with gauge function 6 of p, the source in the standard

frame.

B.2__Non-Abelian_Coulomb_Solution

The non-Abelian Coulomb solution, Egs. (2.18), follows
in many respects, at least for weak sources, the behavior of
the Abelian Coulomb solution. [Only the weak source regime'is
amenable to analytic treatment, since our formulas are given by
a source strength power Se;ies.] The stability equations are
now highly coupled, and have not been_solved. However, by con-
tinﬁity wiﬁh the sourceless problem one expects stability for
weak sources,% Moreover, one can show that this again must be
an instance of gyroscopic stability, since the energy is lowered

by the time-dependent generalization presented in Egs. (2.24)-

(2.26), which can be taken arbitrarily close to the non-Abelian
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Coﬁlomb solution. This is achieved by making p", the source
for the time—deﬁendent solution, to be an infinitesimal gauge
transformation of p', the source in the non-Abelian Coulomb
solution. The energy can then be computed from (2.26). The

details are the following. Set

i i ‘ ' .,
PCL = {i' 3 Qb .@b )Pu - &uoc, Qb,‘(oc. : - (3.31)
This.assures that p; is a gauge transformation of pé taken
through second order in ea,which lies oniy in the charged di-

rection.
., :
-> =Yy '
O, F) Pu (7) = O .32
It now follows from (2.26) that the 0(Q2) energy is

&= (£ pdvr Lal¥)puti)

eT 13 - |

[

T [drde BELE) g O (7

[‘;‘D _ ;\“‘ |
- ..‘_ ',-', Vo e L= - A b 2
Hﬂrx((ﬂY U PQ('\') !Ou ('7) [eb(,‘.)_ @u("')J
. . ! l’\\"—?’l‘ . ‘
' AN e "Ry D i - —
- 4 fcléfc{”f .{301( )PMLK) @a(ijgb(T)
. g7 . l;\_%ul

+ O(Q |
, (3.33)
The first term is the 0(Q?) non-Abelian Coulomb energy. The

. >_ 2. >
second may also be written as.fdr@a(r)eabcv @b(r)ec(r), whence

it is seen to vanish due to (2.19). The remaining two terms

give the energy of the fluctuation. Unlike in (3.30), one cannot
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determine the sign by inspection, but after some straightforward
manipulations, one can show that in the generic spherically

symmetric case thé terms are negative.5

The bifurcating solutions, described in Section IIC,exist
only for sufficiently strong sources. Consequently, we have no
closed-form expressions to analyze; yet precisely because there
is a bifurcatioﬁ, we can'say a considerabie amount without ex-
plicit computation. Consider firsf-a soiution to the static
Yang-Mills equations for a definite source p — Egs. (2.6) with
the left-hand side of (2.6b) and (2;6c) set to zero. Next
- imagine changing the source strength slightly, p+p+8p, and looking
for a new static solution. If the new solution is regularly
related to the old one, the incremenfs in the Yéng—Mills fields
will satisfy linear equations which are of the same form as
the fluctuation equations (3.15), except that 8p occurs in the
left-hand side of (3.15a) and time-derivatives are absent in
(3.15b) and (3.i50). However, if we are at the bifurcation
point, it must be impossible to solve these equations, and
this:happens if the homoéeneous system has a non-trivial solu-
tion. In this way we arrive at the impqrtant observation that
at the bifurcation point the stability equations have a zero-

eigenvalue mode, and vice versa: a zero-eigenvalue mode indicates

bifurcations, or generalizations thereof, in the static solutions

viewed as functionals of the source.
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A zero eigenvalue mode in the stability equations does not
necessarily signal the onset of instability. But let us assume

that some of the stability equations can be manipulated into

Ly/’: w? ¥ (3.34)

where L 1is a linear Hermitian operator, with a "potential"

the form

which is determined by the static Yang=Mills solution, itself
a. function of source strength Q. Aﬁ the critical value of
Q=Qc there is a bifurcation, hence (3.34) indicates the exist-
ence of a "zero-eﬁergy bound state". As Q increases beyond
Qc’ we can expect that w? increases for one branch of the bifurca-
tion, while for the other it decreases. We conclude therefore that
when the stability equations follow the pattern here described, be-
yond the bifurcation point there is instability in one branch and
stability can exist for the other.

We now show that the bifurcating Yang-Mills solution fits
into the picture sketched above. 1In order to exhibit the insta-
bility, it is sufficient to consider just the radially symmetric
sector of the theory; the sector in which the bifurcating solu-
-tion was found.

For the radially symmetric source

(Da.‘- -?r“%f‘f) (3.35)

the radially symmetric Ansatz is
o 2. '
Aw= e A° (3.36a)
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(3.36Db)
The fundtions depend on r and t and describe a U(l) Higgs

gauge model on a two-dimensional space with constant curvature.16

There is an Abelian gauge invariance.

- The most general static solution' is [gauge-equivalent to]

¢ =0, A'=0, ¢ =-a, Ao=f/r, where a and f are governed by
1 2

(2.32). The time—dependent‘fluctuations
A'ci 7{/—7’ + C‘:Ac
At = SAL
q)i, = é\&pi ,
CPZ A . D'h\p)__
(3.37)
"satisfy | : :
Yy L{a«, ’ .. ° .
— - —VJd +2:?dJA° = O
YTy Y ' (3.38a)
- 1
- et 2u’ A = O (3. 38D)
g L 2 b .
0y~ O 4 daT-4- . 2a o_
( T oo —-——;—2_-_——4 )Y+ - ,(CYA o (3.38c)

We have used the gauge freedom to set 6¢1 to zero, and have de-

fined 6¢2 to be §¢. [In the gauge 6¢1=0, §¢ is a charge-neutral
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fluctuation.] Also the gauge-invariant fluctuating field
strength e has been introduced.
ez-Y"(Bt A+ 2 (YAO) (3.39)
A S
Finally by differentiating (3.38b) with respect to time, and
eliminating 6A' with the help of (3.39), we may replace that

equation by

t v VY »
Witﬁ,a'monochromatic Ansafz, Egs. (3.38a), (3.38c) and (3.40)

may be combined into the form (3.34), where

- (.Y

e il

| T 1--.1_ L ’ o)
pr+ 3a 4° ;f,(qq_

L (T
a2 . 7'1._ 0.1411- L 2 a’ L
c :ﬁu’ P — {¢ (;) |

(3.41)

Thus we see that for the charge-neutral fluctuations, the sim-

plectic stability condition is reducible to a Hermitian problem.
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The bifurcation point, cortesponding to a zero eigenvalue,
is governed by equations obtainable also from (3.38) by setting
the time derivatives to zero. Then it follows_from (3.38b)
that 6A! vanishes, while the remaining two eguations, reduce to
a deformation of (2.32) with the identification Sa=-6¢, §£=rsa°,

A numerical investigation of (3.34) and-(3.41) is in pro-
gress.5 We anticipate that the non-Abelian Coulomb solution,
which showed no bifurcations when the source strength was in-

? will remain

creased, will show no zero gigenvalue modes; w
positive and that solution is'always stable against radial
deformation. [Non-radial deformations are not inyestigated.]
The bifurcating solutiéns should lead to a zero-eigeﬁvalue mode
at the bifurcation point. Beydnd it, the upper branch should
show bound states in (3.34), hence be unstable. For the lower
branch we anﬁicipate no bound states and no radial instability.

The zero eigenvalue problem may be alternatively viewed
as-defining the bifurcation point. A crude'ahalytic analysis
for the delta-shell source (2.34) gives.Qc= 5.892, in-

excellent agreement with the exact, numerically determined value

of 5.826. This analysis will be presented'elsewhere.5

IV. CONCLUSION
Finite-ehergy solutions to the Yang-Mills equations with
arbitrary sources, can be studied perturbatively for weak sources.

A rather comprehensive description is available. There exist at
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least two static solutions, the Abelian and non-Abelian Coulomb,
with the latter carrying lower energy. They are accompanied

by time-dependent generalizations which are cohtinuoﬁs deforma-
tions of the static golutions. The time-dependent ones have
the important property of lowering the energy, relative to the
static configurations. The whole assembly of solutions can be

compactly described in terms of the quantity 3=[@,§¢]. Beyond

the perturbative regime, it is difficult to study the problem

analytically [save for the Abelian Coulomb case], but numerical
investigation does not expose any significant new structure.

Some questions remain. One would like to know how many
different non-Abelian Coulomb solutions there are for a fixed
source. [Thus far we have found only one.] Also one wonders
whether there is a topological distinction between the Abelian
and non-Abelian caseé; a hint of one arises from thedobservation
that the gauge transformation U, which takes the source from
the Abelian frame to the non-Abelian frame in (2.18), is
topologica;ly non—-trivial,

Solutions which are supported only by sources that exceed
a critical strength, are known in isolated examples, but little
of a general nature can be said about them at present. Pre-
sumably they are always characterized by bifurcations, and one
wonders whether the bifurcating solutions are topologically dif-
ferent from the perturbative ones. Again one can point to a

hint:at large distances, the radial non-Abelian Coulomb solution
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vanishes rapidly, while the bifurcating one tends to a non-trivial
pure gauge.. Also one would like to know how to characterize the
different bifufcated branches.

The mosﬁ interesting result of the stability analysis for
Yang-Mills theofy is the observation that both the Abelian and
non-Abelian Coulomb solutions, when stable, are gyroscopically
stable. 1In this way, the Yang-Mills model shares the physics

17 Modes which lower the energy, without introducing

of a top.
instability, have been identified. .However, it is not clear

- how they are to be represented by superpositions of conventional
monochromatic fluctuations.

Stability for weak sources can be established, but the be-
havior for stronger sources is thus far unknown, save for the
Abelian Coulomb case where an explicit formula allows for com-
putations — the Coulomb solution is unstable beyond a critical
source strength.. In the bifurcating solutions, the bifurcation
point corresponds to a zero-eigenvalue mode in the stability
equations, and one expects at least one of the bifurcated
branches to be unstable.

While some further computations obviously suggest themselves,
especially for strong sources, the most pressing open question

concerns the relevance of these mathematical investigations to

the quantum physics of Yang-Mills theory;
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FIGURE CAPTIONS

All Figures are taken from Ref. 2.

Energy, in units of 21T/rO as a function of Q for
a delta-shell source of strength Q. The curve C
is tﬁe Abelian Coulomb parabola. The curve I is the
non-Abelian Coulomb solution. Curves IIa and IIb are
the two branches of the bifurcating solution. The

bifurcation point occurs at Q=5.826.

Profiles of the functions a and £f for the type I

solution. Starting from the lowest curves: the values

of Q in a delta-shell source are 1.41, 2.53, 4.04

6.43, 10.05, 14.18, 19.93, 23.38, and 41.72,.

Profiles of the functions a and f for the (a) (lower)
branch of the type II bifurcating solution with a
delta-shell source. ©@=5.86, 6.44, 8.09, 11.05, 15.71,
and 23.19. Correspondence between the individual

curves and these values of Q 1is established by the
fact that, as Q increases, so do a"(0) and f(1).
Profiles.of the functions a and f for the (b) (upper)
branch of the type II bifurcating solution with a delta-
shell source. Q=6.53, 8.61, 12.10, 17.85, 28.06, and
49.16. For these curves, as Q increases, a"(0) de-

creases and f£(l) increases.
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