UCID-18619

Volume II: Hardware 0S '\

DA
i
Ot e T o EL g\
B et : m\f\
Q3 s _5 X

1979 Annual Report
The S-1 Project

Prepared for
The Naval Systems Division, Office of Naval Research;

The Command and Control Division, Naval Electronics Systems Command; and
The Command, Control, Communication, and Intelligence Program Office,
Naval Material Command. Work in part performed under the auspices of

the U.S. Department of Energy under Contract No. W-7405-ENG-48.

This is an informal report intended primarily for internal or limited external distribution. The opinions and con-

clusions stated are those of the author and may or may not be those of the laboratory.

&

LAWRENCE LIVERMORE LABORATORY

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

This report was prepared as an account of work sponsored by the United States Government. Neither the
United States nor the United States Department of Energy, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any
legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus,
product or process disclosed, or represents that its use would not infringe privately owned rights,

Reference to a company or product name does not imply approval or recommendation of the product by
the University of California or the U.S. Department of Energy to the exclusion of others that may be
suitable.

Printed in the United States of America
Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161
4 Price: Printed Copy § :Microfiche $3.50

Domestic Domestic

Page Range Price Page Range Price
001-025 $ 5.00 326-250 $18.00
026-050 6.00 351-375 19.00
051-075 7.00 376-400 20.00
076-100 8.00 401-425 21.00
101-125 9.00 426-450 22.00
126-150 10.00 451-475 23.00
151-175 11.00 476-500 24.00
176-200 12.00 501-525 25.00
201-225 13.00 526-550 26.00
226-250 14.00 551-575 27.00
251-275 15.00 576-600 28.00
276-300 16.00 601-up '

301-325 17.00

1
Add 2.00 for each additional 25 page increment from 601 pages up.

o —— 2 s T —

! *j0as0y1 Aduabe Aue i€ 1UBWWIBADY SAIBIS Patiu AU, JO J50Y! 109931 10 18IS ARSI

10U 0P UIBJ3Y PassAAXD $104INE JO SLOWIMO PUB SMBJA By “J0dIayY AJUdlie AUE 0 1UBLLILIGAD) SIS

PANLN Byt AQ BulioAe) JO ‘UOHIEPUAULLUGIZS ‘IUBWBSIOPUD SII ARl IO BINIISUCO AJLIESSIDIU 10U

— - 530p "BSIMUBYIO 10 “IRINLIZYNUEW *NJAWIPEN ‘BUIEU SPRA AQ SDIAS JO ‘$S9D0 1INPOID (2]3IAWIL0

9j193ds Aue O u1a;oy DuIREY SIBL PaUMO, Aplealid BBuljUI 10U PO SN S 1BY) SIUFSIIdDL

Volume 11

’

Program Office

10 ‘pASOPSIP $59001d 4O 1aNposd “snipsedde ‘UONEWIO AUT JO 33U ASN IO ‘SSAURIRAWOD | o
! “Asminxoe oyl Joj Aupgisuodsas Jo Atljger (839) Aue $Blnsse 40 Cpaydu 10 SSAICXd CAluBsEM ‘ u.—r'._w
r t Aue sayew 'S32A0I0WD 1Y) 3O AuB JOU J0aiay1 4ugbe Aue JOU 1UFWULIAA0D RIS PALUN By} JAIEN -
{ "1UBILIBACD SAI81S PIUUN By} JO Adabe LT AG PRIOSUOLS XJOM O 1SNOXVE LB 28 Jsedasd Sem 400q SALL m
: fhe ———————————— yamvr0s10 4 =
, - ! =
. B U w
-
=
[t
=
=
[}
[
=
e
x
. i —_
<ud S
Q | : g
= c e
=t o g =
@ = s 5 2
. © =
e 8 Q5 =
W e € .., E & @
— E
Q= ES5EE
d 3 2 s E
R 585 ECS
ra e
20O =E
[___| W E . 8
a .2 T £ 2 9
. L¥E¥ Q3358
| = cSges
o . >
o0 S ETBTHETB
. wm c o n.aVu
a@m ® 808
Q T ¢ 4
258§ 9
m =
-~
Q
A £ 9
o
N b
vV 2
~c @O
= Z

LAWRENCE LIVERMORE LABORATORY

The Naval Systems Division

The S-1 Pr

The Command, Control,

Thanks to Christine Ghinazzi, Lois Jones, L. R. Mendonca,
Roland Portman, Joe Simpson, and Cindra Wheeler for help

ih various cutting, pasting, copying, proofing, and purchasmg
chores required to produce this book.

CONTENTS

Highlights of the Design of
the Mark IIA Uniprocessor
: . (SMI-2)
William R. Bryson, P. Michael Farmwald,
Thomas M. McWilliams, and Jeffrey B. Rubin

SCALD II User's Manual

(SCALD-2) .
Thomas M. McWilliams, Jeffrey-B. Rubin, K
L. Curtis- Widdoes, and Steven Correll .

Highlights of the Design of
- the Mark IIA Uniprocessor
(SMI-2) |

William R. Bryson, P. Michael Farmwald,
Thomas M. McWilliams, and Jeffrey B. Rubin

Table of Contents-

-1 Introduction

2 IBOX drawings

2.1
22
2.3
24
25
26
2.7
28
2.9
2.10
2.11
2.12
2.13
2.14
2.15

216

2.17
2.18
2.19

220

2.21

IBOX
IADRA
IMAP
MAP

ic . .
IXREG
DADRA
DMAP.
OPABX
ABWRS
DCRF
DC .
USREG
oPQ
PSEQ
ISEQC
Pl .
CONST
AWAR
PIPEC
VREG

3 ABOX drawings

8.1
32
33
34
3.5
86
8.7
38
8.9

'8.10
3.11
3.12
3.13
8.14
8.15

ABOX

ASEQ :

BR COND SEL

REPEAT CONTROL

4K RAM ARRAY

4K USTORE

1K USTORE

USTORE CONTROL

AMSEQ .
MPY RAM ARRAY
AASEQ
ADD RAM ARRAY
ABUS DFFINITION
OPERAND SWAP BUFFER
TRANSLATOR A (and B)

105
109

113

118
116
120
122
125
127
129
131
138
185
187
189
141
143
145

ii

3.16
3.17
3.18
8.19
3.20
321
3.22
328
324
3.25
8.26

TRANSLATOR

RESULT WRAP AROUND Q_UEUE
WRAP ADR GEN

WRAP MUX CTL

PARITY CHECKER

ROTATE,

EXP AND OP MUX .
TRANSLATOR TAG GENERATOR
MOBY MUX, MOBY MUX A (and B)
REGFIFO

MOBY MUX ADR GEN

Table of Contents

148
150
152
154
156
158
160
164
17
175
178

1 Introduction i

These drawings and the accomp’anyihg text provide a preliminafy look at a sampling of the
hardware in the S-1.Mark IIA uniprocessor; the 1980 annual report will provide a complete set,
corresponding to the system as built and debugged. The drawings, created with the D graphics
editor, are used as input to the SCALD computer-aided design system, and they use the notation
described in the SCALD [l User's Manual elsewhere in this annual report.

Extensive use of pipelined parallelism contributes greatly to the high performance of the Mark I1A
processor. Unlike most modern computers, which have used pipelining primarily in the execution of
instructions (that is, the streaming of vectors of operands through pipelined arithmetic or logical
operation functional units), the Mark' IIA pipelines the fetching of instructions and the preparation
of operands as well, and it applies pipelining to the processing of every instruction, whether scalar
or vector.

Some stages of the pipeline, particularly those dealing with operand address arithmetic and
instruction execution, necessarily have a wide variety of functions, since the pipeline must process a
wide range of instructions. This variability in operation is effected through the unusually extensive
use of microcode.

The processor consists of five microengines (extremely fast, relatively special-purpose programmable
controllers) operating in parallel to provide high performance (Figure 1-1). Four of the
microengines form the instruction pipeline, which consists of the instruction-fetch,
instruction-decode, operand-preparation, and arithmetic segments. (Some of the segments are
themsclves internally pipelined, a level of detail not shown in the figure) A single microengine
handles memory traffic in parallel with the operation of the instruction pipeline. A one-processor
system can be configured by connecting an S-1 Mark IIA uniprocessor directly to a memory
controller; this requires neither hardware nor microcode changes.

The designs of the S-1 Mark I and Mark IA uniprocessor pipelines constituted significant
advances in computer technology. The Mark I introduced a new, simple branch prediction strategy
to forecast the outcome of each test-and-branch operation in an instruction stream before its

2 ' 1 Introduction

execution, thereby allowing subsequent instructions to be prepared without disruption or time loss
when the forecasts are correct. The Mark I also refined the use of dual cache memories (one for
instructions, one for data) to increase total cache bandwidth. The Mark IIA allows advance
computation of simple operations in early pipeline stages; this technique minimizes idling of pipeline
stages when a computation (particularly, an operand-address computation) depends on some as-yet
unavailable result. The Mark IIA includes refined control mechanisms to coordinate the operation
of multiple pipeline stages controlled by the independent' programmable microengines.

The S-1 Mark IIA also employs vector operations to achieve high arithmetic'performance. Certain
vector operations encountered frequently in signal processing use multiple functional units in the
pipelined arithmetic module, achieving a peak computation rate on the S-1 Mark IIA Uniprocessor
of 400 million floating-point operations per second and using the maximum cache bandwidth,
which is unavailable in scalar mode. '

The drawings are logically divided into two groups: the /BOX, which perfarms instruction fetching,
instructivn decoding, and operand preparation; and the ABOX, which performs arithmetic
processing. ' '

To/from
Diagnostics internal To/from memory
maintenance » diagnostic or crossbar
processor logic .
Memory-inter face
unit IR
{M-sequencer) € - processor
Writable control - 1
store : ‘ I
Four copies of :
user registers
: 1/0 data
Instruction > Data cache - store 8..7
cache ,
; : Pipelined -
Instruction-fetch Instruction Operand arithmetic
unit — decode > pre?aration unitlb— unit
(F-Sequencer) RAM (I1-Sequencer) {A-Sequencer)
— - (P-Sequencer)
Writable control . - Uritable
store Writable control control
store . store
Figure 1-1

Internal structure of the S-1 Mark IIA processor

9 IBOX drawings

2.1 IBOX
Drawings: ITOP1, ITOP2, IBOXC

These drawings show the top level organization of the Mark IIA uniprocessor. They indicate the
interconnections among the major submodules such as the instruction and data caches and maps,
index register files, instruction and data address calculation units, and the operand data paths.
They also show the major control units in the IBOX: the microcoded sequencers, pipeline control
units, and the write queue control. Finally, they present the symbolic field definitions that are used
throughout the remainder of the IBOX. These are in the form of text macro definitions, making it
relatively easy to modify or add new fields.

o
oM PETH FETOH
DECo0S
en "
Ic
DSWRUCTIEN
ACTRESS DYSTRUCTZON INSTRUCTION INSTRUCTTON
FRITHETIC = R - T WU o€ anE
. 1 .. 0
B o aplmesar o m o o1 « LeaPr m
®
L
wib 15
.
; WA D (558
oA AODRESS para P
INDEX @EGISTER ARITHETIC pam e o
FaE 1.2 3. T PSS " o
w
T POEX REGISD M pgpex G wo RO L M WD o P[0 IGeSb Mo REG 4 DATA
x
RECUDAMY WENDD|—REBOD I«aD M | oo MmEDD|—REBD TS | o5p

REG W DATA 110¢ EVEN: 00D, SUE»

180X CONTROL

e

IBOX TOR

LEVEL

.

P XO4I ¢

sSuimel

OPCODE = &:11

G0 = 9:11
00.%X = ©
0D.MODE= 115
aD.ME.0.3 ~ 1:4
00.MOE. 4 ~ 5
00.F = 6:11
00.F.0 « 6
OD.F.1.E » 7111
01 = 12323
002 - 24: 55

0D1.X - 12

001.F. 1.5 = 19:23

. oo2.% . 24
002.MO0E = 265129
B

;
:

RER

9 T
- n
Eaogy CFEET
gA2LE moonn,
PR P
il Puwey
"t &

2
8
s
%

COMENT

GEHERAL FIELD DEFTNLTIONS

DEF [HE
QP » 0:9
HP - 819
P - Q:3¢
DP - 0:79

- 3:8
o= 8:17
M= @:3E
o« 9:71

EMAATION MODE FIELDS

- IBOX

REGISTER.FILE = &:3
FRIORITY « 416
EMULATION = 7:8

RING. ALARH = 9: 10

VIRTUAL . MACHINE . 1HODE = 11

FLOW. TARLE = 12:13
FLOM.ENGELE = 14
FLOW. TREP ENFELE = 16

COMENT

TINING UERTF[ER VALLES

DEFINE

COR « 9
CORRA = 4

CASED = 0
CAsEa. - o L
CASELl = 1
CASEIL. - 1 L

TOP LEVEL

corrent

ACLESS MOCE'S AND RING BRAODKETS

DEF ThE

HRITE, PERIIT - @
EXECUTE . FERMIT = |
READ.PERMIT = 2

10.PRGE = 3

835
LI
*rve
e

COMMENT

SPECTFIES WHETHER TO EXPAND FOR
TINING VERIFTER OR LRYOUT PROGRSM

DEF ThE

TIMER = 1

. XO4dI 1¢

PIFELIME

P-SEREWER

- SEQUENGER

1-FAENER
ISEQ

QELE
% P
PT DONTROL 5I1GNAS
HRITE F’D:;LI['E
QELE 3
[]
INSTRICTOIN
PIFELTNE
)i
DFEDIRTE
CONSTANT
CON

%

:

IBOX CONTROL

sB3uimelp XO4dI 3

22 IADRA S .
22 IADRA

Drawing: IADRA 1

The instruction address arithmetic (IADRA) presents the logic that cofnputes the (word) address for
the next instruction fetch. VA IN<5:33> is the primary output of this unit; it is the address of the
next word to fetch from the instruction cache. VA IN is often referred to as the PC (program
counter). The IADRA is controlled primarily by the F-Sequencer, which executes one
microinstruction for each word fetched from the instruction cache. The IADRA is capable of
computing the new PC in several ways. The simplest way is to fetch the sequentially next location
(PC+1). Next, all skip instructions that are predicted to skip are computed by taking the current PC
and adding the appropriate skip offset. Finally, jump instructions fall into several classes. Some of
these are calculated by the IADRA: and some are computed by the I-Sequencer and “force-fed” to
the JADRA. The IADRA can calculate PR-type jumps, extended PC-relative jumps, and jumps to
absolute addresses. ‘ '

One final source for the new PC is the PC queue plus some offset. The PC queue maintains a
history of the last 256 PCs. Every time the PC of a new instruction is calculated, it is added to the
end of the PC queue. Whenever the ABOX finishes the execution of an instruction, it signals the
IADRA to remove from the PC queue the entry corresponding to that instruction. Thus the PC
‘queue contains the address of the first word of each instruction that has been started down the
pipeline but has not completed. When the ABOX detects ‘certain exception conditions, it is
necessary to reset.the PC to one of the old values in the queue, or, in the case of a branch that was
predicted incorrectly, to set the PC to the correct value. '

The PC queue is also used (in the absence of exception conditions) to read out the “current” value
of the PC for later stages of the pipeline. ‘

_SSELETT AN LD P FOR WRING BRENOH ¢ACTURL FO

_ ;FCT WA INFOR PG, BCe1, OR °C.CFFSET (ACTURL FC 4 WORDS:
. PC QUELE R &: > M oBnE . PC QUEVECQ: 2>
PC QUELE WX 0:» 41 has) :T0 INDEX REGIZTER FILE
. E
BC QUELE WE £ At T .
290
UIS REG
I 1oty Yp—-
WAONG BR 19 .986-12 Wi
ORNFe .PO-3t X OF
PV
/| -4 Q1 12 A
QFFSEY 13 BF 29 oK Ft _.PO-2 | 82
,/l L—e RN NEXT F CYQLE .$5-10 L
3
WB0 BR OFFYET(@1 1> M 3 & 2
EXT LORDG1 I M W INGIAD P
W0 1563 #
.
189 B SELe M
OOMTENT PERIETER
A WD I5S-
PETOH SC+1 F5 L § t::uu a8 Ce
N 8
A TNE I
.
8 ABC
FETOH EXT UORD F5 ABsC 108K '
ac

OoN F .75-7 L &2

181100

VA IN GETS LORDED FROM
PC AC.1, PCOFFSTY, OR IC
EVERY CYQE

OO0
K

INSTRUCTION ADDRESS ARITHMETIC

COMPENT
Al PCH SEQUENTIAL EBXECUTION
A8 PC+SHORT OFFSET SKIP AND PR BRANOM
A48 PC.LONG OFFSET EXTENDED BRINCH
8 LONG RBORE S EXTENDED BRANCH
L] PC xCT
A8 QLD PCB FFSET HRONG BRANCH

COMPENT

PC QEES: 200 RERDS THE
QISENTLY AUAILABLE TO THE
FOR INDEXING

[
80X

P XO4HI ¢

sSuimel

2.3 IMAP . 9

2.3 IMAP
Drawings: IMAPI, MU

The instruction map unit consists of a 4-way set-associative cache of 1024 mapping entries. This
cache has an address and a data part in series. The low 16 incoming virtual address bits address
both the address and. data parts in parallel (after passing through a simple hashing function)
thereby selecting four candidate mapping entries. The address part decides which of the four, if
any, contains the mapping information for the given virtual address. The correct entry is then
selected and used to create the physical (word) address (PA<2:33>). The address part also indicates
when there are no locations in the cache matching the virtual address (map cache miss). The
selected entry contains additional information about the physical page being addressed, namely: the
access modes, segment size of the containing segment, and the ring brackets, which indicate how
much privilege any accessor must have. ‘

The address part of the cache, in addition to comparing the input virtual address to the stored ones,
compares the current address space ID against the stored ones. The address space ID is an 11 bit
number associated with each ring.

The instruction map is accessed once per cycle during the F1 pipeline cycle. If there is an
instruction map cache miss, then the address being translated is not allowed to prbceed down the
_pipe. Instead the M-Sequencer is requested to go to memory {or cache) to compute the mapping
" information and to load it iritp the map cache. Once the correct information is loaded the cycle is
allowed to repeat and is guaranteed not to miss on this second try.

10

2 IBOX drawings

~ : M 21D P
INSTRUCTION o
A IS 3D P P UNIT AGLESS MODER TN F1c@: D A
w A —
: w
- SEGHENT SIZE IN Fi<@: 0 M
AL LEVEL TN Fexesi» RING R RING BRK IN F1¢@:5 M
w F2 VA IN F2 .$2.805:3
158
VIS REG
ACCESS MODES M Fle@i> A H P H ACCESS MODES IN F2 .S2-&¢&3 M
SEGHENT SIZE INFi<Q: 6 M Al I eim T n SEGIENT SIZE TN F2 .52-8¢0: 4 _M
RING B IN Fi¢@i> A (W] w1 = RING BR(IN F2 .52-8¢0:% _M
O CKE
PN

CK F2 .PR-2 L 82

I

RUN NEXT ¢ CYQLE .55-18 L

VR ING: I

PA INC213D

INSTRUCTION MAP

W D 1525: 5

H
0G] - N
Ve .
U poprey wee V[T
. P2
Ot IS .Pa-6 L 82 3 .
101050
63

1t 3 ADR SPACE TD IN 15 .S2-8 L q

W FIeG e A

128

1 STRIPPERCHECKER

PARITY T

P3 R

PAR ERR QDR SP 10 IN L

dVHI €¢

HIT AR L‘O:‘J" m(1.0:2.9)

o«
P CAOE
FOR MODULE
] m W1t
FORE OF AR P ERRK—

PAR ERR 1P QDR IN L<Q: 3

/12

ID AR F1¢8: > M

M-SEQ HP W DATAO: I»

UR FI¢5:3

ID ADR F2X@: D : VA Fx5:3D #

PORIIETER
RING<@s 1>
w5 3
D
BRK¢0:5
PR 2 T
9Tz 0 »
W FacB 3D
1B
VIS 9E OLT
ARG T 2 ! o ™
(=] nl 1
W EiXh P] sl
H-SEQ ADReZ1 I e .
M-SEQ RESTORE
— NS TURE
tSELT

K F) P21 82

RN NEXT F CYQLE .S5-18 L

M-SEQ AP CKE L

ID AOR DY F1¢0: D M 2 UR LY F1¢5:3 M

VA Flaiz:a4y M

VA F1e16:9:-1> M

NOTE 81T REVERIA. ON THIS TNRUT

H-SEO MEP TN WE L<@1 D

\\ =
ﬂ .mc:‘ev
/L

4

< o0
NCASERL, _CK FI .P6-72.5 L 8HZ [
—c v
PROC_STATUS: UNMAPPED, HODEY PR]
10197

2 : VA DLY Fl<5:24 M

v

INSTRUCTION MAP UNIT

UR LY F1¢35:33 M PR 25,19 A+
Bs P COCHE
pama MK » #
Ly] T SI1ZE<Q: 4> #
BRK<0:5Y A
1
A HE

I

12 2 IBOX drawings

24 MAP
Drawings: MADR, MDATA, MAPCMP

These drawings indicate the construction of the map cache address and data modules. The address
module consists of four 256 entry RAMs, which store the high order virtual address bits and the
address space ID for the virtual address whose mapping information is stored in that location of the
map cache. The addressed location is read out and compared against the current virtual address
and address space ID to produce the unary “hit lines”. These hit lines indicate which of the four
elements matched against the virtual address, if any.

The comparator used for this matching is specially constructed to have a “force compare” and a
“force no compare” input. These are used to implement “unmapped mode” and to enable the data
part’s chip select lines for the purposc of writing.

The data part of the map cache consists of four modules of 256 entries by 38 bits. The modules are
all in parallel and only one is selected at a time for reading or writing.

ety A2 1 IS P : P A

R ™ A

R ORe@: 2P M

248
PARTTY

WEO A

PORIIETER

et
TP BN L
FORCE OF
ID: 1

P
R ReQ:
HEO: D

AR PER LD N
HIT Led: D> N

. REM AOReB: 22 M

mp AOR P ERR L4 A

A1 A 1 IS A

]

238

L2 c
CrPoE
19113

Py <

HIT L A

FORCE P A

OP ENL A

X STEP = |

MAP CACHE ADR MODULE

81

dVHA %%

BB > F

MAP CACHE DATA MODULE

68
2564 RICE
DRI h
g o T o
WIRE Q:I» #,
-]
] W B3)
: <
o # :
a3 L A '
[238
2566 FYFL
#BNGIH
1 t Ny T
A W BS s Leg: >
1o
R A
EaD
WED P
T3> A
8 L A
38
564 RUFE
gy
: A
"
A _WE BS
Y-
B LD P
388
258H RIFE
xo3h o S A
I "
L -]
£
B e A l
WD P

14!

sSuimesp XOHI 2

24 MAP

U A

S e A

MEatt> M

ity A

I V» A,

B2, A

arigi2 o

8 18:2> P

(AN

2L Mo
QaLmle
CaL Mo
L mMle

Qe
B 0: 2>

CE L

(Y]

X STEP - STZX

MAP CMPOE

SIZE

10113
23

to1098
6 .
4 o

16 .) 2 IBOX drawings

2.5 IC
Drawings: IC1, ICM ICAM .

The instruction cache consists of a 16K word data part which is organized as a four-way set
associative cache with 16 word lines. The address part of the instruction cache, therefore, consists of
four RAMs of 256 entries each. Each RAM holds the address information for an element. Each
entry in the address part contains the high order physical address bits corresponding to the line
stored in the same element of the data part at the same address. The address part also stores an
INVALID bit, indicating that there is not a valid line in the corresponding place in the data part.

~ The instruction cache is addressed during the F2 and F3 pipeline stages. - During the F2 stage the
address part is supplied by the physical address that came from the instruction map. The low 4
address bits of the physical word address are used to indicate which word within the 16 word line is
being addressed, and so are not used to supply the address part. The next higher order 8 bits locate
in the address part the four candidate entries. Each candidate RAM output is compared against the
remaining high order physical address bits and the INVALID bit is. checked. The output of the
address part is a set of unary “hit lines” indicating which element, if any, matched the incoming
physical address. C '

The hit lines are clocked into pipeline registers at the beginning of the F3 stage and are used to
select the correct element of the data part. In this case, however, the low four address bits directly
address the RAMs to select the one word out of the 16 word line.

The instruction cache is referenced once per cycle, giving an effective instruction cache bandwidth
of 20 million instruction words per second.

When none of the hit lines are set, an instruction cache miss occurs. This causes the M—Sequencer
to fetch the requested word from main memory or secondary cache and load it into the instruction
cache. The pipeline is held up at the beginning of the F3 stage until the cache is loaded with the
correct memory data. The pipeline is then allowed to proceed with the data part reference.

X F2 .Pe-2 L &2

8-
VIS SWE REG
»,2,‘5, " PO IN FX2: 35 -
Tow » N Fx2T
"t
RESTORE
HogLL

RN NEXT F CTOLE .95-10 L

N-SEQ IC OF L

PA_IN Fa¢ a2 I3

K OE HOE . .
j
TT . N-9E0 IC 4 DRTR P

P
PA 23 35>

<o

N-SE0 IC WE L¢O:D

P/ IN Fae2:21>

PA_IN F2¢ 221 2%

A IN SR 21 21>

To DO

H-SEQ FORCE HIT

M-SEQ IC WE L¢O1D <
A ee
K F2 .P5.6-7.1 L &H2 e

FORCE CHP

«8
INSTRUCTION vis R
CADE MIOWLE o

. x rlIC aaen M [0.0:0.5] I iorer T

wi
" x oE

X #

K F4 .Pe-2 L 82

RN NEXT ¥ CTCLE .$5-10 L

HIT &R <1 > M

PER 637 IC ADR L¢3 D

X
AOR HODLE
1A HIT O
for P ERRIO—
W

- INSTRUCTION CACHE

JI §¢

L1

OKF) .PAL2-6.6L EHZ v+

E ey #

NN
HIRE

28
< RIFE
LD A L 10479 .
. we
fa [£]
T 3
E R M
CS RAMLe M
B
N\ i ROIFE
o Py W Y e > M 10479 .
19105R 8 " T
G !
A _E C1
N A -
-8
UIS RE3: CS B Leid M
OE
T o4 T
R N
X oOE B
8 40 RIFE
X 10479
L
T e T
) A W ¢S
E R M T
-
WS REG CIRM LD M
OE
T o oM LD M
R2
o
g CE ® B
RYFE
i 10479
. L T " r
| R_E C3
ME R¥XD M [T

138
VI8 REG

€S WM LeP M

oxE
1 10141 T

w1

6
K oE
N

INSTRUCTION CACHE MODJLE

o

TR »

OV

A 22 3B
CS L
L2 o]
HE L >

TR

81

sBuimeap X091 2

.

INRID P 3 &c2i2> A 1 & »

2212 AP .

WD A

oI §3

228 o R0 A
A ADRC0: 21> A% PRITY T -
H 1 STRIFFER.CHEOER O P ER e
) RO~)
T Lo

ARIETER

22
[
FORCE OF
NALIO
HECOr >

AR P ER L1
HIT LD

. INSTRUCTION

Q1 22 A

FORE O A

CEFINE

X STEP = 1

CACHE ADR MODULE

61

20 . 2 IBOX drawings

2.6 IXREG
Drawings:IXREG], IXREG2, PIRF, IXRAM, IXRVPR, IRYVP

These pages contain copies of the user register files used for indexing in data address calculations.
Some important address calculations require adding two different index registers; hence, there are
two copies of the index register file available to be read out in parallel. One of these outputs is
optionally shifted left by two bits to provide a word rather than byte offset. The two outputs are
added in a fast 36 bit adder and the result is sent to the data address arithmetic.

There are two copies of the control logic that select the address for the index registers so that two
different addresses may be generated. The addresses may be selected from the OD field, the
extended word, the PDP-10 AC or XR fields, or from microrade .

Within each copy of the index register file it is possible to select one of five outputs. The first two
outputs are just the index register file and the index register file shifted left by two places. The
third output is the current PC. This output is selected whenever the microcode indicates that an
index register read operation should select the PC instead of register 3 and register 3 is selected by
the index register address multiplexor. The fourth possible output comes from a separate register
file which stores “predicted values”. Unlike the index register files which have 16 sets, the value
predict file has exactly one set. This file contains predicted values for the corresponding index
registers in the current register file. As not all index registers have a predicted value, there is
another parallel RAM, called the “valid value predict” RAM, which stores one bit for each register
indicating that the value predicted version has the correct value. When an index register is read
out, the value is taken from the value predict RAM if the valid value predict bit is set for that
register. The fifth output is just a shifted version of the value predict output.

The index register file is implemented as an even/odd pair of RAMs, each of which is 256 by four
quarter words long. Therefore, a total of 8 quarter words may be written into the index register file
in one write cycle. This means that an entire double word result may be written to the index.
register file. There are 8 write enable lines corresponding to these quarter words. During a read
cycle, all four quarter words from one or the other of the RAMs will be read out. It is possible both
to read and to write the index register file every cycle. Reading happens during the first half of the
cycle and writing during the second half.

The value predict RAM is implemented as a single file of 32 singlewords. The timing of read
operations and write operations is the same as for the index register file.

The valid value predict RAM is similar to the value predict RAM except that it must read out
faster in order to select between the index register file and the value predict file. It is implemented
with ECL 100K RAMs which also ease the addressing requirements (they have separate read and
write addresses, as well as output latches).

ICEVEM-OOD, P> A

st can R

1 PRED

1 &G

ERODS PC I3 .Q2-Bxp M

I vALID PRED

DNOEX_EG MR 1226 4:8

RERDING RC
PREDICTED INDEX

INDEX REG R} 13 .54-1¢0, 180

REGISTER FLLE

SAVED RA

BER REG WA 119 . 92-6¢EVEN: 000, 4:

WA PRED

IS ¥R SEL 13 .S2-@¢ &

121w

READING PC 13 .S2-Br 1> A

A REG

m#‘

POR ERR TNEX REG<0:1,0: D

1 REG 2

1 vAaLID PRED

INDEX. REG RR 12¢), 10>

PREDICTED INDEX

DOEX REG RA 13 .94-19¢), 418

REGISTER FILE

I8 %R SEL 13 .92-EK 1

e

SAVED R

HA PRED

———e—eeee! WA REG

I8 XR SEL 13 928 -

19

ZERO x4 HE REG

g+

oKX 14 .PR-2 L 82

REG BE I1Q .82-6 L<O13 EVEMOOD

BT

INDEX REGISTER

FILE

RN WEXT 14 CTOLE .95-10 L

T<EVEN: 000D, S

PTR(SID A
TR N

TeSd »

OTUXI 93

13

G ar REG ADR I2¢Q: 4

DRX 12 .54- 1o EXT. REG>

1t IR 12 .S4- 1OCTEN. R

1 ¢ IR T2 .34-1X TEN.ACY

13 IR I2 .$4-19¢< TEN, V.REG»

I8_DNDEX REG ADR CONST 12 54-8.5¢@1 4

: DAA COND 15 . S4- 1O TEN. X0

I8 INOEX REG RDR SEL 12 .91B8-85¢0 6:&

SEOING FC L@

t DAA COND 15 . 34- 1 TEN.ACY

1 i DAA COND T6 .S4-10¢ TEN.1.REG:

\ RAG CD I3 R3 12 "'\\
) IRX R3 12 .84-16 .
2 e 2
= o 8
3 et | noex e m o um 3 10164
el o woT
4 4
5 [-
&] &
1
7?4 € 7 g
0
18 READ RI AS FC 12 .95-9 L@
L] -—0
1 1
2 [F3
B ° 18
3 1018 3 10164
o 7 INOEX REG @0 121,410 i
» .) "
5] "
6 ! 2 6
1
g & - 7 g €
3
18 REFD R3 AS AC 12 .85-9 L »
) =] " DEEX_FEG RR T3 .82-8¢2: 1, 418
DEX REG AR 124011, 419 H uts LY ad

A e e

REG OE v
10141
1
TP

REVDING PC_12¢9: 1 ;, W1

l————‘ L REFDING 13 .32-cnd> M

bR
R

——l_—'LN INDEX REG RA TF .84-10¢@:1, 4180
L FERDING PC T3 .S4-19¢0: 1> M

X 13 .Pa-2 L 82 |

RN NIXT [3 CYOLE .S5-18 L

INDEX REGISTER FILE

FEROING RC I2¢ 1y

P XOHI 3

s3uimes

PCQRE T3 ,S2-8¢ S

RERDING PC A
ZE0 x4 &
X FEGAEVEN: 200, S8 A 1
W REG L(9:3, EEN: 004 e I 3 TROEX REGTSTER
e FLE R
15) FEGEUDMO0D, 417 - WD A " ey
A== - 10132
Aap A . N
-)
UKD RE 412 D D s M|, -
//1
IR e P .
EPED: A di THOEX REGTSTER .
URLLE PREDICT RN
A PR G A " .
m 1AFRI
SRED R
1 WLTD!PRED 4 '
[INDEX REGISTER
— = UALTD WRLLE PREDICT USE_PRED 3R M
I
.
L3 R2
ZR0 £

PREDICTED INDEX REGISTER FILE

‘ORIl mear 82 o110y
Gl
”

[pag-8

S PERITY
STRIPFERCHEGKER

PR

PRRIETER

1 PEDSP
1 REG:EVEN:1 000, SH
1 VALID PRED
RAe 4: 8>
READING PC
SAVED RAf 4:8p
WA PRED: 418
WA REGCEVEN:1 00D, 41 7
HE PRED L
HE REG L¢Q:3, EVEN: COD>
ZERO

ZERO X4

eBe:d>d N
Tesd A

TQd> P

m{ ey &

OTAXI 93 .

§4

B A o4

ME L¢G13 E\EW 4

=ity

SRED RYB P v4

X 13 .FR.4-2.4 828 ;FEORD

O 110 .F4.4-6.4 JHRITE
[
o I ~——
BB 4 B -
18174 _|

BAED R 4: > A

WRO00 41> A

X.13 .Pi-5

-«
10174
n3

X I3 .PO.4-2.4 8224 RED
X 119 .P4.4-6.4 SHRLTE l

VIS REG

2

FROC_STATUSKREGISTER. FILE>

1014;
w3 1()——o<

RN 9P £

85 Lee:3 BB M(1.0:2.8)

> 1ie .Ps-7.5 62

93 L3 000> M [1.0:2.9]

VIS REG
10141

PR

“elesn

S
N
N RO 0: 7 A [1.6:2.0]

L

INDEX REGISTER FILE RAM

24

TeaPr A

Bsawﬁ

PORPETER

T¢EVEN: QDD, S
RAc4:8»
SAKED R 418
HACEVENI ODD, 4t 7>
HE 1913, EVEN: 000°

TSP -

s3uimesp XOHI 3

OTAXI 9

8
16 RIFE
e | teren
¥ R0
a_E s
O & T
,
W »
SED v A - =
NIRE Yok £
=
w
8
160 R¥FE
101450
Rl T
A_wE_cs
O 13 .P0.4-2.4 $2B4 5EAD : ' B ' ?
R —— - - 10103 :
X 110 .P4.4-6.4 JHRITE Gl
ReaP P p - PARFETER
war # Mo Teap
r R 416>
SVED R H P SAKD Rx 4:8
oy
L K118 .P6.3-7.3 L a2 E L
RN NOT 13 CYQE 9519 » e Tess
- . L d

X 13 .P1-5

€K 13 .FO.4-2.4 8224 SREVD

CK 110 .P4.4-6.4 IHRITE

INDEX }?EGISTER UALUE PREDICT RAM

g

26

Ry 480
WA 4B
WE L

TN

|- :]
VIS REG

o€
1 10145 ¥
R

B4 ~

K 12 .P2.2-9.7 L 8D

RN NEXT 13 CYCLE .§5-19 L

ey P

o I3 .P3.2-5,2 . 8Z

X 119 .P6.1-7.3 L 829 -
’ —M 1e1mn
EL A — @
I
PLUSH PIFE .C

2 IBOX drawings

T #P

INDEX REGISTER VALID UALUE PREDICT

97 DADRA 27

2.7 DADRA
Drawings: DADRA 1, DADRA2, DADRAS, DADRA4, DANDRAS, DADRA6G, DADRA7

The data address arithmetic (DADRA) is the main computing engine of the IBOX. The computing
elements are a 36 bit adder, ALU, and shifter. These elements operate on two operands, LEG A
and LEG B which, in turn, are selected from a wide variety of signals. The two main outputs of
the DADRA are the VA D and VA END D lines. VA D<SW> is a 36 bit quantity which may be
a constant operand or the virtual address of an operand. VA END D<SW> is the virtual address
of the end of the operand. '

The ALU and shifter are microcode controlled as are the LEG A and LEG B multiplexors. The 36
bit DAA END ADDER adds LEG A, LEG B and OP LENGTH-1 to produce VAA END D.
Both the adder and ALU have special connections to inhibit the carry out of bit 16 into bit 15
under microcode control. This is used for PDP-10 emulation. The LEG A value is generated by a
shifter that can shift its input left by 0, 1, 2, or 3 places. This is used for those addressing modes
that require an address to be shifted prior to being added in to the final address. The B LEG
multiplexor selects either its input or its input shifted left by two as required for the addressing
mode being evaluated. Both the A and B LEG multiplexors have the capability of zeroing out the
top 16 and/or the low 20 bits. This is also used for PDP-10 emulation. '

The T REGISTER FILE is a 256 word two port register file which is read and written every cycle.
It is written, under microcode control, from VA D of the previous cycle. Two independent addresses
are read from the file every cycle. One word is sent to each of the A and B LEG multiplexors.
Special logic is provided to detect the case that one cycle is trying to read a T register which was
scheduled to be written during the previous cycle. In this case, the write operation will not have
happened by the time the data is required to be read. Instead, the previous cycle’s write data is
~ selected by the A or B LEG multiplexor instead of the stale T register output. '

There are a pair of registers called HOLDING REG A and B which, under microcode control, can
be loaded with the last value read out of the data cache. These registers can then be selected to
LEG A and B, respectively. These are used in calculating addressing. modes with indirect references
or references to pseudo-registers. : :

The data address arithmetic is performed during the I4 pipeline stage.

—— 2] "

\ I8 USE RING TG I4_.$<-19 . » \ N\

=019 1
TG A I8 . 82-pre M o 11 VA LEVEL O I«e: o)
9v3

T 4 DATR 15 82803 A1 . L .
DOEX REG IS A

2
09A CONST T4 .82-8¢Sb A 3 I:L .

T LEG A PRESHEC QD Af LEG Qe Sid M

HOLDING SEG A 18 .52-B5d M «
DAA LOOP COUNT 14 S2-6¢Gb M . Alé

6

7 4

e DO
. ATER :
DRA LEG A 14 ,$2-8¢0m> M . 3 F w0 BND O b
DA LEG A SHIFT T4 .52-68¢0:1> A ®©
- DR LEG A 2ERD 14 .82-8 Lrén1> A
O LEWGTH-1<Gib_ A1

TG0 14 .92-6SD M

T W OATR 15 .92-8 S A

um xS A

DR LEG B FIRST LEVEL 14 .32-8¢9 At

DAA LOOP COUNT 14 .S2-B@d M

HOLDING REG B 18 .S2-8xSib A%

:74

o
DR LEG B E4 .82-6¢4:51 A SONDITIONS

ORA F 14 .B3- N0 1. 260 M - o

- cAPE 2 1204

DOA LEG B 14 .S2-8¢& M

DN CI 14 . S3-91L A

DRA LEG B CE 14 .52-8 L¢@31,8:1> M

S s e L

DR T 016 T4 .33-9 M

. . . N, N
oA 14 P57 L 82 § 10118y)0 | .
R

, S T REG A T4 .92-0c%0 M % or
RBITR 1 ol T REG B 14 .92-880 M o Ren | sarven m
W xan # . p f———TEE0 D 19 20000 A » el
. Y v DATA 15 .32-Br &b M ™ NRPETER
; ; INDEX PTRe S
= wee [T REG WP I3 Le@il> M 3 & € . Doex PTRcSn
DAA_SHIFT ONT T4 ,$3-%3:60 M J REG W DATAX EVEN: 000, S
. . A D .
i DA SIGN EXTEND_I4 .§3-9 M Qoo
IS DOR SHIFT SEL_T4 .83-5 ¢ -

: DATA ADDRESS ARITHMETIC

s3utmesp XOHI 2

“r

DILIWHLIIMY S$S3ANAAY Ylivd

.

IRX_THEXT.SD>

A
126 BF 3% }

SIGED IRX DISFAL 1M S M

N 00 MOCE I & M

IR 13001, HOoE. & :
°
18
10158
[*% T
IR 13002, MOOL. |
IR T2001.F5 .‘_\l\
°
1e158
mo
IR 13002,

I-SEQ DCES QD2 13 .83-9

I8 DAA F 1] .SA- 1

* IS OORF 13 .34- 118>

48
10101
G3

K -
L) DAA SHIFT ONT IXa:6> M

‘SZ
6 BF 35 SIGNED 0D F T¥ 3w M I.S 0o F T3 .S4-1Bié

1% USE RING IeG 13 .84-10

I$DAAF I3 .34-(X2:5 L]
l 10191
I8 DAR SHIFY SEL 13 .84-10 » G1 O F Ix 21688 M

18 DA LEG A ZERO Y3 .S4-t1x &P

I8 DR LEG '3 2ERD I .$4- 1 &

DRA DA €016 13 M

SIGNED OD F IX S .1

SIGED IRX DISPL I3 @b M

IR 13 .84-1@:8b

IRX T 8w

I8 DA CONST 13 . S3- o

OW29 ; 0D 4DE 1X® M ¢ SIGNED 0D F TWIW: 3> M

I$ DAA LEC B 13 .S3-a:

DRA LEG B FIRBY LEVEL 14 .92-B/SW M

18 DAA LEG A SHIFT SEL 13 .$3-% 3@

IRX [XEXF. TAG.3. &

IRX IMEXT.TRG. 4 : @

PLIRPREC I3 .53-%0:1>

PL 1T W PREC I3 .83-%¢@: 1>

101040

| =/

t

2 ' 38
268 V19 REG

3 190164 oE
3 [STITIIN

4 URY

5 &K OE

L
: _—___——j
7, @ X 14 .PO-2 L 82

RUN NEXT 14 CYCLE .S5-10 L

DRA LEG A SHIFT TXe:1* M

13 PR LG A SHIFY SEL 13 .83-H8:2

viava L¢

64

18 DAR LEG At 13 .93-%O11>

18 O°Q LEG £ 13 .83

s DA LED A 13 .R3.9 L

J 10105A
o

OfA LEG A TXe: M

T
I8 DA LEG R 13 .33-9 LD
I8 O9A LEG A 13 .33-9 L

e

j 1o
G109

REG WP (3 L@ M [1.0:8.0]

I8 090 LEG A 13 .93 &

- I8 AR LEG-A I3 .63-9 L

)

WAL ID USING HOLDTNG IXke» A

- I8 DAA LEG A 13 .S3-9 L

vaLiD 13 .83-9 L

- I8 DOR LEG B ZERO 3 .83-9 LC@: 1>

I8 D% LEG B K3 .53~ D

ISDRALEG B -3 .83-« &

DAR LEG B 0E I3 1e@:1, 1> M

DR LEG 8 OE I3 t<@:), & M

I8 OFR LEG 8 13 .93-95>

-IB DM LEG S 13 .9X9 LD
- IS DAA LEGE 13 .53:9 L&
-~ 18 DAR LEG E 13 .53-9 LB

“REG WP 13 <)Y A[1.0:3.0]

IS DARLEG B TI .93-%&

101950
[

10

DAA LEG B TX 4160 M

Is O9A LEG B 13 .83-9<3

= I8 DOA LEG B I3 .83-B 1L<&

VALIO USING HOLDING I3 1> M

101090

- IS DM LEG B I3 .63-B LS

Gt

XAL10 13 .S3-51L

DATA ADDRESS ARITHMETIC

0%

P XO4I &

sSuimes

DRA SHIFT ONT 14 .$3-%8:6»
SIGN EXTEND T4 .$3-9

4 53-%0:1,2:5

DR SHIFT O IXe:e M e
18 O STON EXTOD 13 .54-10
DRE Ixe:, 25 M 1 e
0% OH o168 13 A we
T8 A F 13 56100
o® o
L
O £4 P13 &2 ?
. 158
I8 99 LENGBY-| 13 S350 uts REG
SCASR LENGM. T 130: 1> M oo e
UECIOR LENGTH- | 1%0; D 1 fei4n
- D LEG B OE 1381 8.l M wS
' oo
L5

I3 DA CONST 13 .33-N R

T
0AA TMNH COI6 T4 .S3-9

3133

oA CT 14 .53-9

DAY LENGTH-1 14 .52-8/0:4 M

SCALAR LENGTH-1 14 .S2-8¢@: 1>

s
gw
8

u
§§
:

E _‘—‘——<' >

VECTOR LENGTH-1 T4 .S2-8

- 0AR LEG B OE 14 .62-8¢0:1

DAA CONIT 14 .92-8¢ &b M

¥l g

g ——b%

DOE LEG A SMIFT LX @i M]
18 DA LEG A ZR0 13 .54 10r@i D o
DO LEG A Txeid M I e
. D LEC B 12 416 3 w3
VACTD USTRG HOLOTNG T3¢@i > M 4

X 14 .PO-2 L 82

RN NEXT 14 CYOLE .S5-10@ L

—CpR
— S

.

At

4
z[efviz|=
slalalaly

L3

vidava

103

CROE 111 1L WP

X PTRE 1 ® A
LEG A PRESHF« 1> M

LEG Br@: & At

991« CINENT RING T4 .S2-B¢o:i-

I3 POINTER TRG 9B1. 14 .62-8¢Oit-

DOEX PTRS; 19 A

(-]

¥ Ll
19174

2 L]

LEG A FRESHF<5:119r M

LEG B¢61198 M

POINTER TR S: 4> 4

H_HOLLING REG A 1D .32-8¢Sd A
—— = 4

HOLOTHG
REGISTRS <
e ' HOLCING REG 8 18 .S2-8¢SWd M
L

VALID USING HOLDTNG I4 .82-8 L<&11> M Huse

FES W DATA Q1>

158
-]

LATCH VIS REG
18175 O
A T 10141 T

w3
E EC R X OE

XI5 M-I 82 |

RN MEST 16 CYUE .55-190 L

Is UL LEVEL STRAIGHT THROUGH T4 .83-9

POINTER ThRix 814 At

CURRENT RIMG 14 .83-%e: 1>

VAL LEVEL D 15 .S2-8cdr !>
LEG A PRESIF<34: 35> M

LEG B¢ 34: 3% M

FES RING TRG +E .C L

B
___‘ visor !
REG O
° B]
= 10132 b p ‘e
001 R RESET) TeH;
Heie L) > we
It 5 [g ™ oF |
L ' — i
L
A_\E C3

FLUSH PIFE .C

I$ VALTOETE PTIR. 14 . 94-10

oI5 .Fe-2 L &

RN NEXT IS5 CYOLE .85-10 L

DATA ADDRESS ARITHMETIC

H TAG FALY D 15 .§2-8
L VR LEVEL D 2 S2-8¢01 1
H YOG FAAT D IS .94-1Q
L VAL LEVEL D 15 .S4-10¢@i 1>
H N

{ UL LEVEL D T40:i1>

és

P XO4I &

sSuimea

JIL13WHLITSY £€3500Y Yl1hd

K4

PI I W PREC I3 .S3-%@:1> o

" SCAUAR PREC IX9: 1> M

PI L R PREC I3 .S3-%«@:1>

TSR PREC I 1y A
H
P11 R FREC 13 .S3-9¢8: 1 leé?a
SRR LENGTH- 1 13 011>
SCAUR PREC 1% @ A1 /
L
PI 1 W PREC I3 .83-9¢0: 1>
) FREC [Md LENGTH. |
0 o @
o Wi -]
10 s @
1 D 1
© : 9CALAR LENGTH.1 14 .S2-B¥@:|> M- . .
" [aX] H
VECTOR LENGTH-1 T4 .82-8c @1 M » "‘—_“\
B 10174) 0P LENGTH- 14510 A -
D LENGTH-1 14 .52-0c2: 0 S "
< e (
34) COTENT
. G LENGTH ROUNDED UP
D% LENGTH-1 14 .32-x@11> M . &mﬁ.{w

181040

l
| QI)

Wity

PL 1R PREC 13 .93-% DA C R B LENGH-1 1D

3

P11 RFREC IJ .3-%1

(

PREC [GH LENGTH-1

o & 0000 101047 TO COMPUTE G READING
o1 W a1 "—- G4 AND WRITING BIT MAsKs,
18 S o211 9

1 O o1

DAA C W OM LENGTH-1 13 Q: P

PI I W FREC I3 .£3-HQ

g

PL I WPREC I3 .53-9¢1>

VECTOR LENGTH-1 13 .S3-%0: 3> M

I8 DAA LENGTH-1 13 .S83-H2:5

I8 DAR LENGTH-1 33 .$3-%0:1>

viava L3

6€

ITRES B 14 .S2-c b A

DA LOOP COUNT 14 .92-8¢p M [CORRN]

AR ID 14 .82-8

X 14 .P3-2 L 82

RUN NEXT 14 CYQLE .§5-1@ L -

I8 DR LOOP COUNT 0P SEL T4 . 92-BX 81>

OR 14 .73-2.6 L

DATA ADDRESS ARITHMETIC

s3uimesp XO4I ¢

28 DMAP , _ ' . 35

28 DMAP
Drawings: DMAP1, DMAP2, DMAPS, DMAP4, DMU

The data map consists of two identical data map units. One unit maps VA D and the other maps
VA END D. In this way, the beginning and ending addresses of an operand of any length are
translated in parallel. Since an operand cannot be as long as a page, any page fault that can occur
in an operand will be detected by this pair of map units. The outputs of the maps are PA D and
PA END D respectively. The maps can be made transparent (all 36 input bits go unchanged to the
" output) under microcode control. The individual data map units are virtually identical to the
instruction map unit described previously. The data maps perform their translations during the I5
pipeline stage. o

Additional logic is also shown that prdvides three types of error checking: illegal access, segment
bounds errors, and access protection violations. .

YR OO A

DATA MRP UNTT

S1ZE

VAL _EVEL D 4d:i1>

| GO0 9Z b IHee M
RING BRK D IR M

VA DD Dot Af2.012.00

W 15

187

L2 4 W 16

e}

- 10 AOR 16

PER ERR MP ADR
PR ERR AOR P 1D

DATR MAP WNIT

L1}

ACCESS MODES D I A

RING R 15

Bwnss P 16}

VA ENC- D T Shd

10 AR 16
PAR ERR MWAP ADR

PAR ERR ADR SP 1D

1D AOR END D I5¢Q:

k> PAR ERR MAP GOR ENDY D L<O1 D

c POR ERR ADR P 1D BND D L

SEGENT STZ D Lord -

VIS REG

RING BRX D [40:5> M

ACCESS MODES END D [5¢@:

OE
3 1 10141 7

ACCESS MOOES ED D 16 .52-

4. Wy

> POCESS MOCES D 16 .S2B 013
SEGMENT SITE [16 ,S2Exd14> M

SEGHENT SIZE ED D 16 .Se-

2
a
£]
H

RING B 16 . 82-x: M
¥0: > M

kQ: 4 M

16 .82-8¢0:5 M

[¥ e
L
X 1e .PR-2 L 22 T ‘
RUN HEXT 16 AND 17 SYCLES .$5-10 L

DATA MAP

P XOdI ¢

s8uimes

- ACCESS MODES O 16 .52-6 L<URITE.FERIID A

81 CECK U 16 .52-8 L -

-

* - RCCESS MODES D 14 .82-8 L<RERD.PERIID M
PL OECK R 16 .Se-8 L

ACCESS MIDES O 16 .82-8 L< I0.PRGEY 1t

P1 10 REF 16 .S2-@ L

- BCCESS FODES END_D 16_.92-0 LORITE.FERMIT A

. .

- _ACCESS MOOES END D 16 .82-8 L«m.mm m

P

ILAP4)

SCCESS N £0 D 16

16 .32-8 L<10.PAGE> M

DATA

MAP

dVIAA 8¢

L$

WO IS5t

POINTER D 16, $3-5%5: 19

Xis .21 82

VA DD E 16¢5: 19

R xaer soos
-) . SEGHENT ERR O 18
—imsx =
i$ SEG B MDB CHETK BN 16 . 83-9
AN MEXT T6 AND 7 CYGLES .§5-19 L .
SEGHENT WIZE D TS . $82-0010 A1 stz O e e SIZE ERR D 1s
R sseENT BOUES
oo ERROR T FEGENT ER 40 0 16
{
¢ see2
by
TN OX goer mx P s)
: GONERATOR
SEGENT SIZ £ D 16 .52-5G14_M sz L - 912 EWR DO D 16

DATA MAP

P XO4I &

sSuimes

»
- -0 C SEL 15 H Vis RS
oc
oo T BN A BB D6 eeai
R LEVEL O TE_.54- 1081 1> -
L o€

-1+ RING BRX D I6 .S2-B0i» At
T K 16 P2 L 824

—pR

RN NEXT I6 AND 17 CYQES .95-10 L .

-1 : RING BRC END D T6 .$2-3 1> M

PIL OECK W 16 .22-8 L

=1 1 RING BRX D 16 .S2-B¢RB» M

©
80

=l : RING BRC END D T6 .S2-8«REp M

¥

PIL OECK R 16 .52-8 L

dVIAQ 8¢

‘]tmm?
Gt RING BRX ERR D 16

G2 RING BRX ERR END O 16

6%

. 128
[T . " 1644 RIFE 128 -
101458 PRTT? T
Ti8 t o 7 T STRIFPER/GEGER PAR ERR GOR 9P T8 L_# .
"3 BRIO— .
H EEN N :
PARTTY TREE L
P2 . A_1E 8 .
O TS P8 L 82 i mosier_m
101057 ax
I8 H GOR SPRCE DD 15 .92-B L °1 ¢3 N - e ACE
‘ AOR MOOLE
D oS e o - - MIT 6OR LoD A1 [1.0:2.8])
VA T5E: 16 M P s OF Ok P ER PR ERSL AP DR 1<0: D0
PARPETER E
BYPSS 1P L
RING@: 1>
P
auerd A
B8
D FOR 1660: > A WA oLy [5e8iTs M Paco: 1> P
PACSD A :
PAR ERR SOR SP 1D L A A DLY I5¢35: % M 25D P
R ERR P ROR L(B:D A
SIZErd N .
WIS A .
WIS //la A .
o P OTE ,
0ATR MIDALE oD
o T 7. 0 TO T
W ID AR Txe:Dd A 1-SE0 P 1 DATYKD: I ! 3 B> £
«a
VIS SAE DLt Bne v L i
REG OF -
UR TS5« A4 .
RIMG D1 A 1 00 1 WxRD A ' telev ™ <
et o D AR IH0:D £ 3 W LI P
14960 AR 01 - Terd ID AOR LY T5¢@: M 3 UA DLY T5:Sb A
t4-960 RESTONE RESTORE AL \§ =
19107
MseLT VR 15 16:9:- 1> A U G4
/LS
X oEnoE NOTE 31T REVERSAL ON THIS INRUT
»
XI5 .FO-2 L 42 : | 4-960 WP [WE L0:D r)
— o
QNN IS CTOE 9610 L LASE@Ls 3 OK T5 .P6-2.5 L B Se =
H-SEQ %P O | : 2
WOy 15220 M
5
BIPSS I P : .
grasse | -
° . 19130
o (W}
e
on I5_P2-6L . T DATA MAP UNIT
et

o¥

P XOdI ¢

sSuimes

29 OPABX ‘ . . | 41
29 OPABX

Drawings: OPABX

The operand data path énd ABOX (OPABX) drawing cont.alins thé high-level description of the
main operand data paths of the IBOX. Operands are read out of the data cache and register file

on two legs: DCRF 1 and DCRF 2. Each operand contains up to a double word. The operands are
addressed by PA D and PA END D. The DCRF 1 and 2 operands are delivered to the operand

queue which acts as a buffer in the pipeline between the data cache and the ABOX. Operands are -

read out of the operand queue and loaded into a 4-word operand register along with a set of control
bits. The output of this register is delivered to the ABOX. Quadword results from the ABOX are
directed back to the data cache and register file for storing. Since the register file is capable of
reading and writing at most a double word, vector operations are not permitted to use the registers.
Only vector operations produce quadword outputs. '

§E6 L DATYEVENOOD, P> F

PO DRd A
PR ED Drp A

PR END D

3

HIGHAOH ALIGNED SINCE THERE T
HRAPAROUND.

oo 1 | BT ez m
i

X 18 .P2.5-4.5 42

X 0Pl 18 S3.4- 1A P> M Pl

% 0P 18 .33.4-1600:5, W8 M

X 0P CN [B .53.4-10¢0:12» M

DECREMENT OP Q COUNTY 13 .S9-6 L

OPZRAND DATA

PATH

AND ARBOX

MR S
= END DS

REG ¥ DATACEVEN:CDD, S &

oP

RERLT @7, W8 M

¥

P XO4I &

sSuimes

2.10 ABWRS - . : 43
210 ABWRS
Drawing: ABWRS

ABOX with result swap (ABWRS) is a simple unit called from OPABX to take operands and put
out results. It contains within it the entire ABOX. It clocks ABOX results into the result register
which is enabled by the ABOX/IBOX result handshaking signal. The high double word of this
register is passed through the result swap unit and then merged with the low double word. For
vectors, the result swap unit is transparent, so that the final result is the same as the ABOX result.
For scalar operations the ABOX result is high/low aligned within the upper double word.
However, the result from the ABWRS macro is supposed to be even/odd aligned within that double
word. It is the function of the result swap unit to make this alignment change. -

ALIGNNT
14
[T) s 08 1
REQULT eP
1 1
RS
BX 1ec8
" vis REG " H
o
oox RESLT X eBotRESLT o Stamvne A | OF RENLT 017 PN A
w
x oE L -
S
PO N & o P &
@ cneamen P o <
PORRETER
0P1¢0: 3, WP
P2 011, HP
o CTLr@i2n
RESULT< @17, o>
.
cormeNT

P, P2 RO RELS
ORE AL EVENAIDD ALIGNED FOR DOUBLEMORD
OFERANDS.

ABOX RESULT 2S ALAINS HIGHAOW ALIGNED.

ABOX WITH RESULT SWFP

s3uimesp XO4HI 2

2.11 DCRF . ' 45

211 DCRF
Drawing: DCRF1, DCRF2

The data cache and register file (DCRF) drawings show the data cache and the two éopies of the
user register file used for operand fetching. The data cache may be written from the even/odd
result lines after they have been rotated to the correct position within the four word input or from
the M-Sequencer write data lines. These lines are four words wide and provide a high bandwidth
path over which the M-Sequencer can load the data cache from main memory or from a backing
cache. The user register files are written from the high two words of the even/odd result lines.

The DCRF 1 and 2 outputs of this macro are the two operands for this microinstruction. They are
independently selected from the cache, the user register files, and the immediate constant generator.
- For scalar operands, these outputs must be even/odd aligned. This is always true for the user
register files and for the immediate constant, but is not necessarily the case for the cache. Therefore,
another input is provided on each multiplexor to select the appropriate cache double word with the
two words swapped.

ALTGN VECTOR RESLTS

8 Wi

19828
M CACHE 1¢B 3 Wé»

ESRT N7, s P
L k4
l0|73 ¥ N DATAC @ 7, WP At W o

a
E
'
|

x
2
4

Vo, mpse e g
$. PADD XS A B0 b mem:un
1-9E0 RESULT ALIGPENT L0122 I
%60 .0C W DATY 917, N8 CACHE 14213 HE® 1 CADE 1<8:1, HI» ‘
R SCONVERT 70 EVEN/000 ALTGHED
4-SEQ SR N-$EQ W DATR .
oR T1e P35 L
28
vie mee UseR sns_ésrsn .
LT L wi A 16141 G u B0, AP o
BERNT:0:3, ¥ = Tj——SEG ol DATAREURNG 0D, ¥ 1 .)
ra | OO 0 REG BA 16 . $4- TCELEN OB, 4: P
o6
L
T 23 OOF 1 SR TP .s4-ie0D A
- o 110 P-4 L 82 - 1-9E0 DOEY 002 IS .24-10]
CAUIE 213,80, CADE 611 W }
- CONVERT 70 EUEN.O00 ALTGNED
USER REGISTER
FILE
PARPETER 1 R .
B . n | DSE 0P2 REG MR 16 .56 184 EFVEN: 000, 4:
RESLL T4 817, A%
RE De iy
PR BO Dra» . =Ll DOF 2 SEL 17 .84-19B: 1M
DO¥F 16613, H8» 1-9E0 DOES 002 TS .34-10 I
OORF 2e01), W ~) N
REG 1 DATAC SEN: (DO, 6> A
N PERITY 3
DTED CONST 1eow T P
[
DH PARITY

IPED CONST 2<DId o GENERATOR or
. ——-——T e

DATA CACHE AND REGISTER FILE

s8uimeap xo04g] 2

- _I1-9EQ C SE: 16 .S3-9

1-$EQ CONS™ SEL 16 .83-9 L

IS ALIGN 8EL 16 .S3-9 L

1-s€0 C SEL Y6 .83-9 L

PAD IS .S8-10cXh

11

[

00I_TS CONSY 16 .54-1@8 M

002 18 CONST 16 .54-1@

8
PS OP SEL 16 .S4-1¢O:t>

X 16 .PI-3 L 82

28
VIS REG
E

T tot4t ¥
w1 |

CKE

PR

RN NEXT 16 FND T7 CYQLES .$6-10 L

.

I-S€0 DOES QD2 16 .$3-9

DATA CACHE AND REGISTER FILE

OCRF 2 SEL. T&<@:11> M

404 113

Ly

48 2 IBOX drawings

212 DC
Drawings: DC1, DC2, DC3, DCRAM, DCDM, DCAM, 3BSAG

The data cache is a 16K word high speed memory that can read and write four words every cycle.
The data cache is organized by half words. The eight half word output can begin on any halfword
boundary. For writing, the input data can begin on any halfword boundary and, in addition, there
are individual quarter word write enable lines. The data cache consists of an address part and a
data part. The address part implements a four way set-associative cache organization with 16 word
lines. Since cache addresses are not restricted to begin on four-word boundaries, it is possible to
read a four word block from the cache that overlaps two cache lines. In order to do this read
operation in one cycle, it is necessary to read from the address part of the cache the information for
two consecutive lines. Therefore, there are two copies of the address part of the data cache. An
eight halfword rotator is provided on the output of the data part in order to align operands. - This
does not effect the fact that the operands will be high/low aligned on output.

A data cache read operation occurs during two consecutive pipeline stages, I6 and I7. The address
part is accessed during 16. It is given PA D and PA END D as addresses and produces a set of hit
lines indicating which elements, if any, match the addresses. If either address part fails to hit on its
respective address, then there is a cache miss. When this occurs, the M-Sequencer will load the
appropriate cache line from memory and restart the cycle. This guarantees that when the cycle
proceeds with no cache miss, BOTH lines that may be needed for the read operation are in the
cache.

The data part read operation is performed during the I7 pipeline stage. The data part is
constructed from 8 identical halfword modules each of which is a four way set-associative memory
with 1024 half word elements. The elements selection is based on the two sets of four hit lines from
the address part. The 3 BIT SELECT ALL GEQ macro looks at the low three half word address
bits and produces an eight bit vector which is zeros up to some point and then all ones thereafter.
The point at which the first one occurs corresponds to the input address. This eight bit vector,
then, indicates (where there are ones) when to choose the hit vector from the address part that was
addressed by PA D. It is also used to select the correct middle address bits for addressing the half
word module.

For writing, the addresses and hit vectors are read from the write queue. The write occurs during
the second half of the 110 pipeline stage. When a write operation is scheduled to happen, it is first
attempted as a read operation during 16 and I7 (although the access checking checks for writing).
This will detect page faults early in the execution of an instruction. It will also cause cache misses to
be fixed before the write operation must actually happen. During the write operation at I10 it is
guaranteed that the location will still be in the cache since the M-Sequencer will never kick out of
the cache any location that is also present in the write queue.

A ocsip A

- $EC FORCd: I

M8 OC. RESTORE M1 .S4-1@

M DC SEL PR M .S4-10

PR EMD D235 4

M-SEC_RDRX(6: 3%

€K 18 .Po-2 L 82

RUN MEXT 16 A0 17 CYGLES .85-10 L

M DC LORD ADPR M1 .54-18 L

W DABNO: 7, WP A

R_SEL LOW ADR I&x@: 7

AR W SEL LOM ADR 110 .82-8x@1 7>

N-SEC DC_WORD \E LB D

%8
VIS SAE OLY
RS O€
1214 TAp——— PRDI6 .S2-X D
T
- PAD 17 ,82-0x Sib
- . PO 16 54 1K
R
X OEHOE
348 -
VTS SRE REG
oE
18141 TR} FPRENDDTE .92-802:
1 vz PA_END 017 $2-B02: 3
"
RESTORE
wseLL .
K O MOE
Pl
T PRAETER
PR OrS
PA BND D¢ S
W OATAr 17, 16
T¢Q:7, P>
-
i
DATA ZAOE
' R ARRAY
R SEL LOM ADR
W SEL LOW ADR
ne

X 17 .P3.8-5.8 L 82 l

DC AR TO M-SEC<4: 3

L M3 AOR SEL Mt .32-B 415

PAD 16 .52-¢ 32130

oc T DC R DATR @17, Had» M 1 Wy T

DATA CACHE

‘.

R SEL LOW AOR 1612

DC_R DATA IX0:7, WP M

]

OC_OUTPUT ROTATE SEL(@:2»

8
ROTATOR
100158

Y012 P ~

ot 2

oa 4rg

6%

MDD 6 .32-8x2: 210 -

PAD 6 .52-8422:29

PADE6 .$2-6¢2:21° H
A e e e

A MDD I8 .S2-Bcn21

o B0 D 16 . fR-80a2u29 [3
g 1
. c @,

- SEC_FORCE HIT

X

AN

ax
0ATA CACHE
AOR HOOWLE
e HIY<> DC HIT AOR L¢8: >
TNRLTD mnm& Pes ERR OC ADR L¢O: D
FoRcE QP RAM COR OC_RAM ADR¢ @3 @:21°
ME
4%
fa DATR CAOE
AR MODULE
P a1 HIYG OC HIY M ADR L<@1D
TNALID OR P ERR PR ERR DC END ADR L@1 D
FORCE O AN ROR DC _RAN END ADR¢ @33, 8: 210

P-SEQIDC WE 9 .94-10 <O n

O 19 .P5-6.5 L &H2

CATA CACHE

08

P XO4dI ¢

s3uimea

DC_HIT foRce:D o
5 0C LRy
M _LPORTE [X LRJ M2 ,54-19 CONTROL.
191054) oroae
RN MNEXT 1€ BMD 17 CYQLES .85-19 ¢ 61 M3 _REFD 0C LRU M3 .90-6 L
T-SEQ USE C 16 539 L Jorem Qo Ly
18 POIE_IC LU 16 839 L 4 PA D 16 .54 122129 a.
VRLID 16 9 L .
N PA END D 16 .52-8¢2212% . .

PALC 16 .8a-1X2D

M BND D IE .94- 102D

DC USE TWO LINES L6

18 SET MODIFIED M4 .£9-6

A\
) o
/LS

MO 17 .Sa-ec22iad

PA EWD D 17 .Sé.-BfZZxEﬁ

DC_USE TWO _TNES (2 .94-10 L

OC LRU ELETENT T2 L¢@1 D

OC LRU ELEMENT END X7 L¢@: P

<
. BER fOR 113 .Sa-8x 22,29
QPR END ADR TI19 ,S2-8¢22: 39
AR USE TWD LINES 110 .S2-8 L 0
PR HIT AOR 110 .52-8 L0 —
AR HIT END AR T10 .S2-8 L&D —

00 FB0X W 11O .54-10 L

1
L
M PO

‘R USE TWO LINES

R LRJ ELDENT MODIFIED BITS
R LRI ELEYENT DD

wmo T o
= PO

W USE T LDNES

W HIT

H HIT END

M8 UFOATE MODIFIED BIVS M4 .$8-6 L

DATA CACHE

OC LR X911

OC LRU END TX@:t

»

»

10F 4

10161

< 0 LR ALEMENT 17 1¢9: 3

o OC LRJ ELEPENT END 17 L¢@: 3

—— . e e sy g

DC MODIF1ED 1B . $6- 12« EVEN: 00D, @: 3>

oa e

0C HIT 810 ADR <933

OC HIT AOR 1¢@: D

R %L LOM FORON A

oN 16 .P3-2 L

. BER HIT BYD DR 110 .82-8 L<&:3

BER HIT SOR 1'8 .82-8 L1 P

o BEL LOW ADR O & J

’ Wi DATR RO
0ATA MOOLLE
™
X He £ ‘ T Tex AP
R CS L@rD> M Clrcs
uCs LeerD> M
d MO p mr ne
»
'
AFR B0 AR 119 .92 82231 .
AER GO0R 110_§2-802031> PORTETER EFIE
J 140i7, hp» X 9P = 1
‘ME L
WSEL LO4 AROS [0.9:1.7) & L -
W SEL LOW ADR¢@:
a1 7 P
PR END D i6 .S3-¢22s 31

MDD L6 .32-Bc2: 31>

R _SEL LOW SOROD- A

KA TS .P2-6 L

AFR T E 1190 .£3-91.¢0: 1, X0 w4

BE LX> A

DATA CACHE RAM ARRAY

&S

P XO4I &

s3uimes

Hled MH

AHDED

H.1a0

FNAOL

> -
104 X oM
, REPFE
WE3 LD A P Ihe & £ owel2 T
R CS L€0:3 /P 0{2‘:“6 i o
w2 1 S LD M i
2 1K . ! e & cs
Y-SE OC ELEMENT 1.40: 2 T
« VE ROINE1), & M A
'e s e ml1.o2.0
- 18 DC ELEVENT SEL 12 . 34-100 I =
i X
- ROFE
r——-: e tp—
AN NEXT 16 D 17 CYQLES (96-18 H R
l 101950
¥ DC R OR W C3 M2 _.54-10 o A_WE €S
o 16 .P6-10 E RN M
L
: CE L M[1.0:2.9)
O 17 .93.6-3.6 8251 ,FRERD 5L,
I 101054 .-
o 110 .P4.3-6.3 SHRITE 6l
P
Y 164 X
ROPFE
b wenz T
R2
u
a_E s
K 17 P8.6-2.6 L 82 E R, > M T T
RUN MEXT 16 GND I7 CYCLES .$5-18 2. S LD ML1.m2.9)
2
K X O
RAFE
——{X Hei2 T
wan Ao R3
Rean o A € 3
E RANO:1, D M
RN NEXT 16 GMD 17 CTCLES . S5- 19 - CSLd Mml1.e:2.0)
101054
MS OC ROR U RA M2 .54-10 J 6 M inl . AP M(1.0:2.9)
- L/ 9
N
K 16 .F5.6-9.6 L &2 E 160:1,0:D 4
i A 1015 L e
o5 O 110 .P6.1-7.3 L SHZZ v8 P
< 3
e «
X 1?7 .PR-2 822 REFD . nEL A %
J 101058 8
X 118 .P4-6 JRIE 62 \CFSEQL; CK M3 .P2.1-3.3 1 &H

T A

PRIETER
TP

nE L
RCS L@ D
KA »
HC8 Lo
WA 9:
HE L@l

TR, AN

%

oa 213

€9

INJALID A ¢ 21210 A 1 P P

M2 2N A

MB72071H
" ¥ RV ARNK, Q1218 A T STRIPPER/OECKER
o

HEOD P

DATA

=]
Rty . REY ADRCX, B: 28 P
me ADR P ERR L<X> A
@ g 22N A
IFORCE 0P &

AR P ERR Y01 D
HIT LeQ:
R ADR< 913, G@: 21

CACHE ADR MODULE

s3uimeap XOdI 2

2.12 DC

¥ © Do T P
" ! - n o T b
-1 . {2 'By DR "‘NP A‘
ot : g B S 0 mEL
L W @, n:s? #»
L 13 06 I #
1 " % 06 Tei> A
! 9 o v &
ROV
> A
PARRHETER
12>
N T
TR TRLE
AR AREIIRCARGER AR T R Té
afelel] []] 1
ool flel]|t 1
ali]|elle]eft]+]1)
el ||e]ele] | 1
1|o]eflele|ofof: 1
. tlefr][e|ef{e]|e]e)
1{1]eljef[ofelefe 1
el flelele|o]e. a

3 BIT SELECT ALL GEQ

55

56 2 IBOX drawings

2.13 USREG
Drawings: USREG1, USRAM

The user register file is an even/odd pair of register files and is very similar to the index register
file described previously. One difference is that both outbuts of the user register file are used
together. (In the index register file one or the other of the RAMs was used.) This produces a
double word output. Both RAMs may be written simultaneously, so that a double word result may
be written in one cycle.

1¢0:3, 9% -+

R BEN1 ODD 44 A

USER REGISTER
FILE Rt

QPR REG WA 110 . S2-8CEVENITDD, 17

REG vE 119 .82-6 L<@13, EVEN; 00D q

P-£E0 REG BA 16 . 34- 16¢EUEN:000, 417>

5

]

T3 ue £

PR END D 129

18 TEN MODE REG ADR DEYECT 15 .S3-9

A END D 54 30: 3>

PR D 12>

[=:]
vis oLy
REG OE

10141

TP

X KE

PRPETER
Lol P
¥ EVEN1 00D, 43 7>
seLt

Ye:3, WP

RACEVENIOOD, 41

o 16 .P-2 L 82

if

RN NEXT 18 6D 17 CTOLED .$5-10 L

oTdASN §1°2

LS

4x
2564 X O .
he:Lue 2 L rein T
RO
FVEN REGISTERS
A_ W BS
1L 8 B M [1.0:2.2)
™ 828
E L] BB £ s e
I R
X D Pl 654 /
o
P

T3 P A

K T7 .P9.4-2.4 8ZB) __;RERD w
) J 101988 .
K I .Pe.464 LAIE Gt . ;
L/ ’ e
B X o
RAFT

Ic2i3 He A L M T

%00 REGTDTERS 17 Pt L 82
A_E_Bs

CK T1Q .Ps.2-7.2 82

B8 L3 0000 m(1.0:2.0)

PRRAFETER

1¢0:3, HP
RA<EVEN; 00D, 417>

X 12 .Fe.4-2.4 1 82 PROC STATURY REGISTER, FILE> H

SUN NEXT T4 BND T? CYQLES . 9610
B 'ra:m WA EVEN1 00D, 41
HE L(®:3, EVEN: 00D
P Lo [-] TeO3, R
VIS @6
1o14¢
R EVENI000, 4:7 P o
M EVENI OO0, 41 24 «
L
X 17 .P1. 45,4 .
CK 17 PO 42.4 8224 REFD
E— 10105A

X 119 _.P4.4-6.4 IWRITE G3

USER REGISTER FILE RAM

sBuimelp XOHI 2

214 OPQ ' 59

\

214 OPQ
Drawings: OPQl, OPQ2, OPQ3, OPQ4, OPQ5

The operand queue stores data operands from the cache on their way to the ABOX. The size of
the operand queue is 16 entries by 8 half words per entry. For scalar operations each entry may be
considered to be a pair of double words, one for OP1 and one for OP2. For vector operations an
entry may also be a pair of double words, or it may be a quad word from the cache. For all scalar
and most vector operations the operand queue acts as a FIFO. However, there are vector operations
that make use of the fact that the write addresses to the 8 individual halfwords can be different. In
any case, the read addresses for the 8 halfwords are always the same.

In addition to the main operand queue there are three auxiliary queues for passing control bits to
the ABOX. These queues are also 16 entries long and are read out exactly in parallel with the
operand queue. The control bits are all written together at a write address that is controlled
independently from the operand queue write address. Two of these queues store control bits for
OP1 and OP2 and the third stores control bits for both operands together.

The I-Sequencer microcode has a great deal of flexibility in how it controls the operand queue.
LOAD OP1 and LOAD OP2 control the writing of the cache and register file outputs into the
currently addressed operand queue locations. These signals also enable the writing of the OP1 and
OP?2 control bits. LOAD BOTH OP CTL enables the writing of the “both” control bits. After the
operand queue loading is completed, the write address is incremented by an amount specified in
microcode. If incrementing by this amount would cause the operand queue to overflow, then the
actual writing of operands and updating of the write address is delayed until the ABOX empties
encugh entries from the queue to allow the write operation to proceed without overflowing. In
order to allow writing operands at different addresses within the operand queue, the actual write
addresses are computed by adding the main write address and 8 independent offsets. These offsets
come from a RAM whose address is specified by I-Sequencer microcode. The RAM has one
additional offset which is added to the main write address to form the write address for the three
control bit queues.

Operands that are written into the queue need not necessarily be immediately released. Multiple sets
of operands may be scheduled and not released. However, once a set of operands is scheduled and
released, all previously scheduled operands are released. One way to think of it is that there is a
control line called RELEASE ALL OPS which may be asserted (with or without actually loading
new operands) which releases all operands including any that are to be loaded in the same cycle. In
this way, the operand queue may have some number of released operands that can be delivered to
the ABOX followed by some number of additional operands that cannot. When these operands are
released, they can then be delivered to the ABOX. This provides added flexibility to the
microcode. For example, the I-Sequencer microcode can schedule a short block of operands for a
vector instruction without releasing them until the last read operation of the block. When it
schedules the last read operation, it also releases all the operands.

Several registers are used to store the state of the operand queue. One, called OP Q ENTRIES
USED stores a count of how full the operand queue is. Another is called RELEASED COUNT

60 2 IBOX drawings

and indicates how many entries, of those that are used, are released for reading by the ABOX.
Finally the current operand queue write and read addresses are stored.

On the reading side, the RELEASED COUNT being non-zero indicates that there is at least one
operand queue entry ready to be read by the ABOX. The output of the operand queue is sent to a
four word wide register mentioned in the OPABX description, called the ABOX OP REG. The
operand queue logic maintains a bit which indicates whether the ABOX OP REG is full or not.
When the operand queue has an entry ready and the ABOX OP REG is not full, an operand is
transferred from the queue to the register. Whenever the register is full the IBOX informs the
ABOX that there is an operand ready (X ABOX OPS READY). When the ABOX is going to
accept the operand, it informs the IBOX (X AROX OPS TAKEN) which can then move another
operand into the ABOX OP REG.

Teh? By A

(A .

0RO NI & * &
16 W
P B 12 .33-9c@d M OFERIO
* ™ QEE .
0P HI WA TA®:Z, 0180 A : .
- XALIR * A we
0P W 18 .90-5 1<@: 1> M o e
1-960 0P1 LOL ORDER ADR I7 .83-%@1 >]
HO e o D G 1 a8
1O LR 0P} REGILT NN TA O [{ OFERRD
wm ABE
WNIT
OP W WA TE 0: 0 M P
* E
O° LWE 18 .50 L@ M T
1-S60 0P2 LOW ORDER AOR 17 .33-9¢in H
(O T e - n] 1) H
WO LRAP 0P2 EESULT NH TN 1D [l PERID \
m MEE)
WTT /
»—{m o
{ W
OP E 18 ,53-6 L<1> M l
. -
" 1-900 NMEER OF VALID O 17 . 53-%0; 4 H
1570 LAST 0P8 17 .93-9__ nl 1 128 ,
1-5T0 FINAL 0TATE 6L 17 0:1 O1 2 L] PERAND
m ABE
: NIt
L _{,, ocae
W

OPWE 18 .S&-6 Lt M

- OPERAND QUELE

PARETER

0Pea; 7, Han
CLeh e

Teo17, I

BdO 3172

5]

MNEXT WA ¢ Q14 AN

0P OWA I8 .- M

0P QWA I8 .S4- 106 M

0P Q WA OFFSET-1 It M

va.m 14 .33-9 L

PI UFDATE OF Q WR 16 .83-9 L

- TRRP Is L

CPQuURLID A OFFSET-) 17 .Sa-B¢Q:4r M

RELEARSE AL OPS -7 .S2-8 M

OP G UALID WY OFFSET-1 I7 .54-1¢Q: 0 M
RELE!

RSE ALL OPS T.° .S4-i0 M

NEXT RELEWSED COUNT<QO:# A

PI LORD OP1 17 .54-9 L

3

OP Q ENTRIES USED 18 .$5-8¢@:4
RELEVISED COUNT 18 . 82-6¢0:4
OF O ENTRIES USED 18 _.54-10¢0:4
RELEASED COUNT 16 .54-10¢0:4

3132
E1E1EY

PI LOAD OP2 I7 .S4-9 L

OP +E 18 .50-& Lt M

Fl
&8 -
H vis Ly
EGOG.'
p leva 4
Tep—
~\ L WR1 N
. X COE
‘ mess
Pl RELERSE AL OPS 16 .93-9 L B3
X7 ,.P-2 L 82
RN NEXT T6 AD 17 CYQES .95-10 L
108
VIS DLt "
REG
NEXY OP G ENTRIES USEDX&3 &> M H 1014) T L
T L }—-1 H
TP e f L
we
[
.
X e .Pg-2 L 82 I
H
E)
PI LORD BOTH OP CTL 17 .S4-2 L R
p =] T ® T
RUNM NEXT 16 @D 17 CYQLES .95-10 L v3 161058 19133
e
L
™A 17 P48 L Ckc
IO
¢ |

VALID 17 .83.9 L -

- TRAP 17 .S4-190 L

CPERAND QUEUE

é9

s3uimelp XO4I 3

18 OFFSEY Ry FOR 16 .83- N &>

FES OP 0 1) OFFSET WE .C LI

FES W DATRAr 8: 157

FES 0P Q WA OFFSET oE .C L@

OP 0 VA FFSET-| T& O A

CP O i WA OFFSEY TX@18, 8:4

P QWA 18 .94 1R M

OPERAND

92 0P QURID WA OFFSETY-1 17 .94- 111 & M

FLUBH PIPE

QUELE

V4O 312

3]

OP O ENTRIES SED IO . 84- 1904 M

° !
58 [_
N ADDER o o
. . 1o @ NEXT 0P O ENTRIES USED 1% M
' ‘o LS T
! RE9ET
i B . o o
1 4 R £
10185A
=)
RELEASED COUNT T8 . 84- 10car & M :
[o—
oz . HEXT RELERSED CONT IX@:6s M
nin
n L] &2
] £
- / :
™~ 5
02000 7
DETECT
oTe
N A
00000 —N
- DETECT
O 0 VLID R FFET-1 17 . 54- 18610 M oTy
- DECREFENT OP O COUNT 1€ .S4-19. L A1 . -
) ROLEASE ALL OPS 17 .94-10 L M
BEEAOBDBBEN e RN NEXT 16 AND I? CYOLES .S5-10 L
BN EXT 16 #0 17 GraFs 50l 63
FLUGH PIPE .C 10110

OP Q ENTRIES USED 18 .82-6¢8: M
s o0 0 L. 7

0P O VALID WA OFFSET-1 17 .S2-8¢d M

COMENT

STOP IF NEXT VALLE OF ENTRIES USED
€ IGNORTNG REMOUAL OF OPS FROH THE WEUE)
I8 »= 17 (1.E. NEXT VALLE-1 Y= 18

OPERAND

OoF Q RESDY 17 M

QUEUE

P XOdI ¢

s8uimel

- : . : 0P RN [7 539016 M
1 omr o .
1% T .
. 4] *
DECREMENT 0P 0 COUNT 19 .98 6 L e e _
‘ . et - .
’) X o R :
T
K17 P13 82 - o . "
FLUSH PDE .C))
OP 0 REAOY 17 L M .
-

- HEXY REOX OP REG RERDY (2 L M

REOX 0P G RERDY 1B ,84-18 L M ’ ‘

X AB0X 0°5 TWEN T8 5511 L] INTERRLPT 18..82-8 L o

TR PIFELE L - &
- FBOX 0P REG READY 18 .82-8_M

101048

. 18117
2 BB0X §9 REG RERDY 18 828 M o [X SUSPEND_TNSTR 18 .$3.8

TR 16 .92-8 L 5
c
. . .
O° 0 REFDY 17 L M (91058 R
- FLUSH PIPE L 66 ol b DECREMENT OP G COUNT 18 .S9-6 L~
' 19132 .
Lt .
e 24
T
A D .P6-B L
AE__ s

X FE0X OP3 REROY 18 .S2-8

101048
N 63
D
RB0X REG READY T8 .82-B L M
- DECREMENT OP O COUNT 18 .S2-8 L M
TR 18 _.S2-8B L
P 17 .54-10 . aB0X_SA REG REFOY 18 .S2-8 L M
ABOX SR REG READY 17 .S4-10 L

fB0X OP REG REWDY 18 .94-10 L M
" - DECREMENT OP @ COUNT 18 .34-10 L M
TRAP 18 .S4-10 L
AB0X SA REG READY 18 _.S4-18 L M

, " OPERAND QUEUE -

V4O 12

g9

66 2 IBOX drawings

2.15 PSEQ
Drawings: PSEQ]1, PSEQ2, PSEQ3, ODDEC, RAG1, RAG2, RAG3

The P-Sequencer is one of the major microcoded sequencers in the IBOX. This sequencer specifies
register read and write operations and constant read operations (except for indexed constants). The
P-Sequencer works in conjunction with the I-Sequencer. Every P-Sequencer microinstruction is
associated with an entire sequence of I-Sequencer microinstructions. Each P-Sequencer
microinstruction specifies a starting address for the I-Sequencer. In .essence every P-Sequencer
microinstruction calls an I-Sequencer subroutine. Usually the P-Sequencer works on one operand
(say OP1) while the I-Sequencer works on the other (OP2). In this way, the P-Sequencer can
specify a register read aperation at the same time that the T-Sequeincer specifies a cacheé or register
read operation.

One of the more commonly called I-Sequencer subroutines is the operand calculation routine. This
routine is actually a4 cullecdon of rnutines to perform the calculations necessary Lo implement the
various addressing modes of the S-1 native mode architecture. The P-Sequencer dispatches to the
correct I-Sequencer routine according to the addressing mode used by the operand in question.

Multiple P-Sequencer instructions may be required for the execution of some macroinstructions.
When the P-Sequencer has completed the execution of one macroinstruction, it proceeds to take a
starting address for the next macroinstruction. This starting address is provided by the decode
RAM which is being addressed by the opcode of the next instruction coming out of the instruction
queue during the I0 pipeline stage. The fetch of the first and succeeding P-Sequencer instructions
is performed during the Il stage. The execution of the microinstruction fetched during I1 occurs
during multiple succeeding cycles starting with the latter half of Il. In particular, the first
I-Sequencer instruction specified by the P-Sequencer is fetched during the I2 cycle. When an
I-Sequencer sequence finishes, the P-Sequencer may fetch another microinstructian If only a single
instruction sequence was needed then the P-Sequencer will fetch the starting address for the next
macroinstruction. If more than one instruction was needed then it will fetch the next instruction in
the sequence, which is specified as a branch address in the previous P-Sequencer microinstruction.
One final alternative is that the P-Sequencer may repeat a microinstruction a number of times
determined by a counter. This loop counter may be loaded from the decode RAM at the start of the
sequence,

The PSEQ drawings contain the logic used to compute register read and write addresses for
operands and for address calculations. This logic is on the RAG drawings. The P-Sequencer has a
good deal of flexibility in these register address calculations. The register addresses may come from
various fields of the macroinstruction or the P-Sequencer microinstruction and may be added to the
loop count with an optional shift. '

P2 ER ADR I1 ,S4-Xn 1@

2.9E0 MIC ADRQ11@ A1 [\CORRN]

2-9EQ 9R X0, 1>

P-SEQ LAST

P-SEQ REPEATING A1

- VALID 10 .83-9

181044

FES W DATAKQ: 15> M ARRAY

Ayl

P Tt M

P I2v016> M

FES P-g0 WE<@:D

! 18
. VIS REG !

KE
T tole1 T

_
83
-

8

«®
. PV
o1 P2 82 T

X-SEQ USING S8R .65-10 L

P-9EQ MIC FORY Qs IS M

WRt

"o o
Fav

X 11 .PO-2 L 82 l

RN NEXT T1 CTUE .S5-10 L

P- SEQUENCER

REGISTER

ROORESS
GENERATION

OISd 612

L9

100138 T

P-SEQ LOOP ONTE L A o

P-9EQ USING SR ,55-10 t o

P-SEQ LOOP TNOEX 11 .S2-B¢9: 7>

P-SEQ LOOP OOUNT I .$2-8K0:» A

9
—3

[::]
oo
I ONTR
100136
c2
DOy
PE

8

—PR

ot P2 82

RN HEXT 1) CTQE .95-10 L

P-9EQ REFERTING M

P8 REFERT 11 .49 L & A
) 10109
- P-%0 LOOP COUNT ZERD L M o ©

P LAST IN 11 .52.3-8.5 -

P-SER LOOP COUNT R0 M

- P8 REFERY It .S2.3-8.6

FLUSH PDFE .C

P8 REPEAT 1] .54-9

P8 CONT 1) .54-9

P-SEQ LAST

fI

vIs oLy

19141

oK 12 PO-2 L 84

TP

1-9F0- UBTNG SA . 35-19

$-9EQ LOOP CNTE M

191947

—0>95
§”

1-SEQ USING SA .S5-19 L

Gl

o I3 .FO-2 L &N

VIS fEG

18

10141

—<CbR

P-SEQUENCER

DETECT
ot

-

P-SEQ FINISH INSTR [3 .82-B

191058

P-9EQ LOP COUNT 2ERD AF

P XO4I 2

sSuimes

IR 11 .82-600D1.% » . PR 1.SA 11 .S4-wa:5

o x P-SE0 T SA B
CERAD
IR 11 .82-6¢001,HIE> 0 1OE DESCRITTOR
IR 11 .S2-8¢001.F» ©F DECoDE ® st \
. oot PR T SA L) 549611 R
IRX 0P1 11 .S2-8¢DXT. TRG> . ‘ [
1
Byl 2
V- . . &
; ’ 3 1;1:.4 T P-SEQ 1 SAtEsl 1>
PRI AT .04%ad H ‘
IR 11 .$2-8¢002. o ‘
IR 1) _.82-64.002, HODEY oo moe oooeRion
s oECO0E ® 9
IR 11 .82-680002.P _Jor d
DRX_0P2 11,529 EXT. TA®, oo2
2
R Ii_.52-8TEN.D ' o
PERAOD . .
1R 11_.82-B¢ TEN. 00 - phdigides © =
IR 1)_.92-9¢TEN. D v 0
P 90 SEL T .54-9il>

P8 I DOES 002 1) .S54-9

T o P-SEQUENCER .~

- OASd S1e

69

0 moECR # N
0D MOk« (>_A b
o0} 1@em .
%""‘:; = 1" WOE DTS O _M B
- l_/ 2564 R
, *ES W DTP@D L TaM | oiseee n
‘ ﬁ.mm?
oD MODEC - A (=] "ODE DISP1» M A E 85
LS
. R "
oD X A o] [
O HOOE D& \
s 10 o HO0E_ DIV g 1> "}
00 nooEc> A ﬂ © FES OC JI9P WE .C L

A 13105R ’
oD MoE:> A [
nd v &
10158 W0 QD &

L1}

o202 3 OD Fe» A 1 F 4772 M

QD MODE« 4> /P
wx »
~ X MODE 2 FND F NONZERD
191090
X G4
W Fip P e
QD Feiy »
D F<> #
a Fe» A+ FRRPETER
B TAC4 91
W Fo P O Faget>
a0 Fee> P F_NONZERD /1 D MODEY @: 8>
o X
D A 915>

OPERAMND D=ZSCRIPTOR DECODE

0L

sduimesp X041

o 18R 12 M

G 002 IS R3 12

R _GD)_REG R 12 .83-H0:6 M

Y
RS 002 FEG AOR I2 .33-%8:165 M

I-3EQ DOES OO2 12

1%

2

P8 REG R SEL 12 .83-%@:1b -

D EG R OFFSET 12 .QI-H Q16> A

REG G R OFFSET 12 S N1:6 M1 @

REG REG R OFFSEY 12 .$3-% 2160 M1 3 €

RFG REG R OFFSET 12 .33-%3:6r M 1 000

1 : RRG TENAC 12 .S3-%:D M : 20
1 : RAG TEN MEN REG 12 .S3-%éa» M1 62

13 RAG TEN AC) 12 .83-9¢@: 3 /M : 00

RG 0D 1§ R3 12 . .
P-SEQ REG AR_IHEVEN, 4: 7 H ur;‘?eo " P.SEQ REG RA 15 . 52-BCEVEN: 000, 417
. . P-SEQ REG RA 14 ,54-18¢000, 4: n Lo T
P-SEQ REG RA LOW FOR 14 .S4- 19Oy / had \ P-SEQ REG RA LOW GOR TS .$2-8¢ @12
o o€ L
RG 0D REG AIR 1316 7oy
sTO TNDEX REGISTER FILE) - :
015 .Pe-2 L 82
RN NEXT IS CTGLE .$5-18 L
1
1
.
8] [& |
urs LY vIs oY
G OE REG O _..._..____C" = RS el AR I o
19141 12141 L = o528 0
N e] P.SE0 REG AR T4 . S4- 10x 00D, 417>
ToP Terdp——— I P-SEQ REG RA LOW RDR 14 .S4- 1001 >
w1 e
x OE x OE
. L.
@
6 13 .Po-21 42 i1e
RN MEXT 13 CTOLE .§5-10 L RN NEXT 14 CYCLE .§5-10 L

RAG REG R LEG B SEL 14 .84-1¢®» M

1 5 RAG TEN MEM REG.1 12 .S3-% @D M ¢ 90 |, .
7 == .
RAG REG R LEG B SEL. 12 . S3-Sceidr M P-SEQ REG RA 14 . $4-19000, 4: 7 : 10158
o -) 6l N
au \
-1 P 4:
P REG R 0P SEL 12 .$3-%8: 1 A+C A-B:C B fB 1 SEQ_REG RA T4EVEN. 4:
; % 18 /
e
a1 4
- s
covENT
P REG R OP SELCO11Y = ° l ’
23: A .
81: A8 2090 ;FuiiCl
1e: B

P-SEQ REG RA LOW ADR 14 .S4-1¢®

REGISTER ADDRESS GENERATION '

Oasd s12

Al

1L

RAG_OD) REG AOR 12_.S3-H 016 M

RAG D2 REG ADR 12 .53-%:® M

10020 -RTR

piodi-ooo MPLL

2311000 :RTB

P3 REG W 981, 12 .83-we:b

RAG REG W OFFIET 12 .S3-n& M

RAG REG W OFFSET 12 .S3- 116> M a @

RRG_REG W OFFSET 12 .S3-%2:6 M3 08

RAG REG W OFFSET 12 .$3- 118 M s 900

11 RAG TEN AC 12 .$3-%¢a:> M : B8
1 ¢ RAG TEN MEN REG [2 .83-9crD M 1 €D

1t RRG TEN ACel 12 .S3-HD M 32 @3

1 : RAG TEN MEM REG») L2 .83-%31 D A : @0

A
3 10164

L1 T
4
5
" .
? €

RAG REG W LEG 8 SEL. 12 .33-%@: 2 A

' Py REG B 0P SR 12 .93-e:1 1

COMENT

P REG R OP SEL<8: 1 »

o1 A
Q1 8
19: 8

AC B:C B D
1]

[4]

B .
[vis our)
[=% O P-960 FEG WA 13000, 41>
g 19141
1 /
1 T.m——.—(
e N____P-960 %G M} LOU A0R 13 ,84-10¢0s
N L
o 13 .M8-20 82 - T

RUN NEXT 13 CTOLE .35-18 L

ARG REG W LEG B 961 1) .54 19> M

P-SEQ REG MA 13X 00D, 4: 2

—_ e e N

2008 sFeAsCl

P-SEQ REG WA LOW DR 13 . $4-19¢

'REGISTER ADDRESS GENERATION

P-SEQ REG WA IHEVEN, $: 7

r\/x

sSuimesp X041 Z

NOI LUaINT9 S$S39A08 o31S5193d

D : IR 11 .S4-1¢Q0L.F>

3 IR T4 .84-1exCDI.P>

IR Y1 .84-1&x0DI.F.)1.6° 3 @&

RAG D! REG ROR TH(@:60 M

IR X1 .94-10¢001.HODE> : @@

IR It .S4-10<QD1.MODE>

< A4
9 : IR 11 .S4-18¢002./>
s IR T1 .S4-1e¢002 P
IR 11 .S4-1&002.F. 1.5 1 @@
IR I1 .54-13¢002.M00E> : 20
* |
IR T1_.S4-18¢001 . HODE> 1

P$ REG R OFFSET SEL 11 .S4-fx : 7

P-SEQ LOOP THDEX I1 .82-8¢'117

P8 REG R OFFSET SEL I .S4-8¢ @

58 REG R LEG B SEL T) .S4-H# 1P
ORS S2 PREC 11 .53-8¢@i 1>

RS S| PREC T1 .S2-8¢0:1>

P8 1 DOES 002 1| .54-8

P G RLEG B SEL 1) .S4-(&

PS REG W OFFSET SEL 11 .S4-8¢ (7

by

P-SEQ LOOP INDEX [t .S2-@¢. ¢

P8 REG W OFFSET SEL 11 .S4-B:®

P8 REG W LEG B SEL 11 .S4-8¢I:D

@ : DRS DEST PREC 11 .S82-B¢@:1>

AR 12
DR 12
SEY 12 .83-9¢
seL 12
SET 12
SEL 12

Le_ 348
IS REG
KE
1 10141
4) URt,
5]
&K CKE °
FaN

X 12 .PI-3¢ 82 I

1-SEQ USTNG S L

RAG 002 REG AOR 12 .$3-%0: % M

OISd §1°2

2 83-¢
-93-%

el
NINININ

+83-%0Q
2 83-%Q:
283-%Q:

EIEEIEIR R

Y|®
M

RAG 001 _REG IS R3 12 A

6 001 %G AOR 12 ,$3-H 01 & M

RAG_0D2 REG IS R3 12 M

PS REG W LEG 8 SEL 11 .S4-&¢®

>a T P52 L

§4

74 : ’ 2 IBOX drawings

216 ISEQC
Drawings: ISEQCI, ISEQC2, OPTYPS

This section computes certain I-Sequencer related control signals. It determines whether or not the
I-Sequencer will be doing read or write operations for register, cache, or constant operands. It also

. determines which operand (OP1 or OP?) the I-Sequencer will be concerned with for the current
cycle.

Operand type selection is under microcode control. The three principal choices are register, cache, or
constant. One additional possibility uses either register or cache depending upon the virtual address
supplied. This is useful for emulation of architectures with registers in the address space, like the
PDP-10.

2.16 ISEQC | '

P$ 1 DOES OO2 12 .83-9 ’
: - j 101058
18 DO 002 12 ,$3-6.5 — 61 1-SFQ DOES 002 [2

PITR 15 .539

Pl I SCHED W 15 .83-9

1-SEQ USE C TS
18117

1-SEG C R IS

. : 10186A

. "PLIRIS .39 L d @

Pl 1 SCHED U 16 .83-9 L

b

PL XTI REG Wl TS .83-9 L

1-SE0 REG W IS

PT 1 SCHED W I5 .83-9 .

< 1-5£Q € SEL. 15
FERPD <
) TE SEL oo 1-SEQ REG SEL 15
VA0 TEan [1.0:2.9] R it
ors | REGKDemeem—r
consT 1-SEQ CONST $E1 15
consT O

I SEQ CONTROL

- 1-9EQ OCES 02 15 .83-9 ¢

I-SQUSEC IS5 L

1-560 DOES OB 16 .83-9 1.

P-9EQ REG RN LOW ADR 15 . 32-8rd1 >

0 _T5:133: 35

1-S£0 DOES 002 15 .$2-8

™\ 1-9€Q DCES OP1 € iS5
191850
61
™\ 1-SEQ OOES OF2 C IS
191064 .
G2

B

s3uimesp XOdI 2

- I3 0P TYPE 9B IS .S3-9 L

I8 ©° TYFE SEL IS .$3-9%¢id

(3]

<8

(kal

LIEIRIEY

(1=

salald
B

b

AA‘\IA
9
RIS

3
EIRYENENES

t
LR

1e2»

»

L=

¥

129 P

Is TEN MODE REG QDR OETECT IS .92-8 {1.9:13.0)

I$ OF TYRE SBL 15 .33-9 L@

- I8 OP TYFE SEL 15 .83.9 L®

- I8 O° TYPE SEL T5 _.83-9 L<t>

18 00 Heesn 15 .93.9@

18 OP VYFE SEL IS .S3-% 1>

OPERAND TYPE SEL

101048
Gl

. DOISI 912

LL

78 2 IBOX drawings

217 PI
Drawings: P11, PI2

The PI drawings contain control signals which are generated by combining P- and I-Sequencer
generated signals. One class of signals is controlled normally by the I-Sequencer unless it chooses to
give control to the P-Sequencer. Control is usually transferred in this way during the I-Sequencer
address calculation routines. Since the I-Sequencer does not know during these routines exactly
‘what the P-Sequencer wanted after the address calculation was done, it gives the P-Sequencer
control over loading operands into the operand queue and scheduling writes in the write queue.

These drawings are also the site of the generation of the precision and format fields. The precision
is a two bit field whose value decodes to quarter (00), half (01), single (10), and double (11). The
format is a four bit field indicating the ABOX internal format (see the ABOX description). ‘These
format-precision fields are specified for I-Sequencer read and write operations and for P-Sequencer
-register read and write operations. The I-Sequencer controls the generation for the I-Sequencer
read and write forrnatéprecisions but may specify that they come from signals generated by the
P-Sequencer. The P-Sequencer, in turn, may let the decode RAM be the source of these signals. It
may also let the decode RAM generate the register read and write format-precision signals.

2.17 PI

ISR 13 .33-9 [-
TS LORD OP 13 .53-9
I8 SGED o 13 .53-9 F. .
T8 RELEASE ALl RIARS I3 .93-9 3
I$ EN RFR OP 13 .93-%0: 1» L
- I8 UPDATE OP 0 WA 13 .83-9 5| PLIR 13
- I8 RELERSE ALL OPS 13 .63-9 & . PY 1 L0R0 0P 13
- I$ LOAD BOTH OP CTU 13 .S3.9 7 F PI 1 SO¥D W 13
T$ LOFD S8 13 .83-9 E) e 3 PI RELEASE AL AFRS 13
10173 ¥ 4 OTEN RAR OP 13 0: 1>
" 5 - PI UPOATE OP 0 WA 13
P8 1 LORD OF 13, 83-9 | X o™ 3 - DI RELEASE ALL OPS I3
s 7 - PT_LORD BOTH OP CTL_13
P8 1 SCHED W 13 .63-9] PT_LOR0 5A 13
P8 RELEASE AL AARS 13 .53-9
PS8 EN AR OP 13 .53-%0: 1 4
- P UPDATE 0P 0 PA 13 .53-9 5
- PS_RELEASE AL 0PS 13 .53-9 6
—P$ LOAD BOTH OP CTL 13 ,53-9 7
P8 LORD 5A 13 .83°9)
I3 OECK W 13 .83-9 M- [~~~ -
I$ CECK R 13 .$3-9 CH| K
I8 10 REF 13 .53-9] < » H P OECK W 13
10173 ¥ [PT OECK R 13
P$ CHECK W 13 .§3-9 H " | PI 10 REF 13
P8 CHECK R 13 .§3-9 H] : .
P 10 REF 13 .83.9 [8
I8 GIVE P-SEO CONTROL 13 .§3-9 '
P11 LORD OP I3 " ®
: @ P1_LOFD 0PI 13
18 LORD BOTH OPS 13 .83-9
101858
61

PI_XT LORD OP 13

PIIRFMT I3 .83-%@: D

PL P REG R FHT 13 .$3-¢0.

[

PL LOAO OP2 13

PL OPL R FMY 13 Q: 3

.

1-SEQ DOES 002 13 .$3-%9

PI OP2 R AMT 130iD

79

1-9€0 OCES 002 12 I

PO 1R FHT PREC 12 . 98- 100116

ISRPEPEC 2 .S BHNe -

PS8 I R FMT PREC I2 . 94-1(Q

P8 I W EMY PREC 12 . 94-10¢ 116

1 s R _EC E
1s R IO PREC 12 .96-B.5®
I8 W Fror PREC 12 .56-B.5¢1:6> lo &
w3 T
N ne
e @ T
: 10132 X H R _EC E

DRS DEST FNT FREC 13 .S4- 1>

s o4
1 EC €

k-]

P8 I W FMT PREC 12 .S4- 18

m

oY
18 14 AT PREC 12 .96-8.5%

B

P8 REG J FMT PREC 12 . 94-10¢1:6:

P8 REG o) FMT PREC 12 ,S4-1&¢® I

oNn 12 .PI.2-7.2 1L &2
191958
e 63

PI CONTROL SIGNALS PIPELINE

N

& 13 .P1-3L 82

RN MEXT I3 CTAE .85-18 L

P RES L I3 .33-9

14 PIIe 6 13 .90
V18 IREG Pl I RPAEC 1Y .S3-NI: 1Y
&E - PI I @ FYY 13 .83 %@t
1 e T 3 2 PT 1 W PREC 13 .83-%&:1 1>
vE) A 4 PT P REG 8 PMT 13 53Xt
{ 5 PI P REG W PRIC I3 .S3-% 311> A

K XE ;

PI i AEC 1X0: 1>

>

08

P XOdI ¢

sBuimea

918 CONST ' : ' 81

2.18 CONST
Drawings: IMCON1, IMCONZ2, IMCDP

‘These drawings show the data paths and addressing mode decoding for the generation of immediate
constants. There are two double word data paths, one for OP1 and one for OP2. The constants
may come from the operand descriptors in the case of short constants, from the extended words in
the case of long constants, and from the physical address lines in the case of indexed constants. The
data paths perform all the left and right adjusting and the sign/zero extending specified by the
addressing modes. ‘

OP1 LEFT QDT A
OP1_HIGM STGN BXT .M
X

0P) I3 W A 1 I8 Od M
oP1 Sid:tr M

0P LEFT ADJ A

IRX OP1 16 .SA-10c Qb

IR 16 .S4- 18 CDY. P

oP2 IS Hd M : - OP2 IS OW M
0P2 Scds1> M E

0P2 RIGH SIGN EXT M :l
);
]

—

&
10174

Lt} 3

030001 SINGLE WORD SPECIAL CONSTENT TN LOW MORD

000010 _ :SINGLE WDRD CONSTANT FROM PE O IN LOW WORD:

=18 D®ED CONST SEL 16 .84-18 L

-_1-SE0 DOES 002 15 .S4-1Q "

I 101850

I8 CONTROL BOTH OPS 16 .54-18 GE

343

P SEL 16 .54-10 L@
16 .$4-18 L0 1>

1-SEQ DOEB D2 16 .84-10 L

IXX

orP2 $a:1> M

LEFT RDT M

w

IRX OF2 16 .34-10r D

IR 16 .84-10¢002.9

ISHI M, - OP1 ISDH M I
Sc@: 1> M 3|

-
OP1_HIGH STGN EXT A :l
3
oF

00331 ;SINGLE HORD SPECIA CONSTAN™ TN LOW WORD

™
oo F INETIATE
CONSTANT
LEFT RO DATR PATH HIGH
HIGH SION EXT
MY TY BUTH) Lo
16
MORD TO BOTH
s
™
wF DYEDIATE
CONS™ANT
LEFS #Df DATR PATH HIGH
HIG- SIGN EXT
WD BOTH Low

w

030010 ;SINGLE HORD COMSTANT FROM P8 D TN LOW WORC

oI IMPED CONST SEL 16 .54-10 L¢@

1-SE0 DOES 002 T4 .S4-18

£ €3

IIOGQ

I8 CONTROL BOTH OPS 14 .S4-18 <]

- P8 OP SEL I8 .54-10 L
- OP SEL 16 .S4-1@ L 1>

LA

- 1-SEQ DOES 002 16 .S4-1@ L

AN S)

ra

[a'd

IMMEDIATE CONSTANT -

[{7:]
HORE TO BOTH

s

a8

IMED CONST 1¢<O

DPED CONST Ond

s3uimelp XO4I 2

- OP2 HIGH SIGM EXT L M

LSNOD 817

) corENT
M 16 . S4- 1D .F.© ' - 9P HIGH STGM EXT L M IR 16 ,34- 10002.F. &
R .04 INONFO) SIGN EXTEND UNLESS
1010@ X=1BO(Fw2RD 10198
IR 16 . $4- 180001, (9 IR 16 .84-10:002.% 612
\) core
1 LT 6O7 M P2 LEFT 603 _m

IR 16 .54 10(D1.F.5 1e19% Xe | MDFe3 IR T8 .SA-10¢Q0R.F.6 s
RIS . 50-100C01 .30 - IR 16 . 34-10c002.50

) . 101688 .

o 1 ¥ M 614 o2 e M

OPt 9i> M

COMPENT
o SELECT

*® o F
1 o

- l o2 st m

IMMEDIATE CONSTANT

© o1 g

HORD(® M Gt
v
1
HORDCBS M
HIGH STN BXT # 2_|
MORD YO BOTH A e | lmoan
LEFY fO% AP 3 3

\

X 7 .P1-3L 82

RN NEXT 16 S0 12 CYQLES ,96-18 L

. 3B
T 1e19? LOM S0 A2
63

VA LEVEL O 16 .S4-1&S11> H

QURRENT RING 16 .S4-10¢8:11> N l .
2032 L

. 5-11
® Fo:5 # & & 3% PORIETER
HIGH SIGH EXT
W4 7O BOTH
PAD 16 54100 RXCRD
i LEFT f07
xsh » © Fed1s
AN
HORD TO BOTH
Han £ HIGH 9
Lok S
W1 TC BO™H 4

IMMEDIATE CONSTANT DATA PATH

8

sSurmesp X0l 2

2.19 AWAR ' 85

219 AWAR

Drawings: WQ1, WQ2, WQ3, WQ4, WQ5, WQ8, WQ7, CCAM1, CCAM2, REGCAM, XRCAM,
REGCER, REGCEW, XRCMP, ABFCMP, SNEM 1, SNEM?2

The ABOX write address register (AWAR) drawings are somewhat elaborate. They implement the
write queue, which is a 16 entry queue of addresses at which results will be written by the ABOX.

Results are first scheduled by the IBOX to be written later by the ABOX. The IBOX must first
check that it is legal to write into the addressed locations. Then it makes sure for a memory
destination that the locations are present in the cache. These operations are no different than read
operations (except for the type of access that is checked) up to this point. However, instead of
reading the locations from the cache and writing them into the operand queue, a new entry is used
in the write queue which remembers the addresses of the locations to be written, whether they are to
be written in the cache or in the registers, and where exactly in the cache they are to be written.
The IBOX depends on the fact that a location will remain in the cache until the ABOX generates
the result. 'When a result is actually generated by the ABOX, the next entry of the write queue is
read to determine where the result should be written.

There is another queue, built with content addressable memories (CAMs), which is written in
parallel with the write queue. The CAMs store the address to which the result will be written later.
All of a CAM’s entries are compared in parallel to the address of an operand that is being read.
Any of the entries matching indicates that the cache or register file does not have the correct value
of that operand; rather, the ABOX has yet to write the latest version of that location. It clearly
would be incorrect to let such an operand be read before the correct value was generated. There are
two possibilities in this case. One is to wait for the location to be written before delivering any more
operands. The other is to tell the ABOX somehow that the operand that is being delivered should
be ignored and that the true value is one of the last several results that the ABOX has produced.
There are certain (common) restricted cases in which this latter option can be exercised.

The I-Sequencer control over the scheduling of writes into the write queue is somewhat similar to
the operand queue control but is not as complex. The I-Sequencer can schedule register or cache
write operations, release all the unreleased write operations, and enable comparisons on the
unreleased write operations. The state information of the write queue is contained in the following
signals: WQ ENTRIES USED<0:4> is a count of the number of write operations that have been
scheduled (released or not), UNRELEASED COUNT-1<0:4> indicates one less than the number of
those used entries that have not yet been released, and CMP UNRELEASED ADRS indicates
whether or not comparisons are enabled for the unreleased entries. In addition, there is a current
read address and a current write address. Being somewhat more restrictive than the operand queue,
the write queue allows only one location to be used up at a time. Also, as in the operand queue, the
clocks must be stopped if a request to schedule a write would cause the write queue to overflow.

Most of the complexity of the write queue is in the CAMs. The CAMs are split into three pieces:
the index register CAMs, the register address CAMs and the cache address CAMs. All of the
CAMs are addressed in parallel for writing and, in fact, all of the CAMs are written at the same
"time. Any given write is either 'to the cache or to the registers, so either the index and register

86 : 2 IBOX drawings

CAMs will have a valid entry written or the cache CAMs will.

There are two sets of register CAMs, one for OP1 and one for OP2. This is necessary because it is
possible to read registers on both operands in one cycle. The read addresses supplied to the CAMs
are the appropriate register read addresses for OP1 and OP2. These addresses are double word
addresses and more information must be passed in order to determine exactly which registers are
being read. Within a double word there are eight quarter words and so an eight bit mask is
generated indicating exactly which quarter words are being read. A similar mask is generated for
writing. These masks are produced based upon the low order register address bits and the
precision. '

There are also two sets of index register CAMs, corresponding to the two sets of index registers that
can be accessed simultaneously. The outputs of the index register CAMs are used somewhat
differently than those of the cache and register CAMs. In the latter case, the question of operand
wraparound must be decided. This is not possible for the index registers; if there is an address
calculation that needs to index by a value that has been scheduled to be written, then the indexing
must wait until that value becomes available. It is therefore necessary to stop the pipeline at the I3
stage where indexing occurs if there are any index register CAM matches.

The cache CAMs are the most complicated of all. Memory locations are broken down into quad
word blocks aligned on quad word boundaries. The quad word blocks are then further classified as
even and odd quad word blocks. Any given cache write (which may be a vector write) will occupy
at most a quad word. However, it need not be aligned on a quad word boundary. In any event, it
will overlap at most two quad word blocks; an even and an odd one. A pair of CAMs stores the
high order address bits indicating which even quad word block and which odd quad word block
are being occupied. Corresponding to these CAMs are another pair of CAMs which store 16 bit
vectors indicating which quarter words within the even and odd quad word are being read. The
first set of CAMs mentioned produces high order address match signals and the second set of
CAMs produces overlap signals. A final set of CAMs stores low order address bits, enable bits and
format bits. If the format bits do not match, then it is not possible to ask the ABOX to wrap
around its results and use them as operands. If the low order address bits and the high order
address bits and the format bits match and the enable bits are set, then there is an exact match.
When there is an exact match, results may be wrapped around within the ABOX. There is still a
problem, however. There may be an exact match (allowing results to be wrapped) but there may be
a more recent match that is not exact. That is, there will be a match of the quad word addresses
and there will be some overlap but the full addresses don’t match. Since this partial match
corresponds to a more recent write, it is not correct to wrap around the older value. An exact
implementation, then, would wrap around only if there is no more recent partial match. The Mark
IIA implementation, however, will wrap only if there are no partial matches at all. This will be only
slightly suboptimal as it will be very rare to have partial matches in the first place. If there are no
matches (exact or partial) then the operands may be read from the cache. If there are partial
matches then the clocks must be stopped. This entire discussion applies equally well to the OP1 and
OP2 register CAMs except that double words are used instead of quad words.

Once it is determined that wraparound can occur, it is still necessary to tell the ABOX which result .

9.19 AWAR' . ‘ ‘ ' ' o 87

it should select for the operand. This is accomplished by first selecting the appropriate register or
cache exact-match lines for OP1 and for OP?2 and then rotating them to put them in order by time
of scheduling. These outputs are then priority encoded to find the relative distance to the most
recently scheduled write that matches. These values are then sent to the oberand ‘queue to be
forwarded to the ABOX. '

~

JN3N0 3L 1M

PAD 14 .$2-B2:130
PA_BD O 16 .52-622:30 -
TDC_uSE ™D LTWES 18
RSEL LOW AR &1 {RITE QUELE
DC_HET AOR L(8: 3, ~7 A N
BC HIT £D FOR 1L€O: D X AL 5 [
10 REG WA _Téx EUEN: 000, 415 A A 3
WO REG U 16 .52-B M >
W CUT6 .52-8 M G M
WO RA 19 .92.801D M
WO LR 17 .$4-10¢8: D M
SO W 17 .§0-6 M
&
vIs oLr
REG . W0 ENTRIES USED 17 ,$2-Ba@: €A
NEXT 40 ENTRIES USED(@1a3_ ; 1014
T 4O ENTRIES USED T2 .34-18a1 48 At
w2
ox
AN
O UNRELEASED ADRS 17 -S2-8 M
UNRELEASED COUNT- | 17 .52-8+0: 4 A
5 WA 17 .50-6:0:3 M
NDXT P UMRELIRSED AORS A1 e VIS DLY HOREC 6 S2 3 4
NEXT UMELERSED CONT- 1+ 6: 86 W REG O . 0 C W16 . 523 M
T £ p 1o P UNRELEASED QORS 17 ,=4-19
e CWis = Ty USELERSED CONT-1 17 ,54-10-0: €
wi l WO WA 17 .54- 10013 A
x ox W0 REG W 16 .34-19 M
-3 WO C W 16 t4-15 M
X 17 .PR-2 L 82
RN NEXT 16 @D 12 CYQLES .S5-18 L
€ !
> T W RA 19 .52-80i > M
1 o
0013 TR
2
DO GBOX W 9 L o
oL o e
. R .

X 110 .PO-2 L 82

FLUSH PIPE .C

VALID 16 .S2-8 L

RN NEXT 16 AN [7 CYQLES . $5-10 L

Pl RELEASE ALL AKRS 1€ .32-8 L

VALID 16 .S3-9 L

RELERSE ALL AERS 16 M Cg

EN AR OP 1> M

PL N A¥R UP 16 .84-S LD

VALID 16 .53-9

12117

SCHED W T6 M

T SOED w 17 -.30-6 M

P XOdI ¢

sSuimel

ANRELEASED COUNT-1 17 .54- 18 8:4 M

RLR L LS S

R X S

L]
A OES
| oves € O
act
.
.
MO W, 17 .94- 1@ D M .
A
@
au
>
az
&0 —ls <t
. L"/ l
SOEL W 16 M » :
. ABC ZERD
L PIPE 5 18

WO EMTRIES USED 17 .94- 10214 _M

Nl
62 81

DO RBOX W 19 "1™ 8

SOED W 16 L M

RN NEXT 16 RND 17 CYQLES .96-10

FLUSH PIFE . C

" WRITE QUEUE

4
- . [
©
;
>
~
NEXT MO WX 01D M
NEXT WO ENTRIES UEDXQ: 4> M
oo
(=4

1C ONTRIES USED 17 .B2-0CO10 M

OP UNRELEASED FDRS 17 .34-10 #

“\ Ha EPTT M
2000

P1 EN AR OP 6 .94-N 1>

e1a]
1en73 T NENT O UNRELERSED SORS M

EX AR OP 160 M

WG ENTRIES USED 17 .S2-Beér M

uaLlD I8 .32-8

18121
— G2

\ .
c L N\ » ST W3 FuLL 16
¢ .

WRITE QUEUE

06

s3uimelp XO4HI &

WRITE QU=UE

1-9EQ_OP) REG RA LOW AOR T5(@:>
" - DCRF P-SEQ SEL CONST 15 11> G

-_1-SEa DOES oD2 6 .82-9

REG OP EN R~
LOW FOR

P SEL. REG

seL 1 CERI

P PREC T PREC

UP EN R

I-$EQ OP2 REG R LM AOR 15¢Q: &>

- DCRF P-SEQ SEL COMST 15 L¢> o
1-SEQ OOES 002 15 .83-8 .

PI P REG R PREC 15 .S2-8¢011>

P 1 R FREC 15 .82-68¢0i1>

FES W DATRC 31 7>

Pl W PREC 16 .S2-E¢0:1 1>

FES REG W O EN M WE .C L

W3 TNDEX URLID T3 . 84- 10X EVEN:O00, @ M

K> LOW AR FMT EH M 17 .81-2 1€@:12,@: 15> M

FLE
a ?
CARCUHE A
c
OERLAP
a WE MAsK

o Cnl> .91-7 LYEVENIODD, 0: 16> M

k> T COSERAP 17 .$1-7 LCEENIODD, 0: 15 M

INDEX REG! I T2 .$1-2¢EVEN:O00, @: 16> N

INDEX REG2 CMP 17 .S)-2EVEN:QOD, 8: 1B M

WA REG OP EN W 1£ L

Ha VALTD MASK LeB: 15> M

CKR I6-.P4-2 L 82 o
100112y
oc Gt

P BN R
WO TNDEX REG RA I3 .84- 1068 4: %M 92 - INDEX REG Cn
e
n
WO REG O EN W S T&EVENIODDY M P
REG OP EN R W2 REG WA 16 . 52-BXEVENI 000, 4: 7 M -
LoM AR REFODG G4 a e
P 38 REG T T
|t e OPENR
P PREC_ 1 PREC #0_TNDEX VALTO_ T3 . 34- 10 EVEN; 000, 1>_ M P
WO TNDEX REG RA 13 .54-10¢1, 4: 7 A1 92 . TNDEX REG CAn
hd we2
: n
. P enu
w o
CP1_REG_REFOING OW 16 _.94-10 LCEVENIOOD, @13 M A L .
W0 0P3 REG GHP EN R 16 ,54-10 L T T
® DORF_0P1_REG RS I6 54~ 10¢EVENI000, 4: 7 FEG o
L2, -] o
10148A |
. - REG_WRTTING Gd T6<EVEN:QOD, €13 M RITING B4 RS
’ . w .
OCRF 02 REG RA 16_, 54 18¢EVEN; 000, 41> a e
d T T
IS REG 1 oF 16
10141 DECO0E
WO 17 820D M REROTNG G
w2 T A leslz. T o
D1 R RC2
X o WRITING O - oUERAP
j ke
148 oK 16 .P2.-9 | 82 a €
W T
{)tue::ser SOHED H 17 .50-6 1. M .
. § 1011w
E) E2$ET X 17 .P3-4 ¢ EH G'g
[9]

o OP) REG 11 12 .S1-7 LEVENIODD, 9: 165 M
o OP1 REG OVERLAP 17 .81-7 L(EVENIODD, @115° M

K> OP2 REG M 12 .91-7 L<EVEN:00D, 9: 16> M

G 0P2_REG OUERLAP 12 .§1-7 LCEVEN:100D, 0: 15 M

16

DOEX REG RA IX@:), & A

/V

I8 INDEX vAL1D 12 .95-18 tedts o 3 \
101057

= READING PC 12 L4Q@: 1> O

INDEX REG RA TacQ:1, 4:80

o I3 .P3.3-2.3 84

&6

" MO INOEX UALTD 13 $2-68<EVEN:OCD, @: ">/
3] .
C MO THOEX REG A 13 .82-B¢0:1, 418
18
VIS REG
e | H MO INDEX WALID 13 .S4- 18¢EVENIODD, 8% M
sy [H THOEX WALT0 13 541060175 M
S | 0 INDEX REG RA 13 .S4-10¢@:1, 4: & M
* oE

RN NEXT 13 CYOE .85-10 L

TNDEX REG OF TH 4P

168 108 188 108
&Mﬁ_‘ily_mﬂl’.ﬁ?_\ VIS REG VIS REG uis REG VIS REG
oeAY T oEAY T DELAY * DELAY T
- 1 toanst i1 100141 100141 1 114
REG OF EN W ; o€ 1w e o€ ™ o ™
oPENu 13 o———-«}—{ w1 w2 ; wa
. *® O x OE - ‘ o OE
ar B U 15— ol o 9 D
3"
& 14 .P9:2 82 i ;15 Red
PN MDXT 54 CYQLE .95-18 L RM T I5 CSUE .95-10 L
]

WRITE

PR EMD D IS¢ 2% 3 SEVEN ADR

PA D TS 29: 32y ;000 ADR M N\

o
k4

QUEUE

P-CEU REG WA LOH FOR 15 .$4- 10 0:

PAMD IS¢ 33: 35>

3=
10173
-4

I-SEC I REG U 15 (8.1:2.0)

R HEXT 16 0D TP CYQLES .S5-10 L

H0 REG MR 16 . S2-8¢ EVENIODD, i M

WO REC ¢ LOW ADR 15¢8:

28
tere5a
Gl

WO REG CHP EN W S T6¢ EVENTI00Y At

W0 RN 19 .82-80:D M i

WA 17 .82-801D M " = K GO _ .
0 ENTRIES WSED 17 .92-¢@i& M e m. Heex [0 MO URLID MK Le@i 1B A
ONRELERSED COUNT-1 T . 82-B¢B:4: M) o4 LEN-1

OF USELERSED fORS. 17 528 M - oe W

CH I .81-3 LEENOD S M o

0PI REG N 1> .51 -7 LOEVEN.OOD, 03 1> M § "

02 REC 1 I¥ 517 L<FUENIOD, B: 16 M W SOE NOT DRCT MTOE T STOP € R REG OP 12
Lou FOR FT BN M 17 .91-7 160:2, 0115 A v e

C OVERLAP I° .51-7 L(EVEN:OD, 0: 16 M vERs'e ® BacT ® BOCT 17112, 0110 M

dAVMYV 61°¢

€6

0P BOXT 1% 1:2@ M o To 0P BXACT LAST-N 170112, 16 M
0P BRCT TX1:2, 1> A 0 " 0P EXAC LEET-N 112, 140 M
0P BT IX1;2,2 M = = = P BXACT LEST-N 126112, 13 M
P DACT 12112 D M o e o 0P EXAC™ LEST-N 176112, 12 M
0P BT 12120 M w L 0P BXACT LAST-N T3 1:2, 115 M
0P BT 171,36 M r - 0P BXAC™ LEST-N I7¢1;2 100 _M
0P_BOKT 17¢1:2.6 M e 16 0P EXALT LAST-N 15¢1:2,9 M
0P BACY 12¢1;2. % M . ™ 0P DXACT LAST-N I 1:2 B M
P BXACT 171128 M = - 0P EXALT LBST-N 134132, 72 M
® DRCT 17 1:2.%_M . . 0P XY LAST-N T3¢ 112, &v_M
P_BACT 7112, 19_M e o 0P _EXALT LRAST-N 12¢1:2 6 M
P BACT T2 1 M m " 0P BXACT LAST-N 13 112 & M
® BRCT 17132, 12 M R 0P DOWT LAST-N I 1:2 D M
112 T2
P _DRCT I%1:213D M s 3 0P DONT LAST-N Y& 1:2, 2 M
P DRCT 12¢1:2, 10 M e e 0P XA LEST-N 1% 1:2, 13 M
P DRCT TX 121D M e - 0P EXACT LRST-N 1% 1:2,00 M
. LT BT .
210 or 1S9 GiSLRC
2RF 6018
JRRT Py
. s SGN
-
TS REG
o€ -
£ 14t T
Wt
LK o€

OP BOCT LAST-N T, 11 - M

OF EXACT LAST-N TN2 e115> M

16 Dy
PRIO ENCODER

19165 Ny

0 WP OP1_T?

T|

HO WP Pl RESULT NN 120>

HO WROP OP2 1?7

HO WP OP2 ESLT NI 10D

ORI P37 L E2 s
<

1191968

WRITE QUEUE

P XO04dI ¢

s3uimel

FES M DA< 2: 15>

FESC R G BN RN WE .C L@

DRA C R 083 LENGTH-1 TS5 .83-%0: D

FES C R G4 EN R WE .C L1y

R T

I-SEQ C S Y5 b

PLIRIS .53-9L

FES W DATX 33 15»

Sob
mg

FE® € W GI-EN Q801 LE .C 1O

DR C W GILENGTH-1 T5 .53- %D

MR D 532135

FES C W Ol 'EN RO ME .C LI

PA D 153N

PARSMETER

R LD
MR L 16>

WL

mo:t, 115 A

OVERLAP L<EVEN:000, 0: 15> WV

]

~—d
° 168
19132 T
RESET
L~ ™w
1 g R E
' -
() 168
19132 T
] M3 rP
—t ¢ R 31 .

PILISOHED W IS .S3-9 L

tetiow

e

MCUTSL M

CACHE CAM

X 16 .m-21 &2

328
VIS REG
KE

C FERDING Qi 16 .394-10 LCEVEN: 00D, 0: 159 M

LRI T T

.

C WRITING G4 14 . S2-8¢EVEN: 000, 8: 15 M

1 M T
WR1

RN NEXT 16 AND 17 CYCLES .95-18 L

%%T.

-dVMYV 61°¢

g6

C SROYING G4 16 . 82-BXEVEN: &1 M

oo 16 -9 82

X I? .F5-0.2 &Z

C REVOING Qi 16 .$4-1€ L¢EVEMOOD, @:15 M

&

X 17 .P.2-3.2 82

RN NEXT 16 D I? CYQRES . 95-1€ L

&K 17 .P1."-4.9
- RUN NEXT 16 QD 17 CYQES .85-10

PAD 16 92023

o 189! 1avy

OR 17 -1 L 82 o G2
~

()

M END © 16 .S2-8rd:

MR D16 5283

& = R RK 1815 A O
Lo . N
e

RN N0 16 GND 17 CYOLES .95-18 L ~ .
q 1e01120 fuens & ™
oA 16 5%5.9-6.9 L &4 :czs) EL A >O<
a.

‘ CACHE CAM '

sBuimes

¢ EVENIODD, 47> A

O 16 .P7-9 82

REDING QM EVBNIOND, 81D A+ H

s

168
VIS REG
1914

o 1?7 .P5-9.2

REXEVENI 00D, 4> 4 /

L

™® 17 .P1.2-3.2 B2

4

OE T

RN NEXY 16 AMD 17 CYQES . 66-10 L

7

KX I7 .Pl1.1-4.9

= AN NEXT 16 O T? CYAEY .85-10

REG CAM

rix

/{)——: L3 :;4|r:: 'nﬂé——
: K

dAVMYVY 61°¢

ol

A_WE

M LIEVEN:O0D, 0: 15 A

Mo Lien £ |

acco® A

L A

1
PRRAMETER

A LoD
MASK L<O: 15
R EVEN: 00D, 45 7>
WA EVEN: 000, 4: 7
REFDING QW L<EVEN:ODD, 9: 3

HRITING G EVEN:QDD, 8: 3>

H L<EVEN:0DO, @: 15> A
OUVERLAP L<EVEN:QDD, 2:15 N

L6

MEVEN:1 000 @: 15> A

0y
r’\ /x
]

4 ::) T
164 CAM
Ok 10012 M

@
RN tee 1 4 O e "o

T 5 v
164 Cm
Qyrx 10012 m
[3}
—) MRSk no
8 IE £
H .

a_E
u-m___j
EL P)
ORTI7 .FAo-1 L &2 o
PRPETER
A Lo1iB

O EN REVEM: 0>
COF EN W EVEN) 0DD>
MK LD 1S
R EVENIOOD, 41
¢ EVEN1 00D, 4:
WL

M EVEN: 00D, @: 15> A

NDEX REG CAM

sduimelp X0dI 3

FER W DATRK D 7>

FE® G R O EN R WE .C L

LOM R > A

P _PRECeO: 1> A

I PREC(Os 1> A

PIXIREGR IS .83-9 L " %

P SEL REG L A O

1.360 1 REG R 16

T PREC<Os 1>
- LOW AR
P PRECCO: 1>
P SEL REG L -
sa. T

OPENRL WV
REFOING G4 L¢EVEN:OOD, 1> ~

OPENRL A

s 1 A

oQ 15 P37 L

AVMYV 617¢

66.

PI X REG u 13 __

R Py OP BN o IXEENY A

~ REG & M F 13 At

PI'XT REG W 13 ¢
PT sl PREC 18 L¢O® 101968
Plod PREC T8 LIS Gt

O DN W IX00D: A

PLAmEC T setoice Dl w PREC o105
101853]64 OF N W 15000 £
P 4 PREC IE .S4-1D LD [~} M
P RCE Y
PORSPETER
OF BN H INEVEN:000 W
O EN H T5EVEN: 000> A

REG CMP EN W

00t

P XO4I &

sSuimeu

WHEVEN 41> AP 2 @
[]

/

98

1eat6R

Vor
‘0
O

”~

- EN W0 P

MO0, 41> A 1 1
1

]

A\

Sl

N
ng
]
o)

Rl »

ENRIY A

= EN WKEVEND #

WUXEVEN 4> # 1 @
[]

vV

08

3
(2]

- EN 00D P

HAODD, 4: 7 P ;|
]

38

wmac

7 7

/\

TV

minL A

\

E

D_J =~

182112

Ll 44
¢

EN ReOi
BN W L¢EVEN; 000
RN, 4:8
WALTO L
WAC EVEN: 000, 417>

or v

INDEX REG CMP

WOl

. AVMYV 6173

101

[]
::]
wared T
I 190159
LT RRETER
EY E2EET A L4O: 15
vE L
[
. [R
AN NEXT 16 AND 17 CYQES .95-10 L e
1o 1)
A 16_.P5.9-6.9 L 8H Qe ©
1 [
PIIRFAT 16 .54- 10D
DOF _OP1_REG RA LOU AOR 16 .S4-19¢8: 2 -
1 E .
PT 0PI R FMY 16 .S4-10c@1 4 R 218
DCRF_0P2 REG A LOM ADR 16 _.$4-10c 012> 5 MR
1) SELECTCR ¥
Pl 0P2 R FMT 16 .84-10/8: 7 RS \ " -
: w D e 0 <8 M L09:2 81150 #
Wculs 3284 N—— I “ HO- n Otﬂ?;eTo
PIu FAT 16 .S2-Bc0i D . ol
HQ REG WA LOW ADR 16 .52-8¢0: & a_E
W0 REG OF EN W 16 : - €1 E2SET
5 (9]
- [
7
1 ;) T
164 CAt 1E
O o142
b e O
.6 E
AL & T T
LA

OoR I7 PO-1 L 82

FORMAT LCOW ADR ENABLE COMPARE

a0l

P XOdI &

sBuimes

HOLBW 109x3 10N 3OS

BRCYc), @:150 M

EXRCT<0, g1 16> M

:

0P EXALT<1, 0:15 A

e

19155
L1

DOCT«2 115> M

T
1 a1 se E1E2 R

1-SEQ DOES OP1 C 16 .94-9 W i
123141
1 o€ T
Wi
1-S50_DCES_OP2 C 14 .84-9 =
b x o€
. LA
X 17 .Pe-2 &4 l

RN NEXT 16 D 17 CYOLES .85-10 L

M3 L<onD 8:15 &
Ml LeQdDD, B: 15> A
M2 LeCDD, 2:r iy A
UF EN L€@13 11> A

"/

168

oP XA 1 P

190155 T
" .
— 9 ElE2 R

9

-0
C 1ee1e2
(9]

QL vis

BOCTir 2 2:15> M

0 LEVEN, 8315 A

OERAP @ LIEVEN 9:15 #

" LXG, 9:15y A

OVERLAP © LO0D Gai5> A

QL +1&6

Lo b

Ml L<EVEN 011D 4

OERAP | LEVEN, 0115 A&

Ml _LrO0D, @: 15> A

QUERLAP | L7000, 0:19 A+

Lo L

oL v6

e e enD £

OUERLAP 2 LAEVEN 03150

"2 L7000 9: 15 #

I

OERLAP 2 L¢0DD, ;15> P

SOE 1 160, 0: 18 M

SOME M L2 0:15 M

AVMY 61°¢

PORIETER

LAF - EN L€@:2, 015

MP L<EVEN:000, 01 150

M1 LCEVEN: 00D, 9: 15>

M2 L<EVEN: 00D, @: 15>
OERLAP @ L¢EVEN: 0D, 0: 15
OVERLAP 1 L¢EVEN:0DD, 9: 15
OVERLAP 2 L(EVEN:QDD, @: 15>

P PACTC1: 2 015 N
TN

£01

- DRCY L2 & M
SOME M L0123 & M

= BXRCY ¢
SOME M L@ 1D M

15 M

« BOCT 1et, 1D A
SUE ML) 1D M

SO'E M Li8s2

- BT 1<
SOE M L-O:

SNEMNO, & M

e m

> A
S M

2ENG 1> M

oen e M ()

- EOCT L¢3
SOE M Lf0:3 1 M

SOE N LAE 1D M

= EYACT te@n3 14 M
kor Sl L¢0::°' 140 M g

SEWY 1 M

SNEW LD M

luua-: —

NN A [9)

SNEM Re 1 [0])

| 103101 z

SOME NOT EXACT MATCH

100118
G3

$01

SNETX 912, & M

P XOdI &

sSuimeu

220 PIPEC - | | | 105
220 PIPEC

Drawings: PIPEC1, PIPEC2, PIPECS

The pipeline control unit is responsible for stopping the clocks when the stop lines are asserted and
for keeping track of which pipeline stages have valid signals propagating through them. The clock
stopping logic centers on a two-level 100179 carry look-ahead unit. The carry outputs of this unit
are the “stop” lines. The least significant output corresponds to the latest pipeline stage (I6 and I7).
For a given stop line, the “generité” input is an unconditional stop signal. The “propagate” input is
asserted if the next stage being stopped is sufficient to cause the current stage to be stopped.
Typically this is the case if and only if the current stage has valid information in it. (Then, if the
next stage is stopped, there is no place for the valid information in the current stage to go, so the
current stage must be stopped too.)

FLLBH PIFE .
’ 1e1eon
Gé —ng

oA .P3-7 ¢ 82 0

04 LNOD INITI3dId

1210548
G?

a1 16 .$3-9

901

URLID 12 .82-8

VRLID 13 .82-B

VALID 14 .82-8

VALID 16 .S2-8

vaLlD 16 .52-8

RUN NEXT 16 AND 17 CYCLES .S5-19

WALI0 17_.82-8

Vvalb 12 .83-9

3

1D 13 .s3-9

LID 14 .53-9

LID 16 .53-9

LID 16 .83-9

V1| & ity

SI5(85

LID 17 .53-0

5

° 1
10132 T NEXT VRLID T¢@ m
RESET
T
12 INSTR REROY . "1 e P
S 3
RN NEXT 10 CYUE .$6-10
VLD T1 .83-9 N s
i Y e t NEXT VALTD 313 M
RESET
VLID 10 539 , n E"O
s T3
P5EQ USTNG 59 9518 /r
_LID 12 .53-9 ° o
Ny o132 T NEXT URLTD T¢» M
WR.ID 11 .83-9 . neR Ero
s
I-5E0 USTNG 8A /$5-198
VLID 13 .93-9 " -
Y jete T NEXT VRLID IeD M
RESET
"3 T
RN NEXT 12 CYCAE .96-19 L V— R 5
S T s
wLID 12 .83-9 1 o @ P
vis REG
RN NEXT 13 CYCLE .$5-19 MEXT W10 127 . »g;l .
VRLID 14 .53-9
° |e‘|s:|a T NEXT URLTD Te o X
RESET s T
Ma T
RN NEXT 13 CYGLE .85-10 L 1 R 3 X .Fa:2 L &2
< ore 8
GLID I3 .53-9& o @
RN NEXT 14 CYCGE .S5-10 -
LLID 15 .53-9 ° o
. o1z r NEXT VALID 1¢B>
RESET 8
- s A o) VIS &G
RUN NEXT 14 CYQLE .85-10 L oy —" ¢ R E 19141
191054 r owm T
WD 14 .$3-9 & o (=]
RN NEXT TS5 CYCEE .S5-19 &
AID 16 .83-9 ° 8 & .21-3 1L &2 T
lol32 r NEXT URLTD T¢& m
RESET
L3 L &3
RN NEXT 15 CYULE .S5-10 L Do IP e LN 3
3ID 15 .$3-91 o %
VLID 17 8§39 ° -
Jo132 r NEXT VALIO I A
RESET S
; "2 T
WLID 16 .83-9 . 4 .

P XO4I &

s8uimes

220. PIPEC | Ty

; g g

& N o

8 2 §

4 m B

4

-
O.
¥
T
Z
o

o y
N f
—
!
Lid
o
—

i3 P

e | 3 el :

g 3 g 9fpls g‘m_mm

J8 o o BE0E

COENT

INFUTS MUST BE VLD
ar 21,1 w3

S0P C OR G OP 17 L w2

146
TR

ValD 1) .92-8 1
oL

1L
- I8 LABT IN 12 .83-9.6 L
VATD 12 .92-8 L

801

STOP NEXT 12 CTOLE L

VALID I3 .92-8 L
STOP NEXT 13 CTQLE L

VALTD 14 .92-8 L

NP0

S0P NEXT 14 CYQE

waLID 15 .32-8 L
STOP NEXT 15 CrCLE t

L
$TO0P_WEXT_16 A0 17 CYOLES L

LY
E

o)

PIPZLINE CONTROL

s3uimerp XOdI 3

221 VREG . - 109

221 VREG
Drawings: VREGE]I, SRCLR‘

The vision registers are part of the low-level documentation but contain certain features that are
worth describing in this high-level description. A vision register (VIS REG) acts, as far as the
calling macro is concerned, as a simple broadside load register with a clock enable. ’

The register that is used to implement a VIS REG, however, provides additional features. It can
hold or load parallel input data or shift its data one place to the left or right on any given clocking,
_as determined by a two-bit select line. Normally the select lines are driven from the clock enable
signal to switch between load and hold. However, there are special connections which allow the front
end maintenance processor to control the select lines. When the front end stops the clocks it can
switch the select lines to the shift-left mode and pulse the register's clock line _(through an XOR gate
with a front end connection). This will shift the register one place to the left, shifting in data from
the front end. In this way, the front end can load the contents of any VIS REG. It can also read out
the contents of any VIS REG by examining the high bit while shifting all the bits out.

Lostx.1> £ 1

OFEL Pe2 ¢

FES SHIFY CTL .CeD: 1)

TRz~ b A

(€ QI3
KL A 10197

FES SHISYT CX \PATH .C

b

L

X STEP' = SXZE

UIS REG CKE

19141

PRRAMETER
oL
O€ L

WOISIZE- 1>

F<@:STE-1-

~N

ol

P XO4I &

sBuimes

OTIA 123

- SHIFT RS
10141
-] _ Rt R
JIF X(aSI2E-4 “THEN® T¢XiXeP A “ALSE” IEXSIZE-1 A 1 W 4-{S1%-20) T ppoF X(aSIZE-4 “THEN® TéxiXeD A “ELIE" TCX:SIZE-1> A t NCW 4~ SIZE-0)
SIFC X Y= SIZE-4 “THEN® FEB GHIFT IN .C “ELSE" T(Xe® AL CORR\] u
}_____e .
Sehir A o 1 LEFT
¥ 2 RIGHT
3 _HaD
12
Il\
X # .
DEF INE PRPETER
X STEP = 4 o
1R SIZE-1>
$eB: 1>
TeR:1BIZE- 1

SHIFT REG CLR 10141

111

1 2 IBOX drawings

18

3 ABOX drawfiings

3.1 ABOX
Drawings: ABOX 1, ABOX2
This is the defining macro for the ABOX. It is called from the IBOX. The explicit parameters are

the two input operands (¢ words wide) and the result (also 4 words wide). The main data paths are
shown on the first page. The second page contains macros for various pieces of control logic.

141!

- PERAMETER -

RE0X OF<Q:7, P>

RE0X RESIK.T¢Q17, e

wer MOBY MU A SRR .
nx a
m
TRENS A_ADKABLSSY ,.\ -
. MOBT ML A AOARLS , PO
wir e M
- ovie2 ; mTmRATAwae |, o T
Or102 ; ADD RESILT A ABLS) - m M
31, & .
. MATTRLIER
w PY X A R . SE e b MY X A A2 . $6-BK@z D> h’{ pbd v HLT RESULT AcraS
T
0P @) B> A [, TENSLATIR . TRIB A AU \ B
o) TR B AR RIS - TRy
- 0D X A A2 .S5-Bearis e
MOBY MiX B ARx AAUS ' FCN
: war
Bvid2 ;+ MAT RESULT A ABUS 2 M aus» M
oo (1 @102 ; A0 RESULT Av ALK 3 wos
oo ez by £ | e .
e AR /]/K
® 5 HPY MUX B A2 . 36-8¢8: 1>
¥ T |_eox mewuTioz wer £
™ HPY X B A2 .8-61011: \ FORMT
Poayum m | memane | TRANS B GOt AR TR A Ao AES ° oF
8
_ BY_MIX A AocaaUs
w RO X 8 AZ . SE-BeO it 1 R T
griee ; AT RESUY amcae |,
20102 ; ADO RESULT A4 FQUS s M
. s A
fODER” :
AOD M Q A2 .86-6¢0: 1> Fon Y 200 RERLT Ao
WNTT .
' ’\ ~—18 AL AUS RESULT fec PO
TRENS B A U R H I
b
HOBY AUX B A0CARLS o
M. The———
nosy . MOBY MUX. B Ad REUS> @vid2 ; MALT RESULT AGARID |, B m
nx e 90182 ; ADD RESLT A4 BUS 3 "“EOE
) s
A0 MUX B 62 .S6-8°8:10

P XOdV ¢

RBOX

s3uimes

3.1 ABOX

1

10
FEVORIES
o

ABOX

115

116 ' 3 ABOX drawings

32 ASEQ
Drawings: ASEQ, ASEQ], ASEQ2

The A-Sequencer is the main control engine of the ABOX. It provides direct control for itself, the
Operand Swap Buffer, the Translators, and the Moby Muxes. In addition it provides starting
addresses for the Adder, Multiplier and Output Formatter microengines. The A-Sequencer also
handles some of the hand-shaking necessary for communications with the IBOX. The A sequencer
contains a 4k word by 150 bit microstore, an address counter capable of parallel loading, branch
condition multiplexers, and repeat control.

Through use of branch conditions and a pair of 2-input multiplexers, the A-sequencer is capable of
taking its starting address from one of four sources. It can take a new starting.address from the
IBOX, from either of two branch addresses supplied by the current micro instruction, or from a
return-from-subroutine address that may be modified by one of the current micro instruction
branch addresses. This modification is provided to allow a return to any micro instruction in the
microstore. '

Repeat control is provided so that any microinstruction can specify the number of times that it is to
be repeated. Each time that the instruction is executed the repeat counter is decremented. When
the count reaches zero, a branch address is taken based on one of the two microinstruction branch
addresses. '

Alsd included in the A-Sequencer is a pipeline for some of the control bits supplied by the IBOX
via the Decode RAM.

X ABOX 6R 17 . 94-X0:11> {(#:3] 1 o€

‘A BRt SEL A2 .93-6 [9:7)

RBOX 9 B:11r M

A BRR A0R A2 .93-6eii> [&d)

A B2 S0 A2 53-8 (03]

1155

coENT
K-8 oot -COND ~CONDR -COND1 ~-COND2
[RET AOR = #Cs 1
H RET ADR BR AR 2 L
2 BR ADR! % - PGl
3’ R DRI &® aoRe PCs 1

|RBoxX PCcautty M

DR K RN ARRAY

B .P2.5-82

D1 M

CoMp2 A -

g3 FR%

R1

128
VIS REG

1 Vi

bR

109141

T

VISV 2§

ABOX R23 UCODE <81 14> M

D PCeD: 11> M

LIl

TRMS UOODED M

H TRENS UCODE< @21 A
BOX A27 UCODED: 149 M A RSEQ UCOOE 8: 45> M
A\ H MSEQ UCCOE<Q:8d M
L] 9 UCODE<@: 21y M : MB UCODES¢:21> M
L N, OSEQ UCODE<@: > M
|: NS

A TROA He COMPLEX A2 .83-0 HSEQ UCODED: > At

TRENS UCODE¢ 112> A

R TRANSA ARECISION A2 .33-8x@: 1> nSEQ UOODEE M

A MPT AOR A2 . S3-Bx I

AMPY LOU AR A2 . 93-8

TRANS LKODE¢ 319> At

A TRANSA ROTATE A2 . 31-6¢0:

TRANS UCQDE 6> M

A TRANSA TYPE A2 .S3-8 R UCODE:< ey M

NS UCODECD M

A TONGA (USE DECODE RAM &2 . 33-8 MR UCODE J: 160 A

TRANS UCOUE<E> M

A _TRANSH M4 CIMALEX &2 .33-6 MR UCADE« 11> M

A MR MUX SEL A2 .83-H: D
A MmN D DR A2 .83-x0 D

A MR RERD ADR SOURCE BEL £2 .$3-B

TRANS UCODE¢T: 18 M

A T<INSH PRECTSION A2 .&=-8ca:1 1 MR UCCDE< I M

R N RERD COMSTANT A2 .S3-B

TRENS UCODEC 113" 3> At

3 TROMS8 ROTATE A2 . 63601 R UCODEID M

A M RESET FIFO A2 .S3-8

TRAMS UCODE¢ 14> M

A _TRANSE: TYFE @ .93-3

A A WRITE AOR A2 .33-BK0: D

TRANS UCODEC 1>

B UCODEC 141> A1

R TRANSE JSE DECOCE RAMt B .583-8 A UCODE< 18> M

A MR WRITE AOR SOURCE SEL A2 .$3-8

A LEW RESULT SCHEWLED R2 . $3-8 MR UCDE 19 4

m
TRAMS LICODEC 16" A
TRANS UCODE< I At

A TRA CPERANDS FROM 180D AZ . 93-8 R UCODEC I9: 21 _ M

RSEQ UCODE® M

® SAE REYT AOR Az .83-8 OSEQ UCODE- @37 M

A MR WRITE ENAI A2 .S3-8

MR DELAY UCODED: 2>

A FORMTTER ADR A2 .53-8¢:

A5EQ UCoDE 1112 M

ABR1 ADR 32 .S3-6r@:tir

ASEQ UCODE(13: 24~ M

ABR2 ADR a2 . 83-€20: (1

ASEQ UCODEC 25> M

ABR S A .83-8

ASEQ UCODE¢26> M1

A BRa sf. &2 .83-9

ASEQ UCQDE¢27: 31 A1

A BRI ZOND SEL M2 .83 KA1 d

ASEQ UCODE¢ 32: 36> A4

ABR2 ZOND SEL R2 .83-H@: 4

ASEQ UCODE? 37:43- M

& REPEQT COUNT 22 83X 0:6)

ASEQ UCODE< 44:45 M

H REFEAT COENTER CONTROL 32 .53-8¢@:1» .

ASEQ

B UCOOE D& M

A MB X SEL A2 . 93-Bri

B UCODE«T 10 M

AMB RERD ADR A2 .33-810:

8 UCODE< | > M

A "WE RERD ADR SOURCE SEY A2 .$3-8

8 UCODEC 12> M

A B _RERD CONSTANT A2 .$3-8

B UCODEC 1> M

A B RESET FIFD A2 .33-8

@8 UCODEC 14: 1> M

A B WRITE ADR A2 . $3-8¢9: D

B UCO0E¢ 18> M

A B WRITE ADR SOURCE SEL A2 .$3-8

W8 _LCO0E¢ 1S M

A B IRITE ENA: A2 .$3-8

B C00E¢ 19:21 M

M8 DELAY UCODE@:

8II

P XO4V §

sSuimes

6 TRE GPERSHDS FROM THOX A2 .23-6 ¢ [
- RBOX WATY .82-9 L < ':?‘“

A BR2 %) A2 .57-12 M

X R8O SA REXDY RS .96-12 M

ASEQ

P
IS REG
o141
1 T
w2
L x

O .P4.4-6.4 ¢}

TRKE OFERANDS FROM 180X AR .94-8

X ABO0X SR TAKEN 17 .$5-11

X Q80X OPS TRAKEN 18 .65-11

VAV I

611

120 3 ABOX drawings

3.3 BR COND SEL

Drawing: BRCOND

This is the macro that implements branch condition selection for the A-sequencer. It is under direct

A -sequencer control.

w v

o1

A2 .P45-5.5 ¢

BR COND

VECTOR DONE

—te
VECTOR DONE O ERROR - '
AL FIFOS EMPTY 2
NO_RESULTS PENDING J'
fBOX EPTY_ T .
REPEAY DONE s
LA3T OPS 6 1B
SUSPEND INSTR 5 T
i
H
13

~

TAS ANOD ¥4 §§

181

122 3 ABOX drawings

3.4 REPEAT CONTROL

Drawings: RC, RPTCTR

Repeat control provides a branch condition signal “repeat done” to the branch condition
multiplexers. The repeat count may be loaded directly from the microcode for small counts or from

MOBY MUX A for up to 36 bits of count from any source.

BY_rLX 8 AN 28159 a____"
. 20 R

100155
"

. >)
g W_EIEZR
L
BM P36 82

A REPERT COMY A3 . E3-8:816 H w -
wTos T
meew [0 m |, oo,
REPERT CONTROL 62 ,83-8¢01 1> v TR
. £ E2 R

S o

FLUSH 80X .

\ = . DEC OR LOD SB) M

c .

REPEAT CONTROL

TOULNOD LVILIY ¥¢ -

§31

e ’ FRIETER
X YTE « SLE LBiSTZE-1
. X
wo
DEC
DONE 4

TC L SIZE-1) 2> M

3
233 Ty -DONE
remxve 0L SR, " o
&,
/1 ¢ M o4 ®
LoD 4 0P
S8 Vil ls 1 ONT D@ 5 QR
3 SF R & BF U
2 ONT U 7 LD
o av

(¢ 354
OEC L T

FES A0 AEFERT CTR SAIFT I .C L
a8 @11y M

 SIZE. 19 /29 . . [
FES RPT CTR CTRL GO D> |‘ o162
, ;00

FES SHIFT QXK WA .C

P 8107
x # %0

FLUBH B0 .C
FES ®9T CTR CTRL .CfD\

100107 C e

Jir/

Lost: 4o

REP=AT COUNTER
SIZ= MOD 4 = 9

¥al

s3uimelp XOHV ¢

35 4K RAM ARRAY 125

35 4K RAM ARRAY

Drawing: iKRAMA

This is the RAM array for the A-sequencer. This array is 4k words deep by 150 bits wide. This
macro contains two other macros, 4K USTORE and USTORE CONTROL.

PRRFETER . 0EFINE

R X STEP « SIZE
TCOSIZE-1> A
.

(12D
FES 5EQ DT @116> 1 “« e vasuE.pe

USTORE

£ -3

M ¢S

DRB: 11> A o
a
[§-1- 3}
FES A0 WORIX @1 16> 3 USTORE € [
T Wm0 conRoL -
FES AYED ME .C 1 S g use
FES e CONTROL USTORE L A FE] %
EE— P

4K RAM ARRAY

931

sBuimelp X049V ¢

36 4K USTORE, 127

3.6 4K USTORE

Drawing: 4KUS -

4

This macro simply provides the buffering necessary to drive the various address and control lines in
the RAM array. 1K USTORE is called to provide more of the necessary buffering.

(S12D
K
| Y- usToRE RY<Q, 0:SIZE-1> PERAMETER
W oM
|) L2
L
€S LoD
I 58 ME OO SIZE-16Y 461>
(XL TCQ:SIZE- P
[£:37.5]
X
umsuc - _Rvey eis12e- >
!
Tefm |
A_WE <8

LA L_

TeOrSIZE-1: P

CELeD A

RY<3, 9:812E- 1>
e:ijm .

s ur{ngs

~3IE S

df& ({STZE 151 /16>

ME L<O: BIZE+ DI /16-0 A

» ST2E 32

4K USTORE

821

P XOdV ¢

s3uimes

37 1K USTORE | _ : | : 129
3.7 1K USTORE

Drawing: 1IKUS

This macro provides more of the ﬁuffering of the RAM array control lines.

(3223

ez

TeQISLE- 12 £

peie Nl —f & T———
oeliay

1
c o= A_E C8

IRy

ME LBt ZE I S16- 1) P

. T USTORE

PERATETER

rots
L 113

L .
$E L0zl 312ZE+ IBY /16-1>

WSIZE- DA

DEFINE
X STEP = SIZE

0l

sBuimesp X0V ¢

~ *38 USTORE-CONTROL - s
3.8 USTORE CONTROL

Drawing: AUCTRL

This ma;cro pro;rides the decoding of the low order address bits to provide the chip-select signal to

the various RAMs in the RAM array. It also provides the means by which the front end computer
can load the microstore during the initialization of the machine.

~

PERIPETER OF NE

LSRN X P « S1A
FE +OR0E: 15>
FE HEE L
FE CTRL L
Ny
LE LB ({S1ZE 15) /16- 1D A
S @I .
R 1P A
2 SBep
L S LA
. e A fo——=ELL
teoiL o, |, (AR
5]
‘L v o fp—SuP
3
H NCe' 2 -
E O n 1D F R
) A leQiva T WE LOB:((SIZEMID #16- 11> A 1 NCW 16-1(SIZE+ 1D 716}
L - ™
[>34]
3
SE R LA l
FE WE LAPYIS

- USTORE CONTROL

G861

P X049V ¢

sSuimea

- 39 AMSEQ 133

39 AMSEQ

Drawing: AMSEQ,
N .
AMSEQ is the definition of the multiplier microsequencer. The multiplier sequencer is very simple.
It is composed of a vision register to hold the address, a RAM array called MPY RAM ARRAY, .
and a means of toggling the low order address bit. The ability to toggle the low address bit is
provided so that pairs of addresses can be read out in succeeding 25 ns periods. ,

AMPY AR 2 .S3-BP:

A_MPY LOM FOR A2 .$3-B

<5

H ure s f oo

wota) oo

DATes (6 M|, T n A8 m "
"

\ o
L o
2

C 120
o1

A FO-4 L Ui

Y _UCODE A4 ,490.5-XD:14> M

A3

L

AMSEQ

12

s8uimelp XOgV §

3.10 MPY RAM ARRAY N : - 185

3.10 MPY RAM ARRAY

| Drawing: MRA

The MPY RAM ARRAYis a 256 word by 44 bit array. The macro MRA provides two things: the
buffering necessary to drive the RAM array, and the means for the front end computer to load the
microstore during the initialization of the machine. “

FES MPY WORDX9216>

L}

NCe14

1074
1e8 7
w|e DEY
CE}

MELRER

c MFRD Ls& M
c HORD Le1> M
0 HORD e M

PARVETER
R @: 7 "
Tenad A
]
256 KA 448
. . [T RTCH ¥
FES 1Py SEQ OAM@:I8r b] 1 100350
I ¢
a e Bs Et E2 R
O
02 42,68 L
HORD LeBian M] —t
FES oY W C L et §°‘:"" (s
AORCO: N P [
- hoo1 12y
e
S

MFY RAM ARRAY

T4d »

961

P XO4dV ¢

s3uimeu

811 AASEQ . 187

.11 AASEQ

Drawing: AASEQ

AASEQ is the macro that defines the adder microstore and sequencer. It is identical to the
multiplier microsequencer and microstore array except that the microstore is 1k deep and 56 bits

wide.

a2 .F3.6 82

LA [a] -~

T loatee

A4 .PO.-4 L Wb

AARSEQ

ADD_LICODE A4 450.5- X 0158

M

8¢l

P X044V §

sSuimeu

312 ADD RAM ARRAY 139

3.12 ADD RAM ARRAY

‘Drawing: ARA

This macro provides for the adder sequencer the function which the multiplier RAM array
provides for the multiplier sequencer. ‘

FES QDD MORDX @1 15

M

MCei4

-4

TN e WD LD M

e DEC)

2a : LORD L M
2 oL A

ol DL M

ARYETER
AR Q: P
-
HHn> N
S8
® 5B
USTORE e
msapmpomwene L Yo Rvid
w2 T
El E2 R

A _E €S
|] ©
RDP A
R 97,63 L
SR LD At “@
SR L

ACD RAM ARRAY

Te@:1551

i

oFl

sBuimelp XO9V §

3.13 ABUS DEFINITION . ‘ . | 141

3.13 ABUS DEFINITION -
Drawing: ABUS

Internally, the ABOX uses a number format.different from that specified by the S-1 architecture.
The internal format consists of two exponent fields (the second is used for complex numbers) a
72-bit fraction field and two tag fields. Integers are stored left ad justed, zero filled in the fraction
field with exponents of zero. For integer half-word complex, the data is stored in the rightmost two
half-words of the fraction. There is a uniform internal floating-point format with the binary point
of the fraction being between bits 2 and 3. Most floating-point operations assume that the fraction is
between 1 and 2, and all floating point operations produce such fractions. Exception cases
(overflow, underflow, zero divide) are detected by the functional units; however, orily the tags are
modified to reflect this. The tags are propagated correctly (according to the current
USER_STATUS modes) by use of RAM look-up tables in the functional units. The output unit -
decides what to do for the exception cases by looking at the tag or tags and at the current user
status.

For integers the tags are:
Use

Zero

Positive number
Positive overflow
Divide by zero
Negative overflow
Negative number

DO 0N O E

For floating-point the tags are:
Use

Zero ' ’
Positive underflow

Positive number

Positive overflow

Not a number

Negative overflow

Negative number

Negative underflow

NOILINIH430 sndu

Gl DNTEGER FORMAT

1718 23 a4 2D % 96 9 2 |
wwsED UNISED mm_l e IMI—I'%E
3 e 5% 80 @26 20
1 DIEGER “OasT
1798 23 2¢ o 4 » 50 % % 98 99 |
waseD L uusm] WL T I DRGIRY R (IF CORED mml'mee
e 50 76 o ¥o zo
4 TNTEGER FORMAT
1713 33 ae 59 60 % 96 98 & 1
wasED mseo] SDILE 1LORD i _Jrnm ToG2
; e 59 %o 36 20
DM DITEGER FORMAT
1218 2324 % 96 98 % 1|
I WUSED l uusso] DOUBLE WD Imm TaG2
@ 7e 50 5ie 20
W FP D COPLEX FORRT .
, ,
: 171€ i1 24 26 27 BPra2us 56 67 59 &0 95 % 99 99 1
- EXPONENT) lomnal RERL HALF WORD Tgw IRGINRY HAF WORD _]f'ml mm[moa
o $e 23 FE Do &S 7415 150 o 26
BDERT BIVRY
POTHT POINT
B FLOATING POINT FORMAT
. 17 13 o a4 a8 52 53 59 60 %5 %6 98 99101
| - EXPONENT) USED I FINGLE UOD 2670 FOR PP _Jmm [meaJ
s 70 6 <0 E] %6 e Fe 2
BIeRY -
POILTY N
D4 FLOATING POTNT FORMAT .
¢ 1718 23 24 2 a2 a3 %5 96 98 %5 i
EXPORENT1 WNUSED DOUELE -0 ZER0 FOR P Imonlm:e
e o Te 2m 58 59 516 30
aTRY
POTHT

rd 4|

P XO4dV ¢

s3uimeu

3.14 OPERAND SWAP BUFFER 143

3.14 OPERAND SWAP BUFFER

Drawing: SWAPBF

To implement the reversed form of TOP intructions, this simply reverses the operands depending
upon the signal X.SWAP OPERANDS. It also latches the data. '

U212, RP

ACI WP v
B P N

10 S s A]

Bl R #

- 180155
n

T
8 E1E2 R

¢ 81

BxD:3 Wi A~

109165 °

I04:2 i A LI s El €2 R

e
. haat12v
X 5P PERANDS °8 .63.4-16 ¢ Bt

[

A TEE OPERANDS FROM 180k A2 .93-8 L {013 Sl ﬂ)——‘_

Al P4, 15-6 L 84 c B3
e ’

OPERAND 3SWAP BUFFER

144l

s3uimelp XOdV §

3.15 TRANSLATOR A (and B) Y 145

3.15 TRANSLATOR A (and B)
. Drawings: TRANSA, TRANSﬁ

These set a text string TRANS to TRANSA (or TRANSB) and call the common macro TRAN.

p L1

L Lo

PARSFETER CEFINE
[AR Y, TS ~ TRANGA
0BT = MOBTMX 3
MO A ® - 0Pt
et A W0 = OP
EBUS A LEG - A
) LEGNO =
- AEQD A
{ TRSELATR T TEBUSD A
™ o e 1y A

TRANSLATOR A

19

s3uimelp XOHEV §

Iro:

o~ i

PORVETER cEFINE
o3 e TRNS « TRANSE
- HBY - MBMX 8
MY N oP = OF2
mro: 1> A WO - o2
TeraU> A LEG - B
LEGND - 2
- WOy P
I TRNATR T v £
18 P Ak +£

TRANSLATOR B

(d pue) v JOLVISNVIL §I's

L¥1

148 3 ABOX drawings

3.16 TRANSLATOR
Drawing: TRAN

The translator converts an operand (from the IBOX) from external to internal format. The external
format is the architecturally defined format (the format the programmer sees). The internal format
is defined for convenience and speed from the point of view of the hardware design. For instance,
it extracts the exponent from floating-point numbers and puts fractions into a canonical form. The
standard internal format for integers is right-adjusted. Also, the translator is responsible for
wrap-around {(called SHORT-STOP on CDC and Cray machines, this is the use of special data
paths to get pending result operands from the ABOX internal state, rather than having to wait
until they can come from the IBOX state). Thus the translator needs to keep a queue of
PREVIOUS RESULTS (16 deep) and to remember what results are still in the process of being
generated in one of the functional units. This QUeue is stored in internal format for maximum
speed. The IBOX can tell the ABOX to use the nth previous result. If X WRAP {1,2} is set then
X WRAP {12} RESULT NUM<0:3> indicates which result to use. Zero indicates the last
result—that is, the last result which has come out of the ABOX or will eventually come out if no
more instructions are executed—-—and 15 indicates the fifteenth previous result. Note that result are
counted during vector operations even though they cannot wrap. Also, from the point of view of
wrapping, the definition of a result is very precise: it is the the number of 4-word X RESULT
DATA blocks given to the IBOX, regardless of how much data is stored in the blocks.

PR ETER COMPENT .
TP TRIELATOR TDES
EXPONENT 14,1688 -
axe: N DATA 11.O5NS
o> A ™6 19.5N8
TS A
s
[g b #
o PH0: 1> 09
RERLTY
N Laddt T WP BUHRERUD M ut
AROUND . .
QUELE 1 " TRANSLATOR e TCATAGY P
™ TG GENERATOR
G
nI
™G
PER ERROR PR ERROR ON \TWANS cTRL
, : — B
LD £ PERITY U M o R_TBJISKDD M D T ROATE P
¢ CEOER T p— T ROTATE 1 o A
PEROK [] QM.M_qa’ 1 M .
oPTLUX
GMIFT SHIFT<@: 2 M SHIFT

’ TRANSLATOR

JOLVISNVYL gSl's

#

6%1

150 ‘ . . 3 ABOX drawings

3.17 RESULT WRAP AROUND QUEUE
Drawing: RWAQ,

This implements the result wrapping as described in Section 3.15. A 16 by ABUS RAM stores the
data. Every scalar result is written into this RAM (for vectors the garbage is written and the pointer
is advanced). If X WRAP {1,2} is set then the RAM output is enabled and the read address will be
. set to the correct address by the WRAP ADR GEN. It is possible that the result is not yet in the
RAM, in which case it is either on the output of a functional unit or is still in the process of being
computed. The WRAP MUX CTL logic decides this for both the multiplier and the adder and sets .
the input multiplexers (and/or stop logic) accordingly.

/e P

ALY FOR ADD USING TRANS \LEG~

PERPETER
-
e A
TR A
WP
A 00 X WEGy A2 8-S [3:F] p o T
L
® W e
P X
A MPY AX WEGy A2 .83-B00: 1) [@:) 1 T
e
L2 A,

e #

WALT FOR MPY USING TRENS LFG\

OUTPUT DAITR_O2v ARS8

[-]

WRITE ADR At M

M M

n WEQ HE! OEQ OEY
[

WP A2 . 54-10 L

X .P5-9 L ¢H

.

RESULT WRAP QROUND QUEUE

TQEUSD A

ININO ANNOYUV dVIM LINSTY L1'g

161

152 3 ABOX drawings

3.18 WRAP ADR GEN

Drawing: WRAPAG

The counter RC keeps track of the location of the “last” result in the wrap RAM. Thus it is simple
to calculate the address of any previous result. To decide whether the result is in the RAM, on the
output of a functional unit, or not yet available, there is a up/down counter to keep track of the
number of results which have yet to be written into the RAM.

MM RESAT SOEDULED A2 . 96-9

Bo:
™e: >
Lad-H

o>
o>

1f
(o3

3 6
“
r

a2 .m8-10 el

FLUSY a8 .C 111 s -MPY HAS RESLY 03 .92-9

1 100136 T

weea» ~

WRAP ADR- GEN-

>o:3» A

NIO dAV dViM 816

e:> A

=«

-~

COTENT

. P 1S HE NSEER OF RESULTS THAT HAWE NOT

BEEN #RITTEM INTO THE WRAP RS

IP ARE THOSE THAT ARE UNNAWAILABLE FOR
HP-AR0UND (1.E. RP MINUS THOSE THRT ARE CURRENTLY
ON THE OUTPUT OF R FUNCTIONAL LNIT ’

" MP 1S THE SE RS TP EXCEPT THAT TS ONLY COUNTS

THE MULT AND THE RN,

1T 1S TRLE THAT IF BOTH THE MAT AND THE RUDER HRE
UALTD RESULTS, THEN THE MULT IS ALIRATS FIRSY
TO BE QUTRUT

861

154 - 3 ABOX drawings

3.19 WRAP MUX CTL
Drawing: WRAPMC

This generates signals to drive the select lines for the input multiplexers for the multiplier and the
adder. If the microcode is selecting the translator and we are wrapping results, then we need to select '
the correct source to get the data there in the fastest possible way (or set WAIT if the data is not yet
available) If X WRAP {1,2} RESULT NUM is less than the number of results not yet in the
RAM then we need to select either the adder or the multipler. Similiarly if X WRAP {1,2}
RESULT NUM is less than the number of results not yet in the RAM or on the output of the
multiplier, then we should select the adder. Finally if it is less than the number of results anywhere
(in the RAM and on the output of the adder or multiplier) we should wait until the result is
available.

PRASETER

e: >
Ll 2k
R D
e

TRy N
WA

WP D REQALT NOT 1N R N ; N\ ‘T A
ICl&‘&
G

-MRAP \LEGNON A2 .94-9
IeGe > _#
WP LEGNON RESLLY A2 .34-N &1 P

e #

r\V:

Ty A

WRAP MUX CTL

TLO XN dVIM 618

agl

156 ' ' .8 ABOX drawings

320 PARITY CHECKER

Drawing: PARCK

This strips off the parity put on X OP1 and X OP2 and sets some global error flags if the parity is

incorrect.

e 4

Koun» »

Iithae »

a3 A

HXiae #

1563 #

56> #

Ie&3: 71> AP

®m 2 | PRce
PeRTTY
& o
108160
10 Ft Q4 PR 1y M
m = L...—“‘—_.._._ g2 M
PORLTY
&N O
100160
1 P2 mpPRIM
ol PARco M
PRRETY ‘
& O
100: 60
;! P PR
18 m| o RS M
PERTYT
& ¢
102160
1A Pa >n | O PReA A

D>

TN
PR ERROR

. CovENT
IT I3 ASKMED THAT NESE IS
OBFECT PARITY EVEN WHEM
OLY PERT OF THE DUT OP 18
VALID DATA.

D A

ORELE HORD
FERITY STRIFFER
P81

 wop e

DT 0P G PRRCB: 2 41

PARITY CHECKER

dANOTHO ALIAVd 08¢

LSt

158 : ' .3 _ABOX drawings

321 ROTATE
Drawing: ROT

This allows the translator to align the data such that any quarterword of an operand is at the right.
For vectors, the second half-cycle can do a different rotation to select the “next” operand in a vector.
The amount of rotation can come from the low order bit of the address (for scalars) or from ABOX
top-level microcode. Scalar data is doubleword aligned coming into the rotator. For instance, the
doubleword starting at quarterword address 4 comes in with-the singlewords reversed, ie 8-11in
the leftmost word and 4-7 in the rightmost. Thus we need to reverse (rotate by 4) if bit 0 of X OP1
LOW ORDER ADR<0:2> is set. Similar considerations apply to quarterwords, halfwords, and
singlewords.

-

RO A
. MIFTO:2 N
oo

X \OP\ LOW ORCER SOR T8 .82-@e®0r2 [0:7]

A \TRENS\ ROTRIE A2 .S3-8¢0:12{9: 3)

A2 . Pa-4.2 L

e
»
100155 M
"
T
) ™ susznp

| X NOP\ LOW ORDER ADR 1B . 92-60 01 {0: 3}

Fe@:> [@i1]

A \TRMS ROTIE A2 .83-8r@:(8:1) : Ov3

S¢e:>[9: 1} M

s »fe:1}m

e = R
102156
Ll 1o
1 S0 EI E2 R

| SeUIM s WM G 0i1)M) Ov3

8 \TRwE, PRECISTON A2 .33-0¢8: ne:7]_| »
1oka 2
10170
. z2
LE € D
CE}

ROTATE

ke A4 10 ™3 Re:
Lytr P u o1 RUUPA
lag:20 £ 12 - b2 R‘IB:&.A"
a2 3 A - SHIFT 22 P
e —
It ad> P 14 IWRI5B [R 361 4> P
1eas:53> # 15 o6 R 45:53> P
154:62> £ % 06 RS41620 P
Le&3:210 P 1 o7 Re&3: 21> A
ROT
TS
e A1 1ip # .3
L LB 1 A 1 13 A E -] 1> A 1 4
190174
M2

136: T A 1 UG A 2

S1eB4:5 A 3 1 A 3

SHIFT¢<Q:1 4> A

ALVLOY 13§

691

160 3 ABOX drawings

322 EXP AND OP MUX
Drawings: TMUX1, TMUX2, MUXCTR

These macros do the unpacking necessary to convert to internal format. Since the. precisions of
integers are taken care of by the rotator, there are only four modes of unpacking:

Integer

Half-word floating point
Single-word floating point
Double-word floating point

oGO N e

Halfword floating point always translates two halfwords into the halfword complex format. If the
second halfword is not desired, the hardware later ignores it.

L d
SHIFT«S1»
HI<ARRIS T
BF 10

TRG CTRL¢A: D A
T FORT A

BF NP © .

.aF [cop | joarerc I BPre At

ROE-ANEY,))

e | \m?

BF ko & - |

X01

11923 P — FECOTDP S 4
BF TS A l l'efu -SECOND EXPY 016 A

“HI BON@® Av13 H

W EXPO: | 7 A

-HL B M 3 HT BPc11 o M /

LR EXP @D B EXP .
SRE UNBIRSED 25 COMPLEMENT NUMEERS

XNW dO ANV dXd 226

geiB

Wi DP3: 12 (9:1] Af . W FP 1

S DO%8: 12 {0:1) M SUFP

HE P [0:1) Ates 3 WL BPCIsIo (@1) MO FP],

ax RO v M

¥ T A

: A2 .4PB-10 &4 ,

EXP AND OP MUX

191.

ke » ;DY 168
- IS |
KOAR 1 -I®OP 1 Téatd A Wl FFY J};;E‘?
. e (1:9 & : .
K@ P21 1P TI0IDM 3 WP, «
LM : -USA L ICa2D P ; TP, -
L
2 4010 L3I
X CTRLCB: 1> M
FORCE 26%0 M A .
/V
S A Yd =
120D A 3 @0 “’f;’ﬁ‘;’
X1 1R M,
I 1420 v
1e22: 3p A o
L
L9 ¢ a2 .€d-10 82 .
M CTRLc M 2Q: 71> (A m 2 N - L9
T A
3 | HIRE B
® (3 3
HoR,
I 8: 35 P o
1D Pe2 1 TOB A 1 242D P 5 @ed pas s . vs R
M X036:6D [19 Q) M, ¥
1435: 3 B 3 097 o
1340 2 -) o
Vel
2 . 98-10 824 L
N CMc<I M
1< 49: 21> P 3 Gl 3 DtFP 168
VIS REG
wusuZ (1.5 M e
1€36: 21> P 2 DW T we
%
L. .
X (TR M f2 .4PG-10 834 |
X CTRLe M

a2 .f5-7 L

EXP AND OP MUX o

&9l

P XO4dV §

sSuimeu

COENT
TIFE = @ FP
TRE at INT
H__ PRECeil> M
) \m FRECTISTON A2 .83-8r 01 1t H .
W T n TYPE M

a\ms\rmze -53-8 ANt ® f@i) M 1 100180

" o M

A AT\ Wi CORLEX A2 .53-8 L TR 0
Bl B2 R
. 43 e M
[
. C AR .P4.6-7 L
18 B)
LG M

X e e f2 515], B0 Y MIFK Q> p Lo T

T iee150 1 100158
e 1IN u TR
ElE2 R] E1E2 R

2 .9%-2.51L . A3 .4P4.6-7 L

NP m
RECL® M
~TRG CTRL«> +
13112
AD
1
FORCE 2ERO M
P M
®hn2)
ce

EXP AND OP MUX

Do el m

PE [@il) M N
PREC Le» [@:1) M ¢ reote2
R

EE (@31 M

100112

L
D

PREC L¢& [@1} m

mﬁeu]m _ -

TrPE [@51) M

PEC L [031) M
PREC L1 [01l] m

WP L [8:1) M
TYPE L (e:1] M

LS m

<HX CTRLG M

HX (TR M

XNW dO ANV dX3 2Zs

X CTRL«e M

TA6 CTRL«<D #

LS Let [O:1] M

PREC L@ [0:1] M q
PREC Loty (031 M o

"m‘ 'CTEJ » P

A

[)

T

TRG CTRL<&» #

PREC<® (0:1] M Jc loa102
oto

891

164 3 ABOX drawings

3.23 TRANSLATOR TAG GENERATOR
Drawings: TTGEN1, TTGEN2, TTGENS, TTGEN4, PTGEN

This generates the tags used by the internal format as described earlier.

T
SEL<3:1 >
dleaBuS»

TCATAG A}

o P

8170
oo -ZERD 1-16_M

ARTIA
e o ZR0 117 M.

GOERATOR
Y oES 1-17L M
PTGERITI? eIr 17 M
e BIT 18 M
-ZRO 19-34 M

ARTIA
e au 2200 19-3 m
ol O 19-35 L m
PTG1 BITYZ BIT % M
— BIT 36 M
20 52 M

PORTIAL X

e ot ZRO 3-53 M
i - o3 T-sIL M
PTG2BITI?) IV 53 M
_— BIT 64 A
2R 55-70 M

PRTIAL
e ZERO 55-71_M
w0l OES .71 LM
" PIG3BITI? BIY 71 m

BT e M

wwe NN\

e s c 1ol

-ZERO 1B, 36,54 M

LT AL

-ZERO @, 18,54 M

100101

TRANSLATOR TAG GENERATOR

ONES 18, 36,54 M

ONES @ 1

G4 M

JOLVIYINTD OVL YOLVISNVIL €3¢

qal

ONEG 1-17 L M

BIT 18 M

ONES 19-F L M

“1es10:
P OFS 1.5 M

TRANSLATOR TAG GENERATOR

-26R0 1-16 M

BIY 17 A \ \c RO 1-34 M
128181

a1y 18 M l Rd

~ZERD 19-34 M J/

-ZERD 37-20 M
-BERO 1-17 M
SZERO 19-5 M \ \— ~ZERO 1:78 oM
-Z5R0_37-53 M l 190191
-ZER) 55-70 M %
-ZERO 18, 36,54 M S
-BRO 117 M x
“ZERO 15-34 M AY -ZERO J7-71,8-34 M
B e b
~ZERO 55-71 M 0>
TZERO 0, 16,64 M /

“

991

s3uimelp X049V s

OES 1-12 (¢ M

~ZERO 1-16 M

g;o
9

ONES 1935 ¢ M

~ZERQ 19-24 A

BIT B L M O

9

ONES I-531 M

-ZR0 -6 M é c
BT s3I M) 5
ey

9

ONES 55-71 L M

~ZERD 66-7¢ M

BT 71 L M q

9

ONES 1-35 LM
-~ZERQ 1-34 M
BIT LM

ONES I0-21 Lm

oLy
e

102117 HL SW TRGIH

“ZERO -7 M

BIY 71 L M q

oL
<

ONS 1-21 L M

A4

2RO 1-70 M

BIT 21 & M O
_l-o

9

}\Lém D TRG3M

ONEY X-71,8-35 L M

s

=26R0 I7-7|, 8-34 M

BIT»HL M q

OLO
<

12/

TRANSLATOR TAG GENERATOR

D—\Lgly OM REV TAG3IM
/ a?

S

JOLVIAINTO OVL JOLVISNVIL €3¢

L9l

BIT @ (@311 M ¢ -ZER0 1-16 [@11] A1 o W4 TRGID [@:F] At

BIT 36 [@11] M 1 -26R0 37-52 (1] A4 : Hd TR [@:1] M

BIT 19 [0:1] A1 -ZRO 19-34 [e=1] A : Hd YARX [[@:1) M

BIT 54 (9:1] M 3 -ZERD G5-70 [@11)] A : W T“;J'} [€:1] A

SRl dd A

SELe» A

BIT @ [9:1} At ¢ -ZFRO 1-34 [3:7] A : HI 8 TRGI[3) M

BIY 36 [@:1] M : ~ZFRO 37-70 [€31) A : LOW S TRG3 £@:11) A

BIT © (Q:1] M : -ZRO 1-70 (@:7] M : OW TREE {:1] M 2
BIT 36 [0:1) M 1 -ZERO 37-71,8-34 (©:1] A1 1 M REV "AGI [©:1] M

SEL 11> A

S&LeD» A

BIT 18 (@8:1] M ¢ -ZFRO 19-34 [@:1] A1 3 Wi TRSH 1> [9:1]1 M

BIY B4 [0:1] M : -ZR0 S5-70 [&:1] ~1 ¢ Wi TWBXP (8:1] M

BIT 36 [0:1] A1 : -ZFRO I7-52 [6:1) 1 : W THBI> 3111 M
BIT @ €0:1] M -ZERO 1-16 [@:1] M 1 Wl TAGXS [ecl) M

ELctDd A

s 4

5
VA4

TRANSLATOR TAG GENERATOR

+ TeqTae £

891

s3uimelp X049V §

323 TRANSLATOR TAG GENERATOR . i 169

BIT? # -

[?
N D 1%
m M g W m
a
%
T
Z
bl
O
y A) O
. . Bg) (1) (fa8) [ef, £s -
mﬁﬁm 2 : 2 =
~ EBEg: I _
a
I
T
%
% a
. % ¢ N . a
¢ E & z
s 3 Z 5 g

170 , 3 ABOX drawings

$2¢4 MOBY MUX, MOBY MUX A (and B) N : 11

3.24 MOBY MUX, MOBY MUX A (and B)
Drawings: MM, MMA, MMB
M’OBY MUX A (and B) set parameter strings and call the MOBY MUX macro.
The MOBY MUX is a combination register file, constant table and giant multiplexer. The input
multiplexer is capable of reading all of the functional unit results and most of the interesting fields
in the ABOX. On every cycle, the ABOX can give a pair of read addresses and a pair of write
addresses to the MOBY MUX. The pairs must be aligned, i.e. the possible reads (or writes) are:

. - /

Address Address

First 25 ns. second 25 ns.
2X+0 . 92X+l

2X +1 2X+0 .

2X+0 - . none (hold 2X+0)
2X+1 - none (hold 2X+1)

Read and write addresses are directly controlled by the top level microcode. If necessary, there is a
path around the RAM so that writing one cycle and reading the next introduces no unnecessary
delays (and/or incorrect results).

The MOBY MUX can be convenently used as a FIFO. There is a counter associated with both the
read and write addresses. The value of the counter can be used instead of the top level register
address. The counter is incremented every time it is used. A minor trick is that the register address
from the top level microcode is ORed with the counter value. This allows any table in the upper
part of the register file whose size is a power of two to be used for the FIFO.

The read/write portion of the register file itself is 16 ABUS words deep. However, there is a
read-only portion comprised of 256 additional words for use as constants. Whlch portion of the file
is read is controlled by a top level microcode bit. '

Orl02 ; MAT FEDSRY R AR [
SrlQ2 ; ADD RERLY F«ABUS 0:3)
ovite ; MINIG FEVL T AeABUSI [@

o102 ; COOFF EweED [0:3,

IRANS A R ABB @3]

gvioe ; TRONS 3 ABABRUS [0:3)

HICRO
PIFE

90102 ; STATE A¢AEUS) [0:F)

1 OIRECT<RBUS> M

2
ayizen AsTzEB
3 100163 . Wt T
PO § SO .. YooY
4 w
s £ E2 R
< OO

| NP X SR A2 .93-89:2 [or

7-0
yrh A2 .P6.6-7 L

N A4 P, -2, |

MO3Y MUX

REGF1FO

T

e 1 vismx

vl

EFLERRS M

L1

TefBUS

RSIZEB TREUS> A

P XOHV ¢

sSuimes

324 MOBY MUX, MOBY MUX A (and B)

OEFINE

TeFBIP NV

T e8I

! - - mu.m

MOBY MUX A

173

174 3 ABOX drawings

Pad

DEFINE
" e

PORSPETEE
TS A

g2y

MOBY MUX B

325 REGFIFO 175

3.25 REGFIFO
Drawing: REGFIF, MMCM

This is the register file for a MOBY MUX. It has a 16 by ABUS RAM which can be both read '
and written every. half-cycle as well as a constant RAM which can be read every half-cycle.

e aBu

.~
TP A

CONSTaNT

CONSTANT REFD EYR BLF L M

CONSTANYT RERD ROR BLF<9: > M H

i FES Jt~ CONSTHNT aorar> \™° @
o912y
COTANT FED f0Re0:> M oo

AU A I 164 R

REG REXD SOR BF (@1 M

R
MOBY HuUX .
ADR GEN w4
@iy
w REG WRITE QDR Rtco: B /Hc B4

6 V9 PRHITE BN R4 L Bi-4 L

Yo M P16t

Jh A4 P4-10 L

n\m\mmm.u-wL@

1
REG WRITE ADR BF<i > M]
REG WRITE ENA LM '

CONSTANT RERD EMR BLF M A
FLUSH RB0X_.C

CONSTANT REVD EMN3 A2 A1 H

REG REFD RDR A< @: > M

t
@ : REG WRITE FOR R4c@: > M

<+

¥ A2 .3P6.5-2.5 L

REGF IFO

9Ll

P XOdV ¢

sSuimes

FES W CONSTENT WORDX B3 15>

FES M CONSTENT MEM CTL L

L]

ADRY @: 7>
st

041493y 52§

TerBUs A

- 25610 RN

FES P4 CONSTRNT MEMORY DATRXO: 1S b TerluSr P

NCe1d

no HORD L@~
. a z‘c HORD Led M
ZZO HORD Led M

- 2 HORD L(D_m S N e M »
A&y rq B —_— _—3

1L e OBCOE WORD Le >t FES JTh CONSTANT VE Lv7 ¢ e
=Y €2 o010 24 O

‘ o mlo—HRue m)

e o HORD L<é& M‘

0

CONSTANT MEMORY

LLt

178 3 ABOX drawings

3.26 MOBY MUX ADR GEN

Drawing: MFIFO1, MFIFO2

This generates the addresses used by the REGFIFO. It contains the read and write counters
necessary to use a MOBY MUX as a FIFO.

0 OIT ENR L. A

MRTTE ONT ENR L M

a_uwts RESET FIF0 A2 .$3.8 L (&
o a2 Paliv g

w
; ur;t?x T @ A)
A PN REFD CONYTANT A2 .33-8 [0} 1 Seaise . z
u 10 o
€1 g2 R od
P A2 P45 L I Z
m%a T AT >
& IPh REVD AOR A2 53-8 [@1F] It Yoorce]
2 10 -]
E1 E2 R ()
[0 br1
I A2 P3.4-4.6 L B Z
) H RAG: » P
A NP RERD AR A2 .S3-¢ 41> [0:3]
] ’ N ° T R A A
100155
b ‘ w 10 A\ :"xu \ e 4
I ez T “IF0 FEFD AORIOLD A - 1 % _E1E2 R L heo1e7 ¢
®»
X onE re C tearo2
; Gt
. W 92 35451 T
urs‘am H e &
AU HRITE AR 22 .S3-8 D (8] o R Toatas
° @ , WA A2 D M B axaP M
100155
ni R v \S_xz \ P £
' FIFO WRITE AORE: D M ' 8 E1E2 R o« L 100107 C
91 N
) A_Tt WRITE ENA2 A4 . S4-18 L
\ I A4 P59 L el §° 1102 .
Q wh LRITE AOR SOHRCE SEL A2 .S3-BX @ St L {0:3] M :
ut B4 .P.B-3 824
,
M1 RESET L M . COTENT N
PORIETER
E0R SOURCE SEL
o> N -
Ao A ® USE FIFO COUNTER
€ INCREPENT AFTER USTNG)
. 1 USE MICROCOOE AOOR
—
~J
(7«3

MOBY MUX ADR GEN

100161 ?
o R O M AN RECO O A}
J/ Crocra2
—7 a6
.
.
8
IO T
1 100150
e TO- —RL m N
£ e 1 A vt REMD BN A2 .97-12 L [0:3] 100101
o R O BB M
'3 S 8e P03 | . Y
L
R LPA-p L
a1 A\t MRITE ENR2 A2 .97-12 L (9:3) 102101
__.{ 3 B OF BN M

viess L uem /

E1E2 R |

HRITE CNT €NQ M

J

-8 N WRITE ADR SOURCE SEL A2 .23-6 | (01 3] 190161 ’i .]c 100162
; f2 M1 _ONT e M
Al

“ QUM MRITE DY A2 .83-8 1 [0:3]] /

MOBY "MUX ADR GEN

081

sBuimerp XogvVv ¢

SCALD II User’s Manual
(SCALD-2)

Thomas M. McWilliams, Jeffrey B. Rdbin,
L. Curtis Widdoes, and Steven Correll

Table of Contents

-1 What SCALD does and why

1.1
1.2

The Structure of SCALD
How to use this manual

2 How to use D (the Graphics Editor)

2.1
22

2.3
24
25
26
2.7
238

Preliminaries . ..
Commands for mampu]atlng drawmg files
2.2.1 Getting and saving drawings
2.22 Initializations

2.2.3 Finishing a drawing

224 Looking for errors

Commands for Body Mode

Commands for Point Mode

Commands for Set Mode

Commands for Edit Mode

Using Alter Submode to Edit Text
Defining and Using Editor Macros

-3 A guided tour of D

$.1

32
33
34
3.5
36
8.7
38

39

Running the program
Initializing the workspace
Positioning Bodies

Drawing lines .
Putting text on your drawing
Editor macros

- Using sets

Final touches to your drawmg‘
Creating a body template
39.1 Getting started

. 392 Drawing the box

393 Ornaments
394 Defining pins

-8.9.5 Creating body text

8.10 Making a menu file

4 - How to use the macro expander

4.1

42 General Rules for the macro expander language
43.

Typical design procedure

Inventing Bodies to Represent Macros

13

18

14
15
15
17
19
21

27
29

3t

32
34
37
12
52
59
61
62
63
63
65
65
67
69
70

13

75
7
79

ii

44
4.5
46

47
48
49

43.1 Body Parameters
43.2 Pin parameters

How the macro expander binds bodies to drawmgs

Inventing Signal Names

Putting together a signal name

46.1 <Negation> ..
462 <Class Name><Simple Name>
46.3 <Timing Assertion>

46.4 <Assert Low>

46.5 <Bit Subscripts>

466 <Wire Delay> .
46.7 <Timing Evaluation Directive>
468 <Scope>

46.9 <Multiplier>

46.10 <Version>

. 46.11 Constants as Slgnal Names

46.12 Text Substitutions

46.13 Sundry Details About N ammg Signals
Matching Signals with Bodies

Fictitious Bodies

How to construct the Termmal Flle

4.10 Running the Macro Expander

4.11

The Macro Expander Listing

5 A Guided Tour of a SCALD Macro

6 How to use the timing verifier

6.1

6.2
6.3

6.4
6.5

Theory of operation

6.1.1 Circuit Period

6.1.2 Value system for signals
8.1.3 Combinational function
Defining chips .
Preparing input for the Venfier
6.3.1 Wire delays .
£.22 Assertions on Signals
£.3.3 Evaluation Directives
6.34 Correlations

Input and output files for the timmg veriﬁer
A timing verifier example

7 The layout program

7.1

Preparing instructions for the layout program
7.1.1 The DATE statement

Table of Contents

19
83

87
88

89
90
80

93
93
93
85
97

98
100
104
106
110
112
118

121
127

128
129
129
130
132
137
187
137
139
140
142
144

149

150
164

Table of Contents

7.12
7.1.3
7.14
7.15
7.16

8 References

The WITH statement
The assignment statement
The PLACE statement -
The BIND statement
The CHIP statement

9 Implementation information

9.1 Format of the WDP file

10 Index

i

155
157
161

163

165

167

169

- 169

173

iv

1 What SCALD does and why

SCALD (the acronym stands for “structured computer-aided logic design system”) cuts the cost and
time required to design logic. It does this by letting the logic designer express ideas as naturally as
possible, and by eliminating as many errors as possible--through consistency checking, simulation,
and timing verification--before the hardware is built.

This rpanﬁal describes SCALD II, intended:fo\r .us_e in the design of the S-1 Mark IIA processdr.
The original version, SCALD I, was used.in the design 'of the S1 Mark I processor. ‘

Designing hardware with SCALD is in many respects analogous to programming in a high level
language. First, the designer uses a graphics editor to draw logic circuit diagrams on a CRT screen,
just as a progammer. would use a text editor to compose a source program. The diagrams form a
hierarchy in which general, high level drawings are defined in terms of more epecific, lower level
drawings, just as the top level procedures in a well structured program call more specific, low level
procedures. (Actually, each drawing represents a macro which can be replicated as often as necessary
within the design.)

Then the designer feeds the drawings to the SCALD macro expander, which translates the logical
design into a detailed physical design just as a compiler would translate source language into
machine code. In the process, the macro expander can find many errors by checking syntax and
design rules. ' " '

The designer then uses the SCALD layout programs and physical design programs to map the
output of the macro expander onto actual circuit boards, just as a programmer uses a linker and
loader to map the compiler-generated code onto the actual computer hardware. And, just as a
programmer can use a symbolic debugger t to find runtime errors, the designer can use the SCALD
simulator and timing verifier to check the behavior of the hardware before buxldmg it.

Ultimately SCALD produces tapes and - hstmgs that permxt assembly of a prototype either
automnatically or by hand.

2 1 What SCALD does and why

SCALD brings to hardware the top-down design principles that programmers have adopted for
software. At the top level of a well-structured program, a programmer does not deal with loops and
branches and assignments, but with two or three procedures that divide the program’s task logically
into major subtasks. Similarly, at the top level of a digital circuit designed with SCALD, the
designer does not deal with gates and signal polarity and fanout, but with two or three functional
blocks that divide the circuit’s task logically into major subtasks.

Each of the major blocks is then defined in terms of other blocks, and each of those in terms of stilt
other blocks, and so on, forming the hierarchy. Successive definitions become increasingly specific,
until finally the lowest level drawings correspond to actual integrated circuits. Those integrated
circuits are themselves defined in terms of a few primitive logic elements--gates, flip-flops,
multiplexers, adders, and so on——to permit simulation.

This approach to logic design has a numbéer of advantages. (Readers who are already convinced
should skip the following sales pitch and start with Section 1.1.) Some of them stem from the
hierarchical structure, others from the basic use of a computer to automate the task, and still others
from specific features in the SCALD programs.

Advantages of hierarchical structure-In hardware design as in programming, a top-down
approach lets the mind tackle the most important and far-reaching questions first, deferring the rest.
At any point, the designer confronts a manageable number of decisions. Structured design makes it
easier to apportion work among.a group of designers, since splitting the task into subtasks along
functional lines provides a set of relatively independent chunks of work. Structured design makes it
easier for a newcomer or outsider to understand the design by progressing from a general overview
toward fine details. ' '

Some advantages of top-down design apply uniquely to hardware. In a design requiring many
individual drawings, structure reduces the confusion caused by wires running from one drawing to
the next on the basis of paper size rather than meaning.

Further, structured designs are subject to less trauma as technology advances. The upper levels of
the hierarchy tend to be general enough that they remain independent of the specific technology or
logic family the designer uses. And as circuit packages come to hold increasing amounts of logic, the
bottom level of the hierarchy may simply vanish because each frequently-used macro which was
formerly defined in terms of a network of a dozen integrated circuits can be implemented with a
single gate array chip.

Advantages of automation—Other advantages result simply because SCALD maintains the design
on a computer in machine-readable form.

® It imposes uniform conventions on the design team.

® The computer’s normal procedures handle mundane concerns like sharing drawings
between designers, archiving old drawings, placing drawings in safekeeping, and so forth.

1 What SCALD does and why ‘ : 3

® The designs are readily available to programs for simulation, error—checking, cost
~ estimating, parts countmg, and so forth.

® Handling post-design ‘changes by computer makes it more likely theyll be systematlc and
well documented

Advantages of SCALD itself--The SCALD famxly of programs provides a number of specific
services to make design easier.

® A timing verifier and logic simulator help test the design before constructing it.
® Semiautomatic layout and automatic routing speed construction..

® Extensive error-checking reduces the number of bugs before construction' even begins.
For example, SCALD checks the assertion level of signals against the expected inputs to
each functional block; it finds a source for the inverse of a signal when needed; it lets the
designer specify rules to handle‘fanout problems automatically; and it checks for undefined
signals, unconnectéd signals, outputs tied together unintentionally, and undefined inputs.

4 ' _ 1 What SCALD does and why

1.1 The Structure of SCALD

SCALD itself is, as hinted earlier, a family of prdgrams rather than a single program, making it
easier to alter the system to suit different needs. For example, changes in the graphics input
hardware affect only the graphics editor. Changes in the wiring technology employed affect only the

packager programs.

For portability, all programs except the graphics editor and system-dependent utilities are written in
PASCAL, and generally allow configuration for varying memory usage.

SCALD divides into a logical design system (programs which appli regardless of the technology
used to implement the design) and a physical design system (programs which implement the logical
design using a particular technology).

Important parts of the logical design system are; .
D, the graphics: editor-This program.lets ;ﬁe designer define macros by drawing networks
of logic elements on a CRT display using a special keyboard or a light pen. One of its
outputs is a file listing all the logic elements and the connections among them. ‘ '

Macro expander--This program takes in the logical design (a set of hierarchical macros
defined by graphics editor drawings) and transforms it into the first stage of the physical
design, outputting a set of actual IC functions and a list of the connections among them.

Alternatively, for simulating the design before construction, this program can further
expand the actual IC functions into the logical primitives which the simulator works with.

Logic simulator-Using a typical value for the logic delays, this program simulates the
design. In the case of a processor, it can even run small programs to check the processor’s
ability to execute various instructions.

Timing verifier~This program takes into account a range of logic delays, from minimum
to maximum, along with timing skews. Tt checks all the combinations of timing and signal
paths necessary to assure that the design meets worst case timing constraints.

Unlike the simulator, it does not fully simulate the network; it concerns itself with whether
a signal is true or false only to the degree necessary to determine the interval within which
that signal is stable. This division of labor between the simulator and verifier allows
SCALD to assure a thorough simulation of large designs in a reasonable time.

Important parts of the physical design systern are:

Layout—-Within constraints specified by the deslgner thls program automatically positions
parts on circuit boards.

Packager-This group of programs routes wires among parts on the circuit boards,

1.1 The Structure of SCALD = . 5

calculates waveforms of signals propagating along those wires, and manages post-design
changes. o " '

6 B 1 What SCALD does and why

1.2 How to use this manual

This edition of the manual covers the graphics editor, macro expander, and layout program, but not
the packager programs.

In some cases it gives two different views of the same material: a “How-to” section with a concise
description, followed by a “Guided tour” through illustrative (that is, blatantly contrived) examples.

" Installation-dependent information such as how to start a program running tends not to appear at
all. Information of interest to those modifying the programs rather than to those using them, such as
the formats of files, appears in appendices.

2 How to use D (the Graphics Editor)

This chapter is an abridged description of D, the graphics editor, describing a minimal subset of
commands needed to create drawings for SCALD For a description of many more commands, see
the SUDS manual llsted in Sectlon 8.

2.1 Preliminaries

Temiinology——-We will assume use of the Stanford 'keyboard, which has keys labelled CONTROL,
META, TOP, and SHIFT. This keyboard operates differently from that of either a typewriter or
an ASCII computer terminal: , : ’

Pressing a key without holding any shift key gives the lower case version of the bottom symbol
printed on the key. :

Pressing a key while holding SHIFT gives the upper case (capital) version of the bottom symbol, not
the top symbol as it would on a typewriter. If the symbol in question isn’t a letter and thus can’t be
capitalized, then SHIFT has no effect :

Pressing a key while holding TOP gives the top symbol printed on the key.

Holdlng CONTROL or META in addition to some other combination of keys affects the flavor of

“the character but not its identity. For example, holding SHIFT changes “a” to "A”; but holding
META in addition merely produces a special version of “A” which the program regards as a
command, not some entirely new character. Generally, CONTROL gives the weaker or more
‘ordinary version of that command while META gives a stronger or more exotic version.

We'll use the following notation throughout this manual:

8 2 How to use D (the Graphics Editor)

«<{character> says to hold down CONTROL while pressing the <character>
A<character> says to hold down META while pressing the <character>
o A<character> says to hold down both CONTROL and META while pressing the <character>

(The program never requires use of the characters “a” or “B” themselves, so there’s no danger of
confusion; throughout this document they always represent the CONTROL and META keys.)

When l;sing D, latch the SHIFT LOCK key down to avoid having to lean on the SHIFT key
constantly, thus freeing all ten fingers to manipulate SHIFT, TOP, CONTROL, and META.

Whenever the program exbects a multiple. character string--the name of a file or logic element, for
example—it permits use-of the DEL key to backspace and erase mistakes.

The commands that consist of a character with META and/or CONTROL held down will,
however, execute immediately, giving you no chance to use DEL. If, as a result of the command, the
program then prompts for additional information, the ALT key will generally abort the command,;
otherwise, you must simply figure out a way to undo the results of the command.

Files, libraries, and bodies-The program stores drawings in files with names of the form
“<name>DRW?”. At the top of the screen, it constantly displays an equation “3=<name>” which tells
the name of the file (if any) that it is currently editing.

In the most general sense, the program can do two things: it can develop templates for “bodies”, and
it can draw circuits by first drawing bodies based on those templates and then connecting lines
between those bodies. For SCALD's purposes, a body generally represents either a macro or a logic
primitive such as a gate or adder. A drawing generally defines a macro in terms of additional bodies
connected together.

The templates for bodies hide in the background until the designer either uses a template to place a
body in a drawing or enters a special mode (Edit mode) capable of creating or modifying body
templates.

When editing a drawing, the program operates on a copy of the drawing in a special area called a
workspace. A particular drawing file can be copied into the workspace in three distinct ways:

1. The first drawing file copied in after clearing the workspace becomes the one named in
the “3=" line.

2. (One rarely uses this feature.) If you copy in any additional drawing files, their body
templates are added to the repertoire of templates in the workspace, and their drawings
become sets of elements superimposed on your existing drawing, just like the sets you
yourself can create as described in Section 2.5. You may then move those sets around and

‘2.1 Preliminaries - ' 9

add them to the existing drawing: .

8. If you bring in a drawing file as a library, its body templates are added to the repertoire
of templates in the workspace, but its drawings (if any) are not used. There is nothing
special about a file used to hold libraries of body templates; any drawing can look like a
library if brought in as one.

Other files--The program can produce two other files. corresponding to -“<name>DRW”:
“<name>PLT" is useful for making a paper copy of the drawing, and “<name>WD” is a list of
bodies and interconnections which ultimately becomes the input to the SCALD macro expander.

Moving the cursor-The program will always display (though sometimes at the very edge of the
screen) a set of crosshairs which serves as the cursor. Four keys above the RETURN key move it
incrementally to the left, to the right, up, and down: '

Left
Right
Up
Down

(On some keyboards, the sequence-is *I 1\ /” instead; in. any case, no matter what is marked on them,
use the four keys immediately above the RETURN key, and associate the directions with fingers
rather than with the markings on the keys)

These are obviously intended to be convenient, not mnemonic; since you will probably use them
more heavily than any others, it’s easy to become accustomed to placing four fmgers over them

_without looking at the keyboard or thinking about the symbols on the keys.

Holding down various shift keys multiplies the distance these keys cause the cursor to move:

CONTROL X2
META x4

TOP x16

Using several shift keys at once multiplies the factors. Holding down both CONTROL and
META, for example, multiplies the fundamental cursor motion by 8.

Enlargement, reduction, and moving .the paper~When the program starts, -it shows a x16
enlargement of the *paper” it will draw on. That is a convenient scale for seeing everything clearly,
but the entire paper will not fit on the screen at ‘once, so the screen acts as a sort of “window”
through which you view the drawing.

Ta maove the paper to see a different part of it through this window, use the ™", “l”, 3", and ®
characters. Typing such a character once moves the drawing by 1/8 of the window dlmenslon. As
with the cursor, the CONTROL key multiplies this motion by 2 and the META key by 4. (The

10 ' 2 How to use D (the Graphics Editor)

TOP key isn't available as a multiplier in this case, because it is needed to obtain any of those
characters in the first place.)

As the paper moves, the cursor sticks to it until the cursor hits the edge of the screen. You can
continue to move the paper further in that direction, but the cursor will remain at the edge of the
screen until you move the paper in a different direction. If you move the paper far enough, you'll

reach its edge and see a line representing the perimeter (assuming the SHOWBOX feature
described in Sectlon 222 is enabled).

You can also reduce and enlarge the paper to see more or less of it through the screen, but this is
inconvenient because the text remains the same size while the bodies and lines shrink and grow.
The “x” key reduces, the “e” key enlarges, and once again CONTROL and META multiply the
effect. .

If part of the drawing spills off the edge of the paper, the “X PICCEN” command (Section 2.2.2)
will recenter it, but the system automatically recenters the drawing anyway just before plotting a
hard copy of it. If the centered drawing won't fit on the paper, however, the plot will clip it at the
edges.

Modes--At any time, the program is in one of several major modes, each of which may have one or
more submodes. Only certain modes and submodes are essential to drawing circuits for SCALD. To
describe bodies one uses edit mode; to draw circuits with them one switches back and forth among
body mode, point mode, and set mode. The top line of the screen will always contain “M ODE="
followed by one or two letters, The first letter generally tells the current mode and the second the
current submode.

The program begins in body mode. The following commands change back and forth among body,
point, and set modes:

afB Select body mode (MODE-=B)

afP Select point mode (MODE=P)
ofiS Select set mode (MODE=S)

Many commands work equally well in any mode, others don't, and still others mean slightly different
things in different modes. Unless noted otherwise, assume the commands given here work in any
. mode.

Attaching the cursor and moving ob jects--When the. program enters body, point, or set mode, the
cursor is detached from all objects so it may move at will without affecting the drawing. The
program will superimpose a large flashing letter on the ob ject of the appropriate type--a body if it
is in body mode, a point in point mode, or a set in set mode--which is closest to the cursor.
Attaching the cursor to that object forces the object to follow wherever the cursor moves. The
following commands accomplish this: :

«M Move the cursor to the object and attach the cursor to it. The large flashing

2.1 Preliminaries. L ’ 11

letter identifying the ob ject will vanish.

o« AM - Move the object to the cursor and attach the cursor to it. The large flashing
letter identifying the ob ject will vanish.

<SPACE> ~ Detach the cursor from the object. The large ‘flashing letter identifying the
ob ject will reappear. ‘ : : .

It's not critical to understand them, but the large flashing letters do convey meanings:

B Body

P Point .

PL Point with line(s)

TL Line (and usually a point, too) with text

PA Point to which you may attach a line. On a body,
this is usually an input or output pin

PLA Same as PA, but there’s already a line attached

BT ° Body text

BTP Body property name/text pair

Extended commands--A special set of commands beginning with “X” sets options and performs
functions without regard to mode. When you see a command in this chapter described like this:

X CLEAR

it means that after you type “X” the program will type "WELL?” and wait for you to put in the
remainder of the command ("CLEAR” in that example). Since operating systems supporting the
graphics editor generally offer “typeahead” (that is, they will save up characters if you happen to
produce them faster than a program can use them), it’s usually safe to type the entire string without
waiting for the “WELL?”.

In addition, you may combine these extended commands. The following example

X
WELL? EW,CLEAR

shows how to perform “X EW” and “X CLEAR" together. Note that the program executes them in
the order specified, so this would (with considerably more kindness than one has any right to expect
from a machine) save the workspace before clearing it.

Text--The graphics editor provides two kinds of texi: simple text and property name/text pairs.
Text is usually associated with a point or body, and thus appears, disappears, and moves around
whenever the point or body does. To deal with a piece of text, move the cursor close to it and give
the appropriate command as described later in this chapter. Property name/text pairs give an
additional means of access, a name associated with the text. Because the name is merely an"access

12 , 2 How to use D (the Graphics Editor)

key, it's invisible on the drawiings. ,

The editor distinguishes between text created as part of the drawing and text that is copied from a
body template. Though the editor provides a mode that can manipulate both kinds, we won't
discuss that because you won't need to use it. Throughout the modes we'll describe, template text is
sacrosanct: because you didn't type it in, you can’t touch it. A default property name/text pair is
semi-sacrosanct: you can replace its text completely, and thereafter you can edit the replacement, but
you can't edit the default text. '

2.2 Commands for manipulating drawing files « 13 -

2.2 Commands for manipulating drawing files

221 Getting and saving drawings

X CLEAR

Al

oL

X GETLIB

X TITLE

X PAGE

X PROJECT

X EW

Clear the workspace, deleting drawings and body definitions but not macros.
This also resets the editor to MODE=B, LEVEL=0, SCALE=16, and
Jd=<nothing>.

Bring in a new drawing file. (The program will prompt for the name.) If the
workspace is clear, the new file becomes the “3=" file; otherwise, it becomes a set
within the existing drawing. Specifying “3” as the new file clears the remembered
name (the “3=" feature) at the top of the screen. ‘ '

Save the workspace into a drawing file and change the “I=" line, if necessary, to
point to that file. (The program will prompt for the name. If the “3=" already
shows the filename, reply “3” and the drawing will automatically go back into
that file, which is a lot safer than attempting to retype the name.)

List all body templates in the workspace (both bodies described in this drawing

file and those described in any libraries you are using).

Get a file and use it as a library. The program will prompt for the filename..
Once a particular drawing knows about a certain library, it will remember it, so
you need not repeat the command the next time you edit that drawing.

Invent a title for the drawing. (The program will prompt for the first line of the
title and then for the second.) The title is a label that appears at the bottom of

- the drawing, and is quitc digtinct from the name of the file contmmng the

drawing.

*The SCALD programs do not require it, but for documentation purposes you

may paginate drawings. This command prompts for SHEET (the current page
number) and OF (the total number of pages). The numbers appear in the form
“Page X of Y” at the bottom of the printed version of the drawing. '

Specify which project the drawing belongs to. (SCALD does not require this, but
you may wish to partition your design into projects, with a certain number of

- macros in each project. If you do, SCALD will print the project name on listings - '

to help you mentally sort macros into categories.)

Identical with "oW” followed by " It's a good idea to use this command
periodically as you edit, just as insurance against a system crash.

14

X EP

X EL

2 How to use D (the Graphics Editor)

Write a plot file called “<name>.PLT” based on this drawing, provided the “3="
line contains a name.

~ Write a wirelist file called “<name>.WD” based on this drawing, provided the

“J=" line contains a name.

2.2.2 Initializations

We recommend using the following commands to set up initial conditions in the program. The most
painless approach is to make them into an editor macro called INIT as explained in Section 2.8.
Then create a dummy drawing with nothing in it but the INIT macro. To create a new drawing (as
opposed to editing an-existing one), make it a practice always to start by clearing the workspace and
bringing in the dummy. -

X -LOCS

X BOARD

X SHOWBOX -

X PICCEN

X UNDERLINE

Disables the dispiaying of a feature that SCALD doesn't use.

Sets a number of characteristics that in general don’t matter to SCALD. The
program will prompt for the board type, and you should reply “DECPC”.
Consistency throughout all your drawings in this respect will spare you countless
annoying, bul larinless error messages. -

Tells the graphics editor to provide a border around the drawing similar to those
conventionally used for engineering drafting. Boxes attached to the border have
room for the title, date, site, engineer’s name, signature of approval, and so on.
Aside from the title, SCALD needs none of these, though it will print page
numbers and project names on its output listings for documentation purposes.
Various “X” commands (explained in the SUDS manual) exist to specify each of
these items. Paper plots show the entire border, hut on the screen, all that
appears is a simple rectangle defining the “edge” of the “paper”.

The program will prompt for the type of bhox, the drawing scale, and the plot

~ scale. Reply “A 16/1”.

Centers the drawing within the box provided by “X SHOWBOX”. This is
primarily a convenience, since the program which produces a paper cupy of the
drawing centers it within the SHOWBOX anyway.

Posttions signal names so that signal wires always go under them, not at the end
of them. :

222 Initializations .= .~ , ' ‘ 15

X DIAMONDS Engineering drafting is afflicted with one great unanswerable question: when two
lines cross, are they meant to connect? The DIAMONDS option causes D to
supply a diamond at the intersection point whenever the lines are indeed meant
to connect, but only on the copy of the drawing that gets plotted on paper.

 The program will also ask now whether to plot a diamond whenever only three
lines connect. Answer “Y”. (Terminology gets confusing here. What looks like
two lines crossing and connecting is; as far as D is concerned, a matter of four
lines—two pairs of colinear segments. And what looks like one line meeting
another in a “T” may, in some cases, be three discrete segments in the eyes of the

program.)’

2.23 Finishing a drawing

When you are satisfied with a drawing and plan to make a paper copy, we recommend-using the
following commands, which prepare it for plotting and clear the workspace in preparation for the
next drawing. We use a macro called PLOT (Secuon 28 explains macros) to perform them
automatlcally

- X SCALE Prompts for the scale of the dfaiving. Reply “16". ' .
X 'DEFPIN-
EW.EP,CLE Described individually elsewhere.

2.2.4 Looking for errors

The following command looks for errors which occur when lines appear connected on the graphics
display screen, but are not connected from the point of view of the program.
i
X DANGLE Mark all dangling points Once they're marked, you can enter point mode and
use “oF” repeatedly to move the cursor from one marked point to the next.

A dangling point is one which:

1. Has no lines or text associated with it (in which case you should delete the
point), or

16

2 -How to use D (the Graphics Editor)

2. Has two colinear lines associated with it (in which case you should, within
point mode, type “BD” to delete the point and merge the lines), or

3. Has exactly one line associated with it but no text (in which case you should

label the point with some text), or

4. Has text but no line (in which case you should either supply one or more lines,
or delete the point and its text), or

5. Lies atop another point (in which case you should type “@A”. The program
will put a star atop the twin points and ask, *This one?” Reply “¥” and Lhe
program will combine the points.

2.3 Commands for Body Mode o : 17

2.3 Commands for Body Mode

In body mode, all the commands implicitly refer to bodies in the drawing itself. They can create a
copy of a body based on a specified body template and place the new copy in the drawing; they can
move a body about, delete a body, rotate a body, or label a body. .

‘Typically one first draws bodies in this mode and then switches to point mode to connect lines
between them. ~ '

oP " Place a new copy of a body at the cursor position, leaving the cursor attached to
it. (The program will prompt for the body name.)

«<D - Delete the body closest to the cursor.

oY Create or replace the text of a property name/text pair for the body closest to the

' cursor. The command works whether ‘the text came from a body template or
from one of the commands that let you type in text. The program will prompt
for the property name and, if it does not already exist, will establish a new one:
Then it will prompt for a text to go with the property name. That text may be
any string, including embedded blanks and using the character “o” to break the
string across multiple lines. To replace an existing property text rather than to
create a new property name/text pair, the “8Y” command is-safer.

- AY . Replace the text for an existing property name/text pair. (This command works
just like “oY”, but requires you to type only enough of the property name to
identify the property unambiguously. In addition, this command won’t create a-
new property if you happen to mistype the old property name.)

«0 . Rotate the body closest to the cursor by 90 degrees counterclockwise. After
rotating it.360 degrees, the program will replace it with its mirror image.

«AY Enter text/property submode for the body closest to the cursor, showing
" *MODE=BT” at the top of the screen. This submode of body mode lets you
manipulate text or properties of that body by attaching and detaching the cursor,
moving the cursor, and issuing commands. Until you attach the cursor, a large
flashing letter or letters will identify the text or property closest to the cursor.

This mode will not alter text derived directly from a body template, but only text
you have created or replaced yourself. '

Note that everything you do within property/text submode of body mode applies to
the body that was closest to the cursor on entering the submode. Once inside the
submode, moving the cursor to another body doesn’t alter this; before working
with the properties or text or another body, you must get out of the submode,
move the cursor to the other body, and get back 1in.

18

2 How to use D (the Graphics Editor)

The following commands apply to text/property submode (while the "gY”, and
‘aY” commands for body mode work equally well within text/property submode,
it's a bad idea to use them here because if you forget which body the cursor was
closest to when you entered the submode, you can easily create a piece of text that
appears within one body but belongs to another as far as the graphics editor is
concerned):

«D Delete the property or text closest to the cursor but belonging
' to the current body

« A Use Alter submode to edit the text or property text closest to
o the cursor but belonging to the current body. You will see
“MODE=BA" at the top of the screen. Note that this
command cannot change text obtained directly from a body
template. Only after you have used “aY”, “8Y", or “aT" to

replace or produce text can you use *aBA” to alter it.

«AB Return to normal body mode.

2.4 Commands for Point Mode 19

2.4 Commands for Point M_ode

While point mode does deal with points, its principal use ‘is to create lines by drawing between
points. The commands in point mode which explicitly create or delete a point are used far less than
those which draw lines, implicitly creating points as they do so.

<P

oD

«T

o«K

o BA

AA

Create a point at the current cursor position.

Delete the point at the current cursor position, along with any lines or text
associated with that point. If two or more points coincide, the program deletes
whichever ‘it likes. (If the point is really a pin on a body, the program deletes
lines.and text associated with the point, but not the point itself.)

Like “8T", but doesn’t provide offset.

Label the point closest to the cursor with text and offset the text if necessary to
make it pretty. (The program will prompt for text) You may use the “e”
character to separate the text into multiple lines.

Delete the text (if any) labelling the point closest to the cursor.

Use Alter submode to edit the text, if any, labelling the point closest to the
cursor. You will see "MODE=PA?” at the top of the screen.

Starting at the point closest to the cursor, draw a perpendicular line toward the
line closest to that point. The program will place a star on the line it proposes to
connect to and will ask you to confirm the command.

Draw a blinking line or pair of lines connecting the cursor with the point closest
to it. (The program wants to avoid slanted lines, so if necessary it will use two
perpendicular lines, one vertical and one horizontal). These lines are temporary
and will stretch and contract to follow the cursor wherever it goes. As the cursor
travels, the program puts a star on its current favorite “point of attachment” (that
is, the point to which it will extend the lines automatically if you so choose.)

The command leaves you in a line-drawing submode of pomt mode, from which
you can issue the following commands:

ALT> Delete the blinking line(s) and return to ordinary point mode.

. <SPACE> If there are two lines blinking, swap them. In other words, if

the program previously chose to go from the point to the
cursor by drawing first horizontally and then vertically, it will
now draw first vertically and then horizontally.

+ . If only one line is blinking, make it permanent by creaﬁng a

20

2 How to use D (the Graphics Editor)

new point at the end. If two lines are blinking, make the one
furthest from the cursor permanent by creating a new point at
their intersection. Once it is permanent, the line stops
blinking.

In either case, leave the program in line-drawing mode so
that blinking lines continue to follow the cursor.

Extend the blinking line(s) as necessary to reach the current
favorite point of attachment (that is, the point marked with a
star) and then make the lines permanent.

25 Commands for Set Mode. . 21

2.5 ‘Com mands for Set Mode

Set mode manipulates groups of bodies and lines; it duplicates, moves, or deletes the entire group as
a single entity. o

SPACE>, , :

+ <ALT> and - These work more or less as described under point mode in Section 2.4, but are
used to draw a box around a group of bodies and points. The two important
differences are that you must use “-” to close the box, and that the lines of the
box will continue to flash after you've used “+” to make them permanent. Then
the box will vanish and the bodies and points become members of a set, which

‘you can ménipulate as a single entity, attaching the cursor to it, moving it,
deleting it, and so on. The program will flag the bodies and points with large
flashing “B” and "P” characters to indicate they’re members, and will place a
flashing “S” at the center of the set. When you attach the cursor, all the flashing
-letters vanish, and when you detach it, they reappear. '

oD Release all members of the set which is closest to the cursor. The points and
bodies still exist, but don’t belong to the set.

AD ‘ Delete all members of the set which is closest to the cursor. The points r:mdQ 0
bodies no longer exist, so various lines and text associated with them must
vanish too. '

22 - 2 How to use D (the Graphics Editor)

2.6 Commands for Edit Mode

Edit mode creates body templates, which you typically put into libraries and use to create bodies for
drawings. This mode differs from point, body, or set mode in certain basic ways. First, the drawing
temporarily hides in the background while you create or modify the template. Second, you must type
a specific command to leave edit mode before switching to one of the other modes.

Edit mode performs three functions: drawing vectors to represent the body, defining pins on the
body, and labelling the body and pins’ with text. For each function, there is a particular submode:
insert submode, grab-body submode, pin submode, and text/property submode.

When inside edit mode but not inside any of these submodes, the program will place a star at the
point on the body closest to the cursor. Resist the temptation to treat this like the star that appears
in normal point mode; to draw the body you must use insert submode.

o SE Enter edit mode. “"MODE=E" will appear at the top of the screen. The program
will prompt for the name of the body template to be edited and, if that template
doesn't already exist, will create a new one.

While edit mode creates and modifies body templates, it does not delete them.
Instead, the command “X DELTYP”, which may be used only outside of edit
‘mode, will ask you for a body name and then delete that body’s template along
with all occurrences of that body in your drawing.

«<E Leave edit mode and return ta hndy mode. (You mayisafely do this even from
within one of the submodes of edit mode.) Note that if bodies derived from the
template just edited exist in the drawing, the changes are reflected in the
drawing immediately. In particular, deleting pins can cause havoc because lines
formerly attached to them will vanish. 6

ol Enter insert submode within edit mode so as to draw vectors to make the body
template. "M ODE=EI” will appear at thé top of the screen. Within this mode the
commands resemble those used in point mode to draw lines; they are just similar
enough to xnstlllc? false sense of confidence.

When you enter this submode, the cursor is resting at the point which will be the
“origin” for the body—that is, the point the cursor will move to when you attach
it to the body, and the point upon which the program will superimpose the
flashing “B” when appropriate. By convention, we draw a body so its origin is at
the upper left, though' nothing in the program requires this. '

From the origin, proceed to draw visible and invisible vectors forming a single
path around the body. Provided it is not invisible, the vector you are currently

working with will appear a bit brighter than the others.

These vectors must form a single path. To make three lines meet at a point, for

26 Commands_ for Edit Mode

23

example, you must draw through the point, then use an invisible vector to
backtrack to it, and finally start a new visible vector headed outward from the
point. Trying to attach the cursor to the intersection of two vectors and then
moving the cursor to start a new vector will either overlay two visible vectors or
move the intersection point without creating a new vector at all.

Here are the commands allowed within insert submode: '

ol+

<RUBOUT> -

<SPACE>

oD

End the pending vector (if any) and start a visible vector that
will follow the cursor wherever. it goes.

End the pending vector (if any) and start an invisible vector
that will follow the cursor wherever it goes.

End the pending vector {(if any).-and-move the cursor back
along the path of vectors, toward the origin. Each time you
press <RUBOUT>, the cursor travels the length of the
preceding vector and lands at its ‘starting point. The vectors
on either side of that starting point appear extra bright
(unless they’re invisible), and if you move the cursor using the

- up/down/right/left keys, the vectors will stretch to follow it.

When <RUBOUTS> causes the cursor to reach the origin, it
stops there, and further use of <RUBOUT> has no effect.

Just like <RUBOUT?>, but moves the cursor forward along
the path of vectors, away from the origin. It’s a good idea to
use <RUBOUT> and <SPACE> to travel the path, checking
for any duplicate or unwanted vectors, before leaving edit
mode. If it takes two <RUBOUT>s to pass a certain point, for
example, then you have inadvertently placed a zero length
vector there, and should delete it.

Delete a vector. . B
If the cursor lies at a point on the path with one vector

preceding it and another following it, this command deletes
the preceding vector and stretches the following one to take its

. place, maintaining an unbroken path.

If the cursor lies at the last point on the path, this command
deletes the vector preceding it and makes the previous point
into the last point on the path.

If the cursor lies at the origin, then this command deletes the

24

«G

o« BP

2 How to use D (the Graphics Editor)

first vector on the path and moves the cursor to the next
point. This becomes the first point on the path, but doesn’t
change the origin—though <RUBOUT> will not move the
cursor back to the origin, the origin is still there.

<ALT> End the pending vector (if any), leave insert mode, and return

to normal edit mode.

Grab a copy of an existing body template and add it at the cursor position to the
body template being edited. The program will ask for ‘that body’s name.
“MODE=EG” will appear at the top of the screen. For example, this command
allows you to define a diamond or “bubble” body template and grab that body
whenever necessary ta shaw that a pin expects its signal to assert low.

The new body arrives with the cursor attached, and you can move it by moving
the cursor. The following commands are valid within this submode:

<SPACE> Detach the cursor from the new body, incorporate it into the
body template being edited, and return to normal edit mode.
Once. detached, the cursor cannot be reattached; attempting to
do so will put you into insert submode, dealing with its path
of vectors.

The reason will become clear if you enter insert submode and

- use <SPACE> and <RUBOUTS> to travel the path; the
program has already converted the new body into a series of
vectors inside the path.)

<ALT> ‘ Delete the body just grabbed and return to normal edit mode.

«0 - . Rotate the body just grabbed, exactly as you would in body
mode.

Enter pin submode within edit mode. “MODE=EP” will appear at the top of the

~ screen. Within this submode, use the cursor as you would within ordinary point

muwde W altach to pins, move them around, delete them, and so on. Important
commands within this mode are:

«P Create a pin at the cursor position. The program will ask for
: a pinname (actually, this "name” must begin with a number.)
To create an invisible duplicate of a pin for bus-through
purposes, end the name with “/B”: thus, a pin called *1” and a
pin called -“1/B” are electrically identical though physically

they appear in two separate places on the body.

26 Commands for Edit Mode . 25

X DEFPIN

X -DEFPIN

o« AT

(You can éctually create pins outside of pin submode, but it’s
a disorderly sort of practice since you must then get into pin
submode to do anything else with them.)

oD ' Delete the pin closest to the cursor.

<ALT> Leave pin submode and return to nor‘rrial_ edit mode.

Display the pinname next to each pin, within edit mode and in the normal
drawing modes. I’s handy to turn this feature on while working with pins within
edit mode, but one customarily turns it off in the normal drawing.

Don't display the pinname next to each pin.

Enter text/property submode within edit mede. “MODE=ET"” will appear at the
top of the screen. Here you can label the body with text, create properties for the
body or for pins, attach the cursor to text or properties, move them around with
the cursor, delete them, alter them, and so on. Important commands within this
submode are: :

«T Create text at the cursor position. Such text merely labels the
body, as a sort of comment that has no more significance to
SCALD than does the shape of the body itself.

oY Create or replace the text of a property name/text pair just as
in normal drawing modes.

AY " Replace the text for an existing property name/text pair just
as in normal drawing modes. :

You can actually use oT, oY, and BY in edit mode without
getting into text/property submode, but that’s a disorderly sort
of practice since you must then get into the submode to do
anything else with the text you've created.

oD Delete the text or property name/text pair closest to the

cursor. R
- «K Kill the text or property closest to the cursor. If it’s simple '

text, this deletes it. If it’s a property name/text pair, this
doesn’t delete it, but simply hides the text so it doesn’t appear
when you use the body in a drawing. This is handy because it
allows you to label pins as SCALD requires while avoiding
clutter on simple bodies, such as gates, where the purpose of
each pin is understood by convention. '

2 How to use D (the Graphics Editor)

If you use oK by mistake on a property, the only way to undo
the damage is to delete the property in question and create it
anew.

Use Alter submode to edit the property or text closest to the
cursor. ‘MODE=EA” will appear at the top of the screen.

Leave text/property submode and return to normal edit mode.

2.7 Using Alter Submode to Edit Text - 27

2.7 Using Alter Submode to Edit Text

Alter submode is a text editor into which you may momentarily descend from within a drawing
mode or submode. When you leave alter submode, you return to whatever you were doing before. If,
for example, you were in the text/property submode of body mode when you decided to alter
something, you’ll be back in text/property submode when you return.

Invoking alter submode from point mode edits the text associated with the point closest to the
cursor, or creates text if that point has none. '

Invoking alter submode from a text/property submode edits the text closest to the cursor. If that text
"is part of a property name/text pair, then alter mode affords you the side benefit of finding out the
property name associated with that text, which is otherwise invisible.

Within alter submode, the program displays the text with the “»” character indicating any point at
which the text breaks into multiple lines. Underneath the text, an L-shaped line serves as a pointer.

In the list of commands that follows, <-> indicates that placing “-” before the command reverses its
operation—backward instead of forward or forward instead of backward. <n> indicates that placing
a digit in front of the command causes it to repeat itself the specified number of times.

ot SA Ehter alter submode.
<ALT> Leave alter submode. | \
<>n>SPACE> Move the pointer forward one character.

<&>m><RUBOUT> :
' Move the pointer backward one character.

<->n>8<char> Move the pointer forward past the next occurrence of character <chars. If
<char> doesn't occur, leave the pointer at the end of the text. With <->, the
pointer will move backward and come to rest before the character, or at the
beginning of the text if the character doesn’t occur.

<->m>D Delete the character to the right of the pointer.

<>n>K<char> Delete characters to the right of the pointer up to and including the next
occurrence of <char>. If <char> doesn’t occur, leave the pointer at the end of the
text without deleting anything.

With <->, the program will delete characters to the left of the pointer through
the next occurrence of the character. If the character doesn’t occur, the pointer
will land at the beginning of the text without deleting anything.

Insert text at the pointer position. The program will prompt you by asking

28 : 2 How to use D (the Graphics Editor)
INSERT TEXTe”. Type the characters you want to insert and press
<RETURNS>. (To put a carriage return inside the text, use the “o” character.)

<<mR - Replace characters. Equivalent to a “<-><n>D" command followed by an T"
command.

2.8 Defining and Using Editor Macros | 29

2.8 Defining and Using Editor Macros

To speed repetitive tasks, you can collect together into an -editor macro. any set of commands you
could have performed individually. Such a macro can even define or use another macro. Note that
editor macros, which are convenient ways to reduce the amount you must type, are quite different
from SCALD macros, which are drawings representing functional blocks of circuitry.

Macros are not associated with particular drawings, but rather with the session at the editor.
Clearing the workspace doesn't delete them, and saving a drawing doesn’t necessarily save them
unless the “X SMACRO" command described later is in effect.

The macro commands actually need only begin with © wher'l; used within:..a macro definition;
outside, the “«;” is optional. ’

Note that after you type the initial “«;” for any of the following commands, the program will print
«" to prompt for the rest of the command. The “a; C” command will also print “TYPE MACRO
NAME?” to prompt for the <id>.

As you enter and exit macros, the number to the right of “LEVEL=" at the top of your screen will
keep track of their nesting. If LEVEL is 0, no macros are pending.

o P Define a temporary, unnamed macro. After you type “x; P”, each command you
' type will execute within the drawing and. also become part of the macro. This
will continue until you use “x; S” to abort the macro or “a; R” to call it repeatedly.
After executing the proper number of times, the macro vanishes.
L/ ~ . :
o S Abort all -macros currently pending. This is the command. to use when ydu re
inside one or more levels of macros and realize you've made a mxstake or lost
track of the situation. : S N PRI

o¢; R<num> Stop adding commands to the current macro, end it, and execute it the number
of times specified by <num>. That number should include the first execution,
which for “o; P” or “o; M” has already taken place within the drawing. For
example, “o; R4” will execute the macro three additional times.

ot} Mcid> Like “o; P”, this begins by executing commands as it collects them into a macro
' and ends by executing the entire macro enough additional times to satisfy the
closing “o; R® command. But it also gives the macro the name <id> so you can

call it again with “«; C”.

The name “INIT” gives a macro two special properties that make it useful for
initializing various aspects of the program. First, the program will save this
macro in the “<name>.DRW?” file along with the drawing whether or not the “X
SMACRO” command is in effect. Second, it will execute the macro automatically
when you bring the file into your workspace.

30

ol C(id)

ot ASd D

X SMACRO

X -SMACRO
X DMACRO

X MACRO

2 How to use D (the Graphics Editor)

If, for example, you want to set the scale to “x17” whenever you begin a drawing
but don’t want to have to remember to use the “x” command, create a macro
called INIT containing that command.

Call the macro named. <id>-and execute it the number of times specifed by the

~ *; R” command used to close the macro when you originally defined it.

This command puts a counter inside a macro. It is valid anywhere inside a
macro definition--even partway through a string of characters. Every time the
macro executes, the “o; A” expression replaces itself with the text representing a
number, starting with the number <s> and incrementing by <i>.

Associated with each macro is a flag telling the program whether that macro
should be saved in the drawing file whenever you perform a “aW” or “X EW”
command. o

When you bring in a drawing file that contains a macro, or when you use such a
drawing file as a library, you acquire the macro and retain. it, even if you clear
ybur workspace, until you leave the program or use the “X DMACRO”
command to get rid of it.

This command asks you for a macro name and sets the flag for that particular
macro. ‘ '

Clears the flag for a particular- macro, thus telling the program not to save the
macro in the drawing file when you use “X EW” or "aW”. .

Deletes a macro from the work area. (The prdgram will prompt for the name of

the macro.)

- Lists all macros associated with this editing session.

31

3 A guided tour of D

This section proceeds step by step through an entire session with the graphics editor, showing how
to create a typical drawing. It makes a number of assumptions which—if true-—will make it much
easier to learn to use the program:

@ We assume you're using a Stanford keyboard, whose distinguishing features are shift keys
" labelled “TOP”, "CONTROL”, and “META". If not, consult a friendly local wizard, or
refer to the SUDS manual mentioned in Section 8, for the conversion procedure.

® We assume you know, or can find out 'froni a friendly local wizard, how to start the
program running at your installation.

® We assume someone has already described and placed in libraries called “SIMLB” and
*STDLB” the bodies your drawing will need, and that they've given you a blank drawing
‘called “BLANK?" that initializes the appropriaxe options for you

® We ask you to assume the complete drawing was revealed to you in some mysterious flash
of insight, so we can concentrate on the graphics editor, and postpone discussion of the
SCALD language

Before you start, you should read the first few pages of the preceding chapter--Section 2.1 should be
plenty. :

In the examples that follow, we use italic type for the characters you produce and normal type for
the characters the computer produces. We use “a” and “8” as explained in Section 2.1, and use
<ALT> to represent the key labelled “ALT” or "ALTMODE” <SPACE> to represent the space bar;
and <RETURN> to represent the key marked “RETURN". ‘

32 ' 3 A guided tour of D

3.1 Running the program

Get the program running by whatever means, fair or foul, your local wizards have taught you. You
should see something similar to Figure 3-1. The program devotes most of the screen, below the
“MODE-=" line, to your drawing. On the bottom quarter of the screen it superimposes the
character-by-character dialog between the program and the keyboard. Soon you'll probably find
yourself focusing on the drawing rather than the characters you type, since the drawing is a lot more
fascinating, and it will seem as if your fingers control the image directly. When the keys don’t seem
to be working, however, you can often tell from the character-by-character dialog what’s wrong.

"MODE="

LINE ——>»| MODE=8 SCALE=16 LEVEL =@ 3=

CURSOR \

X
CHARACTER-BY- -
CHARACTER ——>| #
INTERACTION
Figure 3-1

An empty screen

The top line shows you're in body mode ("MODE=B") with scale set to 16, no macros pending’
(“LEVEL=0"), and no file brought into your workspace(*3="). Throughout the rest of the chapter,
we'll show only the drawing portion of the screen, leaving the top line implicit. - . -

To get accustomed to moving the cursor, place the four fingers of your right hand on the keys
marked 7", ", 4", and “/” above the RETURN key. Press with your index finger and you should
see the cursor move left. The long finger should make the cursor move right. The next finger
- should move the cursor up, and the little finger should move it down.

Experiment with holding down the shift keys——CONTROL, META, and TOP—-first by themselves
and then in combination--to make the cursor move further with- each. keystroke. With CONTROL
alone, it should move twice as far as it does without any shift key; with META, four times as. far;
with TOP, 16 times as far. With CONTROL, META, and TOP together, it should whiz across
the screen 128 times as far as it does with none of the shift keys.

Practice moving the cursor around till you feel bored or comfortable with it. Soon, you will

@

3.1 Running the program ' - 33

automatically associate the four fingers with the four directions, without ﬁhinking about the keys
they’re pressing. ' |

-

34 4 3 A guided tour of D

3.2 Initializing the workspace

Before you can start drawmg, you need to mmalize certain options and to gather bodies from the
libraries.

At our installation, we keep around a drawing called “BLANK?” whose function is to bring in bodies
from a library and to call an INIT macro which performs without toil or strain on your part the
initializations covered in Section 2.22. Remember that, as explained in Section 2.1, “8” means you
should hold down the META key while you press the succeeding character. Thus, the command for
bringing in a new drawing is written “gI” and stands for “META I™: -

xRl FILENAME? BLANK
READING BLANK.DRW [MK2,S1]
LIBRARY STOLB.DRW [MK2,51]
PLOT
: INIT
"o LEAVING MACRO LEVEL 1

The reply from the program-(which may vary slightly from that shown here indicates that the it
found the file you wanted (BLANK[MKZ2S1]), brought in one of the libraries you'll need bodies
from (STDLB[MK25S1)), and carried in with it a couple of macros. Among the macros was INIT,

~ which is unique in that it executes as it enters your workspace, performing the initializations you

need.

To list the bodies you received use of through that deal, use the “aL” (remember--“CONTROL L”) :
command:

st

STOLB. DRH MK2,511

8u00 3U0 SWo R8MERGEQ S8MERGEOD
(and 80 on...) ') '

You'll need bodies from a second hbrary, too, so bring the drawing SIMLB into your workspace as a
library:

*X

WELL?GETLIB

GETLIB

LIBRARY FILENAME?SI/MLB
L.IBRARY SI HLB. DRI [MK2,S1])

INIT

Now if you try “«lL” again, you'll see a lot more bodies:

" %ol

" 8.2 Initializing the workspace : ' , 35

SIMLB.DRU [MK2, 511

2AND0 2AND S 0OR0O 40RO 30RO S5OR 4 OR
(and so on...) '

STDLB.DRUW [MK2,S1]

8100 3U0 SW0 - RSMERGEO 8MERGEO

(and so on...)

Before you draw anything", it's not a bad idea to write your workspéce into a file, just to get the file
established. Since the “3=" in the header makes it clear that the program has no idea what you
want to call the file, you'll have to tell it. For this example, we want to call the file *10016™:

ot WFILENAME?10016
WRITING 180816.DRU (MK2,S1]

Notice that the top line of the screen now says “3=10016[MK2,S1T". The program now remembers
which file it is dealing with, so from now on you can use a shortcut to save your workspace into that
file without your having to retype the filename: '

=X

WELL?EW RITE

EWRITE)
FILENAME?10016 . ®
WRITING 10818.DRWIMK2,S51]

We won't mention it, but it's a good 'ideah‘ to use the command periodically—-just after you’w)e done
something particularly difficult, or just before you leave the keyboard to answer the telephone or a
call from nature—so that even if your computer system crashes, you won't lose all of your work.

36 3 A guided tour of D

NIN RULSE WIDT™H
L1

HIGH=4. 0, 1

LON. w4, @ SETUP=2.0,

He.9,0,6] # R ree ks

o> »

I £

DRLAY=0.9

< m o>
ot LR &

PE L

L

]

Le

Ux
S
£

ONTE L
T > N
nTeN

. Figure 3-2
Our goal is a drawing like this

This seems a good time to take a look at Figure 3-2, which shows the drawing we will practice upon.
It is the definition of an ECL 10016 IC in terms of the primitive bodies that the SCALD logic
simulator understands. We'll split the work up systematically: first position all the bodies, then
draw lines between them, and finally add text.

3.3 Positioning Bodies ' 37

8.3 Positioning Bodies

To position bodies in your drawing, you must get into body mode, and to do that you should type:
* 8B . : : ¢

(Of course, this isn’t necessary this time, because you were already in body mode by virtue of having
just started to run the program, but the command will prove useful in the future))

Whereas the commands we've shown you so far apply more ‘or less anywhere in the program, you'd
better assume that the ones that follow will live up to our promises for them only within the proper
mode. For example, in body mode the “«P” command we're about to mtroduce places bodies, but it .
has an entirely different effect in point mode. .

Let’s start with the body called "MIN PULSE WIDTH” at the top of the drawing. Each body has a
short location parameter below its name; in this case, it's “P1”, so we can refer to the body as MIN
PULSE WIDTH at P1 to distinguish it from the copy of MIN PULSE WIDTH at P2 on the right
side of the drawing. To place a copy of a body at the cursor, type:

%« PTYPE BODY NAME S
MIN PULSE WIDTH St
SEARCHING FOR MIN PULSE WIDTH IN SIMLB.DRW[MK2,51]1

and presto, you'll see the body before you, with the cursor at its top left corner. The cursor happens
to be attached to the body-—that s always the case when you ﬁrst place a body--so that wherever you
move the cursor, the body will follow. Try it,

MIN PULSE WIDTH
I X

. HIGH=0.0;
- LOW =0.0

Figure 3-3
Your first body, with cursor detached

To detach the cursor, press <SPACE>. You'll immediately see a big flashing “B” atop the body
(Figure 3-3). Now try moving the cursor, and observe that the body-doesn’t follow. There are two
ways to reattach the cursor. “aM”. moves the cursor to the body and reattaches it, while “aBM” moves
the body to the cursor and reattaches it. Once reattached, you can once again move the body by
moving the cursor, and then detach the cursor by pressing <SPACE>.

38 3 A guided tour of D

This sort of thing works throughout body mode. Once you have more than one body on the screen,
" the program operates on the body closest to the cursor; it alone will have the flashing “B”.
Experiment with moving this body until you feel jaded, then put the body back near the center of
the screen and detach the cursor by pressing pressing <SPACE>, but leave the cursor in position on
the body.

Let’s place the body SETUP HOLD CHK in location S2 next. Move the cursor to the right by one
CONTROL-TOP. (That is, while holding down both CONTROL and TOP, make one stroke
with your long finger to move the cursor to the right) Now place the body, whose name is, as far as
the program’s concerned, simply “SETUP HOLD™:

%o PTYPE BODY NAME
SETUP HOLD
SEARCHING FOR SETUP HOLO IN SIMLB.DRW[MKZ,S51]

Now detach the cursor from the body by pressing <SPACE>.

Why did we emphasize that you should move the cursor by one CONTROL-TOP? Obviously it
doesn’t make any difference to the final circuit where you place a body. Conventionally, however, it's
considered good drawing style to place bodies so that the lines connected to them lie a uniform
distance apart. And it’s considered better to use a few large increments than several assorted small
ones.

There are two reasons for this. First, uniform spacing makes it easier to apply editor -macros to
reduce repetitive typing, as you'll see later in the chapter. Second, it just plain takes fewer keystrokes
_to get from one body or line to another when they're CONTROL-TOP apart rather than a TOP
plus a META plus a CONTROL apart.

Unfortunately, this empyrean goal of style is tough for a beginner to achieve, particularly because
one can’t always tell precisely where on a body the program will want to attach a particular line. Just
keep the goal in mind as you position the bodies, and comfort yourself with the knowledge that you
can always move things around later to repair any irregularities you cause now.

Next, place a REG RS body at position R1, right under the previous body. To do this, first type a
space to detach the cursor from the previous body, then move it down by a META plus a TOP,
(first hold down META and move the body, then hold down TOP and move it again)' and then
place the new body:

*« PTYPE BODY NAME
REG RS
SEARCHING FOR REG RS IN SIMLB.DRW

Because this body is narrower than the previous one, it's not centered beneath it (Figure 3-4), so
move it to the right by one CONTROL before you type a space to detach the cursor (Figure 3-5).

i

3.3 Positioning Bodies 39

MIN PULSE . WIDTH | SETUP HOLD CHK
tx.. Ll

I :) +X

HIGH=0.0; . : S B EO

LOW =0.0 ’ SETUP=0.0;

~ HOLD =0.0

. CK

R REG RS

S +X

1T pecaye T
|e.0, e.0, 0.0

e
paN

~ Figure 8-4
" Third body off center

B .
MIN PULSE WIDTH SETUP CHK
+X
1 . +X
HIGH=0.8; ‘ I
LOW =0.@ ‘ SETUP=0. 0;
: HOLD =0.0

CK

: , E§ . xB
R REG RS
S +X

I DELAY= T

0.0,0.0,0.0

CK
PAN

Figure 3-5
Third body centered and cursor detached

Moving the paper—Before you proceed to place the rest of the bodies in your drawing, there are a

40 3 A guided tour of D

few loose ends to clear up.

Sooner or later, for example, you're going to run out of room on the screen. Fortunately, the “paper”
you'’re drawing on is much larger than the screen; at any time, you effectively look through the
screen at a small area of it. To move the paper to the right, press the “5” key (you'll have to use
TOP to produce this character). Do this repeatedly until the bodies you've drawn disappear. Keep
doing it, and pretty soon a vertical line will emerge from the left side of your screen, representing the
left edge of the paper.)

Now press the “-” key repeatedly until your bodies come back onto the screen. You can use “t” and
“4” similarly to move the drawing up and down.

You already know how to mqve a body around if you accidentally put it in the wrong place--simply
bring the cursor close to it, use the “«M” or “¢BM” command to attach the cursor, and move the
body by moving the cursor. You also need to know how to get rid of a body entirely if you need to.
First move the cursor so'it’s closer to that body than to any other (the big flashing B will appear
atop the potential victim) and then type “aD”.

Now go ahead and position the rest of the bodies. Some of them are pretty obvious--the adder is
called “ADDER”, the multiplexer is called “2-MUX?" and the gate is called “4 OR"—but others are a
little tricky. The parameter list at the lower right corner needs a body called “PAR”, and the two
Y-shaped gizmos at the lower left which look like lines are actually bodies called “W2MERGE"..
When you finish placing bodies, your drawing should look something like Figure 3-6.

‘3.3 Positioning Bodies

L e
D4 PLLEE HTDTH =P HOLD 0K
1 X

HIGH-0.0; T
LW .8 SETUP=D.0:

inm-o.o

. 4 0R .
X Fy

Figure 36
All the bodies

o .

HIGH=2.0;

1 Lo eew

42 . 8 A guided tour of D

3.4 Drawing lines

In the graphics editor, as in high school geometry, any two poinfs define a line, and therefore you
must get into point mode to draw lines:

*o P

At the top of the screen, you’ll now see “MODE=P”, and the flashing “B” on the nearest body will
vanish. Instead, you'll see a flashing letter “P” or string of letters beginning with “P” atop the nearest
point. Try moving the cursor around; you'll see letters hop from one point to another.

Every pin on a body provides a point you may connect to, and you will create points implicitly as
you draw lines between them. Whereas geometry tells us that paints are everywhers--lines consist of
an infinite number of them side by side, and planes consist of giant smorgasbords of points spread
out endlessly—the graphics editor takes a more manageable view: aside from the points provided
free with bodies for the purpose of attaching lines, points exist only where you explicitly or
implicitly create them. Like geometry, however, it will let you put two points in the same spot,
usually to your own distress. ' ' :

You're about to learn three different ways to create a line: drawing from one existing point to
another, drawing from an existing point into midair, and drawing from' an existing point to the
closest point on an existing line. Those three techniques will cover every situation you’ll encounter in
this drawing, and in just about any other. '

Point to point-First, let's try a line from pin “T” on the multiplexer at M1 to pin “I” on the
“SETUP HOLD CHK?” body at S2. : ‘

Move the cursor close enough to pin *T" on body M1 so you see a big “PA” flashing atop the pin
(Figure 8-7).

3.4 Drawing lines -

NI AL SE WIDTH

HIGH-0.0;
LOH «2.8

MOVE CURSOR CLOSE TO
STARTING POINT OF LINE

MIN AULSE WIDT™
o .
HIGH0.8;
L4 =0.0

MOUVE CURSOR SO SECOND
BEND IS IN THE
RIGHT PLACE

43

TYPE +« TO START LINES.
MOVE CURSOR SO BEND IS
IN RIGHT PLACE

Figure 8-7
Drawing a line from point to point

» Ppep—
%NS HOLD OK T P
ox 1
-X 2% HIGHS.8;
ENPe0.0; LO¢ 0.9
HD 3.9
o
-e
R AEG RS
s
Tmar. 7
0.0,0.9,0.9
o
ra¥

c . 3
3 » xa
o o b 4 %
t aeso.e; 1 He+a.e; 1
SETRL. 0 L0 =0.0 w0, 0; LW 0.0 NP0, 0;
HRD 0.9 HOLD <£.6 HRO -£.0
o o e
3
® REG RS
8
Tmare T
0.0,0.0,0.0
o
L

TYPE + TO SOLIDIFY FIRST

LINE.

AFTER MAKING SURE THE
CURSOR IS CLOSE 'ENOUGH
SO THE STAR IS ATOP THE
END POINT, PRESS -

44 3 A guided tour of D

Now press “+” and you'll see a flashing line or lines from the cursor to pin “T”. Try moving the
cursor around; the lines will stretch and move to follow it wherever it goes. If the cursor happens to
be directly in line with pin “T” vertically or horizontally, you’ll see a single line, but otherwise the
program draws two lines intersecting at a right angle, so as to avoid having to draw a sloping line
between the pin and the cursor. ' '

With the cursor positioned so you see two flashing lines, try pressing <SPACE>. Every time you do
50, the lines will trade places. The program tries to guess whether the vertical or horizontal should
come first—it knows, for example, that lines customarily attach to bodies perpendicularly—but
sometimes it isn’t too bright, and you must then use <SPACE> to help it along.

Now position the cursor so that the first bend in the line is where you want it, and type “+”. The
tlashing line attached to pin “T” will stop flashing; you've just made it a fixed, permanent line and
implicitly created a point at the end where it intersects the other line.

Now try moving the cursor and you'll see a second'right angle, with an additional flashing line
helping to follow the cursor wherever it goes. In general, every time you press “a+” in this
line-drawing submode within point mode, you solidify the oldest flashing line and make it possible
to add a new flashing line at the cursor.

While you're in this mode, you'll see a star flashing atop the point which is closest to the cursor but
also eligible to have a line attached to it. Move the cursor close enough to pin “I” so that the star
appears on that pin, type a space if necessary to put the second bend in the line roughly where you
want it, and type “a-" (or just “-"). In one fell swoop, the program will extend the flashing lines to
reach the star, attach them to that point, make them permanent and free the cursor to move without
dragging any lines around behmd it.

And that, in essence, is the technique for drawing a line between two existing points. Move the
cursor close to one point and type “a+” to get a pair of stretchable, flashing lines. Move the cursor
around, and whenever you need a new flashing line, type “x+” to solidify the oldest flasher and give
you an additional one. When you get the last pair of flashing lines you need, make sure the cursor is
close enough to the destination point that the star appears atop it, and type “a-" to finish the job.

The line from pin “CK” on the body at S2 to the unnamed pin at the top of the body at R1 is even
easier, since it has no bends. Move the cursor close to pin *CK” so that “PA” flashes atop the pin.
Press “a+” to start the flashing lines. Move the cursor close enough to the unnamed pin that the star
appears atop it (you’re probably so close that the star is already there) and press “x-" to finish it off.

Correcting mistakes in lines—To get rid of a line, you simply delete the points that define it.
Fortunately, the program is intelligent about this. When you delete an ordinary point in midair, it
vanishes together with all the lines attached to it, but when you delete a point that represents a pin
on a body, only the line vanishes; the pin remains intact for future use.

If you discover a mistake while you’re still drawing the line, press <ALT> to escape. The flashing
lines will vanish, leaving the cursor free. With the cursor free, you simply move it close enough to

3.4 Drawing lines - } : 45

the point you want to zap so that large flashing letters appear over that point, and then type “«D”.

To illustrate this, let’s deliberately draw a line from pin “F” on the adder to pin “0” (rather than pin
“1”) on the multiplexer. Move the cursor close to pin "F” so “PA™ flashes above it, and type “a+” to
get stretchable lines. When you have the first bend where you want it, type “a+” again. Move the
cursor close enough to pin “0” that the star appears atop the pin, and type “a-" to finish off the line.

Now that you've successfully committed a blunder, how do you undo it? Notice that you want to
_ wipe out both the horizontal line attached to pin “0” and the vertical line, because the latter is longer
than it should be. The easiest way to blow both of them away at once is to delete their point of
intersection. So move the cursor close enough to that point so that large letters “PL” flash above it
(Figure 3-8) and then type “aD”. Both lines (and the point at which they intersect) will vanish.

3 A guided tour of D

MOUE THE CURSOR CLOSE TYPE CONTROL D TO MOVE THE CURSOR CLOSE
TO THE INTERSECTION GET RID OF THEM TO THE REMAINING LINE
OF THE TWO LINES

YOU WANT TO DELETE

AS BEFORE, TYPE + TO ...AND - TO COMPLETE

BEGIN A NEW PAIR THE JOB.
OF LINES...
Figure 3-8

Correcting an erroneous line

3.4 Drawing lines ' 17

To finish repairing the damage, proceed as you v'voul'db when »'dray{ing-ffrom ‘body to body, but use
the end of the line that’s dangling in midair as the starting. point. Move the cursor close to it so
“PL” appears over the point, type “a+” to start flashing lines, type a:- space if necessary to get the

bend to go in the proper direction, bring the cursor close enough to the “1” pin to place the star over
that pin, and type “a-" to finish. - '

Just for practice, draw the two remaining point-to-point lines: the line from the adder to the upper
MERGE body and the line from the body at S1 to the other MERGE body. Each is easy compared
with the lines we just finished, because neither has any bends; in fact, the instant you type “a+” to
start the line, the star will probably appear on the destination point so you can type “x-" to finish it.
Don't try to draw lines from the register to the body at Pl, or to the body at P2; we'll use other
techniques for those: When you're finished, the drawing should look like Figure 3-9.

-
i) "“-f WIO™ SETUP HOLD O
8) o

HIGH.Q; 1 -
LOd 0.0 XL, 8
HOLD 3.9
ox
—
R REG R9
§ X
wmare 7
0.0,2.0.0.0
o
2\

“| I PR SE WIDTH
»

HIGH0.9;
Lo =00
' 8 mar-o.e .
" SMP HAD 0K PRVETER
- 1 e 4 0m
FETUP0. 8 X
{ HOD 0.8
&
Figure 3-9

After finishing the point-to-point lines

Point-to-midair lines-When a line originates at an existing point but terminates in midair, you
must use a second, slightly different technique to draw it. To illustrate, let's draw the line that begins
at pin “S” on the multiplexer at M1 and ends with the label “-PE[0.5]" at the left edge of the
drawing.

(You may need to use the “5” key to shift the e.ntirevpaper to the right so you have room to work.) :

48 ' 3 A guided tour of D

The first part of the procedure will look familiar. Move the cursor close enough to pin “S” so that
the letters “PA” flash atop it (Figure 3-10). Type "a+” to get a pair of flashing lines, and move the
cursor down until the bend is in the proper place Then move the cursor to the left until the
horizontal line is the length you want.

MOUVE CURSOR SO TYPE + TO TYPE + TO
“PA* FLASHES GET FLASHING SOLIDIFY FIRST
ABOVE PIN... LINES... . LINE...

4 5 6

TYPE + TO NOW, TO GET

SOLIDIFY SECOND RID OF NEW , ...PRESS <ALT>
LINE... FLASHING LINES...
Figure 3-10

Drawing from a point to midair .

Now type “a+” once to solidify the vertical line, and' again to solidify the horizontal one. Actually,
you’ve just created two new stretchable, flashing lines from the left endpoint to the cursor. But since
the cursor is atop the endpoint, you don’t see them. Move the cursor a bit (try it) and there they are.

To get rid of those unwanted flashing lines, simply press <ALT>, rubbing them out and freeing the
cursor.

Now you know how to create a point-to-midair line. Note that you've implicitly created two points:
one where the two segments of the line intersect, and another at the endpoint in midair. That agrees
with what we said earlier: once you're inside this line-drawing submode, every time you use “a+” you

3.4 Drawing lines ' 49

solidify a line and create a point at the end of it, too. This has two implications. First, if you ever
decide to delete the segment that ends in midair, you must make sure to delete the midair endpoint.
You can get the line to vanish by deleting its other endpoint, but that will leave an unused (and
invisible) point in midair. .
Second, you. must not use <ALT> in place of *a-" to finish up a point-to-point (bedy-to-body) line
even if you have the cursor directly atop the destination point, becase it will create,a second point
atop the existing destination point.. '

Just for practice, draw the rest of the point-to-midair lines: the two attached to pins “T” and “R” of
the register at R1, the one atached to pin “0” of the multiplexer at M1, the one attached to pin “A”
of the adder, the four attached to the merge bodies, the one attached to pin “CK” of the body at S1,
the one to the right of gate G1, and the one from pin “I” of the body at P2 to the endpomt labelled
“CK /P”. That’s an 1mpressnve enough list, so for now don’t bother to draw any of the four lines to
the left of gate G1. When you're. finished the drawing should look like anure 3-11.

-
DU PLEY WIDTH NP MAD OK
1 X
HIGWS. 8; T
LOM =90 P90
HAD «0.0
o

Figure $-11
Drawing with point-to-midair lines finished

Point-to-line lines--The third and last way to draw a line is to go from an existing point to the
closest spot on an existing line, and to connect to the line by creating a new point there. (Thus, this
is not the way to connect a new line to a bend on an existing line; because a bend always provides
an existing point, you would use the point-to-point technique for that.)

50 $ A guided tour of D

To illustrate, let's draw a line from pin “I” of the body at P1 to the horizontal line below it. As you
may suspect, the opening moves will be the same as those you've used for the last two kinds of lines;
only the endgame is different. '

Move the cursor close enough to pin "I" so that “PA” flashes above the point, and type “a+” to get a
pair of stretchable, flashing lines. Move the cursor and, if necessary, type a space to put the bend
where ybu want it, and then move the cursor down close to the place on the existing line where
you'd like to connect the new lines. Type “BA”. The program will put a star on the line where it
plans to make the new connection (Figure 3-12) and ask you whether that’s the right place:

*BATHIS ONE?
Answer “Y” and the program will complete the connection; answer “N” and the program will decide

not to connect the lines, giving you a chance to move the cursor closer to the precise spot where
you'd like the connection before you try again.

MIN AULSE WIDTH

1.

Xe- == -n

-)r—

Figure 3-12
Connecting a line to an eXisting line

For practice, draw the two remaining point-to-line lines: one from the “CK” pin‘ of the register at
R1 to the line below it, and the other from the °I” pin of that register to the line to the left of it.
When you're finished, the drawing should look like Figure 8-183.

8.4 Drawing lines , o : 51

. s ™
. D¢ LS WIDTH ENP HLD 0K
L I K o
HiGe. & 1
- Lo 0.0 NP0, 01
- HAD -4.0
ot
o . -
R
® ogs A3
s .
Yoo T
. 0.0.0.0.0.9
e @ x
; ® aax
S 4 v
-
, e-00.60.0 .
s 4

WD ARSE NIDTH
L

LW 0.0

DBLAT-S.0

Figure 3-13
with (almost) all lines

Drawing

52 | $ A guided tour of D
3.5 Putting text on your drawing

The text you'll add to your drawings belongs to either of two catego;ies; signal names and body
parameters. :

Signal names—Before you can add signal names,'the program must be in point mode. (It is probably
- already in point mode if you've been following these instructions, but if not, type “aSP".)

Typically, you put text on a line near a point where the line ends in midair. To illustrate, let’s label
the line at the lower left corner of the drawing. First, move the cursor close enough to the midair
point that “PL” flashes atop the point. Type: Lo .

*ATTEXT?
CK (P

And that’s all there is to it.

If you make a mistake, simply repeat the command and retype the text; the new version will replace
- the old.

For practice, move the cursor upward and label the line above that one:

*BTTEXT?
CE

and move the cursor upward once again to label the next line, too:
xBTTEXT?
PE

This works fine so long as the signal names are short and you are a fairly good typist. When both
of those conditions cease to be true and the probability of making an error every time you retype the
signal name to correct an error therefore approaches unity, it's lucky that the graphics editor
provides for you a simple text editor.

This text editor is called alter submode. To illustrate its use, let’s deliberately put the wrong text on
the fourth line up from the lower left corner:

*ATTEXT?
NOW IS THE TIME

Now type “aBA” to enter alter submode, which will show you the text plus a pointer, a horizontal
line under the characters which bends upward at its right end to mark the current editing position.
On the screen, you'll see the text you're editing in large letters at the top and the characters you type
in small letters near the bottom. To make the following discussion more compact, we'll act as if they
appeared together on alternate lines:

3.5 Putting text on your drawing o , 53

*t B A
_NOW IS THE TIME

To move the pointer forward to the next octurrence of a character, type “S” followed by the
‘character (with no intervening <RETURN>). It will stop just beyond that character:

xS
M
NOW IS THE TIME

"To move the pointer backward to the previous occurrence of a character type —S" followed by the
“character. It will stop_just in front of that character... ’ -

®x-

E

«E .
NOW IS THE TIME

In addition, you can type a uspace to move the pointer forward one character at a time or a
<RUBOUT> to move it backward one character at a time. To delete characters to the right of the
pointer, type the number you’d like to delete, followed by “D”™:

%2
xD

NOW IS THTIME
To delete character$ to the left of the pointer, use a negative number instead:

*—
%x2
. %D
NOW IS TIME

To insert characters at the pointer, type I followed by the characters you'd hke to insert, ending with
a <RETURN>:

«/INSERT TEXT?SUPPER
NOW IS SUPPERTIME

There are a number of other, more powerful commands within Alter submode, some of which are
described in Section 2.7, ‘but the ones you just saw should suffice for now. After you've eradicated
the damage we just d1d and you feel satisfied with the result, press the <ALT> key to leave alter ’
submode and return to point mode: :

54 : : 3 A guided tour of D

x4

*D

NOW IS SUPPER

»®—-

%1

*3

xD

*JINSERT TEXT?-PE[0.5]
-PE[8.5]

%<ALT>

Just for practice, put text on the rest of the signal lines that-end -in midair, using alter submode if
you find it helpful in correcting mistakes. When you finish; the drawing should look like Figure
3-14.

. -
""" LI I NP HAD OK
=
1G4, 0, 1
LON =40 €.,
HAD «1.0
™
0.9,.0.6) # ©
qo.0,0.6) R "G
‘ s mo oD o
caar. f—————————=
2.0,3.4 5.0
o
P

HIN ARE WIDTH

1 (-1
HIGRI. 6,
O 3.5
o3) & ‘DELAY=6.6
—-—\ SETP HAD 0K PRETER
k 2
' 4 o v
& BETUP2.5 2] » x
{ HOLD «8.6 T >
o L
R e o
- :] ra» N
ria

Figure 8-14
Drawing with (almost) all signals labelled

Text for bodies--The text you see on a body can be either of two kinds: simple text which, like a
signal name, consists of a string of characters.at a particular place; or the text portion of a property
name/text pair, a piece of text which has an invisible name that you can use to access it.

On your drawings, however, you'll need to deal only with property nameftext pairs. Usually the

3.5 Putting text on your drawing : . 55

body comes to you from the library with these name/text pairs already created. To changé one, you
simply ask for it by name and tell the program what to use for the text. Sometimes, you have to
create the property name/text pair yourself.

For most bodies, you'll deal with three properties:

SIZE usually appears.above the body name and arrives from the library set to “XB”.
You’ll want to change it to reflect the number of bits the body is supposed to
deal with, such as “4B”. '

LOC usually appears below the body name and arrives from the library set to “+X”.

‘ ' You'll want to change it to the location code which, as mentioned earlier, helps
differentiate between multiple occurrences of the same kind of body in one
drawing something like “G7” or “A2”.

VAR . is -additional information about the body. for later use-bylSCALD. It can begin
with “DELAY=" or “SETUP=" or “HIGH=" followed by a series of numbers.:

To illustrate, let’s start with a body for which all three property name/text pair already exist, but
need ;changes: the one at the lower left corner of the drawing. ‘

To work with body text, you must ﬁrst get into body mode by typing “aBB”. You will see
“MODE=B" on the-top line of your screen. v :

Now move the cursor close enough to the body at the lower left corner of the drawing so that a
large “B” flashes atop it. Now when you ask to work with a particular property, the program knows
it must be a property associated with that body.

First, you must change the "XB_” to “2B”. As we just explained, this is doubtless the property called
“SIZE", so type the following command to replace the text associated with that property name:

*ﬂYPROPERTY NAME (ENOUGH TO UNIQUELY SPECIFY IT)?
SIZE

SI1ZE

NEW TEXT?

‘2B

You'll see the “X".magically change to a “2”. Actually, the program tolerates shortcuts when you type
the property name. Since no other property begins with “S”, you could have typed “S” instead of
“SIZE”. Notice that the program echoed “SIZE”. If you do get into the habit of using this shortcut,
it’s not a bad idea to check the echo to make sure you really get the property you want. If not, you
can escape from the command by pressing the <ALT> key.

Now do the same sort of thing for .the "LOC” property:

56 ' " 8 A guided tour of D

*x8YPROPERTY NAME (ENOUGH TO UNIQUELY SPECIFY IT)?
Loc ' ‘

LoC

NEW TEXT?

S1

and magically the “+X” will change to an “S1”. Finally, change the “VAR” property, noting that you
use the “o” character instead of the <RETURN> key to break the text across two lines:

*ABYPROPERTY TEXT (ENOUGH TO UNIQUELY SPECIFY IT)?
VAR

YAR

-NEW TEXT?

SETUP=2.5,6HOLD =0.5

If you make a mistake, simply repeat the command and type the text again, correctly. The new
version will replace the old.

Sometimes you’ll have to create a property name/text pair for yourself. On this drawing, a good
example is the PAR body, where each signal name in the list requires a separate property. To
create these, move the cursor over toward the word PARAMETER in the lower right corner and
place it where you'd like the center of the first name, “I<0:3>”, to be. The name you give to each
property isn’t important, but by convention we use “0”, “1”, and so on. Type the following command
to create a new property name/text pair:

- %YPROPERTY NAME?
0
NEW PROPERTY, TEXT?
1<0:3> -

Now move the cursor down by a CONTROL and create the next prop_érty:‘

* FIPNOPENTY NAMC?
1 .

NEW PROPERTY, TEXT?
cK

The “aY” command will actually edit an existing property if the name you give has already been
used, so it's a good idea to make sure the program prints “NEW PROPERTY” as those examples
showed. If not, you can escape from the command by pressing the <ALT> key.

If you mistype a piece of text, you can simply repeat the command and retype it correctly. If you
create a property you don’t want, or if you inadvertently put a property in the wrong place, you must
get into text/property submode of body mode to repair the damage.

N
~ 3.5 Putting text on your drawing . 87

To illustrate, suppose there’s something wrong with the “CK” text. First, make sure the cursor is
close enough to the PARAMETER body so that “B” flashes above it. Type “@Y” and you’ll see
“MODE=BT” on the top line of the screen, indicating you're in the submode. Now as you move the
cursor around, you will see large letters flash atop whichever property is closest to the cursor. Move
it so that the letters are atop “CK” and type “aM” to attach the cursor to that property. Now
wherever the cursor moves, the property will follow. Try it. When you have that property in an
appropriately ridiculous place, press <SPACE> to detach the cursor. Now move the cursor and you'll
see that the property nolonger follows it. '

You may also use alter submode on a property once you're-within text/property submode. Simply
move the cursor close enough so that the big letters flash above the text you want to edit, and type
“aBA”. Then you can proceed as you did when editing signal namés. When you press the <ALT>
key to leave alter. submode, you'll find yourself back in text/property submode as you were before.

Suppose you want to"get rid of the property altogether. Make sure the cursor is close enough that
the big flashing letters are atop our intended victim, and type “xD” to vaporize it. Now that you're
finished playing, type “«BB” to return to ordinary body mode. . -

You should observe two important limitations about body t’ext/pi'oi)erty submode. First, you can edit
and delete only the text that you yourself have created or at least replaced, not text that arrived
along with the body from the library. For example, you cannot edit a SIZE prop'erty that still has its
original “XB”, but you can edit it once you have replaced that “XB” with “2B”. Second, everything
you do within the submode applies to the body that was ¢losest to the cursor when you entered that
‘submode. The program will let you move the cursor to another body while you're still within
text/property submode, but before you-can deal with properties associated with that body you must
get out of the submode and back in again.

Now that we've enticed you into destroying the perfectly good “CK” property you just created,
practice your property creating and replacing skills by completing the properties for the rest of the
drawing. When you're finished, the drawing should look like Figure 3-15.

&> #

3 A guided tour of D

TN @ OF JTMd

HIGHD. 8
L LOW «8.0
-reje.5)
. " - 0RLAT-0. 8 .
SETP HALD OK PRRTETER
. o
| 4 . g 4 0R
SETUPS. 0 4
jo-A— { HOLD <0, L
x
e |

Figure 3-15
Drawing with body text finished

3.6 Editor macros 59

8.6 Editor macros

By now you are no doubt wondering why we have postponed so long drawing the four lines to the
left of gate G1. s . S R o :

The reason is that they’re an excellent way to demonstrate the use of graphics editor macros to

eliminate repetitive typing. If you were to draw those four lines and label them in the obvious
1

fashion, you would wind up doing almost exactly the same thing four times in a row.

An editor macro lets you draw and label one line, and then tell the program to repeat the process
three additional times for you..

.To see how it works, get into point mode by typing “aBP”. Move the cursor close enough to the top
diamond so that “PA” flashes above the diamond, type “aM” to attach the cursor to that point, and
press <SPACE> to detach it. The attaching and detaching simply assures that the cursor is really
directly atop the point; precise alignment is important when you're using macros.

To begin the macro, type “o;P” (use the CONTROL key on the “” but not on the “P”). From now
on, each command you type will execute, changing the drawing; but the program will also save each
command into the macro for future use. On the top line of the screen, youll see “LEVEL=1",
showing that you’re one level deep inside a macro. If you get confused or make a mistake while
inside the macro, type “o;S” to escape. You can then delete whatever the macro has done so far and
start over.

Type “+” to start a line, move the cursor left by one TOP, and type “+” to solidify the line. Then
press the <ALT> key to finish off the line.

Type “BT" to label the midair end of the line with its signal name. Now we have a slight problem:
the signal name ought to be slightly different for each line we want the macro to draw. The first
line represents bit 0, the second represents bit 1, and so on. Fortunately, the program’s macro facility
-provides a “;A” command that puts a counter in the middle of the macro for you. The first number
after the “A” gives the initial value for the counter, and the second number gives the increment.
Thus, the part of the macro that creates text will look like this:

BT TEXT?
T L<x;

« A0

END ;A

->>

'Now move the cursor down by a CONTROL and right by a TOP. That puts it back where it was
‘when we started the macro, except that it’s now on the second diamond rather than the first. Now
we want to stop adding commands to the macro and to have the program repeat the commands
three additional times to produce a total of four lines. To accomplish this, type “GR4” and press
<RETURN>. You'll see three more lines appear below the one you just drew. On the top line of
the screen, “LEVEL=0" shows you that you’re no longer inside the macro.

60 3 A guided tour of D

Now that you've used it, the macro vanishes. Section 2.8 explains several other useful macro
commands, including one which allows you to create a macro that remains after you've used it, but
for now this should suffice.

3.7 Using sets ' _ - 61
8.7 Using sets

As you'll discover if you try, the program is very obliging.about patching up the damage that occurs
when you move a body that has signals attached to it. Often it manages to stretch lines and
introduce bends carefully enough that the result is still pretty.

When you want to move a group of ob jects including one or more bodies and one or more points
and one or more lines, however, you can avoid this interob ject stretching by defining a ser that
includes the ob jects, and then moving the entire set together. '

To illustrate this, let’s move gate G1 around a bit. First, get into set mode by typing “«BS”. On the
top line of the screen you’ll see “MODE=S".

Now the strategy is to draw a box around the part of the drawing you want to move (in this case,
encompassing the lines cconnected to the inputs of gate G1 in addition to the gate itself). Every
body and point inside the box belongs to the set, and if both endpoints of a line are inside the box
then effectively the line belongs, tco. -

Move the cursor to the spot you'd like to become the upper left corner of the box and type “a+” to
start a line. Move the cursor to the right until the line is long enough and type “a+” to make the line
permanent. (In set mode, by contrast with point mode, the line won't stop flashing when you do this.)
Move the cursor downward until the right side of the box is long enough and type “«+” again.
Move the cursor left until the bottom of the box is long enough and type “o+” again. Finally, move
the cursor up to complete the box and this time type “a-" to finish it off. (Actually, the program
offers you a shortcut. After you've drawn the first two sides, you can simply type “a+a-" without
moving the cursor and the program will complete the third and fourth sides for you.)

As soon as you complete the box, a big flashing letter will appear atop each point or body in the set,
and a big flashing “S” will appear near the center of the set. Type “aM” to attach the cursor to the
set. Now try moving the cursor; you'll see the entire set move with it. As with individual points and
bodies, you press <SPACE> to detach the cursor and leave the set where it is. You can then go
define another set elsewhere in the drawing; within set mode, as within body or point mode,
commands always refer to the set closest to the cursor.

Once the cursor is detached you can delete the set definition by typing “«D”. This doesn’t delete any
points or bodies, but merely releases them from membership in the set. Typing “BD” (don’t try it!)
deletes each point and body belonging to the set closest to the cursor.

When you're tired of playing with sets, you can type “aB” to return to body mode or “ofP” to
return to point mode.

62 8 A guided tourof D

3.8 Final touches to your drawing
Just a few steps remain before your drawing is finished.

Because it’s so easy to place one point atop another, the program provides a command to check for
this and other faults. Type “a8P” to get into point mode, and then type:

*X
WELL?DANGLE
DANGLE

If the program tells you "NO MATCHES FOUND?”, congratulations—it found no errors. Otherwise,
press “aF” and the program will place the cursor atop the first error. Section 2.2.3 explains passible
errors and the usual solutions. After you correct the first one, type “«F” to move the cursor to the
next (if any), and so on until typing “aF” ceases to move the cursor.

When you think you’ve fixed them all, try the “X DANGLE” command again, just to be sure.

Now the drawing is fine as far as the graphics editor is concerned. “You must givé it a title so that
"~ SCALD knows what body this drawing defines. Type: '

X

WELL?TITLE

TITLE

NEW TITLE LINE 1?l0016
NEW TITLE LINE 2?SIZE=4B

Finally, write the files that hold the drawing, allow you to plot it on paper, and provide a wiring list
for ultimate use by SCALD: '

*X
WELL?EW, EP, EL, CLE

You've finished the drawing. In the next section of this chapter, you'll learn how to describe a body
to represent the drawing. ‘

3.9 Creating a body template ‘ - 63

3.9 Creating a body template

Now that you've drawn the definition of an ECL- 10016 IC, you need a template for a body that you
can use in your drawings to represent that IC and invoke its definition. In a realistic situation, you'd
probably add the template for this body to an existing library, perhaps one called “E10K”; and then
place the body on a menu drawing, perhaps one called "E10K 1", that shows people what bodies are
available from that library. But since this is the first body template you've created, we'll assume you
want to create a brand new library file and menu file.

3.9.1 Getting started

First, imagine that a flash of inspiration tells you that the body should look like Figure 3-16. Now
clear your workspace and perform a few necessary initializations to establish the file “E10K” which
will become your library: ‘

*X

WELL?-LOCS

-L0CS

xX

WELL?BOARD

BOARD

BOARD TYPE?DECPC

oW o

FILENAME?EIOK = :

WRITING E18K.DRW[MK2,S1]

=X

WELL?GETLIB

GETLIB

LIBRARY NAME?STDLB
LIBRARY STOLB.DRWMK2,S1]

28

3 A guided tour of D

PIN NAME = PIN NAME = 3.8 + PIN NAME =
PROP NAME = 7L®
PROP TEXT = TC
TC
X8
PIN NAME = 1 , 10016 A PIN NAME = 6
PROP NAME = 1 ——— |I X T &————— PROP NAME =
PROP TEXT = I PROP TEXT= T
K R__PE CNTH
- O 0
.. AT A)
PIN NAME = 2 . .
PROP NAME = 2 . PIN NAME = 5
PROP TEXT = CX PROP NAME = Sl.*
TEXT = CNT
PIN NAME = 3 PIN NAME = PROP TEXT = CNTE
PROP NAME = PROP NAME = 4L%
PROP TEXT = R PROP TEXT = PE
Figure 3-16

This is what you want to create

Body templates are hidden in the background of a file, entirely separate from the drawing portion
of the file, if indeed there is one. To create or edit a body template, you enter Ediz mode, in which
the drawing vanishes temporarily. Of course, you won’t notice this because you haven't started a
drawing in this workspace {(and you probably never will since it’s supposed to be used as a library).
" Type: : '

*oc SETYPE BODY NAME?
10016 : , : ,
NEW BODY. / '

On the top line of your screen you'll see “"MODE=E". At the center of the screen you'll see the
familiar cursor. The initial position of the cursor is special because it will become the origin of the
body. When, in the process of making a drawing, you attach the cursor to a bedy, it moves to the .
‘origin; and when you detach the cursor, the flashing letter “B” appears atop the origin. By
corivention, though nothing in the program demands it, we always draw a body so the upper left
* corner is the origin.

LWithin edit mode, four submodes let you perform four different tasks: add or insert lines to define
. the body shape, grab bodies from elsewhere to add to this one, create pins to which you can connect
. signals, and label the body and pins with text.

$9.1 Getting started i ‘ 65

3.9.2 Drawing the box
First, get into insert submode by typing “«I”. You'll see “MODE=EI” on the top line of ‘the screen. -

Now we want to draw lines. Edit mode is deceptively similar to point mode, but with two important
differences. First, you're not drawing lines between existing points, but creating a series of brand
new vectors. Some of the vectors are visible and others are invisible, but each starts where the
previous one leaves off. Second, the program is perfectly willing to let you draw slanted lines, and
thus doesn’t bother with pairs of lines at right angles as it does in point mode.

Type “a+” to start a visible vector and move the cursor to the right by TOP. Type “a+” a second
time to finish that vector and begin another, and move the cursor down by TOP. Type “a+” a
third time to finish that vector and begin a third, and move the cursor left by TOP. Finally, type
“a+” a fourth time and move the cursor back up to the origin by TOP.

To finish off that fourth vector without starting another, press <ALT>. You'll find yourself out of
insert submode and back in plain edit mode. '

Actually, there was no need to get out of insert submode just then, because we're about to draw more
vectors, but we wanted to illustrate the use of <ALT>, which is the only way to end a vector without
starting a new one.

3.9.3 Ornaments

That produced a fine box, but we're missing the triangle that represents the clock input, and the
three diamonds that represent inputs and outputs that assert low. Once you’ve drawn the outline of
your body there are two ways to add details to it: use invisible vectors to skip around, or grab bodies
from elsewhere.

Based on your experience with the program so far, you might guess you could move the cursor to
the point at which you'd like to add something, enter insert submode, and start using the cursor to
draw vectors. If you try that, however, you'll find that the cursor hops back to the origin on its way
into the submode. The program insists that a body consist of a single path of vectors, so the only
way to add to the body is to follow the path to its end and append vectors there. If you want to go
back to a point along the path, you must go to the end of the path and append an invisible vector
that jumps back to the desired point.

66 a | 3 A guided tour of D

. Type “«I” to enter insert submode again. The cursor will appear at the origin. Now press <SPACE>
repeatedly. The cursor will travel one vector's length along the path every time you do so. When it
stops moving and the drawing doesn’t even blink at <SPACE>, you've reached the end of the path
and can add more vectors.

Invisible vectors--To start an invisible vector, type “x-". Now move the cursor downward by TOP

and to the right by a singie unit (that is, an unshifted keystroke), and it will rest where the left edge
of the triangle should be (Figure 3-17).

1 : =

(ENLARGED) TYPE

STARTING WITH CURSOR CONTROL - AND TYPE CONTROL «
AT ORIGIN... SKIP TO LOWER LEFT FRD MOVE CURSOR
CORNER. . . 1 STEP...
4 5 6
X a 5
.. TYBE <aLT>

TYPE CONTROL +,

THEN MOUE CURSOR AND SKIP TO RIGHT
RIGHT 1 STER.., TOZEDC:§23$?O”N TO BEGIN WEXT
e ORNAMENT,

Figure 3-17
A closeup view of drawing the triangle

To draw the left slant, type “a+", move the cursor up by a single unit and to the right by a single
unit. To draw the right slant, type “a+", move the cursor down by a single unit and to the right by a
single unit. '

Obviously, one could now skip to the point at which the first diamond should appear, and draw it

/393 Ornaments - ~ ' 67

in the same fashion. But there's an easier way, so press <ALT> to leave insert submode.

Grabbing bodies from elsewhere—-The éasier way is to grab a copy of an existing body and add it
to this one. Suppose that one of your libraries contains a body called DIAMOND which is useful
for indicating that a pin asseris low. :

To grab it, move the cursor so lt rests on the bottom llne of the box five CONTROLs from the
lower left corner. Then type:

*cGTYPE BODY NAME
DIAMOND
SEARCHING FOR DIAMOND IN STOLB.DRMWI[MKZ,S1]-

First youll see “MODE=EG” appear on the top line of the screen and then you'll see the diamond
appear at the cursor position. The cursor is actually attached so that the diamond will follow it
wherever it goes. Experiment with moving it. When you have the diamond back where it belongs,
press <SPACE> to release the cursor. The diamond will become part of the body, and you will find
yourself back in normal edit mode. :

To add ‘the next dlamond move the cursor to the proper position and use the c(G” command agam
Finally, move up to the top line and add the third and last dxamond

3.9.4 Defining pins

Corresponding to the seven inputs and outputs tisted under PARAMETERS in the drawmg we just
made, the body has seven labelled pins. In addition, it has two invisible “bus-through” pins at the
top. Pin “2/B”, for example, is identical electrically with pin 2, as if any signal you connect to pin 2
travelled underneath the body and reemerged on the opposite side (Figure 3-18).

68 : _ : 8 A guided tour of D

< O
L\ PaS
o ! Lo o]
[e] <
Wa¥
o .) <

BUS- THROUGH PINS

LET US DRAW THIS... ... TO REPRESENT THIS.

Figure 3-18
Using bus-through pins

To define the pins, type "«BP” to enter pin mode. You'll see “"MODE=EP” on the top line of the
screen. Ordinarily we don’t want pin numbers nn drawings, hecause they represent unneeded clutter,
but until you have a chance to create labels near the pins, pin numbers make it easier to find the

pins, so type:
xX
WELL?DEFPIN
OCFPIN

As you create each pin, you will have to supply its pin number (which the program refers to as a
“pin name”). To begin, move the cursor to the midpoint of the left side of the box and type:

*t PPIN NAME?]

Now move the cursor down to the bottom line of the body, directly under the apex of the triangle,
and type:

*oc PPIN NAME?2

Continue until you've created all the pins. If you make a mistake, move the cursor to the erroneous

3.9.4 Defining pins . ' 69

pin, type “aD” to delete it, and then use “aP” to create it anew.
When you're finished, hide the pinnames$ once again so they won't clutter your drawings:

X
WELL?-DEFPIN
-DEFPIN

. Press <ALT> to leave pin submode and return to plain edit mode.

3.9.5 Creating body text
The last step in describmg your body is to create a property name/text palr for each of the pins,
plus a few pairs for the body as a whole Type aﬁT” to enter text/property submode You will see
"MODE=ET” on the top line of .the screen. Within this submode you can create, alter delete, and
move text for a body template just as you would edit text in ordinary body mode or body text,
submode for the drawmg as a whole. «

Each visible pin has a property name/text pair associated with it. To begin, move the cursor to the
center of the area where you'd like the label for pin 1, T, to appear Create a property nameltext,
pair :

%Y
~ PROPERTY NAME?
1
NEW PROPERTY, TEXT?
' .

Now move the cursor to the spot where you'd like the label for pin 4, “PE” to appear. As Figure
3-16 shows, the property name for this pin is more elaborate. We'll postpone explaining the reason
until chapter 4, but note that the difference is important to SCALD:

74 4

PROPERTY NAME?

4Lx

NEW PROPERTY, TEXT?
PE

For the sake of practice, create the property name/text pairs for the rest of ‘the visible pins—R, CK,
CNTE, T, and TC. When you'’re finished, the body should look like Figure 8-19.

70 3 A guided tour of D

Q.

TC

I‘ T
Ko pe onTH
O O

Figure 3-19
Body with all pin properties

As you've probably guessed, the “XB” in the middle of the body is the text of property SIZE and
the “+X” is the text of property LOC. The name of the body, “10016”, is the text of a property
called MNAME. For each of these, posmon the cursor to the center of the place you'd like to put
the text and use “xY” to create the property. Remember that if you make a mistake, you can
proceed as we did with properties in the drawing as a whole: attach the cursor to the one you want
to correct and either move ii:, delete it, or use alter submode to edit it.

When you're satisfied with the text, the body is done. Press <ALT> to escape from text/property
submode and return to normal edit mode. Then type “«E” to escape from edit mode.

Now save the file and clear your workspace:

*X

WELL?EW, CLE

EWRITE

WRITING E18K.DRW [MK2,51]
CLEAR

3.10 Making a menu file

If you were to plot the library file “E10K” which you just created, you'd see nothing. You've
described the body “10016”, but you won’t see it until you use it in a drawing. It turns out to be
convenient to put the body templates in one file for use as a library and to put a rogues’ gallery of
" their portraits in another file for use as a menu.

Now that your workspace is clear, type the following to create a new file “E10K1” to serve as a

3.10 'Making a menu file : _ » ’ -m

menu: .

xot W

FILENAME?EI0K]

WRITING E10K1.DRW{MK2,S1]

xX ' S
WELL?-LOCS, GETLIB, SHOWBOX
-LOCS

GETLIB

LIBRARY NAME?E10K

SHOWBOX

Aléll

Now move the cursor to an appropriate point--near the upper left, for example--and 'place a copy
of body “10016” in the drawing: ‘ '

xocPTYPE BODY NAME
10016
SEARCHING FOR 18816 IN E18K.DRWIMK2,511

‘Press <SPACE> to detach the cursor from the body. In this case, it’s obvious what name to use
when you want to fetch a copy of the body from the library: 10016. Sometimes, however, the name
of the body may differ from the text of the MNAME parameter that appears on the body, so it’s a
good idea to put the name above the body on the menu drawing. To do this, move the cursor to an
appropriate place near the body and create some text: ' :

*oTTEXT?
10016

In a realistic case, you would fill the menu with many different bodies belonging to the ECL 10K
family, but since you have defined only one so far, save the file and you're tinished: ‘

xX _
WELL?EW, EP, CLE .

And that’s the end of the tour. Congratulations. You have made a drawing to define ECL IC
10016, a body template to represent it, and a menu drawing to advertise its existence to the world.

3 A guided tour of D

93

4 How to use the macro expander

Like the graphics editor, the SCALD macro expander deals with bodies and the lines connecting
them. :

A body represents a logic element, and the pins on the body to which you may connect signals
represent inputs and outputs.

A line between bodies represents a signal, whose characteristics are determined partly by the bodies
it connects and partly by the name, if any, used to label it on the drawing. "'

A body may represent a macro—a functional block which must be expanded into the logic elements
that comprise it—in which case an additional drawing must exist to define it in terms of other
bodies connected with signals. Or a body may represent a terminal--a fundamental, irreducible logic
element—in which case the program looks for entries in a special text file called the TERM file (or
terminal file), which describes the body’s inputs and outputs.

Visually, connecting a line from one body to another with the graphics editor “feeds” the signal from
the output of one body to the input of the other. Effectively, this calls the two macros, using the
output parameter of one macro as the input parameter of the other. The task of the SCALD macro.
expander is to replace each body which represents a macro with the set of bodies and signals which
define that macro. Because a macro may be defined in terms of additional macros, the program
repeats the process until it obtains a network of bodies and signals in which all the bodies are
terminals.

Exactly what constitutes a terminal depends on whether you want to obtain a wirelist for actually
building a prototype, or whether you simply want to simulate the logical design. When building a
prototype, you regard a macro as a terminal if it corresponds to an actual IC or chip to be used in
the prototype. By using a TERM file containing entries for these chips, the macro expander
produces a list of chips and interconnections for use by the SCALD physical design system.

When simulating a design, however, you define each IC or chip with a drawing that uses only

74 ' . 4 How to use the macro expander

logical primitives—that is, idealized gates, adders, latches, multiplexers and so on--which the
simulator can deal with. By using a TERM file containing entries for the logical primitives, the
macro expander can expand the design past the IC or chip level, producing a network of logic A
primitives for use by the SCALD simulator .and timing verifier. (The behavior--the truth or state
table--of each logical primitive is built into the simulator and verifier.)

Thus, the choice between an IC terminal file and a primitive terminal file determines the operation
of the macro expander.

Incidentally, SCALD has no trouble dealing with an IC or chip which contains several copies of a
- particular logic function—a quad latch or dual flip-flop, for example. In such a case, the body
representing that terminal, the entries for it within the IC terminal file, and the drawing defining
the terminal in terms of logical primitives all pertain tu a single copy of the function. A file called
CHIPS (which also contains electrical characteristics of the IC inputs and oiitputs) takes care of

telling the physical design system that it can obtain multiple copies of the function from a single

package.

41 Typical design procedure - ' 7%
4.1 Typical design procedure ‘

The remainder of the chapter is full of rules for the syntax of bodies and signals that makes up the
input language for the SCALD macro expander. -Those rules may make better -sense after an
outline of the typical procedure for designing a large project with the macro expander:

1. For each kind of IC to be used in the design, make entries in the IC Terminal File. -

2. If you will want to simulate the design, make a drawing for each IC that defines it in
terms of the logical primitives—-adders, gates, and so on--available in the graphics editor

library “SIMLB”. (These primitives are-sufficiently general to apply regardless. of the

actual logic technology used to implement the design, though the numbers for timing will

of course vary.) If-the IC contains multiple units in one: package——a quad latch, for

example--the drawing should define a single unit. - <

3. Develop a graphics editor library containing.a body template for each of the ICs. The
S-1 Mark II designers, for example, developed a library called “E10K” containing bodies
representing ECL 10K parts. Note that the body template for a multiple-unit IC should
represent a single unit. '

Since body templates are invisible until used to place bodies in drawings, it helps to make
one or more menu drawings for each library. A menu drawing simply shows each IC
available in the library, and next to it gives the proper name for its macro. SCALD itself
doesn’t use these menus, but they aid designers in picking out the proper bodies to use.
For the ECL 10K library, for example, the menu drawings are called “E10K 17, “E10K 2",
and so on.

4. Now define any macros expected to be used frequently throughout the design, invent
body templates for them, and place those bodies in a library so designers can find them
easily. As work progresses, designers can add new templates as needed.

For example, the 5-1 Mark II design frequently uses vision registers, registers with
auxiliary logic that accesses the register contents for diagnostic purposes. Placing in a
library a set of body templates representing vision registers makes it as easy for a designer
to incorporate one of them as it is to design with an ordinary register.

5. Now the designers can start at the top level of the machine and proceed hierarchically
down toward the bottommost, detailed level. At each level, the designer makes a drawing
by connecting signals between bodies representing macro calls and/or terminals. The
designer can obtain bodies for the terminals from the templates in the library described
above. For a body representing a macro call, the designer must invent a body template and
then make a further drawing defmmg that body in terms of addmonal bodies; thus the
process recurs.

6. SCALD dnes not consider the top level drawing in the hierarchy as a special case, so to
start the macro expansion process, somecne must invoke that drawing through a macro

76 v 4 How to use the macro expander

call. The usual approach is to make a dummy drawing of the “universe” consisting of
appropriate ‘drivers and receivers attached to a single body representing the entire deéign.
When it comes time to lay out hardware to implement the machine, simply allocate the
contents of this drawing to a separate circuit board which never actually gets built.

While this outline suggests proceeding hierarchicaily from the top level of the design toward the
bottom, SCALD is actually quite flexible in this respect. If it becomes obvious at some point that the
design calls for additional types of ICs or that some functions occur so frequently that it is worth
repackaging them as standard macros, it is quite easy to change these aspects.

It is possible to expand the uppér levels of the design to check for syntax errors and design rule
violations even if the lower levels are not finished--simply ignore the errors generated by the
missing drawings. Similarly, it is possible to expand a subsection of the design--a subtree within
the hierarcy—without expanding the desigh, simply by conco{:ting a dummy “universe” file that calls
‘the topmost drawing of the subsection rather than the topmost drawing of the entire design.

)

42 General Rules for the macro expander language . 77

4.2 General Rules for the macro expander language
Expressions--Wherever the macro expander accepts an integer, it will generally accept an expression
instead. The expression syntax is that of a subset of PASCAL, which includes the following

operators (where “0” indicates the highest precedence):” : -

A Symbol Meanin o Precedence

NOT Logical NOT 0
- Unary minus 0 :
+ Unary plus- 0 -
% Mutltiplication 1
/ Integer division 1
MOD Modulo 1
AND Logical AND 1.
+ Addition 2
- Subtraction 2
OR Logical OR 2
= Equals 3
< Not equals . 8
<= Less than or equal to 3
>= Greater than or equal to 3
Greater than 3
Less than 3

Parentheses override precedence as usual in Algebra.

When the macro expander needs to convert a logical value to an integer, it treats “FALSE” as 0 and
“TRUE”as 1. When it needs to convert an integer to a logical value, it treats “0” as false and
anything else as *TRUE”. Thus, the following example evaluates to either “SIGNAL<0:5>" or
“SIGNAL<1:5>™ ' ‘ :

SIGNAL<ASIZE=15:5>

Note that within a bit subscript (Section 4.6.5), which normally uses °<” and “>” as brackets, you
must parenthesize an expression that uses “>” to mean “greater than”, or the macro expander (which
parses with limited lookahead) will think it has reached a right bracket:

SIGNAL < (ASI1ZE>15) : 5>

Throughout the the macro expander language, integers can end in *X” (for “times”) or “B” (for
“bits”) to improve readability; thus “5B” and “5X” are the same as “5”.

Signal, pin, and macro’ names--While most pxl'og'ramming languages prohibit blanks or spaces
within identifiers, the macro expander permits them in signal names, pin names, and macro names.
And while most languages require identifiers to begin with an alphabeti¢ character, the macro
expander permits digits. Thus, it's perfectly legal to use the kind of multiple word signal names and

78 4 How to use the macro expander

numeric part names that designers are accustomed to:

P SEQUENCER
PARITY CHECK INHIBIT
5415181
CLK ENABLE

This freedom is possible because the graphics editor, with its “text” and “property” features, takes
care of specifying where one chunk of text begins and ends, so the macro expander does not need to
reserve blanks for use in delimiting such chunks. '

In general, the macro expander deletes leading and traxhng blanks in names, and reduces several
consecutive blanks to a single blank.

As noted in chapter 2, the graphics editor also allows the use of the “»” character to split a piece of
text across two lines. It converts that character to a blank before sending the text to the macro
expander, however.

4.3 Inventing Bodies to Represent Macros . 19

4.3 Inventing Bodies to Represent Macros

Parameters--A SCALD macro accepts two kinds of parameters. Pin parameters represent signal
inputs and outputs, while body parameters specify some general characteristics of the macro.

Now, most programming languages match actual parameters (the values or variables you plug into a
macro or procédure) with formal parameters (the dummy arguments that specify what inputs and
outputs the macro wants to see) strictly by their position in a list. The macro expander, by contrast,
matches actual parameters with formal parameters by name; whenever you feed a parameter to a
macro, you implicitly or explicitly state the name of the formal parameter you’re dealing with. The
property name/text feature of the graphics. editor helps accomplish this.

For a pin parameter, the pinname points to a property name, and.the text paired with that property
name gives the formal parameter name. ‘

For a body parameter, the property name holds the formal parameter name and the property text
holds the actual parameter. Thus, to set the SIZE body parameter to “14B” for a particular macro,
use the graphxcs editor to create or modxfy the property named SIZE and then specify “14B” as the
property text. : :

4.3.1 Body Parameters

By convention, SCALD macros have up to five standard body parameters; whereas signal
parameters are invented by the designer and varj from one macro to another, body parameters are
concepts built into the macro expander which govern the way it expands each macro. Body
parameters are somewhat unusual in that some of them have an initial value which will appear in
the drawing until you supply a value.

MNAME Actually not a parameter, but rather the name of the macro. To find the
definition of the macro, the macro expander will search for a drawing with this
name in the first line of its title. (It may also use a selection equation as
explained in Section 4.4) :

SIZE - Basically, an integer specifying how many times the macro should occur. This is
" useful for creating several independent copies of a macro--for example, to
generate 36 copies of a flip-flop to buﬂd a register to store data from a 36 bit

bus, set SIZE to 36.

A more precise explanation is that the macro expander invokes any macro
repeatedly in a loop using a special counter variable “X”, which starts at
X FIRST, increments by X STEP, and quits at SIZE-1. You can set X FIRST
and X STEP using the DEFINE list described later in this chapter.

80

TIMES

4 How to use the macro expander

X FIRST defaults to 0. X STEP defaults to 1 if SIZE is 1, but otherwise you

'must {as a safety feature) explicitly set X STEP. Failing to do so produces an

error message and sets X STEP equal to SIZE.

The variable “X” is available for use within the macro definition, and will be
replaced with successive loop-counter values when the macro expander expands
and replicates the macro.

The initial value of SIZE is "XB”, deliberately chosen to be nonnumeric and
therefore invalid so that the systemn will produce an error message if you forget to

speciﬁv a size: _ . .

An integer telling the macro expander to invoke the macro repeatedly to obtain

" multiple copies, and then to tie together the corresponding inputs on all the

copies while leaving the outputs independent. This is useful as shown in Figure
4-1 when you’d like several different gates to produce the same signal because a
single gate doesn’t have enough fanout capability. If not specified, the TIMES
parameter defaults to 1. If TIMES is 0, the macro expander ignores the body
instead of expanding it.

. 3
DELAYS.0 DELAT=S. 0

2 Aad 2 No
B X

DELAY-0.0

[Nee
auo? ’
X

SETTING TIMES = #3... .. .PRODUCES
' : THREE QUTPUTS

Figure 4-1
The body TIMES parameter

When. the macro expander invokes a macro repeatedly due to the TIMES

4.3.1 Body Parameters - ' 81

LOC

VAR

paraméter, it sets a special variable called TIMES to a different value on each
invocation, starting at 1 and incrementing by 1. You may use this variable to

distinguish one invocation from another if you wish.

Within a drawing, every body must have a unique alphanumeric locatnon label;

* the actual labels don’t much matter, but conventionally we label gates as G, G2,

G3.. and registers as R1, R2, R3... and so on. It's quite safe to use the same label
for two bodies in two different drawings. (These labels are used internally by
the macro expander to make local signal names unique when the same macro is
invoked in two or more places. Section 4.6.13 recites the details).

The ihitial value for LOC is “+X”, a deliberétely invalid choice which will
produce an error if you forget to specify a location.

This parameter passes information through the SCALD macro expander to the
logic simulator and timing verifier. Its exact putpose varies from one body to
another—-sometimes it specifies setup and hold requirements and other times it
specifies delays—but by convention the initial value will always be something like
‘DELAY=" or "SETUP=" which explains what the parameter is for.

Figure 4-2 shows two versions of the same body, first exactly as it comes from the library, with
parameters set to initial values; and then with values specified by a user.

82 4 How to use the macro expander

x | | 48
R REG RS - —— IR REG RS
S X s R?

I ooay- 7 L ooiay- 7
0.0,0.0,0.0 1.8, 2.2, 3.7
K ' ‘ "ok
PN paN
BODY PARAMETERS: 'BODY PARAMETERS:
INITIAL UALUES USER UALLES

Figure 4-2

Body parameters

Note that while the property names (that is, the formal parameter names) don’t appear explicitly on
the drawings, the graphics editor will identify any of them within Alter submode as explained in
Section 2.7. ' :

One point concerning SIZE and TIMES deserves mention. When you use these parameters on a
terminal macro, the physical design system will ultimately generate the specified number of copies of
the macru's functivn,

But when you use these parameters on a nonterminal macro, the definition of the macro determines
whether replication actually occurs. If a signal inside the definition has its number of bits expressed
in terms of SIZE and TIMES, or if a body has its own SIZE and TIMES parameters expressed in
terms of SIZE and TIMES, then replication will take place. Otherwise, a signal or body inside the
definition is a constant, independent of SIZE and TIMES.

A good analogy is a procedure in a high level language which accepts an integer parameter and
then doesn’t use that parameter anywhere in its body. Only when the procedure uses a parameter
does it have an effect.

432 Pin parameters S ‘ - 83

4.3.2 Pin parameters

“The graphics editor always associates a “pinname” (ictually a number) with each pin on a body. For
each pin, the macro expander requires a property nameftext pair that ties the pinname to the
corresponding signal parameter name. ‘

If the body in question is a terminal, then by convention each pinname should be the niumber of the
corresponding pin on'the actual IC. (If there are multiple units within one IC, use the pin numbers
for the “first” unit--the one that has the lowest numbered pin. The CHIPS file will take care of
mapping the remaining units onto the first.) If the body represents a macro, the numbering can be
arbitrary, but each pin must have a unique number. : "

The property name/text pair for a pin is derived from the pinname. For the property name, start
with the pinname and append an “L” if the corresponding signal parameter inside the macro asserts
low (see Section 4.6.4). Then append a “x” if the pin has a diamond or “bubble” on it, telling the
macro expander to check to be sure that any signal connected to this pin invokes low.

The property text should include the <Class>, <Simple Name>, and <Timing Spec> portions of the
signal parameter name. Essentially, it should be identical with the version of the signal name that
appears in the parameter list (Section 4.6.8) but without the */V” appendage or <Bit Subscripts>.
Figure 4-8 is an example. ' '

84 _ | 4 How to use the macro expander

PINNAME = 3
SIGNAL NAME = CLR
PROPERTY NAME
PROPERTY TEXT

7P

L
3eL
CLR

O

CLK

B
COUNTER
. : ’ X

, PINNAME = 2
SIGNAL NAME = T<@;SIZE-1> /P
. PROPERTY NAME = 2
PROPERTY TEXT = T

s

o

CK

PINNAME = 1
SIGNAL NAME = CK L P
PROPERTY NAME = 1L
PROPERTY TEXT = CK
Figure 4-3
Pin properties

Removing the °L” from the property text and putting it in the property name allows the property
text to label the pin on drawings; the “L” is customarily omitted in such labels.

Why have a separal:e‘ “x” to tell the signal checker that the signal asserts low when you already have
an “L”? Because the macro’s internal notions about the signal polarity may have nothing to do with
the outside world. Consider the case of an AND gate which could just as well be represented as an
OR gate for inputs and outputs that assert low. A single macro defines both gates equally well, but
as Figure 4-4 shows, one body expects its inputs to assert low and the other doesn’t.

4.3.2 Pin parameters

PROPERTY NAME = 12 DELAY-0.0 PROPERTY NAME = O»
PROPERTY TEXT = I0 . PROPERTY TEXT = T
2 AND
: +X .
PROPERTY NAME = 13 L PROPERTY NAME = 150
PROPERTY TEXT = I1 PROPERTY TEXT = T

DELAY=0.0 PROPERTY NAME = 9

PROPERTY NAME = 12+
PROPERTY TEXT = IO

PROPERTY TEXT = T

PROPERTY NAME = 13+ .- PROPERTY NAME = 15L#
PROPERTY TEXT = I1 ‘ ; PROPERTY TEXT = T

Figure 44
Gates for high and low assertion

86 4 How to use the macro-expander

4.4 How the macro expander binds bodies to drawings

When the macro expander encounters a macro body in a drawing, it takes the text from the
property MNAME and looks for a drawing with that text in the first line of its title.

Note that two other names exist and thereby confuse the issue. The body template itself has a name
which the graphics editor recognizes when you ask to place a copy of that body in a drawing. The
file containing the drawing that defines a body has a filename by which the computer operating
system recognizes it. Neither of those names has anythmg to do with the process of ﬁndmg which
drawing to use to expand ‘a macro.

(There are gand reasons for that. Keeping the budy name separate from the macro name permits
multiple bodies to have the same MNAME and thus the same marrn definition: for example,
consider again a gate which can be either an AND gate which expects its signals to assert high or
an OR gate which expects them to assert low. The macro expander can use two different bodies
called “2 AND” and “2 ANDO” (the latter looking suspiciously like an OR) to represent the same
function. And keeping the drawing filename out of the picture makes SCALD less dependent on
the operating system.)

If the macro expander finds more than one file with the same name in the first line of the title, it
then goes to the second line of the title in each file and evaluates it as a selection equation. It uses the
drawing for which the selection equation evaluates to “TRUE".

This is handy because in many cases you will want to implement a function differently depending
on some parameter such as (for example) the size. If the numher of bits you'rc generating parlty for
1s 12 or less, for example, you may want to use one circuit but if it’s greater than 12 you'll want to
use another. By putting a selection equation like “SIZE<=12" on the second title line of one drawing
and an equation like “SIZE>12” on that of another, yau can accomplish this. ‘

Of course, you must invent these selection equations so that for each value of SIZE you expect to
use, the equation inone and only one drawing evaluates to TRUE.

A rtypical selection equation is a function of one of the macro bedy parameters--SIZE, TIMES, or
VAR--but can in general be any expression. If you provide only one drawing to define a given
macro, leave its second title line blank and the expander will always select that drawing.

4.5 Inventing Signal Names ' _ 87

4.5 Inventing Signai Names

Not every signal need have a name. If, for example, a signal originates at one body and terminates
- at another within the same drawing, the macro expander can infer from the characteristics of the
output and input pins everything it needs to know about the signal: its width in bits, its assertion,
and so on.

But attaching a name to a signal--which, within' the graphics editor, merely requires attaching text
to a point along the line that represents the signal--can provide additional information: wire delay,
clock skew, and so on. ' ‘

And sometimes the macro expander requires a name for a signal--when, for example, the signal is
an input or output parameter; or when the signal should be made global so other drawings can refer
to it.

Concatenation--To combine several different signals.into one multiple-bit signal, use “” between
their names to indicate concatenation. The signal whose name is leftmost provides the most
significant bits: ’

HIGHBYTE : MIDDLEBYTE : LOWBYTE

Conditional signals-To make a signal name depend. on an expression, use an IF/THEN/ELSE
construct. If the expression is true, the macro expander uses the name following the word THEN,
but otherwise it uses the name following the word ELSE. The. quotation marks shown in the
following example are required:

~ "IF" SIZE<8 "THEN" FIRSTBYTE "ELSE" -FIRSTBYTE
Do not omit the ELSE part, and do not nest the IF/THEN/ELSE construct.

Comments--Everything following a “” in a signal name becomes a comment. Thus, when you use
concatenation or IF/THEN/ELSE, you're allowed only one comment:
RIGHT .
_ CA : OR : UA ; Pacific states
"IF" FLAKY "THEN" CA "ELSE" WA : OR ; A pointed comment

: WRONG
CA 3 Far out : WA ; Far up : OR ; Far gone

88 4 How to use the macro expander

4.6 Putting together a signal name

Wholly apart from concatenation or IF/THEN/ELSE, an individual signal name consists of a series
of individual pieces strung together, each of them describing some aspect of the signal.

The syntax of a signal name is:

<Name> ::=
<Negation>
<Signal Class>
<Simple Name>
<Timing Agsertion>
<Assert Low>
<Bit Subscript>
<Wire Delay>
<Timing Evaluation Directive>:
<Scope>
<Multiplier>
<Version>

Not all of the information is meaningful to the macro expander; the <Timing Assertion>, <Wire
Delay>, and <Timing Evaluation. Directive>, for example, are included for the benefit of the timing
verifier. All the components except the <Simple name> are optional, and the:last five may appear in
any order. Thus, a rather elaborate example of a name is:

-SHAKESPEARESHANLET.C1—2,3—4 L <8:é:2,4:8> [2.5,3.7]#A ./H *fSlZE) /18
and a simple example of a name is:
CLOCK
In order to persuade the macro expander th;at two signals are the same, the <Signal Class>, <Simp‘Ie
Name>, and <Timing Assertion> pleces must be identical, character for character. Other pieces of

the name may or may not appear in various places in a drawing. We'll proceed to talk about the
various pieces of syntax, one by one. '

4.6.1 <Negation>

To invert a signal without indicating that it asserts low, put a minus sign at the front of the
subname:

DECQDE I

46.1 <Negation> , : : o , : 89

-DECODE 1

. Contrast this with the use of <Assert Low>, described later in this chapter, which requires that the
pin receiving the signal have a “bubble” or “diamond” indicating that it expects a signal that asserts
low.

If a signal is generated by a gate with the complemeniary outputs, then the macro expander
recognizes that the inverse of the signal is available, too, and will allow you to use that inverse in
the drawing without explicitly connecting a line to the inverse output of the gate

The absence of “-” implicitly indicates the uninverted form of the signal Note that putting a “+” in
front of a signal name creates an entlrely different signal name; a plus sign.is-not a superfluous
symbol S : : . S L

A “-™ inverts each individual bit of a multiple-bit signal.

4.6.2 <Class Name><Simple Name> ' L

Within <Class Name> and <Simple Name>, you may use alphabetic characters, digits, “+”, “- ",
.and “)” as you wish, though you should be prudent about it: if you put a “-” at the front of the
name, for example, the macro expander will think its a <Negation> rather than an innocent
character in the name. '

Similarly, if a <Simple Name> ends in *L” and there is no <Timing Assernon> the macro
expander interprets the “L” to mean “<Assert Low>" as described later in this chapl:er

And if there’s no <Class Name> and the <Slmple Name> consists of nothing but digits “0” and “1”
then the signal is a binary constant as described in Sectlon 46 1L

<Class Name> is a sort of prefix, consisting of a string .of the characters just mentioned, followed by
“s”, which you can attach to each member of a family of signal names, making it easy to pick them
all out of the crowd. If signals “DECODE INST”, “SHIFT LEFT”, and “SKIP” are all part of a
functional block called “ARITH BOX”, for example, you might want to make that clear by using
“ARTTH BOX?” as a signal class: : :

ARITH BOXSDECODE INST. ..

-ARITH BOXSSHIFT LEFT- = -
"ARITH BOXS$SKIP: ' :

<Simple Name> is just a name made up of the legal characters listed a few paragraphs ago:

a

90 ‘ ‘ 4 How to use the macro expander

W
%]
2BY4
MANY MANY MANY WORDS

4.6.3 <Timing Assertion>

This spacifies the tiine varying behavior of the signal. It’s useful for documenting the expected
behavior of signals entering and leaving a functional block. In addition, it lets the timing verifier
check a subsection nf the design even if the entire design is not compiete; the verifier can use the
<timing assertion> on an input instead of evaluating the unfinished circuitry that will eventually
feed that input. '

When the macro expander parses a signal name, it does not actually regard the <timing assertion>
as separate from the <simple name>. Only the timing verifier recognizes the <timing assertion> as
anything more than a few additional characters in the name. The exact syntax of a- <timing
assertion> appears in Section 6.3.2. ' .

4.6.4 <Assert Low>

To indicate that a signal asserts low, place “L” after the <timing assertion>. Note that in the
absence of the timing assertion, the * L” will follow the signal name, reducing to the conventional
notation:

MULTIPLICAND READY L
- CLK .Cl-2, 3-4 L

‘Note.also that if a gate has complementary outputs, the macro expander récognizes that the output
and its inverse hoth exist, and will allow you to refer to both even if you connect a line and invent a
signal name for only one. '

The distinction between the “-” preoeding' a signal name and the “L” following it i¢ importanl. Each
indicates inversion; but only “L" indicates that the signal asserts low. Thus, a signal with “L” implies
_ that the pin receiving the signal must have a *bubble” or “diamond®, as Figure 4-5 shows.

464 <Assert Low> 91

-

CELAT=0.8 BLAT-0.0 ! CALAT=0.8
Q e L] cwo . A -S1O8 200
v O X .) Q o x)
Comaes DELAY-8.0 ¢ : nies ¥ DBAIOe .
O-HPEE L A _
2 a0 2 a0
2 & O . -x(‘ e *
WRONG - - " RIGHT o

Figure 4-5
Assertion checking

Two special techniques tell the system precisely how to check assertions. Eirsf, to regard a-signal as
asserting low without actually inverting it, use both “-* and “L”. The effect is that of using neither

- “" nor “L”, except that the system will check to make sure all receiving pins have bubbles (Figure

4-6).

DELAY=0.9

- DELAY=0.0

Figure 4-6
Assertion checking without inversion

Second, to flout the convention that a signal originating at a pin with a bubble asserts low and a
signal originating at a pin without a buhble asserts high, use a fictitious body called a "NOT”; see

Section 4.8

92 4 How to use the macro expander

4.6.5 <Bit Subscripts> ' ,

Bit subscripts tell the macro expander that a signal consists of one or more bits of a multiple-bit
signal—that is, a bus. '

The macro expander accepts either one- or two-dimensional signals. The following examples specify
single bits out of multiple-bit signals: :

ONE DIMENSION<E>
TWO NIMENSIONS <G, 3:-

Either or both subscripts can specify a range of bits, which the macro expander processes in row
ma jor order. Thus, the following two examples specify identical three-bit signals:

MULTI BIT<0:2>
MULTI BIT<@>:MULTI BIT<l>:MULTI BIT<2>

And likewise, the following two examples specify identical four-bit signals:

"TWO D<1:2,5:6>
TWO D<1,5>:THO D<l,6>:TUN D«2,5>s THO D<2,6>

Either or both subscripts may also specify a step-size for the rénge of bits. Thus, the following
ckample lincludes bits from the fourth through the tenth, incrementing by 3: :

ONE D<4:18:3>
ONE D<4>:0NE D<7>:0NE D<19>

A single bit signal name--one without any bit subscripts—is by default the same as a signal name
with both subscripts zero. Thus, the following three examples are identical:
LONE BIT
LONE BIT<@> .
LONE BIT<9,8>

466 <Wire Delay> 93

4.6.6 <Wire i)elay>

For any 1nput signal to a body, you may spec1fy a wire delay or range of delays within square
brackets:

POP LI6.8]
CK [2.5:3.7)

- See Section 6.3.1 for details.

4.6.7 <Timing Evaluation Directive>

When several signals feed into a gate, the timing verifier ordinarily uses the individual timing
assertions for each of the inputs in determining the output. But sometimes you may want it to ignore
certain aspects of the other inputs when propagating one of them through the circuitry. For details
on the syntax for doing this, see Section 6.3.3. .

4.6.8 (Scope>

The scope of a signal is the environment within which the macro expander recognizes that -
particular signal by name. Within a macro name you can specify either of two scopes: “/P” for
parameters or “/M" for module-specific signals. :

Parameters--If a signal is a formal parameter, then its name is really just a stand-in for the name of
whatever signal is used as the actual parameter when the macro is invoked. Thus, it's “hidden” from
the world outside the macro; you can use the same name inside another macro and no conflict will
result. After all, signal parameters and pin labels are the same thing, and for example it’s
understood that when a counter and a shift register both have a pin labelled “CLK”, the two pins
are nevertheless distinct from each other.

By convention, when a parameter is “common”—that is, when it requires only a one-bit signal even
when its body gets replicated due to the_ SIZE parameter—we give its signal a name ending in “C™
“CLRC", "INHIBC”, and so on.

94 : 4 How to use the macro expander

To provide extra error-checking, the macro expander requires that each drawing that defines a
macro contain a PARAMETER list giving the name of each parameter.

To create a PARAMETER list, add to the drawing a fictitious body (typically one keeps a template
for it in a graphics editor library) called PAR, which has no visible lines or pins, but whose
MNAME is PAR and whose main purpose in life is to support property name/text pairs. For each
parameter signal name, create a body property name/text pair. By convention, we name the
properties “1”7, °27, “8”, and so on (but it doesn’t matter). Each property text should contain the
<Signal Class>, <Simple Name>, <Timing Assertion>, and <Bit Subscripts>, if any, from the signal
name. Omit all other pieces of the name. List either a signal or its inverse, but not both; including
either automatically declares both. (For ECL, the timing verifier will benefit if <Assert low> is
included in the parameter list where appropriate, though the macro expander does not require this.)

If a signal parameter is an output, append “/V” to its name. Do this only in the parameter list, not in
the drawing as a whole. (This tells the macro expander which signals to tie together when the
TIMES body parameter, described in Section 4.3.1 causes it to duplicate a macro).

Module-specific signal-Like a parameter, a module-specific signal is “hidden” from the outside
world; the macro expander regards it as distinct from any other signals with the same name in other
macros. In addition, the macro expander creates a different incarnation of it every time the macro is
invoked. -

As a safeguard against accidents, a module-specific signal name must not duplicate that of any
signal that is global to the macro. You cannot by creating a mbdule—specific signal name dethrone a
global name that your macro would - otherwise recognize. To see whether a particular
name—ALPHA, for example--is allowed to be module-specific inside a particular macro, simply
ask, “If the signal had some other name, would ALPHA always be meaningless and undefined,
every time the macto gets called?” If the answer is “yes”, then it's safe to use the name ALPHA.

Global signals-Any signal which lacks */P” or “/M” is global. Ordinarily, a global signal is visible
from within every macro; throughout the entire design, every reference to its name means the same
signal.

Thus if you call a macro several times, the corresponding global signals in every invocation of the
macro all get connected together. And if you use the same global signal name in two different
macros, both those signals get connected together.

A feature called DECLARE creates nested scopes similar to those found in many high level
programming languages. If you place a global signal name in a DECLARE list inside a macro, the
macro expander creates a difterent incarnation of that signal every time the macro is invoked. In
addition, while that incarnation is “hidden” from other macros in general, it’s visible throughout the
subtree of this macro--that is, within this macro call and also throughout all the circuitry resulting
from the macros which it calls in turn.

A signal declared in a macro is local and hidden as far as the caller of that macro is concerned, but

46.8 <Scope> o 95 .

global and visible as far as all of the callees of the macro are concerned.
This is similar to the dynamic nesting of scope found in languages like LISP.

To create the DECLARE list, add to the drawing a fictitious body (available from a graphics editor
library) called DECL. This works just as the PARAMETER list does: create a body property
name/text pair for each signal name in the list; name the properties “17, “2”, “3”, and so on; and put
the <Class Name>, <Simple Name>, and <Timing- Assertion> portion of each signal name in a
property text. List either a signal or its mverse but not both. The IV” rule doesnt apply to the
DECLARE list.

469 <Multiplier>

To guard against errors and to help enforce design. rules concerning fanout capability, the macro
expander requires the designer to specify very explicitly how to interconnect bodies.

To feed the output of a gate into three different mputs a conventional schematic would- show
something like Fxgure 4-7.

LATCH LATCH LATCH
1 T I T 1 T
EN N | EN
2 AND
Figure 4-7

Conventional schematic

But the macro expander makes it easy to replicate a logic element without drawing multiple copies
of it, simply by setting the SIZE parameter of the corresponding body to the desired number of
copies. Thus, on first thought, one might try to draw something like Figure -8.

96 4 How to use the macro expander

38
LATCH
L5

I DELAY=
0.0,0.0,0.0

T

DELAY=0.0 EN

Figure 4-8
Wrong way

However, that would generate an error because the macro expander knows the gate generates a
one-bit signal but, because of its definition, the T input of a three bit latch requires a three bit
signal. The solution is to eliminate the line connecting the gate to the latch. Instead, give the output
of the latch a name—"A”, for example--and use that name along with a “x3” multiplier to feed the
input of the latch (Figure 4-9). '

. :)
LATCH
SOURCE®3 . L5
DELAT=
0.9,0.0,0.0
DELAY=@.@
EN
2 AND
o3 SOURCE
Figure 4-9

Correct way

469 <Multiplier> B | | 97

The multiplier effectively concatenates the signal to itself the specified number of times. Thus,
“Ax3” is equivalent to “A:A:A”. A multiplier will concatenate multiple bit signals, too, so the
following examples are equivalent:

B<1:5>x3
B<1:5>:B<1:5>xB<1:5>

The value for <Multiplier> may be any expression, but it must begin. with “x”. If the value is 0, the
macro expander creates a zero-width signal by concatenating no bits.

Note that using a multiplier does not increasé the number of gates that drive a signal; to automate
the entire issue, make the TIMES parameter on the gate a function of the SIZE parameters on all
Ioglc elements driven by the gaze

4.6.10 <Version>

Using the TIMES parameter to duplicate a logic element as explained earlier in this chapter
automatically generates multiple physical output signals for each logical output signal shown and
labeled on the drawing. The ability to gather a handful of similar physical signals and deal with
them as one logical signal is a particular advantage of the macro expander. The macro expander
itself, however, must deal individually with the physical signals, and thus needs a unique name for
each one for use in preparing wirelists and so on. It derives these names by placing a slash and a
version number after the name you invent.

Ordinarily, these versions need not concern you until it actually comes time to build the prototype.
If you ever do need to specify a particular version during the design phase, however, you-can do so
using the same syntax:

 MULTIVERSION SIGNAL /8
MULTIVERSION SIGNAL /1
MULTIVERSION SIGNAL /2 4 '

Note that although the macro expander uses numbers, you may place any alphanumeric string after
the slash provided it cannot be confused with the <scope> portion of the name.

i
You can, in fact, use the <Version> option as a gemral—purpose qualiﬁer on a signal name, for

whatever purpose you wish.

A signal name may accumulate multiple version numbers as one macro calls another. The macro
expander concatenates the version numbers, separated by dots, with the version contributed by the

98 4 How to use the macro expander

highest level macro at the right:

A SIGNAL /2.3.1

4.6.11 Constants as Signal Names

Naming a signal “1” or “0”indicates that it is permanently TRUE or FALSE—a binary constant
rather than a variable. Putting a row of “1”s and “0"s together concatenates them just as the “
operator would. Thus, the following examples are equivalent:

18118
1:0:1:1:8

Essentially the only valid options to apply to a binary constant are <Negation>, <Assert Low>, and
<Muttiplier>. A “-" preceding such a constant or an “ L” following it applies to all the bits,
inverting each one. Note that the <Multiplier> doesn’t multiply the numbers, but rather concatenates
each individual bit with itself the specified number of times. Thus “101 %4” is the same as:

1:1:1:1:0:0:0:0:1:1:1:1

not “101:101:101:101” or “10110100”.

4.6.12 Text Substitutions

Within a drawing, you can provide a list of text substitutions or ahbreviations to be used
throughout that drawing. '

Effectively, these are “text macros”, but we'll call them “substitutions” to avoid confusion with
drawing macros. Each substitution rule should look like “A=B”, where A is the abbreviation and B
is its meaning. The abbreviation must be a single word (that is, embedded spaces are forbidden) but
its meaning may be any string of characters including leading or embedded blanks.

To define text substitutions, you use a DEFINITION list similar to the PARAMETER and
DECLARE -lists described in Section 46.8. Add to your drawing a fictitious body called DEF
(usually one keeps a template for it in a graphics editor library) and give it a property name/value
pair for each substitution rule. The properties are unimportant (by convention one uses “1” as the
first name, “2” as the second, and so on) but each value should give a substitution rule in the form

46.12 Text Substitutions : ‘ ' 99

DEFINE
LOWBYTE=8:15
HIGHBYTE=8:7

Except inside the <Bit Subscript> portion of a signél name, you must surround an abbreviation
with *\” characters. This is a safety feature to prevent destruction of a signal name that happens to
contain one of these abbreviations within an otherwise innocent word

(A more precise explanation is that the entity within the macro expander which scans signal names
operates in two states, either looking for abbreviations to expand or not looking for them. When it
gets to the beginning of the signal name, it enters the not-looking state. Each “\" toggles the state.
Thus, you could place a single “\” before the first abbreviation in a name and leave the scanner in
the same state until the end. But it's safer and prettier to tum it off again with another "
immediately after the abbreviation.

‘When the scanner reaches the beginning of the bit subscnpt part ‘it enables text subsututlons If it
encounters a “\” within the bit subscript, it will actually turn substltutions off.)

Substitutions are illegal in the first line of the title of a dra_w_ing.

The text substitutions defined in the prevmus example would cause the macro expander to expand
the following signal names as shown:

TOP OF STACK<HIGHBYTE> ==> TOP OF STACK<B:7>
TOP OF STACK<LOMBYTE> ==> TOP OF STACK<8:15>

The scope of an abbreviation—-The definition of an abbreviation takes ‘effect throughout the
drawing containing the definition, and throughout any macros called from that drawing, unless
those macros themselves override it by redefining the same abbreviation. Thus, the DEFINE list
implements dynamic scope similar to that of the LISP language and the macro expander’s own

- DECLARE feature.

Special variables—As mentioned earlier, when you call a macro with SIZE set to a value other than
1, the macro expander executes an implicit loop from X FIRST to SIZE-1 by X STEP. The
variables X FIRST and X STEP default to 0 and 1 respectively, but a macro can use the DEFINE
list to set them to any desired values during its own evaluation. This has no effect, however, on
their value during evaluation of any macros which it calls in turn.

100 4 How to use the macro expander

4.6.13 Sundry Details About Naming Signals

The material in this section will interest the serious user of the macro expander, but the casual
reader may slum it without loss

The PATH mechanism--When you use “/M” to make a sigrial module-specific, or when you use the
DEFINE list to create a local scope for a signal, the macro expander must find a way to generate
multiple, distinct signal names from each of the names you invent. It- accomplishes this by prefixing
the signal name with various puths.

A path is a route from the root of a tree to a particular node you're interested in. You can visualize
the process of expanding macros as a tree, where each node represents the invocation of a macro,
and the father of a node is whoever called the macro. You can derive a unique name for a
path—and thereby for a particular node--by tracing the chain of macro calls from the root (topmost
macro in, your design) to the node you're interested in, making a list of the LOC body parameters of
all the macro calls in the chain.

Thus, when the macro expander wants to make a unique incarnation of a */M” name (or of a global
name mentioned in a DECLARE list) for a particular invocation of a macro, it simply prefixes the
name with the path (in parentheses) to the node that represents that invocation.

Suppose a module called GAMMA has a module-specific signal called “MINE /M”. In Figure 4-10,
the invocation of GAMMA at the lowest level of the tree will have a signal named
Al B1 GI)MINE /M® while the other invocation of GAMMA will have a signal named
‘A1 GI)MINE /M".

46.13 Sundry Details About Naming Signals ' 101

ALPHA
LOC =

BETA o GAMMA

-~ LOC = Bi © LOC = GY
- GAMMA ' DELTA
LOC = GI LOC = D1
Figure 4-10

Macro expansion tree

When the SIZE parameter causes the macro expander to replicate a macro, the special variable X is
different for each copy. Since the macro appears only once in the drawing, there’s only one value of
LOC for all the copies. To distinguish them, the macro expander appends a “»”, followed by the
value of X, to the LOC value of each copy for which X is not 0. Thus, if X FIRST=0 and
X STEP=1 and SIZE=2, then a body at location S1 in the drawing will generate three bodies as
locations §1, Slel, and Sle2.

(Incidentally, the macro expander follows a similar convention to distinguish multiple copies
resulting from the TIMES body parameter. It appends a “+” followed by a number to each copy
after the first, so that a body at location S2 with TIMES set to 3 generates three bodies with
locations $2, S2+1, and $2+2. If a location has both a TIMES and a SIZE appendage, the TIMES
appendage comes first.)

‘The PATH text abbreviation—-Ordinarily, such path construction is transparent. But the macro
expander makes the feature available to the designer, too, by providing a special predefined text
abbreviation “PATH”. When you use “PATH” (inside most of the signal name, of course, you'll
have to write \PATH\ as you would with any abbreviation) in a signal name, the macro expander
will automatically substitute a parenthesized path for it during macro expansion.

DOWN THE PRIMROSE \PATH\

becomes

DOUN THE PRIMROSE (G3 M1 R7)

102 4 How to use the macro expander

Obviously, it's a good idea to place paths in the middle or at the end of signal names so there’s no
confusion between them and the ones the system adds for module-specific signals.

How is the PATH feature useful? Suppose you want to be able to access any register in your design
from a special piece of diagnostic hardware to aid in field servicing. You can hide this extra
complexity by providing a special macro called REGISTER which automatically generates the
proper circuitry. Each incarnation of this macro will need a pair of signals connecting it to the
diagnostic hardware. Giving the macro extra input and output parameters for the diagnostic signals
makes it more complicated to draw. But using globals poses a problem because each incarnation of
the macro needs a set of globals with unique names. ’

The solution is to use global signals but include PATH in each global name so that all incarnations
of the macro will use the same global name--with a unique path name attached to the end of it.
When the design is finished, these global signalsA will produce error messages because no hardware
exists to generate them, and you can then design the diagnostic hardware specifically to generate the
signal names that appear in these error messages.

Naming Unnamed Signals--When the designer does not name a signal, the macro expander always
derives an internal name for the signal. For each pin the signal connects to, the macro expander
constructs a possible name by taking the LOC parameter of the pin’s body, then appending a “%”,
next appending the sngnal parameter name from the property text field, and finally tacking on “L”

if there’s a “x” in the property name for that pin:
<body LOC>%<signal parameter name>
Then it alphabetizes this list of possible names and uses the one that appears first.

When an unnamed signal connects to a body which has no LOC parameter, the macro expander
doesn’t construct a possible name for that connection. If that leaves the macro expander with no
possible names to choose from, then it will reluctantly construct a name of the form:

X<number>¥<signal parameter name>
followed by “ L” if the signal invokes low. Then it alphabetizes these and selects the first.

Synonyms-Puttihg two names on the same signal is perfectly legitimate so long as the names don't
conflict on matters like timing or the number of bits the signal represents. The macro expander
considers such names to be synonyms. ' ‘

When the signal in question has multiple_bits, the macro expander ‘matches the individual bits of
one name with those of the other in row major order. Thus if signal A:B:C is synonymous with
signal Z<0:2>, then A is the same as B<0>, B the same as Z<1>, and C the same as Z<2>. If signal
X <0:8> is synonymous with Y<0:1,0:1>, then X <0> is the same as Y<0,0>, X<1> the same as Y<0,1>,
X <2> the same as Y<1,0>, and X <35 the same as Y<1,1>.

46.13 Sundry Details About Naming Signals - 103

xB
IN oL RE::E ouT CANBE -
. " DEFINED RS....
INC@:SIZE-1:1> AP OUT<SIZE-1:0:-1> P
OR
INeX> P OUT<SIZE-X-1> P
Figure 4-11

Bit reversal

Figure 4-11 shows two different ways to reverse the bits of a bus using synonyms. The first uses a
step size of -1 in the bit specification, while the second uses the special variable X which the macro
expander increments from X FIRST through SIZE-1 as it expands any macro.

104 A x4 How to usethe macro expander

4.7 Matching Signals with Bodies

Just as programming languages demand that actual parameters match formal parameters in terms of
data type and number, so the macro expander demands that signals match body pins in terms of
assertion level and number of bits. '

As mentioned earlier, if a signal has the * L™ (<Assert Low>) option, you may connect it only to pins
which have diamonds. If a signal asserts high, then you may connect it only to pins which don’t
have diamonds. ’

Similarly, the number of bits that a signal name represents must match the number of bits that a
body pin represents. It's not always apparent from the outside of a body which pins represent
multiple bits, as the Figure 4-12 shows.

4B
CONTRIVED
EXAMPLE

CK

Figure 412
Comman pins

The CK input of this register is a one-bit signal or common pin, since a single clock suffices for
multiple cells of the register; the I input and T output are four-bit signals, since they are a function
of size. The parameter list inside the drawing that defines the macro determines this by specifying
CK independent of SIZE and by dimensioning I and T to have the number of bits specified by
SIZE.:

B v ¢
[<@:SIZE-1>
T<B:S1ZE-1> -

Reconciling bits—the macro expander deals with vectors and arrays of bits in row major order.
That is, whenever it processes the bits it travels through an array from the Oth bit to the highest

47 Matching Signals with Bodies ' - 105

order bit, varying the rightmost subscript most rapidly.

When a multiple-bit signal connects to a multiple-bit input on.a body, the only requirement is. that
the number of bits in the signal matches the number of bits in the input. The means of arranging
the multiple bits or multiple inputs into a vector or array doesn’t matter; in effect, the system
converts the pins into a vector (a one-dimensional array) using row-major order, converts the signal
bits into a vector using row-ma jor. order, and connects the two .vectors bit by bit.

Obviously, this works most neatly when the pins and signals comprise arréys with precisely the same
dimensions. But using arrays with like numbers of elements but different dimensions (connecting a
2x6 array of signal bits to a 3x4 array of pins, for example) is permitted also.

Similarly, concatenation always decomposes various signals into vectors (that is, one dimensional
arrays) of bits if necessary before “glueing” them together. The decomposition takes place in row
ma jor order as just explained.

1086 4 How to use the macro expander

4.8 Fictitious Bodies

Along with all the bodies that eventually result in semiconductors and wiring, macro expander

drawings also use bodies that denote no hardware whatsoever, but convey information to the macro
expander and router.

Not--As mentioned earlier, a NOT body allows you to flout assertion-checking conventions for a

_ particular signal. On one side of the NOT baody, the signal is considered to assert high and on the
other to assert low, as Figure 4-13 shows. "

DELAY-S.9 ceLar-e.o eLAT-e.0 il

oRLAT-e.0 mar-ee Y tn.ATee.0

Q . 5>—O

" » O O * G *
WRONG RIGHT

Figure 4-13
Using NOT bodies .

Slash—A vertical or horizontal slash has no effect, but makes clear the number of bits on a bus
(Figure 4-14).

48 Fictitious Bodies , - 107

-

368
R REG RS 3
? A R b/ z5:4@
DELAY= /
0.9,0.90,0.0
55 L
/36
Y<4:39 /
Figure 4-14
Slash body

Merge--Using the operator to. combine individual signal names as explained earlier in this
chapter can leave a lot of ugly unconnected lines. A prettier means to the same end is to use a.
fictitious body called a “MERGE”, which joins the lines representing two or more signals. The signal
on the.-branch marked “H” supplies the high order bits, the signal on the branch marked “M” (if
any) supplies the middle order bits, and the signal on the branch marked *L” supplies the low order
bits (Figure 4-15). :

DBLAT-0.0 CELAT~.0
200 200
53 $']
DRLAT-e.0 DRLAY«0.®
t
2 00 20 %
»t ASTE X "
DELAY-.0 OLAT=0.9
16 . '
2m0 o . 200
5.4 o

Figure 4-15
Three way merge

108 4 How to use the macro‘ expander

You can similarly use a reverse MERGE to split a multiple-bit signal and feed pieces of it to
various destinations (Figure 4-16).

‘Figure 4-16
Reverse merge

Sign Extension-To widen a signal by replicating the sign bit, use the body shown in Figure 4-17.
That example would convert SIGNAL<0:3> into SIGNAL<0>%5:SIGNAL<1:3> and’ call the resuit
WIDESIGNAL<0:7>. MNAME is the property that provides the text “4 TO 8".

SE3
SIGNAL<@: D ,{ WIDESIGNAL<@: 7>

| A N

Figure 4-17
’ Sisn Pxtensinn

Wire-Or—As mentioned earlier, the macro expander does its level best to prevent ybu from
connecting outputs together accidentally. If you truly intend to connect two signals, you must use a
WIRE-OR body to do so. Unlike an actual OR, the WIRE-OR implies no hardware, but simply
connects the signals. Bodies exist for positive and negative assertion (Figure 4-18).

48 Fictitious Bodies | 109

¢ -
WIRE

O R

\ +X

g
WIRE
- OR
+X
‘4 Figﬁre.&_-,lS "
Wire-Or bodies

Comment, ?ar, Def, 'D_e‘cl—The PA_R, DEF, and DECL bodies were mentidnéd in sections 46.8 and
46.12. The COMMENT body works similarly, allowing you to attach to it body text which appears
on your drawing as a comment and has no effect on'the macro expander.

110 | 4 How to use the macro expander

4.9 How to construct the Terminal File

As mentioned earlier in the chapter, there are two kinds of terminal files: an actual IC terminal file
for use when generating wirelists for the router, and a primitive terminal file for generating input to
the simulator. When you run the macro expander program, you tell it which file to use.

The format of the terminal file is the same in either case: a series of entries listing the inputs and
outputs of the macro.

On any particular line of- the file, anything to the right of a " is a comment. Otherwise, the entries
'appear in free format, each ending with a semicolon.

Here’s a typical entry:

PARITY GEN 1081608 [SIZE=91 (128168,1) IA<B:8>, IB<B:8>, ZA /V,
- - ZB /N, CL /v; '

S

The individual items in the ehtry are:

® The name of the macro 'representing the actual IC (which should exactly match the name
of the drawing that defines that IC and the macro body that represents it). In the
preceding example, the name is "PARITY GEN 100160”.

® An optional expression like “SIZE-Q” which serves as a selection equation similar to that
of the second line of a drawmg title. You can make multiple entries in the terminal file for
a given IC, and the macro expander will choose from them the entry whose selectlon
“equation evaluates to TRUE. (Ih the terminal file, 1ts permlssable for none of the
equations to evaluate to TRUE, in which case the macro expander will deade that it
hasn’t reached the definition of an actual IC after all, and will go search for a drawing to
expand. This is handy, for example, when you want to use an actual IC when SIZE is
small enough but cascade several ICs when SIZE is too large.)

If it appears, this optional expression must be enclosed in square brackets.

@® A pair of items inside parentheses: the chip name followed by the number of copies of the
same function within each IC. Typically, the chip name is simply. the manufacturer’s part
number. SCALD allows you to use an elaborate macro name during the logical design
phase, translating it into the actual part number for use during the physical layout and

prototyping.

® The names of the input and output signal parameters for the macro, separated by commas.
Each name should include the desired <Class>, <Simple Name>, <Timing Assertion>, and
<Bit Subscript> parts. List either the uninverted or the inverted form of a signal, but not
both. If a signal is an output, append a “/V” to the name. '

4.9 How to construct the Terminal File o

For a logical primitive, each parameter name must match the corresponding one built into r
the SCALD logic simulator. For either an actual IC or a logical primitive, each parameter
name must match that in the property text field 'for. the:.cdrrespondingpin of the body
definition, except that the | property text field will lack the <Assert Low> and <Bit
Subscript> portions of the name.

_ Note again that the entry for each macro ends with. a semicolon.

Lot

112 ' * 4 How to use the macro expander

4.10 Running the Macro Expander

Once all the drawings are prepared, using the macro expander is simply a matter of running the
program and specifying all the files it needs. '

First you must run the WDPR program to translate binary files from the graphics editor into a form
that the macro expander can read. It will ask you for the name of a “WD input file” (the one you
want to convert) and a “WDP output file” (the one it will put the conversion into) When it’s

finished, it will print “Done.” and ask you for a new pair of names, again and again till you abort it.

‘To run MAC, the macro expander itself, first prepare a file containing nothing but the word
“END", which you'll use to terminate input to the expander. |

Then run the program. It will ask for the following files:
MACLST--The file into which the program writes its listing.

MACEXP-The file into which the program writes the list of bodies and connections resulting from
the macro expansion, which will serve as the input to the next phase of SCALD.

TERM-The TERM file from which the program reads parameters of terminal bodies.
WDP-Tell the program the names of the files produced by the WDPR program for the individual

drawings. The macro expander will ask again and again for FILEOC until you give it the file
containing only “END”.

4.11 The Macro Expander Listing ' 118

4.11 The Macro Expander Listing

The macro expander produces an extensive hstmg We'll discuss the individual phases of the listing
in order of appearanice, showing an example of each phase. The examples are occasionally distorted
somewhat to squeeze within the ‘width of. the page, or to illustrate additional features of the

program.
Progress report-This gives a dutiful account of the program’s activities:

RERDING TERNINAL BODY DEFINITIONS

FINISHED READING TERMINAL BODY DEFINiTIONS
READING MACRO DEFINITIONS STRRTED r
FINISHED RERDING MRCRO DEFINITIONS

Undefined macros—-A list of each macro you failed to define, along with the name of the macro
which attempted to call it. Despite’ these errors, the program expands the design as far as it can;
connections to undefined macros are simply missing from the output file.

To help you find macro definitions in the listing, the program assigns a number to each macro that -
does have a definition, according to the order in which you supplied the macro names to the
program. Thus in the followmg example, “93” is the number assugned to: macro ‘FORMAT
CONTROL". .

UNDEF INED MACRO(S) :

“DUAL § OF 4 DECODE 188178L * CALLED FROM “FORMAT CONTROL 493"

PINT FP SUBTRACT ® CALLED FROM “INT FP A-B #183"

*INT FP RDDER ® CALLED FROM °RND NORM #111°

“180178 A ° CALLED FROM “1 OF 8 DECODE 188178 2143 -
"188178 " CALLED FROM "1 OF 8 DECODE l1@s817et lléd“‘\
“NOBY MUX “ CAILFN FROM "ARDX #149°

“MOBY MUX * ¥ CALLED FROM "ABOX #149°

Alphabetic macro list--The names—as given by the MNAME property and by title line 1—of all
the nonterminal macros that are defined, in ailphabetic order. Again, each macro’s number follows its
name.

The column marked “CALLS” gives the number of static calls on the macro: the number of times it
appears in somebody else’s definition, rather than the number of times it actually occurs once the
expansion takes place. For example, suppose a macro called POPULAR appears once in the
definition for macro ALPHA and twice in the definition for macro BETA. Static calls on
POPULAR total 3 even if ALPHA gets used 36 times and BETA never gets used at all.

a dot and the name of the file holding the drawing for this macro. Sometimes several different
drawings may define a given macro; in' that case, the “macro portrait” phase of the listing (described

114 4 How to use the macro expander

later on) gives all of their names, but only the first of them appears here.

SEQ CALLS FILE MACRO DEFINITION(ALPHRBETICALLY ORDERED)
1 8 LOMW.1788(MK2,51] 1 OF 8 DECODE 188178 #143
2 2 LOW. 17880 [MK2,S51] 1 OF 8 DECODE 188178L #144
3 é LOW. 187CHP [NK2, 511 180187 CHP #2142
4 22 188112.1808112(MK2,S81]) 180112v #81
S S LOW.18BADDINK2,S1] . 18 BIT ADDER 188K #85
6 & RCMPY.23X18RIMK2,S1] 18X18 RECODE MPY #79

Readin-ordered macro list--Identical with the preceding list, but with the macros appearing in the
order in which you supplied their names to the program.

Terminal body list--A list of terminal macros--that is, the macros at.the very end of the chain of
expansions, which cannot themselves be expanded. If you are going to use the logic simulator, these
will be logical primitives; otherwise, they’ll be macros representing actual integrated circuits.

For each macro, the CALLS column gives the number of static calls upon that macro, the
TERMINAL BODY column gives the macro name corresponding to the MNAME property or to
title line 1, and the CHIP NAME column gives the chip name that will be used by subsequent
programs in the SCALD family. (The terminal file tells SCALD which chip name to use for each
terminal macro; see Section 4.9 for details).

SEQ CALLS CHIP NRNE TERNINAL BODY

1 57 188161 le8lel

2 74 180182 188182

3 1 NB7871H 2566 RRN NMB7871H

4 100183 2X8 BIT RECODE WPY 188183
5 188179 CARRY LOOK-RHERD 188179

Terminal portrait--For each terminal macro, the program provides a detailed description. First the
program prints the MNAME of the macro and the number assigned.to the macro. Then it prints
the number of static calls upon the macro, and the filenames and MNAMEs of all the other macros
which called it. o

After the MNAME of each caller, the program prints the caller’s number, and the values of «
parameters LOC and SIZE which the caller used in invoking this terminal macro. (The program
omits the SIZE parameter here if SIZE=1.)

Following the list of callers, the portrait shows the formal parameters for the terminal macro, just as
they appear in the terminal file.

In the example below, for instance, macro “CARRY LOOK-AHEAD 100179", whose identifying
number is 69, was called four times by macro *72 BIT CARRY OUT ADDER”, whose number is
118. The drawing defining macro 118 is in file COA[MK2:S1] which belongs to project COA.

4.11 The Macro Expander Listing : 115

Since the program didn’t print the SIZE parameter, COA must have invoked this terminal macro
with SIZE=1. It did so at locations C1, C2, C3, and C4.

The macro’s parameters are “CO+2468 L<0:3> /V”, *PG L<0:7,0:1>", and “CI L".

TERMINAL: CARRY LOOK-AHERD 188179 NUMBER 69

"CALLED 7 TINES FROM: COR.COA[NK2,S51) 72 BIT CRARRY OUT ADDER #118(LOC=C2)
. .COR.COR[HKZ,SIJ * 72 BIT CARRY OUT ADDER #118(LOC=Cl)
"COR.CORINK2,S1] . 72 BIT CARRY OUT ADDER #118(LOC=C4)
COR.CORLINK2,S1] 72 BIT CARRY OUT ADDER #118(LOC=-C3)

LOW. 18BADD{MK2,S1]1 18 BIT ADDER 188K #85(LOC=CLR)

LOW.36BADD(MK2,511 36 BIT ADDER 186K #84 (LOC=CLAL)

LOW.36BADD[NK2,81) 38 BIT RDDER 186K #84 (LOC=CLA2)

" PARAMETER CO0+2468 L<8:3> /V, PG L<8:7,8:1>, CI L

Macro portrait--A detailed descriptibn of an individual non-terminal macro.

The program first prints the macro MNAME and identifying number. In the following example, the
name is HW MPY RND NORM and the number is 106.

Then it lists all files which .define the macro; elsewhere in the listing, only the first of these
filenames will appear. (T'ypically one would encounter multiple files because each file has a different
selection equation as explained in Section 4.4, not because a-macro definition won't fit in a single
file) For each file, theé program prints the project name (explained in Section 2.2.1) followed by a
dot and the actual name of the file. In the example, a smgle file called HWRNI[MK?SI] in project
HWMRN defines the macro. :

Next the program gives the number of static calls on this macro and lists each of the callers; for
details, see the preceding explanation of the terminal portrmt In the example, macro 106 is called 4
times by macro “HW ADDER ROUNDER”. :

Next it lists the formal parameters of the macro, just as they appear in the PAR body inside the
macro’s defmmon :

Next the program lists each of the synonyms—signals which have more than one name--within the
macro’s definition. In the example, for instance, signal ~ %1% is the same as
MUX0L0:MUX071:MUX0%2. (vadently, this resulted from using a MERGE to concatenate three
unnamed signals into one) , .

116 ‘ . 4 How to use the macro expander

Next the program lists all of the text substitutions given in the DEFINE body inside the macro’s
definition. In the example, X STEP is defined to be “1”. Next the program prints a list of the
synonyms that result when a fictitious SLASH bedy splits one signal into two identical pieces within
the drawing that defines the macro. In the example, for instance, a 9 bit wide signal from the body
at LOC=TG apparently got interrupted, forcing the macro expander to invent two synonymous
names, %2% and TG4T, instead of just one.

Finally, the program prints one entry for each of the macros called by this macro. At the left of the
entry is the LOC parameter for the call. To the right of that is a paragraph beginning with the
macro MNAME and number. If the SIZE parameter for the call is not 1, it appears in parentheses
following the macro number. Then the program prints a list of formal/actual parameter pairs, also
in parentheses. : '

If the macro being called is a terminal, a “«” appears in front of its name; if it’s undefined, a “?”
appears in front of its name. : ‘

If, from the caller’s viewpoint, a formal parameter asserts low (in other words, the pin corresponding
to that parameter has a diamond), a “x” appears after its name in the parenthesized list. If the
caller did not supply a signal for a particular formal parameter (in other words, left a pin
unconnected in the drawing), then the formal/actual parameter pair will look like

FORMAL = ,
instead of
FORMAL <« ACTUAL,

In the following example, for instance, the macro calls another macro “HW EXP” with LOC=EXP
and SIZE=1 (we know that because no size appears on the listing). The macro expander connects
signal EXPZEXP to formal parameter EXP, signal. EXPZOVFL UNFL L to formal parameter
OVFL UNFL Lx, and so on. Formal parameter OVFL UNFL Lx asserts low, as shown by the “x”
following its name. The macro also calls “100171%, which is a terminal macro as shown by the “x”
preceding its name, with LOC=MUXO0 and SIZE=6B, and so on.

When a macro lacks one of the features just described, the program omits the corresponding portion
of the profile. Thus, if a macro contains no text substitutions or synonyms, the DEFINE and
SYNONYM portions of the profile would not appear at all

v

NACRO: HN WPY RND. NORM . S NUMBER 185 . .
FILES: 1/1 HUMRN.HWRN1[MK2,51)

CALLED 4 TINES FROM: HMADDRND.HMADDR (MK2,S1) HW ADDER ROUNDER #112(LOC=RN3)

4.11. The Macro Expander Listing s ‘ 117

HHRDDRND.HHRDDR[HK2,81]A HW RDDER ROUNDER #112(LOC=RN2)
NHﬁDDRND.HHRDDﬁ[HKZ,Sl] HW RDDER ROUNDER #112(LOC=RN1)
HHRDDRND.HFRDDR(HKZ,Sl] HWU ADDER ROUNDER #112(LOC=RN8)

PARAMETER T<B:26>/V, CTRL, I<HWBUS>

SYNbNYH %1% = NUX@XO:MUX8X1:NUX8X2
X2% = MUX1%8:MUX1X1:MUX1%2

SLASH (S1ZE=9)%2% = TGAT
(S1ZE=18) %1% = EXPYEXP
(SIZE=1)TGXINT OVFL L = RNXOVFL L .
(SIZE=G)EXPXOVFL UNFL L = TGXFP OVFL UNFL L

DEFINE X STEP= 1
MRCROS CALLED

EXP HH EXP #187 (EXP = EXPXEXP, OVFL UNFL Ls = EXPXOVFL UNFL L,
I = I<HMEXP>/P ;HERE AT START OF A2)

Muxe $186171 #6B(S1ZE=6B) (T Lo = , 8 = MUXOXB, 1= nuxez1,
2 = HUXOZ2, 3 = 886, S = EXPONENT OFFSET«<8:1>/M,
T = T<8:5>/P, OE Ls = MPY HW SEL ENR R3.C3 L)

Hux1 180171 #68(S1ZE=38) (T Le = , 8 = NUX1ZB, 1 = NUX1XL,
2 = MUX1%2, 3 = 8&3; S = EXPONENT OFFSET<8:1>M,

T = T<24:126>/P, OE Ls = NPY HW SEL ENR R3.C3 L)

RN RND NORM #111 ¢ EXP = EXPONENT OFFSET<8:1>/H, OVFL Ls = RNZOVFL L,

T « T<B123>/P, 1 = IGHWFRAC>/P j;HERE AT START OF A3,
CTRL = CTRL/P)
‘6 . HW TAG MODIFIER #188 (T = TGXT, INT OVFL Ls » TGZINT QVFL L,

FP OVFL UNFL Ls = TGXFP OVFL UNFL L, : 4 :
I « I<HNTRG>/P ;HERE AT START OF A3)

Expansion trace-As it processes your design, the program prints a line of text every time it
expands a macro. Up to now, the listing has dealt with the static structure of the macro hierarchy;
this part of the listing traces all the dynamic calls. The left half of each line describes the path
(defined in Section 4.6.13) leading to that particular macro call, and the right describes the call.

118 ‘ 4 How to use the macro expander

To describe the call, the macro expander prints the level of the call—that is, how deeply the call is
nested--the name of the macro it’s expanding, the value of the special variable X (as described in:
Section 4.3.1, the macro expander uses X to count from X FIRST to SIZE in increments of
X STEP, determining how many times it will replicate a given macro), and the value of the SIZE
parameter used in this call. :

In the following example, the first line represents the expansion of ‘the body at location ABOX.
This occurs at level 1, and involves a macro called “ABOX” whose number is 149. X is 0 during
this call, so the expansion produces a single copy of ABOX. The parameter SIZE is 1.

The second line shows that the program expanding the body at location 1AM 1 within the macro at
location ABOX. This one is a terminal called “100171” whose number is 68 Again, X=0 and
SIZE=}.

The third line shows the program expanding the body at location 1AM2 within the macro at
location ABOX, and so on.

The next interesting expansion occurs several lines later in the original listing, so our example skips
the boring part. Look at the line immediately following the skip. Here you can see what happens
when the loop from X FIRST to SIZE produces more than one copy of a macro during a single
expansion. The fourteen lines following the skip alternate between macro 129 at level 6 and
terminal macro 58 at level 7. The first instance of macro 129 occurs with X=0, the second with X=8,
the third with X=16, and so on; we can infer that X runs from X FIRST=0 to SIZE=48 with an
increment of X STEP=8.

HACRO EXPRANSION PASS 1

(RBOX) : _ LEVEL: 1 HACRO: RBOX #143 (X=8,SIZE=1)

(RBOX 1AN1) ' LEVEL: 2 TERMINAL: 188171 #88 (X=8,SIZE=182)

(RBOX 1AM2) LEVEL: 2 TERMINAL: 189171 #88 (X=8,SIZE<182)

(RBOX 1MM1) CLEVEL: 2 TERMINAL: 188171 #58 (Xx8,SIZE=182)

(RBOX 11M2) " LEVEL: 2 TERMINAL: 188171 #58 (X=8,SIZE=182)

(RBOX 1MULTFU) LEVEL: 2 MACRO: MULTIPLIER FCN UNIT #158 (X=8,SIZE=1)

(RBOX 1NMULTFU JINAR) LEVEL: 9 MACRO: HW ADDER ROUNDER #112 (X=8,31ZEel)

(RBOX IMULTFU HWAR AMB) 'LEVEL: & MACRO: INT FP A-B 4183 (X=8,SIZE=l)

(RBOX 1MULTFU HWAR AMB MOD®) LEVEL: 5 MACRO: ReB TRG MODIFIER #114 (X«8,SIZE=1)
<here we skip a few lines to avoid monotony> 1

(RBOX 1MULTFU HHAR AMB V@ R) LEVEL: 6 MACRO: SHIFT REG CLR 188141 #129 (X=8,SIZE=54)

(ABOX IMULTFU HWAR AMB V8 R R1) LEVEL:
(RBOX IMULTFU HWAR AMB V@ R#B) LEVEL:
(RBOX 1MULTFU HWAR AMB V8 R#8 R1) LEVEL:
(RBOX 1MULTFU HWAR AMB V@ R#18) LEVEL:
(ABOX INULTFU HWAR ANB V@ R18 R1) LEVEL:
(RBOX 1MULTFU HHAR RAMB V@ R#24) LEVEL:
(RBOX 1MULTFU HWAR AMB V8 R#24 R1) LEVEL:
(ABOX 1MULTFU HWAR AMB V@ R#32) LEVEL:

TERWINAL: SHIFT REG 188141 #58 (X=8,SIZE=1)
MACRO: SHIFT REG CLR 188141 #129 (X=8,SIZE=54)
TERMINAL: SHIFT REC 188141 #58 (X=8,SI1ZE=1)
MACRO: SHIFT REG CLR 188141 #1289 (X=16,SIZE=54)
TERNINAL: SHIFT REG 180141 #58 (X=@,SIZEal)
MACRO: SHIFT REG CLR 180141 #129 (X=24,SIZE=54)
TERNINAL: SHIFT REG 188141 #58 (X=8,S1ZE=1)
MACRO: SHIFT REG CLR 188141 £129 (X=32,S1ZEaS4)

@ N ® NN ;O N

4.11 The Macro Expander Listing 119

(RBOX 1MULTFU HWAR RMB V@ R#32 R1) LEVEL: 7 TERMINAL: SHIFT REG 188141 #58 (X=8,512E=1)

(ABOX 1MULTFU HNAR AMB V@ R#48) LEVEL: & MACRO: SHIFT REG CLR 188141 #129 (X=48,SIZEa54)
(ABOX 1MULTFU HWAR ANB V@ R#48.R1) LEVEL: 7 TERMINAL: SHIFT REG 180141 #58 (X=8,SIZE=l) .
(RBOX 1MULTFU HUWAR AMB V8 R#48) LEVEL: © MACRO: SHIFT REG CLR 188141 #129 (X=48,SIZE=54)
(ABOX 1MULTFU HWAR AMB V8 R#48 R1) LEVEL: 7 TERMINAL: SHIFT REG 180141 #58 (X=8,51ZE=1)

(RBOX 1MULTFU HWAR APB) LEVEL: 4 MRCRO: INT FP A+B #1084 (X=8,SIZE=l)

Chip counts--For each nonterminal macro, the program tells you the names and numbers of all the
terminals that it requires. This includes terminals it uses indirectly--that is, by calling other
nonterminals which in turn use the terminals--as well as the terminals that appear directly in this
macro’s definition. And the totals for a particular macro represent all calls on that macro throughout
the system, not just a single invocation. ‘

This is useful for estimating the cost of any pa.rticdlar part of the design. And the listing for the
highest-level macro in your design will, by definition, glve totals for all chips used throughout the
design.

Note that these totals count each invocation of a terminal macro, even when one actual IC
containing multiple sections can provide several copies of a macro.

SUNNARY OF TOTAL CHIPS USED BY ERCH MACRO
HACRO: 18X18 RECODE MPY . ' NUMBER 79

CHIPS TYPE
36 180117
188 1890133

———

144
_MACRO: PARTIAL PRODUCT SHIFTER NUMBER 88

CHIPS TYPE
4 188162
4 188188

Error summary-—At the end of the listing, the miacro expander prints the\ number of errors found
throughout all passes of the. program The actual messages are printed in various phases of the
listing. :

120 ' 4 How to use the macro expander

121

5 A Guided Tour of a SCALD Macro

If you followed the guided tour of the graphics editor in Section 8, yoﬁ are now no doubt sick of the
drawing that defines macro 10016. But you are also no doubt very familiar with it, so it seems like
the best.locale for a guided tour of the aspects of 10016 that relate to the macro expander language
itself. o '

This time, we won't try to take you step by step through the thdhght proééss-of the guy who made
the drawing originally but instead will let you wander around en joying the sights while we offer

random comments.

Figures 5-1 and 5-2 give a reprise of the drawing and the body respectively.

5 A Guided Tour of a SCALD Macro

-
"IN PLLE LTO™ SEVP HAD OK
1 .)
HIGH4. 0, 1
LOM 4.0 P20,
HOLD .
x
-
He.c0.9) # R REG RS
s m
. : ' TOD £
oeLATe
2.9,3.4,5.0
1e.B ¢ X
DN PULSE WIDTY
;. R
HIG#I.6,
LN 2.5
2ele.5) R
E " a DELAY-0.0
*n 1o ox T e RrETER
1 = “m xeip
ENP2.5 L ot x
© : HOLD ~8.5 : : LD q - TLP 3
{ <
o "L
l , . " . . OMEL .
O N
AL Tl N
Figure 5-1

The drawing

5 A Guided Tour of a SCALD Ma_cro‘ 123

PIN NAME = 2/8B PIN NAME 3/8 PIN NAME =

PROP NAME = 7L+
PROP TEXT = TC
TC
S ‘ X8
PIN NAME = 1. 10016 “PIN NAME = 6
PROP NAME = 1 —— [I +X 1| & PROPNAME = 6
=1 : : PROP TEXT= T =~

PROP TEXT

KR PE CNTE

/N

PIN NAME = 2
PROP NARME = 2 PIN NAME = 5
PROP TEXT = CK S A PROP NAME = SL*

"PROP TEXT = CNTE

PIN NAME = 3 PIN NQME =4

PROP NAME = 3 PROP NAME = 4L+
. PROP TEXT = R PROP TEXT = PE
Figure 5-2
The body

P A

The drawing’s mission in life is to describe a four bit binary counter in terms that the SCALD
simulator can understand. The counter has a clock input CK and a four bit parallel output T, as
you would expect. It also has a reset input R, a count enable input CNTE, a four bit parallel input

1, a parallel load enable PE, and a terminal count TC which goes low when T reaches 15 decimal.

The various inputs and outputs work together tike this:

CNTEL PEL

R CK Function -
X L Lt Load paraliel
L H L 1 Count
H H L - 1 Hold
X X H X Reset

Now one way to represent such a counter is to cascade four master-slave flip flops and-a bunch of
* _ gates. But that way madness lies, because while the manufacturer provides such a representation on

124 5 A Guided Tour of a SCALD Macro

the data sheet, the data sheet parameters don’t deal with it on such a microscopic basis. Rather, they
simply describe the setup and hold times for the various clock and enable signals, plus the delay
from the time the device is clocked until all cutputs have responded.

An easier representation of a counter is an adder which adds one to its outputs every time a clock
pulse occurs (Figure 5-3), which is basically the approach that the drawing takes.

: ' DELAY = 0.0 -
T<0:3> [g\) 48
. 4B o LATCH -
ADDER . L1 ' TR
. ‘ P! oeLer= S
A1 v 2.9,3.6,5.0
0001 g

CK

Figure 5-3
A simple view of a counter

The extra bodies and signals in the actual drawing serve either to represent extra functions like TC
and PE, or to specify setup, hold, and delay times. ‘

For example, the data sheet specifies that you must set up PE or CE 2.5 ns before CK and hold
them 0.5 ns after CK; the body in the lower left corner informs the simulator of this.

The data sheet specifies that the delay between CK and T is 2.0 ns minimum, 3.6 ns ,typfical, and 5.0
ns maximum; the VAR parameter on register R1 expresses this. The delay from R to T is 4.0 ns
typical, so a delay of “[0.0,0.6T” on the R signal itself added to the. 3.6 ns typical delay on register R1'
achieves this.

The drawing illustrates a few intimate details of SCALD syntax, too. For example, we want the
adder to add the CNTE signal to the outputs so that the counter counts when CNTE is high and
holds when CNTE is not. That’s fine, but the macro expander will not let you apply a one bit signal
like CNTE to a four bit body like the adder, so you must use a MERGE body to concatenate the
three bit binary constant signal “000” to CNTE.

When the outside world asserts PE, the signal goes low, so we want the low state of PE to select the
0 input of our multiplexer and thereby choose the parallel inputs I. But using PE L would cause
problems because the multiplexer’s S input has no diamond, so we use -PE instead: same signal as

5 A Guided Tour of a SCALD Macro : . 125

the PE L which the outside world sees, but no diamond required.

Note that you must use a bit of care in a case like this: the macro expander will pérmit you to use
PE rather than -PE or PE L in your drawing even though the outside world gives you only PE L,
but if you carelessly omit the “~” or “L”, the macro expander will invert the signal for you for free,
either by finding an inverted form in the outside world or by permuting inputs to the multiplexer.

The first line of the title indicates that this drawing is a candidate to define any body whose .
MNAME parameter is “10016”. The second line, however, makes it a successful candidate only if
.the body’s SIZE parameter is 4. If you use this body with SIZE set to some other value, you'll
presumably have another drawing with “10016” as the first line of its title, which cascades enough
four bit units to make up the required size.)

126

5 A Guided Tour of a SCALD Macro

127

6 How to use the timing verifier

The timlng verifier reads the output of the macro expander and checks for timing errors using
knowledge of the minimum and maximum propaganon delays of the circuit components, their
set-up and hold times, minimum pulse width constraints, and wire delays.

An important feature permits Verification of individual modules instead of the entire design. This -
permits the program to execute on computers with limited memory size, allows errors to be
discovered daily, before they can propagate through the design, and helps estimate a machme s cycle
_time before the design is complete.

The verifier gets information about the design from several different sources:

For each terminal body—-tﬁat is, each actual IC function--used in the .d.esign, the designer
must provide'a macro definition in térms of logical primitives. These primitives describe
the timing Constraints of that terminal body. ‘ ‘

Within the logical design of the machine, the designer may estimate wire delays for certain
critical signals as part of the signal names.

The designer may optjbnaﬂy make assertions about the timing of a particular signal,
incorporating them in the signal name. :

The designer may specify how to evaluate the timing of certain gates by incorporating

_ directives in signal names.

After the physical design system lays out the parts and routes wires, it provides wire delay
information, based on chip electrical characteristics and actual wire lengths, for all signals.

This section will first explain the theary behind the verifier, then explain how to define chips in
terms of logical primitives, and finally explain how to use wire lengths, assertions, and evaluation
directives in a design. ' '

128 6 How to use the timing verifier

6.1 Theory of operation

Within synchronous sequential circuits, most signals can change only during particular parts of the
clock period. For example, it may be possible for a particular signal to change only during the
second half of the clock cycle, provided all of the components making up the §ystem are within their
timing specifications.

~ Consider a register that can he clocked only at a particular time within the clock period. The output
of the register can change only during a short time after it is clocked, so it is guaranteed to be stable
for the entire clock period except around the point at which it is clocked. The output of a gate
driven from this register can then be changing only during a period of time determined by its
propagation delay and when the output of the register is changing.

Determining when within the clock period a given sié’nal may be changing and when it is stable is
the key step for the timing verifier. Once this has been done, it is relatively easy to check all of the
timing constraints placed on the circuit. For instance, to check the set-up and hold times on a
register, the timing verifier need only determine whether its input could be changing at a time when
it might be clocked. ‘ ‘] '

If the timing of the circuit never depended on the values of signals, but merely.on when they were
changing or stable, the timing verifier would be very simple. Clock signals have a value which is
periodic, and have the same value every cycle, so they are easy to handle. The signals which are
difficult to treat are those whose values affect the c1rcuit timing, and whlch have different values
during different cycles of the circuit. For example, a control signal which determines whether a
register is clocked during a given cycle affects whether the output of the register might change that
cycle. If the circuit relies on the register not changing every cycle, then the timing verifier must do
case analysis to keep from generating false error messages. This requires the timing verifier to
check the type of cycle when the control signal is true, and to check the type of cycle when it is false.
This could ‘be a time-consuming process, but in practice is not, because most signals have a
“worst-case” state. For example, the warst case for most registers is (u assume that they are clocked
every cycle. Only in those situations where both the clncked and unclocked cases need to be checked
separately does the timing verifier have to compute. both of them. In those cases, the timing verifier
remembers the values of all the signals which are not affected by the signal which is sub ject to case
analysis, and thus has to recompute only the signals which change with the signal being a.nalyzed.

The designer must specify which signals require case analysxs and list the cases; most circuits have
proven to contain fairly few such signals.

Basically, the timing verifier then takes the first case, calculates when each signal in the system could
be changing, and checks for violation of timing constraints for that case. It then goes on to the next

6.1 Theory of operation - . 129

case, recomputing only the signals which are different from those in the first case, and checking for
any possible timing errors. It repeats this process for all of the cases.

6.1.1 ‘Circuit Period

The circuit being verified must contain one basic clock, whose period is specified to the timing
verifier. If different parts of the circuit run at different clock rates, then the period specified to the
timing verifier is the least common multiple of the clock periods. For example, for a processor
whose instruction unit has a period of 30 nsec and whose execution unit has a period of 15 nsec the
designer would specify a 30 nsec period to the timing verifier. Within the circuit, clock sxgnals may
occur at any phase within the basic period. =

6.1.2 Value system for signals

"At any instant, each and every signal has one of seven values:

Yalue Meaning

0 false, or 0

| S true, or 1

S or STABLE signal is stable, not changing

C or CHANGE signal may be changing -

R or RISE " signal is going from zero-to one
F or FALL signal is going from one to zero
U or UNKNOWN initial value used for all signals

The value of a signal over the clock period is represented by a linked list, each node of which
specifies a value and the duration of that value. The sum of the durations of all the nodes in the
list must equal the period of the circuit being analyzed.

When a signal propagates through a gate or wire where it is delayed by a variable amount of time,
then skew is added to the signal, representing the uncertainty in when the signal will subsequéntl'y
change. This skew is maintained separately in the representation of the signal to preserve
information about the width of pulses in the signal, in order to avoid bogus timing errors asserting
that minimum pulse width requirements have not been met. If two or more changing signals are
combined, the skew then cannot be simply represented separately. It is therefore incorporated into
the signal representation by using the CHANGE, RISE, and FALL values.

130 ' *6 How to use the timing verifier

6.1.3 Combinational function

The following tables define the INCLUSIVE-OR (OR), EXCLUSIVE-OR (XOR), AND,
CHANGE (CHG), and NOT functions for the seven-value logic system used in the timing verifier.

AORB
B—9 1

w
0O .
o -
-
c

CNIBOIN D>

CTMIONHS
Pod b b o o
chnnoOn—yn
folelplelte]
cODoOI—D
cCTOOT—N
ccococo~c

>

AND

B—>

Q@ «©
-
[42]
O
o]
il
[o

COTODI®

MO >
j={ply wiplel.

cNIOV-®
chnxOuvns
cTnoOoOTTme
cccccae®

>

XOR

B

® v SOCONE®

,,
w
O
o)
-
c

CMNOONF&E=>

CTNDOnNFLS
CDTON@
ol ol @l @17,1,10)]
COO0000
cCOCOONMD
cocooOIM
cccccccoc

6.1.3 Combinational function A ‘ ’ 131

A CHG B

AB~a1sanu
* s §s s tcccu
1 S SSC C.C U
S s S S CCCU
c cccccEcecu
R cEcCcCCcECcu
F ccccececu
u Uuuuuuuu
NOT A

CT/TOVR- |

The output of the CHANGE function has the value CHA‘NGE'ff aﬁy of its inputs are changing;
otherwise it has the value STABLE. It is a useful function in modeling complex combinational
logic, where the actual function being performed is not important to the verification process.
Common examples are in the modeling of parity trees and adders, for which the timing verifier
cares only when the outputs of these circuits are changmg, not for their actual value.

132 6 How to use the timing verifier

6.2 Defining chips

As Section 4 explained, the macro expander operates in either of two modes, depending on which
TERM file it uses. It can expand the design into a network consisting of macros which represent
chiptypes, or it can expand one level further, replacing each chiptype with a network of logical
primitives which describes the function and timing of the chiptype.

To produce input for the timing verifier, the macro expander must run. in the latter mode, and
therefore the designer must provide a drawing for each chiptype, defining that chiptype in terms of
the logical primitives shown in Figure 6-1. (This is ‘actually a subset of the primitives; logic
simulation can use additional kinds not shown here.)

Delay—~-Most of the bodies have associated with them a string beginning “DELAY=0.0". This is the
body parameter called VAR (represented in the graphics editor as a property name/text pair whose
name is VAR and whose text is that string). When using these bodies in a drawing, the designer
usually replaces the “0.0” with a delay expressed in nanoseconds, or a pair of delays (minimum and
maximum) separated by a comma, or a trio of delays (minimum, typical, and maximum) separated
by commas. Regardless of the number of zeros in the initial DELAY string for a particular body
template, any body can accept one, two, or three delay paramters. .

Minimum pulse width--The body called MIN PULSE WIDTH ' accepts a single bit input and
checks that the pulses at that input exceed specified widths. The VAR parameter for this body is a
string, initially set to “HIGH=0.0, LOW =0.0", which specifies in nanoseconds how long the input
must remain high and how long it must remain low to avoid error.

Setup and hold check--The body whose body name is SETUP HOLD and whose macro name is
SETUP HOLD CHK accepts an input (whose width is dictated by the SIZE parameter) at pin ‘T”
and a common (one-bit) clock signal at “CK”. Its VAR parameter specifies in nanoseconds the
minimum setup and hold times for those inputs with respect to the rising edge of that clock.

The body whose body name is SETUP RISE HOLD FALL and whose macro name is SETUP
RISE HOLD FALL CHK works in similar fashion, but checks the setup time with respect to the
rising edge of the clock and the hold time with respect to the falling edge.

CHANGE gates--The gates whose names include “CHG” strip away information about the actual
values—high or low—of their inputs. Their outputs have instead the two states STABLE and
CHANGING. This simplifies the definition of the timing of complex functions for which
knowledge of the exact logical operation is unnecessary.

AND, OR, and XOR gates--These operate-in obvious fashion.
Latches and registers—-Each of these accepts an input at pin “I” and an output at “T”; the SIZE
parameter dictates the width of those inputs and outputs. The “CK” (clock), “EN” (enable), “R”

(reset), and “S” (set) pins are common (each accepts a one-bit signat).

The first kind of register has only “CK” and “I” inputs, and changes its output on the rising edge of

62 Defining chips | A ' , ' 188

“CK”. The output of the register will be set to the “CHANGE” state between the time determined
by the minimum and maximum delays of the register following the rising edge of “CK”. Unless the
“T” input is a true or false during the rising-edge of the “CK” input, the output will be set to the
“STABLE” value for the rest of the cycle; othérwise, it will be set to the value of the “I” input.

The second kind of register has asynchronous “S” and “R” inputs in addition to the “I” and “CK”
inputs. If the “S” (or “R”) input is one, then it sets (or resets) the output of the register after the
specified propagation delay e : .

The output of the first latch merely follows the “I” input when the EN” input is high, and is stable
for the remainder of the cycle. The second latch has additional asynchronous “S” and “R” inputs,
which set or clear the latch when the “EN” input is low, after the specified propagation delay.

Multiplexers--Each of these bodies accepts an input at each of -the numbered pins and an output at
“T”; the SIZE parameter dictates the width of these inputs and outputs. The “S” input is
common--one bit wide for the 2 MUX, two bits wide for the 4 MUX, and three bits wide for the
8 MUX. : :

If the select lines are changing, the output of a multiplexer is c_h'anging. If the select lines are stable
but their value is not known, the output is the worst case of all the inputs. If the select lines have a
known value, the output reflects the appropriate input. A change in the ‘select lines or the input
propagates to the output with the specified delay. - '

Note that these primitives are deliberately idealized, so it may take more than just a primitive latch
'to model accurately a real latch, and more than just a primitive multiplexer to model a real
* multiplexer, and so on. In pamz:ular, the primitives provide the same delay from each input to the
output. If the real part exhibits different delays——if for example, the “SET” input of a latch
propagates to the output more rapidly than does the data input--then the definition must use a
buffer at the slower input to increase its delay.

134 ' 6 How to use the ;iming verifier

D s SETP HOLD veLar-e.8 |mAv-0.0 DELAT=0.0
2 2 oo 290
» B 0 O
LATOH REG SETUP HAD OK 2 om : v 200
X x x X X
! oaare | lonar- ¥ ! gm0
©.9,0.0,0,0 0.0,0.0,0.0 e g
at . LAY, 8 teLAno. 6 tELAT-0.0
¥
L EN | yax X IR 3 0R0 ¥R -
waron o R —— d j—;\y »
- x o % >
- " 3
R LAY o R WG RS SN RISE " LA /
s 33 9 X - HOLD FRL OK .
1 T 1 T 1 o . ceLAT-0.0 : tAr-0.9 DELAT.0
cELAY- teLAr- -
0.0.0.0,0.0 2.9,0.0,0.0 .| e ‘4R 4 o0 . 2 A0
HOLD -0.0 5 Y
o N - o
: G &

o/;
g

@
igﬁ
-

. W & u v -

OELRY=0.Q. -

C .
4 0%
23

DELATwO.0
~,
6 o
X

Figure 6-1
Timing verifier logical primitives

@ On

Figures 6-2 and 6-3 provide two examples shdwing how to define the timing of a chip using these
primitives.

Figure 6-2 shows the definition of a 10145A, a 16-word RAM. Figure 6-3 shows the definition of
a 10158, a 2-input multiplexer. The 10145A example models only timing, not logic function, thanks

6.2 Defining chips 135

to the CHANGE gates, which strip away information about lbgic state. The model for the 10158, on
the other hand, is an accurate model, which could be used to do full logic simulation. For the 10158,
the model of its complete logical operation is necessary to verify timing constraints in many circuits.

’

DRLAT-S.9

: B\ (y
T M WIE ar
G3 T nSIZE-1> A
19120
SETUP HLD OK
. st .
& - ”» N ; .
10012 12 1 FRIETER * © - DEFDE . MAUFRCTURER
SETUP=4.6; | -
HAD o 1.8 © T Le@iSIZE- 1 X STEP - SIZE £
o WL : . .
1 s L
AMB>
18
SETUP HOLD OK TNSIZE- A
e . =2
SETUP4.6
LD «Q.5
ot
A T
@
SETWP RISE
P) LD FAL O
T3 6 MIN m.: MID™H
HAD =1.80 | .. ,~; t s »
. . HIGHa4. 0.
& < 1 wow 0.0
AJNL S
Figure 6-2

A 10145A 16-word RAM .

136

PRRAETER DEFTNE MNP URER

Qi1 SIZE-1» X STEP = SIZE "s
149:1312E-1»
8

TeQ: S12E- 1>

oz @ |

roszEp 2 |

Figure 6-3
A 10158 2-input multiplexer

6 How to use the timing verifier

6.3 Preparing input for the verifier o 137

6.3 Preparing input for the verifier

Assertions, estimated wire delays, and evaluation directives are all incorporated in the names of
signals in the drawings that make up the design (not in the drawings that define individual chips).

6.3.1 Wire delays

To specify a wire delay for a particular input signal, the designer must name the signal and include
a <wire delay> after the <bit subscript> part (if any), as de,scrib’ed‘ in Section 4.5. Expressed in
- nanoseconds, this consists of either a single value or a pair of values (minimum and maximum,
respectively) separated by a colon. In either case, enclose the delay in square brackets:

SHORT WIRE L<@:7>(1.8]
LONG WIRE (49.7]
INDETERMINATE WIRE<8:35>[1.8:49.7]

If the timing verifier is using wire delay mformat:on from the router based on actual wire lengths, it
ignores these specifications. '

In traversing the macro expansion tree, the timing verifier associates each predicted wire delay with
the input which the signal feeds but not with the output that generates the signal, thus assuring that
a single delay does not affect the network twice. As a result, placing a wire delay specxflcatxon on a
signal which is an output parameter of a macro definition has no effect.

6.3.2 Assertions on Signals

Assertibns'ser've two purposes. Before a design is complete, the designer can isolate one module and
place timing assertions on all the inputs and outputs of that module; the verifier will then use those
assertions to take the place of the timing information it would otherwise obtain from the circuitry
surrounding that module. Within a module or complete machine, the designer can place timing
assertions on any signal for documentation purposes, and to convey to the timing verifier additional
requirements that he or she wishes to impose; the verifier will then issue warnings if the ‘assertions
are not at least as generous as the actual timing—-even if the actual timing is riot smctly erroneous.

When it comes time to integrate separately verified modules into a complete machine, the macro
expander automatically checks to see that the assertions on the ‘outputs of one module match the
assertions on the corresponding inputs of another. It considers an assertion to be part of a signal
name, so two otherwise identical names with different awamons represent two dlfferent—and
mcompatible-—sngnals. ’ :

138 6 How to use the timing verifier

If the timing of a signal is not defined by preceding circuitry or by an assertion, then the verifier
assumes the signal is always stable; thus, one need not place assertions on input signals whose timing
is not of interest. :

The <timing assertion> part of a signal name appears after the <simple name> as mentioned in
Section 4.5 and consists of a string beginning with a period. The syntax is:

<timing assertion> ::= <clock assertion type>
<value specification> <skew specification> |
<clock assertion type> <value specification>']
<stable assertion types <value specification>

<clock assertion type> ::=C | P

¢

<gtable assertion type> ::= S

<value specification> ::= <time range> |
<time range> , <value specification>

<time rénge>‘r S t3e <time>“] <t§mé> - <time>
<time> : e <real number>
<skeu‘specificatiqn> si= (<minus skeuw> , <b|us sketi>)
<minus skeuw> - $s= <negative real or zero>
<plus skeu> : | 11= <positive real or zeius

For a clock signal, a typical <timing assertion> is:

XYZ .C4-6 L
which says that the sighal goes from hiéh to low at tjfne 4, and from low to high at time 6. (Each
time unit represents a fraction of the cycle time; when you run the verifier program, you specify the

number of units in a cycle. This convention keeps the assertions independent of the duration of the
cycle time) The signal: '

- XYZ .P2-85-6

is high from 2 to 3 and from 5 to 6, and is low for the rest of the clock cycle. If a single time is
given instead of a range, then a time interval of one clock unit is assumed. For example,

6.32 Assertions on Signals - \ 139

XYZ P25
is equivalent to the previous signal.

For clock signals, the “C” and “P” assertions are both useful, the only difference being the default
_skew used when none is explicitly given. Skew is generated by variations in the delay from the
clock generator to different parts of a large digital system, due to varying wire lengths and buffer
‘propagation delays. In a large digital system, these variations can become large enough to degrade
performance unacceptably. To reduce this skew, the shorter clock paths can have additional delay
deliberately inserted into them. Because the delays in a clock. distribution system may vary between
successive implementations of a design, in many cases it must be ad justed by hand, by using some
type of ad justable delay for each of the clock lines. Using this technique, the skew can be reduced
below some designer-specified amount. A “P” assemon assures the verifier it can rely upon such
ad justments; a “C” assertion does not.

For a control or data signal, use the “S” assertion, which specifies whether the- sxgna! is stable or
changing, but not its actual value. For example the name: ~ ' -

- XYZ .S4-8

says that the signal is stable from time 4 to time 8, and may- be changmg during the rest of the cycle.
Note that an “S” assertion never specifies a skew. '

6.3.3 Evaluation Directives

Evaluation directives tell the timing verifier how to evaluane certain gates. They can also specnfy the
exact point in a circuit at which a precision clock is ad justed to reduce skew.

As mentioned in Section 4.5, an <evaluation directive> follows the <wire delay> in a signal name. It
consists of “&” immediately followed by a string of letters. The first letter in the string refers to the
logical primitive (ordinarily a gate) 'immediately following the signal, the second refers to the second
level of gating following the signal, and so on.

The following letters are permitted:

[

w Zero the wire delay going into the gate that this evaluation directive refers to.
z Zero the wire delay going into the gate and-the delay of the gate itself. -
A When this signal is asserted, make sure all other inputs to the gate are stable. If

so, operate as if the directive were “I": ignore the other inputs and base the
timing of the gate’s output solely on-that of this signal. If not, issue an error

140 6 How to use the timing verifier

message.

I Ignore the other inputs of the gate and base the timing of its output solely on
that of this signal.

H This directive is equivalent to applying the “A” and *Z” directives together at a
single level.

6.5.4 Correlations‘

When the operation of a network relies on known correlations between clock signals, the timing
verifier must be told the correlations or it will generate spurious errors. Consider the two examples
in Figure 6-4, each driven by a clock exhibiting plus or minus 2 nsec skew. The first example
represents an authentic timing error because if the clock arrives at register R1 2 nsec before it
arrives at register R2, the input of R2 will be changing as the clock rises. The timing verifier sees
the second case no differently, but in reality no error can occur because the input and output of the
latch are governed by exactly the same clock. No matter how great the skew, the changing output
cannot propagate back to the input to conflict with the rise of the same clock pulse that caused the
changing output. ' A ~

K24, 6N .2 D

Figure 6-4
Uncorrelated and correlated clocks

-

To solve the problem, add to the signal called *T /M” a wire delay sufficient to eclipse the clock
skew. To make clear that this delay is meant to convey a correlation rather than to suggest a lengthy

6.3.4 Correlations ' ‘) : 141

wire, it is customary to define a text substitution called CORR and use it as the dela;:‘

T /MI\CORR\]

142

| ' 6 How to use the timing verifier

6.4 Input and output files for the timing verifier .

The verifier accepts the following input files:

MACEXP

OPTION

WIRES

This is the output data from the macro expander.

This file contains a set of real-number equates specifying various options and
parameters. A typical OPTION file might look like:

CycleTime=58.0;
ClockUni te=6.25;
(1 nrkSkaush, @5
PrecC|ockSken=1.8;
MaxkiDe | ay=2. 8;
MinkDe | ay=8. 8;

CycleTime is the length in nsec of the least common multiple of all clock periods
in the network.

ClockUnits is the length in nsec of one of the time units used in the <timing
assertion> syntax. Usually CycleTime is evenly divisible by ClockUnits, though
this is not a requirement.

ClockShkew is the default skew used when a clock signal bears no timing assertion
or bears a “C” assertion with no skew specified. In the preceding example, the
default skew is -5 to +5 nsec. ‘

PrecClockSkew is the default skew used when a “P” timing assertion specifies -
that a clock is precision ad justed but does not specify the resulting skew. In the
preceding example, the default skew for precision clocks is -1 to +1 nsec.

MaxW Delay aind MinW Delay are the wire deiay values in nsec used when a
signal name does not specify a wire delay. In the preceding example, defaulting

the wire delay would have the same result as specifying (02

Produced by the physical design system router program, this file provides wire

‘delays based on actual wire lengths and chip electrical characteristics. If this

information is not yet available, provide a file containing the word “END;” and
the verifier will use the wire delay estimates specified within signal names.

The timing verifier produces the following output files:

TIMLST

This is a listing of timing errors plus a listing of each signal along with a
description of its behavior versus time.

6.4 Input and output files for the timing verifier . . 143

/

LCROSS - This is a cross reference of local signal names.
GCROSS This is a cross reference of global signal names.
'BCROSS - This is a listing of signals which ﬂ?r various reasons appear to be “dangling”.

These are not necessarily errors, but might be conscious omissions by the
designer. '

144 - - 6 How'to use the timing verifier
6.5 A timing verifier example

Figure 6-5 shows a sample SCALD macro consisting of a 16-word by 32-bit RAM, a 32-bit
register, a 2-input multiplexer and several gates. It illustrates the use of assertions, evaluation
directives, and predicted wire delays in 51gnal names. ‘It in turn calls several more macros, the two
most interesting of which appeared earlier as Figures 6-2 and 6-3.

The assertion on the signal “W DATA .S0-6<0:31>" says that it is stable from time 0 to time 6,
allowing the verifier to check the timing of this circuit without knowing how the signal is generated.
The assertion on the clock signal “CK .P2-3 L” says that it is low between times 2 and $, and high
for the rest of the cycle. The signal “ADR<0:3> [0.0:6.0]” states that the 4 address wires on the

RAM can be between 0.0 and 6.0 nsec long. '

The clack signal “CK P2-3 L” is being ANDed with the control signal “WRITE .S0-6 L" to
generate a write-enable pulse for the RAM array. If the data is stable every cycle during the period
in which the RAM is to be written, then the most efficient way to check for timing errors is just to
analyze the case in which the signal “WRITE .S0-8 L” enables a write operation. The “&H”
directive shown at the end of the clock signal says to ignore the value of the “WRITE .S0-6 L”
signal, allowing the clock signal always to propagate through the gate. In addition, it says the timing
specified by the clock signal is to be ad justed so that it refers to the time at which the output, rather
than the input, of the gate changes. The “&H” directive also specifies to check that the control
signal “WRITE .S0-6 L” is stable while the clock is asserted, to ensure that the write will be either
solidly enabled or solidly disabled.

The “&Z"” directive on the signal “CK .P0-4" states that the clock timing refers to thc time at which
the output of the gate changes.

.~ 6.5 A timing verifier example - ‘ L 145

-
e | =
W DATR .90-&@: 31 e - | mweanr | ik Ll omutaean
: R - _2 -
*
L

Figurq. 6-5 _
Example to be verified

The first step in verifying the timing is to run the macro expander to expand the design into logical
- primitives. Then run the timing verifier, which processes the MACEXP file generated by the macro

expander. It generates a listing (somewhat condensed here to fit the page) which begins with a

play-by-play description of its operation: o

Reading wire list ...
@ error(s) detected

Daing cross reference listing ...

Initlalizing signals ...
@ error(s) detected
Doing timing analysis ...
Circuit evaluation completed
Total nulibar of evaluation passes: (1]

Total nuwber of events processed: 29

146 ‘ ' 6 How to use the timing verifier

Next the listing shows setup, hold, and pulse width errors:
Setup, Hold, and Minimum Pulse Nidth errors ...

Satup time error; Setup Time = 3.5, Hold Time = 1.8
CK INPUT = HE ’ 8:8.8, R:11.5, 1:15.5, F:17.8, 8:21.8
DATA INPUT = ADR $:6.0, C:8.5, 8:11.5, C:25.5, S:36.5

Setup time error; Setup Time = 2.5, Hold Time = 1.5
CK INPUT = REG CLK R:8.8, 1:3.9, F:24.8, 8:28.8, R149.0
DATA INPUT = RAM S18.8, C15.8, $:22.5, C:38.8, 8:47.5

Because of. the long wire specified ‘on the signal ADR<0:3> [0.0:6.0]", two set-up time errors occur.
The first error message shows the address inputs to the RAM becoming stable at 11.5 ns, just as the
write enable (WE) signal starts rising. Since the RAM requires a setup time of 3.5 nsec, the wire
delay on the address signal must be reduced to 2.5 nsec to eliminate the error. The second error
message shows the data output of the RAM becoming stable at 47.5 nsec and the clock starting to
rise at 49.0 nsec, giving only 1.5 nsec of setup time instead of the required 2.5 nsec.

Next it prints a list of signal values:

Values of all signals

ROR<8:3> 8:8.8, C:8.5, S:5.5, C:25.5, $:38.5 .

CK .P8-4 R:8.8, 1:1.8, F:24.8, 0:28.8, R:49.8 (constant valua)
CK .P2-3 8:8.8, R:il1l.5, 1:13.5, F:17.8, 8:19.8 (constant vaiue)
CK .P4-8 F:8.8, 8:1.8, R:24.8, 1126.8, F:49.8 (constant value)
QUTPUT<8:31> . . . $:i8.8, C:d.5, §:7.5 o
RAN<8:31>. . . . 8:0.8, C:5.8, $:28.5, C:38.8, S:45.5

READ ADR .34-9<8:3>. . 8:8.9, £:8.3, 8:25.8

RE6CLK R:8.8, 1:1.8, F:24.8, 8:26.8, R:49.8

W OATA .58-8<8:31> . . 5:8.8, C:37.5 '

HE B8:8.8, R:11.8, 1:13.5, Fil7.8, 8:19.8

MRITE .88-8 . . . 8:8.8, C:37.5

MRITE HDR .S5y-bed:ss> . 8:8.8, C:37.5

In that listing, “S” stands for “stable”, “C” for “changing”, “F” for "f:illing”, “R” for “rising”, “U” for
"unknown”, *1” for the high state and “0” for the low state. 'Consider the first signal in the list,
"ADR<0:3>". Because the timing is identical for all four of its bits, the listing describes them all in
one line. The signal is stable at time 0 (the beginning of the cycle), changes from 0.5 nsec to 5.5 nsec,
remains stable until 25.5 nsec, changes from 25.5 nsec until 30.5 nsec, and finally remains stable from
30.5 nsec until the end of the cycle.

Next it prints a list of signals whose timing failed to fall within the limits set by assertions. (These
are signals for which the designer specified assertions even though the verifier could calculate their

6.5 A timing verifier example i 147

timing without those assertion. The verifier thus calculates the timing independently and uses the
assertions as a check.) This example has no such errors, but a typical one might look like the
following example, which gives the signal name including the assertion, followed by the calculated
timing:

Signals not meeting théir)stable aggertions

OC MODIFIED I8 .S6-12 " §:8.8, C:23.8, S:28.8

1-SEQ USING SR .S5-18 5:6.8, C:18.8, S:31.5 .
Finally, the listing shows how much storage the program used. This is useful when running the
verifier- on computers with limited address spaces, because it helps predict when a design is about to
grow so large that it must be split into modules which can be verified individually:

All done

Storage summary:
Record Name Number Used Total Bytes

" Value ’ 416 4992
ValueBase . 125 2588
ValueHead 128 1448
Signal 17 ' 688
Det 35 1828
Calllst 13 468
PrimDet 25 3864
Parfirr 35 148
CailLatfrr 248 992
StflngChr 527 527
Str 111 1332

SortSigAre 14 58
: 18811

148 , 6 How to use the timing verifier

149

7 The ‘layou't program

Starting with the circuitry established by the macro expander plus a set of instructions from the
designer, the SCALD layout program positions chips on circuit boards. The program is
semiautomatic: for best results, the designer specifies how to lay out important or complicated
macros, but lets the program do the routine part of the job automatically.

Thus the program requires three inputs: a drcuit description from the macro expander, two files
called ACHIP'S.LAY and CHPTYP.LAY (derived from the CHIPS file by another part of the
SCALD physical design system) which describe the chips themselves, and a file of instructions from
the designer. It puts out a listing, a file of runs for use by the SCALD router, a file of unconnected
signals for error-checking, and a file describing the position of each chiptype laid out.

To avoid confusion this chapter will use ‘location’ to mean the label generated by the graphics
editor and used by the macro expander to indicate where within a drawing a particular macro lies.
‘A location is simply an identifying string such as *G1” or “M6". - It will use ‘position’ to indicate
where upon a board a particular macro or chip lies. A position is a set of coordinates on a circuit
board. In fact, the main task of the Iayout program is to map a set of locations onto a set of chips at
specifxed positlons

150 A 7 The layout program

7.1 Preparing instructions for the layout program

To give instructions to the layout program, the designer creates a file containing a sort of program
that consists of statements, analogous to the statements of a high level language like PASCAL or
FORTRAN. ~

Context-The layout program starts at the top level of the macro expansion tree and works
downward toward the most primitive elements. Similarly it starts at an initial board position and
works onward from there. At any time, the program works within a context, consisting of the
location label for a particular macro call, plus a board position. All of its work takes place relative to
that macro call and that position. '

Position—-Several of the statements use identical syntax for position. A position can specify four:
elements or ‘coordinates’: a board, a column of chips on that board, a row of chips on that board,
and a section within the chip at that row/column. Most of the -statements allow the designer to
default one or more of these elements.

Specifying board, row, and column pinpoints exactly one socket, and sockets are all equivalent as far
as the layout program is concerned; within the constraints imposed by the instructions from the
designer, the program will map chips onto sockets in whatever fashion minimizes wire lengths. (The
layout program treats a socket as if it were a point to be placed at a certain coordinate position.
Other programs in the physical design system know the true size of each socket, how many pins: it
has, whether it is interchangeable with sockets at other coordinate positions on the board, and so
forth. They worry about checking to make sure sockets don’t overlap each other, and so forth.) ‘
The section coordinate, on the other ‘hand, indicates a functional unit within a chip and thus
depends on the chiptype, as we will explain later. For now, regard the section as simply another
coordinate. Similarly, we will postpone the question of chips that require more than ane socket.

Boards, columns, and rows have integer numbers- beginning at.1. Sections have names, given to
them by the CHIPS.LAY and CHPTYP.LAY files, which consist-of an optional alphabetic string
followed by a number—'A(’, for example, or 'SG12, or’ just ‘7. - To identify a board, precede its
number with ‘aB’; for a column, precede its number with ‘@C’; for a row, ‘eR’. For a section, precede
the alphabetic/numeric name with ‘aS’. The following specifies board 5 row 16 column 12 section
Al '

eB5 eR16 aCl12 a5Al
The following specifies row 12 column 5 within the current board:

eR12 (S
More commonly, however, the designer will-by omitting the ‘e’--specify position relative to the
current context. If the program is already working with board 3, for example, then 'BI’ indicates

board 3 (the current board), ‘B2’ indicates board 4, ‘B%’ indicates board 5, and so on. In a section
name, the numeric part is taken relative to that of the context while the alphabetic part (if any) is

7.1 Preparing instructions for the layout program , 151

absolute. If the program is already working with section A3, for example, then SA0’ indicates
section A S (the current one), ‘SA I’ indicates section A4, and so.on.

For example, if the current context is ‘aB5 aR16 @C12 @SB1’, then the following:

R4 C6
actually indicates board 5, row 19, column 17 section B1.
A simple rule: given the context and a set of context-relative coordinates, determine the position by
" adding each relative coordinate to the corresponding context coordinate and then subtractmg 1 (for

board, row, or column) or 0 (for section). . '

Some layout program statements require a list of positions separated by commas, such as:

Ri6 C12, R16 C13, R1e Cl4,. Ri6 C15, R16 C16 -
To abbreviate this, one can use an imp‘lied loop by specifying the initial value for the loop and the
number of times the loop should execute (not the final value of the loop as in many programming
languages). The followmg example steps from C12 through Cié:

c12,5)
and thus is equivalent to:

C12,C13,C14,C15,C16

An optional step size increments or. decrements the loop by any desired integer. The following
example steps from C12 through C16, incrementing by 2:

€(12,3,2)
and thus is equivalent to:
| 'C12,014.C1é
~Ordinarily the order of the board, column, row, and section specifications doesn;t matter. When you
use more than one of these implied loops, however, the loops nest, with the rightmost loop

incrementing most rapidly. The following examples are thus equivalent:

R(1,2) C(1,2)
R1 Cl1, Rl C2, R2 C1, R2 C2 -.

but different from the following two, which are likewise equivalent:

152 A . LT e : *+ 7 The layout prografn

C1,2Y R(1,2) . T U e e
R1 C1, R2 C1, R1 C2, R2 C2 ' g

An implied loop for section names:looks like this: Y
SA(9,4,2)

which is equivaleqt to:
.SAB, SA2, SA4, SA6

Locations--As mentioned before, a location is simply the label designer chose to identify a particular
macro call to the macro expander. (originally, the text field of the LOC property name/text pair for
the body that calls the macro). The designer needs to keep in mind three additional details.

First, when the SIZE parameter causes multiple invocations of .the same macro call, the macro
expander appends a ‘¢ and a number to each invocation after the first. Thus, a body for which
LOC=G5 and SIZE=3 results in locations called G5, G5+2, and G5e3.

-Second, when the TIMES parameter causes multiple invocations of the same macro call, the
expander appends a ‘+’ and a number to each invocation after the first. The TIMES suffix precedes
the SIZE suffix, if any, so that the last invocation of a body with LOC=G6, SIZE=3, and TIMES=2
would be called ‘G6+2#3’. (SCALD customarily deals with these invocations alphabetically, so SIZE
varies faster then TIMES as the macro expander steps through the two-dimensional matrix of calls
resulting from such a body.)

Third, when more than one drawing defines a macro, the expander prefaces each locatinn with the
page number of .the drawing. Thus, a body for which LOC=Gb5 would result in location 1G5 if it
lay on page 1 of the drawing, location 2G5 if it lay on page 2, and so on. .
Chlptypes-Many ICs contain several functions inside one package The layout program recogmzes
an entity called a chiptype which embodies that concept.

Defined by the CHIPS.LAY and CHPTYP.LAY files, each chiptype is a collection of one or more
terminal macros within a single unit which the layout program can place on a board. Such a
chiptype contains one or more sections, each corresponding to one terminal macro.

An ECL 10105 Chlp, for example, contains two 2-input OR/NOR gates and one 3-input ORINOR
gate. The macro expander need know nothing about this. Simply use two different macros to
represent the two different kinds of gate: for example, one macro called 10105A to represent a
2-input OR/NOR gate and another called 10105B to represent a 3-input OR/NOR gate. The
CHIPS.LAY and CHPTYP.LAY files must then tell the layout program that a chiptype called
10105 will provide two 10105A’s (in sections ‘A0 and ‘A l’) and one 10105B (m a section called ‘B0’).

5

Some chiptypes are a good deal slmpler, of course. The chiptype 10016 corresponds o exactly one

©
04
£ HEN FEBAT SOEDUED @2 .33-81; ogige
w
. €1E2 R
v
a2 P34 L

R 0: 3
wPea:d
P<e: >
RAxed>
wxo: >

>e:>» #

a2 .Pe-1e 82
AUDI AB0X .C
P LEGD, RERLY NM A2 . S4-X: D
-
vIs
om

111 3 -1PY HAS RESLY 08 .92-9

e £

03 .FB-10 &l

1 13 T

23

Hend »

t 19013 T

W
PE

T

RESULT O3 .98-9 L

I

WRAP

FLUSH ABOX .C L

ADR GEN -

INTO THE
ARE THOSE THAT ARE UNNAWRILAALE FOR
.E. RP MINUS THOSE THAT ARE QURSENTL
THE QUTRUT OF A FUNCTTONAL- UNIT - .

13 THESHE AS TP EXCEPT THAT 1S ONLT COUMTS

NIO AAV dViIM 8I¢

§61

154 ' : : 7 The layout program

7.1.1 The DATE statement

To help document the layout, the designer may include a DATE statement at the beginning of the
file of instructions, giving the date and the designer’s initials. The layout program will pass this
string along to subsequent programs in the SCALD physical design system. (Actually, the statement
will in general accept any string of characters not including “”).

DATE 9-0ct-79. JBR;
WITH *;
WITH C3;
G5 = R1 C5 S1;
M4 = R1 CB S1;
END;
END;

712 The WITH statement - ' A 155

7.1.2 The WITH statement

A WITH: statement establishes a context within which other statements work. Every WITH
statement must pair with an END statement; the context it establishes applies to every statement
between the matching WITH and END.

The simple form of the WITH statement specifies a single location~-in other words, specifies a
particular macro call-- and causes the statements within its scope to work within the context of that
macro. The following example operates on macro calls G5 and M4 within the context of (that is,
within the expansion of) macro call C3:

WITH C3; : |
G5 = R1 C5 S1; : ‘
M4 = Rl CB S1;

~ END;

Commonly, the instructions for a layout program will nest WITH statements. Each WITH statement
descends one level deeper into the macro expansion tree, and concatenating the WITH statement
locations one by one creates a path that completely and unambiguously describes the context (that is,
the particular macro call) within which the innermost statements work. In the following example, the
innermost statements deal with the macro calls whose paths are (C1 G2 Ale6 G5) and
(CIG2A1¢7 M3): : S S TP UL E ‘

“WITH C1; - ST E "',:‘ S IR oL
WITH G2; - W . - R T AT A
WITH Al#B; - L .
G5 = R1 CS S1;
END;
WITH Al1#7;
M3 = R2 C6 S1;
END; .
END;
END;

Because the topmost level of the macro tree—the macro representing the entire design--never gets
called by any other macro, it has no location name. Thus, the first WITH statement in any layout
program must use the special symbol %’ to indicate the topmost level of the design. Other statements
may precede this initial WITH (provided they do not require a context in which to
operate—statements which actually cause the program to place chips on boards always require a
surrounding WITH to tell them what part of the desngn to work on) but its matchmg END must be
the last statement of the program:

SET XYZ = 153
WITH = '
WITH Als

G2 = R2 C6 Sl3 .

156 , 7 The layout program

G7 = R2 C6 S1;
END; - . o
END; o ' o

Specifying position--Any WITH statement may include an AT clause, specifying a position relative
to that of the previous WITH context. The program starts at position ‘@B1 aC1 eR1 @S0’, so in the
following example the innermost statement operates in a context whose macro call path is (G4 A6)
and whose position is board 3, row 17, column 7. -

WITH x AT R3 C2;
COMMENT Now we’'re at board 1 row 3 column 2;
WITH G4 AT B3 R5 C2;
COMMENT Nouw we’re at board 3 row 7' colutin 33
WITH AB AT R11 C4;
COMMENT Nouw we’re at board 3 row 17 column 8;
-GS = Rl C2 s8; ' R .
END; o
ENDs . . ‘ , .
END; = : : T B » S

If a WITH statement doesn’t include an AT clause, then the context inside that WITH has the
same position as the context enclosing it. Note that while intervening layout statements may have
altered the position at which the program is working, a WITH statement ignores them, goes back to
the pievious WITH statement, and alters the context position relative to it. Thus the innermost
context is identical in the following two examples: S

WITH =2 WITH =3
WITH G1 AT R16 C7; _ WITH Gl AT R16 C7;
MS = R2 Cl; o
WITH G5 AT RS; _ WITH GS AT R5;
ME « Rl C1; Me = Rl Ci;
END; ‘ END;
END; . END;

ENU; o . END; -

Because the AT clause specifies a single pnsition, the notation for an implied loup is illegal within it.

7.1.3 The assignment statement : ' 157

718 The assignment statement

An assignment statement tells the layout program to place a particular piece of circuitry at a
particular position on a board. In its simplest form, it consists of a location name for a terminal
macro (that is, a macro which maps directly to a single section of a chiptype), the name of a
chiptype, an ‘=’ symbol, and a position. - The board, row, and column coordinates of the position
are--unless they contain ‘@’—interpreted relative to the context of the enclosing WITH statement.
Any omitted coordinate defaults to that of the enclosing context. Thus, the following example places
macro call C7 on the board specified by the context, at the column specified by the context, one row
beyond the row specified by the context, and at the third ‘B’ section of the chiptype:

C7 = R2 C1 SB2;

Note that'the position in an assignment statement is not relative to that of a previous assignment
statement. ‘

If a terminal macro has its SIZE or TIMES body parameter set to a number larger than one, then
that macro will require multiple chiptype sections and thus multiple positions on the board. If, for
example, macro C7 had SIZE set to 3, the designer must give a list of positions, one for each
invocation of the macro. Either of the following examples would accomplish this:

C7 = R2 C1 SB(8,3);
C7 = R2 C1 sB@, SB1, SBZ;

An entire subtree at once--If the designer specifies the location of a nonterminal macro call, the
layout program will automatically expand that macro call to obtain a list of terminal macro calls, and
will then lay out each of the terminal macro calls. In other words, the program will traverse the
subtree resulting from a nonterminal macro.

In such a case, the assignment statement must give a list of positions to the right of the ‘=’ sign, one
position for each terminal macro resulting from the expansion, and taking into account the multiple
copies of a terminal that result from SIZE or TIMES parameters that exceed 1. In the following
example, the macro at location C6#2 (which is itself the second invocation of macro C6, resulting
from the SIZE parameter being greater than one) expands to produce five different terminals, and
thus requires a list of five positions:

Ce#2 = R1 C1, Rl C3, R1 C5, R2 C1, R2 C3;

The list of positions must contain at least one position for each terminal resulting from the
expansion, but may contain more. The layoht program will simply ignore the extra positions rather
than using them up or leaving them empty. This makes it easier to use the loop notation to simplify
a list. The following assignment statement has precuely the same effect as the preceding example,
even though it specifies an extra position:

ce#2 - R(1,2) €(1,3,2);

158 ' | 7 The layout program

When the layout program expands the subtree of a macro for you, it does so predictably. After
expanding the subtree into a list of terminal macros, it sorts the list in alphabetic order by path
name. (These path names are identical with those that appear in the output listing from the macro
expander except that a blank space appears immediately before the closing parenthesis of the path
to prevent the parenthesis from spoiling the alphabetizing.)

Inversion—~Certain chiptypes allow you to use the complementary form of some of their inputs
simply by rearranging connections. With a multiplexer, for example, simply rearranging the data
inputs permits use of complemented. (assert low) forms of the select lines. This is particularly
important with ECL logic families which typically provide both true and complemented forms of
gate outputs; using both outputs effectively doubles the fanout capability of the gate.

Provided the CHIPS.LAY file describes the required sighal - rearrangement, the assiguuneiit
statement permits the designer to choose whether to use true or complemented connections for any
particular instance of a given chip. Simply add a %/’ to the end of the assignment statement, followed
by a list of ‘H’ and ‘L’ letters: . :

CB#2 = R(1,2) C(1,3,2) / HL HHL;

Every time it positions a chip on the board, the layout program looks at the next letter in the H/L
list. An ‘H’ tells it to connect the chip according to the drawing that defines that chip, and an T’
tells it to rearrange the inputs to use complemented inputs.

Two shortcuts make the H/L list easier to use. First, placing a number immediately after a letter is
equivalent to repeating the letter that-number of times, so the following two examples have the same
effect: : - . ,

C6#2 = R(1,2) C(1,3,2) / HL HHHL;

Ce#2 = R(1,2) C(1,3,2) /7 HL H3 L;
Second, if the layout program exhausts the H/L list before positioning all the chips, it returns to the
beginning and reuses the list as many times as necessary (just as, in FORTRAN, a WRITE
statement which exhausts its FORMAT list reuses the list). Thus, if the H/L list repeats a pattern
the designer need write only one cycle of the pattern:

C6¥2 -« R(1,3) C(1,3,2) / HLHHLHHLH;
ge#2 = R(1,3) C(132)/HLH;

_If the H/L list is too long, the layout program simply ignores the extra letters.
Versions--As explamed in Section 4.3.1, the macro expander provides any macro call with a
parameter called TIMES which allows the designer to obtain multiple copies of that macro with

their respective inputs tied together and their respective outputs left independent.

Within the drawings, the designer need not distinguish among these independent outputs: a single

7.1.3 The assignment statement - 159

line and a common name represent all of them. The macro expander does, however, derive a unique
name for each actual output by appending to the common name a /’ followed by a number.

When laying out circuitry automatically with the PLACE statement, the designer need not specify
which version to connect to .whieh' input, because the physical design system router program handles
this detail. But with the assignment statement, the designer may either leave the decision to the
router or state explicitly. which version of. a multiversion output to connect to each possible
destination. ~

To specify this use a colonstnng whlch nges a sngnal name, and a list- of version numbers one for
each macro call in the subtree. The followmg example connects . version 2 (of whatever signal is -
appropriate) to input pin ‘CNT ENBL' of the first macro in the subtree, version 1 to the
corresponding pin of the second macro in the subtree, and version 3 to the correspondmg pin of the
third macro in the subtree:

C5 = R(1,3) CS5 SB :CNT ENBL.= 2, 1, 3;

Note that the slgna] name must be an 1nput never an output If the statement uses-an HIL list, the
colon string may either follow or precede it. ‘

As with the H/L list, the program permits shortcuts. If the version list is not long enough the
program rereads it; if the list is too long, it ignores the latter part. To repeat a version, append a
followed by the number of repetitions desired. For example, the following two assignments are
identical:

C6 =R(1,7) C5 S8 : CNT ENBL =1, 2, 2, 3, 3, 3, 3;
C6 = R(1,7) C5 S@ : CNT ENBL = 1, 2%2, 3%4; '

Note that the program expects to read from the list one version number for each macro in the
expansion, whether or not the macro in question actually has an input pin with the specified name,
and whether or not the macro is a terminal. To ‘skip over’ macros which do not have a particular
4nput, umnit the version number but include the appropriate repetition factor. Thus, the following
example skips over the first macro and the last three macros in the subtree:

C7 = R(1,8) C6 SO : PRESET = x1, 12, 2x2, %3;

This ability to skip over certain macros in the expansion is also useful when a subtree contains two
different kinds of macro calls with the same input signal name, where one set of calls needs version
specifications and the other set does not.

It is possible for the macro expander to produce a signal name with multiple versions, one after
another. To cope with this situation in the colon stnng. spec:fy the versions in the proper order,
separated by dots:

C8 = R(1,4) C4 S8 :CLEAR = 1.242, 1.1x2;

160 ' i : o ‘7 The layout program

If more than one input signal requires version specifications, simply use mulnple colon strings in any
order:

C3 = R(1,8) C4 SP :CNT ENBL = 1x4, 2x4 :CLEAR = 2.2%2, 2.1%2; -

Adding drive capability during layout-By including a TIMES expression in parentheses after the
location label, the designer can override the TIMES parameter used for that macro call during
macro expansion. This is useful for adding extra drive capability. Like the macro expander TIMES
parameter, this feature replicates the macro, ties together the corresponding input signals of the
resulting copies of the macro, and leaves the output signals mdependent assigning a different
version number to each output. :

The list of sections in the assignment statement must be Iarge enough to take intg account these
extra cuples uf the macro.

The following example produces three oopies of the macro at locatlon C7 and assigns them new
location labels C7, C7+1, and C7+2:

C7(x3) = R2 C1 SB(2,3)

The layout program permits this TIMES expression only with terminal macro calls.

7.1.4 The PLACE statement ' . 161

7.1.4 The PLACE statement

Whereas the assignment statement lays out éhip‘s manually, the PLACE statement lays them out
automatically. - While the assignment statement dictates exactly where' to put each macro, the
PLACE statement allows the program to rearrange the chips (through pairwise mterchanges) among
the specified positions in an attempt to minimize wirelengths.: - :

To use this automatic Iayout feature, specnfy a list of location labels and a list of posmons
PLACE GS, M6, A4, R2 WITHIN B2 R(1,5, 2) C(B 12) S(9,2);

If the list of positions is Iarger than it need be, the program will simply allow itself extra freedom in
placing chips anywhere within the set of positions. .

As with the assignment statement, if the-macro -call designated by a location label is a nonterminal,
the program automatically expands the macro to obtain a list of terminal-macros. In:other words, it
lays out the entire subtree resulting from that macro call.

Combining automatic and manual layout—Using a ‘%’ instead of a list of locations tells the PLACE
statement to lay out automatically all macros within the current context for which there are no
assignment statements. In the following example, the program expands macro call G6, lays out calls
M4 and R1 according to the assignment statements, and lays out the remainder of the subtree
resulting from G6 automatically:

WITH GB;

M4 = RS C7 S0

Rl = RS C7 S1;

PLACE = WITHIN R5°C(8,9) S(8,1);
ENO;

The layout program does not actually perform assigment and PLACE statements in order. Instead, it
performs all manual layout throughout the design and then all automatic layout. Thus the automatic
layout algorithm can minimize the length of wires between manually-positioned and
automatically-positioned chips along with that of the wires within the automatic areas.

As a result, assignment statements may actually occur either before or after the PLACE statement.
In addition, the list of locations {or the subtree of a location) given to a PLACE statement may
include some macro calls specified in manual layout statements elsewhere' PLACE will process only
the macro calls which are not positioned manually.

Chiptypes of varying sizes--Because the layout program will rearrange the chips anyway, the order
of positions within the list does not matter. But the ‘resolution’ of positions does matter: if each chip
is two rows tall and one column wide, for example, the positions in the list should be two rows apart.
Or, for another example, if each chip is three rows t_all and two columns wide, the positions should
be three rows apart and two columns apart. Otherwise, because the layout program deals only with
the upper left corner position of each chip and not with the actual size of the chip, chips may

162 ' A 7 The layout program

overlap.
If a particular macro expands to require chiptypes of varying sizes, there are several solutions:

® Specify positions far enough apart to accomodate the largest chxptype wasting some board
space on the smaller chiptypes.

® Use the BIND statement to group macros into ‘super-chiptypes’ which are then all
identical in size and shape.

® Use multiple PLACE statements to force the layout program to segregate the chiptypes by
size into different areas.

® Take a chance, hoping that none of the chiptypes averlap, and later replace the PLACE
statement with assignment statements if they do. :

7.1.5 The BIND statement . 163

7.1.5 The BIND statement

The BIND statement aids the PLACE statement by pointing out patterns and symmetries that the
automatic layout algorithm might otherwise miss. Ordinarily, the PLACE statement maps terminal
macro calls onto chiptype sections in alphabetlc order by pathname, without attempting to optimize
section assignments or exploit symmetries. The BIND statement, however, allows the designer to
group together in one chip the termmal macro calls whxch logically belong together

A BIND statement applies to every PLACE statement within the scope of the enclosing WITH
statement; even if the BIND actually appears following the PLACE.

The BIND sta;emeht takes the form:

BIND <location> = <list of sectione> # <list of chiptypes>
& <list of instances> '

The <location> names a macro call. If the macro is not a terminal, the layout program will expand it

as usual in alphabetic order by path name.

The <list of sections> includes a section for each terminal macro resulting from the <location>
spedfied Its syntax is identical with that described for the list of sections within the assignment
statement, and may list more sections than necessary.

The <list of chiptypes> is a series of chiptype names separated by commas.

The <list of instances> is a series of names invented by the designer and separated by commas. Each
name must con,sist of one or more letters, digitq, or %' and *~’ charax:ters.

For each terminal macro call in the subtree of <location>, the layout program will read the next
section from <list of sections>, the next chiptype from <list of chiptypes> and the next instance name
from <list of instances>. It maps that call onto the specified section of the specified chiptype, which
will be shared with all other mactro calls having the same instance name.

The following example binds the first and third macro calls within the subtree of RA to sections 0
and 1 of one instance (called ‘M 1’) of chiptype 94550, binds the second and fifth to sections 0 and 1
of another instance {called 'M2") of chiptype 94550, and binds the fourth and sixth calls to sections
A0 and BO of an instance (called ‘W2’) of chiptype 20021:

BIND RA = S8, S8, 81, SA8, S1, sBe
#94558, 94558, 394558, 20821, 94558, 20021 -
&M, M2, M, Wz, M2, W2;

Using varlous shortcuts makes the statement easier to write but harder to read:

BIND RA = S8, S8, S1, SA@, Si, SBP
#94550%3, 20921, 94558, 28821

164 ' 7 The layout program

&My, M2, M1, W2, M2, W2;

Obviously, it’s easy to violate the rules when writing a BIND statement. A particular instance name
must not pair with two different chiptypes; each section name must be valid for the corresponding
chiptype; and the chiptype and instance lists must not be too short {though they may be tco long).

That example suggests that chiptype 20021 may well have additional sections (A1 and B1, perhaps),
not mentioned in this BIND statement. Additional BIND statements can, by referencing common
instance names, access sections within the same chips that this BIND statement uses. Thus, one
would expect to see another BIND statement referencing sections A1 and Bl of instance W2 of
chiptype 20021. Two BIND statements which share instances in this manner must be within the
» scope of one common PLACE statement, but they can be in different WITH contexts beneath it.

If all the BIND statements referencing sections of a pariicular instance of a chiptype fail to use up
all the sections available in that chiptype, the remainder are available for the PLACE statement tu
use in laying out locations not involved in any BIND statement. '

One additional shortcut exists for specifying chiptypes. Omitting the chiptype but including the
repetition factor is equivalent to specifying the default chiptype. Thus, if 94550 is the default
chiptype for each of the macro calls referencing it in the previous example, then a snmpler way to
write the BIND statement would be: :

BIND RA = S@, S@, S1, SA8, S1, SB9
#x3, 20921, x1, 20021
&ML, M2, M1, W2, M2, W2;

BIND statements are not compatible with manual layout, If a particular macro call appears in a
manual layout statement, don’t attempt to bind it. If a particular macro call appears in a BIND
statement, don’t attempt to lay it out manually. The program will flag any such errors.

7.1.6 The CHIP statement ’ A , 165
7.16 - The CHIP statement

Provided a macro is being laid out manually, the CHIP statement can override the default chiptype
for a terminal macro call by specifying a particular chiptype at the board position which that macro

will occupy.

For example, if It}ca:ion X4 is a call on a terminal macro, the following pair of statements places it
five rows and two columns beyond the current context and forces it to use chiptype 20023: '

CHIP 280823 = RS C2; o -
X4 = RS C2;

~ Provided the designer knows which macro calls result from ‘a nonterminal macro, the CHIP
statement can specify chiptypes for them as well. If location X6 is a call on a nonterminal macro
which expands so as to place terminal G7 at the second column from its starting position, then the
following pair of statements forces G7 to use chiptype 19711:

CHIP 19711 = R5 Cé; : - |
X6 = RS C2; ‘

A single CHIP statement can dictate a number of different positions:
CHIP X7 = RS C2, R7 C1, B2 Rl Cl;

The CHIP statement may precede or follow an assignment statement.

166

7 The layout program

187

8 References

1. A manual providing complete information on D, the graphics editor, is kept in a file on the SAIL
 computer system at Stanford University. D is one piece of a package of programs called SUDS
(Stanford University Drawing System), so the manual mcludes information on other programs (such
~ as one for PC board layout, for example) which don’t pertain to SCALD.

Since the manual hé’sn’t been published, you must either sign on to the SAIL computer system to
read it, or have someone with access to SAIL print a copy for you.. The filename -is
SUDS.RPH[UP,DOC]

2. These papers describe the philosophy behind SCALD. Because they deal with SCALD I, an
earlier version, some details may differ from those you've read about here.

McWilliams, T. and Widdoes, L., SCALD: Structured Computer-Aided Logic Design.
Lawrence Livermore Laboratory Report UCRL-80950, March 1978.

————, The SCALD Physical Design Subsystem. Lawrence Livermore Laboramry Report
UCRL-80951, March 1978. :

168

8 References

169

9 Implementation information

9.1 Format of tine WDP file

Each. WDP file- gives the macro expander the equivalent of the information in one drawing
produced by the graphics editor D—loosely speaking, the definition of a single macro. The file is
organized by lines. If column 1 is not blank, the line should contain either the keyword “END” or
the keyword "NUL". “END” signifies the end of a list of elements, and “NUL?” signifies a' null text
string on a line. Blank lines are ignored. The format of the file is as follows:

"MName " The name of the macro being defined; identical with title line 1 in a drawing
generated by the graphics editor D. - '

Selection _ .
equation This is title line 2 in a drawing generated by D..
PageOf | Each drawing bears a page number in the form “Page x of y”; strictly for-
: documentation. The WDP file expresses this as "x/y”
"FileName The name of this.file; strictly for documentation.

Section Project name; strictly for documentation.
For each macro called from this dfawing, include the following: -
‘MName Name of the macro being called.

For each body parameter, include the following pair of lines:

170

Body parameter

Body parameter

value

9 Implementation information

The formal parameter name of a body
parameter, such as “LOC” or “SIZE”. This
corresponds to the name portion of a
property name/text pair in D.

The value of the formal parameter just
named. This corresponds to the text
portion of a property name/text pair in D.

At the end of the list of body parameter names and values, include:

END This terminates the list of body parameters.

For each -sjghal parameter, include the following pair of lines:

PinName

| Signal .

The formal parameter name for a signal;
this corresponds to the “pinname” in D

- The actual signal name for that parameter;

this is the name of the signal connected to’

‘the pin in question,

At the end of the list of pinnames and signal namés. include:

~ END - ‘This terminates the list of pinnames
END This terminates the list of called macros
END : This erminateés the file

An example of a WDP file is:

ADDER 10181
(SIZE < 5)
in
ADDER.DRW
AODERS

18181 :CALL MACRO 10181

A

48

Loc sPASS IT LOC PROPERTY WITH VALUE A

SIZE tPASS [T A SIZE PROPERTY WITH VALUE 4B

&lmenofmeWDPﬁh

END
A .
A<Q:S1ZE-1> /P
B .
B<@:SIZE-1> /P
F o |
F<@:SI1ZE-1> /P
END

END

END

;PASS PARAMETER "A" THE SIGNAL "A<@:SIZE-1> /P"

;PASS

;END OF MACRO CALL
;END OF MACRO DEFINITION
JEND OF FILE

171

172

9 Implementation information’

10 Index

A, evaluation directive, 139.
Abbreviations, in macro expander, 98.
Adaptors, in layout program, 153.

Alt key, 8.

Alter submode, in graphics editor, 27.
AND function, in timing verifier, 130.
AND, logical primitive, 182.

Assert low, in layout program, 158.

Assert low, in macro expander, 90.
Assertion checking, in timing verifier, 146.
Assertions, in timing verifier, 137.
Assignment statement, in layout program, 157.
Automatic layout, 161.

BCROSS file, in timing verifier, 143.
BIND statement, in layout program, 168.
Binding, in macro expandet, 86.

Bit subscripts, in macro expander, 92.
Board coordinate, in layout program, 150.
Body mode, in graphics editor, 17.

Body parameters, in macro expander, 79.

Body templates, creating, in graphics editor, 22.

Body templates, described, 8.

Boolean constants, in macro expander, 98.
Case analysis, 128, '
CHANGE function, in timing verifier, 180.
Change gates, in timing verifier, 132.

CHANGE state, for signals in timing verifier, 129.

CHG function, in timing verifier, 130.
Chip counts, on macro expander listing, 119.
CHIP statement, in layout program, 165.

173

174

Chips file, described, 74.

Chips, defining them for timing verifier, 132.
CHIPS.LAY file, in layout program, 149.
Chiptype, in layout program, 152.

Chiptype, overriding default, 165.
CHPTYP.LAY file, in layout program, 149.
Circuit period, 129.

Class name, in macro expander, 89.

Clear workspace, in graphics editor, 13.

Clock period, 129.

Clock period, in timing verifier, 142.

Clock skew, 129.

Clock skew in timing assertion, 139.

Clock skew, in timing verifier, 142.

Clock timing assertion, 139.

Colonstring, in layout program, 159.

Column coordinate, in layout program, 150.
Combinational functions, in timing verifier, 130.
Comment body, in macro expander, 109.
Comments, in macro expander, 87.

Common pins, in macro expander, 93.
Complementary outputs, in layout program, 158.
Complementary outputs, in macro expander, 90.

Concatenating signal names, in macro expander, 87.

Conditional signal names, in macro expander, 87.
Constant signals, in macro expander, 98.
Qontext, in layout prugramn, 150.

Control key, 7.

CORR text substitution, 140.
Correlations, in timing verifier, 140.
Cursor, in graphics editor, 9.

Cycle tline, 129.

Cycle time, in timing verifier, 142.

D, description of, 4.

D, guided tour, 31.

D. use of, 7. 4
Dangling points, in graphics editor, 15.
DATE statement, in layout program, 154.
Declare list, in macro expander, 94.

Define list, in macro éxpander, a8,
Defining chips for timing verifier, 132.
Del key, 8.

DELAY parameter, in timing verifier, 132.
Drawing library, 8.

Drawings, manipulating in graphics editor, 13.

10 Index

10 -Index

Dynamic scope, in macro expander, 94.

Edit mode, in graphics editor, 22.

END statement, in layout program, 155.
Enlargement, graphics editor, 9.

Error messages, macro expander, 118.

Errors, in timing verifier, 146.

Evaluation directive, in timing verifier, 139.
Expressions, in macro expander, 77.

Extended commands, graphics editor, 11.
FALL state, for signals in timing verifier, 129.

- Files, formats of, 169.

Files, input and output to timing verifier, 142.
Flashing letters, in graphics editor, 11.
Gates, logical primitives, 132.

GCROSS file, in timing verifier, 143.
Global signals, in macro expander, 93.
Graphics editor, description of, 4.

Graphics editor, guided tour, 31.

Graphics editor, use of, 7.

Guided tour, graphics editor, 31.

Guided tour, macro expander, 121.

H, evaluation directive, 140.

H/L list, in layout program, 158.

Hold time checking, in timing verifier, 146.
Hold time checking, primitive for, 132.

1, evaluation directive, 140.

IC terminal file, definition, 73.

IF/THEN construct, in macro expandei', 87.
Inclusive OR function, in timing verifier, 130.
Initializations, in graphics editor, 14.
Inversion of signals, in layout program, 158.
Keyboard, Stanford, 7.

Latch, logical primitive, 132.

Layout program, description of, 4.

Layout program, use of, 149.

LCROSS file, in timing verifier, 143.
Letters, flashing in graphics editor, 11.
Library, graphics editor, 8.

Lines, drawing in graphics editor, 19.
Listing, from timing verifier, 145.

Listing, macro expander, 113.

LOC parameter, in macro expander, 81.
Location labels, in layout program, 149.
Logic simulator, description of, 4.

Logic states, for signals in timing verifier, 129.

175

176 10 Index

Logical design system, 4.

Logical primitive, 73.

Logical primitives, used in timing verifier, 132.
MACEXP file, 112.

MACEXP file, in timing verifier, 142.
MACLST file, 112.

Macro expander, description of, 4.

Macro expander, guided tour, 121.

Macro expander, how to run the program, 112.
Macro expander, listing, 113.

Macro expander, use of, 73.

Macro, descripﬁon, in macro expander, 73.
Macros, graphics editor, 29.

Macros, text, in macro expander, 98.

Menu drawings, in macro expander, 75.
Merge body, in macro expander, 107.

Meta key, 7.

MIN PULSE WIDTH, 182

Minimum pulse width checking, logical primitive, 132. ’ :
MNAME parameter, in macro expander, 79.
Modes, graphics editor, 10. ’
Module-specific signals, in macro expander, 93.
Multiplexer, logical primitive, 133.

Multipiier, in macro expander, 95.

Musx, logical primitive, 133.

Name syntax, in macro expander, 77.
Negation, in macro expander, 88.

NOT body, in macro expander, 108.

NOT function, in timing verifier, 130.
OPTION file, in timing verifier, 142.

OR function, in timing verifier, 130.

OR, logical primitive, 132.

Packager, description of, 4.

Paper, moving in graphics editor, 9.
Parameter list, in macro expander, 94.
Parameter signals, in macro expander, 93.
Parameters, in macro expander, 79.

Path name, in macro expander, 100.

Period, clock, 129.

Period, clock, in timing verifier, 142.

Physical design system, 4.

Pin parameter syntax, in macro expander, 83.
Pin parameters, in macro expander, 79.
Pinname, use in macro expander, 83.

PLACE statement, in layout program, 161.

10 Index

Point mode, in graphics editor, 19.
Position, defined, in layout program, 149.
Position, syntax for, in layout program, 150.

Precedence of operators, in macro expander, 77: -

Precision clock timing assertion, 139.
Precision clock, in timing verifier, 139.
Primitive terminal file, definition, 73.
Primitives, logical, used in timing verifier, 132.
Propagation delay, in timing verifier, 132.
Pulse width checking, in timing verifier, 146.
Reduction, graphics editor, 9.
Register, logical primitive, 132.

RISE state, for signals in timing verifier, 129.
Row coordinate, in layout program, 150.
S-1Mark IIA, 1.

SCALDI 1.

Scope, in macro expander, 93.

Screen, graphics editor, 32.

Section coordinate, in layout program, 150.
Selection equation, in macro expander, 86.
Set mode, in graphics editor, 21.

Setup checking, in timing verifier, 146.
Setup time checking, primitive for, 132.
Shift key, 7.

Sign extension body, in macro expander 108.
Signal class name, in macro expander, 89.
Signal constants, in macro expander, 98.
Signal name syntax, in macro expander, 87.
Signal names, in macro expander, 77.

Signal parameter, in macro expander, 93.
Signal parameters, in macro expander. 79
Signal times expression, in macro expander, 95.
Simple name, in macro expander, 89.

SIZE parameter, in layout program, 152.
SIZE parameter, in macro expander, 79.
SIZE parameter, in path name, 101."

Skew, 129, :

Skew, in clock timing assertion, 139.

Skew, in timing verifier, 142.

Slash body, in macro expander, 108.

Socket, in layout program, 150.

Stable signal timing assertion, 139. .

STABLE state, for signals in timing verifier, 129.

Stanford keyboard, 7.
States, for signals in timing venfler, 129.

177

178 10 Index

Storage requirments, timing verifier, 147.
Synonyms, in macro expander, 102.

TERM file, 112.

Terminal file, 112.

Terminal file, how to construct, 110.

Terminal file, in macro expander, 73.

Terminal, description, in ‘macro expander, 73.

" Terminals, on macro expander listing, 114.

Text substitution macros, in macro expander, 98.
Text, editing in graphics editor, 27.
Text/property submode of body mode, in graphics editor, 17.
TIMES body parameter, in layout program, 152.
TIMES body parameter, in macro expander, 80.
TIMES expression, in layout program, 160.
TIMES parameter, in path name, 101.

Times signal expression, in macro expander, 95.
TIMES variable, in macro expander, 80.
Timing assertion, in macro expander, S0.
Timing assertions, in timing verifier, 137.
Timing evaluation directive, in macro expander, 93.
Timing verifier, description of, 4. '
Timing verifier, how to use, 127.

Timing verifier, input and output files, 142.
Timing verifier, theory of operation, 128.
TIMLST file, in timing verifier, 142.

Top key, 7.

Undefined macros, on listing, 113.

Universe drawing, in macro expander, 75.
UNKNOWN state, for signals in timing verifier, 129.
Unnamed signals, in macro expander, 102.
Values, for signals in timing verifier, 129.

VAR body parameter, in timing verifier, 132.
VAR parameter, in macro expander, 81.
Version, in macro expander, 97.

Versions, in layout program, 158.

W, evaluation directive, 139.

WDP file, format of, 169.

WDPR program, 112.

Wire delay estimate, in timing verifier, 137,
Wire delay, in macro expander, 93.

Wire delay, in timing verifier, 142.

Wire OR body, in macro expander, 108.

WIRES file, in timing verifier, 142.

WITH statement, in layout program, 155.

X commands, graphics editor, 11.

10 Index

X FIRST variable, in macro expander, 79.

X FIRST variable, scope of, 99.

X STEP variable, in macro expander, 79.
X STEP variable, scope of, 99.

X variable, in macro expander, 80.

XOR function, in timing verifier, 130.
XOR, logical primitive, 132.

Z, evaluation directive, 139.

¥

179

U.5.GP0:1980-689~102/8782

Technical information Department
LAWRENCE LIVERMORE LABORATORY
University of California | Livermore, California | 94550

