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ABSTRACT

This volume contains written versions of lectures given by
Mikkel Johnson and Thomas Tombrello at the LASL Summer School
on Nuclear Science in 1978. The purpose was to present to an
audience of graduate students considering careers in nuclear
science, a series of lectures which would advance their under-
standing and would identify areas of challenge in nuclear science.
In addition to those in this volume, principal lectures were
presented by Eric Adelberger, James Friar, Walter Henning, and
Gerard Stephenson. Special lectures were presented by John
Schiffer, David Youngblood, Donald Sprung, and John Walecka.
David Youngblood and Donald Sprung also appear in this volume.
A second volume containing the written lectures of Walter
Henning is anticipated by the summer. There was also a session

of contributed papers.



MESONIC EFFECTS IN NUCLEAR PHYSICS

by

Mikkel Johnson
University of California
Los Alamos Scientific Laboratory

b, INTRODUCT i ON .

The theme of this series of five lectures will be the relationship between
mesons and nucleons and the properties of nuclear matter, as we understand these
things today. The lectures unfortunately cannot be comprehensive because of the
limitations of time and the great body of literature falling within this general
subject area. Although the topic is difficult because of the enormity of its
scope, nuclear physics becomes simpler by virtue of the unification afforded by
the description in terms of mesons. One thus naturally finds a few ideas domi-
nating many different phenomena. For example, the A33 pion-nucleon resonance
plays a prominent role not only in pion-nucleon scattering but also in the theo-
retical description of the nucleon-nucleon interaction; these two fundamental
interactions in turn play a decisive role in all aspects of the physics of nucle-
ar matter at low density, i.e., normal nuclei, and at high density, e.g., neutron
ctars, s which aire usefu! thioughoutl
nuclear physics for developing physical intuition into definite predictions. The
computer is one trivial example, familiar to everybody, but another which should
be equally as familiar,.but unfortunately isn't, is a knowledge of Feynman dia-
grams. In this series of lectures | shall try to emphasize the common ideas and
methods rather than the diversity inherent in this topic.

I should begin by saying that the fundamental strongly interactina fields
are believed to be quarks and gluons, described by the theory quantum chromo-
dynamics, QCD.] Thus, | will not be discussing a truly fundamental theory. How-
ever, for low and intermediate energy physics the mesons and baryons are presum-
ably more useful than quarks, because quarks like to lump together into the meson
and nucleon ''collective coordinates.' The low-lying meson and baryon states of

relevance to this set of lectures are shown in Table I, along with their spins



and parities. The MIT bag model2 does a fairly good job in reproducing these re-
sults from the point of view of QCD, except the 7 meson. The working hypothesis
is that the meson and baryon states observed in isolation are also the relevant
coordinates inside nuclei and, thus, what nuclear physics needs in order to pro-
ceed is a table such as the one below of the properties of the mesons and baryons
in isolation, and in addition a table showing how these mesons and baryons inter-
act. A partial list of interactions is presented in Table tl. The general form
of the coupling for a given meson-baryon interaction may be deduced from the
spin, isospin, and parity of the particles involved, the requirement being that
the interaction be a scalar. Sometimes several types of coupling may be involved,
for example, the vector mesons have a so-called vector and tensor coupling
allowed, and two independent coupling constants must e specified. The theory
of quarks provides a scheme3 for relating the couplings of the mesons and baryons
in terms of just a few numbers, and one uses this theory when the relevant ex-
perimental data are not available. O0ften it is necessary to introduce a form
factor, or high momentum cutoff, into the theory in order to get finite answers;
if one were able to work entirely within the framework of QCD this would be un-
necessary, however, because QCD is renormalizable.

From the point of view of these lectures, we shall assume that mesons and
nucleons are the fundamental degrees of freedom and that the interaction shown
in Table Il is the fundamental interaction. From the point of view of modern
particle physics, mesons and nucleons span a model space in the full quantum mech-
anical Hilbert space, and their interaction expressed in Table Il is an effective
interaction (or at least a piece of the effective interaction) in this model
space. One goal of theory is to make rigorous the connection between the des-
cription in terms of quarks and gluons on the one hand and mesons and baryons on
the other, or at least to define the shortcomings of the latter description.

Traditional nuclear physics has not developed within the framework of meson
physics; after all the pion wasn't discovered until 1947, many years after nucle-
ar physics had become an established discipline. We find, rather, that nuclear
physics has developed (rather successfully) from static, phenomenological poten~
tial models. The large measure of success of this approach is presumably due to
the fact that the energy required to create a meson or heavy baryon is so much

greater than typical nuclear excitation energies, that these particles have only
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a short "'virtual' existence in low energy nuclear physics. The time At that
these objects exist is limited by the uncertainty principle. For example, if a
meson of mass m is created by a nucleon in the nuclear ground state, it will stay

around for a time

h
At ~ — (1)

which is exceedingly short. For a m-meson

-22
t . - -
At'n_zal']" =66X ‘0 2M€V5=l‘.7x IO 2)"5 (2)
m 1.4 x 10° MeV
The m-meson can't do much in this time; it may influence another nucleon within

a distance
At - ¢ = 1.4 fm (3)

but this distance is not especially large considering that the average spacing

between nucleons in the nucleus is

1/3

d=(l—) = 1.8 fm (4)

o

The conclusion is that the space-time dependence of the meson fields is so re-
stricted that these fields do not need to be given explicit roles in theories of
nuclear structure. This observation gives support to the idea that potential
theory is an adequate framework for describing low-energy nuclear physics. How-
ever, one should not be satisfied with a purely phenomenological approach through
potentials; one should strive to build the potential theory as much as possible
on the ideas of more fundamental approaches. Later in this first lecture | shall

indicate how to build systematically a potential theory equivalent to a more



fundamental meson exchange description. In this sense, a potential theory will

include not only two-body potentials but also three- and higher-body contributions
One hopes not only to learn how to explain the preperties of complex nuclear

systems in terms of fundamental theories but also to learn about fundamental the-

ories from measurements on nuclei. However, the success of the potential descrip-
tion in nuclear physics means that it is hard to learn about meson-baryon inter-
Nevertheless, this is an impor-

The approach which one must take

actions by studying low-energy nuclear physics.
tant and active area aof nuclear physics today.
is the following (a) a good potential must be chosen; it must reproduce the prop-
erties of the deuteron and nucleon-nucleon scattering phase shifts up to an
energy comparable to the meson production threshold; (b) the many-body theory of
A interacting nucleons must be solved using this interaction; (c) discrepancies

between theory and experiment must be sought. [f a discrepancy is found it may

be related to an inadequacy in the theory which can be remedied by more careful

attention to the underlying meson-baryon interaction. This is the nature of much

theoretical work today. Clearly, this procedure is most likely to pay dividends
first in the two~ and three-body systems where the nuclear many-body physics is
essentially exactly solvable. Here there is an enormous accumulation of evidence,

mostly dealing with exchange current corrections, i.e., corrections to transition

operators for example, in the reaction

(5)

n+p->d+y

which can not be explained without the assumption of intermediate mesonic and
heavy baryonic states. The situation here has been recently reviewed in Ref. 4.
Low energy properties of heavy nuclei will begin to teach about meson de-
grees of freedom when reliable mény-body theories become available. In the
study of large nuclear systems, the most important theoretical problem presently
is to understand the. interplay between the nucleon-nucleon interaction and the
bulk properties of nuclear matter. The finite size of nuclei is actually a com-
plication, and the most popular system to study is the idealization of nuclear
matte.. Used in this context, nuclear matter is an infinite, uniform system of
neutrons and protons of densities pn and pp which interact in some prescribed way.
The Coulomb interaction must of course be turned off. The properties of such a
system may be deduced from experiments on ordinary nuclei. Some of these proper-

ties are shown in Table 1ll. The central density of nuclei can be determined



from electron scattering; as is well-known, nuclear matter saturates, i.e., the
maximum density in a nucleus is roughly the same in all heavy nuclei. The

binding energy per nucleon of 15.68 MeV may be deduced from the semi-empirical

mass formula,5

E

(M=zM - NM )c?
P n

- 15.68n + 18.568273 4 0.717 224" V/3 (1 - 1.69a7 %3

+28.0 (N -202a7h (1 - 118873

+ paring + shell effects, (6)

which separates the bulk properties of the nucleus from the surface, Coulomb,
shell, and pairing effects. The symmetry energy of 28.1 MeV is also shown in
the table; it is repulsive which means the lowest energy stats contains equal
numbers of neutrons and protons. If nuclear matter is subje:ted to pressure the
energy per particle changes, giving a curve which presumably looks like Fig. 1.
The properties shown in Table |11 are properties at the minimum of the curve.

There is an additional important parameter of this minimum, namely the curvature,

related to the incompressibility K,

2
_ 2 d°(E/A) 3.2 _ .3
ko= kp —=5— (2 T = k) (7)
dk

The incompressibility is related to a collective mode of the nucleus, the so-
called giant monopole 'breathing mode,' and recently, after years of searching,

this mode has been seen experimental!y.6a One deduces the value of 210 MeV from

, 6b
these experiments.
.17 ,'-\\ ,'
- o } —
TABLE 11} S ; NPTy
EMPIRICAL PROPERTIES OF NUCLEAR MATTER, pn - pp §
~
Central Deasity 0.17 fm 3 Electron Scattering W 568
E/A -15.68 HeV Semi-empirical
Symmetry energy 28.1 Mev mass formula . .
yrmerry ibility 210430 HeV Breathing mode Fig. 1. Equation of state of nuclear
Incompress bi1ity N matter, pn = Pp. The equation

of state at high density is
not well understood and is
therefore dashed.



There are two principal theories for studying the properties of nuclear
matter: the Brueckner-Bethe method and the variational method. The Brueckner-
Bethe theory has met with some successes and is presumably the best method of
dealing with the properties of nuclear matter at and near normal nuclear density,
but recently this position has been challenged by the proponents of the varia-
tional theory. The situation is in a state of flux today, and one may expect
that before long improved methods and a deeper understanding of the interaction
among nucleons embedded in a medium will emerge. | have great hopes that the
resolution of the present mysteries will greatly enhance the appreciation of the
role of mesonic degrees of freedom in nuclei. 1| will, therefore, devote several
lectures to the current status of nuclear matter theory. A third approach should
a2lso be mentioned, the so-called exp S method.7a This method has so far been
applied only to finite nuclei, but it is a powerful many-body method. [ shall
not discuss this in these lectures.

Beyond nuclear matter lies finite nuclei, and nuclear matter methods have
been applied quite successfully to develop theories of the.structure of finite

.. . , ' b . s . .
nuclei in a semi-phenomenological manner. Predictions for finite nuclei would

of course provide a much more stringent test of the underlying ideas than the
predictions for infinite nuclear matter. This aspect of the physics will be
covered by Don Sprung in his lectures. Nuclear matter methods have also been
applied to determine nucleon-nucleus optical potentia]s,8 with interesting
results.

Another way to learn about the meson-baryon interactions is to study nuclear

matter under unusual conditions. For example, neutron stars hold out the pos-

sibility for learning about nuclear matter at high density. Unfortunately, it

is difficult to study the properties of neutron stars, but there is a slow
accumulation of data and the emerging profile may be seen in Table IV. Heavy ion
collisions also provide a means of studying nuclear matter under unusual condi-

tions, high temperature and density. Theoretical studies of high density systems

9 and the Lee-Wick

have led to the unexpected possibility of pion condensation
10 . .

abnormal state. Some of the conjectured phases of high density nuclear matter

are listed in Table V. | will have more to say about some aspects of high den-

sity matter in the last lecture.



TABLE ¥
TABLE 1V

NEUTRON STARS PHASES OF NUCLEAR MATTER

-3 .
Density (fm °) Phas Y
System L Y e Constituents System
.17 =p Viquid neutrons rotons isol i
Hass 1.3 ¢ 0.2 Solar Masses (©) Her X-1, Vela - ° e ons: protons  isolated nuclei
qu nucleons, n utron stars
| 8.6 x 10“‘ gm-|:m2 Crab o ne n sta
* . heavy lons
R 7.7 %2 km Flares from variety of
compact x-ray sources 5p, Tiquid nuclieons, A neutron stars
—_— e —— (soltd) hyperons, #
*
Gordon Baym, private communication. quark matter

There have been many attempts to study nuclear systems directly in terms of
meson theory. This approach is notoriously difficult, but within the last few
vears there have been several moderately successful explanations of nucleon-

11,12

nucleon scattering in terms of meson theory. There have also been some

attempts to describe large nuclear systems directly in terms of mesons and nucle-
ons in the mean field approximation.B’IS These theories have been remarkably
successful in reproducing properties of nuclei and nuclear matter where the coup-
ling constants and/or masses of the mesons are suitably adjusted. However, it is
yet to be demonstrated that a meson theoretical model which reproduces the nucle-
ar properties in the mean field approximation is also capable of reproducing
nucleon-nucleon scattering. Experience with potentials has shown that the meson-
nucleon couplings necessary to reproduce nucleon-nucleon scattering induce strong
correlations among nucleons, which are neglected in the mean field approximation.
It is my own feeling that a quantitative theory of nuclear structure would he too
awkward formulated directly in terms of the meson and nucleon fields; practical
considerations seem to force one to a potential theory description.

Meson factories clearly provide a rich source of information about the prop-~
erties of meson degrees of freedom in nuclei. At these laboratories, energies
and intensities of beams are sufficient to study in detail the production of
pions and A resonances. As these channels open, the justificatior of treating
the interaction between nucleons as potentials begins to break down, and the
availability of this data will force theoretical descriptions which take the
meson and baryon degrees of freedom more explicitly into account. Here we stand
to learn an enormous amount about mesonic degrees of freedom in nuclear systems.
The availability of pion beams provides the possibility of examining in detail

how the pion interacts in a nuclear environment. There are a great deal of new

and poorly understood effects which come into play in these experiments. These



reactions not only hold intrinsic interest, but an understanding of them will

help pave the way for using pion beams as a tool to study the structure of a

nuclei.

M. FEYNMAN DIAGRAMS
The most convenient language for expressing nuclear physics with mesons

and nucleons is the language of Feynman diagrams. | will use this lanquage
throughout these lectures and it is therefore appropriate to review it. | don't
want to derive rules because everybody here has seen this before, but rather to
state the results which will be used time and again. An excellent introduction
can be found in Ref. 16.

Lat me begin by pointing out that]a Feynman diagram is a term in the matrix
7

element of the time-evolution operator U(t,t'), which takes the solution of

the time-dependent Schroedinger equation l¢(t)> from time t' to time t, i.e.,

[w(t)> = ult,t') [pl(t")> (8)
where
ih -27 lo(e)> = H |u(t)> (9)

We may be describing by H a particle interacting with a potential, a collection
of nucleons interacting through nucleon-nucleon potentials, or a collection of
nucleons emitting and absorbing mesons. In all these cases H will have a kinetic

l‘ -
energy and interaction energy piece

H=T+H, (10)

It is convenient to express T and HI in terms of creation and annihilation opera-

tors. A collection of nonrelativistic nucleons will have kinetic energy
2
k
M ()

T=2 a3 7

X ™

where ay and a: respectively destroy and create nucleons of momentum k. The

nucleon-nucleon potential is expressed as

S e
Mt &, Aty TN ko lvlk Ky %, %k, (12)
Kikp  ~T -2 ~2 =



where k's stand for a complete set of quantum numbers (momentum, spin, isospin) .

We may represent the matrix elements of potentials as pictures

{ 3
Ky &3/
1) ) = - - - — M
<kjkalVlk ky> Q\R\’
% ~2

potentials may be thought of as inducing a transition from state (k],kz) to

(13)

state (k!, k!). In a meson-nucleon system we have

2
H =Za a, b <k |}Akk> (14)
| Ky Py kg 1120

+
where now b creates a meson. Here A may be represented as

k

< > =
kylalkykg )

X2 ~3

Non-relativistic limits for the quantities A were given in Table II.

Now, the point is that the amplitude for a system to make a transition from

state 151’52"'5A> at time t to state lb',bé...5A> at time t', i.e.,
1 [ I ' >
<kiokgseenska U (t'50) Tkyukyyenn kg (16)

is the coherent sum of all possible histories, where a history is illustrated in
Fig. 2. Each nucleon gets its own line, with an arrow going up (the direction
of flow of time) and a label to designate the single particle energy and quantum
numbers. Each interaction is labeled by the time at which it occurs. This is a
Feynman diagram; it represents an algebraic expression and is evaluated as fol-
lows :

(1) each dashed line gets a matrix element of the potential, as (17a)

described above,

(2) each solid line segment gets the value

= e TEBt grpioy) : (17b)



where Eu is the energy of a nucleon in state o and At is the time-difference
at the ends of the line evaluated in the direction of the arrow. All possible
diagrams consisting of A nucleon lines connected in all possible ways by poten-
tial interactions are allowed. Each distinct topology is counted once and only
once. One then sums over intermediate energies and integrates over times with
(-i) dt. Since each propagator carries a 8-function to maintain proper time-
ordering, the limit on the time-integrations is + o, - o,

The sum over all topologies gives the matrix element in £q. (16). In addi-
tion, cne must multiply by a factor (-)A, where A is the number of exchanges
necessary to bring the initial or final state to some standard order; this takes
care of the antisymmetrization of the nuclear states. As long as the initial
{or final) state is antisymmetrized, it is unnecessary to pay explicit attention
to the Pauli principle in intermediate states.

One may easily check that diagrams which violate the exclusion principle
cancel in pairs when the initial or final state is antisymmetrized. Ffor example,
suppose k; = kh in Fig. 2. This term then violates the Pauli exclusion prin-
ciple. To find the term which cancels it, simply "cross' the lines which carry
the same label, as in Fig. 3. When the lines are straightened out it is clear
that the result is a simple permutation of the initial state lines labeled kz,
k3 and kq; otherwise Fig. 3 has the same value as Fig. 2. Since 3 exchanges are
necessary to bring the labels to standard order this diagram has a factor
- = (-)3 and cancels the Pauli violating piece of Fig. 3.

Essentially the same rules apply if the system consists of nucleons inter-
acting with a meson field. (Let's not worry about anti~nucleons for now.) An

example is shown in Fig. 4. In this description each meson is treated as a

separate particle with a propagator of its own.

1
tZ
'fkat
= S—u g(t!-t,) (17¢)
O ka 2 "2
ty
_ -1, . :
where the factor (Zwk) is a wave-function normalization for bosons and is

convenient to include in the propagator. Now we have also to consider anti-



mesons and so each meson o also occurs with its line propagating backwards in

time as well,

e-i (-wk) At

= —szk-—— O(té-tz). (17d)

At is still counted in the direction of the arrow, but now its energy in the

propagator is -0y this is Feynman's interpretation of antiparticles as particles

traveling backward in time with negative energy.
It is a simple exercise to show that these rules give the more usual expres-

sion for a Feynman propagator for a 7 meson. First note that

-iwk(té-tz) —iw(tl-t,)
e

e g(tl-t.) =_.‘_f£’2)_ e 22 (18)
ka 2 2 ka 21 m-wk + in

which may be verified by contour integration. Thus

- - . b -
. m)k(t2 tz) elwk(t2 t2)
e 1o e il
o 0ltymty) + =5 o(t,-t))
k k
-1 | -
. - lw(t;2 tz) o
= — d()————————'———— ]9
2T Loy -qz-u2+in

The complete relativistic Feynman propagator for a 7 meson is, in more standard
.
nctation

L ip-Ax
D (x) =f 4o & (20)
(2m) " p"-uT+in

where now p is a 4-momentum. |In the rules described we have already integrated

-
over the positions of the nucleons x; this gave rise to the conservation of mo-

mentum delta functions which have been included explicitly in the expressions for

> ------ < and >/ (21)
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Fig. 3. Illustrating the Pauli exclusion principle for intermediate states.
When k) = ky in Fig. 2, the diagram shown here cancels against the

diagram in Fig. 2.



Now a set of definite rules has been given for calculating the time-evolu-

tion operator U(t,t'). Of what value is this? As one example, the scattering

amplitude of two particles is given by a matrix element of
b (#0) |U (42, =) [ (=) > (22)

where [¢(t)> = e-'HOtlk] ko> is the initial and final unperturbed state of the sys-
Also, ground

tem. Thus, scattering problems may be studied in this formulation.

state properties of nuclei and nuclear matter may be studied in terms of the

time-evolution operator, as we shall see below in Chapter V!.

111, MESON THEORETICAL NUCLEON-NUCLEON {NTERACT!ONS

A. What is a Potential?
As | have remarked, nuclear physics has been carried out traditionally in
One reason for this is that the language of potentials is

As | will use this language

terms of potentials.
very convenient for discussing nuclear systems.
throughout these lectures, it is necessary to explain what a potential is, and
to try to dispel any preconception you may have that the potential description
is intrinsically incompatible with an underlying meson theory description.

A potential is an instantaneous interaction, meaning that it acts at a time
t. In a time-independent description, this means that potentials do not depend
on the total incident energy of the system. Furthermore, potentials are Hermi~-
tian operators if they are to describe elastic scattering below meson production
threshold. Nonlocality is different from energy-dependence, and is acceptable
for potentials; a nonlocal potential depends on both the coordinates and momenta

of the interacting nucleons. If a potential theory is to be equivalent to a meson

theory then the potential must necessarily have components of n-body character.
Basic observables, such as r, p, etc., must also be modified. (Modifications of
observables are often called exchange currents.)

Meson excharge interactions, on the other hand, are retarded interactions,
because the mesons are exchanged over an extended interval of time. |In Fig. 5
we see the meson being emitted at time t, and absorbed at a later time tz. How
can a quantity which occurs at one time possibly account for time-delayed meson
exchanges? The answer is that if the mesons are emitted and absorbed over a
sufficiently narrow interval of time, AT, then the potential may be reasonably

equated to the time-average over AT of the meson exchange it is to represent.




If AT is sufficiently small, then the
difference hetween the time-averaged
interaction and the fully retarded in-
teraction will be small and can be tak-
en into account as a perturbation in

! higher order. A systematic way of

replacing time-delayed interactions by

instantaneous interactions was first

Fig. 5. Illustrating the.d|fference worked out in the theory of effective
between a potential and a mes-
on exchange interaction. interactions for bound states; it is

known as the method of folded Feynman diagrams.]9

| next want to show how the method of folded diagrams applies to the one-
meson exchange contribution in the potential. The theory is worked out in de-
tail for the two-meson exchange contribution and for corrections to other ob-
servables in Ref. 20. This application will serve two purposes. For one, it
will illustrate an application of the Feynman diagram rules given in the pre-
ceeding discussion; secondly it will lay a solid foundation for the discussion
of the nucleon-nucleon interaction which comes next.

Consider the meson exchanges shown in Fig. 6. The left-hand side shows a
contribution to the scattering amplitude for two nucleons in a meson theory des-
cription. To sum together all the relevant contributions requires a solution of
the Bethe-Salpeter equation,ZIa which is an exceedingly difficult task. The
right hand side shows a contribution to the same process in a potential theory
description. To sum together all relevant contributions in this theory requires
a solution of the Schroedinger equation, which is, by comparison, a trivial task.
When three nucleons interact, there is no known equation of which | am aware to
account for the meson theory, but in potential theory there is the Faddeev
approach, which is now standard. The point is that potentials are not only a
convenient language for discussion, but are also of eminent practical value.

The discussion in Terms of Fig. 6 helps to motivate a definition for -the
contribution to the potential from the exchange of a single.meson; we would 1like
to define this contribution so that each diagram in the meson exchange descrip-
tion is equal to a term in the pciential description, and vice versa. If such a
procedure is to make sense, then it must not only be true for the entire diagram

but also for the individual pieces. We thus isolate the pieces of Fig. 6 and

14




\pl ’ ¥ 1
r,fJJ“ﬁFrfJ t K g A R
1
V
A i
t ) = peme——— Jto
_______ — 1 !
' 0
2
t
2 *\
e e - H % \ ﬁ R
_______ -t
Fig. 7. Definition of contribution (i)
to the one-meson exchange po-
tential. The complete poten-
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scattering of two nucleons, time difference ti-to is
drawn in terms of meson theory 12 .

. counted as a separate contri-
and potential theory. bution

equate the meson exchange and potential pieces, as in Fig. 7. To solve this
equation for the potential, we have to come to grips with an ambiguity associated
with when the equivalent potential is to act with respect to times t and t2. Let

us leave this arbitrary for now and set

For example, when A=0 the time tO is located midway between the vertices and

when A= *1 it passes through one or the other. We want now to remove the
nucleon propagators from the right-hand side; what is left is the potential. To
-iE4 (ty-t .
i£g (1) 0), simply
divide the right-hand side by this factor. To preserve the equality the left-

remove the nucleon propagator in the upper right-hand side, e

hand side must also be divided by the same factor. But

—iEé (t,—to) N e-iEé (to-t])

1/e (24)

which may be represented diagrammatically as a line pointing from t to to. All
propagators may be treated in this fashion. Thus, the result of dividing out the
nucleon propagators on the right-hand side may be represented diagrammatically as
Fig. 8a. But this figure may be simplified, because equal length segments of

lines with oppositly directed arrows and the same state labels cancel, e.g.,

15
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Fig. 8. The result of removing the nucleon propagators from the right-hand side
of Fig. 7. When equal segments of lines are canceled as in (a) as dis-
cussed in the text, the result is {(b).

-iE) (t -t,) e, -t )
e Zdee ZtBQ-:] (25)

P VP
]
]

The result is shown in Fig. 8b. This equation gives the potential corresponding
to the meson exchange shown. However, for t, (X) given by Eq. (23), many dif~

ferent time extensions of duration T,
T =t (26)

are possible, each of which may contribute to the potential. To get the com-
plete potential we must sum over all contributions which means integrating over T.

Let us now evaluate Fig. 8b. For the moment we omit the contributions of
the vertices. The propagators for the external legs contribute,

-iE](t]-to) —iEi(to-t]) -EEz(tz-to) -iEé(to-tZ)
e e e e (27)

and the propagator for the meson contributes

o  Ciultt)
) WS (28)
“® wT=q ~u+in

Expressing the time-differences in terms of T we find

t {(1-X)T7/2

~t
1 "o
(1+2)7/2 (29)

tZ.to
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Furthermore, defining AE = E - E, , so
) out in

| .
1 = E7Ey

, = EE, (30)

AE

AE

we find for the propagator contribution

. o -iT{w-AE, {(1-1) /2+AE , (147 ) k]
i ] ' ] 2

Now, integrating this by -idT we clearly get a delta-function from
_de e TR = ons(a) (32)
which then permits the integral over w to be done at once, to give

]
Vv (33)
[AE](I-A)-AE2(1+A)]2/h—q2—u2

Now, we see that the potential depends explicitly on the parameter A! What do

we do? Well, the simplest thing is to average over A, so

1 1
Voo fﬁ dx f(}) ] 5 //// /' dx f(A)  (34)
-1 -u ~1

[AE, (1-2) -8, (1+) 1274 o2

How do we choose f(A\)? There is nothing to tell us how to choose f()). The
physics here should be clear from the way the problem was set up. The under-
lying interaction is time-delayed and therefore the potential, which is instan-
taneous, can be specified only up to an arbitrary average over the time-exten-
sion of the diagram. Clearly, we want V to be Hermitian, so in this case we

merely require
FA) = F(-1). (35)

Different choices for f(\) correspond to performing a unitary transforma-
tion on the system. Although different choices of f(A) give quite different
looking potentials in lowest order, Eq. (34), higher order terms in the expan-
sion, which also depend on f()), are needed in order to assure that the scatter-
ing phase shifts are independent of f(A). Likewise the corrections to ohserv~

ables (exchange current corrections) depend on the choice of f(A), and these are
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also needed to assure the unitary equivalence of the various averaging proce-

It turns out that one choice of f(}) corresponds to a uniquely simple

dures.
expansion in higher order; it corresponds to20
f(2) = 8(\), (36)
or
1
Vs (37)
q2+u2

from Eq. (34). This is the familiar Yukawa potential which, in coordinate space

leads to

“Jur

(38)

vir) ~ &

As a final remark, it should be pointed out that the description in terms
of energy-independent potentials is not the only possible effective interaction
description. Often one defines an effective energy-dependent interaction, one
example of which is the Blankenbecker-Sugar method,Z]b which was applied by
Partovi and Lomon.2]C Also, methods based on dispersion theory lead to energy-
dependent effective interaction. Generally, it is found that the energy-
dependence is awkward for practical calculations and a transformation is applied
which replaces the energy-dependence by a nonlocality. One cannot say that one
approach is more fundamental than the other; the folded diagram approach is a

generalization of Raleigh-Schroedinger perturbation theory.

B. One-Boson Exchange Potentials (OBEP)
. Theory

Whether one conceives of the nucleon-nucleon interaction as being energy-

dependent or energy-independent, the physical idea underlying the method of con-
struction is that the range R of the interaction is, according to the uncertainty
principle, proportional to the mass AM of the mesonic system exchanged.

X .
R~ E'ET (39)

This fact was first discussed by ch22 and later formalized into a systematic

23
The longest range part of the interaction is

method of study of Taketani.
thus expected to arise from one-pion exchange; the midrange interaction would

then come from two-pion exchange, and the core from three- and more pion exchange.
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In the one-boson exchange philosophy, the assumption is made that the n-Pion

exchanges are given predominently by the correlated piece of the n-pion exchange,

i.e., the single exchange of the observed meson spectrum. [n practice this
philosophy has met with mixed success, because the attraction in the nucleon-
nucleon potential requires a scalar isoscalar meson of mass =~ 400-700 MeV (and
in some cases a scalar isovector meson), the existence of which is and has been
the subject of considerable debate. In the modern treatments the philosophy of
nucleon~nucleon potentials improves on the one-boson exchange model in ways that
I shall discuss.

Let me now develop the one-bowon exchange model. This will bring together
the ideas just discussed with the phenomenological aspects of the nucleon-nucleon

interaction and will serve as a bridge to the more modern developments,

a. T-Meson

| want to begin with a discussion of the pion, which is the longest
range and least ambiguous contribution to the nucleon-nucleon potential. The
expression for the one-pion exchange potential is given diagramatically in
Fig. 8b. Equation (37) gives the contribution of everything but the pion-

nucleon vertices, which for the pion are (see Table I1)
b2
P

<E'&lAlE> = -:;—— <C' lq]c).q T'¢,”
AL ~ o~

q = p-p' (40)
where [c> is a nuclear spinor, T the nucleon isospin, ¢ the pion isospin wave-
function and k the pion momentum. The coupling constant is taken to be the re-

normalized value given in Table I!}.

Now, the complete contribution to the potential is

(2m)%s (p1-P) v_(g'-p)

H
P2 P2
2 g..949,.9
f 1 ~2- Y. .
(- -, £
Velp'-p) =5 —5 L ory.¢7(1) 1,,001),
Mo q mTT !
2 0,.9 -q
_ff 10l 2 2 ,
=7 T2 2 Ll : (41b)
My q M
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where P' and P are the final and initial total center-of-mass momenta and where
p' and p are the final and initial relative momenta. We have used the prescrip-
tion for the potential which associates the potential with the average time of
emission and absorption of the corresponding meson exchange.

In order to express Eq. (41b) in terms of familiar operators write

2 (42a)

where
_ 2
S, (4,0,,0,) = 39,.9.9,.9 ~9,.0,4 (42b)

is the tensor operator expressed in coordinate space. Thus V(p'-p) becomes

2
2 s. (g,5,,0,) G..0, q
f 123908 59
L. =
v, (p'-p) 32 | ol T3 3 : R, (43)
m q -m 9 m,

To find the coordinate space potential, take the Fourier-transform of Eq. (43),

d P' -iP'«R' ~ip!'.r!
§(r'-r)6(R'-R)V_ u/ﬁ =~ ~ 2l
LU (2“)3J(}2ﬂ)3 (2m) (27r)3 ¢ €
a iP*R ip-r
x (2m) 6(P'-P)v(p'~ple " T e T 7 (44a)
or 3 iger
v (n=f =5 e " "V(q) (44b)
" (2m)

where R’ and R are the initial and final center-of-mass variables and r and r'
are the initial and final relative coordinate variables. The delta function
6(5'-5) means simply that the center-of-mass is not changed by the interaction,
and the 6(5'-5) means that the relative variable is not changed by the inter-
action. The latter condition also means the potential is local, which is a con-
sequence of V depending only on p'-p. Relativistic corrections to meson ex-
change potentials often depend in a more complicated way on p' and p and as a
result the coordinate space potential will contain terms depending on the momenr~
tum operator p = =iV,

To Fourier transform the second term in Eq. (43), note
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_q2 -m_
q2+M2 ) q +m " (42)
i)
and therefore
-m
3 -ig-r 2 i
J/ELEL—— e ~ v — = S(r)-m2 S (46)
3 2_2 ~' T bare
(2m) -qT-mo

The Fourier transform of the second term is given in Appendix A,

-ig-r —m3 T
__3__ e b 3 _l__) e !
f 7 512990 T 51,(r0y59) < mr ' 22 (h72)
Zﬂ q +m T m r m r
m T
where
30)-r Oyr L
815(0,0,,0,) = "2‘—“ "9)-95 (47b)

Putting everything together, we find

2 Is m g, O
- fmy~1- 3 .3 e _x1-22
Vplr)=m, (ﬁ) [512 (“‘nTr ) 2) i r 3 o)
m m r m m
m ki
“m, ]
e
+ 0
T 09 m.r (48)
Equation 48 is the familiar one-pion exchange potential (OPEP). It
consists of a tenscr force VTTT S]2 1Ty and a spin-isospin dependent central
force VTTC Ty Ty 0.0 where
-m_r
m 2 i
T f 3 3 e
v . (r) = — )(H + ) (49a)
T 3 (Ii_w_r mﬂr mzrz m..r
m
and

2 "My

v =22 p-s(r & 4
R b r (49b)

m

Note that both pieces of the DPEP have singular behavior at the origin. This is

a typical difficulty of meson mediated interactions and some mechanism is
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necessary to reqgularize the interaction before Schroedinger's equation can be
solved. Often a form factor or cutoff function is included as part of the pion-
nucleon interaction; this smears out the singularities and allows a solution.
However, in practice this problem may not be as bad as it seems. This is be-
cause there is a strong repulsion coming from other components in the nucleon-
nucleon interaction which presumably does not allow the nucleons to come close
enough together to experience the &(r) in VC. The second reason, which is in
some sense accidental, is that the p-meson has a tensor interaction similar to
that of the m-meson but of the opposite sign. Thus the p and T-meson exchange
tensor forces tend to regulate each other and the difficulties are confined to
very short distances.

et me nexlt make a few observalions about the properties of the central and
tensor forces. First, let me remind you that a state of two nucleons may be
specified by an orbital anguiar momentum quantum number L (L =0, 1, 2, . . .},
a spin guantum number S (S = 0, 1) and an isospin quantum number T (T = 0, 1).
Because nucleons are identical fermions the wave function mu * be antisymmetric
upon exchange of particles. As you know, the orbital wave function behaves as
(-)L, and the spin and isospin wave functions as (-)S+] and (~)T+I, respectively,
under exchange of nucleon labels. Thus, L+5+T must be odd for a properly anti-
symmetrized wave function. Now, 1 shall leave it as an exercise to show that
the operator 0].02 .75 has the values shown in Table VI, where the correspond-
ing values of L even or odd are assigned according to the principle that the
wave function must be antisymmetric. Thus, it is clear that the 01.0, T.Ty
interaction in a given spin or isospin channel acts differently in even or odd
partial waves. In the case of the neutron-neutron (or proton-proton) interac-

tion the scattering is determined by the T = | component of the potential

recalling
INN> = 1T =1, MT = -1>
1PP> = 1T =1, M_ = +I>
T
= = = 0> -]T = -
INP>—/2_(IT—-I,MT 0> =17 = 0, M. = 0>) (50)
Therefore the 91°0,T1° T, OPEP "exchange' interaction for two neutrons is attrac-

tive in even partial waves and repulsive in odd partial waves. Do we find a simi-
lar even-odd effect in the experimental data? The answer is yes. Consider for

example, the T = 1 channel. Figure 9 shows the ]SO phase shifts {(notation is
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25+1

L)
TABLE V! J
strong attraction, almost giving rise

You see that there is a

VALUES OF 9)'9, T, T, (T]~rz = -3 for T=0, +| for T=0)
s =0 s < to a bound state as evidencad by the
- . \ T
7-0 9 (L = odd) 23 (L = even) phase shift approaching 2 at zerg
Te1l -3 (L= even) 1 (L = odd) energy. In Fig. 10 you see the “P

phase shifts. These are split in J

due to the tensor and spin-orbit com-

ponents in the interaction. However,

we may get an idea of the central

. interaction by averaging over J

1 3
y Gav—gz(ZJH} §(°P,) (51)

4 the result of which is the dashed line.

°or | You see that there is very little net
'so .
in

r interaction in P-states. However,
YU TN VRS TS R NV S SO A NN TORN DU DU R NN SN SR U 1
100 gm 300 the 02 state we again find attraction,
L 1
although less than in SO. One finds

Fig. 9. Nucleon-nucleon phase shifts
for the T=1 Reid potential,
even L. states. This is shown in Fig. 11.

an even-odd difference also in T = 0

Qualitatively, at least, the spin-isospin dependence of the one pion exchange
central interaction is consistent with the data; in both cases there is greater
attract’on in even states than odd states. Furthermore, the ]P state shows more

3

repulsion than the “P both experimentally and according to OPEP.

The tensor force has the structure of the interaction between two dipoles.
In contrast to the central interaction, L is not a good quantum number. The
tensor operator matrix element between states of 5 = 0 vanishes. For S = | its
matrix elements are shown in Table VIl. Note that for a given L the average of
SIZ over J as in Eq. (51) vanishes.

Is there evidence for a tensor force in the nucleon-nucleon interaction? It
is well known that the deuteron has a quadrupole moment, and this is direct evi-
dence for the tensor force. But the existence for a.tensor force can also be

seen by looking at the P-wave phase shifts. According to Table VI! the matrix

3p
0’ 1
3P] state has the least attraction experimentally, as it would if tensor force

elements of S]2 in 3P and 3P2 states are respectively -4, 2 and -2/5. The
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Fig. 10. Nucleon-nucleon phase shifts Fig. 11. Nucleon-nucieon phase shifts
for the T=1 Reid potential, for the T=0 Reid potential.
odd L.

components were present. At low ener-
TABLE VIl gy the 3P0 is more attractive than the
3P2’ as it should be also with the ten-

MATRIX ELEMENTS OF THE TENSOR OPERATOR
sor force.

L L <dLfsy,IL> So far, | haven't discussed hard
J-1 J-1 -2L/(2L+3) evidence for the one-pion exchange po-
J J 5 tential. The one-pion exchange poten-
tial is now routinely used to constrain
J+ I -2(1en)/2L-1) phase shift analyses of the data; OPEP
J-1 J+1 6/TL+1) (L+2) /{2L+3) is assumed generally for L 2L = 6.

When fﬁNN is searched on as a variable
parameter, it assumes the value determined from pion nucleon scattering, and the
phase shifts approach the one-pion exchange contribution as L approaches Lmax
from below. This is strong evidence for the correctness of the pionic contribu-
tion in the nucleon-nucleon potential. Furthermore, as discussed in the book by
Brinkzn the quadrupole moment of the deuteron is determined almost completely by

the one-pion exchange potential and is nearly independent of the interaction at

short distances.

b. The Vector Mesons, p and w
The main difference between the p and w mesons is that the p-meson is

an isovector meson and the w isoscalar. The isospin comes in just as in the case
of the pion, i.e., Ty'T, for the isovector, 1 for the isoscalar. {gnoring iso-

spin, we have the following expression for the potential of a vector meson
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N\ .9, = (2m)38(P-P)V_(p',p) (52a)
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where € is the polarization of the vector meson. The second term of the last
line in Eq. (52b) has the same form as OPEP, £q. (41b), and it is therefore
easily written down in coordinate space. The first term of the last line in Eq.
(52b) may be Fourier transformed with the help of Eq. (46). Thus, the coordinate

space interaction for the vector meson is

2 =-8(r) -mvr 2\ m . _mvr
v (r)=m %— — + S - (;-) -4 S0, (1+ﬁi— + ; 2) e
v vhm m3 Vr w3 Vr m2, mvr
v v

g, .o T

2 21°22 2 e

+ = 8(r) - % ag.-0 (53)
3 mv3 ~ 3 ~1 ~2 mvr ]

As in the case of the ™ meson, the delta functions must be either smeared out by

form factors or dropped. Kiss]inger25 has recently argued that the delta func-

tions cannot be dropped for the case of vector mesons.
In the case of the w meson fwzso and gw is large according to Table Il, The

omega exchange potential is therefore

2 “m7r
(9m ) e O
Vw(r)z w \ & _nTb_r— (54)

ls there any evidence for a term of this form in the nucleon-nucleon potential?
It is clear from the experimental phase shifts (Figs. 9 and 11) that the phase

shifts change from attractive to repulsive at ELze 250-350 MeV. This has been
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taken to be evidence of a strong repulsive component in the nucleon-nucleon inter-
action, and the w-meson is the most likely candidate for the effect.

The p meson is isovector, and f>g. The potential corresponding to this meson

is therefore

92 'mpr . (fZ 'rlpr
e " ,2p( L e
v (r) = <Z%*> Ty mor Y33 0\ /9 L UL oy
o mpr P
. b 3_\e
3 (hﬂ ]2 <]+ r 2r2) mpr (55)
o)

Note that the sign of the central, spin-isospin dependent potentia’ is the same
as that of the pion. However, the central force also consists of a ourely iso-
spin-dependent contribution now. Referring to Table VI, we see that this term is
attractive for T=0 and repulsive for T=1. Note that the tensor force has the
opposite sign from the case of the m meson; this is the source of cancellation
between 7 and p tensor forces of which | spoke in the discussion of OPEP.

So far we have considered only one piece of the interaction due to vector
mesons. A more careful treatment of the non-relativistic reduction of the vector
meson coupling shows that in addition to the potentials discussed above there is
also a strong, short-ranged spin-orbit interaction

-m, ¥
£ s (562)

What is the evidence for vector mesons in the nucleon-nucleon interaction?
Evidence for the w meson has been discussed already. Perhaps the strongest argu-
ment is the fact that a strong spin-orbit component is necessary to explain
the experimental phase shifts. First note that the L:S matrix elements have the

value

2<ULS [L-S[JLS> = J(J+1)=L(L+1)-S(S+1) (56b)

Thus, for a given L and S the splitting is in ascending (or descending) order in
J. Looking once more at Fig. 10 we see that the phases are tending to line up

in this order, with 3P2 being the most repulsive. The fact that the 3P0 and 3P]
are reversed from what one expects from a pure spin-orbit force presumably means

that there is & tensor force competing with the spin-orbit force. In order to
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explain this the w meson contribution is needed, with a large coupling constant.
It is an interesting historical fact that the necessity of a strong, short-range
spin-orbit force was taken to be strong evidence for the existence of a neutral

vector meson of about the correct mass before one was actually produced in a high

energy experiment.

c. Scalar Mesons

So far we have accounted for every major feature of the nucleon-nucleon
. , X . . ] . .
interaction except for the attraction evident in the 'S and 35 phase shifts in
Figs. 9 and 1}l. Scalar mesons are capable of providing a central, attractive in-

teraction,

£ (57)

R

This result follows immediately following arguments given already, noting that
the coupling of a scalar meson to a nucleon is simply g in the non-relativisitc

limit. Tables of particle properties list several scalar mesons as established

resonances (Table XI).

d. Summary
2 A more complete derivation of OBE potentials including corrections to
order Bi-has been made elsewhere.27a Table VIiIl summarizes the interaction

Lagrangian and resulting OBE potentials. Note that the coupling constants re-

quired here are defined differently from those in Table I},

2. Results, OBEP
| have discussed the one-boson exchange potentials and given qualitative

evidence for the existence of many of the effects they produce. There have been
several attempts to fit these models to phase shift analyses of nucleon-nucleon
scattering data, and | would now like to summarize these results.

The 0BE models always include the well-established mesons m, n, p, and w.
The masses of these mesons are held fixed, and their coupling constants are re-
garded as free parameters. |In addition to these mesons, two or three scalar mes-
ons are included; the properties of these mesons are not well established, and
the masses and coupling constants of these are almost always varied. The O0BE
models generally give surprisingly good fits of the phase shifts, but not perfect

fits. Fits are usually made to §(LSJ) for J < 4.
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TABLE VIt

LACRANGIAN AND CORRESPONDING OBEP
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a7 gt

o P

Heson
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i (v)]
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Vector (V)
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v shagina’e g o - Sl Gl
1.2 2 . 2
H 39 ] g_
(o)} Compositlion of OBE
Potential ) kn(r)
-mr ms(r
Central (-:—) [er .- .2.' ]
~mr -mr -mr
Velocity-Dep. %—-- ;:F (vz !r + 5 22)
2 -.r
( ] ] 1
Tensor (;_)(F'}_ v _i_) er
-mr
$pin=Orblt ,-"—,—:-—:-;—'—r—
TABLE X
PSEUDOSCALAR AND VECTOR MESONS, OBE FITS
Meson wliieV) P_LZ‘ 29-2703 §EE27C §27a 9322711
L 137.3 V4.4 14.0 14.6 12.6 13.94
n 549 i.0 2.7 i.6 2,6 6.49
pro’ 765 0.53 0.78 1.20 1.8  0.357%
p,fz 765 7.09 17.5 32.0 2.3 20.02%
we? 783 6.36  8.02 21.5 17.3  11.86
w,fg 783 ~0.38 0 0 0 0

*
Distributed mass.

shifts is that the repulsive core of the

The masses and coupling constants
of the 7, n, p and w are shown in Table

1X.

the values of the couplings deduced

The column headed Partovi2 gives

from theoretical and experimental parti-
cal physics. The coupling constants
are those which appear in the interac-
How

The

tion Lagrangian in Table VIII,
reasonable are these results?
coupling constant for the pion comes
out very close to the expected value.
The n coupling constant is not well
established and is not far from the
guess based on SU(3). The coupling
constant for the p meson was, until
recently, considered as rather well-
determined from experiment to be the
values listed under the Partovi column.
However, a recent analysis by Hohler
and Pfetarinen2 give a slightly smaller
vector coupling (92 = 0.55) and sub-
stantially larger tensor coupling (f2 =
24) .

lished from particle physics; one char-

The w coupling is not well estab=-

acteristic feature of most potentials
which fit the nucleon-nucleon phase

nucleon~nucleon interaction is stronger

than can be explained by w-meson exchange alone, with the value of 92 which is

determined by particle physics estimates.

As Bethe points out in his review arti-

cle,3h the actual w coupling constant obtained from OBE analysis is several times

larger than the one shown, because of the way form factors are used to remove the

singular behavior at small r.

Results of various groups differ because different

assumptions were made regarding the scalar mesons.

The masses and coupling constants of the scalar mesons are shown in Table X.

Shown for purposes of comparison are the scalar mesons which appear in the table
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TABLE X

SCALAR MESONS, OBE FITS

2
1sospin 85272 m(mev) g ue?”® m(mev) ¢f  SRGEC  m(Mev) o2 T(mev) WReTY mimev) g2
1 o 600 1.65 w1016 4 s 963 4.70  --- 5 963  2.51
0 %, 550 8.9 o K6 1.9 € 782 45.0 300 ™ * 10.88
6 . - 1070 bohk mem ee- . “e- .

*
Distributed mass.

of particle properties.29 The important point to notice is that there is not a
very good correspondence. The BS'and UG models show rather convincingly that the
range of attraction in the nucleon-nucleon potential is longer than can be ex-
plained by t- simple scalar meson exchange. The SRG model was an attempt to
make more realistic choices of scalar meson masses and to incorporate the broad
width of the £ meson. In order to get a fit, the £ needs an enormous coupling
constant, but at the same time the w-coupling constant takes on an enormous value;
this seems to be an unsatisfactory situation. In Ref. 27d the model of Ref. 27c
nas improved by taking the interaction in the 77w £ = 0 isoscalar channel directly
from the experimental TTm s-wave phase shifts rather than matching just a mass
and width in the vicinity of the e meson. (A similar fit was made in Ref. 27d
in the case of the mr & = 1 isovector p-meson channel.) The theory seems to im-
prove in the sense that the w-meson coupling constant assumes a more reasonable
value, but it is still too large in comparison to particle physics determinations.
The model of Ref. 27d goes beyond the original OBE hypothesis and resembles more
cicsely the philosophy embodied in the more modern approaches discussed below.

!n summary, the OBE potentials are surprisingly successful in reproducing
the qualitative behavior of the nucleon-nucleon phase shifts, but the quantita-
tive results continue to have puzzling aspects. Unanswered questions concerning

the source of the large central repulsion and attraction remain.

TABLE Xi
SCALAR MESONS, PARTICLE PHYSICS

Meson  m(MeV) T'(MeV) Isospin

3 980 50+ 10 ]
s” 980 40t 10 0
£ 1300 200-400 0
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C. Semi-Phenomenological Nucleon-Nucleon Potentials

Although the one-boson exchange potentials fit the experimental nucleon~
nucleon phase shift data well, the fits are not perfect. For purposes of doing
nuclear calculations, better fits are required and a variety of purely phenomeno-
logical potentials have been constructed to fulfill the need. The potentials
gererally differ in some particular feature, i.e., some have infinite '"hard"

3) hard

cores at a radius = 0.4-0.5 fm (examples are the Hamada-Johnson30 and Reid
core potentials) whereas others have soft cores, e.g., cores with Yukawa radial

form (the Reid soft core). Other potentials emphasize velocity-dependence, such
32 33 Bethe3h

as that of Tabakin”’® and Rouben, Riihimaki and Zipse. discusses the
various potentials in more detail.

It should be clear from the above remarks that potentials are not uniquely
determined from the experimental data. One reason for this is that the nucleon-
nucleon phase shifts are known only over a limited energy region and hence the
potentials are guaranteed to fit the data only at low energy. There js presum-
ably considerable ambiguity, particularly in the repulsive core region (r<0.5fm),
arising from the absence of these data. Even if the data did exist; it is not
clear how one would construct a potential from it due to the existence of meson
production channels, which begin to become important above EL== 400 MeV.

However, there is another more fundamental ambiguity associated with the po-
tentials, as emphasized by Coester.35 He shows how to generate an entire class
of potentials from a given one by performing a unitary transformation which, in
coordinate space, only affects the potential for r< potential range. Unitary
transformations applied to the two-nucleon potential will not change the phase
shifts, but the different two-body potentials will in general give different prop-
erties for many-nucleon systems. For this reason it is not a completely trivial
problem to construct a potential which simultaneously reproduces the nucleon-
nucleon phasr shifts below meson production threshold and also serves as a suit-
able basis for nuclear structure physics. So far nobody has succeeded in _finding
a purely two-body interaction which succeeds in both problems.

Let me end the discussion of phenomenological potentials with a description

of Reid's soft core potential. He takes the potential to be different in each

state of given L, S, and J
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v(LSJ,r) = Zan £ . (58)

where 11 is the reciprocal compton wave length of the pion and a are empirical
constants, determined so as to fit the phase shifts. Only a, is fixed a priori;
it is taken from the one-pion exchange potential, Eq. (48). For the tensor force

Reid assumes a form

l
vo(r) = - 3.4876 [f—t—r(;ﬁ’f o) (-j;*‘ )b, (59

- QT

R . 1
The counter term with kur ensures that the tensor force diverges onrly as F—for
small r. The form chosen is clearly motivated by meson theory, but Reid made no
attempt to choose the coefficients for different LSJ to be consistent with meson

theory, except in the case of the pion.

Reid's potential fits the phase shifts of Arndt and MacGregor36 generally
3

within experimental error, except for the coupling between 3S and D], which is

very poorly known. Reid also gets the correct binding energy and quadrupole
moment for the deuteron. It is interesting to note that the repulsion in the ]SO
state is

ST

e
6484 (MeV) T (60)

corresponding to an effective mass and coupling constant

2
m = 976 MeV g, = 47 (61)

The large value for gi is yet another example of the difficulty of interpreting

the repulsion as coming entirely from real w-meson exchange.

D. Modern Models of Attraction in Nucleon-Nucleon Interaction

The phenomenological models show that the range of the intermediate attrac-
tion is =~ 0.7-1.0 fm, suggesting that the attraction is associated with the ex~
change of two pions. There are numerous aspects of the physics of two-pion ex-
change, and next | want to consider several models which emphasize different

aspects of this process. 31



1. Model of Partovi and Lomon
Partovi and Lomon revived a model which was earlier investigated by many

others. The idea is that the attraction comes from the simplest two-pion exchange
mechanism, i.e., the perturbation correction of order gh. The terms in this or-
der are shown in Fig. 12. The method they used to convert these to potentials

was the Blankenbecker-Sugarzlb method, but the method of folded diagrams pro-
vides a mere systematic method of eliminating the energy-dependence than that em-
ployed by Partovi and Lomon.ZI In converting the terms of Fig. i2 to potentials,
one must keep in mind that some piece of Fig. 12a is included already in an itera-
tion of the one-meson exchange potential, and it is actually the difference be-
tween Fig. 12a and the iterated potential which should be considered. The method
of folded diagrams shows that this difference may be represented as a diagram,
evaluated according to the usual Feynman diagram rules.

Partovi and Lomon thus constructed their potential from exchanges of m, n, p
and w mesons and the two-pion exchange of Fig. 12. No scalar mesons were included.
They showed that their final result closely resembles the radial dependence of
Hamada-Johnston hard core phenomenological potential for r 2 0.6 fm. However, as
Bethe34 has pointed out, the Partovi and Lomon potential compares favorably to
the Reid potential only for r 2 1.3 fm; at smaller distances there is too little
repulsion. This is yet another example of meson theoretical potentials predicting
less repulsion than that required by experimental nucleon-nucleon scattering.

The work of Partovi and Lomon is subject to criticism on the point of the
nucieon-anti-nucleon pair terms (Fig. 12c, d). |t is well known in T-nucleon
scattering that these terms, evaluated with the NN Lagrangian given in Table
Villa, give anomalously large S-wave scattering and therefore that some other

effect is also present which cancels the pair terms, The scalar mesons are pre-

sumably these agents. {n two later papers F. Partovi and Lomon37 and later

Lomon38 investigated the corrections to the original H. Partovi and Lomon poten-
tial coming from the scalar meson, taking into account the width through dis-
association into m-m intermediate states. In Ref. 38 it was shown that this
effect resulted in a worsening of the comparison of the new potential to the

Hamada-Johnston result. As might be expected, there resulted an excessive attrac-

tion in S-waves.
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2. lsobars in the Nucleon-Nucleon Interaction

Before continuing the discussion on the nuclcon-nucleon interaction, it
is necessary to say a few words about isobars. These objects, although discov-
ered more than twenty years ago, have only recently begun to play a prominent
role in theoretical explanations of nuclear phenomena.

The isobars are excited states of nucleons which are prominent as bumps in
m~nucleon total cross sections. Figure 13 shows the total cross section from
Ecm = 0.9 to Ecm = 2.5 GeV. The most prominent is resonance of mass M = 1232-57
MeV (i.e., width of 115 MeV), called the A33 resonance. The designation 33 means
2T, 2J so the spin and isospin are each 3/2. Table XI| lists the low mass non-
strange isobars and their quantum numbers.29 The numbers in parentheses are the
masses of the resonances in MeV, and the angular momentum L is the TN partial
wave in which the resonance is seen. The notation for a partial wave is L2T,2J
so that the m-nucleon partial wave containing the A33 resonance is the P33 wave.

The behavior of the P3

resonance was first successfully described by the theory of Chew and Low.

3 partial wave for energies up to the position of the
A 39

33
They assumed that the interaction between a pion and a fixed, or infinitely heavy

nucleon could be described by the Hamiltonian

a, + v(O%* 0, if(O;(c-k/fz—J

Jl:kk' k %% T Yk %% Tk (r )T, v (k) (62)

where a is an annihilation operator for a meson, W, = /k2+m2 is the pion energy,
and where the interaction Véo) is the same as the interaction shown in Table |1,

The form factor v(k) is the Fourier transform of the matter distribution of the
nucleon which couples to the pion; it is generally believed that the rms radius
of this distribution is comparable to or smaller than the radius of the charge

distribution of a nucleon rigs = 0.8 fm.

Chew and Low attempted to solve this theory for the P-wave pion-nucleon
phase shifts. They found that the theory naturally predicted a resconance in the
3-3 state, whose position could be adjusted to coincide with the experimental

result by picking the range of the form factor appropriately. The form factor

was

2
Vi(p) = e /9 (63)
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However, the theory did not predict the phase shift accurately above resonance.
Dave Ernst and M. Johnsonl’0 have recently shown that if the inelastic (multi-meson
production) channels are taken into account, the Chew-Low theory reproduces

accurately the phase shifts up to Plap = 1.2 GeV/c with
2
2 -p
vip) = P /15 (615)

The Chew-Low theory gives a diagrammatic interpretation of the A33 resonance,
shown in Fig. 14; the main point here is that when a pion scatters from a nucleon
the interaction is sufficiently strong that the pion will rescatter as much as it
can; at and below resonance the most important intermediate states are those
shown in Fig. 14. Because of this it is often said that the source of the attrac-
tion is nucleon exchange. Even at threshold, the rescattering accounts for half
of the T-nucleon P33 scattering volume. These observations about the 3-3 reso-
nance have led to the feeling that the resonance should play an important role in
many aspects of low energy nuclear physics, even as a virtual state, and in most
aspects of intermediate energy physics when energies are close to the energy re-
quired to excite the resonance. Part of my goal in the next lecture is to review
some of the theoretical ideas surrounding the subject of A's in nuclei and some
of the experiments that support these ideas. First, however, let me return to
the subject being discussed, isobars in the nucleon-nucleon interaction.

Sugawara and Von Hippleh] (SH) and later Riska and Brownl’2 (RB) showed that
intermediate A resonances deserve consideration as a possible source of the inter-
mediate range attraction in the nucleon-nucleon interaction. Various possibili=-
ties contributing to the two pion exchange potential are shown in Fig. 15. In
the calculations of Ref. 41 the procésses in Figs. 15c and 15d were regarded as
small corrections and neglected. The calculation was simplified by constructing
a transition potential, defined in such a way so that certain time-orderings of
Figs. 15a and b are reproduced for zero incident energy of the two nucleons.
Figure 16 shows what the transition potentials look like graphically. When these
authors evaluated the potential they“assumed that terms of order (MA-m)/(MA+m)
could be neglected. When evaluating Figs. 15a and b, the intermediate A is
assumed to behave like an elementary particle of mass MA' No width was assumed
for the A because Sugawara and Von Hipple were interested only in scattering below

threshold for meson production. Both SH and RB made a closure approximation when
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evaluating their respective theories of Fig. 15, i.e., they replaced certain
intermediate state energies by averages.
It should now be clear that the contribution of Figs. 15a and b are attrac-

tive for energies less than threshold for producing real A or w, as these are

second order processes and it is well known that such corrections are attractive.

Incidentally, one advantage of having the transition potentials is that one can

solve Schroedinger's equation, regarded now as determining a wave Tunction

[y> = b * !wnA> + [wAA> (65)

Such an equation was written down by Sugawara and Von Hipple. Since the writing
of their paper, such procedures have become popular, and now is an appropriate
time to examine the structure of this wave function in some detail.

Note that the NA and AA states must be antisymmetric under interchange of
particles.hB The reason is that the nucleon-nucleon state is antisymmetric
(Pauli principle) and because the interaction which induces NN - NA or NN > AA
is symmetric. This theorem may seem surprising at first, because nucleons and A
are distinguishable particles. As we stated earlier, the symmetry of the two-

particle wave function is

(_)L+S+T (66)

Now , (-)L must be the same for the NHW and NA (AA) intermediate state because

parity is preserved. T must be the same for both the initial and intermediate

state, because isospin is conserved in the strong interactions (presumably!).
Thus, by the theorem stated above (-)S must be the same for the NN and NA (AA)
intermediate state. These considerations permit us to see how the most general
transition potentials can couple states. The results for NN + NA are shown in
Table XII!, and for NN > AA in Table XIV. One point to be made here is that for
a given value of J the isobar configurations can mix in many different orbital

angular momentum states. The extent of mixing for a particular state depends of

course on the details of the force, but the transition potentials have a strong
tensorial character leading to appreciable mixtures of configurations with large
AL. The case of ISO(NN) is especially simple because there is only one NA and
one AA state to which it couples. Note that the deuteron (351-3D]) is compli=
cated; not only is there no NA component but the AA component may have L=2 or
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L=4. The reason that NN couplies to NA
only in T=1 is that an N (tN=l/2) and
a A (tA=3/2) can add up to T=1 but not
to T=0.

Sugawara and Von Hipple showed
that the corrections of Figs. 15a and
b simulated the exchange of scalar
mesons. We have already shown from a
simple argument that the contributions
are attractive; Riska and Brown gave a
simple argument to show what the cor-
responding mixture of isovector and
isoscalar bosons would be. They noted
that because Fig. 15a operates only in

T=1 its isospin dependence must be

1
Pre1 =7 3+ 1,01,) (67)

i.e., 3/4 isoscalar, 1/4 isovector.
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Although Sugawara and Von Hipple and Riska and Brown were able to show the
gqualitative importance of Figs. 15a and b, they were unable to make a successful
guantitative theory; Bethe pointed out3h that the range of the attraction in the
work of RB was too short and could be taken into account merely by reducing the
coupling constant of the o meson! Part of the problem is that these theories are
very sensitive to cutoffs; essentially any answer could be obtained merely by

changing the w-nucleon form factor.

by
a. Model of Green and Haapakoski

Green and Haapakoski (GH) made two improvements in the work of Brown
and Riska: (1) they avoided making the closure approximation in their evaluation
of Fig. 15 and (2) they calculated the nucleon-nucleon phase shifts in the ]50
channel and showed that the theory gave sensible results.

GH avoided the closure approximation by introducing the A as an explicit
degree of freedom in much the same way as advocated originally by SH before they
made their series of approximations. This required solving a coupled equation
[Eq. (70)]; the solution gave the separate nucleon and A components of the wave
function. GH confined their attention to the ]So(nn) state to simplify the
numerical problem; this state is of course very interesting because it has 2=0
and hence the attraction is a conspicuous feature of the partial wave. GH
assumed, as did RB and SH, that the AA intermediate state could be neglected;
according to Table XIl! this means that the states ]SO(nn) can couple only to
5Do(nA).

The GH potential consisted of three components, V], V2 and V3 depicted in
Figs. 16a, b and c¢. Because GH do not consider AA intermediate states, Figs.
16d, f were not considered. Likewise, no exchange interaction (Fig. 16c) was
considered. The potential VI consisted of 1, n and w exchange. The interaction
V¥, is discussed in some detail below. Very little is known about the potential

2

V3, and GH simply set V3 in the 5D0 channel equal to V].

b. The Transition Potential

The concept of an instantaneous potential is meaningless for the transi-
tion interaction, Fig. 16¢c and the interactions in Figs. 16d, e. These inter-
actions depend very strongly on the incident energy because the transition

A -+ nm is energetically allowed; consequently the method of folded diagrams may
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not be used to calculate a potential for them. Instead, the transition interac-
tion must be evaluated as a true Feynman diagram and carry an explicit dependence
on the total energy of the system. The importance of the energy dependence has
been emphasized in the recent work of Ref. 45. However, the energy-dependence

of the NN - NN, AA > AA and NA + NA transitions is sufficiently smooth to allow
a description in terms of instantaneous potentials.

In the early work of SH, RB and GH the energy dependence of the effective
interaction was ignored; this was consistent with their taking the difference
(M-MA)/(M+MA) = 0. However, the importance of these early works lies not in the
details of the numerical work but in the demonstration of the relevance of the A
resonances in this problem. Consequentiy, | shall ‘gnore the details of energy
dependence and M-MA corrections and explain the theory as developed by GH. In
this case the transition potential consists of a propagator for the exchanged
meson (a 7 meson for GH)

-1

q2+m

2 (68)
T

and vertex functions for NWA,MI with coupling constant f*. f* is determined from
the quark model or from the width of the 3-3 resonance, but in practice these two

methods lead to slightly different values for f*. The calculation is then paral=

lel to the derivation of the OPEP, Eq. (41).

= (2m3s8(p1-P) v, (p'-p) (69)
g S._-
e 2779 2279 )
Vy =3 72 11T
m -q -m
™ ™

A convenient representation of the transition spin and isospin operators S, T is
given in Ref. L1. Because these operators do not depend on momentum, a coordinate
space representation for V2 may be found following the steps of Appendix A and B.
The projection of V], V2 and V3 onto the relevant states is given in Table
XV. |t may be seen that GH chose to regularize the potential V2 by a cutoff of
range B, a parameter to be varied. They also let the strength of the w-meson

coupling be set by a free parameter, A.
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To obtain the scattering, GH solve Schroedinger's equation,

(T + )y = k% (70)
where now ) is a two component wave function having an nn and an nd component
u_ (r)
=f ™ (71)
wnA(r)

and where T and V are matrices
LN

i deZ
2 0
M dr
T = 2 2
_ A /d 6 w12
0 H—-(—E*‘ 2) + (MA Mc (72)
dr r

Y Yy
V = (73)

V, Vs

The term éf in the kinetic energy is the angular momentum barrier for the L=2
partial wave. The boundary conditions are that u have an incoming plane wave and
an outgoing spherical wave in £=0, and that w have no component at r = =, (The A
exists only virtually when the nucleons are close together.)
Green and Haapakoski chose three different values of A and then varied B to
give the best fits to the ]SO phase shift for EI £ 350 MeV. The results are
shown in Table XVI. The calculated phase shifts are in qualitative agreement with
experiment, but tend to be too attractive at high energy, the discrepancy being
lest for the larger values of A. Note that potential 1 gives a very satisfactory
value of gi, to be compared to the value 9; = 6.36 of Table IX.
Green and Haapakoski also give an interpretation of their cutoff B in Table
XVl. They point out that the p meson may also excite the transition from n > A
‘ and that just as in the nucleon-nucleon potential the T and p contributions to
the exchange potential have opposite signs. They point out that although B ap-
pears to modify the potential at moderafely large distances, the long range piece
merely mocks up the p meson exchange and that with p and T exchange the transition
potential is much less sensitive to the pion form factor.
Thus, for the first time, we have an example of a potential which gives rea-
sonable repulsion (although perhaps still underestimating it somewhat) and suffi-
cient attraction. The significance of the relatively small value for gi was dis-

L6

cussed by Durso, et al. I will come back to this point later.
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The successes of the GH approach are significant, but the specific calcula-
tion has met with some criticisms., Durso, et a146 have criticized the neglect of
(M-MA)/(M+MA) corrections. They also point out that the crossed pion diagrams
are important and, based on this observation, they question the utility of the
coupled channel approach. Pandharipande and Smith47 show that cancellations occur
among the crossed box diagrams, so that the sum of crossed plus uncrossed box
diagrams of Fig. 15 is closely approximated by the iteration of the transition
potential. However, Durso, et al. point out that the extent of cancellation is
model-dependent, e.g., depending upon whether the FﬁnA coupling constant was
determined by the quark model or from the width of the A. We have already re-
marked on the importance of the energy-dependence, as pointed out in Ref. 45,
Much more careful theoretical work needs to be done before quantitative assess-
ments of the importance of the A in the nuclear physics can be confidently made.
Calculations within the coupled channel framework are continuing, and there is
some hope that this method will prove to be a useful framework for including im-
portant physical effects both into the nucleon-nucleon interaction problem and
other physically interesting problems as well. | shall return to this subject

later to examine implications for other problems in nuclear physics.

3. Stony Brook and Paris Potentials
The situation that has emerged is that three models of the intermediate

range attraction exist, each of which has been shown capable of supplying suffi-

cient attraction: (1) scalar meson ex- TABLE XV
change, (2) uncorrelated two-pion ex- POTENTIALS OF GH
i i i “0.7r -2.75r -3.9r
change and (3) intermediate isobars. s [viils.> = ~10.5 ¢ e .
ol Vi8> = ~10:5 S - 3 S+ 3.97

It should be clear that no theory can

-0.7r
<'Solv21500(nA)> =4y £ [1 +

— + __3_2 ] (‘_e-a#)z
4

{0.7r)
<§o°(nA)fv3f5oo(nA)> = JSO!V,I'50>

3
be correct which relies entirely on one 0.7r

or two of these effects. However, no-

body has made a successful calculation

by explicitly combining these effects.
The method of dispersion relations

TASLE XxVi

RESULTS OF THE_GH CALCULATION

has procvided some valuable insight into 4 Y 2
Potential A(MeV) B(fm ) Su as(fm) rs(Fm)
this problem and first demonstrated the | 2500 - 6.6 -6.0 it
extent to which an approach, which re- 5000 1.8 9.8 -6.3 2.4
3 10000 2.6 16.2 ~5.5 2.5

lies on these three two-pion exchange
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mechanisms, may succeed. The essential points were discussed by Brown and
Durso.l'8 The two-pion exchange potential may be represented as in Fig. 17, where
the blobs represent evérything which connects the two pions to the nucleons; the
antinucleon intermediate states, the A states and the interactions between the
two pions which build up the scalar mesons and the p meson. Now, the point is
that if the diagram is cut as shown in Fig. 17, each half represents the pion-
nucleon scattering amplitude (evaluated possibly at some kinematically inacces-
sible point). Thus, there is an intimate connection between the two-pion ex~
change nucleon-nucleon amplitude and the pion-nucleon scattering amplitude. Dis-
persion relation theory is the mathematical relation for connecting these two
quantities. A two-pion exchange potential can then be constructed provided one
knows how to extrapolate off mass shell (this is mostly an art at the present
time) and provided one subtracts out the iterated one-pion exchange potential,
for reascns discussed in conjunction with Fig. 12,

Because the dispersion relations relate pion-nucleon and nucleon-nucleon
scattering, this method makes possible a more stringent restriction on the terms
which are included and therefore gives a greater chance that the various pieces
are combined correctly. So far the approach has been largely phenomenological,
i.e., the experimental 7N amplitude has been fed in or else certain phenomenclo-
gical constraints have been imposed, for example the soft pion condition that the
pion-nucleon amplitude extrapolate smoothly off mass shell near zero energy. One
hopes that eventually this approach will teach how to calculate more confidently
with the individual terms that have been discussed and that are depicted in
Fig. 18.

Two modern potentials have been constructed based on dispersion relations,
often referred to as the Paris potential]2 and the Stony Brook potential.]] In
addition to this model of two-pion exchange, the potential consists of single w
and single w exchange. In Ref. 11 the cutoff form factors are:calculated in a
model. In the most recent work of Ref. 12 the short range part of the potential
is parametrized and very reasonable fits to the data are obtained for nucleon-
nucleon partial wave states of J< L. These two potentials représent a departure
from their predecessors in that they contain an explicit energy dependence; this
is presumably a drawback for practical calculafions and in Ref. 12 it is recom-

mended that the energy dependence be replaced by a momentum dependence.
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Fig. 17. Relationship between the 2w
exchange NN potential and
the m-nucleon scattering am=-
plitude.

)4 i »
// I’ / '7 r
N/ / , /
+ A+ + Y F (
y \\\ - \\ ‘\\
\\\ \'\ \\ b LA
v "
{0) {b) {c) {d) {e)
Fig. 18. Contributions to m-nucleon

scattering. The diagram (a)
and (b} are intended to-in-
clude anti-nucleon as well as
nucleon intermediate states.

TABLE XVII

COUPLING CONSTANTS FOR w MESON IN PARIS

AND STONY BROOK POTENTIALS

Potential 92

— _w
Paris 9.5
Stony Brook 7.0

The values of the w coupling con-
stants are shown in Table XVII. One
should note that the couplings needed
here are somewhat smaller than those
appearing in Table 1X, especially for
the Stony Brook potential. This is
presumably the result of the energy and
momentum dependence in .the potential,
which is different from that appearing
in the simple OBE models, but it is
also due, at least in the Stony Brook
potential, to imposing an artificial
cutoff on intermediate momentum inte-
grals appearfng in the expression for
Fig. 17 to take account of the omission
of the 37 (e.g., simultaneous pm ex-
change shown in Fig. 19) exchange be-
tween the two nucleons. (Recall that
the p-meson ef?ect opposes the m-meson
exchange.) The cutoff reduces the
attraction and makes possible a smaller

short range repulsion.
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L. Three Pion Exchange
The fact that GH were able to reproduce the ,So phases with a relatively

small value for gj suggests that their model contains a repulsive term which is
normally not taken into account in one-boson exchange interactions. As | have
repeatedly emphasized, the m and p exchanges have tensor components of opposite
sign, so if we regard the attraction in the nucleon-nucleon interaction as coming
from the two-pion exchange diagram in Fig. 15a, the exchange of a m and a p meson
as shown in Fig. 19 must be repulsive and it is the candidate for the additional

repulsion in the theory of GH.

Durso, et al. 6 examined this possibility in some detail and showed that the
mp exchange has the spin-isospin structure of the exchange of a vector, isovector
meson, i.e., like the w meson. Although the strength of this term depends sensi-

tively on the form factor cutoff, Durso, et al. estimate the effect and find that
the effect can be simulated by an increase of gj from =~ 6.4 (Table IX) to =~ 12.
This, they point out, may well explain why OBE models require w mesons with

coupling constants larger than those obtained from elementary particle considera-

tions.

IV, MESONIC COMPONENTS IN NUCLEAR WAVE FUNCTIONS

We have seen that models of the nucleon-nucleon interaction have been con-
structed which are moderately successful and which rely on a description in ter.s
of mesons, nucleons and nucleon resonances. One would like to find experiments
other than elastic nucleon-nucleon scattering in which sensitivity to these ele-
mentary constituents is manifest.

The complete wave function for a two~nucleon system [w> would have a multi-

tude of components:

> = i><j >
Ib> = 2 1<ty (74)
where |i> = {INN>, lNNﬁ>, [NNp>, . . .,|NNNﬁ5, . « .} and the sum extends over a
complete set of the individual components. |If it is possible to devise experi-
ments sensitive to the individual terms, or different linear combinations of the
terms than that which enters the nucleon-nucleon interaction, then one could be

more confident of the mesonic models.
Unfortunately, it is very difficult to write down dynamical equations which

can be solved explicitly for the various components in Eq. (74). However, as an
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alternative to calculating the complete wave function, one might consider calcu-
lating observables, e.g., the magnetic moment, directly. The observable would

be associated with an effective operator 5} which would have the property

8

<Y, 10;105> = <u o, lug> (75)
Here ]E&> is a wave-function having only nucleon components, generated from some

potential model Hamiltonian,

IEOL> = I[NN> <NN Wa) , (76)

hH1> is the exact wave function [Eq. (74)], and 0i is the fundamental observable.
The way to construct such operators 0i is the subject of effective interaction
theory and the thecry of exchange currents. The method of folded diagrams gives
a method for calculating at energies below meson production threshold corrections
corresponding to the instantaneous potentials (energy-independent interactions)
discussed in the first lecture. In these methods, the operator 5} is expanded
perturbatively to make corrections for the mesonic and N components in Eq. (74).
These calculations are tractable and many have been done. Jim Friar will discuss
exchange currents more extensively but | will show some results later as they
bear on physics considerations already raised.

The method involving nucleon-nucleon potentials and exchange currents is
generally believed to be satisfactory for examining mesonic effects at low ener-
gy. The dynamics, at izast in the two-nuclenn problem, is the solution of
Schroedinger's equation, and exchange currents are calculated perturbatively.
This simplicity is the attractive feature of this method. The drawback is that
it is incapable of describing meson production channels which open at higher
energies.

The actual wave function is presumably not either Eq. (74) or Eq. (75) but
rather a wave function written in terms of guarks and gluons. Part of the task
of theory is to show how all these descriptions are related and to provide rules
according to which the same answer to physical questions will result, independent
of the particular mode of description.

Let me begin by giving some examples of low energy properties of the deuter-

on.,
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A. Exchange Currents

1. Magnetic and Quadrupole Moment of the Deuteron

The magnetic moment of the deuteron is measured to have the value

Hp. expt = 0.8574% nuclear magnetrons (77)

If the deuteron were simply a neutron and proton, then u(D) would be given by the

expression

u(D) = u(p) + uln) = 3ulp) + uln) - 51 P(D) (78)

where P{D) is the deuteron d-state probability. Most nucleon-nucleon potentials
give P(D) to lie in the range 0.04 to 0.065. |If P(D) were as small as 0.04 then
Eqs. (77) and (78) would agree; however if P(D) were 0.065 then Eq. {(78) would
underestimate the experimental value in Eq. (77).

In order to resolve this question, it is necessary to look at the calcula-
tion of the deuteron magnetic moment from a more fundamental point of view, i.e.,
from a meson exchange model point of view. As in all such studies one should
consider potentials which are compatible with the effective magnetic moment
operator 6&, i.e., the wave function { and the operator 5% in Eq. (76) should be
consistently derived from the same underlying meson theory.

Figure 20 shows some of the '"meson exchange' contributions to Oa. It is
important to point out that there is a folded diagram contribution to the meson
exchange current20 which should be used in place of Fig. 20c if the state l$&>
is the eigenstate of an energy-independent Hamiltonian. Actually all calcula~
tions which have been made are based on energy-independent interactions and
therefore there is some inconsistency regarding the treatment of this term.
Sometimes heavy mesons are considered in Fig. 20a and b.

Figure 21 shows some of the isobar contributions to the exchange current
6&. In order to make use of Fig. 2lc one needs to know the AA and NN' cempo-
nents in the deuteron wave function (see below). Calculations are particularly
uncertain due to the poorly known coupling constants and magnetic moments asso-
ciated with the A and N',

Results of some published calculations are shown in Table XVIlI. The calcu-

lation of Ref. 51 utilized an underlying one-boson exchange model; one would
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Fig. 19. A 3w exchange contribution.
This contributes a dominent-
ly repulsive effect for rea-
sons discussed in the text.

() (1)) {c)

Fig. 20. Contributions to meson ex-
change currents. The wavy
line represents the coupling
to the electromagnetic field.
Diagram (1) is called the
pair term; (2) the mesonic
term; {(3) the recoil plus
wave function renormalization
term.

™~ ~

(a} (b) (¢}

Fig. 21. Isobar contributions to the
exchange current. The double

solid line stands for N' or A.

TABLE XVII!
NUMER|CAL RESULTS FOR CORRECTIONS TO

DEUTERON MAGNETIC MOMENT

Terms su(p) (%)
NN’ (1688) (2%) +2 k>%2
sa (1%) +5 Y e
olw) +2 (+0.2)  HFYO! (FéMSOb)
m -5 JLR%2
Relativity +2 63

like to see all exchange current calcu-
lations proceed consistently from a
meson theory both in the underlying
potential model! and in the calculation
of the exchange current. In addition
to these results there is a recent cal-

49a

culation by Hadjimichael, in which
the sensitivity of the deuteron magnet-
ic moment and guadrupole exchange cur-
rents to various phenomenological po-
tential models was considered. The re-
sults in the table indicate that the
exchange current correction is Au(D) =
+ 6%. A P(D) of + 0.065 requires a
+ 2% correction, and so these results
have the correct sign but overestimate
the correction by a factor of 3. Hadji-
michael has shown that the tendency to
overestimate the magnetic moment is
characteristic of many potential models
having a range of values of PD.
It is somewhat worrisome that all
the corrections in Table XVIII| are

approximately the same size. One would
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like to see a tendency for the corrections to get smaller in a systematic expan-
It would be interesting to see what uncorrelated 27 exchange

As it now stands, the exchange current correc-
This is not the only place

sion procedure.
wou .d add to the magnetic moment.
tions to the magnetic moment tend to be too large.

that exchange current calculations tend to give too large results. Holstein,

et al.hgb have analyzed the reactions u + ]60 > IGN*(O-) v, and ]SN*(O—) > ]60

+e + 3; and find that experiments do not require appreciable exchange current

corrections contrary to the results of explicit theoretical calculations.
Hadjimichaelq9a has also considered exchange current corrections to the

deuteron quadrupole moment in various potential models. The corrections to the
quadrupole moment are smaller than the corrections to the magnetic moment, but

the tendency is for the calculated corrections to be too large.

2. Radiative N-P Capture (N+P + D+y) of Thermal Neutrons

Calculations

The experimental cross section is ¢ = 334.2 * 0.5 mb.
= 302.5 * 4 mb; this is accurately known from

without mesonic effects give ¢ =
knowledge of just the nucleon-nucleon phase shifts. The 10% discrepancy between

these two numbers is in.eresting because it indicates that this reaction actually

needs -a substantial correction from mesonic effects. At low energy the transi-

tion is magnetic dipole, ]S > 35 and ‘S -+ 3D.

Again Figs. 20 and 21 show some of the terms that have been considered in
trying to understand the discrepancy. The isobar terms are shown in Fig. 21.

The piece in Fig. 2lc appears to be quite smaH.5

Results of two calculations are shown in Table XIX. Note that the pair plus

pion current contributes somewhat more than the A effect. The A terms have not
been calculated with T + p exchange nor have these calculations taken into

account the effects of NN' and AA components in the deuteron; the latter effect
has an important indirect effect, of affecting the deuteron wave function normali-

zation, through Fig. 2lc. Greenh has pointed out that when these effects are

taken into account the A effect will be significantly reduced.
The results seem to indicate a significant need for mesonic effects. Better

calculations are needed before we can say what the actual balance between mesonic
and non-mesonic effects is.

3. Other Experiments
There have also been calculations of the following reactions to inves-

tigate the contributions of the various mesonic effects.
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etd etd TABLE XIX

v+d > n+p ENHANCEHENTS OF SINGLE PARTICLE AMPLITUDE

e+d > e |+n+p AND CROSS SECTION FOR n+p =~ d+y IN PERCENT

B Cross Sectlon
u +d -+ n+n+v (79) Palr & Pion Current A Effect S
- 1.3 1.3 1.3 1.3
T +d > n+n+y shb $-7s $-°p $=s $=°D
GH . 1.727 1.4k --- 2.4 1n.§
These are discussed in the review artfi- ' 190 1.38 --- 1.68 9.7

cle by Green.
The need for mesonic exchange current corrections is especially dramatic in
e+d -+ e'+n+p;55 a calculation is shown in Fig. 22. The dominant effect comes

from processes other than isobars.

B. Isobars in Nuclei

An alternative approach to calculating mesonic effects in nuclear systems
is the coupled channel approach, discussed already in connection with the Green-
Haapakoski description of the nucleon-nucleon interaction. This description is
in some sense intermediate between those represented by Eqs. (74) and (76). In

this approach the wave function would be taken (for a two-nucleon system) as

> =3 |i> < Ty o> (80a)
i

11> = (>, [Na>, (N>, L) (80b)
Since nucleons like to interact with mesons to form resonances, it is supposed
that a wave function of the form in Eq. (80a) is ''closer' to the true wave ?unc-
tion of Eq. (74) than is Eq. (76). Since more is being put into the wave func-
tion, one can expect simpler exchange current corrections. At higher energies,
the coupled equations take into account some of the inelastic channels, i.e.,
those that are fed through the N' and A states. Again one hopes that the wave-
function is sufficiently close to the actual wave function that the corrections
necessary for describing meson production will be small enough to handle in some
tractable fashion. However, so far nobody has carefully worked out the theory
of the equivalence between the descriptions in Egs. (74) and (80), and it is

therefore too early to say for sure how quantative the coupled channel approach

can be.
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1. lsobar Components in the Deuteron

56

This problem predates the work of GH on the nucleon-nucleon interac-
tion, but the theory is really just an extension of the ideas discussed earlier
in that connection. Basically, the idea is to extend the number of coupled chan-
neis in Eqs. (70) to (73) to include more of the isobars shown in Table XI!. In
addition to the A(1232), the isobars which have been included in these calcula-
tions are shown in Table XX.

A description of the wave function containing the A(1232) and nucleon was
described in detail earlier in conjunction with Table XIV; with the higher spin
resonances of Table X!|, the wave functions are even more complicated. One dif-
ference between the T = 3/2 and T = 1/2 resonances is that isospin considerations
do not forbid INN'> components in the deuteron, whereas [NA> components cannot
occur, as discussed earlier in conjunction with Table X1V. For this reason, the
N' components will be as important as, or more important than, the A component
even though the N' are more massive.

The description in terms of cou-

TABLE XX
pled channels introduces new theoreti-

SOME OF THE T=1/2 NUCLEON RESONANCES

ot
v

cal quantities many of which are un~

Particle i T'(MeV) g’ known in detail. One of these is the
N'(1470) 1/2 66 3.4 transition interaction NN >~ NN'. It

N' (1520) 3/2 68.1 16.32 is generally assumed that these tran-
N* (1535) 1/2 12.5 0.36 sitions are induced by the pion and

N' (1670) 5/2 60.6 10.08 that the resonance width is determined
N'(1688) 5/2 74,7 26. 88 by its decay into a pion and a nucleon.
N’ (1700) 1/2 104.9 0.9 Under these circumstances a coupling

of the appropriate tensorial character

7:g is the TNN' coupling constant, de- is written down and the known width of

termined from the resonance width the resonance used to determine the
(Ref. 43). coupling constant. See Ref. 43 for
more details. Some couplings determined in this way are shown in Table XX. Di-
agonal matrix elements, e.g., <NA|V{NA> are also needed but virtually dﬁkhown;
often these are equated to the diagonal matrix element for nucleons, or a quark
model is used for an estimate.

Once the interactions are written down, the coupled equations are solved

exactly or approximately to find the wave function components. One interesting
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quantity which may then be caiculated is the probability with which a certain
isobar configuration occurs in the deuteron wave function. Some of the numerical
results for AA and NN' probabilities are shown in Table XXI.

At first, the calculation »f the AA component of the deuteron was very un-
certain due to a strong cutoff dependence (analogous to the parameter B in Table
XV) in the transition interaction <NN|V|AA>, i.e., the AA probability could
change by a factor of 2 depending upon the cutoff at the TNA vertex. In the
more recent calculations of Refs. 62 and 58 the transition potential includes the
T plus p meson exchange and the sensitivity to cutoff is vastly reduced. The
calculations A and HS of Table XX| both incorporate the p meson and the
differences are indicative of other sources of uncertainty, e.g., A incorporates
a diagonal interaction in the AA channel whereas HS do not, and HS use a TNA
coupling taken from the quark model whereas A takes his from the width of the
A(1232). The errors on the HS result show the sensitivity to the very short
range regularization of the transition potentials, i.e., the result of varying
the hard core cutoff from 0.2 to 0.4 fm.

Table XXib shows some of the other calculations of isobar components in the
deuteron. We see that the total estimated probability is about 1.5%. Estimates
for the AA component range from 0.25 to 1%. Because these probabilities are
small, the isobar components are going to be very difficult to detect. After all,
the D-state probability of the deuteron has proved difficult to pin down to
within 2%. However, as emphasized by Kisslinger, the isobar configurations are
apt to dominate the momentum distribution of the deuteron for sufficiently high
momentum. The large spin of some of these resonances implies that rather large
orbital angular momentum will be found in the deuteron ground state. Because

momentum distributions of orbital angular momentum L are expected to peak at Q

Q= L/R (81)

where R is the deuteron radius, it is possible that the large momentum component
will be more significant than the small overall probabilities. Similar consider-
ations apply to larger nuclei. It has been hoped that this fact could be used

to get an experimental handle on the A and N' probability but so far nothing has

come from these attempts.
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Fig. 22. Double differential cross

TABLE xxlb

ESTIMATES FOR PROBABILITY (%) OF A4 AND NN' COMPONENTS IN THE DEUTEROM

section for the reaction
etdre'+n+p for backward scat-

. ; IO
Y ) tering at fixed neutronsgro
Sk - B ot 0. ton energy EcMy = 3 MeV.
8 - L. 0.20 9.5-0. : Solid and dashed curves are
NN (1470)  --- 0.2 0.16 ] S
W (1520)  e- e o8 theoretical results with and
N (1670)  --- .- 0.08 without exchange currents,
KN 1688  1/2-1  -e- 0.43 respectively; solid curve A
WNI200)  em 2z 018 contains only the OPEP cur-
S - b2 13 s rents, while curve B contains

2. Tests of Isobar Components in the Deuteron

a.

(P,D) Elastic Backward Scattering

the isobar current.

The subject of isobar components in the deuteron was launched by the

work of Kerman and Kisslinger (KK),56 who were interested in explaining the back-
ward peak in the P,D elastic differential cross section. KK emphasized that an

exchange (transfer) mechanism such as that shown in Fig. 23a required less momen-
tum transfer than a '"bounce'' mechanism shown in Fig. 23b, and hence would presum-

ably dominate the transfer at high energy. However, the elementary nucleon trans-

fer, depicted as a Feynman diagram in Fig. 23c, was too small to explain the back-
scattering peak; the deuteron wave function did not have a sufficiently large

component for the momentum transfer involved. However, KK constructed a model in
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(a) (b)
N' (1688)
N A
N' (2220)
(c) (d)

Representations of (d,p)
backward scattering. {(a) and
(b) are pictorial representa-
tions of transfer and bounce
scatterings, respectively,

in the lab frame. (c) and
(d) are Feynman diagrams for
the transfer of a nucleon or
t=1/2 isobar, respectively.

Fig. 23.

which the deuteron ground state con-
tained a sufficiently large admixture
of N' components that the exchange of
a resonance as in Fig. 23d could pro-
vide the needed momentum. They esti-
mated the amount of NN'(1688) in the
wave function to be from 1/2 to 1% and
showed that if the percentage were as
large as 1% then the backscattering
could be completely explained. Since
that time there have been a number of
other proposals for explaining the
hackscattering, proposals which do not
rely on N' components. Incidentally,
the A must occur in pairs in the

deuteron.

b. A Knock Out (p+d+p+A++Ao)

In these experiments one

hopes to obtain directly evidence of A

components in the deuteron by quasi-

elastically scattering a A from the deuteron by a high energy pion or kacn. In

such a collision, when the incident meson strikes one of the A in the deuteron,

the spectator A can decay to give a number of TN events in the backward direction

in the laboratory.

evidence for A in the deuteron.

A backward peak was found and initially was interpreted as

Different experiments have been analyzed as

giving less than 0.4% for the percentage AA63 and up to 3% for this probzbil=-

65

ity.6l+ Recently A. Goldhaber

has made a critical study of the effects which

could impugn these analyses and has found many sources of ambiguity, including

final state interactions and the form factor for the virtual A-rea! A transition.

Some of the effects he considered could suppress the breakup by an order of

magnitude, and he concludes that the reported experiments did not have the nec-

essary sensitivity to detect AA breakup.
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3. Mesonic Degrees of Freedom in the Ground State of Large (A>2) Nuclei

a. A Components

This problem may be approached from the point of view of exchange

currents or by explicit calculation of A and N' components just as in the case

of the deuteron. However, for a large nucleus there is a new possibility, namely
that a pion condensate might exist. | want to reserve the last lecture for a
discussion of pion condensates.

Rather than discuss details of calculations of A and N' components and ex-
change currents in heavy nuclei, | want to mention two qualitative ideas, both
due to Kisslinger and collaborators, on experimental consequences of isobars in
the ground state of nuclei.

The first point is that in many cases the A and N' have large spin S. Thus,
for a given single particle orbital of total angular momentum J these objects
can occupy states of relatively large orbital angular momentum. For example, in
a J = 3/2 state the A(1230) will occupy L = %-+ %-= 0,1,2,3. Thus, in

the absence of As the odd parity single particle orbital of J = 3/2 is

(-) _

i.e., an L = 1 state. However, with both N and A(1232) components, this state is

.

W) = apy, (0 B )+ Fy, (8) (82b)

The hope is that the states of large L (in this case the F7/2 or L = 3 state)
would be a deminant source of large momentum components which could be easily
detected in certain nuclear reactions. The (P,D) reaction (i.e., neutron pickup)
on a light nucleus such as carbon was expected to be sensitive to these A com-

ponents.
Although the (P,D) reaction was initially quite attractive, the experimental

67

results could be entirely explained without the A effect. Rost, et al. showed

that by taking into account the D state of the deuteron, all the necessary high
momentum needed to explain the data could be found. Later calculations by
Schaeffer, Kisslinger and Rost68 showed that the A and N' components were not
effective yet for 800 MeV protons.

The second proposal was one by Kisslinger and Miller,69 the {(p,m ) reaction

+
on a nucleus. The process is illustrated in Fig. 24. A (P,m ) experiment on

54



26Mg at 180 MeV was reported in Ref.

P T
coT T T 70, but very poor agreement with theory
"+ was obtained. There is some worry,
A however, that the distorting optical

potential was not sufficiently realis-

(-
Z,N Z+2, N-|

++ -
Fig. 24. The & mechanism for pmw
reactions.

tic in the theoretical estimates of
Ref. 69, and the calculations should"
be redone investigating this point.

In any case we can say at this time there is no direct experimental evidence for

++ . .
A components in nuclei.

b. Mesons in Nuclei: Meson Propagator

Another very important subject is to know how a meson, once created
in a nucleus, propagates. One might ask, for example, what the amplitude is to
insert a pion of momentum k in a medium at time T and remove it at time T'

(T'>7):

<%fa: (T") ak(T) ]%> (83)

where yo is the exact nuclear ground state wave function, ak(T) =T ake_'HT

and H is the full Hamiltonian including the pion. The matrix element shown in
Eq. (83) is the pion Green's function, and is a fundamental quantity which
specifies the way the pion propagates. |t is essentially this matrix element
which is examined in investigations of meson scattering, investigations of mesan
currents in the nuclear wave function, and pion condensation. This is an exceed-
ingly important aspect to the work at the meson factories and to nuclear physics
in general. | will not have time to talk about this in any generality, but |

will illustrate the subject in my last lecture when | discuss pion condensation.

¢. Mesons and Isobars in the Nuclear Ground State, Summary

There is a well-established ''need'' for mesonic effects in the ground
state of nuclear systems, showing up especially in interactions with the electro-
magnetic field in exchange current corrections involving the deuteron. However,
how much of this correction is due to the individual mechanisms shown in Figs.

20 and 21 is still not unambiguously answered by the experiments. Because the
theoretical numbers depend on many terms with several sources of theoretical
uncertainties, agreement between theory and any one experiment does not necessari-

ly mean that the theory is completely @orrect.
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Some of the outstanding theoretical questions include (1) How does one prop-

erly describe a A or N' embedded in a medium? Can one describe a virtual N' or A

by a simple propagator characterized by its free mass? Does the coupling change

at all for a virtual A or N',

AN
N (88)
//////;>""\—\,\v\, meson?

N

(2) What is the magnetic moment for N' and A?

(3) What are the diagonal couplings:

AN
(85)

meson?

/A,N'

In addition to seeking answers to these questions, one should lunk closely at
certain relativistic corrections to the exchange currents. One interesting term
is the correction which arises from the use of instantaneous potentials in cal-
culating the wave functions in the initial and final state. These corrections are
calculable within the folded diagram Framework.20

One of the difficulties of trying to learn about mesonic effects in the
ground state of nuclei is that the mesons and resonances are not seen directly;
their existence must be inferred by doing very accurate calculations with and
without a conjectured mesonic effect and then looking for a systematic improve-
ment with an experimental result.

In many respects the more satisfactory way to study mesonic effects is to
raise the energy sufficient to produce the mesons. |f the states of interest can
be produced and studied directly, then many of the questions raised in these
lectures may be subjected to a direct test. | therefore want to turn now to some

of the questions that can be addressed by experiments above meson production

threshold.
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V. DIRECT OBSERVAT!ON OF MESONIC COMPONENTS-NN SCATTERING ABOVE 1 PRODUCT!ON

THRESHOLD

The importance of pinning down the two-pion exchange interaction highlights
the importance of nucleon-nucleon scattering experiments above threshold for pion
production. Here there is an intimate connection between the two-pion exchange
interaction in elastic scattering and the reaction in which a pion is actually

produced as for example

P+P & P4N+nT (86a)
> prt (86b)

The point is that one of the pions in the two-pion exchange of Fig. 25a, rqther
thapn attaching to the second nucleon, is actually prpduced as a free partiéle.
Thus the pionic piece of the black box, pieces of which are shown in Fig. 25b,
can be studied in some detail, for example, by varying the kinematics of the
final state.

It is important to learn the extent to which the A (and other resonances)
contribute to this process, because such would give an indication of the validity
of models which are used to estimate the NA 'and AA components in nuclea} systems.

It is also important to measure the production channels to get an idea of
how the inelasticity is distributed among the various nucleon-nucleon partial
waves. This is an area of great importance, not only to learn about the nucleon-
nucleon potentials but to help arrive at unique nucleon-nucleon phase shift analy-
ses above meson production threshold. Usually it is assumed that the inelasticity
appears first in the ]Dz nucleon-nucleon phase shift, but coupled channel calcu-
lations such as that of Green and Haapakoskihh (see Green, et al.7]’72
some modifications, e.g., including a width for the A(1232) above T production

who made

threshold) give the results shown in Fig. 26. The point here is that in Ref. 73
it was assumed that the inelasticity occurred first in the ]Dz channel because
here the NA may be in an S state. However, the detailed calculation shows an
appreciable imaginary phase shift in the ]So states, casting doubt on the phase
shift analysis above threshold. Ambiguities such as this would be brought under
control by a direct measure of the inelastic channel.

71

Green and Niskanen’ have also calculated the reaction in Eq. (86b). They

point out that this is dominated by 'the A33 and hence a sensitive test of the
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coupled channel approach to calculating A components in nucleon-nucleon and nucle-
on-nucleus systems. They seem to be able to reproduce the broad rescnance peak
in the absorption cross section at a proton lab energy of ahout 600 MeV and they
take this to be evidence of the qualitative correctness of their coupled channel
theory.

Lastly, | shcould mention the polarized proton total cross section measure=

ments recently carried out at Argonne around | GeV. Measurements of

m

AG g (M) - o(+4) (87)

T

74
for spin alignments transverse to the beam/ and

Ao, = a(2) - o(3) (88)

for longitudinal alignment75 have been made. A dramatic variation in AGL was ob-
3F3 (NN) par-

tial wave.76’77 From Table XIV we see that this would couple to the 3F3 (NA)

served near TLAB = 750 MeV, which appears to be a resonance in the
partial wave. Earle Lomon78 has shown in a very schematic model that a suffi-
ciently strong transition interaction NN - NA could give rise to a resonance
close to the threshold for the production of the A. Kloet, et al.79’80 have
tried to make a more detailed calculation using a coupled channel approach which
has three-body unitarity imposed. They do not reproduce the dramatic structure
in AGL, but this could be due to the fact that their model lacks realistic shori
ranged nucleon-nucleon forces. 1f Lomon's arguments turn out to be the correct
explanation, there is scme hope that extending the spin-dependent calculations
to higher energy and a more detailed study of the reactions in the vicinity of
the resonance could greatly help in understanding the same NA and NN' interac-
tions at high energy needed for the low energy studies of N' and A components in
nuclei.

Riska, et al.8I have given some reason to believe that the cross section in
Eq. (87) can teach about the role of the p meson in the nuclecn-nucleon inter-

action.

VI. NUCLEAR MATTER THEORY

A. Brueckner-Bethe Method
Let me now skip from properties of few-body systems to large systems. Not

as much can be said here because of the additional complexity of knowing how to
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A contribution to the two-
pion exchange potential stud-
ied in pion production exper-
iments.

3(I)(rad)

300

Fig. 26.

SCO 700
E(pp){MeV)

Imaginary parts of the ngcle-
on-nucleon phase shifts.

The solid curves are calcula-
tions of Ref. 71. A, for the
]50 channel; B for the ]Dz
channel with a small NNy
coupling constant; C, for the
D, channel with a large NN
coupling constant of Ref. 2%.
The points show the ]Dz phase
shifts from Ref. 73.

solve the manv-body problem. Roughly
half of the next two lectures will be
devoted to developing aspects of many-
body nuclear physics, and thus not di-
rectly dealing with the topic of mesons
in nuclei. However, in order to appre-
ciate the connection between the prop=
erties of a large part of the periodic
table and the fundamental considerations
we have just discussed, it is necessary
to understand the theoretical methods
being employed.

For the preparation of these lec-
tures on the Brueckner-Bethe theory, |
have relied heavily on the lectures by

the review article by H.

82,8
y.02:83

M. Baranger,]6
Bethe,3h and the reviews by B. Da
Reterence 82 is an especially readable
introduction to the methods.

The premise of the following dis-
cussion is that a collection of inter-
acting nucleons can be described by a

Hamiltonian

H=T+ V (89)

where T and V have representations given
in Egqs. (11} and (12} in terms of crea-

tion and annihilation operators. We

are thus supposing that the nuclear sys-
tem can be described by a two-body po-

tential. In the calculations that have

been done, V is a nucleon-nucleon potential which fits the two-body data, i.e.,

the nucleon-nucleon phase shifts and the deuteron properties.

Later we shall re-

investigate the validity of this representation from the point of view of meson

theory (e.g., considering 3-body forces).
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The system we shall try to describe is infinite nuclear matter. The reasons

for studying this fictitious system were given in the first lecture.

1. Feynman-Goldstone Diagrams N
We have already discussed the meaning of a Feynman diagram; our study of

the properties of nuclear matter will strongly draw on this framework. However,
the usual Feynman diagrams are not very convenient for the description of a large
nuclear system because in this notation each nucleon must be represented by its
own line: this would clearly be out of the question for a large system. Conse-
quently, the Feynman-Goldstone notation for a Feynman diagram is commonly used.
In this notation one draws the difference between the states in the Feynman dia~
gram and some reference state, called the unperturbed ground state. This saves
having to draw lots of unnecessary lines. The following discussion, through the
description of Goldstone's theorem, comes from the lecture notes of M. Baranger.

The reference state f¢o> is taken to be an antisymmetrized product of orthog-
onal single-particle wave functions, which are plane waves for the case we are
considering. All states of momentum k< kF = Fermi momentum are occupied in |¢0>.
We shall use capital letters A, B, C. . . to designate the single particle states
which are occupied (i.e., A, B, . . denote the states k < kF) and lower case
letters a, b, . . . for those that are empty. For instance, Fig. 27a shows the
propagation of the reference state, Fig. 27b is a Feynman diagram containing one
inferaction. The Feynman-Goldstone representation of Fig. 27b is shown in Fig.
27c; it has the same value as Fig. 27b but is drawn to give the difference be-
tween Figs. 27a and b The states that are missing from the reference state are
given an arrow pointing downward and are called holes; those that are there in
addition to the reference state are given an arrow pointing up and are called
particles. '

Now, it is convenient to define the basis states more carefully than we have

already. Rather than use the kinetic energy in Eq. (89) it is convenient to add

and subtract a potential energy term

H=HO+V-U 2 (90)

H=T+U—E[EA+U(1<)] Ya =3 elA) a (91)

0 "L A aAaA-AeAaAaA 3
+

U"f\U(kA) a, a, (92)
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and to use the energies e(k) as the unperturbed energies. Because the system is
infinite we may take the eigenstates of H0 still to be plane waves. The choice of
U is to be made self-consistently later; for now we consider it to be arbitrary.
Let us now calculate the value of Fig. 27b or 27c. They both have the same
value since they are different notations for the same physical process. Let
Eg = (A) +e(B) + . . +e(2) (93)
Now, the value of Fig. 27b is, using the rules for Feynman diagrams discussed in

the first lecture

_]'w(_idto) i [e(A)+e(b)+e(C)+e(D)+. . 4e(2) 1 (¢ -t )
<Ab|V|aB> oile(a)+e(B)+e(C)+.. 4 (2)] (t-t)
x 6(t'-t )e(t -t) (9ka)
= /m(_idto) e HIE~e(B)+ €(b)] (t'-to)<Ab!V|aB> o1 [Egme(A) +e(a) 1 (¢ -t)
Ble!-t)0(t ) (94b)

Now, let us define the zero of energy so that Eo = 0. Then, Eq. (94b) becomes

4(('idto) e'i[E(b"E(B)](t"to)<Ab|v|aB> o ilela)-e(a) Mz -t)

X e(t'-to)e(to-t). (9kc)

In order to decide what rules to assign the lines and vertices in the Feynman-
Goldstone diagram, one has to return to the original Feynman diagram. Comparing

Eq. (94c) to Fig. 27c we see that the matrix element of the potential enters

always as, with the help of the arrows,

< left out, right out IVI feft in, right in > (95)

Furthermore, the propagator for a hole is

t' -ieA(t-t')
A = -e 8(t'~t) (96)
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The overall minus sign is introduced for convenience later.

The transition from Feynman (F) to Feynman-Goldstone (FG) diagrams is not
always unambiguous. There are two (and only two) types of F diagrams for which
the FG equivalent is not obvious. They are shown in Fig. 28. Conversely, there
are two types of FG diagrams which have no F equivalent. They are shown in Fig.
29. Diagrams of the type shown in Fig. 29, although they have no F equivalent,
are convenient to retain. These terms always occur in pairs, one the exchange of
the other, and signs are assigned to make these pairs cancel.

In the present lectures we are interested only in Feynman diagrams which
begin and end with the unperturbed configuration. The reason for this will be
clear shortly. {n this case no FG diagrams have lines which extend from t or
extend to t', e.g., they look as in Fig. 30. The rules for signs and coefficients
are quite simple:

(1) All possible diagrams are drawn.

(2) Each distinct physical process should be counted once and only once.

(3) Each closed loop gets a (=) sign.

Otherwise the rules are as stated earlier. Diagrams which violate the Pauli prin-

ciple can be shown to cancel.

2. Goldstone's Theorem
Goldstone's theorem for the energy of the ground state E is an expansion

of this quantity in terms of e(k) and V. The theorem says

E-E. = I a (97)

where the sum extends over all linked diagrams, i.e., over all diagrams which
have no external lines and which are in one piece. To clarify the statement of
the theorem, | shall iIndicate how it is derived.

To prove Goldstone's theorem, we must assume that the interaction V is turned
on very slowly at negative times, so that the unperturbed wave function |¢0>
evolves adiabatically into the exact ground state wave function |w0> upon-appli-
cation of the time evolution operator U. We assume that the interaction has
reached its full strength at pime t = 0. The details of the turning on process
are not important, but it must be sufficiently slow not to produce any transition

to any exact state. The adiabatic theorem]6 states

[wo> = uo, -=)|og> (98)
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Now, if we let the system continue to evolve we get

o (8)> = ult, -=) [y _>= e OFEpy > (99)

where

AE = E - E (100)

is the well-known time-dependence of an exact eigenfunction of H. Taking matrix

elements of Eq. (99) we find

b uCe, ==) o> = e PE <y lul0, =) g > (101)

Fach matrix element in this formula is equal to a sum of diagrams, each of which
consists of a set of disconnected clusters. Schematically, we can write Eq. {101)
as shown in Fig. 31 where every blob stands for a linked cluster. Now, to get

the value of a diagram which consists of several individual linked clusters, we
need only to multiply together the contributions ‘rom the individual clusters.
This means that some time orderings of the separate clusters will violate the
Pauli principle, but as we have said, Pauli vicolating terms always occur in pairs
which cancel. Thus no harm is done. Thus the terms which contribute to the left-
hand side of Eq. (101) factor into a piece which consists of all diagrams having

their last interaction between times t=0 and t and a piece which is identical to

the factor <¢O|U(O;W)l¢o>. We therefore write

e_'AEt=Z I [all possible clusters having their last interaction

in (0,t)] (102)

Now, to arrive at the theorem of Eq. (97) we‘must perform the cperation ZII in

Eq. (102). First, consider n identical clusters. The top times to)r topr -
tOn of these clusters are in general all different. Then, if we let each to;
vary from 0 to t, we are obviously including each history n! times, while accord-
ing to our fundamental rule about counting it should be included only once.
Therefore, we must divide by n! So, if aé is the contribution of a particular
cluster c, aé = aft(-i)dtoac = -itac, the contribution of any number, including

0, of such clusters is

1+ al+ aé2/2! + aé3/3! ... =e (103)
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a
There remains only to multiply together the quantities e ¢ arising from all pos-

sible different clusters, which gives

a' Ia!
¢ ¢ (104)

Thus, comparing Egs. (102) and (104) we see

AE = L a
L L

thus proving the desired result.
Goldstone's theorem provides a systematic approximation scheme in which the

energy per particle E may be calculated. Examples of linked clusters are shown
in Fig. 32. Figures 32h and i give examples of terms which contain the inter-

action ~U of Eq. {90), denoted by =--=--x.
! should end this section by illustrating how to calculate a cluster. Re-

call [Eq. (103)] that we have already integrated the last (topmost) time in a
cluster. Therefore we have to integrate all except for the last time.

Figure 32a is the easiest. Since there is only one interaction, no time

integrations remain to be done. The value of the term is

L <AB|V|AB> (105)

:
1y
Z A8

where the sums {actually integrals) over A and B run over single particle-hole
states only, i.e., A, B < e(kF)- The factor of %-is needed according to rule 2

of this section to avoid counting the same contribution twice. The sign is +

because the number of hole lines = number of closed loops.

Figure 32b requires one time integration. This term is redrawn in Fig. 33

with labels. The value of this diagram is

-i(e_+e, -e,-e.) (t =t )
e 2 D ATBI0 T aB|V[ab>< ab|v|AB> (106)

Integrating over time, -if ° dt], summing over states and including the sign

(again + because there are two hole lines and two closed loops) .

1 ]
Fig. 32b =—Z 2; < AB|V}ab>———————< ab|V|AB> (107)
2% a € *Ep EQTER

< e(kF) > e(kP)
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Fig. 27. Illustrating the difference
between Feynman and Feynman-
Goldstone diagrams.
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Fig. 28. Special cases of Feynman and

corresponding Feynman-Gold-
stone diagrams.
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Fig. 29. Feynman-Goldstone diagrams

with no Feynman equivalent.

D

T Free

Fig. 30. A Feynman-Goldstone diagram
which begins and ends in the

unperturbed configuration.

Fig. 31. A schematic representation

of Eq. (101).
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Fig. 32. Examples of linked clusters.
We may ignore the contribution from the limit -» because the interaction was
assumed to be slowly turned off at these times.

One result useful to note is that each time-ordering of a diagram (a time-
ordering is a constraint which specifies the order in time in which the various
interactions may occur. Figures 32a to f have only one possible time-ordering
but Fig. 32g has two, depending upon the order in which the two intermediate
interactions occur) can be written as a product of matrix elements of potentials

and energy denominators

. . _ | 1 N
Time-ordered diagram = <|V|> EFEE%BTTi;T.‘1VI> Trergy Dem. | < [v]> (108)
where
Energy Den. = - Z € + Z € (109)

part. holes i

The order of potentials in Eq. (108) is the order in time as they occur in the
diagram, and the sums in Eq. (109) run over the particles and holes that exist
during the time interval between the two interactions in Eq. (108). This result

is easy to prove and one may consult Ref. 16 for details.

3. Energy of Nuclear Matter - Lowest Order

. Theory-The Brueckner G-Matrix
Each of the linked clusters contains matrix elements of the poten-
tial V. But V has a very strong repulsion at short distances, as has been em-
phasized in earlier lectures. Therefore we expect that the expansion in Eq. (97)

will not give meaningful results in its present form.
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The idea of Brueckner was to sum together all similar diagrams so that in-

stead of the matrix elements of V entering in each linked cluster, one would find

the matrix element of a new object, the G-matrix. The sequence of terms that are

to be summed together to form the G-matrix is shown in Fig. 34. From our discus-

sion of how to evaluate diagrams, we see that this sequence has the value

?h V+V 9h v -%F—-V + ---
(.Uo u)ou)o

Glw) =V +V

(110)

G(w)

Vv w=h
o

where the operator Q ensures that no intermediate states occur which are below

the Fermi surface. The operator hO is the single particle energy operator for

the pair of nucleons that are interacting in Eq. (110) . Because the sequence

shown in Fig. 34 occurs within some larger cluster, the energy, w, called the

starting energy, may be determined from the other energies in the diagram in the

same time interval.

The point is that the G matrix is a finite and well-behaved quantity even
for an infinitely hard core potential V. Thus, the perturbation expansion for
the energy is much better behaved when written in terms of G rather than V. The
rearranged expansion in terms of G is often called the Goldstone expansion. The
rules for it are very similar to the rules for the expansion in terms of V. The
differences are: (1) the interactions are now G matrices everywhere instead of
potentials (G-matrices are often denoted by wiggly lines, potentials by dashed
lines); (2) to avoid double counting, two {(or more) G matrices should never occur
in succession between the same two particles.

It is generally believed that the single G matrix contribution to the energy,
shown in Fig. 35 is the dominant contribution to the potential energy at normal
nuclear matter density. To get the corrections to this it is necessary, however,
to sum a large number of other terms according to a well-defined prescription,
which | shall come back to later. Next | want to study in some detail the con-
tribution of the terms in Fig. 35.

Let me begin by writing out the explicit expressions. Figure 35 speci-

fies that the potential energy W is given approximately by
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5 iB <AB[G(eytey) |AB>

1
3 EB < AB|G(e,+e,) |BA>

(111)

I< AJU|A>
A

The minus sign in the second term of Eq. (111) arises because the corresponding
diagram has two hole lines and cne closed loop, hence receiving an overall factor
2+1
().
The discussion of the contribution of Fig. 35 is facilitated by working with

wave functions rather than G-matrices. Consequently, we introduce the two-body

wave function ¥ defined as

= Q
Yap = P * e YWaB (112)
where ¢ is an unperturbed (plane wave) state
ik,*r ikg r
_ RatIa 'kgtTp
dp (1) = e (113)
e is the energy denominator in Eq. {110)
e = w-h_ (114)

and G is the Brueckner G-matrix. ¥ is useful because if we know Y then we may

calculate G according to the relationship

vaB = Gopp (115)
which follows from multiplying Eq. (112) by V and using the definition of G.
Another useful definition is of the defect wave function
T = ¢ -w =..Q—le (llGa)
AB~ TAB TAB e 'AB °
Several methods have been proposed for solving Eq. (112) for ¢. | want to

mention only one, called the reference spectrum method. See Refs. 82 and 34 for

more details.
To begin, | must discuss in some detail the energy denominator in Egq. (113),

in particular the operator ho. The eigenvalues of ho are the energies g(Kk)

defined in Egs. (30) to (92).
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Fig. 34. The Brueckner G-matrix. All Fig. 35. Leading contributions to the

intermediate states are above potential energy term in the
the Fermi surface. energy of nuclear matter.
' The wiggly lines are G-matri-
ces; the dashed line ---x is

the quantity -U of Eq. (90).

hoy ¢ap = [e(ka) + e(kb)] ¢ (116b)
<
e(ka) = * ”“‘a) (mz

Because Eq.{(112) contains the Pauli operator Q, h. will act only on states having

no components below the Fermi sea, and therefore 20 solve Eq. (112) it is only
necessary to specify U{k) for k > kF. The choice of energy for particles excited
out of the Fermi sea is a moder~tely long story, about which |'11 have more to

say later. Suffice it to say here that setting the potential energy equal to zero
for these states is believed to be at least an approximatély correct procedure.

The energy variable w in Eq. (114) assumes the values

= (118)
w=¢g,+ ey

according to Eq. (111). These are the energies of particles below the Fermi sur-
face which are bound; hence, the potential energy for these states cannot be taken

to be zero. (The potential felt by these particles must be chosen self-consist-

ently.) Consequently, the energy denominator is

( n V§) <k

€ ¢ab - \ TM T oM ¢ab - YTIM TN ¢ab (119)
<

Note that w ~ M oM is a negative number. It is convenient to rewrite e in

terms of the relative and center of mass momenta, since the center-of-mass momen-

tum P is conserved. Then we have
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2 2
P v
= - + ——
eR w m M (]20)
where V2 acts on the relative variable r. The second approximation of the refer-
ence spectrum method (the first was setting U(k) = 0 for particles) is to ignore
the Pauli operator Q. This is not a bad approximation but it does require a
correction, which is always made in realistic calculations.

Thus, the reference spectrum method approximation to the G-matrix consists

of the following equations

< AB|G(e, +ep) [AB > = < AB|G (e, + ep) |AB > (121a)
vihere
R
- - = >
<AB[GR(cA + cB)lAB > <¢AB|VI¢AB (121b)
R 1 R
Yag = Pap * e Y¥as (121¢)
R

It is easiest to solve Eq. (121c) by converting it toa differential equa-
tion. Multiplying through by eg we get
2
)

(v + v C:B(r) = - MVQ)EB(r) (122a)

using Eq. (120) the definition in Eq. (116 ) and setting

2 2

Yo _ P
- oS — (122b
M 4M )

2
We have already explained that p - ;ﬁ is a negative number. 1t is easiest to

study Eq. (122 ) for S-waves. In this case we have

4 2
(d_z - )Xo(r) = = Mu(r) uy(r) (123)
.

where Xo is the S-wave component of pd and Yo the s-wave component of . Now,
because V vanishes for large r we have
2

d 2
‘;:f wo(r) = Y%o(r)  large (124)

70




or

Xo(r) v e "= ulr) - gy(r) (125)

in other words, uo(r) > ¢0(r) at large r and the wave function § differs from a
plane wave only when the two particles are close together. This is due to the
fact that YZ is a positive number. |f the scattering had occurred in free space
then YZ would be negative and the wave function would be changed at large r.
This "healing'' of the wave function is a very important phenomenon. (The Pauli
effect would give rise to healing also, because it does not allow particles to
scatter into occupied states, but here the healing has occurred because of the
spectrum of single particle energies.) |t provides a physical explanation for
why the shell model works so well, i.e., why nuclei are described so well by
particles moving in well-defined single particle levels.

An important quantity is the defect integral K

_ 2
K = f|pAB| dt (126)

where the bar indicates an average over states in the Fermi sea. This quantity
may be thought of as a correlation volume, since as we have seen 7 > 0 for large
separations of the two nucleons. O0One might expect intuitively that the Goldstone
expansion would converge if this quantity were much smaller than the volume per

particle, D-]. One often defines a ''smallness parameter! «
KE Kp (127)

and the condition for convergence is that k <<1. Most calculations give k = 0.14
for densities near normal nuclear matter density. | shall return to the question
of convergence later.

Let me end the discussion on the calculation of the G-matrix here. | have
intended only to make you familiar with some of the ideas and you should refer to
the reviews for further details. Now let me turn to a presentation of results of

full calculations of nuciear matter energies with realistic potentials.

b. Results-Reid Potential

Resu]tssq for the Reid hard and soft core potentials are shown .in
Table XXI|.3A This table shows the contributions for the various partial waves
to the potential energy and to the parameter « at normal nuclear matter density

(pn =0.17 fm-3). The table also shows the sum of the potential energy
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contributions, the kinetic energy and finally the binding energy. Recall from

the first lecture that the accepted experimental value is

E/A = - 16 MeV at kg = 1.36 fm | (128)
One result to be learned from this table is that hard core interactions give less
finding than soft cores; the soft core result seems to be giving a result closer
to the experimental point than the hard core and this is taken as evidence
strongly in favor of soft core potentials such as the Reid soft core over hard
core potentials such as the Hamada-Johnston potential.

Table XXIII34 shows the contributions to the binding energy as a function of
the main contributions come from the S states;

density. HNote that for p Po
their sum is nearly equal to the total potential energy. The sum of the 3P con-
tributions is almost zero, which is closely related to the fact discussed earlier
interaction in the 3P states. On the

that there is essentially zero central
1P state. The ]D and sum of

other hand, there is considerable repulsion in the
3D states are attractive. At the higher densities in this table the S states

are no longer dominant; the attractive contribution of the D states begins to
become important, but the sum of 3P contributions remains small: as the density

is increased, the average momentum of the particles becomes larger and hence the

higher angular momentum states are more likely.

If the E/A vs kF in Table XXII] is fit by a polynomial it is possible to
perform the differentiations in Eq. (7) to find the inccmpressability K. One
finds3h

K = 134 MeV "(129)
This is a bit low in comparison to the experimental value in Table Il!| deduced

from observations of the giant monopole resonances.
The contributions to k from the various states are also shown in Table XXII,

Note that the largest contribution comes from the 3S state. This in turn is

largely due to the strong tensor force rather than the repulsive core.

4. Saturation of Nuclear Forces
It is a well-known fact of nuclear physics‘that nuclear forces saturate,

i.e., the energy as a function of density has a minimum. One manifestation of

this is that the nuclear -radius is proportional to A'/B, showing that the average

density in nuclei is roughly constant as a function of A. One of the requirements
72 |
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of a successful theory of nuclear matter is that the saturation be predicted and
be predicted to occur at the correct density.

If the nuclear force were purely central attractive nuclear forces, then the
potential energy per particle would be proportional to the density. The contri-
bution in S states would not increase as fast as p, but this would be compensated

by increasing contributions coming from higher orbital angular momentum states.

3

Figure 363h shows the contributions from the relative ]S and S states as a

function of kF. At small kF the contribution of 35 is numerically greater than
that due to ]S. This is to be expected because the attraction in 35 leads to a
bound state, the deuteron, while the ]S state just fails to be bound. But at
higher density, about kF = 1.3 fm_‘ the two curves cross, and beyond this 35 is
less bound than ]S. This crossing is due to the tensor force, which contributes
the major part of the binding in 35. Although the tensor force averages to zero
for a pure 35 state, if the tensor force is allowed to mix the 3D and 35 state
together in a second order process shown in Fig. 36, then it can contribute to
the energy. At low density the contribution is greater than at higher density
because the Pauli exclusion principle forbids intermediate states in Fig. 36 for
k < kF; at higher density kF is greater and more of the 3D contribution is lost.
A second effect for reducing the contribution in Fig. 37 is that the difference
in potential energy between intermediate and initial states also increases with
density. This effect is the most important cause for saturation.

The second cause for saturation is the partial exchange character of nuclear
forces. Figure 38 gives the total contribution to the potential energy from S,
P and D states. The S states have been discussed already. The P states give a
repulsive contribution. This is made up mostly from the ]P state as discussed
earlier, |If we had ordinary forces then the P curve would lie between the S and
D curves. Because the central force in D states is less than in the IS state,
the contribution of the D states is not as attractive as it would be for ordi-
nary central forces. Note that the contributions from P and D states tend to
cancel, leaving the dominant contribution in S states. Finally there is the
short range repulsion. This is less important for saturation than the preced-

ing effects near normal nuclear density.

5. Three- and Four-Body Clusters
So far we have considered only the lowest order term in the Goldstone

expansion. The calculations with the Reid potential in this approximation show

73




E{MeV)

I l

Fig. 36.

Fig. 37.

7h

kF(fnfl)

Contribution to the binding
ener?y of nuclear matter, of

S and 35 state, vs Fermi
Fermi momentum kg, according
to the calculations of Sprung.
The 3S$ contribution saturates
because of the important con-
tribution of the tensor forceld™ Fig. 38.

the

A second order process occur-
ring in G and involving the

tensor force.

N 1 ! L

0.8 1.0 1.2 1.4 1.6
FERMI MOMENTUM kg (fm ")

Contribution of all S, P, and
D states to the potengial
energy per particle.3

Some contributions to the
three hole line set.

Fig. 39.



TABLE xxi!

PARTIAL WAVL CCHTRIBUTIONS TO ENERGY

TARLE XKUL
34
PER PARTICLE E/A AND PARAMETER K in CONTRIBUTICNS TO BINDING AT VARIOUS DINSITIES
Energy (Me¥/Particle) X _(percent) (Hev PLR PRATICLE)
» -1
State Hard fore  Soft fore Diff. Hard Soft Y lm ) g9 1.0 1.2 14 1.6 t.7
3
' - 1c ca 86 2.1 plfn) 2.02) .06% o3 .85 a.216 a.an
i th-e6 552 o 3.80 5 s .72 - 836 -12.36 -16.35 0.3 -22.10
Tp 3.41 2.38 1.03 0.69  0.40 3 wss 045 1308 -lsis 5.3 -15.67
ID -2.75 - 2.56 -0.19 0.02 0.02 ' 0.13 a.55 1.30 .76 5.34 2.17
3 . - - 2. - 3.56 - 4.7 - 6.54
3 NERY: -14.99 1.87 13.54  9.78 i 037 -k 736 33 i
3 . - . 0.0l 0.00 %, 0.72 3.0 615 1.08 18.30 22.90
D] 1.47 W46 0. . .02 , - ) ‘ st e
" 039 - 1.93 - k2 7.9 . R
3 . - -
Py 3.96 3.31 0.65 0.17  0.23 I ovr -5 o148 - 269 -s.08 -
3 . 1. 2.6 3
3P| 10.64 9.92 0.72 0.55 0.1 b, 0.07 0.40 0.87 62 ’ 3
%, 0.2t -7 -2.58 -85 -8.13 -10.18
3 - 6.82 - 7.06 0.24 0.51  0.40 i
2 "rl -0.07 -~ 0.1} «0.30 - 0.64 - 1.20 - 1.58
302 - 454 - 4.33 -0.24 D.04 0.04 » 0.01 o.n 0.22 0.33 0.35 0.26
Sum 5.A5  -19.63  -22.7! 435,58 -42.05 4450
3F2 - 0.54 - 0.56 0.02 0.00 0.00 Kinetlc 6.10 12,44 17.92 24.38 31.85 35.95
123 0.32 0.12 0 0 0 Binding 3.3 7.19 9.79 11.20 10.70 8.55
2 . .32
Sum ~30.55 -34.25 3.70 19.3 13.5
Kinetic 23.01 23.00
Binding 7.54 11.24%

saturation at about the correct density but they do not come close to the ex-
perimental point. In order to understand whether this is a weakness of the
interaction, one must evaluate higher order terms in the Goldstone expansion.
In order to calculate the next correction in the Goldstone expansion it is
necessary to evaluate many terms together. The important terms are those that
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contain three independent hole lines; Rajaraman showed that all these terms
are of the same order of magnitude regardless of the number of interactions they
contain, due to the hard core. Bethe86 was able to sum the latter graphs using
the method of Faddeev. Some cf these contributions are shown in Fig. 39. The
calculations are very difficult, but the initial work discussed in Ref. 34 gave
a net attractive contribution of = 1.8 MeV at kF = 1.36 fm-]. This result is
very small compared to the two-body potential energy of about 33 MeV, in line
with the expectations about convergence.

It is believed that the convergence of the Goldstone expansion is governed
by the ‘‘small parameter' k defined in Eq. (127). The two-body terms (two-hole
line terms) contain one power of Kk, the three-hole line terms two powers, four-

hole line terms three powers, etc. |t becomes progressively more difficult to
1
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calculate the higher order contributions, but Day87 has managed to estimate the

four-hole line cluster and found them to be = -0.24 MeV. |In addition to the

“true' four-hole line diagrams there are also other four-body correlations, which

give a net contribution =~ - 1,09 * 0.5 MeV.
83 has recently made more:accurate calculations of the three- and four-
is the

Day
hole line diagrams and finds the result shown in Fig. 40. The curve PWI
latest variational calculation result Wiringa and Pandharipande discussed in
The remark worth making at this point is that the varia-
is consistent with the theo-

greater detail later.

tional result lies above the Brueckner result which
retical result that a variational calculation gives an upper bound on the energy.
It is a bit disturbing, h>vever, that the variational result saturates at such a

larger density than the Brueckner result.

Further theoretical work is needed in order to firmly establish Brueckner-
Bethe theory as a microscopic approach for studying nuclei. Day83 has suggested
tests for the consistency of Brueckner theory. Clearly, agreement with experi-
ment is not a sufficient test of the many-body theory; a discrepancy could indi-
cate either a breakdown of the many-body theory or a deficiency of the underlying
interaction. Comparisons to results of alternative methods, e.g., the variation-
al method discussed below, with the same interaction, is one way to assess the

validity of the method, and such comparisons have stimulated improvements in
Brueckner-Bethe theory calculations.

6. Calculations with Different Nucleon-Nucleon Interactions

Two-hole line results using a variety of potentials are shown in Fig. 4]
as circles. Shown is the minimum in the energy vs. density curve for each
interaction. The box is the experimental value and its associated uncertainty.
Note that the circles define a band, called the Coester band. The band does not
intersect the experimental box, however. |In all cases where the potentials are
carefully matched to the experimental nucleon-nucleon phase shifts the location
of a point in this band depends upon the value of k: potentials with smaller «
tend to saturate at higher density and with greater E/A. The dependence on k
is not unreasonable, based on the discussion of saturation: a larger k means a
stronger short range repulsion and/or a stionger tensor force, both of which
enhance saturation.

One of the very interesting questions is: why does this band not include

the experimental point? This failure is one of the most intriguing questions
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in nuclear physics today. As we have said, there are two possible answers. One

is that the Brueckner-Bethe theory has not been solved sufficiently well, and the
other is that the underlying interaction is not correct. (A third possibility is
that both the theory and interaction require improvements.)

The calculations in Fig. 41 are due to Wong and Sawada. E They also esti-
mated the contributions of higher order terms in the Brueckner-Goldstone expan-
sion. The arrows in Fig. 41 point to the two- plus three- plus four-hole line
result. The result of Day discussed in connection with Fig. 40 is shown as the
dashed line in Fig. 41. (The discrepancy between the WS and the Day results
reflects recent progress in calculating the higher order terms.) Table XXIV
shows the same results in tabular form along with the incompressibility coeffi-
cient K.

There are two interesting conclusions which can be drawn from Table XX!V and
Fig. 41. The first is that for all the potentials, the higher order corrections
are of about the same size and relatively small. The second conclusion is that
different potentials which give roughly comparable reproductions of the nucleon-
nucleon phase shifts may give substantially different results in nuclear matter.
Much of this difference is related to the strength of the tensor force. These
results should give some encouragement to the hope that a careful study of nucle-
ar matter properties using the best many-body theories will eventually tell us
about properties of the underlying nucleon-nucleon interaction which cannot be

learned from the nucleon-nucleon phase shifts alone.

7. Meson Physics Corrections (Three~Body Forces, Etc.)

The energy per particle shown in Fig. 4] comes close to the experimen-
tal box but doesn't actually lie within it. Until very recently the calculation
was not nearly as close to the experimental box and this has prompted searches
for interaction-related effects which might move the theoretical saturation
point.

The types of corrections to the potential which have been considered are
generally of two types: (a) corrections to OBEP due to the nuclear matter back-
ground potentiel and (b) three-body force effects. The Bonn group9] has con-
sidered the first type recently within an energy-dependent effective interaction
formalism, and many groups have considered corrections of type (b). In both
cases one needs an underlying meson exchange model in order to provide a theo-
retical basis for making the correction, i.e., a description purely in terms of

phenomenological potentials would noﬁ permit such a question to be answered.
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Let me first consider three-body forces. The need for three-body forces
arises from the fact that some interactions cannot be described as the repeated
action of a two-body potential. Figure 42 shows one such term. Figure 42a
contains just the / intermediate state; Fig. 42b contains the entire pion-nucle-
on amplitude, which must be corrected because the nuclecn pole piece, shown in
Fig. 42c is included in part by the iterated one-pion exchange potential. As
might be expected, the theory of folded diagrams20 specifies how to express this
correction diagrammatically.

The three-body force is a complicated operator which nobody has yet suc-
ceeded in using as an interaction in Schroedinger's equation. Instead, several
levels of approximation have been involved. One important piece of the three-
body force is the A contiribution shown in Fig. 42a If lines 3 and 4 are the
same states then the three-body force is the exchange diagram of the term shown
in Fig. 43a. Both Fig. 43a and b violate the exclusion principle and the sign
rule is such that they identically cancel. Hence in an actual calculation one
should include both or neither. I|f one uses a two-body potential which repro-
duces the nucleon-nucleon scattering phase shifts, then the term in Fig. 43a is
naturally included in V and the three-body force in Fig. 43b should be added in
to cancel this piece of V. Alternatively, if one has a model of V with Fig. 43a

given explicitly as a piece of it, then one may simply restrict the intermediate

momenta so as to exclude the intermediate momenta (see Fig. 43a) below the

Fermi surface and omit the exchange term in Fig. 43b. A calculation of the
latter type was done by Day and Coester (CD).92 Actually these authors did their
calculation in a coupled~channels framework with As and solved for the Brueckner
G-matrix with the Pauli operator Q on all intermediate states. Their result was,
not too surprisingly, that the exclusion of the intermediate states in Fig. 43a
was a repulsive effect (it cuts out a

piece of the AN intermediate state

TABLE XXIV

through which the nucleons obtain a
BINDING ENERGY, EQUILIBRIUM FERMI MOMENTUM kr AND

large measure of their attraction) and INCOMPRESSIBILITY K ACCORDING TO WaNG AND Sawapa®?
. ) . Potential [ied asc?! pen®® TTRCE TG 27
! - Potential Hy- RSC’ BN et 85’ us3
grew more repu] sive as the densi ty in Flrst order calculation (Two-body correlations only) -
8 (Mev) 6.4 0.3 8.7 (LN
creased. However (e ' ' e i
ver, the curve E/A vs kF welrhy 1.20 1.35 1.36 1.60 1k 178
K (Nev) 6s 120 1o 170 230 240

in the lowest order approximation to the

Including higher order corrections

the Goldstone expansion still traced o fhey 7! 12.0 "2 2 a8 22.9
kml) 1.26 146 1.46 1.68 1.6 L8
out the Coester band, i.é., the experi- K {ne¥) 70 150 1o 1% 260 P

mental point was still not reproduced!
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Day and Coester argued that if an additional attractive contribution with a

dependence on (kF)n, n < 4.2 could be found, this in combination with their

repulsive term which goes like 1.3 kﬁ'z (Mev, if kF is in fm-]) could move the

calculations off the Coester band. 0One should note that this piece of the inter-
action constitutes a saturation mechanism in addition to those discussed earlier.
However, one should bear in mind that the extent of saturation depends upon the
extent to which the As couple to nucleons, i.e., the magnitudes of the transition
potentials for NN - NA, and that since the CD paper these potentials have been
getting weaker. The matter is still not settled.

What about the remaining contributions to the three-body force? These cal-
culations have a long history, but the modern calculations begin with Brown,
Green and Gerace.93 The direct three-body force hy itself, i.e., that of Fig.
42a with 1 = 4, 2 = 5 and 3 = 6 is small, because there is no momentum trans-
ferred by the pion. However, the contribution becomes much larger, if the three-
body force is followed by another interaction, as in Fig. 44. One of the most
careful calculations of this term was done recently by Coon, et al.9 They use
the fhll three-body amplitude rather than just the A and make a correction for

the iterated one-pion exchange. They find a contribution of the three-nucleon

potential to the energy of symmetric nuclear matter to be -1.,90 + 0.2 MeV at
normal density. They did not investigate the density-dependence.

Kouki, Smulter and Green95 have recently considered three-body forces inclu-
ding exchange diagrams. They find an even smaller result, -1.1 MeV at kF = 1.4
fm—], but they estimate some additional three-body forces including 3 As and
find these terms large. More work needs to he done in order to setfle the sizes
of the three-body forces. KSG offer some hope that the three-body force in com-
bination with the CD effect will be a imechanism to move results off the Coester
band.

Finally, let me remark on the work of Anastasio, et at.

91

who use an energy~
dependent OBE potential. They do a Brueckner calculation in a light finite
nucleus and find that the energy dependence can improve the theory, but their

effect is small in nuclear matter near normal density.

B. Variational Method
The variational principlg says that if H is the Hamiltonian for a system and

Y a wave function, the energy Evar’
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wIH[w>
< blHly (130)

Evar: <yly >
is an upper bound for the true ground state energy EO‘ i.e.,

(131)

By improving the choice of y one can come closer to estimating the actual ground
state energy. In principle, the variastional method is very easy to implement:
one guesses ]Q} and then one evaluates an integral, Eq. (130). However, for a
realistic choice of ’ﬁ? a direct numerical integration is very difficult for a
many-body system. (Consequently, some systematic approximation scheme is needed,
and the challenge of the theory is to invent such schemes fcr forces as complica-
ted as the nucleon-nucleon interaction.
The simplest choice of wave function would be
p=0o=A T & (r) : (132a)
B ppe © P

where
ip'r

p
b (r) = S0 [s>] > (132b)
P p Q1/2 |

fn this expression A antisymmetrizes the wave function, |s> and |t> are respec-
tively spin and isospin wave functions. The wave functions are normalized in a
box of volume . However, this simple wave function would not be adequate for
several reasons. The most serious difficulty is the strong, short-ranged repul -
sion present in realistic nucleon-nucleon interactions; with the wave function
in Eq. (132) the repulsion would be allowed to dominate Evar
To make a better estimate of the contribution of the repulsion, one could
multiply ¢ by a function F(r],. e rA) which vanishes when any pair of nucleons

come sufficiently close together. A simple function having this property is

F= T f(r,.) (133a)

where f(rij) might resemble the function in Fig. 45. With this prescription

¥ =Fo. f (133b)
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In order to make reliable estimates of the ground state energy of nuclear
matter it is necessary that f be spin, isospin and momentum dependent. | will
have more to say about this later.

Now, write

E =< T> 4+ <V > (134a)
var
v?
<'r>=i <L’i"§ﬁlli>/<ﬂ’12> (134b)
<y > = L <, V.. w >/ <> (134¢)
2 ¥ + iy = —’=

The kinetic energy may be simplified by substituting Eq. (133b) into Eq. (134b)
to get

<T>=15 <y, - %ﬁ [F vfrb + 29,0V F + (W‘?F] > /<,y > (135a)
i
2
i 2
=?-2ﬁ—?ﬁz <, 29,07 F + OVF > /<y,p > (135b)

1. What is a Cluster Expansion? Example: Interacting Boson Gas

In order to introduce the idea of the cluster expansion in many-body
variational theory, let us consider a simpler problem than nuclear matter, namely
the atomic system, liquid hHe. This is a Bose system, and all atoms may there-
fore be assumed to occupy the lowest energy orbitals, plane waves with zero momen-

tum. In this case the ground state wave function becomes

1

Y=—75 F (136)
A2 3

The potential acting between two hHe atoms has a strong short-ranged repulsion,
and hence the factor F is needed as in the nuclear case. The only difference is

that F is now of atomic rather than nuclear dimensions.

Because ¢ is constant for bosons the first term of Eq. (135b) does not ex-

ist, and we write

3 ‘
2 r. d’r
Cd A 2
Tred -C_M) 9 f g FViF /<Ly (1372)
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Here and in the remainder of the discussion we associate the normalization

volume O with the volume elements d3ri. Each of the A particles has the same

kinetic energy and hence Eq. (137a) may be written

T/A = :k - J/i___, FV F/<w,p > (137b)

The potential energy <V > of Eq. (134c) may be simplified, noting that
each pair of particles (there are A(4-1)/2 pairs) contributes the same amount

and hence

3
- d’r d’r
<V>=A(? ])f 7 ! ‘/"—Q-—A- FZVIZ (]38)

This result is conveniently written in terms of the two-body distribution func-

tion g, defined by

1
glr-r') = = & <8(r-r,)6(r'-r;)> (139)
N2 i ~ o~ ~  ~J
3 3
d’r d’r
A-1 3 A 2 |
ST T Py e

The physical interpretation of g(r) is the probability of finding a particle in
the volume element dT at a distance r' from r = 0, given that there is a particle

at r = 0. In terms of g, Eq. (138) becomes
V/A=-;_-pfd3r v(r) g(r) (140)

2 Cluster Expansion for the Two-Body Distribution Function g(r)

The purpose of a cluster expansion is to give a systematic approximation
scheme for evaluating the multi-dimentional integrals such as that appearing in
(134c). As an example of the method, let me consider the cluster expansioh
for g(r).
Because f differs from unity only when the two particles are close togethér,

it makes sense to introduce the function h(r)

h{r) = fz(r)
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which vanishes when r > d. The idea is now to express g{r} as a power series in
h{r); if d is sufficiently small, then the series presumably converges rapidly
since the likelihood that n particles will be close enough together for h(r) to
be non-zero gets smaller as n increases.

Consider first the normalization < Y|y >

d3r. d3rA
(E)_H_)\) =f—7u:é-—1- ..:[ Q .H. [h(riJ) + ]] (]LIZ)

1>

The power series in h is obtained by expanding the product

T [h(r; ) + 11 =1+ T hlr.)+ ... \ (143)
i>] J i)
it is convenient to express the various terms as diagrams. Imagine A points on

the page, one for each atom. Then h(ri.) is denoted by a line connecting points

i and j. We may then state the aeneral rule for a general term in Eq. (142):

the points may be connected in any way as long as no more than one line connects

any two points. Two examples are shown in Fig. 46. The value of Fig. 4ga is

3 3
d”r d’r
I 2 _ AlA-1)
2 l;m f a o hryy) = g J dr n(r) (144)
(9.#m)

There are also_integrations over the points not shown explicitly, but these each
contrcbuteJln———-— 1. The factor of l-:s necessary because of the particular
symmetry of the diagram: if the lcne is rotated by 180 about its midpoint, the
topology is unchanged. This means that the unrestricted summation in £q. (144)

counts each distinct diagram twice.
The value of Fig. 46b is
3 3
r d
g m
f h(')’z QJQJQ
,m,
R

r
n

h(er) h(rmn)gh(rnp) | (145)
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where R] and R2 represent restrictions on the summation and SI and S2 are factors
necessary because of the symmetry of the individual terms. The restriction Rl

is that p £ (q,2,m,n), g # (2,m,n); S] = %—as discusse” in conjunction with

Eq. (144). The restriction R2 is that £ # (m,n,p,q), m # (n,p,q), n # (p,q);
52 3, because there are 3! = 6 orientations of a triangle on three points, so
the unrestricted summation would count the same term six times. We may thus

write the value of Fig. L4b as

1 (A-3) (A-4h) 3
[2 5 fd rpq h(rpq)] |
. [E (A- 2)(A 3) (A-4) '/F3 ./f 3 )h(r Yhir {] (146)

Note that the diagram factorizes into a numbet of terms equal to the number of

—

linked clusters which constitute the diagram. Also note that when A - o the

factors in front of the integrals become independent of the rest of the diagram,

i.e., Eq. (146) becomes™

[% on f43 h(r)] [-;- o f ey fPran hlrgnte, )h(rnp)]+ 0(A)(147)

Generally, the value of a cluster in *he limit A » « js

Cluster =%wc | (148)

where wc is independent of A and contains a factor pn_] where n i1s the number of

points in the diagram.
There is only one other consideration. Suppose that a diagram has Vp iden-

tical linked clusters T'. Then the independent summation over coordinates will

count the terms VF! too many times.

Terms of 0(A) cannot actually be neglected. These are ''factorizable terms'
and are needed to cancel factorlzable terms in wc(r }, Eq. (154) . oOur final
result in Eq. (156) is correct because of the trick éxplained above Eg. (156).
i
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Putting these ideas together, we have

| AW_ VT
< lb’lp > = 7 1T U_'- —-—-D-) (149)
- D Clusters T ’r° \ Sp
in D

For larae A we may exchange the sum and product to get
D SD
<9JT? = e (150)

Now consider the expansion for

d3r d3r .
__3 _)t*~—ﬁ Fz(r r r.)
Q o Q 177227 A

3 3
d’r d’r
= fz(rn)f—@—l f 5 : R Uy (151)

i>]
#(1,2)

Diagrams are again constructed as in the example of ‘:yjy >. However, now there
are two types of terms to be distinguished: those diagrams wc(rIZ) containing
the points 1 and 2, which are not integrated, and those which do not contain the
points 1 and 2. Some examples are shown in Fig. 47. In the limit A + » the
value of any cluster is completely independent of the remainder of the diagram.
Consider all diagrams containing the particular linked cluster Wr(rlq). This

sum may be faciurized in the A > o limit into the factor wc(rlz) times the sum of
all possible linked clusters. But we have just evaluated the sum over all pos-

cible linked clusters. It is

(AWD>

D s

IS, (152)
e

i.e., just <yly >. Therefore

3 3
r d’r
A 2
/"Q N Lo Dl = <ulp> Fir) By (59)

#(1,2)
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f(n)

Al -

r

Fig. 45. A possible choice for f(r) in
Eq. (133a). Beyond r=d f(r)
= 1.

t
1
Fig. 4. A large contribution involv- A/ r P9 /\\\
ing the 3-body force. ‘;;7 [:::>p / '/\\_b / r
cmmeeD o
] 2 e L 7 2
£<<::;;7’“ ///q ) (b)
t‘\\\\\\\\~ ¢ Fig. 47. Two contributions to Eq.
n P
. m

(151). The dashed line rep-
resents fz(rlz).

(a) (p)

Fig. 46. Examples of diagrams contri-
buting to < gjy >. Points
not connected by factors of ==

h are not drawn. (o) (b)
Fig. 48. Linked diagrams for W (rlz)
having factorizable
pieces.
from which we find (A > «)
a(ri) = £2(r ) W _(¢.) (154)
12 12 c © 12

The result is that g(r) is equal to fz(rlz) times the sum of all linked diagrams
connected to the points 1 and 2: all unlinked diagrams (i.e., linked clusters not
connected to points 1 and 2) cancelled with the normalization < ng?.

There is one further simplification before the final result. There are
many diagrams in wc which contain factorizable pieces, i.e., pieces which connect

at a single point. Examples of factorizable diagrams are shown in Fig. 48, |I[f

87



any diagram can be split into two or more completely separate pieces by cutting
through a vertex on a diagram, the pieces which can be separated are factorizable,
i.e., have values independent of the rest of the diagram.

Now, the further simplification is that the diagrams which contribute to
The reason is, briefly, that the

g(r) should not have any factorizable pieces.

cluster expansion for the density p

p(r) = < 8lr-r)> / <ylu > (155)

J
is the sum of all factorizable diagrams attached to a single point [this can be
easily proved; it follows immediately after noting that the unlinked clusters in
the numerator of Eq. (155) cancel, for the same reasons they cancelled in the
calculation of g(r)]. Thus, it is entirely consistent to omit the factorizable
pieces, provided the correct density factor is used at each vertex (when the f

depend on spin and isospin the ''factorizable' pieces may no longer be dropped) .

The final result is

giry,) = F2(r,) ZVL(r ) (156)

where Wé is a diagram containing the points 1 and 2, containing no factorizable

pieces.
The leading diagrams Wé are shown in Fig. 49. The leading correction,
Fig. 49a, is obtained by setting g(r) = fz(r). The first correction comes from

the three-body term in Fig. 49b. To get an idea of its size, put r = 0 and find

¢5(0) = pf(fz(r) - 12 4t (157)

If this is small compared to 1, then the three-body term is small compared to
the two-body term. We then expect terms involving four particles to be even
smaller, and so on. This requires that f(r) differ appreciabiy from 1 over a
volume small compared to the volume per particle. Thus, the criterion for con-
vergence of the cluster expansion is similar to that of Brueckner theory, k<<1,
[see Eq. (127)].

A great deal of effort has gone into calculating corrections to the simple
approximations for bosons and Fermions, and the investigations for Fermions have

seriously challenged the validity of the Brueckner-Bethe theory. If | have time

['"]1 come back to this later.
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C. Lowest Order Variational Theory for Fermions

Let me now jump to the problem of determining the equation of state of dense
nuclear matter.96’97’98 | will assume that the usual meson and baryon states are
the relevent degrees of freedom and apply considerations developed in previous
lectures. In this lecture | shall assume that real pions are not a constituent
of dense nuclear matter, but will rather consider this possibility separately in
the discussion of pion condensation.

The advantage of the variational method over the Brueckner theory is that
in the former theory one has the possibility of keeping the correlation distance
small and thereby increasing the chances that the lowest order variational result
will give an accurate answer for the chosen correlation function. One pays for
this simplification in that the trial wave function may not be optimal and hence
may be too large by some amount.

the energy E
var "o
Pandharipande”’ proposed a theory based on the lowest order variational

result. He proposes that f(r) be chosen so that

f(r) =1 r>d (158)

and for r < d he chooses f to minimize the lowest order cluster contributions to
the energy of the system. d is defined as the radius of the volume which con-
tains on the average just one particle. He calls this prescription LOVT (lowest
order variational theory) and has shown that it is an accurate method for

calculating the energy in liquid 3He and bHe. The method should also be reliable

for calculating the equation of state of dense nuclear matter, for which the
short-ranged repulsion dominates the remaining components of the interaction.

To begin we need an expression valid to lowest order in the functions
former follows immediately from Eq. {134c); in this expression the only correla-

tions to be considered to lowest order are those between particles i and j.

F(r.j) = f,, for the potential and the kinetic energy. An expression for the
|

Therefore

1
<> = —

v 2 .; (wlj ,Vij ,le)’

1J
ik, r, ik.'r,
o M1~~~
Y., = Af, . |Si>lti>|SJ.>|tj> (159)
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where the A antisymmetrizes the wave function (A2 = A). The correlation function
fij in Eq. (159) is to be state dependent.
The kinetic energy is given in Eq. (135b). The second piece of this may be

rewritten as follows. First note

01V = s F2v + SpF—L—VFf . .VFf (160)
. - fo. 1] - f,.f, i i Tk
i ij i) ijk ij ik

The second term is of three-body character and will be dropped in accord with
the philosophy of retaining terms involving only two nucleons. Now rewrite the

first term as

5 F?‘I’—vff.. = 3 —%f—v? [f..¢.0.]
i T P gy &ty o r T
oF

2
L e [f, V0.0, + 2V.f.. « V.0.6.]
i ¢i¢jfij ijitiTg VR I T Y B

F .
= 1 2E— vl 0r 0001 - F KD-ammeenF (160)
iy %i%5%; SRR =
Thus
<T>=zﬁ- ] zfdsr' dSrsz k?+ﬁ 6
R U G T G i e

To lowest order put all f's = 1 in § except fij to find

S Zfd3rifd3r. [vf ZJ?_ kf lﬁ
<T>=3 — + — —d - — - -— -
fzm 2 i 2 2 wij 2 2M 2M 2M wiJ' (163)

Combining Eqs. (159) and (163) we find98

k2 v2 2
w:z_i.._+l iy [-__i.i_-ii.i—--p\/]w (164)
: ZMi 2 i] ij’ Zu'J Zuij ij ij
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where

ik,.-r,.
by 0., =e 4 s s g, : (165)
iJ iJ i ] i

<
]

i3 = fig

reduced mass for particles i,]

=
]

ki' is the relative momentum for particles i,j.

In the present lecture we shall consider that the state of the neutron star
matter is liquid. It is a possibility that the matter will crystallize due to
the short-range repulsion. The repulsion is, however, now considered too weak
to give rise to a lattice; see, however, the discussion in the next lecture.

Now, we want to choose f to minimize W. However, we want to restrict f to
short enough distances so that the leading term in the cluster expansion suf-

fices. Thus Pandharipande introduces a Lagrange parameter Aij’ i.e.,
VL - AL (166)

With this substitution W becomes W', and the idea is to minimize W' by varying

Aij subject to the condition that f heals at a distance d. The condition that

W! be minimum is that

2 fhal
B 2u, . B 2u, . + Vi_j w[J = hZ‘pi_j = Ai_jlpi_j (167a)
ij i
with
fi_] = ] at r =d (]67b)
| =
ij
[This may be derived by setting SW' = 0 upon varying wij - wij + 6wij' Insisting
that &W' = 0 for arbitrary Gwij leads to Eq. (167).]
If ¥ satisfies these conditions we have
= > hat,. = A, .., r <d’ (167¢)
hzwij Vijwij r>d Zle IJwIJ
It thus follows that the minimum in energy (W) is
K2 :
I R ST VR FT WV, ) (168)
WeDog Wiy TR ST AT A A
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1. Equation of State for Dense Nuclear Matter

Now, the idea is to apply this theory to dense nuclear matter. First,

Pandharipande has applied it
Figure 50 shows some

can we det some idea of the accuracy of the theory?

to 3He and hHe and gets close to the experimental energies.

of his early results. We thus expect that the theory is able to make a sensible

estimate for dense nuclear matter.
In order to make an estimate of the equation of state at high densities we

must have an idea of the composition of dense matter. There is no a priori

reason to expect matter to consist only of neutrons and protons; we must allow
the possibility that all strongly interacting particles are constituents. To
decide which are relevant it is necessary to minimize the energy with respect to

the concentrations of the various species. So, to begin with, all hadrons and

leptons are candidates.
Possibly at some very high density the observed particle spectrum becomes

the wrong set of variables, and quarks and gluans become the correct variables;
this possibility has been discussed in Ref. 100 where it is concluded that the
phase transition will not occur for p_g(]O-ZO)pO. We will, therefore, not con-
sider this further.

Neutron star matter at low density consists of ordinary nuclei in a lattice.

As the density is increased the nuclei grow larger and more neutron rich in

order to minimize the energy of the electrons. The electrons become significant

on the nuclear energy scale because of the high densities involved. For example,

suppose neutron star matter at a total density p po consisted of equal numbers

of neutrons and protons. Then the density of electrons would be

= = ~ -3 '
p=p = pO/Z =~ 0.08 fm (169)
Because electrons are Fermicns they fill a Fermi sea up to momentum kF ,
e

3 2
kig = 310 (170)

-1
=§kFe = 1.33 fm (171)

But an electron of this momentum has a kinetic energy

_ 2 2 _ -
T = k2 + me Mg & kFe = 263 Mev, (172)
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(c)

{d)

Fig. 49. Leading corrections to g(r).
g
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Fig. 50. Energy per particle vs den-

sity for the atomic systems
3He and “He. The solid circles

indicate the experimental
equilibrium points.

In order to have coexisting neutron,
should not cost energy for the reaction

nZp+a

which is very considerable. In order
to minimize the electron kinetic ener-
gy, it pays for electrons and protons
to combine to form neutrons as the den-
sity increases. The final balance of
concentrations of N, P, and e is a com-
promise between minimizing the nucleon
and electron energies. The mathemati-
cal condition for determining the con-
is

centrations in this state

Hy = Hp *+ oy (173)
where the u's are the chemical poten-
tials of the particles, i.e., the ener-
gies required to add or remove a par-
ticle from its respective Fermi sea.
Finally, at some density close to the
density of normal nuclear matter, the
nuclei have become so big that they
touch, forming a uniform distribution
of neutron matter with a small admix~
ture of neutrons and protons,

Let us next consider the possi-
bility of having pions in neutron star
matter. The discussion | give now leads
to the wrong conclusion for reasons
discussed in the section on pion conden-
sation, but the exercise is instructive.
Suppcse to begin with that the particles
are non-interacting. The question is,
is the pion more efficient than the
electron at neutralizing the charge of
the pratons?

proton and T phases in equilibrium it

(174)
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to go. Because nucleons are Fermions, the energies to add and subtract nucleons

are the energies at the top of the Fermi sea,

2
b3
2M 7
Because the pions are bosons, they may all be put into the same state; the low-
est energy for a non-interacting pion is of course m . Balancing the energy

gives the condition

2 2
k k
Fn_ _fp
mom Ty (175)

Assuming that there is no admixture of protons to begin with (an = 0), the

threshold occurs where

key = VIR = 2.6 fm ! (176a)
or k3
- F .3 (o = 0.16 fm >) (176b)
pn 3Tr2 = 3.7 pO p0 '

This is not an extremely high density for neutron stars; p = 10 p0 is about the
highest density one could expect before the star collapses. The conclusion is,
therefore, that 7~ could be a constituent of neutron star matter. This is not
realistic, however, because the nuclear interactions have been ignored. Histori-

cally, the ™~ was ruled out because the T~ neutron interaction is strongly re-

pulsive in relative S states:
U (Mev) 3217 o (fm™2) (177)

The addition of this term excludes T up to very high density as one may easily
verify. However, the story changes when T-nucleon p-waves are considered; see
next lecture.

In any case, | shall omit the ™ meson now. It is necessary to choose an
interaction for the strongly interacting particles, calculate W and minimize
this with respect to the concentrations of N, P, e”, u LA, I, A, ...

The choice of a proper interaction can be made only on the basis of an
educated guess. At high density the repulsive core is the dominant interaction,
and we expect that the choice of core might make a difference in the equation of

state. So, there are basically two questions
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(1) how much latitude is permitted in the strength of the core in the nucle-
on-nucleon interaction if we insist that the interaction fit the nucleon-nucleon
phase shifts?

(2) how much difference do these different potentials make in the descrip-
tion of the equation of state?

The idea98 is to try to choose potentials which combine the best features
of meson theory potentials and the phenomenological potential of Reid. The
most serious shortcoming of Reid'sBl potential for our purposes is that he made
no attempt to select the core to be the same in each partial wave state, as

would be the case if the core were due to a w-meson exchange. However, there

may be some spin-isospin dependence of the core interaction; for example the p
meson (mp ~ mw) was seen [cf. Eq. (55)] to give a central force n 0,70, T Ty

The sign is such as to make the core VC satisfy the relationship
v.("y > v Cpy > v (Ys) = v (3s) (178)
c c c c
We fit the potential with the weaker requirement
v ey > v ey 2 v (fs) s v (3s) (179)
c c c c

The conditions on the interaction are

(1) It must have a repulsive core in all states.

(2) The core strength must satisfy the inequality in Eq. (179).

(3) The nucleon-nucleon interaction must give the correct experimental
phase shifts for energies up to 350 MeV, and the correct binding energy and quad-
rupole moment of the deuteron, like Ried's.

{4) The nucleon-nucleon interaction must saturate nuclear matter at a rea-
sonable density and energy.

(5) Hyperonic interactions must be consistent with the experimental measure-
ments, especially those on hypernuclei. These indicate that the hyperon-nucieon
interaction is less attractive than the nucleon-nucleon interaction, but not by

much.
(6) It is desirable, but not necessary, that the repulsive core have the

same range in all states.
(7) 1t is desirable that the repulsive core have a range corresponding to

the exchange of an w-meson. |t is possible to find a family of interactions
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consistent with these criteria and one purpose of the calculation in Ref. 98 was
to see whether there was much variation among the different models.

in the calculation, the tensor force coupling between states of different
L was ignored. There are two reasons for this: (a) the density of protons is
relatively small and (b) the high density means that the tensor force coupling
will be largely saturated. (See d(scussion of tensor force saturation in previ-
ous lecture.} In the actual calculation the details of the interactions were
retained only for L < 1. For higher partial waves an average was used in all
even states and an (different) average force in odd states. Five inte}action
models were considered, consistent with the above criteria. For the interaction
between hyperons and nucleons, A and nucleons, and among the hyperons and A we
took an exchange interaction which is the same as the NN ID2 in even states and
the spin-isospin average of the NN P wave potentials in odd states.

The problem is now to solve for all pairs of particles the Eqs. (167a) and
(167b), determining A for a given potential model. In practice it is only nec-
essary to solve the eigenvalue equation for the lowest two partial waves because
the centrifugal barrier cuts out the contribution of higher partial waves to W
for the small values of d used. Next W is determined from Eq. (168). It can be
shown98 that minimizing W with respect to the concentrations of the various spe-

cies is equivalent to solving the following set of non-linear equaticns.

Ho © Mg = Wy T My T M (180a)

2 qc, =0 (charge neutrality) (180b)

]

2 cy = 1 (baryon conservation) (180c)
where

u = 5% (/A - % cm) (180d)

where ¢y pa/p is the concentration of a given species. Typica: results for the
composition of the dense matter are shown in Fig. 51. The heavy warvons are
energetically favored at high density for two reasons: (1) the energy per par-
ticle becomes very large at high density for a single species (such as neutrons),

for essentially the same reasons discussed in the case of the electron. It
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therefore pays energetically at some point to take neutrons off the top of the
neutron Fermi sea and begin filling a Fermi sea of a different species. (2) The
pairs involving the more massive particles have a greater reduced mass and hence
can afford to avoid each other's repulsive cores more easily than two nucleons. .
The point is that when the correlation function bends more rapidly, which is
necessary to keep particles apart, there is less kinetic energy associated with
the bend for the heavier pairs.

The energy per particle vs. density is shown in Fig. 52. This result is

parametrized to give

£ = 236 pl'sh + m MeV/particle, p in fm—3 (181)
Since

P = p2dE/dp (182)
we find

P =364 p2 0" mev/fm (183)

In order to find the properties of neutron stars one must solve the equations
of hydrostatic equilibrium {(for example, Ref. 101), which requires P(g) where

e = pE (184)

One point to note is that the appearance of many species has the effect of
keeping the Fermi momenta of the individual species non-relativistic. Thus,
dense matter is not a relativistic problem, anyway not much more than is nuclear
physics at ordinary nuclear matter densities. Often, simplified approaches are
taken in which the possibility of many species is not considered. This neglect
leads to the artificial difficulty of creating a relativistic problem out of one

which really isn't. (See, e.g., Ref. 15.)

2. Results: Structure of Neutron Stars

The five potential models were used to calculate the mass MG, radius R,
moment of inertia | and other quantities characterizing the neutron star.]O] I f
P(e) is given, then the equatidns of hydrostatic equilibrium may be integrated to
give these profiles of the neutron star. Because of the intense gravitational
field, general relativity must be considered, and the equations modified for this
effect are known as the Tolman, Oppenheimer, Volkeff equations. Results for the

gravitational mass, radius and moment of inertia are shown in Figs. 53, 54, and
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55. The properties of the neutron star at its maximum mass is shown in Table
XX¥. In Figs. 53 to 55 and Table XXV, the notation for the various models is
the same as that given in Ref. 101,

The neutron stars predicted by these models look all rather similar; vary-
ing the parameters of the potential within limits consistent with the criteria
(1) to (7) really does not give rise to a very large variation in neutron star
properties. Pandharipande calculated the equation of state based on the Reid
potential, which is not consistent with these criteria, as discussed, and sub-
sequent calculations gave maximum mass neutron stars for hyperonic and neutron
matter, respectively, 1.41Q and 1.660 . Thus, using a consistent repulsion
throughout the partial wave contributions to the nucleon-nucleon potential gives
more massive neutron stars by as much as 30%. This is important, as we see from
Table IV, because the experimental determination of neutron star masses is put
at 1.3+ 02 ©. At least one model has been decisively ruled out. The theory
of Leung and Wang102 predicted the maximum mass of a neutron star before collapse
due to gravitational instability to be 0.5@, well below the masses of observed
pulsars in Table 1V. One puzzling feature of the results in Table IV is that
the maximum masses and moments of inertia are comfortably below those correspond-
ing to the maximum vatues {(Figs. 53 and 55), whereas the observed radii corres-
pond to the most massive neutron stars allowed. These data are not necessarily
inconsistent because they correspond to measurements on different stars, but it

is puzzling that some of the stars observed have a radius smaller than the mini-

mum a.lowed by these calculations before gravitational collapse occurs.

Vi1, PION CONDENSATION
In the remainder of the talk ! want to address the interesting subject of

pion condensation. | shall take the point of view of nuclear physics, in which

many questions discussed already in these lecutres can be brought to bear on the

problem. Thetre exists another approach which emphasizes some models popular in

particle physics (the sigma model), which Gerry Stephenson will discuss.

A. Model of Sawyer and Scalapino for T Condensation
Let me now discuss more carefully the question of whether there can be a

pion phase present in the ground state of nuclear matter. | briefly touched on
this subject during the preceding lecture and conctuded that no pion phase

should exist in neutron matter such that all pions occupy the state of minimum
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Fig. 5'. Typical behavior of partial
densities vs total baryon
density.
TABLE XXy

PROPERTIES OF THE MAXIMUM MASS NEUTROM STAR MIDELS

Model _9:;_‘_ rcor:/u. :e‘;.manlnp-* "
I H &7 7 1.85

(LN B Y4 ? 1.73
¥y 22 5.5 1.65
YN 22 5.5 1.76

[N

*These columns ¢ive the strength and range of the repulsive core

in the

interaction models.

9:/00

3.5
1.2
10.2
10.4

At
9.73
8.88
9.38
9.18

lfgm-cmz)f+
1.51 x 103
1.20 x 10%5
1.9 x 10%3
1.29 x 10%%

**The maximum gravitational mass of a stable neutron star.

1.
H.

The radius.

The moment of fnertia.

T T 117

T ITIII1I T T T

Energy per particle (MeV) vs
density (fm~3) for Model |

of Bethe and Johnson38 (B-J).
Shown for comparison are re-
sults of Pandharipande97(P)
based on the (unmodified)
Reid interaction. H stands
for hyperonic matter, N for
pure neutron matter.
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momentum, P, = 0. This conclusion was

forced because the interaction between

T and neutrons is repulsive in relative

TN S-states. The subject of m conden-

sation becomes interesting when the

interaction between pions and nucleons

in relative TN states of 2 = 1 is con-

sidered.

The subject of pion condensation

was invented independently by Migdal,

Sawyer and

Manassah.]

05

Scalapino,]Oh and Kogut and

By way of introduction, |

want to consider the model! of Sawyer

and Scalapino in some detail. It
32 T 7 T T T )
28}k -
24} -

1 ] 1 1

o]
146 148

Fig. 53.
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1
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Gravitational mass Mg vs cen-
tral baryon density p. = m
ng c» where m, is the neutron
rest mass and ng is the bary-
on number density, for Model
I H (=~-—9, Model 111 H (--
--), Model V H ( ), and
Model VN (——-).

B
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fog g, {g/cm®)

Fig. 54. Neutron star radius R, vs cen-
tral baryon density p.. See

Fig. 53 for curve designations.
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1 (10** g-em2)

1 1 1 | 1
46 148 50 5.2 154 156 158 160

fog 2 (g /em3)
Fig. 55. Moment of inertia, |, vs cen-
tral baryon density pc. See
Fig. 53 for curve designations.
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contains the essential physics of pion condensation; several types of corrections
to their model have been considered, and | shall discuss some of these later in
detail. 1n the model to be discussed now | consider only T condensation, but in
a more complete mode! there will appear an admixture of ﬂ+ as well.

In this model the coupling of a pion to a nucleon is taken to be the non-

relativistic coupling shown in Table I, i.e.,

VU, O kT by (185)
N
Here ¥ is the nucleon and ¢ the pion field.

interaction increases in strength as the pion momentum k is increased.

It is important to note that the
Thus, if

the pionic phase consists of pions occupying a non-zero-momentum mode it may be

possible to overcome the repulsive S-wave interaction and find pions in the
ground state of nuclear matter.

So we now consider matter consisting of neutrons, protons and T with the
T all put into a state of momentum E (in Z direction) and we ask what are the
conditions under which the ground state energy is minimized. Because we antici-
pate a state containing many pions it is permissible to treat the pion field as a
classical field and replace

¢y +/ﬁ; (186)

in Eq. (185) where NTT = number of m in the field. Now the Hamiltonian may be

written
pZ + 2o
=L Sy (o) U(p,o) + 2 B5 up (pyo) Up(p,0)
PG po
) [iMk w;(p,c) o3 wp (p-k,0) /ﬁ;'+ h:c -i{]wkNTT (187)

po
where 0 = * 1 is the value of Oys

(188)
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and @ is the volume of the system. Because we have omitted electrons, charge

neutrality requires

(1-x)N

Ny

(189a)

(189b)

(189¢)

The idea now is to diagonalize the Hamiltonian in Eq. (187) to find the

energy and eigenstates. The important point is that Eq. (187) is quadratic in

the nucleon fields. Thus, it may be diagonalized by changing variables from the

fields WN’ WP to u, v, defined by the canonical transformation

V1-62 B, (p,0) + 10 0§ (p=k,0)

1

Upg

)
po

[}

i 90¢N(p,0) + Vi-62 Up (p=k,0)

Solving Eq. (190) for WN and WP we find

- V1.a2 .
wN(p,o) = V1-9 UpO i 0o Vpo
!
b (p-k,0) = i 8 g U _ - Vi-p2
P g po

Substituting Eq. (190b) into Eq. (187) yields, after some algebra

pong
i

™
(‘_‘

[ (1-82%) + g2 €, = 2 M8 vi1-0 vfﬁi] + z vp v

oc pO’ pO’

re (1-8 ) + e e, *t2 M0 V1-6 v/—_] + z (v u -ty )

po po

X
—

[(EN-ep) iof \/:‘6—2«+ io Mk/ﬁ (1-262)} + Nxw

x

k
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where

2 2
=P - {p-k)
€ = 5 * €p 5 (192)

. . . . - + + o,
H is diagonalized provided the coefficient of v u - u v is set = 0, or

)
M o~ 9 ‘/l—e
EpTEN 1-262

It is clear from inspecting Eq. (191) that the system can profit energeti-

cally by filling the N lowest U states. Hence, the ground state is

+
lwo >= T U _|vac > (194)
po
P<Pp
where the state |vac> contains the coherent state of T . The relationship be-

tween O and x can be seen by taking the expectation values

<Upluy (p0) Yy(po) [0y > = 1 - 02 P pp (1952)
=0 P> P
2
<0y |45 (p20) Yplpro) | w > =00 o+ k| < pp (195b)
=0 |B + ':I > pF

The ground state energy E may be found from

E=<y | H |y, > (196)
+ 2 2 _ ‘ Y
= §0< Vo ! upcupciwo> gy (1-87) + 8% g, - 2M,6 vi-6 VG&T]V
+ Wy Nx

Simpler expressions are obtained if recoil is neglected, i.e.,

2 2 2 2
e = AptT o p” K pek o kT
€ T N M MM H 2N (197)
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! . .
Baym 06 has emphasized that in the exact ground state the currents associated

with conserved quantities {charge and baryon currents in this case) must vanish
locally. Making the approximation in Eq. (197) we find [from Eq. (189b) and
(195b)]
2
Np (198a)

ar
x = 82 (198b)

Now Eq. (196) may be rewritten

£ = (1-69) T, * GZTp - 2m 0 V1-02 /N N+ Nx o (199)
where pz
_ ___ P__ 3°F
T, = zc wol 0o pojwo > ZQJ/‘ 5% =5 T (200a)
P p<pF
2
2
- (p-k)© -k) 2 3PF &
Tp §é< v ,UpO Ug g > B 5 wtam) N (200b)
Hence
pi 2fk k2
=3 F_2fk < /£ k-
E/N 5 oM m x v 1=x ™ + X + TH (201)

Equation (201) is an important result. The first term is just the energy

of a Fermi sea of free nucleons filled to p = Pe- The remaining terms are cor-

rections due to the presence of the pions: the second term in Eq. (201) is the

(negacive) interaction energy, the third is the rest plus kinetic energy of the
pions and the fourth term is additional kinetic energy of the nucleons acquired

through scattering from the pion field. It is clear from Eq. (201) that there

is some density p at which the second term will dominate the remaining two terms
and hence a density above which the energy will be lowered by the presence of

the condensate.
The model may be worked out more fully than | intend to work it out here,

Minimizing E/N in Eq. (201) at a given
the pion momentum and x, the fraction of
The other

but let me mention how it can be done.
density p gives a constraint between k,
neutrons which have become converted to protons by the condensate.
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condition needed in order that k and x be individually determined is Eg. (193),

which may be written explicitly as

f 2M o] 1-x (
r_zn /_ = 202)
m k W, 1-2x

using Eqs. (188) and (198b). The minimum density p for which these equations

have a solution is the threshold for pion condensation. It occurs approximately

for

x~
¢4

1.26 m_ (203)

0.25 fm >

O
I}

The model of Sawyer and Scalapino just described leaves out a number of
physical effects which give rise to quantitatively different predictions (see
below). However, the description of the T condensed state is the same in essen-
tially all theories. The nucleon states which diagonalize the Hamiltonian are
not the individual neutron and proton states but are rather linear combinations
of a neutron hole and a proton particle state. The energy of this collective
state is lowered by the interaction of the pion with the nucleons; likewise the
energy of the pion is lowered by the interaction with the nucleons. Condensation
occurs when equilibrium is established and the excitation energy E(PN-]) of the
"particle-hole'" state, which carries the quantum numbers of the ﬂ+, becomes
equal to the energy of the T . Such a characterization of the threshold condi-
tion is quite general and permits a formulation of the threshold condition in

terms of the pion Green's function, which [']1 have more to say about later.

o .
B. m Condensation

In m° condensation, equilibrium is established as

NZ®+ N (204)

and we require that the energy of the ﬂo be equal to the energy E(nn_]) of a neu-
tron (NN—]) and proton (PP-]) particle-hole excitation. Migdal has shown that

this occurs when the pion energy w, = 0 (but of course, kTT # 0) in contrast to

105



the case of T condensation where w, may be closer to m_. Because wﬂ = (0, the
pion condensate will correspond to a static field and may be recognized from the
structure of the nuclear particle-hole excitation which accompanies it. Because
the 7° couples to the density WOZTzw [Eq. (185)], the collective nuclear state
will be a state of non-vanishing spin-isospin density.

An interesting model of 7° condensation was given by Pandharipande and
Smith.107 They considered neutron star matter and found that the state of lowest
energy consisted of a simultaneous neutron fattice and 7° condensate. They ob-
serve that because the potential interaction between two neutrons due to °©
exchange is tensor in character [Eq. (43 )], an arrangement of neutrons on a
lattice is energetically most favorable. They place the neuvtrons in the lattice
so that in planes perpendicular to the Z-axis the spins all point in the same
direction. However, the spin direction alternates from one plane to the next
(Fig. 56a}. The tensor force is such that the interaction between a given lattice
point and its eighteen nearest neighbors is attractive. The next fourteen near-
est neighbors have zero interaction with the given site and more distant neigh-
bors give small contributions of varying signs. This describes the collective

state. The pion field can be determined from the 7° field equation
2 2 __f .
(V" - = o Voo, (205)

which, when solved with the neutrons as classical point sources at locations Ri

arranged as described above gives

. -ujr-R;|
e
%(7 = g 2o\ ST (206)

At low density the 7° field is essentially that due only to the nearest neutron.
At high density the fields overlap significantly, and the ¢ﬂ.is essentially a
standing wave with nodes at the lattice points (Fig. 56b). In other words, there
is a static ﬂo condensate field with a wavelength of twice the lattice constant
with momentum in the Z direction. To make the lattice stable, Pandharipande and
Smith found it necessary to calculate the nuclear energy with explicit A33 com=

ponents in the nuclear wave function using a coupled channel form of the varia-

tional theory.
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C. Improved Estimate of T Condensatidn Threshold: The Green's Function

! next want to show how the estimate of Sawyer and Scalapino may be improved.
For this purpose we shall examine the pion Green's function, defined already in
Eq. (83). The importance of the Green's function is threefold: (1) the Green's
function may be calculated, bringing together experience from nuclear matter
many-body theory and meson physics, (2) the poles of the Green's function give
directly the threshold condition for T condensation, {3) the CGreen's function is
directly related to pion scattering, and therefore provides a method for unifying
these two areas of physics.

Let me begin by showing the relevance of the Green's function to the deter-
mination of the threshold of 7 condersation. Actually, we want to consider a

slightly more general operator than that defined in Egq. (83).
+
Gk:k(T'-T) = <w0| ak,(T') ak(T) lwo > 0(T'-T) (207)

<wpl a, (T) a (T ]y, > 6(T-T")

+

+ -
where a, creates a T . Substituting the definitions of ak(T), etc., defined
below, Eq. (83), we see

e (<)
-i(E} '-E ) (T'-T)
- - (-) I( n 0 (")1 +
G}S:E(T' T) = % <w0| akllwn > e 8(T"‘T)<Lpn ‘akH)O >
+) (208)
Lo (F \
Foo(4) -i(E_ T -E) (T-T') .
L o<Ulafy e T 8(T-T") <up£ )[akdwo >

where we have inserted a complete set of eigenstates of the complete Hamiltonian
into the Green's function and where E0 is the energy of the state wo. The super-
scripts (+) and (-) refer to states of same baryon number but of charge +1 and

-1 relative to wo. If we now Fourier transform G(T~T'), using the Fourier

transforms
. ol =iwT .
| dw e _ =iET
2 wErin ¢ 8(T) (209a)
., @ -iwT .
-1 dw e 1w +iET
o = 6(-T) (209b)

2T < WHE-in
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we find

(-) w (=), *+p

G (w) = = <y falfy 7> - <y la v, > (210)
ksk noo 0k T e yeip 0 KO

n 0

+{+) | (+)
ST <pla v <y, " agdug >
n
In infinite nuclear matter 5' = 5 and | now want to consider this special

case only. The Green's function may be calculated in terms of Feynman diagrams;
refer to Ref. 105 for a derivation of these rules. The general diagram is com=-
pletely connected and consists of everything which begins and ends with a pion
propagator, as in Fig. 57. Generally we may organize diagrams as shown in Fig.
58. If the diagram can be broken into two pieces by cutting a pion line then
this line is shown explicitly in Fig. 58. Thus, by definition, the blobs do not
contain pieces which break into two pieces if one pion line inside the blob is
cut. The blobs are called the ''proper self energy'' or ''proper polarization'!
part, and denoted by II (k,w). It is easy to show that when Fourier transformed
from time to energy, each diagram becomes a product of the propagator and proper

self energy parts. For example, the third diagram on the right-hand side of

Fig. 58 is

S N e T (211)
mz-qz-uzﬂn) ,

Thus, the entire sum is a geometric series, and

1
G(w) = (212)
w?-q-u?-T{k,w) +in

‘Referring to Eq. (210), we note that the singularities of G(w) which 1je

. (-) -) .
below the real axis are equal to AEn = En -Eo, i.e., the energy which it costs

to create a state with the quanEuT numbers of the m . The singularities above
+

the axis are equal to AE£+)E-(En

-EO), i.e., the negative of the energy which
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it costs to create a state of the quantum numbers of the ﬂ+. The analytic struc-
ture is depicted in Fig. 59. When AE(]) AE(Z) 0 then it costs no energy for
the ground state of the system to spontane0usly develop a T - and a T -llke com-
ponent; this is the phenomenon of T condensation. The point is that this con-
dition can be determined if the Green's function is known. A practiqa] me thod

of determining the threshold condition for T condensation is to first calculate
the Green's function and determine its singularities. For a given k, w, one

then searches for the density at which the leftmost singularity below the real
axis just meets the rightmost singularity above the real axis. One then searches
for the values of k, w which give the lowest density; the values of k, w and p at
this minimum define the threshold of T condensation. In Ref. 110 it was shown
that when the two singularities of the Green's function touch, the expectation
value of the pion number operator diverges in an infinite system.

The various terms which contribute to I(w) in a realistic calculation are
shown in Table XXVI.

The pion-nucleon S-wave part (Table XXVIB) is calculated from the free pion-
nucleon S-wave scattering lengths; it is large and repulsive, as discussed ear-
lier. Recently]]] the effect of going
of f the energy shell in the TN ampli-
tude has been investigated and this

TABLE XxVi
TERMS WHICH ENTER INTO m(k,w) IN A REALISTIC

extrapolation appears to be the source CALCULATION OF THRESHOLD OF m~ CONDENSATION

of additional repulsion. Ao Mg = 20 x 217 (MeV) p
The piece ]'[(0) corresponds to a s 1% . @ Q{) 2 22600
particle~hole excitation, and if the
energy of the nucleons is ignored rela-
tive to the energy of the pions the €. Ty ﬁ
result can be shown to be the Sawyer- (> (}
Scalapino model, already discussed. o. ¥4 () 0 * Q

The bubble in Table XXVIB reminds that ()

the interaction of the neutron and

proton with the nuclear matter back- }"'{E A1l meson exchanges except T exchange

ground must be included; such poten- oV -V =
L L] OPE corr
tials may be calculated from Brueckner-
. ] m*PA o zfzsz(O) v gy
Bethe theory or estimated from the orr 0
. . . 22 (), & 8Y 1y feaiet )T
variational theory discussed in the B T, =2fk\6 7+ 36 Veorr \C* 3@



preceding discussion of neutron star matter.

The A contribution is shown in Table XXVIC. One would like to include

effects due to the interaction of the & with the nuclear matter background, but

so far no calculations of these effects have been attempted.

The nRPA effect (II

fore these two terms should not hoth be included) takes account of the possibil-

X RPA
(o) is the lowest order approximation to Il and there-

ity that the excited particles may interact with each other; the dashed Tines

are effective interactions VNN’ i.e., g-matrix elements. However, in the calcu-

lation, these were evaluated in the spirit of the lowest order variational

theory [Eq. (168)]

2
v d
r) = Af%(n) v < 1)

V.(r) =v(r) r>d

where fz is the square of the correlation function and A the healing constraint.

This is approximately equal to”2

vir) = y(r) f(r) (214)

However, because the pions are taken into account explicitly in the equation for

the Green's function (Fig. 58) we must subtract the one pion exchange potential

v i v
from NN calling the result corr

v -y (215)

Vcorr UNN OPE

Subtracting VOPE is exceedingly important. Mathematically, it simply avoids
double counting, but physically it accounts for the fact that the short range
nucleon-nucleon repulsion prevents two nucleons from coming close enough together
to experience the § function in the one-pion exchange potential seen in Eq. (&8).
Including the RPA sum takes this physical effect into account in a well-motivated

(o) RPA

formalism; if the RPA series were not summed, i.e., only the I piece of I

were included as in the Sawyer-Scalapino theory, then the §-function piece of
the one-pion exchange connecting the blobs in Fig. 58 acts and contributes a sub-
stantial amount of the attraction which tends to lower the threshold for pion
condensation. The importance of taking the short-range correlations into account

13

. 1 . . . .
was emphasized by Barshay and Brown in their discussion of ﬂo condensation in

nuclei. (In pion scattering this effect is known as the Lorentz-Lorenz effect.)
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. Fig. 59. Singularities of the pion
The neutron salid proposed Green's function. A is the
by Pandharipande and Smith. m" pole; B is the NP-1 cut,
The arrows indicate the spin not present in pure neutron
direction of the neutrons. matter; C is the T pole; D

is the PN"1 cut, and E is a
collective PN~ state.
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stone diagrams in the expan- v
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function.
Fig. 60. The (m,P) reaction. |In this
process the incident pion is
scattered into a pion-con-
densed mode: (denoted by ~~x),
which helps satisfy an other-
wise large momentum mismatch.
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Actually HRPA should be extended to include A as well as nucleons; after

all, the nucleons and As presumably interact through one-pion exchange and a

repulsive core, and the delta functions of OPEP in this channel also must be

treated carefully. The interaction between the nucleon and A was assumed in the
. 108 . R .

calculation 0 to be proportional to the interaction between two nucleons; such

is true for the pion and p-meson exchange pieces of the interaction in the quark

model .
The results are shown in Table XXVIlI. As | have stated, H(o)

+ -
Sawyer-Scalapino result with the minor difference that in our model m and 7

gives the

condensation is allowed by virtue of using the relativistic pion propagator in
Eq. (1). (The difference is discussed in Ref. 114.) The RPA theory pushes the
threshold up, showing explicitly the repuls?ve nature of the nucleon-nucleon
correlations. RPA plus second order tensor refers to a prescription for inclu-
ding potentiai-energy on the nucleon states in the particle-hole excitation.lo8
!'f uN S-waves are added, then the condensation threshold is pushed up to very
high density; if the A is added without correlations then condensation again
becomes possible. The last row gives the most realistic calculation, including
Depending on our choice of nucleon-nucleon inter-

correlations among N and A.
action, threshold occurred at p = 0.225 fm—3, or at exceedingly high density.

The lower density corresponds to a modified Reid potential, taken from the cal-
culations of dense baryon matter discussed ear]ier,98 and the higher density

corresponds to a nucleon-nucleon potential developed at Michigan State for des-
cribing nuclei, i.e., low density nuclear matter. The most we can say is that
pion condensation may occur in dense systems, but a detailed prediction depends

on details of nuclear physics which are somewhat beyond our ability to calculate

at the present time. 1t would be nice TABLE XXVI1
to have an experimental result to give THRESHOLD OF T CONDENSATION IN NEUTRON MATTER
some indication; some possible experi- Hode] pcﬁt(ﬁ;3) w (Mev) K"”m-”
ments are discussed next.
_ simpte [1(%)] 0.17 140 1.0
D. Experimental Implications RPA
. 103 0 I 0.22 152 1.2
Migdal has suggested that T nRPAu%ﬂ >> 0.8 --- -
condensation might occur in finite nu- RPA
) 13 n +HSﬂ+ HA 0.085 130 1.44
clei. Barshay and Brown, however,
) . K, I > 0.225 ir9 1.0
pointed out that if the coupling of NA ST 5
. . \ . T
the pion to spin-isospin modes in the See Ref. 108.
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nucleus were anywhere near the strength to produce pion condensation in nuclear
matter, then there would be strong effects in nuclear spectra, which are not
seen. In particular, there exists a T =1 0 state in I6O at E{expt) = 12.78
MeV. In a shell model calculation this lies at an unperturbed energy of 12.42
MeV. |[f there were a pion condensate this mode, which has the same quantum num-
bers as the ﬂo, would move down in energy, not up. Barshay and Brown then criti-
cize Migdal's calculation, pointing out that he omitted correlations among
nucleons, which, as we have seen, greatly reduces the attraction.

Pirner”5 has tried to put a limit on the amplitude for a m field by analy-
zing (7m,P) reactions. -He points out that such reactions need a large momentum
transfer; if there exists a pion condensed mode in the nucleus then the momentum
transfer is easier to achieve because the incident pion can scatter into the con-
densed mode, which has a momentum = 1 to 1.5 fm-]. (See Table XXVI1.) The
scattering process is indicated in Fig. 60. The experiment involved measuring
the radioactive decay of ]'Be after m absorption by 2C. He deduced an ex-
ceedingly small amplitude, corresponding to a pion density of 1/500 of nuclear
density. It would be interesting to see a similar comparison for a heavy nucle-
us, such as lead. Use of a spectrometer such as the High Resolution Spectrom-
eter (HRS) at LAMPF might be able to see this reaction [or rather the closely
related (P,m) reaction].

Ericson and Wilkin]]6 have proposed measuring the 7™ field in a nucleus by
observing reactions ﬂ-+ﬂ+ »> 2Y or > e+e-, where the incident 7T annihilates on
a virtual ﬂ+ field in the nucleus. Experiments are now under way, with inter-
esting but so far inconclusive results.

If there is no actual 7 condensed field in a nucleus it is still of interest
to measure the propagation characteristics of a pion in a nucleus. The poles of
the pion Green's function in Eq. (212) determines the pion energy w as a func-
tion of its momentum k in infinite nuclear matter. In the same model108 that
gave T condensation in neutron matter the pion dispersion equation was calcula-
ted for symmetric nuclear matter and parametrized to give

o? = 1% 4wl (216)
The parameter o was found to be 0.35 at normal nuclear density for k < 0.5 fm-].

This gives a moderately high density of states which may be observable in reac-

tions such as pion photoproduction or (P,m) reactions.
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At energies above threshold (w > p) the operator II in Eq. (212) may be
identified with the pion optical potential for elastic scattering. For the
scattering problem k is complex, the imaginary part of which gives the attenua-
tion of the pion wave function due to the competing reaction channels. Thus,
low energy elastic pion scattering is another way to test theories of the pion
propagator, and such experiments will hopefully provide some clues as to whether
the physics is being correctly incorporated. Low energy is important because
the nucleus is more transparent to pions than at higher energy and hence pions
are more able to penetrate into the high density central portion of the nucleu?%

Next, | want to mention an interesting proposal made by Sawyer and Soni.

They have suggested using neutrino reactions

v + Nucleus + 27 + anything (217)

to measure the pion dispersion relation in the medium. The reaction goes
through the process shown in Fig. 61. The point they make is Lhat in symmetric
nuclear matter, (pxoo), the pion dispersion relation w = w(k) is such that the
pion four-momentum (E,M) may become space-like {(i.e., k > w). They pick a
simple model of the dispersion relation and show that this happens for 1 é{? <
2.8. If the four-momentum becomes spacelike, then the incident neutrino can

actually decay in the medium into a lepton and a pion. (This is forbidden in

free space.) This gives a distinctive signature in the cross section for the

. - + . .
produced lepton. Their result for the case of vu + Nucleus » p  + anything is
shown in Fig. 62 for Ev = 420 MeV. The quantity V is

2
] -
K.EE_f%__——— » A =4 x 10 41 cm2.

U cos U
The numbers on the curves refer to cos eu. Sawyer and Soni point out that these
cross sections are larger than what one would get by considering v#N > N+m +

on the individual nucleons, with this cross section taken from the free space
scattering. They also estimate background from the quasi-elastic process v > u
+ proton hole + neutron. They show that the quasi-elastic peak and the peak

from the mechanism they propose are separated in momentum by more than 100 MeV/c,
so that the background may be isolated from the signal if the neutrino energy
spread in the beam is less than 100 MeV/c. The measurement of the location of

the peak gives a direct point-by-point measurement of the pion dispersion
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relation, and this is the attractive 10

and very valuable feature of their idea.
Sawyer and Soni made estimates using B
nuclear matter arguments, but it should 10
be feasible to do the calculation for
a finite nucleus.

Finally, | would like to mention
the possibility of learning about pion
condensation in a neutron star by mea- 08

suring the cooling rate following a

InVv
]

supernova explosion. Maxwell, et

118

al have considered the effect of a 4

pion condensate on the cooling rate and

found that the rate can increase enor- s

mously, due to the B decay of the

thermally excited ''U particles' [Eq. 2}
119

(190a)]. In a subsequent paper Max-

well considers the cooling in more de-

tail and concludes that the present

o]
temperature limit on the crab pulsar Lo 1.2 1.4 ( lf 1.8 20
. PuiMmy
does not rule out any model of cooling #
. . v s
and in particular doesn't indicate a - 62. The cross_section for the
need for a pion condensate. . reaction v+ Nucleus > u +
anything, uaccording to
Sawyer and Soni, Ref. 117.

£+
. }
n

v

Fig. 61. The reaction neutrino + Nu-
cleus = lepton + anything.
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APPENDIX A
Proof of Eq. (47)
In this appendix we want to show that

3 qr -ur 3
47g e~ ~ - I 3 3 \er 3
J’}Zﬂ)3 22 [39] 39797 2799 ] 519 <'+g; I ETIRRT (a.1)

where S.,. is defined in Eq. (47b). The proof goes as follows. Using the addi-

12
tion theorem for spherical harmonics we have

_ b %
gprg=3-a kY, (0) Y, (4, (a.2

and hence

g,+q

=1 =

\ 2
by 2 * *
ca= ()0 2 vy @) 1y @ Vg (@) Vi @ (A3

' m' "2 Im' 2

Substituting Eq. (A.3) into Eq. (A.1) we find

f q [30 *q 0,.q-0, 0 q2] = (_lﬂT_)3 Y:': )Y x .
(2m)3 qP? L7217 5275 =1 222 3 1m (9 lm;(i’z)yzm(r) (2841) i

[} ]
mlm]mzm2 ]

m

=

2. 2 Im

d3i qzjz(qr) % , , . ,
XJ/;Zﬂ)3 Z Y ) (3) Ylmé(g)Yzm(g)[36(m]m2)6(mlm2) -G(mlml)é(mzmz)] (A.4)

This expression may be simplified by noting that the only &-value contributing

is £ = 2. To see this, note]20

' 11 2\/112%
b 4 _ . m!
20+1 (3 )ﬁqy,mz(q)Y,m.(q)YRm( ) = b4r (m . m)(O . 0)( ) 2 (A.5)
2’ 2i

From Eq. (A.5) and the properties of 3-]j symbols, we see that m = 0 and hence

m,-=m!. Thus we write the £ = 0 term of Eq. (A.5) as

2° ™
a3 ig'r [
_dg_ e’ ~ O -
(2m 3 o2’ 391°92,°9 7 21790 ?]
m 2=0
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2 Jg!
(3 ) Z. 8 (mm )G(m m )Y (c])Y]m;(gz) [BGm]mz-q ] q dq 2

™ l m 3w, (Zﬂ) g +u

moyfm 2 (A.6)
But

Y (0 )Y (o

I'ﬂ]m2 ]

) [36m m, =1

9, m, ] =0 (A.7)

arnd hence the left~hand side of Eq. (A.6) vanishes as conjectured. But all terms
of & > 2 also vanish in Eq. (A.4), as can be seen from the property of the 3-j

symbol in Eq. (A.6). We take advantage of this by setting lZJR(qr) = Jz(qr) in
Eq. (A.5), with the result

N

f R [30 *q G,°q - 0,0 qz] = - (.“..)2 4 f a_dajplar)

(2ﬂ)3 q2+u ~] ~ 2 <~ ~1 <2" 1 3 8"3 A q2+H2

" Lo aN/1 12 ‘

Z (-) Zme e (r) 2l (A.8

— T m / b

11 m, -mé m 000

]
m2m2

Vg (@) V! (2 [38(mmy) 8 (s ms) - (mym)6 m,ms)]

But note that

172,
/E—;.('ZQ,H) YonlK

=L " ey (o) ) (A.9)
m L m, =m, =m 000

117



T (h
%:‘15_‘/_3_ Y]mz(:) Y .(r) f‘S(mZ 2 = m)

where the last step utilizes an identity in Appendix IV of Ref. 120. Substitu~
ting Eq. (A.9) into Eq. (A.8) we find

J/ﬂ 7 [301'q 72°9 " 01'°2q2]
(zw q +u e oMb

oo

N q dq i, qr) "
413 v i
-- (3 EF_/[ D : 2 : i, Vim0V i 20V 1 (2)

2m
0 mmy mm,

x |3 8(mm,)6(mimy) -6 (m 1) & (mm3) |
en h .
. q'dq j,(qr)
<o 5 [t ot (*.10)
0 q -F]J

The integral over q is done in Appendix B and we find

[ 3 _igq'r -3 -
d 3 ez 7 [?0 *99,°9-0, ~zqz] = %— 512 { 3 3 s 3 5 + l} e Mr
(2m)”7 q“+u (ur) (ur)

3 1 -ur
_ u S 3 + 3 +_—]e
= - e— 2
b 12 [(ur)3 (ur) Hr
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APPENDIX B

In this appendix we want to evaluate the integral

“ |
/q—zg—q-sz(qr) (B.1)
q‘+

0

Use the differential equation satisfied by the spherical Bessel function jz(qr)

1 d 2 6 . 2.
<-—EEFr -ca’—r—+-—2-) Jz(kr)=k12(|<r) (B.2)
r
to write
“a*dq ;. (ar) ® q%dq j.,(qr)
E__q__-’i_(.].__= 1 .d_rzi_.,._s_ fq qJZ__q____
i q2+u2 r2 dr dr r2 / q2+U2
* dq j.(qr)
2 2
R R I A
- ( 2 dr T 2 ) q2+ u? (B.3)
0
But

os

T da jylar) £ oda gylar) 1[ dq hy,* )(qr) f da h, " )(qr)
./P 2.2 E;/ﬂ 2.2 Lk g

qQ *u o 2y (B.4)

o g tu s

+
where h (2) are spherical Hankel functions. Also, now write

1 R B R S

q2+u2 T q+iu g-iy g-iy 2ip  g+iy 21w

Close the contour for the integral involving h2 in upper 1/2, and that for

h (=) in lower 1/2 plane. This gives

“dq j,(qr) .
2 1 27i (+) ,. 11 . (=)
— =L £l | LI -3
‘/0‘ q2+u2 b (tur) 4 2iu (-2r1) h2 (=iur)

T, (+) 4.
yhy o (un) (B.5)

1
2

119



Noting that the spherical Bessel and Hankel functions satisfy the same differen-

tial equation, use of Eq. (B.3) gives

quhdq 290 i 51 e 2 [ 3 3o+ L™ (s.6)
———— = (iy) & h ur)= =~ + + — B.
0 g%’ Yotz T [(ur)3 (ur)? “r] )
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THE APPLICATION OF NUCLEAR PHYSICS TO OTHER SCIENTIFIC FIELDS

by
T. A. Tombrello

California Institute of Technology

ABSTRACT

Knowledge of the structure of nuclei, their systematic
properties, and the mechanisms by which they interact pro-
vides us with a powerful tool that may be applied to under-
standing a variety of phenomena. In these five lectures |
shall give a few specific examples that have arisen in the
fields of astrophysics, planetary science, geophysics, and
materials science. Although some of the nuclear physics in-
volved was well known to Rutherford, we shall find that it
continues to generate new ideas for application.

INTRODUCTORY REMARKS

In addition to the serious topics in nuclear physics covered by the other
speakers | was chosen to provide a bit of comic relief. Because my subjects
tend to come from outside the field, the coverage will be relatively more super-
ficial and thereby more in the nature of entertainment. In 1972 | gave a lec-
ture at a summer school for the Indiana Cyclotron; | began that talk with the
classification of my material as a kind of Kama Sutra for their developing re-
search program -- it would take considerable flexibility to apply my ideas, but
at the very least what | said might whet their appetites. 1{n the same sense 1
hope that | can stimulate you into thinking of nuclear physics in a broader con-
text, one in which it is not a separate discipline but one that is well integra-

ted with all of science.

“Supported in part by the National Science Foundation {PHY76-83685), the Nation-
al Aeronautics and Space Administration {NGR 05-002-333), and the Department of
Energy (EX-76-G-03-1305).
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From the beginning, | want to dispel the notion that applications consist
mainly in using the techniques of nuclear physics to manufacture better mouse-
traps. That is certainly a part of the picture, but it is perhaps the least
exciting aspect of applying nuclear physics. To briefly state a suitable philos~-
ophy for an applied nuclear physicist it would be that whenever you hear of a
new problem or discovery anywhere in science or society, you should ask yourself
if there is anything you know that is related to that probiem or discovery. Most
of us are in science because it's fun -- and it's even more fTun if you can use
what specialized knowledge you have in a variety of diverse ways. Though all of
us tend to bear the label ''nuclear physicist," we should think of ourselves first

as scientists who like Faust are dedicated '""to understanding the world in its

innermost part."

F. NUCLEAR PHYSICS AND TESTS OF THE EQUIVALENCE PRINCIPLE

Legend has it that Galileo performed the first test of the equivalence prin-
ciple by dropping iron and wooden balls from the leaning tower of Pisa. Whether
this is true or not, he certainly believed that the acceleration of a body by
gravity was independent of the material from which the body was made. This idea
of the equivalence of gravitational and inertial mass was absorbed without ques-
tion ‘into the mechanics formulated by Newton; though there was, of course, no
obvious reason why it should be strictly true. (One should, however, note that
Newton performed experiments that established the equivalence to 10_3.)

Before we continue with this historical progréssion, let us first be more
specific about what we mean by the Principle of Equivalence:

(1) 1n its "weak'' form the Equivalence Principle involves only the equiva-
lence of inertial and gravitational mass for a local observer -- it does not say
that the proportionality of these two masses will be the same everywhere in a
gravitational field.

(2) Einstein used "equivalence'" in a much stronger sense when he set forth
the postulates on which his theory of general relativity rests. This ''strong'
Equivalence Principle states that all the laws of physics are independent of the
location in a gravitational field. This means that to a local observer in a
freely falling, non-rotating, electromagnetically-shielded laboratory there is no
change in the results of any experiment due to gravity. Obviously, we exclude

tidal effects, i.e., variations of the gravitational potential (¢) within the
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laboratory. Thus, all particle masses and the coupling constants of all fields
cannot depend on ¢.

In this strong form the equivalence principle puts enormous constraints on
the theory of gravity and there are some interesting consequences of this postu-
late. Let us first consider one of the most spectacular of them. A slight re-
wording of the equivalence principle is that mass and all forms of energy are
strictly equivalent. Thus, energy ''falls'' just like matter and all forms of
matter or energy attract one another. Imagine squeezing a mass so that its vol-
ume decreases; eventually the body will be so small that the internal gravita-
tional force will cause it to contract by itself. Ah, but what about repulsive
forces (nuclear, electromagnetic, . .)? |t doesn't matter because once gravity
takes over, the energy in even the repulsive forces adds to the mass and con-
tributes to the collapse. The gravitational field around the mass is so strong
that even photons are gravitationally bound and no light can escape -~ a black
hole. The strong equivalence principle makes this collapse unavoidable once it
starts.

How dces this bear on ideas of elementary particle or nuclear physics? One
finds that once matter has gone into a black hole external measurements can
detect only its mass, charge, and angular momentum. Thus, we lose contact with
many other quantum numbers we hold dear -- like baryon number. Penrose calls
this '""cosmic censorship,“] but it was at first thought to be no problem because
though the information is not readily available, it is all still there inside
the singularity. The situation turns out to be somewhat worse than that, how-
ever, and 1 will make a slight digression to show you why. This digression has
a moral, which I will tell you in advance: take seemingly paradoxical results
seriously.

About nine years ago Roger Penrose made an amusing discovery which was
called the Penrose Paradox.] He found theoretically that if one scattered a
particle from the gravitational field of a black hole, for a small range of im-
pact parameters the particle gained energy in the collision. We all had a great
laugh at that. We even joked that if we had a black hole all our problems would
be solved at once; you could not only dump waste into it without fear of poliu-
tion but you could also extract energy from it. (Who needs either rzactors or
solar energy?) Well, we were all dumb because when you extract all the energy,

the black hole and the singularity are gone and you've really lost the censored
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jJuantum numbers. But what about quantum mechanics; will it change the outcome?
A graduate student named Steve Hawking was much smarter than the rest of us; he
realized that if we could devise ways of extracting energy from a black hole,
nature could also manage to do it. He proposed the following process: virtu=l
particle-antiparticle pair formation just outside the Schwartzschild radius. Qne
particle has to get captured into the black hole in a negative energy state, the
other gets enough positive energy to escape to infinity. He showed that the
emission spectrum is that of a black body, with higher temperatures and shorter
lifetimes for smaller mass black holes.2 This causes deep philosophical trouble
for the theorists because summing over all the unobserved quantum numbers of the
captured particle of the pair is equivalent to a loss of information. In the
standard jargon: ''an S-matrix can't be defined for the process.'' Hawkiny puts
it another way: ''Einstein attacked the uncertainty principle by saying that

God does not play dice; well, not only does he play dice but sometimes he throws

n3

them where they can't be seen.

Before ending this digression | want to remind you of the moral. We all
tfaughed at the Penrose Paradox, but Hawking won the Heineman Prize and the Vati-
can Medal and has certainly had the last laugh.

Returning to the equivalence principle we see that one of its consequences
is black holes. And if they exist, then we get some interesting connections to
the fundamental structure of quantum mechanics. Now that !'ve tried to convince
you that it's important to determine to what extent the strong equivalence prin-
ciple is valid, | want to first deal with tests of its weak form -- the equiva-
lence of gravitational and inertial mass.

Over 80 years ago Baron Roland von EOtvOs began a series of torsion pendu-
lum measurements to look for differences in the gravitational and inertial mass-
es for different materials, a fancier version of the Galileo legend. He used
balls ¢f metal, glass, snakewood -- all kinds of exotic materials, U]timafely
he showed that all the materials behaved the same way to a level of 3 x 10'9.h
Using modern techniques this same torsion pendulum approach was employed by
RolT, et al., for gold and aluminum to get a Timit of 1.3 2 1.0 x 10711.%
Braginsky and Panov picked up another order of magnitude for platinum and alu-
minum and got -0.3 + 0.9 x 10-12.6
The Braginsky experiment represents an incredibly sensitive test that plati-~

num and aluminum behave the same way when their gravitational and inertial
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masses are compared, but what does the result mean at a more fundamental level?
If the aluminum and platinum atoms were made of exactly the same stuff (nucleons,
quarks, cottage cheese, . .) then it would be no real surprise that they “fell"
the same way. We must, therefore, look at the problem in greater detail.
Consider first the atomic properties: the electrostatic potential of the
nucleus seen by the atomic electrons is very much larger for platinum or gold
than for aluminum. Thus, if we consider the virtual positron-electron pairs
created in this field, there are many more pairs for the high-Z elements. Schiff
has shown that if the positrons ''fell up' there would be an anomalous contribu-
tion to the weight of the atom that would be quite different for the two materi-
als., For aluminum and platinum there would be a difference of 3 x 10_7; i.e.,
the Braginsky-EQtvos experiment confirms that matter and antimatter have the
same sign for the mass to a precision of 3 x 10-5.7

What about differences in the nuclei? Platinum and aluminum have different

ratios of neutrons to protons,

(N/z)Pt - (N/Z)AI = 1/5.

So we see the neutrons and protons fall the same way to "5 x 10_12.8 But since
neutrons and protons are composed of the same constituents this is not too sur-
prising. |f we assume that neutrons and protons are collections of reasonably
heavy quarks, one must ascribe the whole n-p mass difference to differences in
the strong and electromagnetic binding of the quarks. The difference is, how-
3

ever, only about 1 MeV (out of VI GeV), so we lose a factor of 10 Thus, we

have only verified the equivalence to

12 103 =5 x 1072

v 5 ox 100
What about the differences in the binding energies of the neutrons and protons
in the two nuclei? We can crudely estimate the differences in electrostatic

binding energy:

L 1.4hy z2(z-1)
Eem (MeV) = ——

1.44 72(z-1) _ 1.2 z(z-1)
| .2al/3 A173
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Eem . Eem _ b2 z2(z-1) (MeV)

unit mass A AWB amu

E
em
(T)Al v 2 MeV/amu

E
—&em
< A )Fw

E
A<——f\"‘) n b ——:;X or v k4 x 1073

6 MeV/amu

e

Thus, we have checked the equivalence of electromagnetic energy and mass to

What about the strong interaction? |If we look at the binding energy per
nucleon curve we find that these two nuclei differ by only about 200 keV/amu;

thus, we have checked the equivalence of total binding energy and mass to only

=12

lg—-——fq; =5 x 1072
2 x 0

However, this is misleading because the two nuclei have different amounts of
nuclear and electromagnetic binding energy. A way to approximately decompose

the contributions is with the semi-empirical mass formula. Almost any version

gives comparable results, but since |'m at LASL 1'11 use an old form given by

Phil Seeger:9
(1) 2 3
Mass excess MoV _ g 567, Wy 75008 £-T6.11
) (4) ” —_
. (20.65 ) uiisg) ((N-Z) A; 2IN-Z1 )
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(5) (6)
70.21 . R

2° _ 0.7636 _ 2.29

+ ===+ 0.8076 1
A1/3 AE/3 ( Z2/3 A2/3)

Binding Energy

(MeV/amu)
(1) (2) (3) (4) (5) (6)
Neutrons Protons Volume Asymmetry Surface < Coulomb
Al 4.338 3.652 ~16.11 0.0191 6.737 0.7090
Pt 5.020 3.034 -16.11 -+ 0.5202 3.485 3.2727
Pt-Al 0.682 -0.618 0 0.5011 -3.252 2.564

Thus, though the strong and electromagnetic interactions differ a great deal in
overall strength, since the difference is all that is tested by the EGtvOs experi-

ment we check each interaction separately to about

-12 )
-I—O————_—B-’\: 3 x 10 10
3 x 10

So far we've managed to look at the strong and electromagnetic interactions
as well as possible differences between matter and antimatter. Can we say any-
thing about the other interactions? We know that the weak interaction doesn't
conserve parity; perhaps it also violates the equivalence principle. For many
years it was thought that the weak contribution to nuclear binding was too small
to be tested even by the Braginsky experiment. This isn't really true; nearly
everyone made the same mistake, considering only the parity-non-conserving part
of the weak interaction. Thus, the weak binding would go as the square of the
coupling constant, i.e., one power to mix in the opposite parity and one power to

connect back to the original state.
z o< 0l6'[n > <n|G'|10 >
(G' is the parity-non-conserving part of the potential.)

This was stupid, because the weak interaction is half parity conserving

and half parity non-conserving. There is, therefore, a contribution to the



binding energy that goes as the first power of the coupling constant. Haugen and
Will have calculated the volume part of the weak binding energy.]O Though they
used a current-current form for the interaction, one could equally well consider

the exchange of intermediate vector bosons. Very schematically:

charged current neutral current
n
z° etc.
2 2
energy o NZ N~ ra
nucleon 2 2 27

>
pd
>

It's easy to see where the N, Z, A dependence comes from. The inter-
action is v zero range so it depends on the local nucleon densities. For the

charged current case:

1 /N z
K'(Vol. X vor. * VOI°)

but volume = A
NZ

=

A

The contributions of the charged and neutral currents are roughly comparable but

the charged current piece is somewhat larger.

E
(—ﬂ§§5>m 2 x 1078 M2

2
Nz/AZ
Al 0.25
Pt 0.24
Pt-Al ~ 1072
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Thus,

E
§ (FE%E%)m 2 x 10 10

This implies that the weak interaction obeys the ''weak'' equivalence principle
to v 10-2. If one corrects for the difference in the surface energy from the
weak interaction we can get a difference that is perhaps as much as ten times
larger, which would make the test good to v 10-3.

Very recently | received a copy of a paper by J. P. Hsu that is soon to
appear in Physical Review.]] He computes the self energy of the nucleons in the

nucleus due to the weak interaction and gets

weak
—E%LE N 10-5, an enormous effect!

| haven't had the time to go through the calculation in detail. As you
know, self-energy contributions contain divergences and the results can be quite
sensitive to the cut-off parameters used. | have to admit that |'m suspicious,
and 1'11 have to do some work on it before I'm convinced.

Now | want to discuss an interesting idea to test the validity of the strong
equivalence principle for the weak interaction. The EOtvOs experiments have
basically been done at constant ¢ so they really don't apply; what we need is an
appreciable change in ¢. Obviously, one can consider doing the Braginsky experi-
ment on a space mission, but that is probably not possible for a while. The
idea 1'11 discuss came from P. D. Parker at Yale;]2 although it doesn't work
quite well enough yet, it's so clever that I'11 tell you anyway.

In the decay chain for thorium (Fig. 1) there is an ambivalent nucleus,
2lzBi. it can decay either by ordinary beta decay or by alpha emission. The
strength of the beta decay depends on the weak interaction coupling constant;
the strength of the alpha decay depends in some complicated way on the strong
and electromagnetic interactions which are pretty well tested by the EOtvos ex-
periments.

One can thus consider a measurement of the branching ratio as a function of

¢ on a space mission as a way of comparing the weak coupling constant to the
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strong and electromagnetic interactions as a function of ¢. What makes the ex-

periment so clever is that one doesn't have to observe the B's because the

daughter nucleus after the B-decay decays only by alpha emission. You just

measure the relative strengths of two alpha lines using a 28Th source (Fig. 2)
and a solid-state detector. What could be simpler?

Before we go on we should look at another possible complication =- the B-
decay and a-decay are strongly affected by the mass of the decaying nucleus. |f
a violation of the equivalence principle changes that mass, will it help or par-
tially cancel the effect to be observed?

For o-decay:

n A ~ -3,92 Z/VE + ~ const
decay
const.
So,
A 2566‘4 ,
or

dA dE

For B-decay:
FRE°
For ft ~ const.,

t '&'E/-s or A EES

Thus, the branching ratio (R) changes as

AR Am
R—-’\:é] ™

This is a reasonable amplification, but since the contribution to m from the weak
interaction is already so small, the change in R due to this change in mass can

be neglected. Thus, we need only consider the direct change in the branching

ratio due to changes in the weak coupling constant with ¢.]3

The experiment has been checked by Parker in the laboratory. With some im-
6

provements one could probably make measurements of the branching ratio to 10
in a very compact experiment.
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Where i{s the trouble? The change in the gravitational potential in going

from the earth's orbit (1 A.U.) to four solar radii (4 Re) is approximately
6 x 10'“ ergs/gm, i.e., an v 102 increase. (This mission is being planned now by
JPL but is not funded. It will require either new technology in the form of an
ion engine or solar sail or for a longer mission a gravitational assist by
Jupiter.)

We don't really have much of an idea how a coupling constant might depe~d on

Ap, but one might expect that it will mainly be affected by the change in the

metric {(like the gravitational red shift experiment).]h
g'\;]+i ,
2
c
So
Ag 1076
g

Thus, the weak interaction would either have to have a much stronger dependence
on g or the experiment will have to be made more sensitive. It looks difficult
to just increase the source strength, because the detector suffers too much radia-
tion damage.

So there's plenty of room for clever ideas to test the strong form of the

equivalence principle, and | expect that a nuclear technique is just what's

needed.

228i (€05min)

22po(3x10Tsec)
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Fig. 1. The decay scheme for Bi and Fig. 2. The portion of the thorjum_de-
its daughters, 20°T1 and 212po. cay chain from 2287h to 208pp.
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1. I‘°'c(oc,wr)'6o AND STELLAR HELIUM BURNING

When the hydrogen is exhausted in the core of a main sequence star, the star
gradually contracts, which increases the temperature sufficiently that hydrogen
begins to burn in a shell just outside the core of helium. The increased heat
flux from this source causes a large expansion of the outer regions of the star;
thus, although the total luminosity has increased, the surface of the star be-
comes cooler -- a red giant. When the inward pressure on the core helium finally
exceeds the outward pressure from the highly degenerate electrons, the helium
must begin to burn to resist the inward pressure. At this point the core density

3 at a temperature of 1-2 x 108 °K. (This is to be compared with

3 and a temperature of v 15 x IO6 OK.)]’2

is 10!+ gm/cm
our sun's central density of v 100 gm/cm
The helium burning reactions that can take place are complicated by the fact
that 88e is unbound with respect to decay into two alpha particles. Thus, it is
only when 3 alphas can react to form ]2C that a nuclear energy source becomes
available. In Fig. 1 we see the level diagrams for 8Be and ]2C. It is an inter-
esting coincidence that at about the same energy where two alphas can form the
8Be ground state, a third alpha can scatter from this short~lived state at an
energy corresponding to the 0+ second excited state of lzc. The occasional
radiative or pair decay of this state produces IZC. Whether one can add addi-
tional alpha particles to the IZC nuclei depends in a very sensitive fashion on
160’ 20N

the level structures of the alpha particle nuclei, e, . . . There are

also minor (but interesting) effects due to the presence of small amounts of
]4N left over from the hydrogen burning CNO cycle, but that story will have to
wait for another time.2

The level structure of ]60 is shown in Fig. 2. Determination of the rate
of the 'Zc(a,Y)]6O reaction under stellar conditions is non-trivial because at
the energy involved (0.3 MeV) the cross section is probably dominated by the tail
of tge bound 7.12 MeV, 1  state. A direct measurement of the cross section
(10

state at 9.6 MeV reaches a maximum capture cross section of about 40 nb; it is

nb) at this energy is not now feasible. At higher energies the broad 1

the interference of these two | states that provides the opportunity to probe
the structure of the 7.12 MeV state. The interpretation of such data is, of
course, compiicated by the possible presence of other unresolved, broad states

at higher energies that also contribute a coherent background.
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The only pieces of information that are needed to determine the stellar
reaction rate are the probability to form the 7.12 MeV state (proportional to
its alpha decay width, Fa) and the probability of its radiative decay (propor-

The latter can be determined independently

tional to its radiative width, FY).
16
0

by resonance fluorescence measurements -- inelastic photon scattering from
{g.s.}) to its 7.12 MeV state.3 Thus, we need only one additional parameter, Ta.

Before going on with our discussion, | shall make a short detour to remind you

of some of the details of the resonance theory of nuclear reactions. Since |

don't plan tc get bogged down in theoretical details, ['1l present an abbrevia-

ted account for the simplest case: spinless particles (ok for o + 2C) and one

channel open (elastic scattering only; the radiative capture is very small and

| shall leave out most of the algebra, but you can find
5

we can add it later).
all the details in Prestonl+ or lLane and Thomas.
We shall assume that the nuclear potential has a sufficiently short range

that beyond r = a it can be entirely neglected. Thus, for r > a we can write

the wave function in terms of ingoing and outgoing Coulomb waves:

io 2i¢
v=% ity e 1k— ;lz(r) re * 0, (r) Yg (8,9)

where Ig = Fg + iGl’ O2 = Fg = iGQ, oy is the Coulomb phase shift, 62 is the

- nuclear phase shift, and the FQ and GQ are the Coulomb functions that are regu-
lar and irregular at the origin, respectively.
Inside the range of the potential (r< a) we'll write the wave function as:

v Ug(r)

_Z 0
We may evaluate the nuclear phase shift (8) by matching the inner and outer

solutions at r = a. We find it useful to define the log derivative, l/RQ:

dug
Upla) = Real 37 | r=a
In a muiti-channel case R becomes a matrix -- the R matrix. After about a page

of algebra we obtain:
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where
F
- l 3
9y (a) = tan (Gz)r=a ’
kr A
Py = 53 (the penetrability),
F,+G r=a
2 72
and
dFQ dGQ
Foar * Sear /T
Sq = 7 (the shift function).
F£+GE r=a

At this point we've merely traded our lack of knowledge of 62 for a lack of
knowledge of RQ. The only assumption made is that there exists a value of a,
outside of which we may neglect the nuclear potential.

Let us now introduce for each % a complete set of solutions to the nuclear
Hamiltonian in the region r £ a. These solutions differ from the correct solu-
tions in that we shall choose them to satisfy a more convenient (but arbitrary)
boundary condition at r = a. We shall denote these functions by a subscript A

which refers to each discrete eigenfunction URA with eigenvalue ERA’ At r = a,

(dU2 A)
a dr r=a _

= B (a constant).
Ugy ()

Since these are eigenfunctions of a real Hamiltonian, they are orthogonal and we

shall normalize them so that

a

of Up 3 Vg @7 = 8 5

Expanding the actual solution at snergy E in terms of the UQ o
b
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= I'4
Uegyg (1) =2 Ay Uy 5 1r)

and using Green's theorem (and more algebra) we can evaluate the R'Q in terms of

the Uz’a(a).
2
pha
E E
R = A2, 3 » where
Y
Y P
A 2,A
2 .
Yo = EﬁE'UQ,A(a) . (u is the reduced mass)

The form of the function suggests that resonances may occur in the scattering as
a function of the energy. In many cases we may be able to consider a range of E
sufficiently close to one of the EA'S that we can neglect all the other terms in

the summation.

2 2
) ///(] L el )
2T E E I

2
Yo
2
E + Yy B

Egn

or

2
-1 Pe Yo

2 -
EQ,A E YQ,A (SR-B) r=a

62,A+¢Q = tan

This is the Breit-Wigner single level formula.
. . 2 .
In this expression, Yo and EZA are independent of the energy, E, Pg and 52
are energy dependent and are determined from the Coulomb functions. For a narrow

resonance,

.
Tox =20 Py
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gives the resonance width in terms of Ygx' In the case we're considering (a+]2C)
we have £ = 1 for the 9.6 and 7.12 MeV levels. We thus get the following expres-

sions for the scattering phase shift and the E-1 capture cross section:

-1 { Ry
) "¢, + tan T-R_S

aa” 1

O
1]

and

RaY
- +1
1 (S] 'P])Raa

6T
OQY(E-]) ;5

There have been several attempts to parametrize the £ = | scattering phase shift
for lzc(a,a)lzc and the E-1 cross section for ]2C(a,Y)]60 in terms of the YAZ
and EA's so that a reliable extrapolation to stellar energies could be made.
These have all had difficulties, which | will discuss later,

Therz2 have also been attempts to extract information on U§;7.]2(a) (and

hence Fa 7 ]2) from direct reaction alpha transfer analyses of reactions like
27

12C(7Li,t)]60.7’8 The results obtained have considerable scatter, which in some
cases is known to be due to an appreciable compound nucleus contribution to the
reaction cross section. Later, | shall summarize these results along with those
from the analysis of lzc(a,y)leo.

1 shall tend to restrict my remarks to the direct measurements of u(:(oz,y)]6
because it now appears that these data have led to a successful extrapolation of
the cross section. The key to this success is entirely due to a beautiful ex-
periment done by Peggy Dyer and Charles Barnes that | shall describe briefly.9

The main difficulties in performing the measurements were the very small
cross section for the 12C(a,y)lso reaction (down to n 1/4 nb) and the very large
cross section for I3C(oc,n)l60. The first experimental improvement they made was
to separate the neutrons and vy rays by time of flight. Though this is an obvious
step, it had to be done efficiently because one loses solid angle for the Nal
detectors as the flight path is increased, and beam intensity is lost in order
to provide a pulsed bzam for the timing. Figure 3 shows the time-of-flight spec-
trum, The data points shown as crosses are for a natural carbon target (V1% ]3C).
Also shown are the data points using a target that was greatly depleted (by WIOZ)

in 13C; this was the second improvement that made this experiment possible.
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Though most of the capture cross section is from E-1 capture (£ = 1 partial
wave), there is enough non-resonant E-2 (£ = 2) contribution to complicate the
analysis. However, measurements of the angular distributions of the y rays
allow the E-2 part to be subtracted. Figure 4 shows the angular distributions.
The E~1 gives a pure sin26 pattern, so it's obvious that there is some E-2 pres-
ent. The derived ratio of the E-2 to the E-1 is shown in Fig. 5. The solid line
is theoretical, a direct capture calculation for the E~2 that | made for Peggy.
(The reason for the dip in the curve is not that the E-2 varies, but rather that
the E-1 resonates at 2.4 MeV -- the 9.6 MeV state.)

Figure 6 shows the total E~1 cross section obtained. 1'11 also define a new

quantity, S(E).

- saY(E) e 2™
GaY E
zazcezu
where n=-—— and E is the center-of-mass energy.
h k

=-2mn
e
The E

the Coulomb barrier crudely removed. This gives us a curve that doesn't fall

is the Gamov factor; thus, S is the cross section with the effect of

guite so fast with decreasing energy (Fig. 7).
The curves shown are the best fits available using the R-matrix parametriza-

tion.
(a) The dashed curve leaves out the effect of the 7.12 MeV state.
(b) The solid curve is the best fit.
(c) The dotted curve is the largest contribution from the 7.12 state that

is not totally excluded by the data.
In terms of the value of S at 0.3 MeV, they get:

S(E = 0.3 Mev) = 0.14 * g':g MeV b.

A slightly different resonance formalism employed by Humblet, Dyer and
Zimmerman]0 (the K-matrix) gives S(0.3) = 0.08 t 8:8; MeV b. The reason that the
uncertainty is so large is that many parameters must be detzrmined from the data,
and the greatest unknown concerns the possible presence of broad, unresolved

states at higher energies.
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About the same time that Dyer and Barnes were getting their data (1972),
Steve Koonin and | had a new idea about this problem. It is well known that one
runs into trouble if you try to describe the broad resonances of a simple poten-
tial (e.g., a square well) in terms of the single level formula. What happens
is that the convergence of the R-matrix expansion is very slow in such cases and
dne must keep quite a few terms. We realized that the 9.6 MeV resonance was just
this sort of resonance and that all the previous R-matrix analyses had tried to
treat this level in terms of one (or at most two) terms in the expansion. Rather
than just add terms, and thereby add more free parameters, we figured out a way
to combine the R-matrix formalism with ordinary scattering from a potential =- a
"hybrid" analysis.]] | won't go through this in detail; it would take a lot of
time and would appeal only to the experts. What | will do is show how it goes
for just the elastic scattering; the extension to the case of lzc(u,y) is in our
paper.]]

Suppose we describe the 9.6 MeV level by scattering from a potential V(r);
this is just the first approximation, but we have to start somewhere. We choose
the depth of the potential to get the right energy for the resonance, we pick a
radius appropriate to the scattering of an alpha particle from ]ZC, and we adjust
the surface thickness {diffuseness) of the potential to fit the width of the
resonance. What about the 7.12 MeV state? There's no reason to assume that it
should be an eigenstate of V(r) -- how do we include it?

Prescription:

1. Use V(r) to calculate 60(E).

2. lInvert the expression that connects § and R to get RO(E)

3. Remember the RO(E) is just a sum of poles and that the 7.12 state is
just another pole.

4, Add in the pole for the 7.12 state -- having chosen E7.]2 to put it at

the correct energy.
2
Y 7.2

0
+ R (E)
Es27E

R(E) =
5. Now we can consider 8(E) as a fn of R(E). We vary y27 12 and the param-
eters of V(r) to get the best fit to 6exp'
You must remember that this is just an example, because § turns out to be
insensitive to Y27 12° Thus, we can approximately fix the parameters of V(r) in

N , 2
fitting &, then use the OQ,Y data to determine Y 7.12°
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The results are summarized in Figs. 8 and 9. !In Fig. 8 OdY is given with
the solid curve representing the best fit and the dashed curve leaving out the

effect of the 7.12 MeV level. The same curves are shown for S(E) in Fig. 9.

The ''final" result for the hybrid analysis gives:
B + 0.05
$(0.3) = 0.08 _ 7 MeV b

Recently Brad Flanders and | have done a bit more work on the problem to
investigate some of the approximations that underlie the hybiid model. The up-

shot of the new wark is
- + 0.05
$(0.3) = 0.09 _ 7oy MeV b

and we're feeling much more secure that the problem is really solved.
| promised a comparison with the direct reaction analyses. |In these I've
. . .2 2 _
given the ratio of Ya,7.12 to Ya,9.59' | have also changed one of the conven
tions used by Koonin to make all the numbers directly comparable. (This basi-

cally has to do with a uniform way of choosing the boundary condition, B.)

(Ya,7.12 2
Me thod Y0,9.59 / " Reference

Theory 0.09 £ 0.05 13
oLi('2c,a) "0 0.07 + 0.16 8
ETURIR 0.03 7
Hybrid analysis 0.03 £ 0.015 11
Hybrid analysis 0.1 + 0.05 12

Before closing | want to return to a brief discussion of the astrophysics.

Based on the results of the '"hybrid'" analysis, we obtain the following |2c mass

3 (Note that since l60(«1,Y)20Ne is non-

12

fractions at the end of helium burning.
resonant at these temperatures, helium burning yields predominantly “C and ! 0.)
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Core MaSS/M() IZC Mass Fraction
: et 9
5 0.62 7 02
10 0.54 * 0%
20 0.46 T 220

So, one ends up with roughly equal amounts of carbon and oxygen.

realize that if y

16 ©,7.12

on carbon.

+
=10 737
ot 8Be+a
8 -0.09
Be —a
L Lo
4A4v2

0'!'

A7
12C
Fig. 1. Abbreviateg energy level dia-

grams for “Be and 2¢ that

show the states that are impor-
tant in stellar helium burning.

One should

were much larger then one would end up with almost pure

0, which would have made it much more difficult to produce a 1ife form based
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I1t. RADON MONITORING AND EARTHQUAKE PREDICTION

During the past fifteen years unusual crustal uplifts and downwarping have

been occurring along the San Andreas fault from Cajon to Maricopa and eastward

into the Mojave Desert and along the base of the San Gabriel mountains. During

1976 and 1977 anomalous swarms of small earthquakes were noted on a section of
the San Andreas fault near Palmdale that had exhibited little seismicity during
the past four decades.] At present there is controversy over the interpretation

of these observations. Among the varying interpretations, one finds the follow-

ing possibilities: (1) this is part of the normal mountain building process and

is likely to proceed without significant seismic events, (2) the uplift is
related to strain accumulation along the locked southern portion of the San An-
dreas fault, or (3) the uplift is associated with thrust-type movement on the

north dipping thrust faults along the Transverse Range. There appears to be

little agreement as to whether or not the geodetic and seismic data can be con-

sidered premonitory to an impending major seismic event.

Regardless of the interpretation, it is quite clear that Southern California

is a heavily populated region of high seismic risk. Damaging earthquakes have
occurred in the past in this area, and they certainly will occur in the future.
The presence of the uplift on a part of the San Andreas fault that has been

accumulating strain since the Fort Tejon earthquake of 1857 only underlines the

need for a credible earthquake prediction capability for this region.
The proximity of the uplift region to the heavily populated areas of South-
ern California makes imperative the need for upgraded monitoring of those geo-

physical and geological parameters that could provide a prediction of an impend-

ing major seismic event. At present, the specific models that would lead to a

fundamental understanding of the earthquake risk in the uplift zone need much
additional work. Nevertheless, a growing body of empirical evidence suggests

that a number of geological and geophysical parameters undergo fairly marked

changes before an earthquake."z—6’7—]3’“l These parameters include seismicity,

acoustical velocity, uplift, tilt, strain, local gravity, resistivity, ground

water levels, radon content of ground water, and radon and thoron emanation. In

addition, before some major earthguakes there have been reports of strange ani-
mal behavior and anomalous atmospheric electrical discharges (earthquake lights

and lightning).z’m’|5 While it is unlikeiy that any one parameter can be used

to provide definitive predictions of impending earthquakes, it is likely that
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correlated changes in a number of parameters will provide reasonably reliable

predictions.

Radon and Thoron Monitoring and Earthquake Activity

Uranium and thorium are two of the most ubiquitous elements

in the earth's

crust. Their daughters, radon and thoron, are radionactive noble gases with half-
lives of 3.83 days and 55 seconds, respectively. These gases migrate through

Radon,

the earth's crust and emanate into the atmosphere and ground water.
214 . _
Bi (T, =

together with its principal daughter productszthb (T, = 26.8 min),
2

19.7 min), and 2]0Pb (T, = 22 yr), and thoron together with its principal
daughter product 2]2Pb ETL = 10.8 hr), long have been used as geophysical tracers
of hydrological and atmos;heric processes. (See Table I.)

Geological processes prior to

earthquakes that result in a change of

TABLE 1
RADON AHD THORON DECAY SERIES pore volume or a change in the state
Isotope Half-life Principal Becar Modes
220 (raion) 18269 a (5.49 rev, 100%) of local stress fields are expected to
g, .05 m a (6.60 Hev, 1003) result in anomalous values for subsur-
214
Pb 6.8 1.0h MoV, 7%; 0.75 Mev, 432 R .
2.8 ﬂ‘o$gnﬂ,zﬂ;oﬁug 3 face radon concentrations. The dilat~
Y many . - - .
14 ' ancy-diffusion model makes specific
L] 19.8 m £ (3.28 Mev, 19%; 1,30 MoV, 8.67;
1.43 te¥, B.7%; many others) gualitative predictions for the behav-
Y many
24y, 162 us o {7.69 Moy, 1003) ior of this radon anomaly prior to an
210y 3y B (0.06 fiev, 20%; 0.015 hev, 831) earthquake.]6 For at least some of
20, (thoron)  §5.3 s o (6.28 Mev, 100%) he of 1 h
16, 015 5 o (6.78 hev, 100%) the observed anomalies there apgeirs
2, 10.64 b B (0.57 iV, 19%; 0.33 nev, 77%; to be agreement with the model.”’
0.15 Kev, 4.3%)
Y many Increased radon in well water was ob-
212
(] 66.6 (5.61-6,09 HMeV, 35.9%} . . -
" Z(gjsﬂﬁ?simfﬂjznw,sﬁh served prior to the major 1966 Tash-
others
¥ many kent earthquake, the major Liaotung
. 6 .
2125, 0.3 us a (8.79 Hev, 64.07%) Peninsula earthquake,S’ and the major
208 N
Tl 3.07 m B (1.80 MeV, 18.77; 1.52 Mev, B.2%; H -
1129 hev. B.55. 1.03 Hev. 1.69) Haicheng earthquake, as Wel}]as a num
-1
Y many ber of small earthquakes.9’ 3

Earthquake lights or lightning which
may be due to the increased ionization of the lower atmosphere resulting from
increased radon and thoron emanation‘h was also observed in several cases. 4,15
Several of the possible radon anomalies preceding small and moderate earth-

quakes have been observed on the San Jacinto fault in Southern California, 0 and
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at Lake Jocasse in South Carolina.9 In most of these cases reductions in the

radon levels were noted prior to the events.
Several techniques have been used to monitor radon. In this country, radon

. . 7,8 . . .
levels are measured in discrete, small samples of well water,”’” in situ in water

8,9 in soil gas using track detec-

from continuously flowing wells and springs,
11,12

10,1

1 . . . . . R
tors, and with continuous and near continuous air monitoring systems.

Radon concentrations are measured by monitoring the alpha activity of the radon

7,10,11

itself and by monitoring the gamma activity or beta activity]2 of the

radon decay products. Examination of the available radon data provides the

following information:
(1) Radon anomalies frequently, but not always, precede earthquakes. -2
The proximity to the epicenter does not always correlate with the size of the
precursory signal.2 Sensitivity appears to be greatest for those events located
on the same fault or fault system as the monitor.
(2) Precursory radon signals may be either increases or decreases from
""mormal'' levels. One Chinese studyI3 suggests that monitors located in zones of

compressional strain record anomalous increases, while those located in dilatant

zones record anomalous decreases.
(3) Data from continuous or almost continuous radon monitors frequently
8,12,17

show diurnal variations. Some investigators are of the opinion that these

. o . 8 .. .
diurnal variations are related to the lunar tides, while in other cases tempera-

ture variations are believed responsible.
(4) Monitors which sample soil gas or groundwater radon close to the sur-

face frequently exhibit a rapid response to short term atmospheric variations

and to rainfall.”’IZ

(5) When the effects listed in (3) and (4) are removed from the data, long

1,12 Some of these signals

term variations in the radon levels often remain.
appear to be correlated with local earthquakes, while others appear to be season-
al variations.

(6) Some radon anomalies have been observed only hours before earthquakes.2
Therefore, a complete radon monitoring system must Include the capability for

continuous or near continuous monitoring.

The Caltech Monitor
Sub-surface radon and thoron are formed by the decay of uranium and thorium

which are ubiquitous in the earth's crust. Once formed, these radioactive gases
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diffuse to some extent into the pore spaces within rock and into soil voids where
they can become dissolved in pore fluids and soil gases. In order to measure
these sub-surface radon concentrations, the instrument is sited in a tunnel or
mineshaft, or over a borehole.

" The radon and thoron within the air space of the tunnel, mineshaft, or bore-
hole decay with half-lives of 3.8 d and 55 s, respectively. The principal decay

products of 222Rn (radon) are ZIth and ZlhBi with half-lives of 26.8 and 19.8

min respectively, while the principal decay product of 220Rn (thoron) is 2|2Pb
with a 10.6 hr half-1ife (Table i). These decay products are formed as small
charged ions which are highly reactive. In the free atmosphere they quickly
agglomerate on much larger aerosol particulates. Typical times for agglomeration
in clean air at sea level are of the order of a minute or two.]8 | f adequate
aerosol counts are maintained, similar agglomeration times obtain within the
more confined space of the tunnel or borehole. Once agglomeration has taken
place, the charged aerosol thus formed will carry the radioactive atom for sev-
eral minutes {(until decay occurs). Some collisions with surfaces can take place
during this time. With each collision there is a small probability that the
charged aerosol will attach to the wall and be lost from the sampie volume. We
have found that these wall effects depend linearly on temperature, and thus can
be corrected for without difficulty.

To obtain a measurement of the radon and thoron daughter activity, the
instrument draws a measured amount of air from the borehole or tunnel through
Whatman Grade 4 chromatography filter paper. This concentrates the aerosols in
a 1.27 cm diameter spot on the filter paper. The B activity of the aerosols is
determined with a small pancake type GM tube {(Technical Associates P1210).

In order to determine background and distinguish between radon daughter and
thoron daughter activity, the following sampling sequence is carried out for
each measurement. First, a fresh segment of the continuous filter paper strip
is positioned over the air intake port and a 60-minute background count is taken.
Aerosol is then injected into the air volume if necessary, and one-half hour is
allowed for agglomeration. Next, the GM tube is moved away from the air intake
location and air is drawn through the filter paper for a short period of time
(typically 4 min at approximately 0.1 m3/min). The GM tube is repositioned over
the aerosol spot on the filter paper and a 20-min count is taken. This second

count includes contributions from both radon and thoron daughters. The sample
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is allowed to decay far 220 min, and then a 60-min count is taken. Because of

the short half-lives for the radon daughters, 2”’Pb and 2“'Bi, the excess above

background in this third count is due almost entirely to the thoron daughter
212py,,
The Caltech instruments are controlled by inexpensive on-board microcom-

puters which are able to handle up to eight additicnal digital or analog inputs

besides the basic monitor operation. These additional input channels will be

used to monitor temperature probes at each site in order to gather data on ther-

moelastic strains in the vicinity of each unit. Each of the field units is

capable of communicating its data to a central location in response to a tele-

(At present, a microcomputer with an auto-

phone call from a central computer.
This

matic dialing system is used to communicate with the field monitors.)
allows the use of ordinary voice quality telephone lines, thus reducing telem=-
etry costs.

In addition to the collection of scientific data, each on-board microcom-

puter monitors the status of all key electronic and mechanical components of the
This fea-

Al-

device. The information also is telemetered to the central computer.

ture greatly reduces the need for service trips to remotely sited units.
though the Caltech radon-thoron monitor is a highly sophisticated device, its
initial cost is lower than most competitive real-time radon monitoring systems.
Indeed, over the long run the total cost of installation and operation is com-
petitive even with passive monitoring techniques (radon cups and discrete water
samples) owing to the elimination of the need for frequent costly trips to the
field.

The first prototype Caltech radon-thoron monitor has been in field opera-

tion at the Kresge Seismological Laboratory in Pasadena for over one year.

During that time it has proven exceptionally reliable. There have been no fail~-

ures of the computer or ancillary electronics, and only a few minor mechanjcal

problems that were easily diagnosed with data from the on-board microcomputer.

This experience resulted in design changes for succeeding units.
Before | talk about our results, | want to give a bit of background on the

use of radon cups in radon monitoring in the USA.

Radon cups employ solid track detectors to measure alpha-particle radio-

activity from soil-gas radon in the vicinity of the cup. Because they are low

in cost and easy to dep oy, they have been widely used in radon monitoring
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programs in California. Typically, they are sited about ! m below the surface
and are collected at weekly intervals. The track detectors are etched and
counted under a microscope.

The major drawbacks of the radon cup method are the lack of sensitivity
owing to the small and unconcentrated nature of the sample, and the non-real
time data collection. At the Kresge site we typically find that a radon cup de-
ployed for a two-week period will yield under 100 tracks, while a single cycle
of the Caltech instrument at the same location yields close to 1000 counts (5 min
air sample from borehole -- 20 min count). However, since these cups are in
widespread use as in situ monitors we employ them at each of the instrument
locations for comparison purposes.

At the Kresge site radon and thoron data are obtained from a 24.38 m deep
borehole which is cased through the overburden. The lower 15.24 m of the bore-
hole is in solid rock. Water fills the hole to within 4.55 m of the surface.
Exhaust air from the positive displacement air pump in the radon-thoron monitor
is bubbled through the water in the borehole in order to strip radon and thoron
into the airspace above. The instrument vault housing of the monitor is mounted
directly over the borehole and is sealed from the ambient air.

Initially, strong diurnal variations in the data from borehole operation
were noted. These were found to correlate with the external ambient air tempera-
ture, with morning values of radon levels low and afternoon values high. This
effect was determined to be a result of condensation in the instrument vault at
low temperatures which removes radon daughters from the instrument vault air
space. lInsulation of the instrument vault and the installation of a small ther-
mostatically controlled heater eliminated almost all of the diurnal variations
in the data. Small remaining short term temperature-related variations in the
data were found to be nearly a linear function of temperature, so that correc-
tions are easily made.

Figure 1 suggests an annual cycle in the Kresge monitor data. To test this

hypothesis, we have fitted the data with a curve of the form

R(t) = Rave [1 + A cos (%%-t - e)] .

Here t is time (in weeks) taking t = 0 to represent the week of maximum average

ambient air temperature, and 6 is a phase delay representing the amount of time
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required for the radon levels to respond to the input temperature wave. Although
only data extending over a period of two or more years can fully establish the
existence of an annual cycle, the reasonably good fits to Fig. 1 strongly suggest
that the long term variations observed in the data are a response to the annual
thermal cycle. Good fits are obtained with A = -0.4 and 6 = 20o indicating both
strong and rapid coupling of the radon levels to changing thermoelastic strains
in the rock in the vicinity of the borehole. In this respect, this particular
site appears to ke excellent for testing models of radon transport.

During the period of operation since location of the Kresge instrument over
the 24.38 m borehole and thermal insulation of its vault, there has been only one
felt earthquake within 25 km of the instrument. This was a 3.1-M event near
downtown Los Angeles on December 22, 1977. A positive anomaly of approximately
two weeks duration was noted prior to the event (Fig. 2). The anomaly associated
with this event was a 40% increase in radon level lasting for about 9 days and
terminating about 6 days before the event. The 40% increase is referred to the
data level expected from the annual variation. As can be seen from Fig. 1, the
anomaly is discernable in both the raw data and the data to which the short term
temperature correction has been applied.

The second Caltech instrument recently was installed in a 27.43 m~long
sealed, horizontal tunnel at Big Dalton Canyon Dam. This site is near the Sierra
Medre fault line, and approximately 25-km east of the Kresge instrument. The
tunnel is located quite close to the flood control dam, and should provide some
very interesting comparisons with the Kresge instrument since at this location
one can expect some strain from reservoir loading in addition to the thermoelas-
tic strains. The amount of water impounded behind the flood control dam is
accurately recorded. Reasonably accurate estimates of the mass loading will
therefore be possible.

Depending upon the availability of project funds, we intend to extend the
network of Caltech monitors (with accompanying radon cups and thermal sensors)
along the foothills of the San Gabriel mountains at approximateiy 10-km inter-
vals. This will allow intercomparison of data from a series of instruments on
interconnected faults.

Recently we received USGS funding for this project and by fall will have

another four units in the field.
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Fig. 2. Three-day running averages of
the raw data from Kresge dur-
ing the period before and just
after the December 22, 1977
Los Angeles earthquake. This
earthquake was the only earth-
quake felt within 25 km of
Pasadena during the period of
data accumulation. A 72-h run-
ning average is plotted for
each 8-h cycle of the monitor.
A change in radon level of
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IV. NUCLEAR TECHNIQUES IN PLANETARY SCIENCE

For those of us who are interested in stellar phenomena, the abundances of
the chemical elements and their isotopes provide many clues about the environ-
ments in which they were created. Figure 1 shows what we think is an approximate
picture of the relative universal abundances of the elements. These data come
mainly from two sources: spectroscopic analyses of the atomic transition lines
from stars and chemical analyses of samples from carbonaceous chondritic meteor-
ites.] For the most part terrestrial samples have been so fractionated chemi-
cally by aeons of geological processing that they are of limited value in deter-
mining universal abundances. The carbonaceous chondrites are thought to be the
first condensates from the evolving solar nebula and thus are expected to be an
accurate representation of the abundances of the non-volatile elements at the
time of solar system formation. |t has been demonstrated for many elements that
the correspondence is excellent between the elemental concentration in these
meteorites and in the solar photosphere.

In this talk | shall consider three examples of how nuclear analysis tech-
niques can be used in the determination of elemental abundances in meteorites
and how the extension of these techniques to planetary samples can give us new
perspectives about typical planetary processes.

You should notice in Fig. 1 that there are three elements that lie far
below the curve established by the other elements, lithium, beryllium and boron.
Because these elements have very large {p,0) cross sections, they are easily
destroyed in stars. Thus, we find that they must have been created in non-stel-
lar, astrophysical processes. We now think that 7Li was produced in the Big
Bang;2 and the others (6Li, 9Be, IO’”B) were made by proton and alpha particle
spallation reactions from cosmic rays striking material in the interstellar
medium.3

The abundances of the lithium and beryllium are reasonably well known, but
boron analyses have continued to cause trouble. A few years ago we set out to
correct this situation by developing a technique to measure IOB and ]‘B concen-
trations at levels down to ~v 0.1 ppm. Until recently 1| thought that everything
was finally in good shape, but some preliminary data from Curtis and Gladney
here at LASL is giving somewhat lower boron concentrations on one meteorite,

which will probably send us all back to the laboratory for a new round of experi-

ments.
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The ]]B analyses serve as an excellent example of how bits of old-fashioned
nuclear physics can be used in a compietely new context. The IIB(d,p)]zB reac-
tion has a large cross section (v %b) and an easily distinguished final product
(20 ms half life, 13 MeV end point energy for the B 's). Nevertheless, the fact
that we must detect the boron in the presence of a million times more other
stuff in the sample, keeps it from being a trivial exercise. Figure 2 indicates
how simple the apparatus is -- a plastic scintillator and some SCA's. Figure 3
shows the bombardment and counting sequence, and an example of the raw and sub-
tracted data. We have a signal to noise of only » 1/20 at 1 ppm -- most of the
background coming from the decay of the ]6N produced in the reaction ]80(d,a)]6N.
This reaction has a small cross section, but since the meteoritic material is
v 50% oxygen, the ]6N becomes a problem. Fortunately, the ]6N lifetime (7.2 s)
is so different from that of IZB, we can easily separate the two decay contribu-
tions.

Table | shows some of our results for six meteorites, which gives what we
think is a good average value for the boron abundance in the solar system. But,
as | indicated earlier, it's not clear that our work is finished on this problem.

]9F. Though fluorine

Another element whose abundance was ill-determined was
is probably made in stars, its high {(p,a) cross section causes its abundance to
be particularly sensitive to the detailed bookkeeping on its production and

destruction.

Again we have used a nuclear reaction that is well known to all of us with
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low-energy accelerators, ]9F(p,ay) . At the narrow 872 keV resonance the

reaction cross section is 540 mb, and the 6 and 7 MeV Y rays are easily observed
with high efficiency.

The fact that the resonance is isolated and sharp, allows us information
on the depth distribution as well. Figure 4 shows this schematically.5 Obvious-
ly one would need to fold in the ef-

fects of the resonance width and the TASLE |

» . . AVERAGE BOROH CONCENTRAT!ONS IN CARBONACEOUS CHONDRITES
proton straggling in any real situa-

No, Atomic
tion. (At the surface of the target Samples  Averoge 8 8/S]
Type Meteorite Analyzed ppm (1076)
the resolution is limited by the reso-
[ Tvuna 1 3.0 77
nance width, which is equivalent to Orgueil ! 1.6 40
c2 Murray 6 1.4 29
~ 500 R.) Qur first use of this tech- Murchison 12 1.7 35
. ] t3-4 Allende o 1.8 23
nique was to look at the concentration Lance 2 1.5 19
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of 19F in meteoritic samples. The depth sensitivity was used to check for the
presence of contaminant fluorine on the sample surfaces. OQOur results are given
in Table Il. The half day's work given in this table is the only accurate deter-
mination of solar system fluorine which clearly shows the power (and selectivity)
of a nuclear technique.

The success of the meteorite work convinced us that we should try to apply
the fluorine analysis to other planetary problems. The most obvious application
invoived a controversy about the moon's history; in addition to the obvious ef-
fects of meteorite impact, was there any clear-cut evidence of lunar vulcanism?

Lunar samples are special in many ways, but the lure that has drawn many of
us into their analysis is that the record of over 3 billion years of solar and
solar system history is held in them. With neither atmosphere nor magnetic
field to deflect the solar wind or flare ions, we have the hope that with suf-
ficient cleverness we can unravel that tangled recording. |In the process of
studying the solar wind implanted hydrogen (using ]H(IgF,ay)l6O, naturally), we

TABLE 1!

FLUORINE CONCENTRATION DATA FOR CARBONACEOUS CHONDRITE METEORITES”

Solid Samples Crushed Samples

F concentration F concentration °

Sample ppmF _ atems F/10° atoms Si Sample pomF  atoms F/10° atoms Si
Murchisz:m"r 80 910 Murchison 5* 75 853
Murchisan 7b" 72 819 Murchison 6 60 682
Murchison 7c* 73 830 Murchison IO* 66 751
Murchison 7d" 80 910 Murchison 117 59 67!
Murchison 7e” 53 603 Mighei” 66 751
Murchison 7§ 93 1058 Essebi’ 80 910
Allendé 21-147 165 1562 Haripura" 59 671
Allendé z1-157 o4 890 tvuna® 70 981
Orgueil® 74 1037
Murchison Ave. 75.2 855 A]lendé+ 59 559
Allende Ave. 129.5 1226
Murchison Ave. 65 739
Type |1 Ave. 67 762
Type | Ave, 72 1009
All Crushed Ave. 67 787

————
»Sincc no samples exhibited surface peaks, concentrations quoted are taken from net average yields
over the resonance. Typical analytic precision is * 8%. Carbonaceous chondrite type is also

indicated.
ECarbonaceous chondrite Type |.
“tarbonaceous chondrite Type 1.

+Carbonaceous chondrite Type {11i.

164



came up with what we thought was an unambiguous way to look for evidence of
lunar vulcanism. ]9F is virtually non-existent in the solar wind, and the bulk
concentration of ]9F in lunar rocks is quite low. We knew, however, that the
halogens are frequently a component of terrestrial volcanic gases; thus, we
would look for fluorine surface films on lunar samples.

The data in Fig. 5 was one of our first tries, an embarassment of riches.
There was an enormous amount of fluorine on the outside of several samples, but
only a relatively small amount in the interior. One must, however, be suspi-
cious in this business, so we finally got around to a control experiment. We
prepared several quartz disks, keeping some at home and sending some to Houston
to be treated as if they were lunar samples. Figure 6 shows what happened.7
It's clear that the sample that went to Houston, and came back in a teflon bag
had picked up some fluorine. This led us to a more detailed investigation and
we discovered that virtually all the lunar samples came home from the moon in
teflon bags.8 '

Now, the hard work started, we tried to get samples that were never exposed
to fluorine by their handling. We first set out to get SESC samples, the con-
Atingency sample that was collected in a small stainless steel can just after the
landing. Unfortunately, most of these were collected under the LM, where its
exhaust had contaminated the surface. After almost a year of negotiation with
NASA we got two small samples from the SESC from Apollo 15. The dark points in
Fig. 7 show data for the glass sides of the two small pieces of glass-welded
breccia. The distribution of fluorine was uniform; no teflon, but no volcanoes.
Not leaving well enough alone, we turned them over and got the open points,
which created visions of new and even more subtle forms of fluorine contamina-
tion. Then, we took a look at these surfaces under a microscope, and saw collec-
tions of small green glass spheres. The spheres are v 100 um in diameter; it's
an absolutely unique material; there is nothing like it on the earth. Figure 8
shows a picked sample, done with tweezers, a binocular microscope, and a strong-
eyed graduate studznt. There is lots of fluorine in a thin layer on the surface.
A fraction of brown glass from the same ''spil" clod shows no effect and provides
a control against contamination. (Other irvestigators have found that the sur-
faces are covered with other volatile materials: zinc, gallium, sulphur, chlo~

rine, etc.) The orange soil from Apollo 17 is similar and has the same sort of

surface film.8
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Nothing iike the green or orange glass occurs on the earth. We think that
it's clear that they were made in a volcanic process ™~ 3 billion years ago.
Figure 9 shows one guess concerning the mechanism, a lava fountain. The absence
of water and an atmosphere makes lunar volcanoces quite different from those on
the earth. It is very likely that these small glass balls represent the most
unusual material that came back from the moon, and we expect to be busy trying
to understand their origin for a long time.

tn our concern with lunar volcanoes and the magmas that resulted from the
large impact craters, we tried to identify the gases that produced all the vesi-
culation (bubbles) in lunar rocks. We became convinced that the major contribu-
tion came from carbon monoxide, which led us into the problem of understanding
the lunar abundance of carbon.

The basic difficulty is that there isn't enough carbon on the moon; there
are three sources (the solar wind, meteoritic impacts, and indigenous), each of
which could easily have supplied more than is now there. We needed a way of
separating these contributions, so we turned again to a depth-sensitive nuclear
reaction, lzc(d,p)]3c.

Figure 10 shows the excitation curve for the reaction, and Fig. 11 gives a
schematic description of the technique. We observe the proton spectrum; protons
that originate near the surface have higher enc-gies than those from inside due
to the energy loss of the incident deuterons and the protons.

We immediately found that all the samples had carbon on them. (It wasn't
obviously from our vacuum system. It runs at 10-10 torr and has no hydrocarbons.)
To make a long story (2 years worth) much shorter, it turns out the carbon mon-
oxide loves to sit on surfaces, and small amounts of carbon monoxide are present
in even very clean 2N (the way all these samples were handled) and in our super
vacuum system.

How do you get the carbon monoxide off without disturbing the stuff that
was there originally? Blind luck and black magic; we discovered that it could
be removed by heavy ion (Vv 2 MeV) induced desorption. (We are still trying to
understand how it works because it may be important in molecular formation
processes on interstellar grains.) Figure 12 shows how it works in cleaning the
carbon monoxide from a radiation damaged quartz sample, and the following figure
shows how we can remove carbon monoxide from various lunar samples. After the

carbon monoxide is removed, nothing else changes. (To check this we let the
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carbon monoxide ''grow!' back and then do it again.)

Lately we've been studying breccias,]0 soil particles welded together by
glass from meteoritic impacts. Figure 13 shows a typical proton spectrum from
such a sample and the contribution of other elements in the region of the carbon
peak. Because the samples are quite rough at a microscopic level, the spectrum
shape is somewhat different from that from a smooth target. Figure 14 shows a
typical decomposition (using the standard line shapes from the previous slide)
into surface' and volume components.

We are just now beginning to sort out some of the systematics; Fig. 15
shows the surface concentration vs. volume concentration for a variety of samples.
It seems that the surface exposure (probably implanted solar wind carbon) is
pretty much the same, but the volume component is highly variable. What this
may mean is that solar wind (and perhaps meteoritic carbon) are gradually con-
verted into volume carbon as the soil 'matures;' the approximately constant sur-
face value representing an equilibrium that is quickly established (v 10“ yrs).

We have decided that soils are also interesting and have bombarded one soii
sample. Obviously, there are problems when you try tc use a very fine powder
as the target for a charged particle beam. Our first spectrum is shown in Fig.
16; it doesn't look much like that from a breccia. The curve shown is just the

surface component form taken from a breccia. |1t doesn't fit very well and we

have lots more work to do.
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esses believed to be mainly
responsible for the synthesis
of nuclei are as follows: hy-
drogen burning, helium burning,
carbon burning, oxygen burning,
silicon burning, the equilib-
rium process (e), neutron cap-
ture on a3 rapid {r) or slow

(s) time scale, the p-process
for the low abundance proton-
rich heavy nuclides, and the §-
process for the lTow-abundance
highly-reactive light elements
lithium, beryllium, and boron.
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[ RITE

Scalers

Schematic experimental arrange-
ment for 2B activation mea-
surement. To maximize count-
ing efficiency the target hold-
er is mounted off-center and
the plastic scintillator is
mounted on a re-entrant, Pb-
shielded tube in the scattering
chamber. To minimize back-
ground only the higher energy
portion of the beta spectrum

is allowed to pass the single
channel analyzer. The beam is
pulsed and counts measured
sequentially in each of the
four scalers according to the
counting cycle shown in Fig. 3.
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pulsed beam activation meas-
urement. The delays between
0-6 and 30-45 ms are to insure
that the beam is totally de-
flected. The Y values indi-
cate the number of counts in
the four successive counting
intervals after beam deflec~
tion. The decrease from Y} to
Yy schematically indicates the
12B decay. (b) Example of an’
uncorrected decay curve for a
meteorite (lvuna) sample. De-
cay time is measured after the
start of interval Y;. (c)
Background corrected decay
curve of data from Fig. 3b.
The corrected activity follows
the 20 ms decay of 12B.
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where xp =depth where E(x) = Eq

Ax = AEg /(dE/dx) =500 A

4. Schematic diagram showing the
relation between the proton
beam energy and the F concen-
tration versus depth.
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Top: Fluorine concentration
versus depth for sample 70019,
i7, a sealed rock box sample.
Exterior points are from meas-
urements of an interior soil
breccia surface, freshly ex-
posed in our laboratory.
Bottom: Fluorine concentration
versus depth for anorthosite
coarse fine 66044,8, and pat-
inated breccia 75075,2, both
sealed rock box samples.

Shown are data from two sur-
faces of 66044,8 and from an
interior surface freshly ex-
posed in our laboratory. The
smooth dashed curve is drawn
through the data points of
75075,2 for clarity in the
figure.

The depth scale has not
been corrected for electro-
static charging of the samples
but the profiles shown are
consistent with surface F
peaks on all samples.
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Fluorine concentration versus
depth for quartz glass discs.
Solid points correspond to a
disc packaged in Teflon by the
Lunar Curatorial Facility;
open points are data from a
disc serving as a control.

The depth of the peak location
of F concentration is probably
caused by electrostatic charg-
ing of the sample during pro-
ton beam bombardment.
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Depth profiles of fluorine con-
centration for two glass-
coated soil breccia chips from
sample 15012, an Apolio 15
Sealed Environment Surface
container (SESC) sample. The
brown "glassy' surfaces {indi-
cated by solid points) show a
uniform distribution of fluo-
rine consistent with bulk val-
ues of lunar fluorine concen-
trations. The significant sur-
face peaks and distribution of
fluorine with depth for the
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due to the presence of surface
coatings on green glass spheres
which are present in the brec-
cia surface. The dashed line
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face profile is an average of
interior data point values.
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scale so that the interior
fluorine in the 'brown frag-
ments'' (about 60 ppm) is more
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samples from 74220. The

lines shown merely connect

the points; for clarity the
data points corresponding to
the dashed line (basalt frag-
ments) have not been shown,
The surface~ and vaolume-cor-
related concentrations of f
fluroine are clearly resolved.
The lest-~hand scale {atoms/
cm?) was obtained by integia-
tion over a depth range cor-
responding to the width of

the surface peak (see text).
The absence of a surface peak
for the basalt fragments in-
sures the absence of Teflon
contamination in the 74220
samples. Interior F in basalt
fragments is about 100 ppm.
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Fig. 9. One proposed volcanic process
for producing lunar green and
orange glasses, a lava foun-
tain.
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The points shown correspond
to the background-corrected
(Fig. 13) proton spectrum
from carbon for sample 10068,
23. The two cross-hatched
regions show how this spec-
trum has been decomposed into
surface and uniform volume
components, each of which has
the distorted shape that is a
consequence of surface rough-
ness. The solid curve through
the data is the sum of the
two contributions and has

xz = 1.7.

ume concentrations for carbon
for each sample are compared.
It is clear that there is no
strong correlation between
surface concentration and
volume concentration for
these samples.
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a surface concentration of

6 x 105 C atoms/cm? and a
volume concentration less
than 20 ppm. The relatively
poor fit indicates that the
actual distribution of carbon
in the soil grains is more
complicated than provided
for by the model.
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V. NUCLEAR TECHNIQUES IN SPUTTERING

When an energetic particle enters a material, some of its energy is lost in
collisions with nuclei. Usually, these nuclear recoils have energies that are
much lower than that of the primary particle but are much higher than the binding
energy in the material (Fig. 1). Because the recoils are comparable in mass to
the other atoms of the material, they are very efficient in transferring their
energy to other atoms and generate a cascade of recoils in the material. As you
can see, this process lies somewhere between the simple two body interaction of
the primary with a single nucleus and the level of thermal motion when equilibri-
um is reached.] There are similar processes in several parts of physics; the
most familiar to you would probably be the pre-compound nucleus reactions that
occur shortly after a high energy proton or pion comes into the nucleus.

Why are people interested in sputtering? The main reason has to do with the
use of sputtering in the preparation of thin films, but in the past few years
there has been considerable interest from the people working on magnetic confine-
ment fusion reactors. Neutral atoms and neutrons escape the plasma and strike
the walls of the confinement vessel, causing sputtering of the walls. This is
important for two reasons: the rapid erosion of the thin wall (thin for reasons
of thermal cooling and reduced activation) and the build up of higher Z atoms
from the wall in the plasma. Since bremsstrahlung losses go as 22, these atoms
cause large losses in reactor efficiency.

My personal interest arose because of the sputtering of the lunar surface by
the solar wind (3 x 108 protons/cmz/s, 107 alpha partic?es/cmz/s, . . .). This
long-term bombardment of the moon by energetic (1 keV/amu) ions has produced
some very strange surface properties that we would like to understand in detail.
We have also discovered that solar wind sputtering of the Martian atmosphere has

been one of the major loss and fractionation mechanisms for atoms in the atmos=
phere.3

From what | said at first, it's easy to see that the sputtering yield (de-
fined as the number of atoms leaving the surface of the material per incident
particle) is going to be approximately proportional to the nuclear component of

the stopping power:
dE
> “(d—)
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Thus, we would expect that S would tend to be higher at low incident energies and
for heavier projectiles. For example, a 10 keV argon beam on a copper target has
S " 5, whereas a 14 MeV neutron on copper has S " lo_h.

When we got into this business, most peoplé were interested in heavy ion
sputtering. The values of § were so high you could measure 3 by weighing the
collected material. There had been a bit of work using neutron activation of
sputtered gold, but there was no real interest in achieving very high sensitivity.
One of our first experiments was the sputtering of niobium by 12 MeV protons --

a simulation for high energy neutron sputtering, where the few experiments done
(with neutrons and protons) tended to disagree.
Figure 2a shows the setup. The niobium foils were activated separately

using 93Nb(&,n)96Tc {t, = 4.3 d) with a 17 MeV o, beam from our tandem accelerator.
2

The collected material was deposited on the carbon and aluminum foils, then the
activity of the niobium and collector foils was measured with a Ge{Li) detector.
Figure 2b shows the activity on the niobium'target and a carbon collector. The
peaks at 778, 812, and 850 keV are the principal peaks from the 96Tc decay. (The

60 206 56 206Pb

Co and Bi peaks come from activities from (p,n} reactions on ~ Fe and

impurities in the collector foils. Observation of collector foils that were not
adjacent to niobium targets showed that the 96Tc had not been produced by
96Mo(p,n)96Tc on impurities. We could clearly see the difference between back-
ward sputtered atoms (SB = 1,6 £ 0.1 x IO-h) and forward sputtered atoms (SF =
5.7+ 0.3 x 1079, .

Because of our interest in astrophysical and solar wind sputtering processes,
we were especially interested in low-energy, light-ion sputtering. Figure 3
shows the apparatus; the key part is the ultra high vacuum system,

Figure 4 shows an angular distribution of material sputtered from a vanadi-
um target by a 90 keV hOAr+ beam. In this case the activation was by 5]V(p,n)-
5lCr; the collector foil was segmented and each piece counted with a Ge(Li) de-
tector. To show that we have plenty of sensitivity, Fig. 5 shows the angular
distribution for the alpha particle sputtering (90 keV) of a molybdenum target

where the sputtering yield is smaller by a factor of 300 than in the case of

hOA+ on vanadium,

Figure 6 was our first attempt to observe isotopic effects in sputtering;
we had produced a range of technetium isotopes in a molybdenum target.5 As you

can see, there was no large effect. (Recently, we have observed isotopic effects
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for the sputtering of calcium isotopes; but here we have used a high precision
mass spectrometer.)6

To show that there are some broad-range techniques available, Fig. 7 shows
the spectrum of ]60 ions backscattered from an aluminum collector, onto which we
had sputtered vanadium and molybdenum.S Because the energy of the scattered ions

o
at 180" goes as

E = MT_Mbeam 2
180° ~ “beam\ M_+M__ ’
T beam

it s clear that using heavy ions greatly improves the mass resolution for

higher values of M We have been using backscattering to study the sputtering

of amorphous (splaI cooled) alloys, where we are especially interested in changes
of composition that might affect their superconducting properties.

Though the activation techniques have allowed us an improvement in sensitiv-
ity of v IO3 over most conventional techniques, we had a few ifdeas to test where

235

we needed much greater sensitivity. An idea that came to mind was to use

235

as a tracer. We would sputter material that contained U; the collector, which

was made of mica, could then be put in a nuclear reactor. The high fission cross

235

section of the U by thermal neutrons allowed great sensitivity because the
tracks of the fission fragments in the mica could be detected with 100% effi-
ciency and very low background.7 Figure 8 shows tracks in the mica that are ex-
posed by etching the mica in 48% HF. (The mica is viewed under an ordinary
optical microscope with a moveable calibrated stage.)

We used this technique to look at the sputtering of uranium metal and com-
pounds by various light ions.8 However, we got a surprise, because occasionally
we saw a small star-shaped pattern of tracks. Since we were using a neutron
fluence that corresponded to an efficiency for fissioning 235U of 10-6, this
star corresponded to a 'chunk' of 285U with v 107 atoms. (Obviously, we checked
very carefully to make sure that the collectors had not been contaminated with
small amounts of uranium dust.) Some of the ''chunks'' emitted were quite large,
as shown in Fig. 9. (This beauty has > 108 235

A few people had thought that they had seen chunks of niobium sputtered by

14 MeV neutrons, but it was a subject of heated argument. Our results showed

U atoms.)

that chunks were emitted even when uranium was sputtered by 13 keV protons. Our

technique even allowed us to measure the distribution of chunk masses.
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We still don't understand this process; obviously a single incident particle
cannot cause the emission of a chunk, because neither energy nor momentum could
be conserved by many orders of magnitude. Our data has, however, provided a
clue; the chunk emission yield turns out toqbe roughly proportional to the atomic

sputtering yield. By using beams of qur, He and protons we could vary satomic

by over 104, and S tracked S . over this range. Thus, we see that the
chunk atomic

chunk emission is somehow related to the ''damage' per unit volume produced by
the incident beam. There must, however, be some additional collective mechanism
involved, but we haven't found it yet. (lt's a most spectacular process -- as
if you dropped a grain of sand onto a large boulder and the boulder shot into
the sky.)

We have been able to use the sensitivity af the 235U detection to learn a
bit more about the sputtering process. One other variable that one should

measure is the energy spectrum af the sputtered atoms.9 Figure 10 shows the sys-

tem we've used. The beam is chopped by parallel electrostatic deflectors so that

the beam pulse passes through the slots in a wheel spinning at 30 000 rpm. The
sputtered atoms then come back through the cold trap which isolates the motor
chamber and the uhv target chamber and are deposited around the rim of the wheel.
For 235U we then segment the wheel, put the pieces between mica sheets, and
it to thermal neutrons in a reactor. The resulting time-of=-arrival spec-

expose
235U target. Figure 12

trum is shown in Fig. 11 for the AOAr+ sputtering of a
shows how the time-of-arrival spectrum becomes an energy spectrum; in this case
for the sputtering of a 235U metal target. The dashed line is a very simple
theoretical model; the solid line shows a slight modification of the theory.
We've been curious about how chemical effects can modify the sputtering
process; Fig. 13 compares the spectra from uranium metal and U02. The spectrum

from U0, peaks at a lower energy and the overall distribution is somewhat broad-

2
er.

We have just received some new motors that run at 120 000 rpm. This will
allow us to shorten the flight path for heavier atoms (and we gain solid angle
as the square of the flight path) or to run much lighter atoms at comparable
resolution. It will not be trivial to use the full capability of these motors,
however, since if we used the same 0.10 m wheels as now, there are no materials
that are strong enough to hold together at that rim speed. (The present rim

speed is 579 km/h; the new motors would have 2317 km/h.)
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Before | close, {'ll tell you about one experiment that uses some of the
235U technigque. To believe the results of the previous experi-

sensitivity of the
235U atoms actually stick to the collector. We've

ment we need to know that the
done this by means of a double scattering technique (Fig. 14).

In this way we found that 98% of the uranium atoms stick to the second tar-
get and have measured the angular distributions of the 22 thaf rebcund. Figures
15a and b show how the angular distribution of the rebounding atoms changes with
the presence of adsorbed gas on the surface of the second target; the more ad-

sorbed material, the flatter the distribution.

We've begun an even harder version in which we are measuring the percent
that stick as a function of their energy.

Obviously, we have an astrophysical axe to grind -- we want to find out
whether variations in the sticking properties of atoms that strike interstellar

grains could be responsible for the depletion of certain elements in the inter-

stellar medium.
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Fission-fragment tracks in
mica after 15-min etch in 48%
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HARTREE FOCK CALCULATIONS OF NUCLEAR STRUCTURE--AN INTRODUCTION

by

D.W.L. Sprung
McMaster University, Hamilton, Ontario, Canada

INTRODUCTION
| was asked to give a set of lectures of pedagogic nature describing Hartree

Fock calculations of nuclear structure. The audience | had in mind consists of

graduate students who have completed courses in quantum mechanics and nuclear
physics. | have tried to concentrate on basics, and perhaps have put too much
emphasis on how some expressions are derived, rather than on how they’é;e used.
Some of the results are presented but very little of the sweat that went into

By way of personal bias | have discussed work done at McMaster

obtaining them.
But

and Orsay omitting reference to equivalent (or better) work done elsewhere.
this is meant only to be an introduction, not a complete survey which is nowadays
For those who wish to read more | can recommend the articles by

impossible.
and by Quentin and Flocard.2 If these lectures serve as a

Friar and Negele]
suitable introduction to these reviews my aim would be fulfilled.

}. Basic Premises
rsics, as a working hypothesis, we generally assume that a

-

ln nt !a h

‘e
n nuclear ph

~;

Peasonably accurate description of the nuclear wave function can be obtained in
terms of only the nucleonic degrees of freedom: that is, the role of pions and
other virtual bosons is to generate a nuclear force which can be represented by
a potential. After that, it was hoped, we can restrict our attention to the

nucleons alone. Of course, there is now considerable evidence that this view is

incorrect. Even in such a simple process as photo disintegration of the deuter-
on: y+d>p+n, or its inverse: radiative capture, n{p,d)y there are believed
to be significant "‘exchange current' contributions to the observed cross sections.
Nevertheless, a nuclear wave function which ignores the existence of pions may
still be a useful quantity. Some nuclear processes, specifically the bulk prop-
erties {energy, size, shape, . . .) may be well described, and for other process-

es such a wave function may provide a suitable zeroth order approximation.

188



From this point of view we will think of a many body Hamiltonian

N~

2
H=-zsh ¢24 i (1.1)
. 2m i i

where Vij = V(rioiTipi; rjojijj . . .) is a two body potential, Vijk is likewise
a three body potential, and there is no reason in principle why more complicated
N-body interactions cannot exist. The pion theory of the nucleon-nucleon force
certainly predicts that a three body force should exist-=-it corresponds to an
interaction between three particles which is additional to just the three pair-
wise interactions. |In a diagrammatic language, one has processes like

where particle two is excited into a
virtual A or (3,3) resonance state in
between exchanging pions with two
neighboring nuclei. This particular
process has been studied by a number
"""" of groups. The best estimate is that
A the three-body force might contribute
one to two MeV/A to nuclear binding

energies. In contrast the two-body

N force is reckoned to contribute about
35 MeV/A. The reason for the relative

unimportance of the three-body force is that the nucleus is a low density system,
making it unlikely for three nucleons to be close together at once. Also, the
Pauli principle restricts clustering. More than four-body clusters (r and p with
spins up and down) are unlikely to be very important.

For these reasons, it is assumed in the first instance that the Hamiltonian
can be restricted to two-body forces. In this case, one can study the two-body
force by carrying out N-N scattering experiments. |If ELAB < 550 HeV, the scatter-
ing is mainly elastic, so can be analyzed using nonrelativistic quantum mechanics.
The measured cross sections, polarizations, depolarizations, etc., are used to
determine phase parameters 6QJ(E) which characterize the N-N interaction, and
these in turn are used to fit two-body potentials. If these potentials were
weak enough, one could attempt to solve the many body Schroedinger equation di-
rectly, using perturbation theory for example. Since the potentials incorporate

both strong attraction and repulsion, more complicated methods have been
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developed. The most extensive work in this direction has proceeded along the
lines of the Brueckner theory. |In one approach, called the Local Density Approxi-
mation or LDA, one first tries to solve the problem of infinite nuclear matter,
and constructs as a function of the density p = (2/3ﬂ2) kF3 a local "effective
interaction' which in first order of perturbation theory will reproduce selected
nuclear matter properties. Since in the infinite system there is only one param-
eter, the density, one produces in this way a ''density dependent effective inter-
action."

According to the Local Densitv Approximation (LDA), introduced by Brueckner,
Gammel and Weitzner,3 a finite nucleus can be thought of as made up of small ele-
ments of nuclear matter. In each such region the two body effective interaction
is taken to be what it is in infinite nuclear matter at some average value of the
local density. We have often used the arithmetic average [pn(l) + pp(l) + pn(2)
+ pp(Z)]/h when a neutron-proton pair at positions i) and T, interact. The
validity of the LDA depends partly upon the short range of the NN interaction,
compared to the nuclear radius. But even the heaviest nuclei are more than half
surface, where the density is falling rapidly, so it is not obvious that the LDA
should hold. This makes the success of the theory all the more interesting.

The effective interaction of Campi and Sprung,h called G-0, was wr%tten as

a sum of Gaussians

N -(r/Ai)z
? (ai + bikF Ye + (W-WO)AS(r) 1.2

i}

Vir,kp)

=V (r) +k Ay () +V.
a F b w
3é 173
The density dependence is separable [kF = (—i—-p) ]. The saturating prop-

erty of the nuclear force leads to a low power of kF: A= 1/2 for force G-0.
That is, at low density the presence of other particles has a rapidly varying
effect, but at higher densities the density dependence is small. The effective
interaction is designed to be used only in first order., At each density it re~

produces the diagonal elements of the G-matrix in infinite nuclear matter.

2. Hartree Fock Method
Given a Hamiltonian containing only one and two body terms, the total energy

of the system can be expressed in terms of the one body and two body density
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matrices. To see this consider an antisymmetric wave function

w(1,2,. . .A)

depending on the coordinates of A particles, and normalized

JurQo o mpQ mdr. L dT, = (2.1)

The expectation value of the kinetic energy is

2
[ . A (z%v yo(l. . .A)dT (2.2)

<T>

=-a-= [0 v B0, L e (2.3)

Since the antisymmetry of U makes Yy a symmetric function of its coordinates,
so each of the terms in the sum contributes equally. By integrating by parts,

one of the gradients can be thrown onto s,

Setting
A0 = A [y LAz, . A)dT,. . .dT, (2.4)
we have
2 2
_h _h 3
<T> = 2m [Y]Y]'p(l’l‘)]l=l'dTl T 2m tlr)d’r . (2.5)

Here p(1,1') is the off diagonal element of the one body density matrix, and t(r)

~

is called the kinetic energy density. Similarly

<> =.f wE(l. . )(; b V )w(l. . .A)drl. - dT,
i
=5L(§21)—f U S LR IC BV T SO
1
= 2f ot12,12)v , dr g1, (2.6)
where
p(12,1'2') = A(A=1) fu+(112'3. . .A) (123. . .A)dTy. . .d1, (2.7)
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Here | have assumed that V]2 is a local force. |In principle then, one does not

requife a full knowledge of the many body wave function but only those simpler
objects p(12, 1'2'). Unfortunately, no one has devised a way to tell whether a
given p is an allowed density matrix corresponding to an allowed many body wave
function; some necessary conditions but no sufficient conditions are known.

It is true that, Mihailovié and coworkers6 have done calculations of Ne,
2855 in which the density matrix was treated as a variational quantity, p being
A number of necessary conditions were imposed

expressed in an oscillator basis.

on p, and apparently sensible results obtained. However, this method is not well

developed.
According to the variational principle, the ground state of an A-body system
is that compietely antisymmetric state P{I. .A) which minimizes <y|H|y> subject

to the condition that <w|w> = 1. This can be included in the variational problem

by introducing a Lagrange multiplier E, and demanding a minimum of

<plH|p> - E(<ply> - 1) (2.8)
This implies
<8y| (H~E) |y> = 0 for all variations |&y>
(2.9)

together with SE(<y|y> - 1) for arbitrary variations SE.
Since |8y> is arbitrary, we have (H-E) |y> = 0; the variational principle leads to

the Schroedinger equation.
The variational method consists of introducing a trial wave function

¢(ala2a3. ) depending on a certain number of parameters (al,az,aB. . .) = a.
These parameters are varied until

<p[H]y> - E(<p[y> = 1) = H(a) - E[N(a) - 1] (2.10)
is a minimum. Necessary conditions for a stationary value are

9H N _ R -

ja, " Faa 0 5 M@ =T (2.11)
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The Hartiee Fock approximation is an application of the variational method,
which utilizes a large number of variational parameters. Hartree's idea was to
ascribe to each particle a state, or single particle orbital ¢i(ri), so the total
¥ is a product of these orbitals. Fock introduced antisymmetry by making a Slater

determinant rather than a simple product.

01,2, . A) = ——detlo. (r)] = ——2 ()P0, (r). . Lo (r) . (2.12)
/AT P AT e 1 AT

An elementary property of determinants is that they change sign when only two rows
(or columns) are interchanged. The symbols {(aB. . .8) are a permutation P of the
labels 1 2. . .A and (-I)P is the signature of the permutation. To ensure that
|w> is normalized, the orbitals ¢i(r) form an orthonormal set. For such a | the
density natrix takes a very simple form

p(1,1') = %T i ')P+QJ” ¢T(ra). . .¢;(r6)¢](ra). . .¢A(rd)d ro .d Fa

Z
Q
(2.13)
Suppose that 1 occurs at position k in P, and at position £ in Q. A subset of
(A-1)! of the permutations P (or Q) allow this. But if we fix P, only a single

permutation Q gives a non zero result, due to orthogonality of the ¢'s: it is

Q=P

.r¢ (r ¢ (r .( ¢k b ¢ (rb)d rye - - = 1.

Each of the (A-1)! permutations P gives an identical result. Finally, k can be

any one of the 1. . .A, so
A %
p(1,1') = T ¢, (r)e, (r}) (2.14)
k=1

is just a projector onto the subspace of occupied orbitals ¢k(r). Similarly, the
kinetic energy density is
2 2 A

e =% 1 w ) e ) (2.15)
k=1



The two body density matrix is calculated similarly.

p(12,1021) = A1) 5 ()P0
PQ
Fo1r ) o tp(r o (r ) o o, (rgddr . o dPr,  (2.16)
] a . - A 6 ] a . . . A d ]. . - A .
If P places 1 at k and 2 at %, there will be two allowed permutations Q:

Q = P or the "exchange' case with | at 2 and 2 at k. Since this permutation

differs by a single pair interchange, it has opposite signature. Thus,

p(12,112') = % 6, (r1)9, (r3) [0, (r ), (r)) =6, (r,)0, (r )]
k% ’

p(11)p(22') - p(21)p(12') . (2.17)

If ¢ were not taken to have the simple Slater determinant form, the two particle
density matrix would not be expressible in terms of the one particle density
matrix. An additional term would appear, which would correspond to ''dynamical
correlations' between the two bodies, which are additional to the Pauli correla-
tions contained in the above.

So far, Y is just a trial wave function. The variational method tells us to
vary the orbitals ¢i(r) until <H> is minimized; this will give the optimum wave
function within the restricted part of the Hilbert space spanned by all Slater

determinant wave functions. From (2.15), (2.17) we have

<plHly> = fH(r)d’r (2.18)
2
with H(r) ='25-T(r) + %—J'p(rr‘,rr')V(r-r‘)d3r'

2
<l S (0 + LIS oot -lote,r) 2 (r-reded®e (2.19)

Since ¢(r) is complex, we can vary its real and imaginary parts independently.
Alternatively we can consider ¢(r) and ¢h(r) as independent variational quanti-

ties; this leads to two sets of equations which are hermitian conjugates of each

other.
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We consider varying ¢;(R) at the point r = R, by an amount 6¢:(R)6(r-R). in
the potential energy term we will get two equal contributions corresponding to

r = R and ' = R, removing the factor 1/2. The result is the Hartree Fock equa-

tions:

~

2
- TP () + 6, (R) [ o(r v (R-r e

- o (ro R, PV (R-r ) r!

= £,9,(R) (2.20)

In arriving at this result, use is made of the freedom to make a unitary
transformation among the set of occupied states [¢k(r)] in order that only a
single ¢k appears on the right hand side (see Appendix A). The Hartree Fock
equations are a set of integro-differential equations which determine the set ¢k
of states which minimize the total energy in the space of Slater determinants.

The left hand side of £q. (2.20) is the Hartree Fock one body Hamiltonian

2
hr,r) = -8

ror = v Uy (018(-rt) + U (r,rt)

consisting of the kinetic energy, the local 'direct' interaction and the non
local ‘‘exchange'' interaction. The direct term is just the potential energy at r
due to the presence of particles at r' with probability p(r')d3r', summed over

all z':
u,(r) = fp([')V([-g')dBr'

This contains a ''self interaction' since the state ¢k(r) is included in the sum
p{r'); however, this is seen to be cancelled out by an equal term contained in
the exchange field. The exchange field represents the additional enzrgy due to
the possibility of the particle in state ¢k exchanging position with any of the
remaining (A-1) particles. |[|f exchange is ignored, Y reduces to a simple product
wave function and only the direct potential minus the self interaction occurs.

This is the Hartree approximation.
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The Hartree Fock method is also called the self consistent field method.
The one body Hamiltonian determines the orbitals ¢k(r), but these are required
[to construct p(r,r')] before we know h(r,r'). The usual method of solution is
to start from a trial set of ¢k(r), usually oscillator or Woods Saxon wave func-
tions, then construct h(r,r'), and finally solve for a new set ¢k(r). This
process is continued until the output set ¢k(r) are close enough to the input set.
At this point the fields constructed from ¢k are self consistent in that they
reproduce the same set of ¢k(r). There is no mathematical demonstration that
this procedure will converge, but considerable numerical experience gives confi-
dence in it. Except for magic nuclei, problems can arise, where successive
iterations oscillate between (say) different configurations. A common remedy in
this situation is to average the field uh(n) + (l-u)h(n+l) = ﬁ(n+l) between
successive iterations.

In Eq. (2.20) we may multiply by ¢:(R), sum over k and integrate over all R:

The result is

2 |
T frwdr + ff oRIp(r)-1o(R,r)1% v(R-r)a’RdPrr = Do - (2.21)

This is not the same as <y|H|y> because the potential energy is counted twice.
Since the ilartree Fock one body field ultimately is due to the interaction of
state k with all other states £, when we sum up the potential energies of all
states k we will have counted the k- interaction twice, once for state k and

again for state 2.
If we add the total kinetic energy to Eg. (2.21), and divide by 2, we will

reproduce

(e, + tk) (2.22)

2
<y[Hly> = EHF=;_{E e + 55 e = 11

b
k
KEoox 3 o
where t, = - EE;Jr¢kV ¢k d”r is the kinetic energy of state k. The Hartrec Fock
eigenvalues g, are approximately equal tc the removal energies for a particle in
state k, but their sum is not equal to the total energy.
At this point we can see that the Hartree Fock approximation with a static

two body force will be in trouble in describing nuclear structure. From experi-

ments such as (e,e'p) or (p,2p) which remove a nucleon from deep inside the
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nucleus, we learn that the removal energy for a 1s nucleon is at most of arder
50 MeV. From nuclear radii, which are accurately known from electron scattering,

the kinetic energy can be estimated. In infinite nuclear matter, the average
kinetic energy is %%-%—kFZ =~ 23 MeV per particle. Allowing for the fact that it
is slightly less in finite nuclei, we still have an estimated total energy of
only -2 to -4 MeV/A according to the Hartree Fock relation (2.22). But real
nuclei are bound by -8 MeV/A. This conundrum was emphasized by Kerman about 10
years ago.

The effective interaction theory allows us to find the additional binding
energy from the density dependence of the effective interaction implied by the
local density approximation. Density dependence means that the Hamiltonian
depends on the solution to the Schroedinger equation. In this case the varia-
tional principle does not hold, but we can appeal to the principle of maximum

self consistency to derive Hartree Fock equations which contain additional ‘'re-

arrangement terms'' arising from

oV Sp T

P sor(r)

In the simplest case the density dependence is separable and of the form

v (re ) lo(r) + p(r) 3% 2 v, (rerty0) (2.23)

Then the rearrangement term is
¢k(r)./'aVb(r-r’,p)'{%{p(r)+ (k)13 ot (r) -Totr,r) 12343 . (2.24)

There are both direct and exchange parts of the rearrangement field, but both
are local fields due to our choice of the form of density dependence.

The presence of these additional fields means that the Hartree Fock relation,

Eq. (2.22) will no longer produce the total energy of the nucleus. Rather

+In some effective interactions, there is dependence on other local functionals,
such as T(r), V2p(r) and Vp(r). One will then consider variations
2 sl , for example.

L

ot 6V¢;(r)
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= +
E EHF ERear where EHF

from (2.24) above. Exploiting the symmetry between r,r' we write

is still given by Eq. (2.22) and Epear '8 constructed

Epear = ~ q[}vb(r-r',p)[o(r)o(r') - olr,r) A d?e (2.25)

At this point, to make the discussion more concrete | will describe some HF
calculations for spherical nuclei done by Campi and myself using a force called
G-0 (Eq. 1.2). In addition to the ingredients already listed, this includes two

additional elements. One is a zero range two body spin orbit interaction, VLS =
iBG(rIZ)(g]+gz)-(g'xE), with a strength constant B = 130 MeV fmS. The second is
an "'energy dependence'' which arises from the fact that in a finite nucleus, while
the density varies from place to place, the energy of a given state is a global
quantity which is fixed. |In infinite nuclear matter at a given density, the
average energy of occupied states is a function of that density. In the surface
of a finite nucleus you have matter at low density but a (relatively) large
single particle binding energy. The effective interaction is less attractive
when the particles are well bound, and this can be well represented by a term of
the form [W~w0(kF)]AST(kF)6(£]2) where wo(kF) is the average single particle
energy in nuclear matter at density corresponding to the local Fermi momentum

kF; W is the averag$ single particle energy in the finite nucleus excluding
Coulomb effects; A (kF) is a strength parameter determined in nuclear matter
calculations and the zero range nature of this force reflects the fact that its
matrix elements are constant. The force acts only in S-states and is much

stronger in the triplet than in the singlet case:

A'3 = 164 (1 + 0.486 kF)'3

a3l = 15,60 (1 + 0.87 kF)'3

This force contributes an almost constant 0.6 MeV/A to nuclear binding energy.

In Campi and Sprung, spherical Hartree Fock calculations were reported for
doubly closed shell nuclei hHe, ]60, hoCa, 48Ca, SOZr, and 208Pb. The force G-0
was adjusted so as to give saturation in nuclear matter at ES = = 16.5 MeV, kS =
1.35 fm-]. We then found that nuclear binding eneirgies were reproduced to with-
in 250 keV/A and charge radii within 1%, Some of the relevant results are

summarized in Figs. 1 and 2 and Tables | and Il from CS.
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The force was also tested on the series of isotopes of He and 0 and gave a
reasonably good account of the trend of binding energies and radii, as in Figs.

3, 4, 5 and 6.

3. Skyrme Forces
In place of an effective interaction deduced from nuclear matter calcula-

tions in the local density approximation, considerable work has been done using
purely phenomenological effective interactions designed to produce saturation
in finite nuclei. The first such forces were those of Volkov,7 and Brink and
Boeker,8 which were purely static forces. Brink and Vautherin9 first carried
out Hartree Fock calculations using the BB force, obtaining good radii for the
magic nuclei but binding energies of only 6 MeV/A. These forces consist of a
repulsive plus an attractive Gaussian, and a suitable exchange mixture to ensure
that most of the attraction comes from even states.

Brink and Vautherin then revived a very simple form of effective interac-
tion, originally suggested by Skyrme, which contains on]y a small number of

adjustable parameters. It is of the form V, + Vs where"

t
- 1 2 2
Vp = toll + xPR)8lry,) + 5= (1 o+ xR TR (ry,) + 5(ry)k7]
12
b, H Al
+ ey (1 # x,P Yk -8(r )k + iW(g +07) - Tk' x 8(r,,)k] (3.1)
and V3 incorporates a suitable density dependence. Originally it was taken to
be a contact three body force
V3 = t58(r),)8(ry3) (3.2)

but subsequently it has been found preferable to consider it a density dependent

two body force

t
b= 3 o
Vi=% ( + x3Pc)p0 6(r]2) (3.3)

{for x3 =1, a =1, this force makes the same contribution to the Hartree Fock

+Note P_ is the spin exchange operator; k is the operator (-~iV) acting to right;

k! to Teft.
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energy as does V3. However, if one considers excitations of the system, through

RPA vibrations, they are no longer equivalent and the second form leads to

better results).
There are several popular sets of Skyrme force parameters which have been
fitted to reproduce nuclear properties over a wide region of the N,Z diagram.

These have names, S-!, S5-11, etc. Some of these are listed in Table J|I. |n

most cases the exchange parameters s] and 52 are set to zero, 53
corresponding to the above remarks. This leaves six real parameters, to, xo, t',
t2, t3, and W, the strength of the spin orbit interaction. A value of W = 120 MeV

=1 and o =1

fm” gives reasonable spin orbit splittings for the eigenvalues near magic nuclei.

The various Skyrme forces can be characterized by the value of t3,";he amount of

density dependence. Flocard et al.'h have found that there is a }inear rela-
tionship among the Skyrme parameters, so that any number of acceptable sets can
be found which give good agreement for nuclear binding energies and radii.

These forces differ in how density dependence is traded off against velocity

dependence of the effective interaction. S-11l is rather similar to force G-0

in that it corresponds to an effective mass of above 0.76 m in the nuclear

interior (G-0 corresponds to about 0.66 m in nuclear matter).

The Skyrme forces not only reproduce a large amount of nuclear data from a

small number of adjustable parameters; they are exceedingly easy to use. The

zero range nature of the force ensures that the Hartree Fock fields are local,

and in fact are simple polynomials of local densities. The most time consuming

part of a HF calculation with a finite range force is constructing the non-local

exchange field; here this is entirely avoided.
In Vautherin and Brink (1972) it is shown that for a Skyrme force, H{i)

(Eq. 2.18) can be expressed as an algebraic functional of just three densities

‘ pq(r), Tq(r), and a vector density Jq(r). To be realistic | will not introduce

spin and isospin degrees of freedom, neglected in the discussion so far. Besides

a position r, a particle will have a spin coordinate ¢ = #1/2 and a charge coor-

dinate g taking values n,p., We consider an even-even nucleus, and assume that

the subspace of occupied orbitals is invariant under time reversal. (For an

axially symmetric system this implies that states of Jz = +m will have equal

Since protons and neutrons are distinguishable particles, the
If we sum over both spin

occupation.)
density matrix will be diagonal in the coordinate q.

states we can define the following densities:
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pg(r) = £ Idak(g,o,q)l2 (3.4)

ko
_ 2
Tq(r) = EG |7, (r,o,q)] (3.5)
J () =-i £ ¢ (roq) I (ra'q) x <o|o|a’>] (3.6)
~4 Koo' K ~k -

The expression for H(r) is

2
H(F) = 5= 1(r) + 5

1 2 1 2 2
5 > to[(l + E'XO)D (XO + 7) (0" + Dp)]

n

] 1
E—(t‘ + tz)pT + g-(tz - tl)(pnTn +ppr)

] 2 1 2 2
+1g (t, - 3tV + 55—(3t‘ +t,)(p Vo + P,V pp)

—

] 2,2 1
*yg (4 - )+ d0) + e 00

P
+ Hc(r) - %-Wo(p div J + o divJ_ + o, div Jp) (3.7)
H(r) =5 P v () -3 A3 ()3 : (3.8)
with
v_(r) = ezf%(—:—)r S (3.9)

The exchange part of the Coulomb interaction is taken in Slater's approximation

(see Bethe and Jackiw]0 for a discussion).

As before, Hartree Fock equations are deduced by minimizing
2 3
d/}H(r) -z ek[l¢k(r)]| - 1}d°r (3.10)
k

by variations of the orbitals ¢i(r). Since H(r) is algebraic, this is not diffi-
cult to do. The only complication is that besides ¢k’ H depends ?n derivatives
Y¢k, so that in order to produce an expression proportional to 6¢;(r), an integra-
tion by parts must be done. This will affect the terms involving t], t2. The

result may be expressed as
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~

oH oH 2 oH
=~ -V = + UV (—5— ) =g, (r) . (3.11)
2, (3(Y¢k) ) (a(v2¢k) ) = <

Actually, by means of integration by parts, the szp terms can be replaced by

(Vp)2 terms, so the third term in (3.11) is unnecessary. The resulting HF equa-

tions are

2
-7 (= 7) + U () + W (1) (-i%x0)14, (F) = €0, (r) (3.12)

o

Zm;(r)

~

where q is the charge of the particle in state k,

2 2 :
i I 1 - \
o ==t (g, + t)elr) + 5 (¢, t])pq(r) (3.13)
2m_{r)
q
is called the effective mass term, and
- 1 - I L2 2,2
Uq(r) = to[ (1 + 5 x)p-(x, + 2)oq] + 5 .LB(D pq)
1 2 1 2 1
- §-(3t]-t2)V p+ TE.(3t3 + tz)V pq + H’(tl + tz)T
1/3
1 - L . —e2 (3 1/3
+3 (t2 t])'rq 3 wo(y J o+ qu) +6qp (vc(r) e (ﬂ) Py )
=1 | -
‘.’.Jq T2 wO(YD + qu) + ) (tl t2)£q ‘ (3.14)

9

In the first paper by Vautherin and Brink™ spherical symmetry was also

assumed, and calculations were carried cut for the doubly closed shell nuclei.

In this case the vector density J has only a radial component:
J(r) = f J(r)
The first term in wq leads then to the familiar Blin-Stoyle]] form

L o+p) 5oL (3.15)

|-

W (-iVxo) = W
~q< ~ ~) 0 q
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In the spherical case,

¢k(rUT) = %-R (r) v ]/2 Xq (1) (3.16)
SO

or) = —L> 7 (25 +1)RA(r) (3.17)

4or® @ & o ,
dR,\2 & (% nab

{r) —ml;i (2ja+1)[(a—rg) +—r—-—R (r)] (3.18)
1 2 +£

J(r) = u_ni(ZJ'a“) <ol Ry (r) - <od> =[-g-1 : (3.19)

The Hartree Fock equations (3.12) may now be solved in the usual partial wave
representation as ordinary second order differential equations. A transformation
to remove the first derivative allows the powerful Numerov method to be used.
There are a number of special recipes which have been applied to all Skyrme
calculations which we should note. In Eq. (3.14) the term l/8(t]-t2)gq repre-
sents a central-force contribution to the spin orbit splitting. This has invar-
iably been omitted, on aesthetic grounds. Correspondingly, the term I/lé(t]-tz)
(J:+J§) has been dropped from the energy density Eq. (3.7), in order to preserve
the variational principle. Secondly the one body part of the center of mass
motion has been subtracted from the kinetic energy. The Hamiltonian {(1.1)
written in an arbitrary coordinate system, and the calculations have been carried
out using all A particle coordinates. This means that the center of mass of the
nucleus is not at rest. The center of mass momentum f = % P; ought to be a con-
stant of motion. To remove the energy of motion of the center of mass from. the

Hamiltonian one should subtract

The first term on the right hand side can be combined easily with the kinetic

energy part of (1.1):
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2
1 A” 2
(1 A) ? 2m Vi =T

2
merely reducing the value of‘ga-= 20.73 MeV fm

is neglected. For nuclei A>l4 this leads to an error comparable to the correction

2 by %-. The ‘two body part (pi-pj)

made. However, for Skyrme forces this may be regarded as a prescription which
has gone into fitting of the parameters.
To gain some insight into the meaning of the parameters we consider an N=Z

nucleus and omit Coulomb effects. Then pq = %—p is the same for both charges:

2 2
O NPT TR
;;; =5 (1 A) T (3tI + 5t2)p (3.20)
-3 3 .21
_”(r)“hto‘”ls t3P +T%'(3t1+5t2)T
I ) 2 3 .
+§'2‘(5t2 9t])Vp > Wy div J (3.21)
W=2WT + 4 (t,-t.)d (3.22)
~ 470 16 71 2’2 ¢ )

The effective mass has the form postulated by Migdal. The combination (3t + 5t )
is a measure of ''velocity dependence' of the effective interaction. (9t 5t )
is related to the surface energy, since it occurs with Vzp in U(r) and wnth (Vp)

in H:

+ 1z Bty + 5ty)or + gp (¢ - 1,097

g,; (9t - 5¢, ) (vp)? h Wop div J (3.23)
In the limit of infinite nuclear matter (Vp =0, V°J =0, T = %—kFZ)
E_H_3; ,3 1, 2,3 2
o % Te+ 5 %° * 17 typ” + 3 (3t] + 5t2)ka . (3.24)
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The compressibility modulus

2
_ L 23°(E/A) _ 6 9 5.2 3 2
K=k —g;—f—— =z Te+ 3 tyP + g—'t3p + 3 (3tI + Stz)ka (3.25)
F
at the saturation point kF where
ak ) F 2m 'F
F
Treating E/A, kF and K as input quantities one can solve for
_ho E, L b 16
te=3 @ rgk -5 T
3 2.5k -3
T t3p = 15 A + K 5 TF
L 2 - 5.2
1% (3tI + 5t2)ka = 2TF 15 (A) 3 K . (3.26)
It is believed that E/A = -16 MeV, TF ~ +38 MeV and K = 200 MeV. AIll Skyrme

forces give K of the least 300 MeV, somewhat greater than other ''realistic"
effective interactions.

In a second paper VautherinIz extended his calculations to axially symmetric
deformed nuclei. A basis of deformed oscillator states - essentially the asymp-
totic basis of the Nilsson model, was used. The matrix elements of the one body
hamiltonian have to be calculated between the basis states, then the eigenvalues
and eigenvectors of this matrix are found numerically. |In practice, the matrix
elements are calculated by numerical integration using a Gaussian quadrature rule
in the (r,z) plane. There is, then, a shuffling back and forth between real
space - where the HF hamiltonian [HZ/Zm*(r), Uq(r), Wq(r)] is easily expressed -
and the oscillator space, where the eigenvalue problem for the HF orbitals is
conveniently solved. The calculations are well within the capabilities of present
computers.

Taking the symmetry axis along 0Z, JZ = Qk is a good quantum number. One

can take orbitals of the form

+

0, (r,0,0) = Doy (r2)e™ ™ P+ op(r,)e™ Oy Ix, (3.27)
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+
where y, are spin up/down states and Xq denotes the charge state. A~ = Qk * %..

The distance perpendicular to 0Z is r. The expressions for the one body density

lead to
olr,2) = I oy (ru2) |2+ o (r,2) |2 (3.28)
w(re) <1 900 (r2) |2 + |7 0, (r,2)|* + %-Z—IA'(b;(r,Z)|2(+*—+—)}(3.29)
where Vr = 5% , VZ = 52—, V¢ = %-sg-in cylindrical coordinates. div J has a simi-

lar expression.

The time reversal operator is ? = aicyKo = % (Gg’0+)Ko where K0 denotes com-
plex conjugation. |[If it is applied to the state ¢k (3.29) it has the effect of
replacing [¢:, ¢;, Qk] > [-¢;, ¢:, “Qk]. However, such an interchange of the
spinor components leaves the densities p, T, div J invariant. Thus, we are
allowed to divide the orbitals ¢k into a set with Qk > 0 and the set of time
reversed states ¢E with QE < 0. These make equal contributions to the densities,
so we calculate only the first set and finally double the result. Similarly, the
parity operation changes r » -r, or (r,z,¢) > (r,-z, ¢ + ®). The densities are
independent of ¢, depending only on r,z. If we assume that the states (3.27) are
reflection symmetric - i.e., are even in z, then so are the densities and the HF
equations. These therefore admit reflection symmetric solutions. We need only
then consider z > 0 and may confine calculations to the first quadrant of the
(r;z) plane.

Pairing Correlations:

As one moves away from a closed shell nucleus, the level occupations have a
large effect on the solution of the HF equations. Unless there is a large gap
between the energies of occupied and empty orbitals, it is by no means clear that
the lowest total energy solution will arise from filling of the lowest energy
orbitals, especially since E # E € The Hartree-Fock Bogolyubov (HFB) formalism
is an extension of HF which introduces pairing correlations, and amounts to using
a mixture of different configurations in place of a single Slater determinant for
v.

If one were dealing with a fundamental many-body Hamiltonian, one would pro-

ceed to apply the HFB formalism to it. But in dealing with a Skyrme force, or
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other effective interaction which has been simplified with the aim of reproducing
average or bulk properties of the nucleus, one would have to introduce additional
parameters in order to guarantee that sensible pairing matrix elements were ob-
tained. Recognizing this, Vautherin]2 proposed to introduce this additional
parameter in a way related to the simple BCS solution.

Each orbital is assigned an occupation

n =v 2 h 2 + 2 _ ]
Kk k . wnere Uk Vk =
up = U (3.30)
VE = 'Vk,
SO
o(r) =2 5 " |¢k(r)|2 , etc. (3.31)
- k

(The primed sum implies only Qk > 0 states to be summed, as discussed above.) To
the total energy of the system is added a pairing energy

= -G(Z' u )2 ‘ (3.32)

k

kV

Ep Kk
Following BCS, we might say that only a band of states within (say) 10 MeV of the
Fermi level takes part in the pairing interaction, then outside this band U V= 0.
The energy E is now a function of both the orbitals ¢k and the occupations n,-

These are additional constraints

A{ZSs , n ~N) (3.33)
9, .9 k d
ensuring that on average the system contains the correct N,Z. Treating all of
these as variational parameters leads to two sets of equations. First is the
same HF equations (3.12 to 3.14) as before, except that now the densities involve

partially occupied levels. Next there are BCS equations

2 2, _
Z(Ek - qu) UV T Aq(uk vy ) =0 (3.34)
with
Aq =G i' U Vi (3.35)
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whose solution is
e, - A
k g ]
1 k
n ==|]1 = . (3.36)
k 2 [(Ek'A )2 + A 2]1/ZJ
a q

A, Ap are determined so the particle numbers are correct.

At each iteration of the HF calculation the occupations are determined using
the HF eigenvalues € These occupations are used in constructing the HF fields
for the succeeding iteration. This procedure was also used by Campi, Sprung and

hartorel]l3 in their study of the tin nuclei. A suitable value for the pairing

force constant is

Gq ~ 18/(11 + Nq) MeV. (3.37)

This is about 25% greater than in Nilsson model calculations, because the level
density obtained in HF calculations is too low compared to experiment, in the
vicinity of the Fermi surface.

Vautherin astutely proposed a variation on the BCS method, which treats the
pairing gap A as the fundamental quantity rather than the pairing force strength.
Since A is known experimentally from even-odd mass differences, this may be re-
garded as removing one parameter from the work,

If the pairing energy

tp = 7 A uw) (3.38)
is added to the total energy, one would not get the same HF-BCS equations as be-
fore (treating now A as fixed). This is because :he variation~§%— previously
brought down a factor 2 in Eq. (3.32). The remedy is simply to include 2Ep in
the quantity to be minimized; this restores the desired equations. However, in

computing the energy of the system, EP is counted only once. In this method,

only the Fermi energy Aq needs to be determined since Aq is fixed, so the BCS
equations are even easier to solve. Also, the pairing force may be allowed to
act between all the states included in the HF calculation.

The paper by Beiner, Flocard, Van Giai and Quentinlh reports a systematic
study of the applicability of Skyrme forces. Some 120 nuclei along the valley

of R-stability were included in their calculations, and several sets of Skyrme

208



parameters were fitted. Among them, S~lll has come to be a preferred choice.

All these calculations were done in a spherical basis. In between closed shells

there are discrepancies of up to 20 MeV (for the nucleus) between calculated and
experimental binding energies; this allows for the nucleus to gain energy by
deformation. Some of these results are summarized in the Figs. 7 to 10 and
Tables IV and V.

In a sequel, Flocard and Q,uentinl5 did deformed calculations of the (s,d)
shell even-even nuclei and found that S-{Il and S5-IV gave a good account of their
properties. Campi, Flocard, Kerman and Koonin16 studied the sodium isotopes and
showed that a shape transition setting in at A=32 could explain an anomaly in the
measured masses. These results are illustrated in the Figs. 11 and 12.

In deformed code calculations some care has to be put into optimizing the

basis. The deformed oscillator is characterized by two frequencies Wy, w, or

equivalently

b=¥Y —/—, w.,” = wlzwz and q = w]/wz

Also the basis is cut off after NO major shells, where N0 = 6 or 8 is adequate
for light nuclei but 10 or 12 is necessary for the rare earths and actinides.
This was discussed by Flocard, Quentin and Vautherin.]7

Potential energy surfaces (binding energy versus quadrupole moment Q and/or
hexadecupole moment h) can be mapped out by constrained Hartree Fock or HF-BCS
calculations in which a quadratic constraint32 %(Q'—QO)2 is added to the preced-
ing Hamiltonian. When the minimum is reached one has %% = -C(Q-Qo) with Q = <Q>
being the self consistent moment. Q0 is a specified '‘target' value. To see how

Q varies with Q0 we have

?&:]-}-lﬁ
dQ c dQZ

This means that a large enough
2
¢ > |55
dQ
dQ

will ensure that a0 is monotonic, so by varying Q0 one can map out the entire

range of Q values. If a simple linear constraint were employed this would not
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be possible. Further, some fundamental objections to calculations using the
linear constraint have been raised by Fonte and Schiffrer;' see also Bassichis

et al.]9 (These apply to unbounded operators.)

4. Density Matrix Expansion

The relationship between the successful Skyrme interaction and the finite

range ''realistic' effective interactions was elucidated by the Density Matrix
Expansion of Negele and Vautherin.20 A major reason for the simplicity of Skyrme
calculations is that the exchange field is local; this is due to the G(rlz) func -
tion in the force. A pair of nucleons interacts only when they touch. For a

short range interaction it is interesting to expand the off-diagonal p(r,r') in

powers of the internucleon separation s: r =R + s/2, r' =R - s/2 .
Formally
s S 5'(YI~Y2)/2 *
PR+ R =t [e ¢u(51)¢u(52)]R]=R2=R : (h.1)

Thinking of a short range interaction suggests that an average over the angles

between s and R may be a good approximation; this gives

R s Sy _ }
AR + n R 59 = 0(51,52) RO (4.2)

In any case one can argue that for a time reversed invariant system, there is no

term linear in s, so the approximation begins only in order sz.
Rather than simply expanding this in powers of 52, Negele and Vautherin
looked for a reordering of the terms such that the leading term is the correct

result for a uniform system (nuclear matter). The desired result is

oie ) il

where k is arbitrary, jg(x) is the spherical Bessel function and

n
Qn(zz) = ST%—-P2n+l(iz) is a Legendre polynomial. We will denote
(22+1) 11 ( )/X2 -] (x) ~1 - xz (4.4)
o x = Jgx) = m... .
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The two leading terms of the expansion are then

5([,5') ~ j](sk)p(R) + %—sz j3(sk) [%-VZO - T+ %—kzp] g F o (4.5)

In the nuclear matter limit, Vzp vanishes and t(R) = %—szp(R) so only the lead-

ing term survives, and is the well known Slater approximation to the density

matrix. In this case we see that k ought to be chosen as

2 \1/3
_ (3
ke = ('?Z" O)

evaluated at the center of mass of the interacting pair. This prescription can
be carried over to finite nuclei, though Campi and Bouyssy2] have recently made
a more astute suggestion.

The approximate form for p(:,z'), Eq. (4.5) can be substituted into Eqg.
(2.19) for the expectation value of the total potential energy. In so doing it
is consistent to omit the square of the second term because other terms of order
sh are already neglected. Taking account of spin and isospin degrees of freedom,

the like particle and unlike particle components of the effective interaction are

formed: these are functions of Flp =S and of density:
. . £ _1 . SE 3,70
Direct: VD =3 ) + i )
u_3,TE 1,50 1 ,SE . 3 ,T0
VD =3 VvV © + 8 V7o o+ g-v + 5 v (4.6)
. £ _ 1 ,SE 3 ,T0
Exchange: VE =3 v i v
u_3 TE_1,50 1 . SE_3,T0
VE =3 Vv 8 VT o+ 8 v 8 v (4.7)

Then

<wlvles = 5 S [lo (1o (r) + o (r)p (r)1V5(s)
+ 2pp(r)pn(r')vg (s)
+ [82(R,s) + D2(R,5) 1V ()

+ 2, (R, )8, (R,5)Vg (s) | (4.8)
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In the last two terms | emphasize that § is a function of the variables R,s.

Using (4.5) we expand these two terms as follows

"2 2
% d3Rd25| pg(R)J,(kps)vE(S)

R

<p|v]y>g,

+ Dp(R)pn(R)}](kps)El(kns)vE(s)

2 1.2 3 3,2 ° A 2.8
tg pp(r)[h v pp(R) Tp(R) * g kppp(R)]J3(kpS)J](kpS)S vE(s,kp)
2 ] .2 - 3.2 A A 2,u
+ g-pp(R)[E—V pn(R) Tn(R) + 3 knpn(R)]JB(an)J](kpS)S VE(s,kF)
+ (P < n) (4.9)
In these terms we have introduced Fermi momenta for neutrons and protons:
_ 2 1/3
kq = [37 pq(R)] (4.10)
as well as
k= B o ®) + o ()73 (h.11)
F= vz Py Pp '

The point is that in Eq. (4.9) the integral over s may be performed first, defin-

ing certain functionals of the neutren and proton densities pp(R), pn(R):

<wlvipg, = 5 [aR{vE" (o p)
1,2 3.2
+ Z[DP(R)GLE(DP) + pn(R)GUE(on,pp)l(g-V T * E kpop)
+ 20p (R)G, - (p )+p_(R)G-(p_,0 )1 (3 920 -1+ 3 k2p ) (h.12)
n LE"n" "p UETp?Pn/ ' n n 5 nPn *
where
_1 3.2 2 )
GLE(pa) =z j’d s's Jl(ka5)13(kas)vs(s,ka)
_ 1 3 27 " u
GUE(pa’pB) = E:I.d s s J](kaS)JB(kBS)VE(S,kF) (4.13)
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These functions may be calculated once and for all, for a given effective force,

and tabulated on a grid Py = [0.0(0.0])0.17]fm-3, and values interpolated as

required. This form of the energy density is essentially that obtained when

using a Skyrme interaction, except that the constants t tltZ 3’ Xq are replaced

by functions of the density which are known numerically. In partrcular, when we

vary <w|V|w>Ex, in the form (4.12) to derive HF equations, a local HF potential

will result, plus an effective mass just as obtained for Skyrme interactions.

The direct terms in Eq. (4.8) already produce a local Hartree or direct potential,

so the DME allows one to avoid the time consuming construction of the non-local
Calculations carried out in this way are called DMEX calcula-
It has been shown

Fock potential.
tions, because the DME has been applied to the exchange field.

by Negele and Vautherin, and Vallieres et al.22 that the DMEX is an accurate

substitute for a full finite-range HF calculation. The computer codes written
originally for use with Skyrme forces have been adapted for DMEX calculations by

adding in the calculation of the direct terms.

A further approximation can be made, which makes a similar approximation to

the direct part of the potential energy, the initial two terms of Eq. (4.8). The
angle average of Py, (r )pB(r ) is expressed as
s s
]ﬁdﬂ (R + -0 (R -3 = pa(g)oB(R)
2 - 12 12 !
+gw3b&ﬂgv%ps T PV Pg 7 Ve, Y%]h. . (4.14)

This allows the direct potential energy to be similarly expressed in terms of
(numerical) functions of pn,pp. Combining with the exchange terms one has final-

ly for the energy density

H(r)

2 2
4 A
[2—m-+ e(pp,pn)]rp + [ﬁ+ (0, .0,) E

2

+

2
1

Ale o ) + Clo s Ve 17+ Cloup ) [ Vo
+ 0lp »p,)V0, V0, - (4.15)

From this form, HF equations can be deduced that are only very slightly more

complex than those of the Skyrme interaction. The same zero range two body spin
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orbit force may be used as with the finite range effective interaction.

Comparing Eq.

ences
A(onpp)

)

B(pnpp

C(anp)
D(pnpp)
The question

ted by the Skyrme

from a "'realistic'

parison for Negele's force,

1

I effective interaction.

(4.15) with (3.7) we can identify the following correspond~

No| —

X
0y 2 ly (2, 2 |
to[(l * 5007 - (xg +3) (o *+p)) |+ 5 tap 00

_ 1 L
=5 (4 e+ gty - tle
=3 -
= - (1, -3t
8 "2 1

arises as to what extent the simple density dependence postula-
force can reproduce that of the functions A,B,C,D calculated

Negele and Vautherin made such a com-

23 in the neighborhood of the nuclear matter situa-

tion pn = pp = E—p. In this case
A+ BT + %—(C + %‘D)IYDIZ
= %—top2 + %g t3p3 + %g (3t +5¢t,)ptT + %E'(9t]-5t2)lyp|2
Also, looking at an expansion of A in powers of p = pn-pp,

A[%(D+GO), l-(p-éo)] =A -
allows one to identify g

3t + 51,

9t]

To identify t
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- 5t

o %

1

n )?

to(xg + 3 (80)% - 1g t50(60)°

First of all, we see that

16 B/p

32C + 16D

2

and xo we form

1

Et

3 00

- AR
= to(x0 + 2)6p +



t
_ 1 (3A A _ . . 3 3 2 _ 2
L=z (—-—pn+———ap) t, Ep+,—5[3o (8p)°1

21 = 4= 3 L
A I ASp = a = 8 top + T4 t3 pép

Solving the last two gives

¢ =16 _(pL - 2a)
N TR

t
o
]
o
.
]
——
O
e}
~
o

At the symmetry point 8p = 0,

t, + 12 (o5 - 24)
3 3
p
3p
LAl
2 %) =g G wty)
At Dn = pp = 0.08 fm_3, these formulae give
t0 tI t2 t3 x0
N-V -1248. 381.1 15.1 14 542 0.50
S-i11 -1128.75 395.0 -95.0 14 000 0.45
which compare rather well with the S-Ill parameters. Over the range of densi-

ties 0.05 < p < 0.15, to, t3 and Xq vary by about 30%, suggesting suitably chosen
constant values of these parameters might work rather well.

Why does the DME method work? The complete DME approximation is only qual-
itatively correct, but it does provide a justification for the Skyrme-like param-
eterization of the force. It also shows how more parameters could usefully be
added to the Skyrme form. Treiner and Krivinezu for example, made a simple

parameterization of the A, B, C, D functions issuing from the force G-0.
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At the next level of complexity, the DMEX approximation seems to be accurate

to a few percent for most bulk quantities. This success is ascribed to the

short range nature of the effective interaction, which allows the exchange ener-
. . . . 2

gy density to be parameterized in terms of the local quantities p(R), Vp, V'p

and T(R). The exact treatment of the direct terms lends stability to the calcu-

lation. Many applications of DMEX calculations have been made at Los Alamos by

Negele and Rinker.
Recently Campi and Bouyssyzl have proposed a further simplification of the
DME method. WNoting that in Eq. (4.5) the parameter k is arbitrary (except for

its nuclear matter limit) they propose to choose k so that the second term is

always zero:

"2

5 1
K =W[T(r) —Tf

V2o (R)]

Then
Blr.r') = 3, (sk)p(R)

~

has the simple form of the Slater approximation. The parameter k2 is called the

Local Fermi Momentum. At a given point in a finite nucleus, one wishes to make

the infinite nuclear matter density matrix fit as well as possible to the actual
p{r,r'); this is achieved by the choice k. Suppose for example, returning to

Eq. (4.5), we wish to calculate the (approximate) local kinetic energy density.

One finds using (2.5) that

T(r) = [% KZo(R) + 4 7] - [ V2o - T(R) + % k2o (R)]

2 2

coming from the first and second terms of Eq. (4.5). In the usual DME, k° = kF .

so the role of the correction term in j3 is to restore the correct value of the

local kinetic energy density. In the Campi Bouyssy approximation the first term

is arranged to already equal T(R), by virtue of the choice k + k, so no correc-

tion is required. Rather than a local density approximation, the LFMA treats

both p(R) and t(R) as quantities characterizing the system. This suggests that
rather than interpreting the effective inteiaction V(rlz’kF) as a density depend-

ent interaction, one should interpret kF -+ k in a finite nucleus, making it an

LMF-dependent interaction.
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Since k2 is a function of ¢k, V¢k and V2¢k, the variational principle will
lead to terms of the three types included in (3.11). Hence the Hartree Fock

equations deduced will involve an effective mass in the form

2 2 2

'I]I' ’ﬁ—:.;v?‘ +2V(,ﬁ—*'V) +V2ﬁ—*— ¢k(r)
"l 2m “ro2m 7 2m

Most of the rearrangement terms end up in this effective mass. Work on such

calculations is now in progress. It seems likely that significant differences

can arise from previous LDA calculations.

CONCLUSION
1 have tried to survey the basic elements of Hartree Fock calculations

applied to nuclear structure. The subject has been developing in many directions.
Hoodbhoy and Nege]e26 have shown how to carry out deformed HF calculations en-
tirely in coordinate space without the necessity of introducing an oscillator
basis. With a remarkably coarse grid they have obtained good convergence. This
method promises to make more extensive calculations, and large deformations, much
easier. Some authors have sought to reduce computing time by giving prescrip-
tions for good starting fields. Sometimes these are based on Thomas Fermi theory.
One of the most recent references is Brack;27 he refers to earlier work. The

hope is that a single HF iteration, or a very few, will give an accurate solution.
A large amount of work has been done on Time Dependent Hartree Fock calculations,
after the pioneering work of Bonche, Koonin and Nege]e.28 These promise to give
insight into nuclear reactions. As a means of gaining insight into nuclear col-
lective motions, the adiabatic Time Dependent Hartree Fock theory has been de-
vised, principally by Baranger and Veneroni,29 and by Villars.30 There is also
an interesting development of sum rules related to energy weighted moments of
transition operators on the HF ground state. The paper by Goeke, Lane and
MartorellBl gives an introduction to this work. Perhaps this is enough by way

of some guideposts for further reading.
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APPENDIX A

To impose the A2 conditions of orthonormality on the orbitals ¢k(r) we

introduce A2 Lagrange multipliers g and minimize
<Y|H|y> - Z fu (<b 105> = 8,5)

We take g = EZk so the sum is real. The variation 6¢:(R) adds to <8y|H|y>

a sum

e, b,(R)
2 ki "%
which can be transferred to the right hand side. We now argue that the equations

may be simplified by taking linear combinations

§ Uts¢s(r) z ¢t(r)

If U is unitary, the new states § remain orthonormal

05() = 2 wh, 3, (1)

Also

plr,rt) = 3 4, (o, (r')
k

I, b, (D108L (MU, ]
kts

z ¢, (r)o, (r)
t
is invariant. Thus we have, applying USk to Eq. (2.20)
.[h(r PO (r')d3r' = s u. e, uf ¢, (r)
’ s sk ki "Lt Tt
kit
The unitary transformation U, so far arbitrary, may be selected to diagonalize

- . . + _ . .
the hermitian matrix €e’ (Ueu )St = Esast' Then on the right we have just

€S$s(r) as stated. We can remove the tilde and call these states the new set
¢k(r).
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PROPERTIES OF

MD. 40

TAMLE
L)

ca, 2 AND zosl’h OBTAINFD WITH

ORIGINAL (8) AND RENORMALIZED FORCE (b) G-0

THE

TABLE IV
DIFFERENCES ABO BETWEEN SPERICAL HF AND EXPFRIMENTAL
TOTAL BINDING ENERGIES OF HAGIC NUCLEL

3, an; (Hev)

(MeV) sVl SIII SIT S1v sy
16, 122,62 0.30 0.59 -1.44 0.50 0.45
4o, U206  -L.04  ~0.18 -5.60 -0.29 0.93
2, 416.01 2,76 2.20 -13.43 1.13 2.25
3byy as.01 175 -0.37 % 113
30, 783.92  -1.33  -1.26 -38.2 -1.83 -3.22
MO 72,70 -0.30 0.60 1.37
208y, ye36.49 0.62 0.12 -68.6 0.08 0.35

The experimental binding encrgica are also shown in the firsr cecluen,
The interactions have been ordered according to the decreasing values
of the parazeter €y

TABLE V
BINDING ENERGY PER PARTICLE E/A, FERMI MOMENTUM kp.
INCOMPRESSIBILITY COEFFICIENT K, EFFECTIVE MASS RATIO I‘I- AND
STMMETRY COEFFICIENTS £y AND €,y IN NUCLEAR MATTER CALCULATED
VITH THE INTERACTIONS SII TO SVI

/A K at/m € €,
Mev) () (vev) (Mev) _ (Mev)
VI -15.77 128 36 0.55  26.89 0.67
st -15.87 129 356, 0.7  28.36 0.83
s;t -16.00 1,30 %2 0.58 4.2 1.10
sIv -15.98 131 325 0.47 3122 1.7
sV -16.06 1.3 306 0.38  132.72 1.7

“0 loCI ’°z: ma?_b___
] [] A b . b L] b__
lm.h\ -1.5? -7 ~1.75 ~3.9¢ -t.39 -3.59 -0,3%1 -2.5)
!lll. -1.92 ~3.76 -2.52 ~&. 36 ~L1 ~5.27 Nt -3.%8
I‘JA -0.70 ~0.99 «0.68 -0.9% -0.57 -0.46 -0.6§ ~0.73
L3 0.34 0.30 0.39 0.31 0.4 0.30 0,43 0.32
I’IA -3.62 ~7.68 -4.02 -8.13 ~4.16 ~8.63 =3.% -7.87
r. .75 2.7 239 3.38 4.19 4.28 5.41 5.60
r' 2.71% 2.6% .48 .43 [ 4.2 5.23 3.39
5, 1.9 2.7 5.3 [X] 25 (XY 3.3 9.2
l- 10.9 15.8 1.0 16.7 9.2 13.2 &2 8.0
fasLE 11
BPRERICAL NUCLEX
PROPERTIES OF CLOSED~SHELL NUCLEI COMPARED TO EXPERIMENT
16, 0., a8, 90, 208,
l.‘IA ~7.68 -8.33 ~8.40 ~-B.63 ~7.87
-l. ~7.98 -8.53% ~8.67 -8.71 ~7.87
®/A ~2.07 -8.13 ~8.22 -B.55 ~7.85
B, /A -0.61 ~0.20 -0.18 -0.08 ~0.02
L 2.67 3.38 3.63 4.28 5.60
5 2.69 3.43 3.45 4.21 5.39
teh 2.75 3.49 3.51 4.27 5.45
Ten exp 2.73 3.49-3.50 3.48-3.49 4.23-4.30 5.50-5,5%2
S’ 12.7 9.9 16.0 8.4 9.2
. . . 4 .0
8’ exp 12.1 8.3 15.3 | 3 4
l- 15.8 16.7 10.5 13.2 8.0
. . . B A
8. exp 15.7 15.6 s.9 12,0 7
TAMLE 111
PARAMETERS OF THE SKYRME INTERACTIONS SI1 10 SVI
o , Y f2 3, x Yo,
(MeV:fw) (MoVefm?)  (Hevifa)) (feV'fm"}) LG
m ~1149.9 386.6 “21.1 93311 0.34 105.0
ST -1126.75 195.0 95.0 14000.0 0.43 120.0
F34 -1205.6 765.0 35.0 $000.0 0.0% 150.0
v =-1240.2% 920.56 107.22 0.0 -0.17 1%0.0
g1 -not.a1 271.67 -136.33 17000.0 0.583 115.0
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C.ANT MULTIPOLE RESONANCES FROM HADRON AND HEAVY-1ON INELASTIC SCATTERING”

by
D. H. Youngblood

Texas AEM University
College Station, TX

INTRODUCT I ON

In this talk | will first describe the multipole resonances, then give a
brief summary of the state of experimental knowledge (primarily of the guadrupcle
state) 1 to 2 years ago; there is a review article available] which describes
this. | will present several specific results regarding the quadrupole which
seem interesting, and discuss recent experimental work on the low energy octupole
resonance. Next | shall present recent convincing evidence for the breathing
mode state in several nuclei and the implications for the nuclear compressibility.
| will conclude with existing evidence for excitation of these modes in heavy-
jion inelastic scattering.

It is useful to describe the basic oscillations of the nucleus which result
in the various giant multipole resonances. These modes of osci]]ation2 are illus-
trated from the view of the hydrodynamic model in fig. 1 for electric resonances.
The monopole mode is a spherically symmetric oscillation of the nuclear density;
it is the only mode that is primarily a volume oscillation of the nucleus. Its
energy is directly related to the nuclear compressibility, and its existence has
been conclusively established only very recently. The isovector dipole mode is
an oscillation of the proton and neutron distributions against one another, and
has been studied most extensively of all the modes. The quadrupole and higher
modes are shape oscillations; there have been extensive studies of the isoscalar
quadrupole mode in the last several years, and some interesting features of the
isoscalar octupole mode have been revealed. There is little evidence for multi-

pole resonances of still higher order.

*Invited talk given at IV Seminar on Electromagnetic Interactions of Nuclei at
Ltow and Medium Energies, Moscow, December 13-15, 1977.
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These resonances in the simplest shell model picture are coherent lp-1lh
excitations and are illustrated in Fig. 2. The monopole is a 2hw excitation,
while the dipole is a lhw excitation. A quadrupole can be both Ohw (within a
shell and responsible for low lying 2+ states) and 2hw. The octupole strength
is split between lhw and 3hw excitations. Except for the dipole mode, both iso-
scalar (neutrons and protons in phase) and isovector (neutrons and protons out
of phase) modes can occur; the isoscalar modes will be somewhat below and the
isovector modes somewhat above the nominal energy due to the nature of the
residual interaction.

The experimental problem in studying these modes is illustrated in Fig. 3
where the positions of these low-order modes are schematically illustrated. The
EO and E2 isoscalar modes occur in the vicinity of the E1 mode; all have large
natural widths and overlap so that experiments must be chosen carefully to se-
lect the components of interest. The lfw E3 strength lies in a region of high
level density (close to the particle threshold in many nuclei) while the 3hw E3
strength and isovector EO and E2 strength lie further in the continuum and con-
sequently would be much broader and more difficult to isolate.

Several different reactions are available to study these modes. Photonucle-
ar reactions (and their inverse) have detailed the giant dipole resonance (GDR)
thoroughly, but El excitation dominates all other multipolarities, restricting
their usefulness when studying other modes. Inelastic electron scattering can
be used to study the lower multipolarities nicely, and has the advantage that
the interaction is known, but the disadvantage that isoscalar and isovector modes
are excited with comparable strengths, preventing isolation of certain modes.
Inelastic proton and 3He scattering may also excite both AT = 0 and AT = 1 modes,
although experimental evidence indicates that the AT = | mode is excited at most
very weakly. Inelastic deuteron and alpha scattering excite to first order
AT = 0 modes only, making them very useful tools for studying these modes. Of
the existing hadron data, inelastic alpha scattering has the most easily defined
background and the best peak to continuum ratios. Also DWBA calculations seem
less model dependent and hence more useful for L assignments and strength deter-
minations than for other projectiles.

Inelastic scattering strengths are characterized by the surface deformation
parameter 8, obtained by comparing the experimental cross-sections with DWBA
calculations using a deformed optical potential for the form factor. B can bé

directly related to B(EL) values and if BR, = BR, (m refers to the matter
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distribution and z refers to the charge distribution) the B(EL) values obtained
by inelastic o scattering are directly comparable to electromagnetic values.
Strengths are then generally expressed in terms of the fraction of the energy

weighted sum rule (EWSR) which for L 2 2 is given by

he 4 7%
S(EL) = Z(E_ - Ey) B(EL) =22 + 1) —5 —
n 2mR° 3A

The techniques for doing calculations for giant resonances have been covered by
Satchler,3 while the relationships between inelastic scattering and electro-

magnetic B(EL) values is discussed thoroughly be Bernstein.

THE GIANT QUADRUPOLE RESONANCE

The giant dipole resonance has been extensively studied in the 30 years
since its discovery, primarily by photonuclear reactions, and | shall not discuss
it. Since the discovery of what has since been proven to be the giant quadrupole
resonance (GQR) in 1971 by inelastic electron scattering5 and inelastic proton
scattering its properties in many nuclei have been obtained. In addition to
these works the GQR has been studied with inelastic deuteron, 3He and (very ex-
tensively) o particle scattering.] Figure 4 shows inelastic o particle spectra
obtained7 at Texas A&M on 27 nuclei from ]hN to 208Pb. The arrow marks the posi-
tion where the GQR would be expected8 to occur, and for all nuclei studied with
A 2 36 a prominent broad peak is apparent residing on the continuum. Angular
distributions obtained are generally best described if the peak is assumed to be
primarily E2 in character. Plots of excitation energy and EWSR strength are
shown in Fig. 5 and it is readily apparent that a large portion of the isoscalar
E2 sum rule strength is located near Ex N 63/A]/3 MeV for the heavier nuclei.
The strength decreases for the lighter nuclei and no definite E2 strength was
identified in the Texas A&M work below A A 36, however subsequent inelastic o
scattering experiments at higher bombarding energies have identified the GQR in
many light nuclei. The reason the GQR was not seen in the Texas AsM work (done
at Ea = 96 MeV) is apparent in the spectra shown in Fig. 6 obtained at JUlich9
at 106, 145, and 173 MeV. At the lower energy broad a groups from break-up of
SLI and 5He formed in the (a, 5Li) and (a, 5He) reactions are immediately adja-
cent to the GQR, obscuring the peak. Additionally, although the continuum cross-

sections are nearly the same at both energies, the GQR cross-section increases
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rapidly as the bombarding energy increases, making it much more apparent. This is
illustrated in Fig. 7 where DWBA calculations]o for the cross-section at the
second maximum in the angular distribution of the GQR and the 1.37 MeV 2+ state
in 2l‘Mg are shown as a function of bombarding energy. The cross-section for the
GQR more than doubles going from 100 to 150 MeV due to the large angular momentum
mismatch, whereas that for the 1.37 MeV state increases only ~ 20%. Thus it is
apparent that higher bombarding energies are desirable for studying the GQR.
Several interesting features of the GQR are apparent. In the heavier nuclei
(A 2 60) it appears to be highly collective with most of the EWSR concentrated in
one state, whereas in the light nuclei the GQR contains considerable structure.
In Fig. 8 the behavior of the GQR as one goes from 90Zr to zggg is illustrated.

Zr appears as a

single Gaussian or lorentzian-like peak with a width of about 4.5 MeV; in AOCa

there are components at ~ 18 MeV (T' v 3.5 MeV, S & 43%) and & 14 MeV (I v 2 MeV,

S A& 9%); in 285i and 2l*Mg it appears as a grouping of discrete almost resolved

When viewed with about 150 keV energy resolution the GQR in

states. Spectra obtained at Jiilich for nitrogen and oxygen isotopes are shown
in Fig. 9. A concentration of E2 strength is apparent in each of the nuclei,
al though the relatively poor energy resolution hides much of the structure. |

will now consider several light nuclei for which particularly interesting results

are apparent.

15

The GOR in '60 has been studied primarily by two groups. At Groningen]] 104

MeV alpha scattering with 100 keV resolution has defined the structure and iden-
tified 45% of the E2 EWSR in discrete states between 15 to 26 MeV¥. In Julich-
Heidelberg collaborations]2 the gross~structure was obtained (Fig. 9) with 300 to
500 keV resolution and the alpha and proton decay of the GQR were measured]3 in
coincidence experiments, both performed at Ea = 155 MeV. This fractionation into
many states spread over many MeV has been qualitatively explained by Dehesa et
al.]h as follows. The ]60 GQR would have Ip-~1h configurations involving primari-
ly tne f7/2, f5/2, P3/p and Py/2 single particle levels. These levels are well
into the continuum, however, and the theoretical widths for the f5/2’ P3/2 and
P, o Fesonances are very large; hence they would contribute only to the broad
background. The narrow part of the GQR would mainly be the (f7/2 p3/2-]) config-
uration and the observed broadening and structure would be due to the fragmenta-

tion of the f7/2 resonance.
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This explanation is supported by the 0 GQR decay studies,

particles and protons were detected in coincidence with inelastically scattered o

where decay o

particles. Figure 10 shows inelastic & spectra obtained in coincidence with
decay a's and protons. Essentially no proton decay is observed. The p!/2 ]SN
ground state could be reached only by decay of the (1:5/2 p]/z_]) configuration,
while thelgenetrability severely inhibits f wave proton decay to the 6 MeV p3/2
state in

the well established 18.4 MeV L = 2 state is quite apparent. However, this pair

N. It is apparent that there is substantial o decay of the GQR and

of angles is near the peak for quasifree scattering of incoming o particles off
of o clusters in ]60 and this process can also contribute broad peaking in the
region corresponding to 15 to 40 MeV excitation in ]60. The anqular correlation
for decay a particles is shown in Fig. 11 and is in agreement with plane wave

L = 2 predictions. The angular correlation for the GQR decay should have a
similar peak 180° from the one observed, but there the quasifree component will be
absent so that the amount of quasifree scatteriic riesent can be determined by
completing the correlation. Nevertheless the observed decay to the 2C ground
state is in rough agreement with the observed'lzc {0.,Y) E2 strength both as to
shape and magnitude, suggesting that inelastic o scattering and (o,y) are in
agreement for the ]60 GOR. The large o decay is consistent with the predictions
of Kurath and TownerlS who show that a lp-lh excitation of the ground state does

1 .
not alter the o cluster structure of the state. As the 60g s 1S well known to

have a significant overlap with lzc S the 1p-1h GOR would aiso be expected to
have a large overlap with lzcg'S +g&, as is observed.
g
The GQR in 24Mg has been investigated by o scattering at Jﬁ]ich,9 Texas AE,M]0
and G:'oningen]6 and as is apparent in Fig. 8, the strength is quite fragmented.
Some interesting results are obtained by the Groningen group by a comparison of
the qug {a,a') and 20Ne {a,y) 24M917 leading to 2" states. The results of both
reactions for the GR region are shown in Fig. 12, While it is clear that all the
states seen in the (o,Y) are also seen in (a,0'), the inverse is not true. There
is considerable E2 strength observed in {(a,0') that is not apparent in the capture
work. The EWSR fractions obtained from the inelastic scattering and capture reac-
tion are approximately equal for both the 12.8 and 13.1 MeV 2+ states, suggesting
that rao/rtotal for these states is close to unity. Comparing the capture and
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+
inelastic scattering yields for the other 2 states, however shows that Ta /rtotal

varies from 0.15 to 0.5 for states observed in both experiments. It is clear that

one cannot assume that the decay is purely statistical, which predicts at most 0.1

. . 24
for this ratio. Essentially all of the isoscalar E2 strength is now known in ~ Mg;

below 15 MeV about 45% of the E2 EWSR is known in discrete states, and between

15 to 25 MeV Groningen finds (60 * 15%) of the AT = 0 E2 EWSR.

The Groningen group also compared the 24Mg (a,0') to zuMg (p,p') data taken

at Oak Ridge.] As can be seen in Fig. 12 all of the structure seen in the GR

region by {p,p') is also seen by {(a,a'), implying that it is isoscalar structure.

Similar results were obtained for 2 Si, although for both cases calculations

indicate that the GDR should contribute significantly in this region, suggesting

that the existing estimates for GDR excitation by inelastic proton scattering

are too large.

AOCa

An inelastic o spectrum of the GR region of 4OCa is shown in Fig. 13 after
The angular distributions for the 14 and 18 MeV

subtraction of the continuum.
groups are also shown and are fit well by DWBA calculations for L = 2 transfer.

The 18 MeV group exhausts about 43% of the AT = 0 E2 EWSR whereas the 14 MeV

group contains only about 9% of the EWSR strength. Structure is apparent in both

components, and a comparison of peak shapes at different angles suggests some

other multipoles also contribute to the 14 MeV group. The 18 MeV group appears to

consist of 2 or 3 broad components while the 14 MeV group has several narrow com-

ponents.
The o particle and proton decay of the
9 and the results are intriguing. The 14 MeV

AOCa GQR after excitation by inelastic

alpha scattering has been studied]
and 18 MeV groups have very different decay properties as is illustrated in Fig.
14. The 14 MeV group is apparent in coincidence with decay o particles, but the

18 MeV group is very weak, if present at all. There is a strong proton decay of

the 18 MeV group, however, with only weak proton decay of the 14 MeV group appar-
Angular correlations for proton decay of the 18 MeV group to the ground

ent.
f 39K are shown in Fig. 15, along with DWBA predictions

and first excited states o
for the different partial waves expected to contribute.
decay to both states are quite consistent with the expected dominant configura-

tions of the GQR [(97/2 d3/2-]) for the ground state and (d5/2 s]/z-l) for the

The correlations for
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first excited state]. The proton branching to higher levels in ““K is consider-
ably stronger than might be expected from the relatively simple GQR wave function,
suggesting that the GQR frequently decays into more complicated configurations
before particle emission. The angular correlation for the ground state o decay

of the 14 MeV group is also shown in Fig. 16 and is fit excellently by an L = 2
DWBA calculation, further confirming the 2+ character of the group. The large
ground state o decay (Ta /rtotal = 0.9 * 0.2) suggests its character must be
quite different from the major part of the GQR; this is not at all understood as

far as | know.

208Pb

The GR region in 208Pb has been studied extensively by inelastic electron,

7,21,22 scattering. |t is of particular interest because of

proton,] and alpha
23

the large amount of structure present. -Additionally Halbert et al. have pre-~
dicted considerable contribution from multipolaritieé other than E2 in the
region of the GQR. The GR peak is now known to consist of at least two broad
components, one centered at about 11 MeY containing predominantly quadrupole
strength, and one centered at about 13.7 MeV containing predominantly monopole
strength (I shall discuss this component extensively later). In addition, as is
illustrated in Fig. 16, a broad group at 8.9 MeV and fine structure superimposed
on the 11 MeV group is seen in (e,e') data which has variously been interpreted
as either isoscalar or isovector E2 strength. Also shown is a 208Pb (a,0')
spectrum taken at 70, where the E2 and EO groups are guite weak. Considerable
structure is apparent in this data also and a detailed comparison with (e,e')
suggests that much of the same structure is being observed. (o,0') angular dis-
tributions for two of these states are shown in Fig. 17, where it is readily
apparent that they must be negative parity states (either 1" or 3—). This is
consistent with the relative strength of the fine structure and the underlying
GQR, as the fine structure is becoming stronger where the GQR is at a minimum.
Thus it is unlikely thet the structure seen in (a,a') is L = 2; good statistics
data for the small angles where one could easily distinguish L = 1 from L = 3 is
not yet available, however. Thus we have a conflict between inelastic & and
electron scattering at the moment.

The RPA calculations of Speth et a1.2h have suggested the existence of con-

siderable 4% strength in the vicinity of the 208Pb GQR. DWBA calculations
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utilizing inelastic scattering form factors generated from the RPA wave functions
have predicted that only about half the (a,a!) strength in the region is 2* with
the remainder primarily 0+ and h+. Figure 18 shows two analyses of the 11 MeV
group in 208Pb with somewhat different background criteria. Superimposed are
DWBA predictions for L = 2 + L = 4; it is apparent that the observed distribution
is consistent with a small amount of Eb4 cortribution in the region, although un~

certainties in subtraction of the continuum prevent a definitive determination

of the amount.

THE DEFORMED NUCLEI

A comparison7 of GR peaks for the Il'l"”'g’]Sl'Sm isotopes is shown in Fig. 19
and it is immediately apparent that the width increases as one goes from the
spherical IMSm to soft Ithm and then to deformed lsI'Sm. Accounting for the
recently discovered monopole resonance which is unresolved from the GQR, the
width of the GQR increases from ' & 2.6 MeV in lMSm toT & 4.5 MeV in ISASm
This is significantly less than the 4 MeV splitting observed for the GDR and the

total 6 MeV splitting between the K = 0 and 2 components obtained from a simple

estimate25 utilizing the usual QQ interaction. However, a rigorous application
of self-consistency to the coupling of the quadrupole mode leads to a modified

QQ interaction which reduces the splitting to about 2 MeV between the K = 0 and
2 components consistent with the observed broadening. G. Kyrchev et al. 6 have

performed microscopic calculations considering isoscalar and isovector 2

150 246

strength simultaneously for many even-even deformed nuclei from Nd to Cm.

The width and position they obtain for the GQR in ISl'Sm (T = 4.5 MeV, Ex = 12.3
MeV) are in excellent agreement with our experimental values (I & 4.5 MeV, Ex =
12.2 MeV). Zawischa and Speth27 have performed RPA calculations for several

deformed nuclei (although not for ISl'Sm) and also obtain widths generally around

4 to 6 MeVv.
In the other region of deformed nuclei (the sd shell) there is evidence of

splitting of the GQR due to the deformation. In the inelastic o scattering ex-
periments of Kndpfle et al.28 the E2 strength in 20Ne (Fig. 20) was observed to
be split into two distinct components, one centered at Ex " 22 MeV containing

~n 35% of the EWSR and the other at E v 14.5 MeV containing about 20% of the EWSR.
W. Knlpfer et al.29 using an excited core model have obtained predictions in

agreement with experiment (Fig. 10). The GR excitations of a '60 core were
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coupled with excitations of valence nucleons. Similar results were obtained
studying the effects of coupled monopole, B and Y quadrupole vibrations within

the GCM by Abgrall et al.30

THE LOW ENERGY OCTUPOLE RESONANCE (LEOR)

In inelastic o spectra taken at Texas AgM while studying the GQR, a promi-
nent group of states was observed3] at an excitation energy considerably below
the GQR which was out of phase with it. This is illustrated for many nuclei in

Fig. 21. This structure is centered at Ex n 32/A]/3 MeV and the angular distri-

butions are fit nicely by L = 3 calculations (Fig. 22) exhausting 6 to 23% of the
8
AT = 0 E3 EWSR. This collection of strength is notably absent in AOCa and 20 Pb

b
and is observed to be quite weak in several other nuclei. The observed proper-

ties of the LEOR are summarized in Table I.
In the harmonic oscillator-based

TABLE | schematic model of giant resonances the

PROPERTIES OF LEOR FROM INELASTIC ALPHA  OCtupole EWSR strength is divided into

two parts, roughly corresponding to 3hw

SCATTERING AT TEXAS AgM and 4w strength. The LEOR is in good

Ex G S accord with the expected properties of
Nucleus (MeV) (SPa) BEWSR the lhw giant resonance and exhausts
66Zn 6.6 10 16 roughly 2/3 of its expected strength
7SAS nG.5 N9 N Y (30 to 40% of the total EWSR in the
89Y 7.1 "3 n20 schematic model). The absence of a
90Zr 7.2 14 20 strong LEOR in 208Pb and hoCa cannot be
9240 6.7 16 22 understood in terms of such a simple
96Mo 6.2 n o6 N8 model, however. Indeed the presence of
lOOMo 6.1 nog§ N o6 two strong collective 3 states (the
Natng 6.4 20 first 37 and the LEOR) in the region
]]6Sn 6.5 17 23 between 66Zn and ]5hSm requires a more
]]8Sn 6.9 g 20 sophisticated theory. In Fig. 23 we
IZASn 6.2 13 20 compare RPA calculations of Liu and
]thd 6.2 17 22 Brown32 to the present data for 3
kg, 6.5 17 21 strength in "Oca, Pzr, and 2%%p. The
‘5“5m 3.7 9.9 8.1 calculations employed a residual inter-

5.7 3.2 3.8 action of the Sky'me type. The agree-
19'/Au 4.1 22 19 ment for 90Zr is excellent; the theory
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correctly predicts both the location and strength of the LEOR. The excitation

energy of the lowest 3 state is, however, only half of the experimental value.

In boCa and 208Pb a rather weak LEOR is indicated theoretically which is very

suggestive of the experimentally observed absence of a strong resonance. In

these two nuclei the exceptionally strong low-lying 3~ state already exhausis a

large part of the ltw octupole strength.
To see whether the RPA can correctly account for the gross properties of the

LEOR and low-lying 3— states in other nuclei, we have performed calculations for
boCa 58Ni 66Zn ]IGSn ]thd ]97Au 208Pb. The code, written by T.

14 3 ’ »

, , and

Kishimoto, employs a Nilsson-type harmonic oscillator potential and an octupole-

octupole residual interaction. The strength of the interaction was chosen by

requiring the calculation to correctly reproduce the excitation energy of the

Figure 24 shows the results of the calculations

first 3- state in each nucleus.
208Pb

compared to the LEOR data. The marked decrease in strength of the LEOR in
58Ni is extremely well reproduced.

The balance of EWSR strength between the LEOR and the low-lying 3~ state can
w strength remains

and

vary substantially over a small change in A, but the total

rather constant. The partitioning of the octupole strength, correctly predicted

by the RPA, is the result of spin-orbit splitting of the unperturbed octupole

response function. The balance between these two solutions of the RPA equation

depends largely on the initial strength associated with the low-energy configura-

tions. |If the low-energy configurations contain much initial strength, as is the

case in bOCa and 208Pb where both protons and neutrons can contribute, the low-

lving 3" is favored. In the mass region between A = 66 and A = 148 there is
typically either a low-energy neutron (near Z = 50) or proton configuration (near
N = 50 or 82) but not both.

The effect of quadrupole deformation on the LEOR in the samarium isotopes is

large and reminiscent of the behavior of the GDR. In lthm and ]ABSm the LEOR
144

strength is contained in one peak (with fine structure in the case of Sm) at
154

Ex v 6.5 MeV. In deformed Sm two octupole peaks are seen at Ex = 5.7 MeV and

3.7 MeV. The lower of these states has a width I' v 2 MeV compared to T v 1 MeV
for the upper state. This suggests that the lower peak may contain at least two
of the four expected components of an octupole vibration of an axially symmetric

quadrupole deformed nucleus (with angular momentum projections K = o through

3).
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Two theoretical models have been advanced to explain the structure of the

LEOR in deformed nuclei. One, due to Malov et al.,33 is based on a continuum RPA

treatment. The other, by Kishimoto,3l| is an extension of the work of Ref. 25 to
the octupole case. A central feature of the latter model is a renormalization of
the 0-0 residual interaction which arises from the requirement that the inter-
action be self consistent. The data is presently sufficiently poor that no
choice between them can be made.

The nuclel 75As, 96Mo, and IOOMo also exhibit a weakening of the LEOR which
is likely due to an octupole-quadrupole coupling effect.
for the molybdenum isotopes 92, 96, and 100 are respectively 20 mb/sr, 7 mb/sr,

and 6 mb/sr. The magnitude of the continuum in 96Mo and ] Mo prevents one from

The peak cross section

drawing any firm conclusion about the quantitative nature of this process; the
resonance may be weaker or merely broader than in 92Mo. Our RPA calculations for
these three isotopes using a residual interaction derived from the first 37 in

92Mo indicate that the observed weakening is not primarily a simple shell model

effect.

THE ISOSCALAR BREATHING MODE STATE

The possible existence of an isoscalar breathing mode state in nuclei has
been the subject of considerable experimental interest in recent years. The
isoscalar giant resonance {GR) observed by inelastic scattering at an excitation
energy of 'h60/A]/3 MeV in many nuclei was a possible candidate but has been con-
sidered to be ptredominantly quadrupo?e.] A high resolution study35 of 208Pb
(p,p") and(3He,3He') has located a peak at 9.11 MeV in 208Pb which depletes 7% of
the EO T = 0 EWSR; the rest of the strength was not identified.

The Sendai group has presented an interpretation of their electron-scatter=~
ing data36 on 90Zr and 208Pb which suggests that the breathing mode state may be
located at an energy very close to the GDR, however, this interpretation is
critically dependent upon the model chosen for excitation of the GDR, whose con-

37

tribution must be subtracted from the data. Marty et al. have suggested that

differences in their inelastic deuteron data and our inelastic alpha spectra

might be due to a breathing-mode state located just above the GQR in AOCa, the

dashed line in Fig. 27. For 208Pb considerable fine structure was apparent on

the GR peaks and fits consisting of four narrow Gaussian components plus two
broad Gaussian components generally were necessary. For 90Zr and IAASm no fine
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structure was apparent so fits were restricted to two broad components. Excerpts
from ]hhSm spectra after subtraction of the continuum are shown in Fig. 29 with
sample two-peak fits. The angular distribution obtained for the broad components
for both ]hhSm and 208Pb at Ea = 96 MeV are also shown in Fig. 29. The predic-
tions for a monopole state, the isovector dipole state and a quadrupole state are
shown superimposed on the data. 1t is readily seen that the lower excitation com-
ponent is relatively well fit by the quadrupole calculation, while the higher ex-
citation component is fit adequately by the monopole calculation. In particular,
the predicted signature of a monopole state, a sharp minimum around 40, is very
apparent in the data for the higher excitation component for both nuclei, while

no such dip exists in the data for the lower excitation component. The prediction

90Zr spectra

for the GDR is out of phase with the observed data. Excerpts from
are shown along with angular distributions for the two components in Fig. 30."
Again the lower excitation component is well described as E2 while the upper com-
ponent appears to be E0O. The parameters obtained for the monopole peaks are

summarized in Table 11.

TABLE 11
PARAMETERS OF MONOPOLE PEAKS OBTAINED IN DIFFERENT REACTIONS

E K

Nucleus (MZV) (MZV) %EWSR (MQV) Reference
9%, 17 n1.8 34 + 17 183  Texas AcM
17.5 37
17 4 (108) 36
Vahe 15.1 £ 0.5 2.9 % 0.5 100 + 50 197 22
14.8 + 0.2 2.4+ 0.15 20 = 10 38
15 60 - 100 1%
208, 13.7 £ 0.4 3.0 £ 0.5 105 + 50 208 22
13.5 37
13.5 97.7, 1022 36
13.9 £ 0.3 2.5 £ 0.6 110 + 22 21
14.3 £ 0.15 3.3 % 0.1 50 38
1k 50 - 75 1%
*Reanalyzed.
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For 208Pb and 90Zr these results are in rough agreement with those from
Sendai36 and the peak parameters obtained are consistent with those from
Groningen.21 Also we have performed a graphical reanalysis of (p,p') data on
2854 and 2%r and 2%8ps.

In our alpha scattering studies7 the GR peak was observed to be asymmetric
in many heavy nuclei. An analysis separating the GR peak into two components
lthd and ]hh’]h8"5h5m The angular distributions for both

<

.. . L o
components were the same within the uncertainties over the angular range 13 <

was performed for

9L Séon, hence the entire asymmetric peak was attributed to the GQR. In recent
work”™ at Groningen utilizing inelastic alpha scattering at 120 MeV, a shoulder
on the higher excitation side of the GR has been observed in 206’208Pb, ]97Au
and 2987 (Fig. 25). The angular distributions obtained from 12° <0, < 21° for
this shoulder are consistent with L = 0, 2 or 4 transfer.

Inelastic alpha scattering at angles small enough to observe the first mini-
mum in the angular distribution has been established as a reliable technique for
obtaining L transfer. DWBA calculations for ]uqu (a,a') with L =0, 2 and 4
transfer are shown in Fig. 26 using optical parameters from Ref, 7. The breath-
ing mode form factor of Satch]er3 {(Version 1) was used for the L = 0 calculation.
The form factors used for the other modes were standard collective form factors.
The magnitudes of the DWBA predictions changed somewhat with differing optical
potentials, form factors (both Satchler's Version | and || were tried for the
monopole), and differing Coulomb excitation parameters, however, the shapes of
the angular distributions remained unchanged. |In particular, the deep minimum
around 4° was present exclusively for L = 0 transfer in all calculations.

Inelastic alpha scattering measurements were performed at Texas A&M22 using
an 86-cm-long resistive wire proportional counter backed by a scintillator in
the Enge split-pole spectrograph. By blocking the elastics from the counter and
blocking events above the excitation regions of interest, spectra of the giant

resonance region can be obtained with good statistics in times ranging from 5

hours at GL = 3° to less than an hour for eL > 6°.

Data were taken with E_ = 96 MeV on 0z7r, "hsm and 2%8pp at 3°, 3-1/2°, 1°,
4-1/20, 50, 60, 7°, and 8° with good statistics to ascertain the shape behavior
of the GR peaks over these small angles. 208Pb specira taken at 30, ko, and 6°

with Ea = 96 MeV are shown in Fig. 27. The broad bumps from the (a,SHe) reac-

tion are apparent; a dashed line indicates the background chosen for analysis of
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the GR peaks. Although the GR to continuum yield improves at higher bombarding
energies, the angular distribution features which distinguish among the even
(odd) multipoles move to smaller angles as the energy is raised resulting in

increased problems with slit scattering and beam tuning.
The angular distributions obtained for the 208Pb 2.61 MeV JTr = 3- and 3.20

Mev JT = 5 states are shown in Fig. 28. The DWBA fits are quite good over the
angular range 30 < GL < 20° and the deformation parameters obtained are in agree-
ment with those obtained previously.

Analysis of the GR peaks was accomplished by fitting a multicomponent peak
to the observed peak after subtraction of a nuclear continuum as indicated by
IAASm published by the Oak Ridge group. The spectra they obtained are shown in
Fig. 31 with graphical fits using two peaks with the parameters from Ref. 22.
This provides a good representation of the data (within the statistical errors).
If the lower excitation peak is assumed to exhaust most of the E2 EWSR, and rela-
tive E2/E1/ED cross sections are taken from the calculations of Satchler,3
excitation of the GDR would account for less than half of the observed strength
of the higher excitation component. If the remainder is assumed to be EO about
50% of the EWSR strength is indicated. Additionally there is evidence (mentioned
earlier) from (p,p') in light nuclei that excitation of the GDR is overestimated

in the calculations of Satchler, hence an even larger portion of the second peak

may be EO.
These results are in agreement with those from Orsay
results using the Goldhaber-Teller model for analysis of the E1. Recent Darm-

. 208
stadt3 electron scattering results on Pb at low momentum transfers where the

El excitation strength is essentially model independent also obtain EO (or E2)
39 yield a form fac-

37 and with the Sendai36

strength at this energy. Microscopic calculations by Speth
tor for (e,e') to the GDR in 208Pb much like the GT form factor, further con-

firming that the GT model is preferred.
An energy of 13.7 MeV for the breathing mode in 208Pb is in excellent agree-
ment with the estimates of krewald et al. 0 and Speth et al. Utilizing the

liquid drop model, the breathing mode energy EO is related to the nuclear matter

compressibility K by:

K
E = L

_
0 3R m
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where R is the nuclear radius and m is the nucleon mass. The values of K ob-
tained for 90Zr, IMSm and 208Pb are 183, 197 and 208 MeV, respectively. Micro-
scopic RPA calculations were performed by Blaizot et a].hz for five interactions
which were particularly successful in Hartree-Fock calculations. Keeping in mind
that their Ky = (ﬂz/IS)K, the Skyrme interactions (S IV and SIIl1) gave K = 310
and 340 MeV respectively, for 208Pb and similar values for 9OZr, much higher than
the experimental values. The interaction Bl of Brink and Boeckerl'3 gave K & 170

" MeV while D1 of Gognyhh gave K &4 222 MeV, somewhat closer to the measured value.

EXCITATION OF GIANT RESONANCES BY HEAVY IONS

Groups at Michigan State Universityl‘5 and Karlsruhel‘E qave utilized inelas-
tic scattering of 6Li jons to observe the GQR. In the MSU work performed on 90Zr
at E6 o= 74 MeV, a weak broad structure was seen at Ex = 13.8 MeV which is like-
ly Li the GQR, although the angular distribution obtained was featureless. The
work at Karlsruhe utilized 156 MeV 6Li ions on 208Pb and the resulting spectrum
is shown in Fig. 32. The GQR appears very prominently on a rather small contin-
uum background. The angular distribution obtained is featureless, but is fit
reasonably well in both shape and magnitude by DWBA calculations. The higher
beam energy seems necessary to produce a reasonable cross section for the GQR, as
in alpha scattering. These results suggest inelastic 6Li scattering at energies
around 150 MeV may be very useful in determining at least the shape and position
of the GQR in nuclei.

The only other reported excitation of the GQR by heavy-ions of which | am
aware is by a group at Yalel'7 who utilized 27AI(|2C,]2C*)27A1. A spectrum from
their work is shown in Fig. 33. They have drawn a suggested background, implying
that the yield above this is due to excitation of the GQR (and possibly the LEOR).
When the yield above the suggested background is compared to the known 27Al GQOR
(seen in alpha scattering, Fig. 8), there are some similarities, however, the
known GQR is considerably narrower. The IZC angular distribution obtained is
featureless and not in particularly good agreement with DWBA predictions. In
this case no clear prescription for drawing the background is apparent in the
spectra, and | must admit to being skeptical of the chosen background. The

separation of the GQR, from the continuum, indeed even the presence of the GQR is

“Supported by the U.S. National Science Foundation and the Robert A. Welch
Foundation.
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not obvious from the data. A similar experiment on oCa, where the GQR is quite

narrow and should be immediately apparent would be quite interesting.

CONCLUSION
The large amount of inelastic scattering data now available has elucidated

many properties of the giant multipole resonances. Many more intriguing ques-
tions have now been revealed. The structure observed in the GQR in light nuclei
and the differences between different excitation modes suggest that decay mea-
surements to better define the wave functions of these fairly simple configura-
tions would be very interesting. Many predictions are now available regarding
the behavior of both the GQR and the LEOR in deformed nuclei, and more thorough
studies of these in deformed nuclei would be valuable. The structure in the
region of the 208Pb GQR is very poorly understood and requires more work. The
properties of the LEOR are just beginning to be defined; little is known about
its fine structure and many nuclei have not been investigated at all. The
breathing mode state has just been definitively identified very recently, and
its location in lighter nuclei as well as its general properties remain to be
established. The field of heavy-ion excitation of giant resonances is wide
open; there have been suggestions that the deep inelastic processes proceeds
through giant resonance, but there Is little evidence of their direct excitation
with projectiles heavier than lithium. Finally the superb peak to continuum
ratio for the GQR obtained with 156 MeV 6Li ions indicates the possibility of
obtaining the properties of the GQR much more accurately than with lighter

projectiles.
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for p decay of the 18 MeV
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taken at Karlsruhe (Ref. 46).
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