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ABSTRACT 

The Lawrence Livermore National Laboratory is to conduct an in situ test 
of radionuclide migration in fractured granite. Radionuclides are to be 
injected into a fracture in the flimax Stock of the Nevada Test Site, then 
transported by fluia motion and subsequently withdrawn. The fluid will be 
injected throjgh a borehole intersecting a near vertical fracture anc 

withdrawn through a second borehole that intersects the fracture direcly 
below the first. 

The scoping calculations presented here are intended to aid planning this 
experiment. In the absence of a detailed fracture description, this analysis 
treats the fracture as the space between parallel flat plites; the flow is a 
Hele-Shaw flow. The calculations predict the conditions for breakthrough c" 
radionuclides at the outlet hole and describe the subsequent concentration 
history of fluid flowing from the fracture. The effects of advection, 
sorption and geometric dispersion are treated. 

FLOW IN A FRACTURE 
Saturated creeping flow in the gap between two parallel plates is called 

plane Poiseuille flow. The fluid flows through the fracture, while adhering 
to the bounding surfaces, in response to pressure gradients and gravity. 
Averaging this velocity across the gap yields a mean velocity u varying as the 
square of h, the gap thickness. 

u = - ^ - (vb + Pgz) (1) 

Here, u is the fluid viscosity, p the pressure, p the fluid density, g the 
acceleration of gravity and z an upward directed unit vector. The flow is a 
potential flow. For simplicity, we define the pressure 

P = P + pgz (2) 



analogous to the piezometric head. In gravitational equilibrium, P is uniform. 
Continuity of fluid flow, together with the expression for average 

velocity combine to yield 
v 2P = 0 (3) 

This well known result, that the flow is governed by Laplace's equation, 
allows us to readily use results obtained in several other fields of physics. 

FLOW BETWEEN BOREHOLES: NO SUPERPOSED FLOW 
In a few circumstances, the effect of gravity is either negligible or 

readily incorporated into the analysis. In a horizontal fracture, gravity 
acts normal to the flow and does not affect fluid motion. If the velocities 
produced by injection into a vertical fracture greatly exceed the 
gravitational flow, the effect of gravity may be neglected. Finally, if the 
fluid far from injection is in hydrostatic equilibrium, the analysis follows 
that of tne horizontal fracture, with P replacing p. These cases are 
distinguished from the case later treated, that of a fracture with a uniform 
flow superposed on the induced flow between boreholes, and are treated in this 
section. 

Consider injection into an unbounded homogeneous fracture from one 
borehole, coupled with extraction from the second hole at the same volume flow 
rate, V. This corresponds to the well known potential distribution 
corresponding to a source and sink of equal strength. This distribution has 
been used in hydrologic application to describe two well tracer tests in 
aquifers [1] 

The streamlines and lines of constant pressure are coordinates of a 
bipolar coordinate system. Moon and Spencer [2] describe this coordinate 
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system in detail. P is constant on non-concentric circles about the 
boreholes. Streamlines, *, are circular arcs connecting the boreholes- The 
flow is shown in Figure 1. A more general analysis with unequal rates at the 
tyio holes could readily be performed. Some streamlines nould, in that case, 
remain open; they would not terminate at both boreholes. 

The flow outside the boreholes is identical to that produced by 3 point 
source and joint sink. These singularities are also shown in Figure 1- They 
afe not precisely in the borehole centers, but for widely spaced borecoles as 
envisioned *iare, the difference is negligible. The distance, 2a, between 
source and sink is, for all practicjl purposes, the distance between porehole 
centers-

The solution for the stream function is readily found to be 

• • * t m " 1 157?^ ( 4 ) 

corresponding to the circular arcs described above. Fluid, injected into the 
fracture, will flow to the extraction borehole on any of these streamlines. 
The time tv traverse between boreholes will, however, depend strongly on the 
streamline travelled. The longer streamlines are also those with low^r fluid 
velocity. 

Tracers or radionuclides injected at one borehole and moving on different 
streamlines will arrive at the other borehole at different times, resuming in 
an apparent or 'geometric' dispersion. The effect is present in a purely 
advective transport; any molecular dispersion would be superposed. 

The time for fluid to travel along any streamline is 
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Figure 1, Flow resulting from a source and sink has nonconcentric 
circular streamlines. 



where the integration is along the streamline. The time to travel between 
boreholes is, aside from the comparitively short times to travel between the 
•singularities and the borehole walls, equal to the time to travel between 
source =>nd sink. 

Ca^ulation of transit times appears to be a peculiarly hydrologic 
pursuit. Thus, while analogies to eq. (4) abound in the literature, Grove and 
Beetem *• •• first calculated this time for the distribution given in eq. (4). 
As their analysis is somewhat more complicated than necessary, we offer an 
alternative derivation that provides insight into the flow. 

First, using eq. (4), we can demonstrate that the fluid speed at any 
point depends only on the distances from the two boreholes. 

Va 
irnr, r~ (6) 

where r 1 and r„ are the distances to the source and sink. See Fig. 2. 
Figure f. also defines angles a and y which are employed in the 
calculation. R is the radius of curvature of the circular arc V. 

R Q = a/sin y (7) 
and 

y = 2irh+/V (8) 

Usinj the angles shown in Fig. 2, we readily write eq. (6) as 



Figure 2. Flow along a streamline arc is readily described in 
geometric terms. 
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ine integral {5) then is 

2Y 

/ 3 R da 
(10) 

with u given by eq. (9 ) . The expression integrates immediately to y i e l d 

„ . , 2irh», 2nh<|i /2*hjh A-h£ Sin - r—) - - — C O S ( - ) 
t = i?=i V V V _ _ .... 

sin (——) 

The Shortest path is, of course, the straight line connecting the 
singular points, * equal to zero. One readily verifies that, along this 
streamline, 

t = ^d- (i2) 
3V 

or equivalently that a tracer moving will the fluid with reacn the sink when a 
volume 

V = iipi (13) 

is injected. Without extraction, three times as much volume would need be 
injected for tagged fluid to reach the sink location. 

As an example, 42 cc of fluid would be injected into a 10 y fracture 
before a tracer moving with the fluid appears at an extraction borehole, 2 
metres distant. 

2 At any time, i, greater than 4irha /3v, some fraction, f, cf the fluid 
arriving at the withdrawal borehole will have originated at the injection 
hole. This fraction can be expressed in terms of the stream function of the 
streamline whose transit time is T. 
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f = iii^iii (u) 

where +(-r) is found from eq. (11). 
Consider, now, a chemical tracer, nonadsorbing and nondispersed, moving 

with this incompressible flow. The tracer, together with the fluid, is 
injected completely around the periphery of the injection hole. If the 
entering concentration everywhere is c and if the volume average 
concentration arriving at the second hole is, at any instant, c, then our 
fraction f is also 

f = |- (15) 
o 

It is important to note that this is the concentration ratio for the 
fluid arriving at that instant. It is not the concentration in the fluid 
allowed to accumulate in the borehole. Combining eqs. (11), (13), and (15), 
we produce a relation between the volume injected and the average arriving 
concentration. 

sin ( ,£-) - f ^cos (i£-) 
i n y = 2 _ ° a ( 1 6 ) 
4irha^ s in J (n|-) 

Eq. (16) is shown in Fig. 3. As fluid is injected, there is a finite 
period when no tracer appears at the second hole. Then, when tracer on the 
shortest path arrives, as given by eq. (13), the concentration begins to 
increase. The increase is rapid as fluid in adjacent envelopes arrives 
shortly thereafter. Subsequent increases in concentration are much slower and 
the asymptotic approach to a concentration ratio of unity is quite slow. The 
effect shown in Fig. 3 is due to geometric dispersion, an apparent dispersion 
resulting from the unequal transit times on different paths. 
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Figure 3. The concentration in the f lu id arriving at the 
withdrawal borehole increases abruptly 
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Consider again the example of a 20 u fracture with boreholes separated 
by 2 metres (a = I metre). As before, V is 42 cc at breakthrough. For the 
concentration ratio to reach 1/3, 65 cc must be injected. A total of 126 cc 
injected are required to produce a concentration ratio of 1/2. 

An adsorbing specie* with a linear adsorbtion isotherm moves at an 
apparent speed 

U = u/R (17) 
a 

tfvrre % i* ci retwiaViw 5acttrr ifreater fnan one. See fteaT IV}, for examf*^. 
Travel times for this species are all R times as long as those of species 
traveling with the fluid. Breakthrough and concentration buildup are delayed 
proportionately. In our previous example, 420 cc would need to be injected 
prior to breakthrough of a species possessing a retardation factor of 10. 

In the migration test, a finite volume of radionuclide solution will be 
injected. Water without radionuclides vill then be injected as a pusher. 
While Fig- 3 and eq. (16) address contiguous injection, they may be used in a 
straightforward way for finite volume irjection. Any finite injection can be 
considered as a sum of continuous injections. Figure 4 shows schematically 
now a finite injection results from positive and negative continuous 
injections suitably spaced. The observed outlet concentration results from 
the corresponding sums obtained from Fig. 3. The concept can be immediately 
extended to describe any input variation. 

Using Fig. 4 as a guide, we can extend the example that we have been 
developing- Suppose now that 100 cc of radionuclide solution is injected into 
the 10 p fracture. Water, without radionuclides, is then injected to pusli 
the solution through. Withdrawal is 2 netres distant. When 42 cc of solution 
are injected, nonabsorbing species (rt=l] break through. The concentration 
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Figure 4. A f i n i t e in jec t ion i s t reated as a superposition o f 
i n f i n i t e in jec t ions . 
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entering the second borehole continues to rise until 142 cc has been injected; 
that is, 100 cc of solution followed by 42 cc of water. At this point, the 

2 concentration reaches its maximum. V/4irha is 1.13 and the concentration 
ratio is 0.52. Hater breakthrough occurs at this point and the concentration 
subsequently drops rapidly. 

Anothe;* species in the same injection has (say) a retardation factor of 
10. When 420 cc (42*10) are injected, this species appears at the second 
borehole. When 100 cc of solution and 420 cc of water, a total of 520 cc, are 
injected, the trailing front breaks through. Concentration again is at a 
maximum. Now, however, V/4 it ha 2R is only 0.41 so the maximum 
concentration ratio is only 0.22. 

FLOW BETWEEN BOREHOLES: UNIFORM FLOW SUPERPOSED 

Now, we will extend consideration to flow with a superposed uniform 
flow. Such a flow could result from gravity. The radionuclide migration test 
J*111 be performed in an unsaturated fracture. Prior to radionuclide 
injection, water could be injected at a high rate in an attempt to saturate 
the fracture. Then, with radionuclide injection occurring more slowly, this 
previously injected water would flow down under the influence of gravity, 
approximating a uniformly flowing sheet. 

The flow with source, sink and a parallel stream is also a classical 
potential flow. The stream function is the superposition of the parallel flow 
stream function, Uy, and the stream function of eq. (4). 
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U is the speed of the para l le l strejm flowing in the x d i rec t i on . F l u i d , 

f lowing f r ee l y (p constant) down a vert ical f racture has, according to eq. 

(1 ) , a speed given by 

U = ^ - ( 1 9 ) 
12u 

_5 In a 10 (i vertical fracture, eq. (19) gives U for water about 8 * 10" 
m/s. Tiie streamlines connecting the boreholes are, in this case, entirely 
contained within an oval bounding streamline. See Fig. 5. This oval is a 
hiankin1 oval, so named after W.J.M. Rankine who investigated these shapes and 
tue potential flow about them [4]. More recently, Nelson [5] examined 
groundwater flow in such configurations. The equation of the bounding 
streamline is simply eq. (18) with (p set equal to zero. Using this relation 
allows 0"° to readily show that the length, X, of the bounding oval is 

while the width Y is implicitly given by 
Y a . TihYU *51 ^ 
4l " Y • c o t — ( 2 1 ' 

The relation was solved to find the width as a function of dimensionless. flow 
rate. Both dimensions are shown in Figure 6. Tt\& dimensions of the pounding 
oval are significant because, in this ideal fracture, all the radionuclides 
remain within the oval. 
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Figure 5. Flow between the boreholes remains within the 
bounding oval 
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An examole will illustrate the use of the figure. Consider an injection 
rate, V, of 0.15 cc/min {2.5 * 10" 9 m^s) into a 10 v. fracture with U, 

-5 as before, equal to 8 *10 m/s and a equal to 1 m. The dimensionless 
injection rati is nearly 1.0. From Fig. 6, Y/a is 1.7 so the width of 
bounding oval is only 1.7a or 1.7m. X/a is about 2.8 so the length of the 
oval is 2.8 m. 

We now examine this flow and the transit time distribution to find 

results analogous to those of the last section. Breakthrough times (or 

volumes) and concentration histories are needed, now as a function of the 

Corresponding to the stream function (18) is the complex potential 

Zirh Z-a 

The stream function is the imaginary part of this complex potential. The 
complex velocity is 

w = — = u V a (23) dz u 71 2T l ' *nu - a ) 

As before, the fastest t r i p betwesn boreholes is along the straight l ine 

connecting than. Us inn eq. (23) to evaluate the time, 

t = / 4* (24) 
-a u 

The real component of w is the x component of velocity. Along th is 

streamline, there is , of course, no y component. 

t = f & , (25) 
.i (i Va 

irh(x - a ) 
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Integrating gives us, in contrast toeq. (12) 

V 

or 

t - |a ,._JH^_^{^^H (26, 

„ -2J. ,.JSU C W I-1 (1+_J^ (27) 

in constrast to eq. (13). Either of the limits (11) or (13) is recovered by 
letting, V/uhaJJ increase without bound in eas. i,2&\ and (27U Ecu C2.5J is 
plotted in Fig. 7 showing the volume injected at breakthrough as a function of 
a dimensionless injection rate. The curve shows how, as injection rate 
increases, the breakthrough volume approaches the value given in eq. (13), 
that is, the value of the volume in Fig. 3 when concentration just starts to 
rise-

Again consider the recent example with a dimensionless injection rate of 
1.0. From Fig. 7, the dimensionless volume at breakthrough is 0.19. The 
injected volume (0.19*4nha ) is tnus 24 cc, less than the 42 cc earlier 
calculated for fast injection. Injecting 24 cc at 0.15 cc/min. takes 160 min. 

F o U w u v j bveakUurou^, the lowrewtviitiOT wf t r a w wrrvniv§ at tfce 
withdrawal hole will increase. As we did in the previous section, we must now 
examine the concentration increase during continuous injection. Generalizing 
eq. (14), we write now 

f = 2jjnW" + ! (28) 
V 
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Figure 7. The volume injected, prior to breakthrough, increases 
as injection rate increases. 
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f is again equal to the arriving concentration ratio. Integrating velocity 
along this streamline yields the time at which this concentration is 
obtained. In dimensionless form, sich integration produces 

or, since V is V* t, 

lc • 1 , ^ 3 <»> 

7 feLl -^) (30) 
c o co * h a U ' 4,ha 

rtumericai' mtegratforr in ttte complex pltne was used to cistsin results in 

this form. These results are shown in Fig. 8, Instead of the single curve of 
Fig. 3, we have a family of curves corresponding to different values of 
dimensionless flow rate. The infinite flow rate curve is the curve in Fig. 3. 
The intercept of each curve with the axis agrees with the breakthrough volume 
for Fig. 7. 

With this result, we can continue with the example having a dimensionless 
injection rate of 1.0. We see again that the dimensionless volume at 
breakthrough is 0.19. Now we can also see the further evolution of the 
injection. If another equal volume is injected, the dimensionless volume is 
Q-, 38 drra1 tiie corrcerrtratfon ratfa fs 0.76. At this point, 48 cc nave been 

injected at 0.15 cc/min, taking 320 min. 
The treatment of finite injections and retardation are as explained in 

the last section. 
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