

Y
UCRL-87091
PREPRINT

CONF-820609--75

UCRL--87091

DEB82 020173

Nuclear-Waste-Package Program for
High-Level Isolation in Nevada Tuff

A. J. Rothman

DISCLAIMER

This paper is a preprint and contains neither recommendations nor conclusions of the U.S. Government. It should not be distributed outside your organization without the written permission of the author. Any use of trade names is for identification purposes only and does not imply endorsement by the U.S. Government.

This paper was prepared for presentation
at the American Nuclear Society Annual Meeting

Los Angeles, California
June 6-11, 1982

January 1982

 Lawrence
Livermore
Laboratory

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made before publication, this preprint is made available with the understanding that it will not be cited or reproduced without the permission of the author.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MASTER

g8

NUCLEAR WASTE PACKAGE PROGRAM FOR HIGH-
LEVEL-WASTE ISOLATION IN NEVADA TUFF

A. J. Rothman

Our laboratory has recently begun studies for a nuclear waste package appropriate to tuff at the Nevada Test Site (NTS). This is one part of a total Nevada Nuclear Waste Storage Investigation (NNWSI), the other parts consisting of geology-hydrology investigations (US Geological Survey); site geochemistry and mineralogy (Los Alamos National Laboratory); site thermomechanical characteristics, suitability, environment, and repository design, and project overview (Sandia); project management (Nevada Operations Office, DOE). Under a contract with the Office of Nuclear Waste Isolation (ONWI), Westinghouse is responsible for waste package design for all geological media and sites, including Nevada tuff.

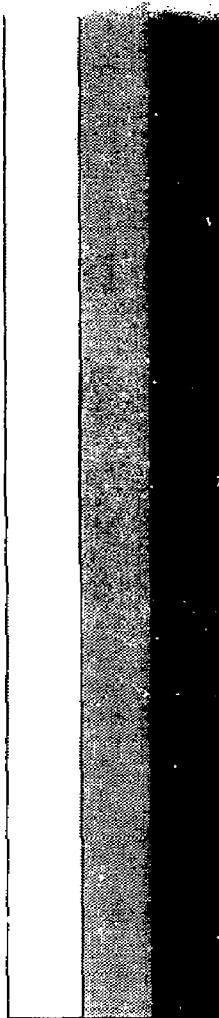
There are several unique characteristics of the tuff site. Tuff has good sorption properties for radionuclides, especially the porous zeolite-containing tuffs. NTS already has nuclear debris underground from many years of underground nuclear tests. It is a geographically isolated site owned by the Federal Government and has favorable groundwater hydrology, including a deep water table. Apparently suitable horizons for a waste repository exist above and below the water table, and either may be chosen deeply buried below the surface. Groundwater appears to be mildly oxidizing, and so materials must be chosen with this in mind.

*This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48.

The objective of the waste package program is to insure that a package is designed suitable for a repository in tuff that meets performance requirements of the NRC. In brief, the current (draft) regulation requires that the radionuclides be contained in the engineered system for 1000 years, and that, thereafter, no more than one part in 10^5 of the nuclides per year leave the boundary of the system.

As conceived, the waste package consists of a central canister containing either processed high level nuclear waste encapsulated in glass or ceramic, or spent nuclear fuel elements. In turn the canister is surrounded successively by a corrosion-resistant barrier ("overpack") and a "backfill" which couples to the host rock.

Our planned materials program includes corrosion studies of suitable overpack metals, adaptation or development of (compacted) backfill materials that will withstand a hydrothermal environment without degradation for long periods, and appropriate modeling to determine long-term performance. Materials testing will be done in a thermal environment of simulated tuff groundwater under normal and accelerated conditions, viz., at temperatures up to $250-300^{\circ}\text{C}$. The objective is to understand the mechanism of corrosion or degradation so that model predictions of long-term behavior are credible.


Other work to be done includes interaction tests among components of the waste package and radiation effects tests to determine component long-term compatibility in the anticipated environment.

Studies completed as of this writing are thermal modeling of waste packages in a tuff repository and analysis of sodium bentonite as a potential backfill material. Both studies will be presented. Thermal calculations coupled with analysis of the geochemical literature on bentonite indicate that extensive chemical and physical alteration of bentonite would result at the high power densities proposed (ca. 2 KW/package and an areal density of 25 W/m²), in part due to compacted bentonite's relatively low thermal conductivity when dehydrated ($\sim 0.6 \pm 0.2$ W/m⁰C). Because our groundwater contains K+, an upper hydrothermal temperature limit appears to be 120-150⁰C. At much lower power densities (less than 1 KW per package and an areal density of 12 W/m²), bentonite may be suitable.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government thereof, and shall not be used for advertising or product endorsement purposes.

Technical Information Department - Lawrence Livermore Laboratory
University of California - Livermore, California 94550

