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ABSTRACT

The Lawrence Livermore National Laboratory is to conduct an in situ test

of radionuclide migration in fractured granite. Radionuclides are to be
injected into a fracture in the flimax Stock of the Nevada Test Site, then
transported by fluic motion and subsequently withdrawn. The fluid will be
injected through a borehole intersecting a near vertical fraciure anc
withdrawn through a second borehole that intersects the fracture direcily
below the first,

The scoping calculations presented here are intended to aid planniag this
experiment. 1In the absence of a detailed fracture description, this analysis
treats the fracture as the space between parallel flat pTites; the flow is a
Hele-Shaw flow. The calculations predict the conditions for breakthrough c”
radionuclides at the outlet hole and describe the subsequent concentration
history of fluid flowing from the fracture. The effects of advection,

sorption and geometric dispersion are treated,

FLOW IN A FRACTURE

Saturated creeping flow in the gap between two parallel plates is called
plane Poiseuille flow. The fluid flows through the fracture, while adhering
to the bounding surfaces, in response o pressure gradients and gravity.
Averaging this velocity across the gap yields a mean velocity u varying as the
square of h, the gap thickness.

e
u = -z (Y + pgz) (m

Here, u is the fluid viscosity, p the pressure, p the fluid density, g the
acceleration of gravity and z an upward directed unit vector. The flow is a
potential flow. For simplicity, we define the pressure

P = p+ gz (2)



analogous to the piezometric head. In gravitational equilibrium, P is uniform.

Continuity of fluid flow, together with the expression for average
velocity combine to yield
wp = 0 (3)
This well known result, that the flow is governed by Laplace's equation,

allows us to readily use resulis obtained in several other fields of physics.

FLOW BETWEEN BOREHOLES: NO SUPERPOSED FLOW

In a few circumstances, the effect of gravity is either negligible or
readily incorporated inioc the amalysis. In a horizontal fracture, gravity
acts normal to the flow and does not affect fluid motion. I[f the velocities
produced by injection into a vertical fracture greatly exceed the
gravitational flow, the effect of gravity may be neglected. Finally, if the
fluid far from injection is in hydrostatic equilibrium, the analysis follows
that of tne horizontal fracture, with P replacing p. These cases are
distinguished from the case later treated, that of a fracture with a uniform
flow superposed on the induced flow between boreholes, and are treated in this
section.

Consider injection into an unbounded homogeneous fracture from one
borehole, coupled with extraction from the second hote at the same volume flow
rate, 9. This correspands to the well known potential distribution
corrasponding to a source and sink of egual strength. This distribution has
been used in nydrologic application to describe two well tracer tests in
aquifers [1]

The streamlines and 1ines of constant pressure are coordinates of a

bipolar caordinate system. Maon and Spencer [2] describe this coordinate
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system in detail. P is constant on non-cancentric circles about the
poreholes. Streamlines, ¥, are cirtular arcs connecting the boreholes- The
flow is shown in Figure 1. A more deneral analysis with unequal rates at the
two holes could readily be performei. Some streamlines would, in that case,
remain open; they would not terminate at both boreholes.

The flow outside the boreholes is identical te that produced by a point
source and goint sink. These singularities are also shown in Figure 1. They
are not precisely in the borehole centers, but for widely spaced borenoles as
envisioned “ere, the difference is regligible. The distance, 2a, between
sgurce and sink is, for all practici) purposes, the distance between porenole
centers.

The solution for the stream function is readily found to be

¢ = g tan —B (4)
x“+ y"- a
corresponding to the circular arcs described above. Fluid, injected into the
fracture, will flow to the extracticn borehole on any of these streamlines.
The time tu traverse between boreholes will, however, depend strongly an the
streamiine travelled. The longer streamlines are also those with tower fluid
velocity.

Tracers or radionuclides injected at one borehole and moving on different
streamlines will arrive at the other boreghole at different times, resulting in
an apparent or ‘geometric' dispersian. The effect is present in a purely
agvective transport; any molecular dispersion would be superposed.

The time for fluid to travel along any streamline is

e = [ ()
v
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Figure 1. Flow resulting from a source and sink has nonconcentric
circular streamlines.
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wnere the integration is along the streamline. The time to travel between
borenol:s is, aside from the comparitively short times to travel between the
singularities and the borehole walls, equal to the time to travel between
source and sink.

Calculation of transit times appears to be a peculiarly hydrologic
pursuit. Thus, while amalogias to eg. (4) abound in the literature, Grove and
Beetem {1 first calculated this time for the distribution given in eq. (4).
As their analysis is somewhat more complicated than necessary, we offer an
alternative derivation that provides insight into the flow.

First, using eg. (4), we can demonstrate that the fluid speed at any
point d=pends only on the distances from the two boreholes.

= ."’a (6)
wnr]rz

where r, and r, are the distances to the source and sink. See Fig. 2.
Figure ? also defines angles o and y which are employed in the
calculation. RO is the radius of curvature of the circular arc v.
Ro = a/sin vy (7)
and

y = 2nhe/V (8)

Usiny the angles shown in Fig. 2, we readily write eq. (6) as

Va
. - (9)
4mi sing sin(v- §)

5=



va
u= T2

¥ = constant

Sink

Source

Figure 2. Flow along a streamline arc is readily described in
geometric terms.
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ine integral (5) then is

2y Rodu

t = m (10)
Q
with u given by eq. (9). The expression integrates immediately to yield
2 sin(thw) - thw cos (thw)
_ 47ha
t = —/—= v ] v (1)
v sin3 (23h¢)

)

The shortest path is, of course, the straight line connecting the
singular points, v equal to zero. One readily verifies that, along this
streamline,

2
t = 4mha (12)

3v

or equivalently that a tracer moving will the fluid with reaca tne sink when a

volume

Vo= 4—"’3‘12- (13)
is injected. Without extraction, taree times as much volume would need be
injected for tagged fluid to reach the sink location.

As an example, 42 cc of fluid would be injected into a 10 u fracture
before a tracer moving with the fluid appears at an extraction borehole, 2
metres distant,

At any time, t, greater than 4uha2/30, some fiaction, f, ¢f the fluid
arriving at the withdrawal borehgle will have originated at the injection
hole. This fraction can be expressed in terms of the stream function of the

streaml ine whose transit time is <.

-7=



2“(T)h (]4)

\

where y(1) is found from eq. (11;.

Consider, now, a chemical tracer, nonadsorbing and nondispersed, moving
with this incompressible flow. The tracer, together with the fluid, is
injected completely around tne periphery of the injection nole. If the
entering concentration everywhere is s and if the volume average
concentration arriving at the second hole is, at any instant, ¢, then our
fraction f is also

< C .
fo= & (15)

It is important to note that this is the concentration ratio for the
fluid arriving at that instant. [t is not the concentration in the fluid
allowed to accumulate in the borehole. Combining egs. (11), (13}, and (15),
we produce a relation between the volume injected and the average arriving 3 i
concentration.

. d c C

v sin (v =) - 2= cos (n)

injected _ 0 o Q (16)
4m¥ sma(%4
a

Eq. (16) is shown in Fig. 3. As fluid is injected, there is a finite i
period when no tracer appears at the second hole. Then, when tracer on the i
H 1

shortest path arrives, as given by eg. (13), the concentration begins to g

increase. The increase is rapid as fluid in adjacent envelopes arrives

snortly thereafter. Subsequent increases in concentration are much slower and
the asymptotic approach to a concentration ratio of unity is quite slow. The i
effect shown in Fig. 3 is due to geometric dispersion, an apparent dispersion

resulting from the unegual transit cimes on different paths.
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Figure 3. The concentration in the fluid arriving at the
withdrawal borehole increases abruptly
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Consider again the example of a 20 u fracture with boreholes separated
by 2 metres (a = | metre). As before, V is 42 cc at breakthrough. For the
concentration ratio to reach 1/3, 65 cc must be injected. A total of 126 ccC

injected are required to produce a concentration ratio of 1/2.

An adsorbing specie* with a Tinear adsorbtion isotherm moves at an

apparent speed

U, = u/R (17)
weere & i3 a retardation Tatiur grester than tme.  See Bear 13), for exanpie.
Travel times for this species are all R times as Tong as those of species
traveling with the fluid. Breakthrough and concentration buildup are delayed
propoartionately. In our previous example, 420 cc would need to be injected
prior to breakthrough of a species possessing a retardation factor of 10.

In the migration test, a finite volume of radionuclide solution will be
injected. Water without radionuclides will then be injected as a pusher.
while Fig. 3 and eg. (16} address contisuous injection, they may be used in a
straightforward way for finite volume irjection. Any finite injection can be
considerad as a sum of continuous injections. Figure 4 shows schematically
how a Tinite injection resulits from positive and negative cortinuous
jnjections suitably spaced. The observed outlet concentration results from
the corresponding sums obtained from Fig. 3. The concept can be immediately
extended to describe any input variation.

Using Fig. 4 as a guide, we can extend the example that we have been
develgping. Suppose now that 100 cc of radionuclide soTution is injected into
the 10 u fracture. Water, without radionuclides, is then injected to push
the solution through. Withdrawal is 2 netres distant. When 42 cc of solution

are injected, nonabsorbing species (R=1] break through. The concentration

-] Q=
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Figure 4. A finite injection is treated as a superposition of
infinite injections.



enteriag the second borehunle continues to rise until 142 cc has been injected;
that is, 100 cc of solution follawed by 42 cc of water. At this point, the
concen.ration reacnes its maximum. V/thrha2 is 1.13 and the concentration
ratio is 0.52. Water breakthrough occurs at this point and the concentration
subseyuently drops rapidly.

Anothe: species in the same injection has (say) a retardation factor of
10. When 420 cc (42%10) are injected, this species appears at the second
borehole. #hen 100 cc of solution and 420 cc of water, a total of 520 cc, are
injected, the trailing front breaks through. Concentration again is at a
maximum. Now, however, V/4 n haR is only 0.41 so the maximum

concentration ratio is anly 0.22.

FLOW BETWEEN BOREHOLES: UNIFORM FLOW SUPERPUSED

Now, we will extend consideration to flow with a superposed uniform
flow. Such a flow could result from gravity. The radionuclide migration test
4111 be performed in an unsaturated fracture. Prior to radionuclide
injection, water could be injected at a high rate in an attempt to saturate
the fracture. Then, with radionuclide injection occurring more slowly, this
previously injected water would flow down under the influence of gravity,
approximating a uniformly flowing sheet.

The flow with source, sink and a parallel stream is alse a classical
potential flow. The stream function is the superposition of the parallel flow

stream function, Uy, and the stream function of eq. (4).

¢ = %ﬁ'tan-]j;z%‘l—?" Uy (TB)

X+ y"™-a

-]
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U is the speed of the parallel streim flowing in the x direction. Fluid,
flowing freely (p constant) down a rertical fracture has, according to eq.
(1), a speed given by

h2
u = 289 (19)
12u

In a 10 u vertical fracture, eq. (19) gives U for water about 8 * 10'5

m/s. The streamlines connecting the boreholes are, in this case, entirely
contaired within an oval bounding streamline. See Fig. 5. This oval is a
Kankins oval, so named after W.J.M. Rankine who investigated these shapes and
tine potential flow about them [4]. More recently, Nelson [5] examined
groundwster flow in such configurat‘ons. The eguation of the bounding
streamline is simply eg. (18) with ¥ set equal to zero. Using this relation
allows ore to readily show that the length, X, of the bounding oval is

- 2 v

while the width Y is implicitly given by

I—a-% = cot YU (21)

v

The relation was solved to find the width as a function of dimensionless flow
rate. 8ath dimensions are shown in Figure 6. The dimensions of the bounding
oval are significant because, in this ideal fracture, all the radionuctides

remain within the oval.
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Figure 5. Flow between the boreholes remains within the
bounding oval
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Figure 6. DRimensions of the bowding oval bound radionuclide
transport
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An examole will illustrate the use of the figure. Consider an injection
rate, ¥, of 0.15 cc/min (2.5 * 10'9 mJ/s) into a 10 p fracture with U,
as before, equal to 8 *107° m/s and a equal to 1 m. The dimensionless
injection ratz2 is nearly 1.0. From Fig. 6, Y/a is 1.7 so the width of
bounding oval is only 1.7a or 1.7m. X/a is about 2.8 so the lengtn of the
oval is 2.8 m.

We now examine this flow and the transit time distribution to find
results analogous co those of the last section. Breakthrough times (or
volumes) and concentration histories are needed, now as a function of the
domieeece of gravity.

Carresponding to the stream function (18) is the complex potential

S PO (
) 7 Wiy Uz (22)

The stream function is the imaginary part of this complex potential. The

compiex velocity is

a
el

Va
= U-.......—.— (23)
1n(zz- az)

x
n
!

[=%
N

As before, the fastest trip betwe:n boreholes is along the straight line

connecting them. Usian eq. (23) to evaluate the time,

Q
_ d
- J v (24)

The real component of w is the x component of velocity. Along this

streamline, there is, of course, no y component.

;=I—°'*.— (25)
-2 U - Va
ah(x“-a“)
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Integrating gives us, in contrast toeq. (12).

.

- 2_a_ m =1 v Vs
t = 0 1 -——-—\.r—ctnh (1 +-1WJ (26)
%
0 nhaU)
ar
. v .
_ 2Va nhal -1 V%
V== 1 - ——————;—:ftnh (1 + ?ﬁﬁﬂﬁ (27)
(1 whaﬂ)-

in constrast to eg. (13). Either of the limits (11) or (13) is recovered by
letting ¥/uhall increase withaut hound in eqs. (26} and (27). Eq. (25) is
plotted in Fig. 7 showing the volume injected at breakthrough as a function of
a dimensionless injection rate. The curve shows how, as injection rate
increases, the breakthrough volume approzches the value given in eg. (13),
that is, the value of the volume in Fig. 3 when concentration just starts to
rise.

Again consider the recent example with a dimensionless injection rate of
1.0. From Fig. 7, the dimensionless volume at breakthrough is 0.19. The
injected volume (0.19*4nha2) is tnus 24 cc, less than the 42 cc earlier
calcuiated for fast injection. Injecting 24 cc at 0.15 cc/min. takes 160 min.

Follawiag breakthrouwgh, the comentration of tracer arriving at the
withdrawal hole will increase. As we did in the previpus section, we must now
examine the concentration jncrease during continuous injection. Generalizing

eq. (14), we write now

£ = Znmlan, (28)
v

-17-
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Figure 7. The volume injected, prior to breakthrough, increases |
as injection rate increases. .

=]8-



f is again equal to the arriving concentration ratio. Integrating valocity
along this streamline yields the time at which this concentration is

obtained. In dimensionless form, sich integration produces

c _ C & tu
¢, ~ ¢, S, (29)
or, since V is V* t,
¢ g v (
£ - < ) 30)
Co o mhall , 41h§

fumericai Trtegratton o the compiex gidne was used &¢ ogbtarm reésults i
this form. These results are snown in Fig. 8, Instead of the single curve of
Fig. 3, we nave a family of curves corresponding to different values of
dimensionless flow rate. The infinite flow rate curve is the curve in Fig. 3.
The intercept of each curve with the axis agrees with the breakthrough volume
for Fig. 7.

With this resuit, we can continue with the example having a dimensionless
injection rate of 1.0. We see again that the dimansionless volume at
breakthrough is 0.19. Now we can 21so see the further evolution of the
injaction. If another equal volume is injected, the dimensionless volume is
8,38 and the concentratton ratio fs §.76. At thfs point, 48 cc nave peen
injected at 0.15 cc/min, taking 320 min.

The treatment of finite injections and retardation are as explained in

the Tast section.
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Figure 8. The concentration in the fluid arriving at the withdrawal
borehole depends on the injection rate.
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