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I. INTRODUCTION
3

In my  ecture I shall discuss some recent work on
solutions  to classical Yang-Mills theory.  The investigations that I shall

summarize study the field equations with static, external [non-

dynamical] sources. The physical, quantum-mechanical signifi-0
cance of such solutions has not thus far been as profound as

that of solitons, where sources are dynamical i.e. monopoles

with Higgs-field sources; nor as that of instantons, where

sources are absent but the equations are continued to imaginary

time. Nonetheless the new results are interesting in their

differences from the Abelian counterpart and should suggest in-

tuition about the physical content of non-Abelian gauge-quantum

field theory. Moreover, structurally the equations are suf-

ficiently intricate to provide a most interesting example of

analysis in mathematical physics.

There is now available a variety of solutions for review;

but only recently did a pattern emerge which allows for a com-

prehensive description. A summary of this is presented in

Section II. Section III is devoted to an account of stability

properties. I begin by recalling the ·theory of stability -- a

subject widely studied by physicists in former times, but now,

in its general form, largely forgotten. The general theory

does not rely on minima of the energy and is found to be ap-

plicable to the Yang-Mills model. It comes as no surprise that

the non-Abelian structure lets the gauge theory share with a

top the phenomenon of stable configurations which do not mini-
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mize the energy. The Section concludes with a description of

work in progress which assesses the stability of various solu-
'*.

tions.  Finallyja list of open questions and problems for fur-

ther research comprise the concluding Section. IV.
1..

3

II. SOLUTIONS TO YANG-MILLS THEORY WITH SOURCES

A.  Preliminaries

The field equations with which we are concerned are

&*Fw =69 (2.la)

10

F-Bv  =  7»/1 v-   2v/1'=  f  EA,  A  ] (2.lb)-.

97                                     0 1

°u*  =    0,   +   F AL-    2- 3 (2.lc)

We study the SU(2) theory with coupling strength scaled to

unity and use interchangeably component notation and anti-

Hermitian matrix notation; e.g. Pa' a=l,2,3; p=paaa/2i, ca=

Pauli matrices. The source p is taken to be a given,·time-in-

dependent function, 3tP=O.  Eq. (2.la) carries with it an in-

tegrability condition: the right-hand side must be covariantly

conserved. In the present circumstance that requirement re-

duces to

LAO,  f]       0                                   (2.2)
The energy of the system is given by a positive, gauge-

invariant formula.

f -4
-4: 1 1e =  i feti, i El , D- 1 (2.3)

EL   =   1- i     j         R-    -  -   1   E JJ  IN  F .1 42-
-LO

L.G.     2.        ' CL.
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The class of solutions which I shall here be describing is

delimited  by the requirement of finite energy. This means

that sources must also be well-behaved; a condition which will

not be spelled out in detail, beyond noting that point sources

are excluded; p is an extended function.

We shall need a Hamiltonian formulation for the field

equations (2.1); since they are locally gauge invariant this

is not straightforward. In order to overcome the familiar

difficulty, we do not pick a gauge; rather we take the vari-

ations used for obtaining the equations of motion to be con-

strained by Gauss' law, which is the v=0 component of (2.la).

Specifically we take the Hamiltonian to coincide with    ,
+ +

viewed as a functional of independent variables of  E  and  A,
+

while  B  is constructed in the usual way from  A.

-1 -) -)

B. - 9 A Au - i E „. ( 46 * A c (2.4)

-   is identified with the canonical momentum conjugate to  A,

and the constraint of Gauss' law is imposed with the help of a

Lagrange multiplier, here called A'.  Hence unrestricted vari-

ation can be performed on
.-

-,         -5

2 = 2- fc'* At{9.2.- E-", Ab· E,- p«-) (2.5)

In this way the Yang-Mills equations are obtained.
.-

n =- 8
2 =*•F - S-

-)-)
V .-I 1-01- --99« A  ' Ec-PL

6-Al (2.6a)

Gauss' law constraint

L-
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)* E«- L. AO r-
-b -) -> -> -,

9 * 86£- Eae c Ab *Bc- Eaec. 51 6 Ec
6 Al (2.6b)

Amp re' s law

-

3.  K-=  - Se= E 0- -     At +  i., c  Ab  A 1 (2.6 c)

-, -,

t R -
E Eck +

Definition of Ea

Note that static solutions Iall time-derivatives vanish] are

critical points of the energy, subject to the constraint of

Gauss' law. 1,2

Presentation of solutions is complicated by the gauge co-

variance of (2.1): if AP solves the equations with source p,

then the equations with a gauge-rotated source p'

p'= U-ip U (2.7a)

are solved by gauge transforming the previous.

K»  =   U-'  A»  u   +    u-1   8* U (2.7b)

[Here U is an SU(2) matrix.] Two solutions related as above

describe the same physical situation and we shall view them as

the same solution but presented in different "gauge frames".

Frequently we shall speak of an "Abelian gauge frame" - one in

which the source points in the third direction.

CCL = 8Q3 * (2.8)
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Of course results for gauge invariant quantities, like the

energy, are frame independent.

In addition to the above gauge covariance, there is pre-

sent also a gauge invariance with respect to gauge transforma-

tions which leave the source unchanged. From (2.2), we see

that gauge transformations with  U  constructed from A' are

of this type. Thus it is always possible to pass to the tem-

poral gauge where A' vanishes, without changing the gauge frame.

Solutions naturally fall into two classes: those that exist

for arbitrary sources and those that require a critical, finite

source strength. We list these in turn.

B.  Arbitrary Sources

Four different types of solutions will be discussed in

this Section, two static, two time-dependent. The latter pro-

vide a well-defined generalization of the former.

The most obvious Yang-Mills solution is the static Coulomb

one which is readily presented in the Abelian gauge frame, where
3

it is given by the regular solution to Poisson's equation.

A c            A 3 9 (2.9 a)rl Cl

-,
Aa  =

O (2.9b)

9, --1 0 (2.9 c)
72- Cy

An alternate description, still in the Abelian gauge frame, is

gotten by passing to the temporal gauge.
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A t. =0 (2.1 Oa)

AGE  -   da  9 9 t (2.1Ob)

The energy of this, according to (2.3), is the familiar Coulomb

expression.

e c =   f,  ---- , =1 A -)  1  -, 0
CVY  Ck'r 3 tqi, 1.t 12

T    9 1 7 9 Ir 1 E- ",1 (2.11)

Note that in the Abelian frame, the solution vanishes with the

source.

The next solution is a time-dependent generalization of the

above. It shares with the Coulomb solution the [gauge-invariant]

property that the magnetic field vanishes. From Ampbre's law

it  'follows  that,   in the temporal gauge, vanishing   implies

a static electric field.  Eqs. (2.4) and (2.6c) require the

electrlc field to be [gauge equivalent to] a gradient of a

scalar [matrix] function $, which further must satisfy

Iv*,  9 431 (2.12)

Thus we have, for $'s satisfying (2.12),

A" --0 (2.13a)

-9 1

=     9 f t (2.13b)A

The source which. gives  rise  to  such a field is determined by'

Gauss' law.

i
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r11 i. (2.13c)

I /           M,                   
  -  P'
1'

There are as many configurations in the above category as there

are functions 0 consistent with (2.12). However, our interest

is only in those for which p' is gauge equivalent to the Abelian

frame formula (2,8); only then are we dealing with solutions to

the same problem as the Coulomb one.

e' g  Up  U-' =u.E'u -' B (2.14)
2c

When (2.14) holds, we can express the solution in the Abelian

frame, in the temporal gauge.

A' = 0                        (2.isa)
A'      =-Et-   U- '  9  U

(2.15b)

E    =-U-'  g *  U
(2.15 c)

The energy of the above is given by a Coulomb-type formula.

4         V L                     g.F
-                                      C  91 -      9,0  1

(2.16)

To recapitulate, the solution for a given source (2.8) is

constructed by choosing a gauge function  U, computing p' from

(2.14) ; 0, from (2.13c) ; and finally, the potentials from (2.13a)

and (2.13b) or (2.15). When (2.12) is met, one has solutions
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which in general are essentially time-dependent -- a time-trans-

lation cannot be compensated by a gauge transformati6n. The

only member of the family with gauge-artifactual time-dependence

is the Coulomb one where U=I. By continuously deforming I to

U, one passes continuously from the static Coulomb solution to
4

its time-denendent generalization.

Our third solution is again static, but it differs from

the Coulomb one by the property that in the Abelian frame it

does not vanish with the source; rather it becomes a pure gauge.

M  = U -1  5 M 7  10 L/ (2.17)
I  '     i atroSoviet

[In the absence of sources, finite-energy solutions are neces-
6

sarily trivial; thus the potentials either vanish or are pure

gauges.]  A closed expression for this solution has not been

given; only a formula perturbative in the source is available.

So that we can speak of orders of perturbation, we shall take

the source to be 0(Q) where Q is a convenient scale of magni-

tude for the source. [For example, Q  can be an overall fac-

tor.] This solution is most economically presented by first

transforming out of the Abelian frame with the gauge function

U, occurring in (2.17).

f'  2   u    U -1 =    U  ff  v 3- (2.18a)

i     / 'Il

In the new frame, the vector potentials vanish with the source.
2Perturbative formulas for them are
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A'°  = 0,0(Q') (2.18b)
-4 1

A · #,[*,90 1,-OCQ') (2.18c)

/

0 0--1 evz                                                    (2.18d)

Primes remind that the quantities are displayed in a non-Abelian

frame.  The gauge function  U  is not arbitrary but must be cho-

sen so that the consistency condition (2.2) is saisfied. It is

a consequence of that equation and of (2.18b) that we must have

E-*, v'*]-O (2.19)

The following is the temporal gauge equivalent to (2.18).

R 5  z     (.7<-5
(2.20a)

--4 0
.*i-- ) I.-

A           Vgpt   +  Clt, , 4 1) [0, 9 0 1 + 0(03)
(2.2 Ob)

The electric field is 0(Q),
-9 4 .-,)-
E ·=-F+-t[ 03 V J TOCQ*) (2.20c)

and the magnetic field is 0(Q2).
-) .-)t                 --) r

B       =    7-1  x   I  * ,   7* ]  1-  0  C Q s)
.-3 -, i

9 -1   =    57/ V
L

(2.2 Od)

[The time dependence in (2.20) is of course a consequence of

the gauOe choice, as comparison with (2.18) shows.]  In the

-
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primed frame, the solution appears similar to the Coulomb one
+

(2.9) or (2.10), save that the non-vanishing commutator [$,70]

prevents the expressions from closing. Hence we call the above

a "non-Abelian Coulomb" solution to contrast it with the

"Abelian Coulomb" discussed at the outset.  The energy further

exhibits similarities with the Abelian Coulomb case. The formula

to lowest order in  Q  follows from (2.3), (2.18d) and (2.20c).

8     \ C 4 -1

C   =   -2 -Jr„   51  e'.     f-   0 (Gl« )
I. i   -I  . / . -'/8 -)

- -

dr   .1 7  ,     f« CY. )-1' «  t -r   )   1-    0 (' (14)
- gr

1 42' - 42 ' 1, (2.21)

A specific example of a non-Abelian Coulomb solution is

given when thesource in the Abelian frame is spherically sym-

metric.

1 0«   =   ci« j   T   ( -r j
(2.22a)

One then verifies that (2.19) is satisfied with the charge den-

sity in the radial frame;

t A

p«      *« 9 t«) (2.22b)

i.e. U  is the gauge transformation which rotates the third

axis into the radial axis.  A further interesting feature is
(t

that the present solution carries less energy than the cor-

1
responding Coulomb one.
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99=    1         ('c' A Ji,     Ittr)  1.,P'.)     4.   r.   +     cy  IMW)   <     2c-L g-'IT J  +'-f' 

(2.22c)

The fourth and last solution, that I mention in this sub-

Section, generalizes the static non-Abelian Coulomb in a time-

dependent fashion, quite similarly to the way that the second

solution, Eqs. (2.13), generalizes the Abelian Coulomb. It is

constructed by choosing an arbitrary gauge transformation  U

and transforming the source once again.

i,

p    =    Ue,   U -1
(2.23)

We use double primes to distinguish this source from p -- the

source in Abelian frame -- and from p' -- the source in the

gauge transformed frame where the non-Abelian Coulomb solution

has a simple perturbative expansion, see (2.18) or (2.20).

Next we take the regular solution of Poisson's equation

* C rh l'-

92-   (2.24)

and build the time-dependent solution perturbatively in $, in
5the temporal gauge.

A'° = O
(2.25a)

A-'«= -v# t, A-'' 4,)(1-0, 90]- 9-1 [4*, v,#])
+ OC Gs) (2.25b)

L,
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One readily computes the electric field, which is 0(Q).

2«= -10- t([*, 9.01-9-1[*, V'*])+ OCQ')
(2.25c)

The 0 (Q2) magnetic field

-1 .-7  r h

.E" =  9-1 N [4, V *J + O(QS) (2.25d)

is of the same form as in the static non-Abelian Coulomb solution,

(2.2Od) which is here included when U=I. Just as in the Abelian

situation, by continuously changing  I  to.  U, we obtain a con-

tinuous deformation of the static non-Abelian Coulomb into its

time-dependent generalization. In both cases the magnetic field

retains the same form during the deformation.  Once again, the

0 (Q2 ) energy is given by a Coulombic formula, as follows from

(2.31, (2.24) and (2.25c).

r it

A 'I

2,4- 6- 4 + O C G')
-l

91
It -, (t

=   1   (ctriti''    f«(1 )/0- C J  +0( 624  j
8-Ir J j q'- Y'' 1 (2.26)

The similarities between the four solutions should be ap-

parent. Indeed, if for different gauge frames a common [un-

primed] notation is used, a master formula which presents all
5four may be given. Define first the vector  8.

-h

C.=   C 0,9  ] 0, 4zle
(2.27)

Then, in the temporal gauge, set,

A
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A 0
/1 = L)
-) 1 1

A       =  --      191, t   +   Cit'... 4.  ) 0*  0' x  2VL L

(2.28)

The static, Abelian Coulomb has vanishing  8, while vanishing
+ +
VxC leads to its time-dependent generalization as is seen from

(2.12) and (2.13). Furthermore, according to (2.19) and (2.20),
++

vanishing V·C corresponds to the static, non-Abelian Coulomb

solution while its time-dependent generalization (2.25) has
+

no restrictions on C. For the first two solutions (2.28) is

exact; for the last two it is accurate up to 0(Q2) .  The 0(Q 2)

formula
1-

F     t   1,0-1
c    =   I  J   l«     9    10 4    +    O C O 4/1 (2.29)

gives the complete energy for the exact solutions, and the 0(Q 2)

contribution to the perturbative ones. For the two static solu-

tions, the quantity in (2.29) is stationary against variations

of Pa which preserve its length [gauge transformations]. The
8

Coulomb solution is seen to maximize (2.29).

C.  Sources with Critical Strength

When the source strength Q increases, the previous solu-

tions continue to be present. For the Abelian Coulomb, and its

time-dependent generalization, the closed expressions given

L
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above hold for arbitrary Q. For the non-Abelian Coulomb with

its time-dependent generalization, one must calculate pertur-

batively terms higher order in  Q; a tedious procedure with un-

known convergence properties. Alternatively one can do numeri-

cal computations.

Furthermore as Q increases, solutions appear which re-

quire a critical, minimal source strength to support them.  Very

little is known about these, and the numetical method is presently

the only effective means of investigation., We review one such
example.2,9

When the source is radially symmetric,  as  in   (2.22a) ,  we

have the spherically symmetric Abelian Coulomb solution. Also

by passing to the radial frame (2.22b) we ban exhibit the per-

turbative non-Abelian Coulomb solution. By iterating 'Eqs.  (2.18)

a few orders in  Q, it is found that the form of the potentials

remains within the following Ansatz.
.>

/40  =    iii   1    1   1-1.,)2 C            f ' ' (2.30a)
->' A -)

A     =     7  f  F    1     [ c.c -6.«)  -1 12L  T L (2.3Ob)

Here r is a length scale. In this sub-Section we shall always0
remain in the radial frame,

/A

8'.  =   I-i   T· Ir/r,) (2.31)

0

hence primes on the potentials are dropped. The above Ansatz
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is postulated for the complete static solution and the mode

functions satisfy the following non-linear differential equations,

which are all that remains of Gauss' and Ampore's laws.

D 11 20 a= 9

-  1      +   P  T =X i (2.32a)

4  1 k PL
-ck-  t  8-1- *C k. 0    (2.32b)

Al-

All functions depend only on x=r/rQ, and the dash indicates dif-

ferentiation with respect to that variable. More general radi-

ally symmetric Ans8tze can be given,  but  it has' been proven
that static, radial solutions necessarily fall into the above

2restrictions. [We emphasize that the Abelian Coulomb solution

does not lie within the Ansatz (2.30),and cannot be found in the

solutions to (2.32); in the radial frame, the Abelian Coulomb

solution is not radially symmetric.] Requiring finiteness of

the energy

<79 r -

g =  r   'CIA  (a'}1 +.1  (C,- 1)1 +21 (f' Ji + _, 4 Cl
I          og    1

1 11. AL IO 40
.lilI

(2.33)

the above is the form that (2.3) takes within the Ansatz

(2.30) -- imposes boundary conditions at the origin and at

infinity. At the origin the potentials must vanish rapidly:

f(0)=0, a(0)=1, A'(0)=0, %(0)=0.  At infinity two types of be-

havior are allowed: type I, where the potentials vanish as in
the origin; type II, where the vector potential tends to a non-

A-*+ rxa -trivial pure gauge, a(00)=-1, A + i- - = -(ia•r)3(-ia·r).  Ther+oo

k
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type I solution is the previously perturbatively encountered

non-Abelian Coulomb [a=1+0(Q2), hence  a  never equals·-1].

The type II is a new, non-perturbative solution.

Numerical computation confirms the above, with the further

surprise that type II comes in two branches, once  Q  exceeds

2
a critical magnitude. Hence we call this the "bifurcating"

solution· Fig. 1 shows a plot of the energy versus source

strength for solutions with a delta-shell charge density.
A

p« =  ZE,
TOL Q aT r- To (2.34)

The Coulomb parabola [which does not lie within the Ansatz] is

also exhibited for comparison. Note that the non-Abelian Coulomb

[type I] carries lower energy than the Abelian Coulomb for all

Q, even outside the perturbative regime. The bifurcation point

where the two type II solutions first occur is found numerically

to be Q = 5.286. In Figs. 2, 3 and 4 the mode functions f  and

a  are displayed for the various solutions.

III. STABILITY IN DYNAMICAL SYSTEMS

A.  Review of the General Theory

We consider a time-translation invariant system whose

equations of motion for the 2N dynamical variables Pn and Qn,

n=1,...,N, can be obtained from a Hamiltonian H(P,Q), which is

also the conserved energy C.

J



E----

-17-

.B      =    -       P  H (P,  Q  )
, n                        9  G "

ah=         21-1. C p, a )
rb Pn (3.1)

A static solution, one for which  P  and  6  vanish, is a criti-

cal point of  H, and vice versa, stationary points of the energy

define static solutions. [An over-dot means differentiation

with respect to time.]

We wish to ascertain whether a static solution {PCs ,QCs  

is stable. "Stable" by definition will mean the following:              1

Take a configuration of the form {P +6P, Q +6Q}, substitute
(S) (S)

(S) (S)in (3.1) and linearize about {P ,Q } to obtain linear equa-

tions for the fluctuating quantities {6P,6Q}. When the linear

equations produce exponential growth in time for the fluctua-

tions, the solution is unstable; otherwise, it is stable. In

other words, for stable motion the small quantities {6P,6Q}

fluctuate harmonically in time with real frequency, while com-

plex frequencies signal instability.

The above criterion for stability is also in accord with

quantum-mechanical ideas. The first quantum correction to the

energy of a state involves the fluctuation frequencies. That

quantity must be real for the state to be quantum-mechanically

stable.

Note that growth in time of the fluctuations smaller than

exponential, say polynomial, is not a sign of instability. In

such a circumstance, the eigenfrequencies are degenerate, but
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still real, and the quantal energy remains real.

An intuitively appealing idea is that stability should be

connected with minimizing the energy: the static'solution which

is a stationary point should also be a [local] minimal point.

More precisely, the minimality condition is the requirement

that only non-negative eigenvalues occur for the quadratic

Hamiltonian matrix,  e, defined by expanding  H (P, Q) about

(S)(P   ,Q C     and retaining quadratic terms in {6P, 6Q}.  [Linear

terms vanish since the expansion is about a critical point.]

H { P, cl) = H(P'", ci'" ) +
i J p„ -11 6 P-    '  SP    GM Mvn S Q#  *  1 J Q     14 *   S Q -

1- .s.

(St . isj=  H(p    ,   G     )  r#v g w X e
1. /\  V L , 9 $ (3.2)

27- m  G )
X. cE')-(G V  Sa)

(3.3)

[The tilde indicates transposition.] The minimality condition
demands

c61  (9 2-  A  I ) =  0   ·=3>     A  3 0 (3.4)

In fact minimality is a sufficient condition for stability

- a result, known as Dirichelet's theorem, which will become
10

apparent below -- but by no means is it a necessity. There

are indeed familiar physical systems [tops, gyroscopes, plane-

tary configurations] which are stable, even though their energy

-._ 4
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is not locally minimal. To derive a more general criterion

we  expand (3.1) -around the static solution  and  find

1<X =   6 9 X (3.5)
--

1 - (Cri o) (3.6)

-.£ 1  \

By making a monochromatic Ansatz for  X,

54    =           e-c w t X (3.7)/\

we recognize the [constant] x  as simplectic eigenvectors of

7< with simplectic eigenvalue w.

5(x  .   "' Z x (3.8)

It is clear that our definition·of stability requires the w's

10
be real; this is known as Liapunov's theorem.

cid  C 7(-   4 9  )  =  o   »     w    w «f (3.9)

The point is that (3.9) is in general different from (3.4) and

can be satisfied when (3.4) fails.

If (3.8) is premultiplied by xt, where the dagger indicates

transposition and complex conjugation,

AT   g =  m *T 2 X (3.10)

we  see  that  the lef t-hand  side  is  real,  f being real symmetric,
thence Hermitian. Also x nx is real since n is Hermitian, and

we conclude that w can fail to be real only when xtDEx and

L-
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xtnx vanish.   So when   is positive definite,  w  is real and

Dirichelet's theorem is established:.minimality implies sta-

bility.   But of course w may be real without   being positive

definite.

One may consider n as a metric in the vector space of the

x's.  Then (3.8) is the condition that x 98x be stationary

against variations of  x  which preserve the simplectic length
tx nx. Instability can occur only when there are zero length

simplectic eigenvectors  of  : The eigenvalue equation  in  (3.9)

is relevant to the program of diagonalizing   by simplectic

matrices, just as the corresponding equation in (3.4) arises

when diagonalizing with orthogonal matrices. [A matrix M is
-

simplectic when MnM=n.]

The conditions (3.4) and (3.9) are clearly different, and

no simple relationship exists between the two in the general

case. In practice, we can specialize somewaht. Firstly,the

kinetic energy matrix  T  in (3.2) and (3.3) is taken to be

positive definite; with an appropriate definition of coordi-

nates, we may choose it to be the identity.  Secondly, the off-

diagonal matrix  G  arising from mixed p-q terms in the Hamiltonian,

which are frequently called gyroscopic or Coriolis terms, is

always anti-symmetric, when the theory is derivable from a

Lagrangian. The reason is that any symmetric piece in such

velocity dependent forces corresponds to a total time-derivative

in the Lagrangian and may be dropped. Thus we are led to a

simpler form for Dt.
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'-1  3 j
7--G V=V (3.11)

.-I

Cy -     3

With this  >, the minimality condition (3.4) reduces  to

cict (- GG+-(1-A)(V-),I))= 0=,6  AAO   (3.12)
while the stability condition becomes

citi (- 616 -2(w G + V-k): I) =0 * 60 110.-e  (3.13)
When gyroscopic forces are absent, the two conditions coincide

and w2 may be identified with A. In that case instability oc-

curs only for imaginary w. In the presence of gyroscopic terms,

there exist stable static solutions which do not minimize the

endrgy, while instability can exist with complex w. When *
is as in (3.11), the condition for instability, xtnx=o, is

equivalent to

'Re  '0         c        3, C :   GH m  E  CD,41
I.--..---I...-I

dot -6 Q„
(3.14)

We shall use the phrase "gyroscopic stability" when we

wish to distinguish this form of stability from the more familiar

"energetic stability".  A hint for gyroscopic stability occurs

when we can find arbitrarily close to a static solution harmonic

fluctuations that lower the energy. As we shall show, such con-
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figurations exist in the Yang-Mills theory. Instability would

be indicated when there are, arbitrarily close to the static

solution, time-dependent solutions which decrease the energy

and grow exponentially in time.

To conclude this review of stability theory, let us remark

that although we discuised  Dirichelet's sufficient condition

in terms of the energy constant of motion, a similar criterion

can be formulated by reference to other constants of motion.

This generalization is useful when analyzing solutions invariant

with respect to the symmetry transformation which is associated
10

with the constant in question.

B.  Stability Analysis for Yang-Mills Theory

We turn now to the stability analysis of static solutions

for the Yang-Mills equations; but before we use the ideas sketched

above, we must recognize that there are two ways in which the

Yang-Mills field theory differs from the simple Familtonian.

Firstly, rather than 2N degrees of freedom, there are an in-

finite number. This causes matrices to be replaced by differ-

ential operators, summations by integrations, etc., thus raising

questions of convergence and uniformity. We shall not concern

ourselves with this complication, even though there will be oc-

casion to refer to it in the course of our development. Secondly,

the Hamiltonian formulation now has constraints. This has al-

ready been dealt with in Section II. Here we observe that the

small fluctuation equations, which follow from (2.6) by linear-

0
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Uizing around a static solution A , area
--4 -> -7 -3

0 - %«6 ' S E6 + S(.t (O C Eb' SAC (3.15a)

9-C -5

0061, 6. Eb =   OPS«b x  3- -B b  +  S«.4 «    SAL-A -3
-  E«6 c.  Bb *  f A c.

(3.15b)

.-D -7 -)

6 Ea 2 0   3- Ab -00 r AO
- vc l. b ag d n 6 (3.15 c)

6&     is   short-hand   for   9%     x BA   . The quadratic energy, obtaineda                   ovab   b

by expanding (2.3) around the static solution, and using the

Gauss' law constraint for the fluctuations,

0 [21c«   = ijaf{ (cri. )'+ 1 EEil CE... Al) LA,b
i I J 8-1 Jz-  SAL C Lic'J'£-,6 BI ) g-At

(3.16)

is precisely of the form (3.11). In particular, an anti-sym-

metric gyroscopic term is present.

P _      fil    r r -, -'
1 Ao

LT
- 0  0 (7 - ·r') 8466 tic (3.17)

Eqs. (3.15) can also be obtained by taking (3.16) to be the

quadratic Hamiltonian, and varying it subject to the constraint

(3.15a) which is implemented with the help of a Lagrange multi-

plier 6A'.  In other words,unconstrained variations are performed
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on
-1 1)                         C t) A -)  r.

-)

-.1 7- A i C .61  r El +  a.,  61· SAI )
(3.18)

and Eqs. (3.15a), (3.15b) and (3.15c) emerge respectively as

-(2 1

r-t . -    81Lj -

6(6Al) (3.19 a)

-(2)

p S F =  g L (3.19b)
2 CL  _)

5(64«)
-(1)

-3                              1'                                                                                                                (3.1 9 c)

DtFAQ
----0-I

Ill

S (6  6)
With a monochromatic Ansatz for the time-dependence, the above

take on the form of a simplectic eigenvalue problem, equivalent
....

to stationarizing ( , subject to the constraint that the
CD  (2)

.-6*E 1
simplectic length of   6Xa  be fixed, and subject to the con-

aj

straint of Gauss' law for the fluctuations. In short, the Yang-

Mills model is seen to fit the general theory quite nicely.

Before making use of these equations to analyze stability,

we comment on their properties. An integrability condition

follows from (3.15b). By taking the covariant divergence, one

finds that the infinitesimal version of (2.2) must be satisfied.

E«bc 6 At 09 = o (3.20)

Also vice versa: (3.20) and the integrability condition on

(3.15b) imply, together with (3.15c), that the covariant time-
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derivative of the right-hand side in (3.15a) vanishes.

Eqs. (3.15) possess a local gauge invariance.
-3

EF -2« --b   J  F« -   £„Ce C  86  0©
(3.2la)

eAt-.-»>   5 6 1- 2 -E Ae a
t  Ct. (tb c /1 b Crc

(3.2 lb)
-, -)

3 ACL -9   cf Ac.   t  V 00.- E„&,c.  Ab eci
(3.21c)

Here 8 is a local function which must be parallel to the source.a

Se'4' C.   04   / c     
0 (3.22)

IThere is also a gauge covariance: a gauge transformation on

the background fields is compensated by a homogeneous gauge

transformation on the fluctuating quantities.  We shall not

make use of this property.]

It is clear from (3.20) and (3.22) that the external

charge density defines a direction in group space which we

can call the "electromagnetic" direction, while the orthogonal

directions can be termed "charged".  Thus A', 6A', Ba and Pa

all lie in the electromagnetic direction and vanish in the

charged direction. This reduces the allowed gauge transforma-

tions, in that the last term in (3.2lb) must vanish. Observe

also that the gyroscopic term (3.17) affects only the charged

direction; the electromagnetic fluctuations are free of gyro-

scopic terms.
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It is possible to derive a gauge invariant fluctuation

equation in the following way. The quantity

el =   S Fl,  £Clioc Al S At
=-Pr g A- f4.- 2 & Al

alo    ''
(3.23)

is gauge invariant with respect to the gauge transformations

(3.21). Then by taking a covariant time-derivative of (3.15b)

we arrive after some steps at
-> -)

0 0      5'  0     27     +   '01 6    X     .Ac    x     e( -     2Clb    '-V bc   L C CL ec flox 2
h -3 'Z.0 -> 62al -, -2)9  0    R 0    1   -   47,   56+ n 921 0 0

=     eva b     OV & C.. re 6Va 4     OVb C   L c. f- a b      6/ve c      L c

0
(3.24)

[This is most readily obtained in the 6A'=0 gauge, which can

always be achieved with the transformation (3.2lb).]

Eq. (3.24) is gauge invariant and involves the uncon-

strained variable Za.  It is remarkable that such an equation

can be derived; the possibility  to.do  so is intimately linked

with the existence of an external charge density which defines

a direction with respect to which the small fluctuations are
5

constrained by (3.20).

B.1 Abelian Coulomb Solution

For the Abelian Coulomb solution, the general stability

theory is easily applied. The· small oscillation equations are

best presehted by introducing complex quantities in the charged
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direction.

6 2 =   it(Et  .  6  2,  )
cg A'  =        (Al   ,  i   A-1  )

-2,
t' .- 1

fc    -     ii   (2   +  i  €1  3
(3.25)

Eq. (3.24) in the electromagnetic direction decouples completely,

1 -0 ./-) -) -)

22  23  v 7 x v x  23  = 0 (3.26)

while in the charged direction we have simply

A  i 1 -) -3 --1 .1
C 4 t  c 'S j    e   , -g*v x  e  =   O

r 7 2 6' =  _  *
(3.27)

The electromagnetic fluctuations are free; the charged ones des-

cribe the motion of charged vector mesons in an external elec-

tric field with a potential 0.
11

Detailed analysis of the equations can be performed in

frequency space. Note that the electromagnetic equation in-

volves w2 as an eigenvalue of a Hermitian operator, hence it

is real. Only the issue remains whether w2 is positive or

negative. In the charged equation there appears (w-$)2 and

w2 can be complex; it is not related to the eigenvalue of a

Hermitian operator. This difference reflects the fact pre-

viously remarked upon: in the electromagnetic direction there

are no gyroscopic terms, hence stability is equivalent to mini-

mality. In the charged direction, the gyroscopic terms are

».. . -4-
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present; they are responsible for the more complicated equation.

The electromagnetic fluctuations are obviously stable.

Those in the charged directions are. stable in the absence of
the external potential and by continuity they remain stable

for a sufficiently small external potential. As the external
3

charge density increases in strength, an instability is ex-

pected to appear. This is not the instability of the Klein-

Gordon equation in an 1/r [Coulomb] potential, which has pre-

viously been remarked upon, and which is a consequence of the
12

[presumably unphysical] singularity at the origin. In our

examples the potentials are non-singular. Instead it is the

instability of the Klein-Gordon equation in a strong external

field.
13

Explicit computation with the delta-shell source,

q =  2 6(r-ro), confirms the above remarks; instability sets
0

5
in at Q=

In spite of stability for weak sources, we expect as a

consequence of the gyroscopic terms to find modes which, though

harmonic, lower the energy. These can be readily exhibited,

without passing to frequency space. We remain with the first-
+

order equations (3.15), and seek a solution with 6B =0.  Ina
that case the charged portions of (3.15), with an Abelian

Coulomb solution as the background field, reduce to
-,

0 =V· E 2-263·0'cf
(3.28a)

1 -,0 =(Dt +C q)8 E
(3.28b)

'1L
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r -') -1
a E   =  - (3£ t, - 1·f )  3 A

(3.28c)-0 -7 -1
S B   =    V  A  EA  =   0

(3.28d)

The solution of (3.28b) and (3.28c) is

6 T4., -    -'[00 (*') ital (*'J] e.*F-(trflf') (3.29a)

S F = -ai (*') 4-Lt %11 *')
(3.29b)

and to satisfy (3.28a) and (3.28d) we must have                          i

61 = V e (3.29c)
-1

621   =  -C  4 9 9-  c  <9-1 (eff ) (3.29d)

where e is an arbitrary function. Finally there is one more
condition: 3-1(eq) must be parallel to 30, which can be easily

achieved, for example by setting Gq=V 2 F(0), where  F  is arbi-

trary. Thus equations (3.28) can be satisfied in terms of one

function.

14The quadratic energy (3.16) is seen to be negative.

47 (1)

c              =       [  (B e)    S.  [t e#3    -        l e  1* ·  (, )   ·- L  (t )1
r                   .1 0  4')

- -1   AY-'di'. .1.8  I.:. -- 1 G["i-el'.0, 12-gr L lf-Y' 
(3.30)

L -
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This rather peculiar fluctuation gives evidence that the Coulomb

solution is gyroscopically· stable since the energy decreases

5
below its Coulomb value. Note from (3.29), the linear growth

of the fluctuation with time, which however does not produce

instability.  Because the frequency is position dependent, it

is not clear how to locate this mode among superpositions of

functions with definite frequency. Nevertheless we have en-

countered it alreadyl It is merely the time-dependent generali-

zation of the Abelian Coulomb solution, Eqs. (2.12)-(2.16),

when the latter is brought arbitrarily close to the static solu-
15

tion. The energy formula (3.30) can now be recognized as the

0 (e 2)   contribution  to   (2. 16), when the source  p'   is a gauge trans-

formation with gauge function 0 of p, the source in the standard

frame.

B.2 Non-Abelian Coulomb Solution

The non-Abelian Coulomb solution, Eqs. (2.18), follows

in many respects, at least for weak sources, the behavior of

the Abeliad Coulomb solution. [Only the weak source regime is

amenable to analytic treatment, since our formulas are given by

a source strength power series.] The stability equations are

now highly coupled, and have not been solved. However, by con-

tinuity with the sourceless problem one expects stability for
3weak sources. Moreover, one can show that this again must be

an instance of gyroscopic stability, since the energy is lowered

by the time-dependent generalization presented in Eqs. (2.24)-

(2.26), which can be taken arbitrarily close to the non-Abelian
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Coulomb solution. This is achieved by making p", the source

for the time-dependent solution, to be an infinitesimal gauge

transformation of p', the source in the non-Abelian Coulomb

solution. The energy can then be computed from (2.26). The

details are the following. Set

il                                     I ,

f.»= (1 - i e e.) 8.-2... 04 109
(3.31)

This assures that p  is a gauge transformation of Pt taken

through second order in ea'which lies only in the charged di-

rection.

t.

6« (E)   Pa  CE )  - 0 (3.32)

/: r
It now follows from (2.26) that the 0(Q 2) energy is

/r

2- = .1 U  A- ,   1 - ,0         f'« ( * )  P; .t 7-")1 CY Y CLY
LM e ir J

l 9'-   4.,1

_1  r
Sr      J AR'  &R''         642-   0,=   ti')

S C     (9,)C U 10 C  L./ C
1  -1     -      2,1

-  6,  183, d.*'    f.9"ir')  ft. (9'.1  Iek. la )-  G.Ir,)1Ll *'-  9'' i
1            A#

-  -L   (-C{,6 (17,   1:)0' LAT) - ,- £79  <)c, (f'j &24 (T')
€T r     J                                .    f r' -9„  1

+  0 ( Q') (3.33)

The first term is the OCQ2) non-Abelian Coulomb energy.  The
+ +second may also be written as fdr#a (r)'E   V20. (*)0((r), whenceabc   D

it is seen to vanish due to (2.19). The remaining two terms

give the energy of the fluctuation. Unlike in (3.30), one cannot

.t
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determine the sign by inspection, but after some straightforward

manipulations, one can show that in the generic spherically
5symmetric case the terms are negative.

B. 3 Bifurcating Solutions

The bifurcating solutions, described in Section IIC,exist

only for sufficiently strong sources. Consequently, we have no

closed-form expressions to analyze; yet precisely because there

is a bifurcation, we can say a considerable amount without ex-

plicit computation. Consider first a solution to the static

Yang-Mills equations  for a definite source  p - Eqs.   (2.6)  with

the left-hand side of (2.6b) and (2.6c) set to zero. Next

imagine changing the source strength slightly, p+p+6 p, and looking

for a new static solution. If the new solution is regularly

related to the old one, the increments in the Yang-Mills fields

will satisfy linear equations which are of the same form as

the fluctuation equations (3.1 5) , except   that 6 p occurs   in  the

left-hand side of (3.15a) and time-derivatives are absent in

(3.15b) and (3.15c). However, if we are at the bifurcation

point, it must be impossible to solve these equations, and

this happens if the homogeneous system has a non-trivial solu-

tion. In this way we arrive at the important observation that

at the bifurcation point the stability equations have a zero-

eigenvalue mode, and vice versa: a zero-eigenvalue mode indicates

bifurcations, or generalizations thereof, in the static solutions

viewed as functionals of the source.

. .
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A zero eigenvalue mode in the stability equations does not

necessarily signal the onset of instability. But let us assume

that some of the stability equations can be manipulated into

the form

L 11' =  w' 'P (3.34)

where  L  is a linear Hermitian operator, with a "potential"

which is determined by the static Yang-Mills solution, itself

a. function of source strength  Q.  At the critical value of

Q=Q  there is a bifurcation, hence (3.34) indicates the exist-

ence of a "zero-energy bound state".  As  Q  increases beyond

Q , we can expect that w2 increases for one branch of the bifurca-
C

tion, while for the other it decreases. We conclude therefore that

when the stability equations follow the pattern here described, be-

yond the bifurcation point there is instability in one branch and

stability can exist for the other.

We now show that the bifurcating Yang-Mills solution fits

into the picture sketched above. In order to exhibit the insta-

bility, it is sufficient to consider just the radially symmetric

sector of the theory; the sector in which the bifurcating solu-

tion was found.

For the radially symmetric source

p« =rk F o) (3.35)

the radially symmetric Ansatz is

A l   =   4 '" A" (3.36a)

L-W
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b     . . 4A L L CL

/*°l=  €< J Lit (it (92) 7 1  (S· - '-f. Jefl1-

+  4 L.-,c   At
(3.36b)

The functions depend on r and t and describe a U(1) Higgs
16gauge model on a two-dimensional space with constant curvature.

There is an Abelian gauge invariance.

The most general static solution·is [gauge.equivalent to]

01=0, Al=0, 02=-a, A'=f/r, where  a  and  f  are governed by

(2.32). The time-dependent fluctuations

AC- Of
n       -      f /1-    2   6  AC

Ai = 6Ai
C9L    =       6fi

(Pz    =   - CL.,  J (fl
(3.37)

satisfy

2    e   -      41&  J. Cf   f   2 a' J Ao      =    09 r 'r (3.38a)

- 2  e  t 2<4, cS At   - 0
(3.38b)

.  1-

(DE- 2  + 302-1-42)3.1 + *' f 6/10= o (3.38c)
9 Y 6

-'1.2-

We have used the gauge freedom to set 641 to zero, and have de-

fined 602 to be 60.  [In the gauge 601=0, 60  is a charge-neutral
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fluctuation.]  Also the gauge-invariant fluctuating field

strength e  has been introduced.

e        -Y, <Bt  J A*  +    2-      3, 4 0   (3.39)9 ·r

Finally by differentiating (3.38b) with respect to time, and

eliminating 6Al with the help of (3.39), we may replace that

equation bv

2-ct 1

( 4  2-     e  tzat -9   6 A©      0                      (3.40)YL ,  1-

With a monochromatic Ansatz, Eqs. (3.38a), (3.38() and (3.40)

may be combined into the form (3.34), where

Fl= C t'COL )

/f,  »'- i-e 2. * ct_
L= L+

«L Ta' '

\ o   .it oz  .    al+ 1 .'.  1 L     ,  /a /  #L
1

1 4 + «1-  1g ' 1-CL 41 0-  I

(3.41)
Thus we see that for the charge-neutral fluctuations, the sim-

plectic stability condition is reducible to a Hermitian problem.

-
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The bifurcation point, corresponding to a zero eigenvalue,

is governed by equations obtainable also from (3.38) by setting

the time derivatives to zero. Then it follows from (3.38b)

that 6Al vanishes, while the .remaining two equations, reduce to

a deformation of (2.32) with the identification 6a=-64, 6f=r6A'.

A numerical investigation of (3.34) and (3.41) is in pro-
5

gress. We anticipate that the non-Abelian Coulomb solution,

which showed no bifurcations when the source strength was in-

creased, will show no zero eigenvalue modes; wa will remain

positive and that solution is always stable against radial

deformation. [Non-radial deformations are not investigated.]

The bifurcating solutions should lead to a zero-eigenvalue mode

at the bifurcation point.  Beyond it, the upper branch should

show bound states in (3.34), hence be unstable. For the lower

branch we anticipate no bound states and no radial instability.

The zero eigenvalue problem may be alternatively viewed

as·defining the bifurcation point. A crude analytic analysis

for the delta-shell source (2.34) gives Qc= 5.892, in

excellent agreement with the exact, numerically determined value

of 5.826. This analysis will be presented elsewhere. 5

IV. CONCLUSION

Finite-energy solutions to the Yang-Mills equations with

arbitrary sources, can be studied perturbatively for weak sources.

A rather comprehensive description is available.  There exist at

'.
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least two static solutions, the Abelian and non-Abelian Coulomb,

with the latter carrying lower energy. They are accompanied

by time-dependent generalizations which are continuous deforma-

tions of the static solutions. The time-dependent ones have

the important property of lowering the energy, relative to the

static configurations. The whole assembly of solutions can be

compactly described in terms of the quantity 8=[0, 01.  Beyond

the perturbative regime, it is difficult to study the problem

analytically [save for the Abelian Coulomb case], but numerical

investigation does not expose any significant new structure.

Some questions remain. One would like to know how many

different non-Abelian Coulamb solutions there are for a fixed

source. [Thus far we have found only one.] Also one wonders

whether there is a topological distinction between the Abelian

and non-Abelian cases; a hint of one arises from the observation

that the gauge transformation  U, which takes the source from

the Abelian frame to the non-Abelian frame in (2.18), is

topologically non-trivial.

Solutions which are supported only by sources that exceed

a critical strength, are known in isolated examples, but little

of a general nature can be said about them at present. Pre-

sumably they are always characterized by bifurcations, and one

wonders whether the bifurcating solutions are topologically dif-

ferent from the perturbative ones. Again one can point to a

hint:at large distances, the radial non-Abelian Coulomb solution

L --
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vanishes rapidly, while the bifurcating one tends to a non-trivial

pure gauge. Also one would like to know how to characterize the

different bifurcated branches.

The most interesting result of the stability analysis for

Yang-Mills theory is the observation that both the Abelian and

non-Abelian Coulomb solutions, when stable, are gyroscopically

stable.  In this way, the Yang-Mills model shares the physics

of a top. Modes which lower the energy, without introducing
17

instability, have been identified. However, it is not clear

how they are to be represented by superpositions of conventional

monochromatic fluctuations.

Stability for weak sources can be established, but the be-

havior for stronger sources is thus far unknown, save for the

Abelian Coulomb case where an explicit formula allows for com-

putations - the Coulomb solution is unstable beyond a critical

source strength. In the bifurcating solutions, the bifurcation

point corresponds to a zero-eigenvalue mode in the stability

equations, and one expects at least one of the bifurdated

branches to be unstable.

While some further computations obviously suggest themselves,

especially for strong sources, the most pressing open question

concerns the relevance of these mathematical investigations to

the quantum physics of Yang-Mills theory.

-..
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FIGURE CAPTIONS

All Figures are taken from Ref. 2.

Fig. 1:  Energy, in units of 2A/rQ as a function of  Q  for

a delta-shell source of strength Q. The curve  C

is the Abelian Coulomb parabola. The curve I is the

non-Abelian Coulomb solution. Curves IIa and IIb are

the two branches of the bifurcating solution. The

bifurcation point occurs at Q=5.826.

Fig. 2: Profiles of the functions a  and f for the type I

solution. Starting from the lowest curves· the values

of Q in a delta-shell source are 1.41, 2.53, 4.04

6.43, 10.05, 14.18, 19.93, 23.38, and 41.72.

Fig. 3: Profiles of the functions a  and  f  for the (a) (lower)

branch of the type II bifurcating solution with a

delta-shell source. Q=5.86, 6.44, 8.09, 11.05, 15.71,

and 23.19. Correspondence between the individual

curves and these values of  Q  is established by the

fact that, as Q increases, so do a"(0) and f(1).

Fig. 4: Profiles of the functions a and f  for the (b) (upper)

branch of the type II bifurcating solution with a delta-

shell source. Q=6.53, 8.61, 12.10, 17.85, 28.06, and

49.16. For these curves, as Q increases, a"(0) de-

creases and f(1) increases.
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