
:

Volume II: Hardware

-----==

1979 Annual Report

The S-1 Project
Prepared for

The Naval Systems Division, Office of Naval Research;

The Command and Control Division, Naval Electronics Systems Command; and

The Command, Control, Communication, and Intelligence Program Office,

Naval Material Command. Work in part performed under the auspices of

the U.S. Department of Energy under Contract No. W-7405-ENG-48.

This is an informal report intended primarily for internal or Umited external distribution. The opinions and con·

elusions stated are those of the author and may or may not be those of the laboratory.

~
lAWRENCE UVERMORE lABORATORY

UCID-18619

r 1 , .. • 1..

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

This report was prepared as an account of work spo nsored by the United States Government. Neither the
United States nor the United States Department of Energy, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any
Jegalliability or responsibility for the accuracy, com pletc:ness or usefu I ness of any information, apparatus,
product or process disclosed, or represents that its use would not infringe: privately owned rights.

Reference to a company or product name does not impl y a ppro val or recommendation of the product by
the University of California or the U.S . Department of Energy to the exclusion uf uthc:rs that may be
suitable.

Printed in the United Sta tes of America
A vai lable from

National T echn ica l Info rmat io n Service

U.S. Depanment o f Commerce

~)
5285 Port Royal Roa d
Springfield. VA 22161

Price: Printed Copy S :Micro fich e S3 .50

Uomesbc Onmestic
Page Range Price Page Ra!!Se Price

001-025 $ 5.00 326-250 $18.00
026-050 6.00 351-375 19.00
051-075 7.00 376-400 20.00
076-100 8.00 401-425 21.00
101 - 125 9 .00 426-450 22 .00
126-150 10.00 451-475 23.00
151-175 11.00 476-500 24 .00
176-200 12.00 501-525 25 .00
201-225 13.00 526-550 26.00
226-250 14.00 551 -575 27.00
251-275 15.00 576-600 28 .00
276-300 16.00 601-up

I

301 -325 17.00

I
Add 2.00 for each additional 25 pqt incrtment from 601 pqts up.

,,

•

Volume II: Hardware

---------==

1979 Annual Report
The S-1 Project

Prepared for
The Naval Systems Division, Office of Naval Research

The Command and Control Division,
Naval Electronics Systems Command

The Command, Control, Communication, and Intelligence
Program Office, Naval Material Command

11
LAWRENCE LIVERMORE LABORATORY

------- ~------

DISTniBUTION OF THIS DOCUMENT IS UH.biMIT~

1

I
j

Thanks to Christine Chinaz,zi, Lots Jones, L. R. Mendonca,
Roland Portman, Joe Simpson, and Cinch·a. WheeJ~r for help
in various cutting, pasting, cqpying, proofing, ;utd purchasing
chores required to produce this book.

)

CONTENTS

Highlights of the Design of
the Mark IIA Uniprocessor

(SMI-2)
William R. Bryson, P. Michael Farmwald,

Thomas M. McWilliams, and Jeffrey B. Rubin

SCALD II User's Manual
(SCALD-2)

Thomas M. McWilliams, Jeffrey-B. Rubin,
L. Curtis- Widdoes, and Steven Correll

1 . . I

2

L

1

Highlights of the Design of
the Mark IIA· Uniprocessor

(SMI-2)
. .

William R. Bryson, P. Michael Farmwald,
Thomas M. McWilliams, and Jeffrey B. Rubin

·.. . I

Table ·of Contents ·

. 1 Introduction

2 !BOX drawings 3

I' 2.1 !BOX 3

2.2 IADRA 7
2.3 !MAP 9
2:4 MAP 12

:2.5 IC 16
2.6 IX REG 20
2.'7 DADRA 27
2.8 DMAP. ~5

2.9 OPABX 41
2.10 ABWRS 43
2.11 DCRF 45
2.12 DC 48
2.13 US REG 56
2.14 OPQ. 59
2.15 PSEQ. 66
2.16 ISEQ.C 74
2.1 '7 PI- '78
2.18 CONST 81
2.19 AWAR 85
2.20. PIPEC 105
2.21 VREG 109

! ABOX drawings 113

3.1 ABOX liS
3.2 A SEQ. 116
3.3 BR COND SEL 120
S.4 REPEAT CONTROL 122
3.5 4K RAM ARRAY 125
3.6 4K USTORE 127
3.7 1K USTORE 129
S.8 USTORE CONTROL 131
3.9 AM SEQ. 1!3

·s.1o MPY RAM ARRAY 135
S.ll AASEQ. . . . 137
3.12 ADD RAM ARRAY 1S9
S.lS A:BUS DF.FINITION 141
3.14 OPERAND SWAP HUFFER 143
S.lS TRANSLATOR A (and B) 145

ii Table of Contents

3.16 TRANSLATOR 148
3.17 RESULT WRAP AROUND Q.UEUE. 1!:.0
9.18 WRAP AU.R GEN 152
3.19 WRAP MUX CTL 154
3.20 PARITY CHECKER 156
3.21 ROTATE 158
3.22 EXP AND OP MUX 160
3.23 TRANS LA TOR TAG GENERA TOR 164
3.24 MOBY MUX, MOBY MUX A (and B) 171
3.25 REG FIFO 175
3.26 MOBY MUX ADR GEN 178

1 Introduction
These drawings and the accompanying text provide a preliminary look at a sampling of the
hardware in the S-1 .Mark IIA uniprocessor; the 1980 annual report will provide a complete set,
corresponding to the system as built and debugged. The drawings, created with the D graphics
editor, are used ·as input to the SCALD computer-aided design system, and they use the notation
described in the SCALD II User's Manual elsewhere in this annual report.

Extensive use of pipe lined parallelism contributes greatly to the high performance of the Mark IIA
processor. Unlike most modern computers, which have used pipelining primarily in the execution of
ins.tructions (that is, the streaming of vectors of operands through pipelined arithmetic or logical
operation functional units), the Mark· IIA pipelines the fetching of instructions and the preparation
of operands as welt, and it applies pipelining to the processing of every instruction, whether scalar
or vector.

Some stages of the pipeline, particularly those dealing with operand address arithmetic and
instruction execution, necessarily have a wide variety of functions, since the pipeline must process a
wide ·range of instructions. This variability in operation is effected through the unusually extensive
use of microcode.

The processor consists of five microengines (extremely fast, relatively special-purpose programmable
controllers) operating in parallel to provide high performance (Figure 1-l). Four of the
microengines form the instruction pipeline, which consists of the instruction-fetch,
instruction-decode, operand-preparation, and arithmetic segment~. (Some of the segments are
themselves internally plpP.lined, a level of detail not shown in the figure.) A single microengine
handles memory traffic in parallel with the operation of the instruction pipeline. A one-processor
system can be configured by connecting an S-1 Mark IIA uniprocessor directly to a memory
controller; this requires neither hardware nor microcode changes.

The designs of the S-1 Mark I and Mark IIA uniprocessor pipelines constituted signi~icant

advances in computer. [echnotogy. The Mark I introduced a new, simple branc;;h prediction strategy
to forecast the outcome of each test-and-branch operation in an instruction stream before its

2 1 Introduction

execution, thereby allowing subsequent instructions to be prepared without disruption or time loss
when the forecasts are correct The Mark I also refined the use of dual cache memories (one for
instructions, one for data) to increase total cache bandwidth. The Mark IIA allows advance
computation of simple operations in early pipeline stages; this technique minimizes idling of pipeline
stages when a computation (particularly, an operand-address computation) depends on some as-yet
unavailable result The Mark IIA includes refined control mechanisms to coordinate the operation
of multiple pipeline stages controlled by the independent programmable microengines.

The S-1 Mark IIA also employs vector operations to achieve high arithmetic performance. Certain
vector operations encountered frequently in signal processing use multiple functional units in the
pipelined arithmetic module, achieving a peak computation rate on the S-1 Mark IIA Uniprocessor
of 400 million floating-point operations per second and using the maximum cache bandwidth,
which is unavailable in scalar mode.

The drawings are logically divided into two groups: the /BOX; which pP.rforms instruction fetching,
instrucllun decoding, and operand preparation; and the ABOX, which performs arithmetic
processing.

To/from
Diagnostics internal To/from memory
rna i ntenance ... d i aQnost i c I or crossbar_
processor logac

Instruction
cache

lnstruction~fetch

Memory-interface
unit

lM-eequencer)

Writable control
etot'tl

Instruction
unit r--+ decode

(F-Sequencer) RAM

1
Four copies of
user registers .. Data cache

Operand · - ... pre~aration unit
(-Sequencer) .. -·- (P-SequEU"lter J

Writable controi
store Writable c;ontrol

store

Figure 1-1

r-

Internal structure of the S-1 Mark IIA processor

1/U
processor

e .. 7

I
I JO data

store 0 •• 7

Pipe I ined ·
arithmetic

unit
(A-Se'l• JP.nt:'filr)

Writable
control
store

.........

2 IBOX drawings

2.1 IBOX

Drawings: ITOPl, ITOP2, IBOXC

These drawings show the top level organization of the Mark IIA uniprocessor. They indicate the
interconnections among the major submodules such as the instruction and data caches and maps,
index register files, instruction and data address calculation units, and the operand data paths.
They also show the major control units in the ffiOX: the microcoded sequencers, pipeline control
units, and the write queue control. FinaUy, they present the symbolic· field definitions that are used
throughout' the remainder of the IBOX. These are in the form of text macro definitions, making it
relatively easy to modify or add new fields.

l£tllllll
0<11"11 ~ FE'TOt

llECIX)O;

1£11 "!)

lC

IT DBli'IJCTI""
~~:mESS D<Sl!U:T:OII Ilm111.CTIOII I'l!mU:TIOII

MIH£TOC - FI'IIN ""'IN<i!:ll> At If CliO£ o..El..E

LA Uf!l n+·'5iJ.J3). "'" Il1 ~
lC. .. u;. .. ~....,.. ro

c IJIII:If 1>1 Fl'ltll rc IC

L

._..,D 15

'

-
0<1TA~

~

I>Ul<&GI~ Mrn.£TIC DAnl ""Tq IF'qTH
lM) ..,

F:o.£ Pm
nax. Pmc'$1) At roax P'nl - 1.11015 1---0<1

rf.---1~ I<EG<SW> At <II D I4<SU> At D1 BIDIS<SW> DP
-I roax I<EG 1.010 o.IIO POID "''D AEG W DAnl f-
! ""' o.IIE>«<D l+'gw, At pq IE'D D I5< S.. ,...-- !lEG W 0<11"11 IJII E>O D ._.. EICl D pq E>«< D pq EHl D

I<EI> W 0<11''1 t10<EI.EN:OOD ~

I tCTI.

I

IBOX TO? LElJEL

CDKHT

m. II!>< I'IEI.DS

DEFI>£

O'CalE • 0: 11

<II. 8:11
oo.>< • e

oo.ta:E:- 1as
a>.tt00£.0.3 • I ••·

OO.tt00£.4 • 5
OO.F. 6:11
oo.r:.e .. 6

(I).F'.t.e:. ?til
001 • 12u~l
002 • a413S

001.>(. 12
001. ttOO£• I 3: 17
OOI.tt00£.4 • 17
OOI.F. 16:23
COI.F.0 • 18
OOI.F,-4 • 22
001,F'".S • 2l

CX:)I.F. I.S • Jc;:a:J

ooa.x • 24
0()2 • ttOO£ • i!SI i!'O
0()2.110(£ .•• 2'0

002.F • 30:35
~.F.0 • 31
ClOC,F. 4 • 34
002.F.S • .35

OOC.F. I.S • Jl :]5,

EXT.T.:::.G • 0s4
EXT. T~.J.4 • 3:<4

EXT. TRG.4 • 4·
EXT.R£G • Sa9

EXT .L-=t.LO .. SI.:Ji
EXT.SO • 10:31;

~
GEI£RA... FJELD CO"lHlTlCI-.fS

!EF"It£

QI.FI .. 0:9
t4P- 0:tq
sw • 0•39
DF' • 0:7'it

C~<. e,a
l-to4 .. 0:17
sw· --e,JS
Q.l. 0t71

~-0

000 • I

P•0
G • I

• corr£>(T

EIUAI IO< ta:E F IEL09

IEF"I>£

1EN.OP • 0:8
TEN. AC • 9: 1~

TEI't. I • ll
TEN.XR .. 14:17
'191.1 • 19•35

TEI<.1.~G • 32:35

c:o:t'E><T

~SSOII STAn.JS FIELDS

IEF"It£

REGIST£1!.1'11.£ ~ 0:3
AUORtTl' • 416

ElU.ATIO< • 7:8
RINS.~ • 9:10

uiR1\R... tKHII£ .11CDE • 11
FLOW. TIB..E - 12113
Fl.OW.EloRLE • 1"'

J:l.CI.I.~.EN=B..E- 16
TRACE.~ • 16

TRACE.F'E>tliNG • 17
CA.L. TRACE.~ • 18
CA..L.~.PDCING • 19

....-o.I1Cll£. ~

corr£>(T

T tHING '-£RtF lER \A..l£S

IEF"II£

toRR • 9

((1(R4 - 4

CASE0 • 0
CAS£0... - 0 l..

CAS£1 .. 1
CASEIL. • 1 L

. IBOX TOP LEIJEL

~

ACCI:~9 I'IX:IrS I=NJ JUt·~ B'\!AO<ETS

DEFt>£

•·lUTE'. PERJ1tT • 0
DEWT£.~IT • I
~J¥l.PE""IT • 2

IO.PAC£ • 3
..a- 0:1
EB • 2•J
REI • -4:5

corr£>(T

'SP£t.1F't£S ...-En£R TO ~ F'OR
Tl.I1P«i \..ERlFlE'R ~ LRl'ClJT ~

IEF"ll£

Tt~- 1

!"' -t:d
0
><

Ut

P-!IE'Ill.EICER

!-9EU.E>CZR

I !lEO

. :-!lEO
. CIWmJL

:!lEQC

IBO>< CONTROL

PI OO>miiL SI<Hl.9 J
PII'EUI£

PI

2.2 IADRA 7

2.2 IADRA

Drawing: IADRA 1

The instruction address arithmetic (IADRA) presents the logic that computes the (word) address for
the next instruction fetch. VA IN<5:33> is the primary output of this unit; it is the address of the
next word to fetch from the instruction cache. VA IN is often referred to as the PC (program
counter). The IADRA is controlled primarily by the F-Sequencer, which executes one
microinstruction for each word fetched from the instruction cache.. The IADRA is capable of
computing the 'new PC in several ways. The simplest way is to fetch the sequentially next location
(PC+ 1). Next, all skip instructions that are predicted to skip are computed by taking the current PC
and adding the appropriate skip offset. Finally, jump instructions fall into several classes. Some of
these are calculated by the IADRA and some are computed by the !-Sequencer and "force-fed" to
the IADRA. The IADRA can calculate PR-type jumps, extended PC-relative jumps, and jumps to
absolute addresses.

One final source for the new PC is the PC queue plus some offset The PC queue maintains a.
history of the last 256 PCs. Every time the PC of a new instruction is calculated, it is added to the
end of the PC queue. Whenever the ABOX finishes the execution of an instruction, it signals the
IADRA to remove from the PC queue the entry corresponding to that instruction. Thus the PC
queue co.ntains the address of the first word of each instruction that has been started down the
pipeline but has not completed. When the ABOX detects ·certain exception conditions, it is
necessary to reset.the PC to one of the old values in the queue, or, in the case of a branch that was
predicted incorrectly, to set the PC to the correct value. ·

The PC queue is also used (in the absence of exception conditions) to read out the ."current" value
of the PC for later stages of the pipeline.

FC:..:_.;::o..£\£="'-'~=9:.:'-'7>-'--'A1"'---__,f--i I'll' FC (l.E1£ Ti---1-----------'P-"G'-'Q..£\£= <9:.2IEI>

"'F'Elt);"""'"'-'EXT=_,IICRI,"--"F'Ii"----------------------'J' A-S.C a ':;!_C
AC

~~~~~~-~P5~-~~~L~&Z~----------------------~-----~ 

~ l'l <En~ LCAlED ._, 
PC. FC•1, FC•OFFS£l, ~ IC 

~r C.l'Q.E 

'lo 1 FC•1 li£0.£>11'l<L ~WTIO< 
A-& PC•SH:Wf CFF9ET SKIP A'-D ~ tR=N:H 
~.e FC•LCHO QF':'SE'T fXT'Eia1) 9«KH 
e LCJ.~G .:aJRE ~ EXTEN:ED ~ 
~ PC XCT 
~oil Q.D PI;- <F1'SET ~ -.cH 

i!<IB 
VIS I<EG 

0(£ 

19141 T 
~1 

CJ( O<E 

INSTRUCTION ADDRESS ARITHMETIC 

:TO DC:£X REUI"'EE! F"Il£ 

PC Q.E\.E'rec~ RE~ Tt-E PC 
~T Ao •• Uua.E TO T>£ liD< 

F'~It.I)E)(ttol1 

co 



2.3 IMAP 9 

2.5 IMAP 

Drawings: IMAPI, IMU 

The instruction map unit consists of a 4-way set-associative cache of 1024 mapping entries. This 
cache has an address and a data part in series. The low 16 incoming virtual address bits address 
both the address and. data parts in parallel (after passing through a simple ha.Shing function) 
.thereby selecting four candidate mapping entries. The address· part decides which of the four, ·if 
any, contains the mapping information for the given virtual address. The correct entry is then 
selected and used to create .the physical (word) address (PA <2:33> ). The address part also indicates 
when there are no locations in the cache matching the virtual address (map cache miss). The 
selected entry contains additional information about the physical page being addressed, namely: the 
access modes, segment size of the containing segment, and the ring brackets, which indicate how 
much privilege any accessor must have. 

The address part of the cache, in addition to comparing the input virtual address to the stored ones, 
compares the current address space ID against the stored ones. The address space ID is an 11 bit 
number associated with each ring. 

The instruction map is accessed once per cycle during the F 1 pipeline cycle. If there is an 
instruction map cache miss, then the address being translated is not allowed to proceed down the 

. pipe. Instead the M-Sequencer is requested to go to memory '(or cache) to compute the mapping 
information and to 'toad it into the map cache. Once the correct information is loaded the cycle is 
allowed to repeat and is guaraJJteed not tomiss on this second try. 



-0 

~ 
!I 

gi'
~ 

~ 
;;: 

j 
:z 

~ 
.., 

;. 
M~
~ 

" 
"I

ll 
~ 

,.. 
... 

I:
 

;!
~ 

~ 
! 

'!1
•-

:;:
 .... 

iii 
~;
id
 

~ 
i 

~ 
i "' 

M
 

~ 
;z

 

'll 
i l? 

,.. 
H

 

H
 z (j
) 

-
i 

,..
 J

t:
l:

 
.. 

!i 
~ 

/0
 

c 
B

 
!i 

I 
("

) 
i 

i 
-
i 

!l' 
"' 

H
 

~ 
~ 

M
 

L-
<:

 I>S
l 

c 
!i'

!2
:;l

iii
 

..
('

 
2 

-
~
 

~
 

... 

3 
i 
t~
 

1! 
... 

~
~
 

0 z 
!i 

.. 
::::r

 
r-

:z
;z

: 
.., 

j 
~ 

~ 
B

 
"' 

D
 

L
l 

~~
u 

~ .. 
~ 

j~
 ..

 
:zz

:z 
~
n
t
~
 

~
~
~
 

!« 

~ 
.. I~ 

!i 
g 

.. 
~ 

:z 
j 

~ 
;:)

 
:z 

M
 

~ 
J 

z 

~ 
.?:!

 
.?:!

 
.?:!

 
i 

'l1 
&

 
~ 

i 
!I'

 

"' 
:Q

. 
,~

 
':1

 
~ 

~ 
:. 

:;:
 

~
 

'b·
 

ci>
H .....
. 

~;
;;
, 

~~~
~~

--
liNn d~W NOI1Jn~1SNI

/::-IV ,.,~:5,1.::1)."lJ t:n '000

....
~

\3JJI,.t"CJ3dc:HH'lJS0J.t:I.I.S ~

-, 3>0 d::Wl o3S~w

;; :> ZH'V, S"£•9d' I~ >0• '""113St1:>' , et-ss· 3"T.l.l~ .-.1l<3< >n~ 10101
a. <£10,, 31 HI ct:1.1 03S·W

e>b
2V , C'-0d" ·~)0

~
!l"*<l 61HJ. NO ~ .US 3LON 301~,0

1"1L<
'I

...... (1•16:9l.tl.::t t:l'
1Cf1

:trtl ,\
IV (~!£1Jl.::ttt"' 3!lll1S3! 3t01S3!1 o>s·t< dl U.O~'C'Jtld

lid•tll. lJI
2 (S)IV <>i!''<'>dO.I'*' IV c.£LISJL.:I)."'l) tl'\ I W' ((=0•1.:t J."IJ H:l;l Q1 cte·~~ 03$·~ lr.'

c[['=51C'.:I1:f0 1 <~:•e~!Qiai 61,
lSI\ , r:Y «:['15-ttn dl

1

y
W!--ee t1L. 1Pl8L

Cl c.1'8~ts w (££:5>1.:1 t:l'
30 93!1

H

~~ 3'016 Sll' lt1 tl W!l 8Er
1

<a:•0>tUto0 M -03S'i< w <r~e,u~m H d' \S:e,>iS E ;
dl c.P:0,3ZIS i!'~l (J<

dl <£18,..,
L..,\-J 3"1'1CXlL< tlltoO

sa~
8

aon-'

v i!'t/ U•SJC'.:t 121"'
¢>10J3ll6 dt' «'SCJb:l W ..rr:2,L:f J.~ tl"

~-~-
([E'I~Jtld

I 4.5:e,>RB
'l£':eJI.I:"

-"" G'ISJtl'\
di8194US

~

·W
.UH D!IO; 03S·L<

,., .. W!l

113 d.() o--dO --3:li:IO; 13:1
, <£•0>, HI !01 -llll3 1b<1 llll3d!Ot d.()D!II); r ld

~
IV t9~ '5>l.:l t:n

33W.. .LJ.I~
ti·C'•e· tliV . .UH 1:1< d

IIG"'3 ta\3

r:;:-
\[t8,, ~ J.lH

Tnn<!OI
11<'

.MltO-, S·?S· 01 Nl 01 3:lbOS !01 11 •1 ,...
IV o0t •0>(11 ZHt, --5110

61 '"--- . s~ lt1 II'

~:
i!'d

~
. 33!11. ~~

tG'I3
11'41 01 dS!OIIlll3-llll3 Ed

01 Btl
ll.o Hl>O:itO'~llllS If--J.

<
'---1 JJ.l~ l:t#lfi!H

IIi! I ~1'91
H .sc•Si!'>St a""

~ IIi! I

-

12 2 IBOX dr:awings

2.4 MAP

Drawings: MADR, MDA TA, MAPCMP

Tliese drawings indicate the construction of the map cache address and data modules. The address
module consists of four 256 entry RAMs, which store the high order virtual address bits and the
address space ID for the virtual address whose mapping information is stored in that location of the
map cache. The addressed location is read out and compared against the current virtual address
and address space ID to produce the unary "hit lines". These hit lines indicate which of the four
elements matched against the virtual address, if any.

The comparator used for this matching is specially constructed to hnP a "force compare" and a
'"force no compare" input. These are used to implement "unmapped mode". and to enable the data
part's chip ~P.1Pct lines for the purpose of writing.

The data part of the map cache consists of four modules of 256 entries by 38 hit11. The modules are
all in parallet and only one is selected at a time for reading or writing.

Of)

-

~~ -<'') In
cV f)(I, J.lH Cll01

3Qd.O
')

-!£.!
tl

3lnoow ~o~ 3HJ~J d~W

d',H360

6' diD 3JIOD.i

.V 41101(11 IcY 'llfeJtt

11113 0S d' « ... ,*3d~ ~!addiiUS
!ll- ~

).V «<!'0>101-B>l

1

(V <L:e,, Uli
rv 4::en t2i3 d ~

<[:0>31
":e~ .._

d
<8l'1Mll
60~
,Ia 60

t.lP0Jtll

..,., Qf0*1:t "*Rf

~I
rY \)C)~

I
6' C.:.l8*~

sa
"' "'
1!10

~
'C/ dli0Jt:f d'dld' <8L .. JCJ1 Hl<a::BI

~ !'992
.. ~

:&1
25I!W RAE'£ ._. ...

3BB
r--- 1111

T •
-;=fV

T•fh.l" IP

II J.E 119 y
' a,£C8'1 AJ ;

'
99 L< • .IP

I .JBEI
i!S6II ~

~
~1H

111'
T-

~

II 1£ BS 89 LC~3)

I
r.ce:.~

., Ao"CJt""
loE'ces ~

t£t1\ ttP
Tt81.]7)o AI

B8 L"1._ ,P

Jill
~~
1911l711f - 112

T

" J.E BS

•t.Ec~ ;p I
BS LC~ ."P

3BB
i!S6II RRft:

~ce..]7) p tS>II?IH

t\3 ·-
l

~ 1£ !r.

l
..

...., 11<8:7> A'

~t~ .JP l
MRP CACHE DRTR MODULE

2.4 MAP

·f'tteaP AJ

· lltBi5> A'

~6111~ IP

9t6:11) A>

At 1~11" A'

9f 12: 1.,., AI

At1Baa2' A'

lit IB:i!i!> A'

Of' A'

OELA'

MRP CMPOE
SIZE =

Cl L.

tz L f"; e
C4 L (e'
a;~.- re·

10113
23

~

~~f22:)

9<0:22>
Ot'
0£L

(A)

CEI"t>E

>C ~- i!Z£

. -15

(A'

16 2 IBOX drawings

2.5 IC

Drawings: ICl, ICM ICAM

The instruction cache consists of a 16K word data part which is organized as a four-way set
associative cache with 16 word lines. The address part of the instruction cache, therefore, consists of
four RAMs of 256 entries each. Each RAM holds the address information for an element. Each
entry in the address part contains the high order physical address bits corresponding to the line
stored in the same element of the data part at the same address. The address. part also stores an
INVALID bit, indicating that there is not a valid line in the corresponding place in the data part.

The instruction cache is addressed during the F2 and F3 pipeline stages. During the_ F~ .~t.ag~ the
address part is supplied by the physical address that came from the instruction map. The tow 4
address bits of the physical word address are used to indicate which word within the 16 word line is
being addressed, and so are not used to supply the address part. The next higher order 8 bits locate
in the address part the four candidate entries. Each candidate RAM output is compared against the
remaining high· order physical address bits and the INVALID bit is checked. The output of the
address part is a set of unary "hit tines" indicating which element, if any, matched the incoming
physical address. ·

The hit lines are clocked into pipeline registers at the beginning of the F3 stage and are used to
select the correct element of the data part. In this case, however, the tow four address bits directly
address the RAMs to select the one word out of the 16 word line.

The instruction cache is referenced once per cycle, giving an effective instruction cache bandwidth
of 20 million instruction words per second.

When none of the hit lines are set, an instruction cache miss occurs. This causes the M-Sequencer
to fetch the ·requested word from main rnemory or secondary cache and toad it into the instruction
cache. The pipeline is held up at the beginning of the F3 stage until the cache is loaded with the
correct memory data. The pipeline is then allowed to proceed with the data p~ reference.

I'll IN<.i!o.:& A>

-· lll11~AEG

. I~ I Till "'' IN Fl!<.i!::JS>

USI 1111 "'' I" F"3< .i!o:JS>

lf-11EQ -613'0> I rn
.,.~~ ~

,..,...'S£0 9El. t
It!£.!

0< ~IDE

CKF<!.Pe·.i!L&Z

~

tee~

"''1>1<2o35>

-IllS 'lOG

- 1£)(1" F Cl'ti.E • 95-10 L ~~l~W~~ It
II<Sm.ocrlCOI
CAD£ IGl'.I.E

lC
Tl ~~A< SIP> '"[0.0:0.?1 lx ~~~ rl tc<_. ,..

... S£0 I~ OE L \RI

A WE C.9
0< OC£

... lN Fl!<i!i!J.JJ> I r ,._9E'Q IC. toE L•0:3t
0< r4 .Pe-2 L &Z

/i lUI >£l(T ~ C.l"Cl£ • 96· 10 L

"''iN Fl!<.i!:.i!l> >I

PIA IN F2<1 22a~

PA ltol ~2c 2:a,2f~ "

leA >IITio I >liT <P L<0o3> ..t1

101 P El'Rio ""' ~ lC 101 L<0o3>

'-~"oD t II -~Tie F~ I I
TO DO ~INA.m

~A . IN9'Tiil.CT!COI tAO£

-tUllE '-:---~<P

... 11£0 ~Oil(]; >tiT I~CR:E ~

WE

11-!EO IC t.E' L<8r.])

0< F.! ."5.6·>.1 L &liZ

INSTRUCTION CACHE

~
t1'

n

-.....,

--~
l<!IW> A' ·-111!

r •
IIlii£

T(~ 1P

OR
II 1£ C.9 0101

~ IRI<I!> ,., I T cs Rl=tl v• A1

L ~ li£-e:.J> At -0C f'3 .P1.!-6.6 L &HZ M - Rllt'E

L::)
194.,.

f-- 111

r<
"' 1£ C!

I.E RAPtr 1) A1 I ,. .
•

IllS~·
a ~L."I~....,

aE' L.tel;s. A' 0<£
T~ -.,.I 101~1

'""'
O< ocr ---1947'1!

~ 11.!
T -'"

A I£C9 Ac'l21D

r.---- 1£-i!> AI 'J <XL
CS Lt81))

CS t;..tet_,.. AI • l<!IW>

.:73 -'"'
.a:' REG'

G9 Rf:l1 L(~ A1 loE l.."81~
OCii

C.S RRrl Lt'GI> ""

~
1 18141 - "' T<-

<:
~ ..

(J(OCii -oy - Rllt'E
OllA ~.! .~-7 L 1947'1!

(...___ r

I
113

'
A I£C$

1£ IRI<l> AI lj
:c.s.~Lt,l),..,

Iolii laJ
VIS Aro VIS ~lEG

t:l<ai!tD A' Ul141 0<£
1 \RJ T 1 18141 T

oi!
IMI .. •16

0(Cl<" O<E"

CIC FZ 6 L &Z I (J(F3 .-.! i. &Z ' ..
- t£><r F' Cn£ .!IS-:'0

1019511
11-sta t(to:u.E O<E , Gi! INSTRUCTION CACHE MODJLE

~
251!641Rf'E
!1EI"'mH

Dt.II.,JD IP 1 ltl'~,a1l A! I • .IP

"" T

<I .., liS

J J v l>fili!ri!'OO A' .. _,.

--e:i!t>At

--AtC!ti!'h .,.
FtlRtE '"' I>IA.ID
lo£~61))

COl P E1R L(8tJi
HIT L"8a.])

i!2B
Fqttrt

1 9'nlli'I'E1V0£0<al
se

T IR1 ~erar- A1

ERR!'-'
101 P ERA L"» ;9

e 1 At2•21' .IP

FORIE CW A'

lEnt£

)('9T£P - 1

INSTRUCTION CACHE ADR MODULE

, ..

~
uo

n

1
l

I .

I(> A'

I

-CD

20 2 IBOX drawings

2.6 IXREG

Drawings:IXREGl, IXREG2, PIRF, IXRAM, IXRVPR, IRVVP

These pages contain copies of the user register files used for indexing in data address calculations.
Some important address calculations require adding two different index registers; hence, there are
two copies of the index register file available to be read out in parattel. One of these outputs is
optionatty shifted left· by two bits to provide a word rather than byte offset. The two outputs are
added in a fast 36 bit adder and the result is sent to the data address arithmetic.

There are two copies of the control logic that select the address for the index registers so that two
different addresses may be generated. The a(idresses may be selected from the OD field, Lhe
extended word, the PDP-10 AC or XR field$, or from micrnmrlP .

Within each copy of the index register file it is possible to select one of five outputs. The first two
outputs are Just the index register file anc;l the index regtstP.r file shifted left by two places. The
third output is the current PC. This output is selected whenever the microcode indicates that an
index register read operation should select the PC instead of register 3 and register 3 is selected by
the index register address multiplexor. The fourth possible output comes from a separate register
file which stores •predicted values". Unlike the index register files which have 16 sets, the value
predict file has exactly one set This file contains predicted values for the corresponding index
registers in the current register file. As not all index registers have a predicted value, there is
another parattel RAM, catted the "valid value predict" RAM, which stores one bit for each register
indicating that the value predicted version has the correct value. When an index register is read
out, the value is taken from the value predict RAM if the valid· value predict bit is set for that
rt!g1ster. The fifth output is just a shifted version of the value predict output.

The index register file is Implemented as an even/odd pair of RAMs, each of which Is 2$ by four
quarter words long. Therefore, a total of 8 quarter words may be written into the index register file
in one write cycle. This means that an entire double word result may be written to the index.
register file. There are 8 write enable tines corresponding to these quarter words. During a read
cycle, all four quarter words from one or the other of the ·RAMs will be read out. It is possible both
to read and to write the index register file every cycle. Reading ~appens during the first half of the
cycle and writing durini the second half.

The value predict RAM is implemented as a single file of 32 singlewords. The timing of read
operations and write operations is the same as for the index register file.

The valid value predict RAM is similar to the value predict RAM except that it must read out
faster in order tO select between the index register file and the value predict file. It is implemented
with ECL lOOK RAMs which also ease the addresSing requirements (they have separate read and
write addresses, as well as output latches).

~~

ltE\81".:(11) ... ;P
t REG

1
I IA.ID PI<ED

I'ElOD6 PC: I3 • 90!-11< G> At
~£<~liNG I'C ""' ~ DCE>C OE'G AR 1.2<8 4o~
RA

PI<EDIC.TED I>IEll
REGI~ FIL£

DC:EI(REG AA 13 a g4. UJ!t8 418t
~RA - ~

~oqo T

1WR REG ~ I tel • 92·11<EIBioCilD. 4o7>
""REG

2EI!O

10111lU li1RO 1£ 1£ REG
ra OCR 9EL Il • 2-11< e> (i:J PR[I)

oO!

- I PRED

- 1m; ~

t IA.to AlEll

R[IIJM; PC: tl • Si!-11< 1, At
~£<~liNG PC ERR 1---;

t>a>: REG AR 12< 1 4oB>
RA

~ICTED I>IEll
REGIS"!Ell FIL£

I>0E>: REG AR Il .9'1·18i1 ••~
~RA -~ PR[I) T

~
~ R£G

Ito lCII SEI. U • 92·9< I>
li1RO

oO! 2EI!O ,... lo£ IE REG
PliED

II >C'i SEI. Il • Si!-'8<2'
4;::>)

ti!

~q !IE_I!_CL~~--6 Lf013 E\Bb«:D

INDEX REGISTER FILE

A

B

H 7CII

~F_)-
UIS REG

OCE
t Ull141 T

IJIIi!

0< CI<E 10

(;

e~

CJ(14 .1'0-~ ~ &Z

- >EXT 14 c:T:U" • 95- 1e ~

_,.....
t (E\eof I CIX). g.plo

PTI!<SW> A)

Tt~ l'tJ

- ERR VCEIC REG<8o1 8ol>

H Pm<911> ...,

k Ttsab 1P
L

~
>-4

><
~
M
0

~ -

r:--- SlAG Cll I9 RJ t2 r:---
I

1R>C RJ 1:2 • 94-te
I

I
I I II' Ia • 94-te<TE>I.>CR>" I a 9 a

m e 18
3 181 ...

liClE)(REG 1¥1 12< 0 418> 3 101~ ,.,, ~ e 113 T

• .. t 1 110! 12 .s-<-te<TEN. r.~•

s 9 s
I 6

9
6

I
7 9 ~ 4< -r II DUX REG lUI SEL 12 .SJ-8·989 8:i!>ill31

18181 .

C Gl ~--~--------~----_.--~~----~
IS AEliD RJ AS PC I2 .95-9 L:ll>

'-r:--- _r:---
'---I -I

I 1 DAA CIKl I5 .94·19'TE>I.IR> c 9
2

!lB
9 18

J 1016-•
liClE)(REG M 12< I 41 8> J 191~

IIi! T e ... T
4 4

5 9
5

9
6

I
7 9 ~ -:------.... 4J l-j~ II INlElC REG lUI SEL I2 .S3.a-a.e<t.9•2>) :E~1

tetet

c Q ~----------------~--~ A......--/,/

L

ICII
ut'3 a.r
REG O<E

I 19141 T

lUI >€XT IJ C'I'Cl£ • 515· 10 L

t•~ RJ qs PC.U .915--9LC •

H
I.

L

!)E)(lEG .._ 0 .'!2--8t8J1 4JSI­
tJE'J:DIIG PC 13 • 92-&r 01 I> M

INDEX REGISTER FILE

iet?3 1 ~ PC Q.EUE u 0 9i!-I!•SIP>, 9~ E>l I

I 11£G<EIB!r:llD..- A' I

1€ f£G l.f4h.J E\EM:CID 1P IE

~ REGt E\.Bi1 CXC 41 :7) ;tP 1¥1

REIIDIIG PC A'

ZEqQ >CO

I>ll[)(AEGI't"1'BI
F"I1£-

~4t8» ,.p RA

9SI.EO RiA'-4J81o ;P I ~IRA -
t~s.P'A' I

==~.:.... I I I 1 4:
I I I lllR

I I I I I~RA

I IA.ID• FliED "' I I I It
yk£

L---...j~

'-----lilA

lEIIO ~·

VU>C AEGm-ER
<ALE~= All'1

lll'lll

IICEX REG~~
IA.ID <ALE FIIEDICT

lll'1li!

PREDICTED INDEX REGISTER FILE

I

T >R<SIP> AI - llll-fTr :J • . ~ T s.p 9TRIPFEIVO£CJ<Ell SW r---'T.:.<!lal>~-A'~
~' - __ .. ,.

Tf---

Tl USE~~ AI---l

(J(A u ,fl2·• L &Z -{U-Jelte.J
Gl
•2

~

I Fllro<91">
t 1£G<EI.e>hOCD. 91">

I IA.to Fl£0
RAt ... ~

A£1:DV«; PC
~ RA<4:8>
loA PA£Dt .. ,g.

... R£Gt E\.< CXD, <'~t,.,. k£ ,qo L
\E REG L(C2h3, E\€N1~

2ERO
ZERO X4

ER.Rf01~ /\)
T($W AJ

CEJ'I!£

X 9TEF' • SI2E"

~--X
~
M
0

~
1.>0

-8> A' M

1<01119P If'

H

11<0111 0:7> AI [l.eoa.

0<

- !Ufl£)(1" U C'I'QE .91>-IB

0<. I3 .PI-Ij

0< I3 .1'1!.4-2.4 &Zal ·1£.11

('J(110 ,P4.4-6.4 •IRUE

INDEX REGISTER FILE RRM

~
zo;&l ~ Q.l

=~ T E\81<5>1'> "1 lhi.SJ

liB
E\aii<EGIS"IEIIS

«
i!566l >(Q.l

~

~I!<
AI

0111 OEGISTEIIS

Q 1£ 1!9

t~E\1Efro11CIX), $P)
!iAf4:9>

~~··g,
I-Rt!\€Nr<XID, .. , ~

I.E L4' 8sJ.. £\,f)b Cia))

CK 119 ,P4.4-6.4 •loRI"TE

C1< 13 .Pl·S

Cl< 13 .Pe.•-2.• &Z211 ·~

0< ne .~.•·6~,.!•~--_l.!·<R:!!!rl£:!!· L---------------7

i!9
VIS~

181•1
I.R3

0<

E
VIS~

10141
IoRI

•2
Cl(

H

0< 1111 .P6.J·7.3 L &>iZ

INDEX REGISTER UALUE PREDICT RAM

-1641Rfl:
101~

~·

I<S>P>
RAc419>

~RA<··"'
~4:8)

1£ L .

26

I A>

t¥¥4r~ ."P

CK 12 ,1'1. 7-9.7 L 1.ZW

!Vi t£>(T 1.] C:YQ.E • S6- 1111 L

loAt419t ,..p

CK t:! .P3.7-6,7 L &Z _

I

.
I

~

1
~ ... ~~
1-At.CI~

IEL

TAJ

611
~IS 11£6

0<£
1111141 T

1.111

CK 0<£

I
-·-

. ·-
611

~IS REG
UU-41
II>;! Tt---.... ~.

CK

_]

19
li!W t£lfl:

I IJS' IGIK
11101o46

R

R<1 011 IE C£

v

Ck IIIII .P6.1-7.J.L .. ~~;-· ... - ... ·.

lELA> ~

PLUSH Pll'lt ,c;

T

R

INDEX REGISTER UALID UALUE PREDI(l

2 IBOX drawings

TA>

2.7 DADRA 27

2.7 DADRA

Drawings: UADRAI, DADRA2, DADRAS, DADRA4, D.A.nRA5, DAPRA6, DADRA7

The data address arithmetic (DADRA) is the main computing engine of the IBOX. The computing
elements are a 36 bit adder, ALU, and shifter. These elements operate on two operands, LEG A
and LEG B which, in turn, are selected from a wide variety of signals. The two main outputs of
the DADRA are the VA D and VA END D lines. VA D<SW> is a 36 bit quantity which may be
a constant operand or the virtual address of an operand. VA END D<SW> is the virtual address
of the. end of the operand.

The ALU and shifter are microcode controlled as are the LEG A and LEG B multiplexors. The 36
bit DAA END ADDER adds LEG A, LEG B and OP LENGTH-I to produce VAA END D.
Both the adder and ALU have spedal connections to inhibit the carry out of bit 16 into bit 15
under microcode control. This is used for PDP-10 emulation. The LEG A value is generated by a
shifter that can shift its input left by 0, 1, 2, or 3 places. This is used for those addressing modes
that require an address to be shifted prior to being added in to the final address. ·The B LEG
multiplexor selects either its input or its input shifted left by two as required for the addressing
mode being evaluated. Both the A and B LEG multiplexors have the capability of zeroing out the
top 16 and/or the tow 20bits. This is also used for PDP-10 emulation.

The T REGISTER FILE is a 256 word two port, register file which is read and written every cycle.
It is written; under microcode control, from VA D of the previous cycle. Two independent addresses
are read from the file every cycle. One. word is sent to each of the A and B LEG multiplexors.
Special logic is provided to detect the case that one cycle . is trying to read a T register which was
scheduled to be written during the previous cycle. In this case, the write operation witt not have
happened by the time the data is required to be read. Instead, the previous cycle's write data is
selected by the A or B LEG multiplexor instead of the stale T register output.

There are a pair of registers catted HOLDING REG A and B which, under microcOde control, can
be lo~dP.d with th~ last value read out of the data cache. These registers can then be selected to
LEG A and B, respectively. These are used in calculating addressing modes with iradirect references
or references to pseudo-registers.

The data address arithmetic is performed during the I4 pipeline stage.

r:--- II USE Rlt'G TAS 1<1111 • ~- UJ :s ~
T liEG A I4t .~-&rgw:. "'"

.. 10197
I 1 ~ LE\.B. 0 I4teh ,., ul

~ T II OI'TJl IS • 90!·8< SW> At r---
l______/.

1

II()E)(REG< !II> A' a
110¥1 aHST 14 • 9o'!-8<1ilol> At

31!11 T!6
3 10164 L..fG A AE'9Wi9a.() A1 <I LEG

~1 f 1 f
LEG <l<s.l> At

IO.JII>G OEG <1 18 • sa -a< !iW> At 9>-ll'T 1::------4

DAR LOCJ' CQHT 14 • 9.!·8< 911> At
IllS

5 s'2-
6

1--:.-.

~ ~~-,_ LEU <I 14 • 9o'!--8<8oi!> At
~

a .- '-"1 EIC 0<901> ,p

11'¥1 LEU " Stlli'T 14 • sa -a< e"' ..., Ill

• 110¥1 LEG <I 2ERll 14 .S<!-9 L-1> AI ,,...
(p L.£>«;nf..1<!iW> '"

~

T ~A I4 .Si!·II<!Ol> ~
i I

_.., _s.;--l.__
T ~ l):l'f'ra :s .2-SC's:&b "" [}~ ~ 11 BLE'G <LJ J:'AtSJ),

DM LEU 8 F"IRST L£I.EL 14 .~9<911> At fU(<G. F
~ :>rsa.lt AJ

12 ~ T
LB;i II< 'ill> ...,

~E DM LOOP CQHT t4 .S<!-&901> At u .. 1

HCL.DIM:; OB; B 18 • S2-Et'SII> A'\
.

14

if~ DM

DM LEU B 14 .!12-9<4,5' At L-_ I 00Cl!TICIII9

~ LEG a I4 . s,a.&6' ·'"
'*'IF" 14 .B:J-9<&.1 216> A'1 OMC

~LEG B CE l-4 .S2·8 L(61l 8:1' ..., DM Cl 14 .Sl-9 L AI I

D<'A - C016 14 .U-9 At

CIC'I 14 .~-7 L &Z s;r:;:'h .
~L:-~/

T ·AEl; <I 14 • 90!·8< SOl> At
T T f£.3 ~ J6 BJ'T

liEStSTIR T 'lEG B 14 • 92·8<1111> At '"9{11 '31iiJ"'T<Slob A1
\All 0<911> ,.. •ILE

Tl<£1;9 '--- ; SH:FT T

I ·- I'JlmD< -T " OI'TJl 15 • !12·8< 911> ...,
c II OI'TJl 15 RS - T QE'G loRP 13 L(6l1>t1 s sx CE l"'lE>< P"TR<s.l>

Til
l"'lE>< ~G<!lU>

DM SliiFT OIT 14 • SJ-9<0,6> At ~G W O<IT"' El.£>j, COO. SW'>

r DAAI SIGN! EXT'E'Iol) t.c , 93-9 A1 llllO<s.l>
\All E>C 0< SU>

1• ~ Sift" sa t.c . S3-c; L. -

DATA ADDRESS ARITHMETIC

.o
D
--l
D

D
0
0
AI
fT1
(/)
(/)

.D
AI
H

--l
I
3
fT1
--l
H
()

tRX I:J< £XT. SO> SIG>£0 tRX DISFI. 13< S>l> A1

IR Il< Clli.I10CE .C>

QO I1X£ 131' 4'> A1
t1 OM F IJ .S4·10<0>

lR Il<Cil2.t1001".4'

• tt D=IR F 1J .$4-1&' 114~ ~ SHIFT CHT ll<0:6') 111

1~13<00~1~.~~--------------------------------i

81CiE'D (I) F' t.:Jt s..tlo , IS~ F 13 .94-19C'6a6\

m tJ<Cil2.~

I-SEQ DC£9 ~ 1J .U-9

CM F 0<0. ZaS> A1
11 USE" Rt>«; tl • 54- 1e

II OM F IJ .S4-Ie<a,5>

II OM 9H1F"!" 9EL IJ • S4-10 ~FIJ'fl.i!•Slo...,

t1 OM LEG" 2£110 1J .114-10< ..
OM V+!COI6 U A1

II OM LEG •3 2E110 I~· • S+ I 0< 8>

SIG>£0 OD F !l< SW> • .., 0 I
SIG>£D IR>< DtSFI. t:J 1111> A1 I

I~ tJ .S4-t0'S>I> z -- Vl9 REG
IR>< 13<901> J 10164 Cl(£

OM LEG B FIRST LE<.El. 14 .90!-l!ls.l> A1
1'12 T t 18141 T

11- CONiT lJ .9.."'-9<901> • ~I

09C'9 r 00 '"IDZ t.Jt o _, t StGI€0 CO F Dr». 35'1- '" 6 ~CI(£

6 Jv .
0< 14 .-2 L &Z

~
·-

1U< >£)(~" 14 CYCLE • S6- 10 L

II OM LEti B lJ . S3-9<8:Z>

II OM LEG <lSHIFT 9EL tJ .S3-9<J:<O ~
lRl([)< EXI'. T~. J . .,

IR>< 13<£><1". TR&.4> 0 l2
2B

Pl t R PfCEC. t3 .S3-Qc'8; I) b 1~6A Tl DAA LEG A SHUT 1Jt0: I" A1

Pl 1 W A:EC. lJ . S.l-9(0: I\

6

6

U ~ t:,"li <l SHIFT 5£L tJ .93·9<0:2> ~

~
....z

~
~
~
>

~
ID

tl [)If! LE6 ~ 13 .93-9<91 ,.

ts OM LEG '' tJ . U.9t Z>

- tt OM LEG R tJ .:::J-9 L.<Z>

tt OM LEG <I tJ .Sl-'9<8>

- 1'1 ~ l£G·A tl .s:J-9 L< J)•
- tt tw=1A LEG .::e ll .SJa9 Lt~
!i!!de_tJ .SJ-9 L.

- tt OM LEii e 2Eia) zJ .93-9 L.<e:"

tt Clf! LEG B ll .Sl'-.3>

It OM LEG B :J . 93-q4>

II Clf! LEG B lJ . 93-9"5>

· Tt DM LEGS 13 .D-9 L.t:l>
· II Clf! LEGe t:J .93:9 L.<4>
- lt Clf! LEGE tJ .53·9 L.<S>
-REG~ lJ _<I" ~ 1 .. 81;!.

HOM LEG 9 13 .93-<oc:J>

- 11 ~ L£G B I3 .S.::-9 Ll.t"l
-· 11 0¥1 LEG S t3 .S3-9 L'9
.A.tD tJ .SJ-O;L.

OM LEG R tJte:Z> A1

~LEG 8 C£ D L.<0:1 8' A1

DATR ADDRESS PRITHMETIC

.

IEIB t'l UJ+1 !:P'!L~• U'tl l<Oll _,_,....,..,:o• 'Tl ~~ 9-ttFT O.T 13'0:6> A1 e UlS REG I [)¥1 StGN £XTEK) £41 .S3-9 AI
IS O<¥l S1~EXTE>Il 13 ,$4-U!l I 0<E 2 oo:<l F (4 .93-'><0•1 2•5> A1
O'AF D0:1 2•& A'1 2. t 10141 T 3 D¥t tr+t COI6 H .SJ-9,..,.,
I)I:R D+t COld ll A1 J ~ 4 - ~ Ct toG .SJ-9 A1
II ORA F' 13 .$4-1016) 4 --- ---

ISB
11 Jl¥6 ~'Wi-1 u .S3-9t0a~ e 1Jl9 REG 121 ~~'*I 14 -~·tt"IC:Hct~ ..,.,

SCA...ML.DG!ti-1 Dt'0:1) AI I • CJCE I stf:U::AL.a«;Tli-1 14 .S2-9C'0:1, A1
~ u:>«;lH-1 13<9•3> 2 I 101•1 T 2 '-"CTO!i LENGTH-I I• .92-9<0•3> A1
- !:J¥1 LEG 8<£ TJfBII 0:1, AI 3 \1'5 3 ·~LEG 9 OE 14 .52-Ql{hl 0:1) .A1

O<E

369
UlS REG

O<E
II~ CXHST 13 .93-9C'U It 19141 Tl ~ \,ol,rQJT L" -~·tf"::;MJ '"I -

0<£

DATA ADDRESS ARITHMETIC

~
....z

t='
>
t='
~"··

c,o -

~PTII<5zl9> A' r--- I!;&
I !ill

1£6 A Jqg.Fc61l~ AI 1!;& IAI'C<
11111 AS;

1 19174 101'>S O<E Plltr-EA: 0 IS • 'S:J..9fSrl~
LEG 8tSs191 At "'

T : Ll
1 I 10141 T

<! lA]

~
E &; R ~O<E
v J rt POtf(TEq sa 14 • 11<!-B<eot• OC 15 ,Pf-3 LIZ

OCR 14 .P-4-6 L. U4 tE':T 16 Cm.E • S'.i·18 L

i
i

L~
311

i VIS 11.f H TAG RU.T D 15 .11<!-B
'lEG O<E r· L .-_LEVEL D 15 .9<!-II<Chl>

311
1813<! ~~

1 10141 -

·~-
llESET . T•~,

FEW II DIITAo8zi!> >K!ooi! ~ 't, ' H TAG FIU.T D 15 .94-ICI
·, 9 R ____.J.j CK O<E ' L tA.. L.E\.£L DIS .S4·18t8al~ RB !

: -;--- V'

A liE cs H t«: .. e
I v L lA. L..E\.EL 0 I«lal•

It .-_ LEVEL S'mRIDII' 1lfQJGH 1'0 • D-9 1
POIHTER "-8o.c> AI i!

,..LJ lt .-.mv.rE PTI'I. 14 _go_,. 0£ 15 .I'll!-<! L &al

::---- I I'UISH Pll'£ • C - >£leT 15 Cl'CLE • 9'.0- ICI L
C&.JfEMI' Rite; 14 .93 .. 9(8': 1• : ,~.J .-_LEVEL II 15 .9<!-11<0.1>

LEG A PRE'SIF' 34:39 "' 2

LEG 9t 341 3§l AI :r-II I.A.. L.£UEL SE\.. 14 .'Sa-Br0tl•

FEI IU>«; Tilt; liE .C L

DATA ADDRESS ARITHMETIC

0
D
-1
D

D
0
0
;o
fTl
(J)
<;)

D
/0
H
-1
I
3
fTl
-1
H
()

~

Pl I. W A£C U . SJ.9fe: 1.,

-so:LAR ~c t:tret I" """

PI I ~ FR£1: I3 o S3o9< e: 1>

9C&I...M JqC 13' 1" At

PI l R PliiE'C U .. 'U-9f8r I'
9C):lJ:R LENGTH- 1 I.Jr8s -,., A1

SCIUII -~ I3< 0> A1

PI :t W ~ 13 .$'3-9C'8r1lo

FRE1: ~ \.EtGl>lo 1

00 011 00
91 ~ 00
10 S>l 01
11 ~ 11

e: ~ L£JG11of·1 t• .Si!:-9C'9r1"' A1 ~
e.:Ji! >t

..a:T1lR L.BGTM-1 ~~ o9i!o9<9rZ> A1 I' 19~4 Tl . ?" t:P l.E>Gm-1<~ A1

~ l..Dii'D-I-1 14 .'2--&~t• A1 ·2 tu e ..
"------1

GCI't£>fT

~ LD«iTH-1 14 .~9l011" ""':'!

I"I I~ -G D o93-9<0>

Pl 1 R PliiEC D .s:l-9" llo

FRE1: 011 1.[>«;1>!-1

OOQI. -01 04- 9001
19 s.. 0011
11 c.. 0111

PI 1 W ~C 13 .!3-9"0"

Pt I W ~C 13 .1.:3-9" 1t>

<.ECTOR L.E>IJTli- 1 13 o S3o9< 9: J> A1

II- L.E>IJT>i-1 !J oSJ-9<2:!;>

II~ \B'«i'l\of .. l ;3 .SJ.9f0:1lo

~ 011 LD«i1>t RCIHlED I.P
TQ >£lR'ST IRJ\OlOo
GeES TO CA<> E>C <UlER

CA<> G R 011 ~1 I3<9r3>

COft>IT

T>£S£ QJT>VT'9 - um>
I~ - CAC>£ Cl'f1 t1RCRO
TO CCli1'\JTE 011 ~~I>«;
<Kl :4l!TII-«; BIT IO>Sl<So

- c "011 l..f>IJTli-1 I.3<0:3>

~,
t::'
>
t::'
~
>

-
(JO
(JO

T Ei 9 [4 .Sl·9<'311> AI

OCA ~4 .1"3->.6 L

:l6B
\TIS REG

OlE
~-----------ii 10141 T

IoRI

Ck O<E

0(l-4 .Pe-2 L &Z

DRTR RDDRESS RRITHMETIC

..

2.8 DMAP 35

2.8 DMAP

Drawings: DMAPI, DMAP2, DMAP3, DMAP4, DM.U

The data map consists of two identical data map units. One unit maps VA D and the other maps
YA END D. In this way, the beginning. and ending addresses of an operand of any length .are
translated in parattet. Since an operand cannot be as long as a page, any page fault that can occur
in an operand wilt be detected by this pair of map units. The outputs of the maps are P A D· and
PA END D respectively. The maps can be made transparent (att 36 input bits go unchanged to the
output) under ·microcode control. The individual data map units are virtually identical to the
instruction map unit described previously. The data maps perform their translations during the. 15
pipeline stage.

Additional logic is also shown that provides tllree types ~f error ch.ecking: illegal access, segment
bounds errors, and access protection violations.

""' 1>"1111>
..,.

""- ..E\El.. D ;o41011)

,....--~

.

""'1M) DtiUo ~!'[l.812.!1l.

'--

PID. STimJ!IO.-si.IUE'- .A

HJriPASSD'PW16 9<!-11
11815l

~·

PA
~IWUIIT , ..

SUE

\A Bla<

IRWI URIS

lni'A99- ""'16

ID -16

-ERR--

-ERR-IlPID

PA
~PWUIIT ,

"' SIZE

iJI! Bla<

RNO ""' I6

B-PW ""'I6

!DID! I6

-ERR--

-ERR -Ill' ID

ll Jill!
VIS REG

OQ;
18141 T

• URI
6

0< O<E

DATA MAP

PAOtSo<> ..,.
AtCESS I'OIE9 D IE'< lh:!> ...,
'Si£G1"04T 9IZE 0 5t 0: ..-. ...,

RING Bla< 0 I'!'< e.G>
UR D :S<SW> .-1'

URI D l6<911>

to I¥:R :J u.ce.~

A:R ERR ,.,:P ,::(R 0 I..•Eh.])

-ERR-;P:DDL

PA DC 0<11-1>
ACXE9S lUES ENl D :&<8< 3>
9EGI£W SIZE ENl D 15<1!0 4> A1

RIN:; Bla< ENl 0 E< 8: S> A1

UR E>C·D 16<!101>

to - ENl D I!S<e:J>

fli:R ERR,...., I=CIR EtO 0 L<~0•))

-ERR-IlP1.0EMlDL

IUlES D 16 .$;!<11'0>3> A'1
SI!F Co 16 . s:!!-8<0•4> A1

EliiK 0 16 .S2·9t0J6' ""
E"-D D 16 .S2·9t'0:)) A1
F..O D I6 .se·&0J4l """
<.-o o I6 .se-e<e:S> ...,

i

dtJW. tJltJO

"" ~·o1,, e-zs· 91 a Oils~ SS3Xltf ~

IV <J.llaad"3i.llfh"\ B·C'&" 91 0 <H3 63CC< SSlml> -

, B-<!S" 91 .o3ll 01 ld
W <3!lt0d'01>, B·<!S" 91 0 631»1 S&D:l:O-

,6

, B·i!S· 91 ·~ xao ld

, B·i!S" 91 r1li»> ld

~ 0 161Set~ - 'lEti£NT IIQo.N)S

PTR ~ T SE~~DI6

I'OINI'ER D n; .n-o>r&ol9> I' 168 H r--<: 93EI
V::S REG -~>-I CICE" +-< 10141

IS SEG 9C..NI8 0£0< EN 16 • S3-"
.... I ..
~O<E

L

:X 16 .PI-2 L &l I
'VI I£>Ct" "16 ..., :? cro.n • S6- 1e L

SEG llCitHIS 0£0: EN 16 • Si!-B AI .

- '""Of(l[lji£Mf- -GEl£llRTlJI . ..
'~ 'VUE D 1!1 .tiN1<0o.O ...,

:siZE 9t:;l
SUE"~

9121: ~ D 16

"" ENl c 16'6: ·~ - S9GPen" BO.HlS

PTR EllRCI! T -~ENlD I6

EN CH< - - SSE2
!E1liENT-

G[IERATIJII

_,.,.SIZE~ D I6 .9i!-B<8o4> AI SIZE: SI1Gi! am ERR . SIZE ERR END D I6

DATA MAP

91 0 a.3 11113 -!»all

91011113lt!ll!!<UI

dtJW tJltJO

, B·<'S" 9111 l030 ld

IV <II!PS·C'S· 91 QOG)Qij!J<Us' 1·

, e·i!i" 91 11 l030 ld

IV <81>1!·~· 91 Q CKI)Qij !l<lll I·

IV <811!1·cs· 91 a-!Mil • 1·

IH\

~~------~,~~,:e~oe~~~-~91~a~~~~-~~~,~IV~~N3~-~~ '~'

'lib Sl/1
II:

11ll , <!-· 91 lO

,

..

,...,e.:.. AJ
IR(.(819 AI

m- t6<G•:J> N
1'<1<91> N

-EI<R-SPIDLAJ

--""- L'9:3> J4J 9t2Et~h4) I'V
UR ISIS~.~' N
~ !6C'SW AJ

1i!B
18l-
101-

1i!B
-(T(T~

m T f--- (S'11W<'ERP3~ EF<RI(}-+--"PAR"'--"£RR,_,-.,__,F:...!tii"'-'L:....e::.A> 4 118 v-
I -~'Tfi£E ~ . L
'----"~"'-~----' '-..:;A;-IE:r..:CS~....J

'<-----t---'J <)

'1
It It - IJ'IlCE ID •) 1'i , 92·9 L d.,'-=-="'--"'-"-'"'-'-'"""'-"--- 1 G3 II I 2311 '---- m

~ 8£W~r-------~P -tn l1lEE 'I

-«
-tiC-£ - ::-u HITIC•--r-----------.;.II::.IT.:....::-=-=Lo;<e.,ac.:J>c....:A'Io.:...J' [w1"-'"e,_,a<!,.:.=-.«<

101-)-{,------..!.to<=e~·"'
1

"'"'--.::::"':!....----t

1J<1 '3<5>16> If' '---..:P..:1___; __ __.1 ,---~.--£ CW' ,..,. p EJRI::>-+--------------'-='-'£RR='-'-=-'-='-'L:.;'-"G"-:3>"'-~If''-

FO~--OP ~ I ---< OPEH

H-SEQ FlRCE -ItT {Y-J '--'Ai'-_.::IRI'T.::"e---"IIEr-'

~'()-----' ___ ,

./1i!
/!

I

T------L~~~+----------------'9~~~:~:~:~~,~:

-·
,_,,._:..;!ro"""'-"-='-'·<!1"'~~------------i HI -~~--·_,m,_,-=_,.'IL.,f,___,l:::5<'-'0'-'s"'3>'-'A'1'-'-'a'-"'UII"-"D..O:T._,·::::5<:..;9W>=..:A'1:!.!

,_, ... ~-~~~~~----------~~n5E
HSELI

~ace~

~~--'Yl ~PV-ilL&Z I
- >£)f1' t'i C.l"Q£ .15-10 L

~-9£0 HAP tIE L<8:3> ~'<---------.J
:..:..cM£="-'GL~,-'.'-"'0<"--"5=."-'-?-.S-L-&>e---.,...--CI~

'\.IQ ll..l" ts:a!a~ A1

s
B~ow>A>

(Tr--
10130

<)
Ll

Fe Tp <XA It; .P2-6 L • ~

DRTR MRP UNIT

2.9 OPABX 41

2.9 OPABX

Drawings: OPABX

The operand data path and ABOX {OPABX) ,drawing contains the high-level description of the
main operand data paths of the IBOX. Operands are read out of the data cache and register file
on two legs: DCRF i and DCRF 2. Each operand contains up to a double word. The operands are
addressed by PA D and PA END D. The DCRF 1 and 2 operands are delivered to the operand
queue which acts as a buffer in the pipeline between the data cache and the ABOX. Operands are
read out of the operand queue and loaded into a 4-word operand register along with a set. of control
bits. The output of this register is delivered to the ABOX. Q.uadword results from the ABOX are
directed back to the data cache and register file for storing. Since the register file is capable of
reading and writing at most a double word, vector operations are not permitted to use the registers.
Only vector operations produce quadword outputs.

0 LJ

Il
l

/0

D
 z 0 0 D

-
j

D

lJ

D

-
j

I]
)

z 0]
)

rn

0 X

~i
~ i!~

i~
~ u~
1

pl
i ~~~ ~.

 I :

~
:,.

0
!'

~
~

Cl f I"
'

j
J

g
ll

ll

e

e
\

~ j
J

~
g

0
..

.

n
0

~!
~

m

~
z:

~~

~
..

~
-

~
~

I "
~

!

i
.. li"

...
s

s
~

~

§
'--

·;.
yi

. -

··
~ ...

~

~
u

~
..

Iii
j

e
~
 ..

!!'
i

~ ~

·
~

I;

;

~
!I

..... Y
%

5I
ii2

iii
&

i
~

-
~
~

... (h:

_
X

X

X

Iii
~·

~

~
lil

lil
s

a
~

i:l
~

~
~

i
i

i
~

!!'

)o
l

~
s

s
~

~

~

Iii
~

~
~

~~

:1
)

"z
:

·~

;i

... ~ t , " j ~

~.10 ABWRS ·

2.10 ABWRS

Drawing: ABWRS

ABOX with result swap (ABWRS) is a simple unit catled from OPABX to take operands and put
out results. It contains within it the entire ABOX. It clocks ABOX results into the result register
which is enabled by the ABOX/IBOX result handshaking signal. The high double word of this
register is passed through the result swap unit and then merged with the tow double word. For
vectors, the result swap unit is transparent~ so that the final result is the same as the ABOX result.
For scalar operations the ABO'S result is high/low aligned within the upper double word.
However, the result from the ABWRS macro is supposed to be even/odd aligned within that double
word. It is the function of the result swap unit to make. this alignment change.

D

CD

0 X

:L

H
 --
l

I .10

fT
l

<
/)

c I --

l

<
/)

:L

 n --u

~
 ~ ! ~ ~

B

~ ~

~ .. !j;,
 ' ~
 I 'ii "' i·
~

;
f

" a
K:

e ... ; ~ Il
l r

L-
--<

:

~ ; ... s l!. I ~
 -

. ~

I
X

e
~

X
 a ~ 'i
 ~ , , " I ~
 ..

~:
s;~

2;i

..
.. A

%

e;
~

.. ill
~~§

ill

e
~~

~
r

..
.

~ ~
 ..

r
%

ill ~ :l

! " ~ ~

2.11· DCRF 45

2.11 DCRF

Drawing: DCRF 1, DCRF2

The data cache and register file (DCRF) drawings show the data cache and the two copies of the
user register file used for operand fetching. The data cache may be written from the even/odd
result lines after they have been rotated to the correct position within the four word input or from
the M-Sequencer write data lines. These lines are four words wide and provide a high bandwidth
path over which the M-Sequencer can toad the data cache from main memory or from a backing
cache. The user register files are written from the high two words of the even/odd result lines.

The DCRF 1 and 2 outputs of this macro are the two operands for this microins~uction. They are
independently selected from the cache, the user register files, and the immediate constant generator.
For scalar operands, these outputs must be even/odd aligned. This is always true for the user
register files and for the immediate constant, but is not necessarily the case· for the cache. Therefore,
another input is provided on each multiplexor to select the appropriate cache double word with the
two words swapped.

9

._y

0< 11e .Pl!-~ L. cz

Bll
\It! JEG

1&141
\IU

0<1

y

"£9LL":"•8•'7.~
P<;D<!!Itl
~ &0 D<»

IXW 1<4-tl.- AJ
IXW i1!0~tl,,... "'J

T

- w - 0:-.eltCilD,- ./OJ

-• s~ ..-

O<lrA 010£
w IJATA<Il'7- "' w lllr.A H UICI£ 1<8 l.-

~ D<~ A>
~0

DC T-<
~eel[)<~ A>

~ E!() 0 c..:o£ i!:<o01l-
L.

'-r:---
BI!B

I 10174 TI------'DCW=--'I.:.;'e.:::'"""l.KI'>=.:.....:"'~
Tt----------------------+---;a >2

r-+---il 9 OE

9EI..I

I

I '--~
'---t------1 I 10174 Tt------'OCSIF""":....,l!<:.;e..,_,J:..;-=.:.....:"'~

Ti-----------------+-----;2 MJ

: CON8lT TO E\.9VOIX) ~IG>£1)

'-----1 r-l 9 OE

9EI..I

I

.::119£0=:...:c.o>l91'=..:.....:.1''-'llol>=-------t ow 001'1--'------'

,::llf'ED=:...:CCH.IT=..:....=cl!<"'CW>::::;,. _____ ., ow OW -ITT
~T~ ~t---------------~

P2
-

DATA CACYE AND REGISTER FILE

N) -= 0
X
Q. .,
Ill
~ -~ oq
"'

--c-i

3ll~ ~31SI~3~ ON~ 3HJ~J ~1~0

.. -cs· 91 <00 s30CI 03S·1

,:.--·--.

H

H

H

,

H

3>0)()

1,..,
r--:.c=•I"'I51:;,;-.,-J.SMT.l="'"'us= .. 03S=-=--d-:-:.41DJ=rl~ 1~1 1

93!1 stn
IIi!

112, , &:·ld" 91)!')

,
91 '"1J'S: 91 .!.StoOl Sl C!OO

H 81·>5 • 91 ~SIC) S1 100

II

, .. -s:s· 91 us') 03$·1
, 6-t'S. 91 "1]6 I"Jl"tl &1

, 6-t'S" 91 "US ~ 03S-1

6-t'S-91 "US 'J 036-1 -

48 2 !BOX drawings

2.12 DC

Drawings: DCl, DC2, DC3, DCRAM, DCDM, DCAM, 3BSAG

The data cache is a 16K word high speed memory that can read and write four words ev~ry cycle.
The data cache is organized by half words. The eight half word output can begin on any halfword
boundary. For writing, the input data can begin on any halfword boundary and, in addition, there
are individual quarter word write enable lines. The data cache consists of an address part and a
data part. The address part implements a four way set-associative cache organization with 16 word
lines. Since cache addresses are not restricted to begin on four-word boundaries, it is possible to
read a four word block from the cache that overlaps two cache lines. In order to do this read
operation in one cycle, it is necessary to read from the address part of the cache the information for
two consecutive lines. Therefore, there are two copies of the address part of the data cache. An
eight halfword rotator is provided on the output of the data part in order to align operands. · This
does not effect the fact that the operands will be high/low aligned on output.

A data cache read operation oceurs during two consecutive pipeline stages, 16 and 17. The address
part is. accessed during 16. It is given PA D and PA END D as addresses and produces a set of hit
tines indicating which elements, if any, match the addresses. If either address part fails to hit on its
respective address, then there is a cache miss. When this occurs, the M-Sequenc;er will load the
appropriate cache line from memory and restart the cycle. This guarantees that when the cycle
proceeds with no cache miss, BOTH lines that may be needed for the read operation are in the
cache.

The data part read operation is performed during the 17 pipeline stage. The data part is
constructed from 8 identical halfword modules each of which is a four way set-associative memory
with 1024 half word elements. The elements selection is based on the two sets of four hit lines from
the ~dress part. The 3 BIT SELECT ALL GEQ. macro looks at the low three half word address
bits and produces an eight bit vector which is zeros up to some point and then all ones thereafter.
The point at which the first one occurs corresponds to the input address. This eight bit vector,
then, indicates (where there are ones) when to choose the hit vector from the address part that was
addressed by PA D. It is also· used to select the correct middle address bits for addressing the half
word module.

For writing, the addresses and hit vectors are read from the write queue. The write occurs during
the second half of the ·IlO pipeline stage. When a write operation is scheduled to happen, it ls first
attempted as a read operation during 16 and 1'7 (atthough the ali:ess checking checks for wrttmg).
This wi11 detect page faults early in the execution of an instruction. It. will also cause cache misses to
be fixed before the write ·operation must actually happen. During the write operation at 110 it is
guaranteed that the location witt stilt be in the cache since the M-Sequencer wilt never kick out of
the cache any location that is also present in the write queue.

... OO'SU> A'

!'I"-SECl~41~

.,. ex. REVY1lAE 111 • s-o-1e

PISDC.SELI'AI!I .$4-IQ

-
... E>C D<2•J5l A'

11-SE:t lllR< 6: 30>

'--f--

'--

0< U .Pe-2 L. IZ

..... 0£>(1' I6 1ft) I7 ~1'0.£8 -116-10 L.

,. DC~ <0'0 111 .SoC-Ill L.

'.
II Oil~ 9:7 >41'> A'

R 5EL LOW ~ t6tet7)

~ lol S£L LCU AJR 110 .9a-9t0t?'t

t1-S£C OC ..xAl loE LC'0~3>

]611

VIS~ [LY
RU <»: I'A D I6 • 92·&911> ,,, .. , TA

I liS I 'Ill I'A D P .92-9<911>

KI ""D I6 .So0-10<1>1<>

REST<R:

11SELI

0< ~110<£

r---
I J6B

1
101?4

111
f

348

"" H
2

VIS ill.£ REG

~
CKE I'A ENl D I6 .S2-9<2•lli> 111!1141 TA

I IIS2 I'A ENl 0 I? .92·9<2:35> 'Ill
L. .. - SEL Ill .92-9r4<9

KI

RESTo;£

119£L.I
.:

~~10<£

j -
I. .I

3 BlT
... D<Siol> 9ELECT

I'AENlD<911> 1'A D 16 .S2-8t32r:M> IU. Gal
W OATAt9•'· ~ ~

1(0::1,....,.

.
·~

ElATA~
16011

Rl'fllf<RAY
VIS REG

I 0:: DC. R DIU'Atea? H.F"- AI '"'""' OC R DllTA 17'0:7 _. A1
T t VRI T t

R9EL~-

WSELL.~I'()R 0< - I 0< P .P:J.B-S.B L. CZ

OC OUTPUT ROTATE SE'Lt9~2'

DATA CACHE

8141
ROTlii'OII
100158

RT

s

I

OC ~"TO """SE0t4:~

R SIEL.. La.l ~ l6t81:;:J\

T
T(Q,7 ~ ,p

~ -N)

~
n

~
.r.o

>-------1~

r----l<F

0!18
~

l'l:fUTY TREe ~ 1--------_.
p

>--t-+--+-l ~

4>(

=~CliO£
<llR lllllU.E

<l9 lilT p------!:OC~I!:!,!Ic!_T...!r:(R:!!!_!L~<,!8r;:]>~

llll! P Ellllp-----"Pr:F=·_!;EIIR~_!!0C!<_!OUI!!!__!L~<!_0;_;:]>~

~~r---~-~oc~~~~~~~e~·~3~e~:2s•~·

"" .:l<lm CliO£
'llR lllllU.E

~1 litTp---.!:OC~I!t!!!.T.!EM>;!j.g_!:IUI!!1!!...!L:!..'!0o!.J3>~

:..:~~~~~~~~~~~----------------------------------1__j~ro ~~'"'

- p ERAP·---.!:-!!!...!E'Ril~..!OC!!;..!E>Il~_!'UI~..!L~<.!B~·J>~

~ -r----~DC::_!!....,~_!;E>Il~.!!~~.!0!!,s3;!._!0~:2~1!!_>

0< t9 .I'S-6.6 L &liZ

DRTR CRCHE

IX HIT <~JR<eol> /-.n

~ d.-m: ~
IE IN) I? ClUE'S oSS•IV L
c t6 ,s:J-.9 L.
t:C LRU 16 .93·V L.
.SJ~9 L

111 R£1'0 DC. LR.1 11J 0 SB-6 L (';I~~ lAJ

PAD 16 oS4-10<22oi!9> 1~.

1'A E>l) D [6 0 92-9< 22•29> I~ EtC

LR.II • DC. IAl 1:><0ol>

L2l

LR.I E>CI I I IX I.RU E'>O [:><0:1>

ICF•
D£COOER

lel61
... c [6 o94olet29>' 01 T

PA ENl DIE o94-le<ZV> IX I.JS£ 1WD L 11£8 [6

D£1 OE2

"0"<>

ICF•
D£CDD£R

10161
02

... &ET 11C0t<"t£t) .,. olle-6

PAD 17 os.!-9'22oC9> 1~¥> D£1 D£2

PA E>l) D t:>' o~9<22oi!9> I~ Ell)

IX 1.JS£ 1WD _[0£9 [7 o94-le L d·R USE 1WD L[l£'9

IX LR.1 a£>£NT t7 L<lloJ> R L2J ElD'£NT 11C01F"IED 81T9

0C. L.~ ~ af) 17 LC0:,]) R: L.RLJ B...£I'£NT EM)

-=w:R AJR 11il .92-ei22s2"b loA I1CO
j

T 1 IX !WtF"IED ta o116-lot<~•= e.J>

.,._ E>l) 101 tie o92-B< 22:0!9> 1 "' Ell)

.,._US£ 1WD Ll>£9 tie o92•B L Cj W USE TWO Lli£S

.,._HIT- tie oS2·8 L•eoJ> Cj W >itt

.,._HIT E>l) <I:R Il0 o92•8 L<0oJ> (';I W Hll Ell)

1£ 1\E

DO <SO>< W 110 o$4-10 L

111 U"'<<TE PUlfi'IED BITS 114 oS0-6 L

DRTR CRCHE

DC. LAJ E\...Et'Et(T' 17 L~0:3lo

DC LAJ a.Er£NT DO 17 Lotfk~

~ -~
t::l
C')

u--

OS! 16 .1'3-7 L

L.....--------~~~C~Sc!L::<!!0:!..o3>.!:-!!A1!------~ II CS

II CS L<0o3> A1

. -MIT DO- WI .- L<8t3>

-- 110 .li!-8ti!!tl1>

W liB.. LCII -» (8.9: 1.?] IP

AI 0 16 ."1<!·8<CZI:31>

II 9EL LOW -lC> 1P

CICA IS .1'!!-6 L

DRT1 CRCHE RRM RRRRY

T---------T~<~~~~~~IP~

1 ... ,,.. "'oP

·- L<0:J> 11 sa LllW _.e.,..
~ 9EL L.Q.t f:I:!At81~

T<9a?,J..&.Pt

I
:L:

0
.D
---:

~

"·!£11 DC. El£1:!'<...I.!o~0:3> C!'

• .,. oc EI.EI£>IT SEt. IIi! • ,..·18<"'

l£l<T 16 I'Nl I? ''I'C..n ; 9!H 9

Ill DC. II CR II C911i! .8<0-10

CK t6 .1'6-19

J:: 0< I? .1'9.6-2.6 &ZZil ;-

r
])
n
I
fTi

0
l)
--!
I•

...s.
0
0
c
I
[11

Q(118 3-6.3 ·~llll

Cl< I? .1'9.6-2.6 L &Z
/

lUI l£l<T_I6 I'Nl I? cm.s .$·19 <.

Will'» A'

_.e.~...,

lUI l£l<T 16 I'Nl I? Cl'CI.E9 .$-19

1ft DC. R CR W RA IIi! .~·18

CK 16 .PS.6-... 6 L &Z 0
0< I7 .1'0·2 &ZZ ·RE<C

CK 110 ,P.t.6 -~I<

;
L.

._.cs ve,·

All 01<919> A1

"'

'f

L

-41
VI'S RE'G
191~1 CS L4'91~ lf'1

ZX·

!~ AI -rl. IKJ.I X 0U

-------- -' ><12112

I ! R0

T ~

"'a
•2

Cl<

'P . I

~ -rv.,,v, "' '--·~-~
I jJ

I,;-:.,~ REG~
I 191~1 T . II

T•I'W
I l.lil -· --

IE
VIS REG
101~1

Vll3
.a

CK

(

L

loa! L(0: 1 0:3' tiP

CK 110 .P6.1·?.3 L &HZZ .S

" 1'\.£ L ,...p .g

,CPS£a..,; OC 113 ,PZ.1·l.3 L. &H

zx
II<WX~ ->f"li!lli!

Rl

zx
HCW l(Q1.1 ->f"li!lli!

RZ

zx
l'<loi)(QI.I ->f"li!lli!

113

I I
T

TcHP ;P

~

1<-
!tEL

q cs L•e:,.
1!10"9:'»

t-1 C9 L'9::J)
loA"0:9).

J.E L.•9al.ea~

Tf~ IU

'-E~0a1.0a~ lf'1

~
;:3·

'=' ..
n

~
<.o

i!i!E!
i!S61~
ltl?lrnll

-.m If' • A<i!a&!1• If' a liP..,. .., .,.

oA liE' 99

r J 0 A<8ail!9> A'

IE'"» tiP

IW!-l(.lla!1• ...
I

i!i!B
-IT!"

Sliii"PE1M)£0CEJI
Sll

A<&!.il9>

"' FIR:£ Of>
mA-m
~cei])o

lOt P ~ U'8a])
NIT Lt9:3lo

RR1 ~el3.e:C!t)

.,.

£1<R
~ P ERR L.<»

DRTR CHCHE RDR MODULE

IIAI-><.B•l!G> If'
A

~19 ... Of> c 11l11l
Cll c ~rr u·» JP

:e c At ~ai!Jl- ;P a

·FOR:E Of> ,p

~
-~

~-
~

~
~

~
~

~

~

~

~

A

-~

&

~

~

~

~

~

~

~

~

21
0

21
a

~

l!!
8

I>

-mt~!!!i
-i

!
!

;:;
~

::l
:

!!!
;!!

c

; ~
i

.I
~

~

.. ..
..-

;:.

0 w

~

~
_

j
;!?

-
-

a:
_

j
~

-
.. ..

C
I

i!
..

I-
t:'

-
-

..
u

C! -
-

-
..

.,
w

·;::

-
-

_
j

w

~

-
(/)

~
 ..

-
..

-
..

-
..

-
;:;

-
I-

-
.. ..

H

e
-I-

m

M

56 2 IBOX drawings

2.15 USREC

Drawings: USREG 1, USRAM

The user register file is an even/odd pair of register files and is very similar to the index register
flle described previously. One difference is that both outf>uts of the user register file are used
together. (In the index register file one or the other of the RAMs was used.) This produces a
double word output. Both RAMs may be written simultaneously, so that a double word result may
be written in one cycle.

3li~ ~31SI93~ ~3Sn

, 81-!IS" aa=~ <I <No 91 ~-

::1>0 >0

·~ -:o-:-:~=· .. =(11)=•'"-aaa="'-=---------iN·~
.1. 1r1e1 1

::1>0~
J"l:l 611>

Ill

I "'I3S
~· .. ·(JX)'~Ut

~'£'18•1

;n, ;Hid" 91 lO

.v •• nn:ae

,

.1. 111'1

1M! 3'U ..
IW.Sl!BII !aSI1

··-·51 18 !)3tl 035-d

'

31 f(D)'te'\3 cte,, 9-n· en 3"1 ~

tollo
~· .. (ll)lla\3>9-i!S" 81t 1:11 !)3tl ~

ljb
,y ~ .. (lllfla\3-

l
fill ~L'I•I

I L 18

QC I7 .PI.C-6.4 .

QC 'I7 .N.4-Z.4 12211 •REII)

oc ne .P4,4-6,4

QC 17 2.4 L 1Z

1£)(1' 16 1M) 'I7 tl'tl.ES • 116'-18

Cl< 17 .P1.4-5.4
L

Ck 119 .P4. 4·6.4 '"'ITE

1311 •
IllS OL'f
REG CkE

1
1e1•1 T

T•I'W -CJ(tiC£

!I!
IllS REG

te141
UIU

oc

Ill
IJ1911EG

18141:
~I

Cl<

USER REGISTER FILE RAM

·~ i!&6ll >< aw
~

tll?e:>l~ T
F<e

1!\.€>1 llEGIS'I'EIIS

q "" as

C1< t7 .P4-6 L &Z

B0B
1119 REG

1~1 T~--~T~<9~·~~~~A>~

1~8:],~

~E\.£Jrof1CXI),41~

loAC'E\ElhOOO, ·~~
loE L.t0:J. E\£N:OIX))

2.14 OPQ. 59

2.14 OPQ.

Drawings: OPQ.l, OPQ.2, OPQ.3, OPQ.4, OPQ.5

The operand queue stores data operands from the cache on their way to the ABOX. The size of
the operand queue is 16 entries by 8 half words per entry. For scalar operations each entry may be
considered to be a pair of double words, one for OPt and one for OP2. For vector operations an
entry may also be a pair of double words, or it may be a quad word from the cache. For all scalar
and most vector operations the operand queue acts as a FIFO. However, there are vector operations
that make use of the fact that the write addresses to the 8 individual halfwords can be different. In
any case, the read addresses for the 8 hatfwords are always the same.

In addition to the main operand queue there are three auxiliary queues for passing control bits to
the ABOX. These queues are also 16 entries tong and are read out exactly in parattel with the
operand queue. The oontrot bits are all written together at a .write address that is controlled
independently from the operand queue write address. Two of these queues store control bits for
OPl and OP2 and the third stores control bits for both operands together.

The !-Sequencer microcode has a great deal of flexibility in how it controls the operand queue.
LOAD OP 1 and LOAD OP2 control the writing of the cache and register file outputs into the
currently addressed operand queue locations. These signals also enable the writing of the OP 1 and
OP2 control bits. LOAD BOTH OP CTL enables the writing of the "'both" control bits. After the
operand queue loading· is complete.d, the write address is incremented by an amount specified in
microcode. If incrementing by this amount would cause the operand queue to overflow, then the
actual writing of operands and updating of the write address is delayed until the ABOX empUes
enough e11tries from the queue to attow the write operation to proceed without overflowing. In
order to attow writing operands at different addresses within the operand queue, the actual write
addresses are computed by adding the main write address and 8 independent offsets. These offsets
come from a RAM whose address is specified by !-Sequencer microcode. The RAM has one
additional offset which is added to the main write address to form the write address for the three
c:ontrol bit queues.

Operands that are written into the queue need not necessarily be immediately released. Multiple sets
of operands may be scheduled and not released. However, once a set of ope~ands is scheduled and
released, att previously scheduled operands are released. One way to think of it is that there is a
control line catted RELEASE ALL OPS which may be asserted (with or without actuatty loading
new operands) which releases att operands including any that are to be loaded in the same cycle. In
this way, the operand queue may have some n~mber of released operands that can be delivered to
the ABOX followed by some number of additional operands that cannot. When these operands are
released, they can then be delivered to the ABOX. This provides added flexibility to the
microcode. For example, the !-Sequencer microcode can schedule a short block of operands for a
vector instruction without releasing them until the last read operation of the block. When it
schedules the last read operation, it also releases att the operands.

Several registers are used to store. the state of the operand queue. One, catted OP Q. ENTRIES
USED stores a count of how fUll the operand queue is. Another is catted RELEASED COUNT

60 2 IBOX drawings

and indicates how many entries, of those that are used, are released for reading by the ABOX.
Finally the current operand queue write and read addresses are stored.

On the reading side, the RELEASED COUNT being non-zero indicates ~hat there is at least one
operand queue entry ready to be read by the ABOX. The output of the operand queue is sent to a
four word wide register mentioned in the OPABX description, called the ABOX OP REG. The
operand queue logic maintains a bit which indicates whether the ABOX OP REG is full or not.
When the operand queue has an entry ready and the ABOX OP REG is not full, an operand is
transferred from the queue to the register. Whenever the register is full the IBOX informs the
ABOX that there is an operand ready (X ABOX OPS READY). When the ABOX is going to
accept the operand, it informs the IBOX (X A 'BOX OPS T.A KEN) which can then move another
operand into the ABOX OP REG.

CJ'<Oo?IN'> A'

CP M 17 . ~~er~• At

CP ~ t?ca? e . ., At

OP to6. 18 .'S8·!t L"'8•1., A1

l·l!EQ OPI LQo tR£11- I? .9.l·9<8>i!> >4
wo.-OPI P " WD ,_ 01'1 >al.LT lUI I"'0o3> L

I>--
OP .., Ill I?< E. e. .o At

.
OP I.E 18 .se-6 L<CI> At

1-58) OP2 L.a. CAlER- I? .93-0<010!> ..
wo.-OPa? " WD .- oP2 ~T lUI I"'0o3> L - --
CP WE IS .-.6 L.<l• At

~

r-s:o NJ'IlEA <F oA.m <~~' 1, • u-..,o,.., II
1-~ LA9'T CPS 17 ,S.J-9 " r-~Q •r-. 'IOTATE 9EL I?<O•I e..!!:> L

- -
-

OP IE IS • se-6 L< 2> At

8>C
OP 16..,

OP~
~

Q..E\.E
T

01'111 -OPIE

I 8B
~

~
Q..E\.E

T
~IT

Ill ClO.»

IE

I
1

8B >4 __.,
~

~
Q..E\.E

T -T / Ill
OQJI

IE

I
I

li!B

~
~

Q..E\.E
T

-T

Ill CiOJi!

IE

I

OPERRND QUEUE

Tee,;?~ ;tp

C.TL"'CI1V. AI

~

~

(Pc'9,7,~

C:T\ .. t'h~

Tee:?,...,

~ -~
0
~ p

Q)

98
VIS IlLY
~ OC£ CP o "" 1e . 9i -ere ... , A1

~~~~WR~~1~~g~,~~~~~------------------------------------------------------------------------------_,I 19141 Tr-------------------------------~~~~~~~~~~ 
T~r-------------------------------~OP~O~WR~I~9~.~~~·~1~·~9~r~•~·~~~ 

lAM 

o.A..m t6 .93-~ L 

PI LFD<IT£ OP Q ... I6 .11]-~ L 

-11¥PloiL 
PI IELER5E ILL OP9 16 . 93-~ I. 

PI L.CRl CPI 1? . $4-9 L 
Pt L.0<0 OP2 17 . S4-~ L 
PI LCRI llO'I>l OP CTL I? • SO· .. L 
IU4 tEXf I6 INl I? CIQ.ES . 5-10 L •3 

- ,_, r;: .S4-Ie L 

0< CJ<E 

L 

lUI tEXf I6 IN) l? GIQ.ES • !Ji- 19 L 

s 
:m T 

101.39 

O<A I? .P6-9 L 
Ll 

T 

~ 

CPERAND QUEUE 



2.14 
O

P
Q

.. 

~· 
; ' ! ~ I!! ! 0 

Ill 

.~ 
4 • ~ i ! 0 Ill 

~ 
.. 

r~~ '"t~ 
~~~ 

, i
~

•
:l

~
~

:s
I!!

~ ~
i

!

I .;
:: E

~

4 ,;; i f.
.. ~ ! ! 0

Ill

...

,
~

i
i

,
:.

~
~

~

lj

!
~ .t

il

•
I

! 0

" e

~

! ! ~ ~

i ! a ! 0 Ill ..

~ ..
i ~ii ~e~

w

:J

w

:J

G

0 z a:
~

w

0...
0

63

oP Q EKni1ES USED 18 ,9-4·18<9r4>

11111

11111

oP o oA.m 1111 OFFSET -•

• ~ oP Q co.MT I9 .S<I·It L A1

IO£I.EP3E 1U. ·Of'S 17 • IIJIO- 18 L AI

J'LU9H PIP£ • C

CPa oA.m 1111 ~-1 I> .S2-9<6ro4> AI

COIKHT

5TCP IF >EXT UILLE t:F E>m'IIE'S USE!) 9 L
r IG>Oll.., ~ t:F ClPS FlU! T>£ ~
IS,.. 17 ct.E'. t€'JCT ~-1 ~- 16l

at' o I1EIIlr I7 '"

9'T1lP CP Q F\ll. J?'

OPE.~AND QUEUE

~cPa co.Jo!f Ill .911>6 L.

CK 17 .PI·l L. &Z

F\.JJIIH PU'E .c

C6' Q REJ:1J1 t? L A"j

181>< cP 'lEG ~r lB .84-1.8 L. AI
• ~ <IIOiC. ()P9 TA<E• nc 116··• 1 ..
- Fl..J..IIH PIPE .t L

• <8)>(QP REG REI'Ilf 18 .~·le ...,

>C 18.»(oPS T~ Ill .Sii-11

cP D REI'Ilf P L. ."11
• F\.U9H-Pli'E L.

,_I? -~·19-
1:8))(SA~ REAJ1" I? .~19 L

81.

'611
'II'

l O(TII

l-e1J6
. Cl

../'LP 1'i!

I'E

I--
~CICE ~ 10

.
T ~ RA t7 .S3-9t'1ih4) ...,

Tp .

.

1£)(1' '110>< cP REG RE..:IT P L ...,

!NTERRlPT 19 .• 1!2·8 L

• '110>< cP REG REI'Ilf Ill • !12·8 A1

• 181>< II'\ REG ~f 19 .S<!·B A1
~ 9LISI'E>O lNSlR 19 • Sl·9

,_ 19 .!12·9 L.

~

DECREI£HT cP o Co.J<T 19 • se. • '" ·
181JB

L.l

T
CKA [7 .1'6-9 L I I cjE 9 I

' CJ(18 .Pe-2 L. ~

X '110>< CP9 RE..:Ir 19 • S2·9

41 a 1110>< cP REG RE..:Ir Ill .92·9 L A1
VIS CL.r I DEC.REt£>IT cP Q (.().J<T 19 . 92·9 L. A1

REG r 2 ,_ 19 .S.i!·B L.
101<41 J c:aJX M REG RE~Y 18 . S2-B L A1

~ t:P J£U RE'J:()f 18 .5-4·10 L A1
• QECREJ£NT cP Q (.().J<T 19 . S4· I 0 L. A1

mFP 19 .S.olt-10 L
j:£10)(~REG R£R>Y IB .S4-10 L .tt1

OPERAND QUEUE

~ -.....
0
"0 p

a>
Ot

66 2 IBOX drawings

2.15 PSEQ.

Drawings: PSEQJ, PSEQ.2, PSEQ.3, ODDEC, RAG I, RAG2, RAG3

The P-Sequencer is one of the major microcoded sequencers in the IBOX. This sequencer specifies
register read and wrjte operations and constant read operations {except for indexed constants). The
P-Sequencer works in _conjunction with the !-Sequencer. Every P-Sequencer microinstruction is
associated with an entire sequence of !-Sequencer microinstructions. Each P-Sequencer
microinstruction specifies a starting address for the !-Sequencer. In .essence every P-Sequencer
microinstruction catts an !-Sequencer subroutine. Usuatty the P-Sequencer works on one operand
(say OPI) while the !-Sequencer works on the other (OP2). In this way, the P-Sequencer can
specify a reiister read npP.r~tion at the same time that tht! T-Sequern.er ~ptldftes a cache or register
read operation.

One of the more commonty catted !-Sequencer subroutines is the operand calculation routine. This
routine i.! actuatty a ~ut1ect1on of routines to perform the calculations necessary to implement the
various addressing modes of the S-1 native mode architecture. The P-Sequencer dispatches to the
correct !-Sequencer routine according to the addressing mode used by the operand in question.

Multiple P-Sequencer instructions may be required for the execution of some macroinstructions.
When the P-Sequencer has completed the execution of one macroinstruction, it proceeds to take a
starting address . for the next macroinstruction. This starting address ls provided by the decode
RAM which is being addressed by the opcode of the next instruction coming out of the instruction
queue during the 10 pipeline stage. The fetch of the first and succeeding P-Sequencer instructions
is performed during the II stage. The execution of the microinstruction fetched rlnring II occurs
dUring multiple succeeding cycles starting with the latter half of 11. In particular, the first
!-Sequencer instruction specified by the P-Sequencer is fetched during the 12 cycle. When an
I-sequer•cer sequence finishes, the P-:-Sequencer may fetch another mi,roinstruc:tinn If only a. singlP.
instruction sequence was needed then the P-Sequencer witt fetch the starting address fo~ the next
macroinstruction. If more than one instruction was needed then it wilt fetch the next instruction in
the sequence, which is specified as a branch address in the previous P-SeqnPnr.:er microinstruction.
One final attemative is that the P-Sequencer may repeat. a microinstruction a number of times
determined by a counter. This loop counter may be loaded from the decode RAM at the start of the
seq uenQ!,

The PSEQ. drawings contain the logic used to compute register read and write addresses for
operands and for address calculations. This logic is on the RAG drawings. The P-Sequencer has a
good deal of flexibility in these register address calculations. The register addresses may come from
various fields of the macroinstruction or the P-Sequencer microinstruction and may be added to the
loop count with an optional shift.

C:I3JN3n0.3S-d

c;:
Cr-

6-CS. 91 01--.n -

~ ...,~ ,
1 , et-ss · 3"Tl1J

11~~
IV~U1>3d3111Bh<

NOlL~
SSBDI

b '", <!-fld" ll~ J- !W.$1,311
.. ~

i ISII91
3>0,0 -: s

til
J.Strl Q3S·d 3)

IIW' ... 2 <81 ·iJCal tfi. 03S·c

"'
•• •eHO::t 'JU.I ras:-d •

,,.101 .1
• trt:l'll· 3>0 Bll I'

~lt.V ce1•e~ :nw cas-e-
'

~811'
Bll

-~· ('
<81191f6.....S 11-lllld

: -.

.. , 01-98" \IS ~1811 038-1
. '

l
'" , <!-fld" 21 >0

.I <1:'0>3'1113&-d 13.<
..

3)0 ~ 31 ~ ..
'

-
..

·~ .., <(910..cJ. d • lt101 1
IV (,(910»11 d • -tal

1 <51'0~li:ICI M 13.< 3)(.)
035-d

!l3!l &In

- .. -

; Ill
P.liEQ LOOP !HEX II • Si!-8< Ill?> Ill P- SEQ LOOP OlHT I: . 2-8<111 ?> _., - LJ> T

[At LOOP ·::.clHT I~ .S4-9<e,?> w.. T
I ()(m I CHT1!

IC!I!ll~ TO ,~!136 Tp
]) C. I ca

P.SEQ UXP CHI£ L ...,
LJ> IXWI LC-· P-SEQ LISIIG 5A .!IS-111 L jPE PE

0< CICE R 0< 0(£ R ®
0< 11 .. ~,2 L &Z I I <!

lUI tEXT 11 C.TCLE .!IS-111 L

PI lAST lH II • 5<!-"-B.t;

P-SEQ LAsT

IB
IB <ll1liLT

& REG OC£ i -!lEO- U8IMii 5A • 35-111 IllS JIE"G

P-SEQ UIS"T I 10141 T 10141
P-SEQ F.-.Ilti IHSTR [3 -~·B I 1.R2 T

T•""
'-"1

1

CK OC£ ~

CK U .1'0-<! L &a. I CK I3 ... 2 L &2U I
I-5EQ USDG 5A • S'i-111 L

P-SEQUENCER

t.l '19~ 1 03S-d

l.---
3(1 s

,

C:l3JN3n03S-d

·'

:n IH H:-------;;<8;;,;;-9::::,.:-::"'9'6=·"'"""11:--:-:116,.-,I~Sd~

>9~1 cr--------------------------------------~--~
zr--------------------------~~

,

H

116CJ)

t·

11600

11600

~-to&" II i!OO u:xn ..,

.....)6•1"$" II -us 116 1. Sd

(J)J.
u"N3ue-es· liiii

300:)3(1 !I)(

~
--H3l.e·O!S" II lli

taL <I "101 >8·0!$. 11111

~113
i!OO

~-.ll<3~0!S-II ZdO IQil

.. CJ)
3IX)'l3(l

~"20)18·~·. II Ill

.aldl!r.l63(1 3lnl 00
(Njtj3dO <3CJIW"C00>8·;!S" ll.~

~CJ)
«COO>&·O!S" 11111

,.

~1113
100

<!ltU ".ll<318·~-II ldOl<!II

.. oo
3IX)'l3(l u"ICJI>&·O!S" IIII1

illldiii:IS3D 3DGI 00
<NI!I3dD

alll<"IOO>&·O!S" 11111

)(CJ)
«" ICII.o8•0!S" II 111

to F«Bl A~
00 F«Jl ,P

00 F(2' IP

&1~ •• ...,
(I) F'<a~tc&>

00 rt.XJ€l8a..,
CX)(

OPERA~~D DeSCRIPTOR DECODE

·.

- Clll I!l Ill 12 At

- ali! IS Ill Ii? At

-Gill Am <IR 12 .SJ.9<0r6> '"

RAG ali! AEG A:R 12 .SJ-9te!J:6) .1'1

I--se"G DOES ClQi! 12

-- :RTR
QJ811108 :ffTB

PillE& R sa. ta .. ~3~9Cea1•

RR:; ~G II OFF9£T Ii! .~·9<0r6>· At

1¥=6.:;£G R on:'9ET 12: . S3-9t I :6>· ;t1. 1 e

RAGI1EG R OFF1iET 12 .sJ-9<2•6' At • 00 Ia

RA:; REG R OF'F'9ET i2. ,9.].9f3:6\- ""' I 089 b U:,s64

1 : RAG TEN· RC U . S3-9C9s~ AI : Ge 1'5

1 : RAG T£lj I£JIIIEG 12 .93·9<Eol> At·r 00
5

1 I RAG TEN AC.•I i2 .s.J-9t0a.])o Itt : ee 16
1 ; RRG TEN te1 AEG- I 12 . '93-9t ea :J) A1 r eB

~ ~G R L£G 8 5EL U .s.J-91;.•~ A1

RAG CXl IS 10 12

P-4JEQ AEG 1iF1 l._,E\.9t. 4t7t ~

P-~Q 11EG RR 14 .SO-HI< COO. 4:7> "
P-S£Q II£G RR L0o1 ~ 14 .S4·16C0li!'t

III'IJ CXl 11EG- 12<9r6>

:TO Ita>< REGIST£11 FILE

0< 15 .-2 L &Z

~ t£XT I'> CtCLE .95·11t L

liB
VI9 REG

O<E
101•1 T -0< O<E

.. P-5£0 RE"G ~ IS .S2-9t£\.Eti:COJ. 4t7'

P-~ I<£G RR L.Ql <ClR 1'5 .Si!·B<81Z>
L

Am 0<E T Am 0<E T L P-SEQ 11EG RR 1.001 <ClR 14 .Si?-9<8•Z>
VIS~t H VI:'a..... .. P-SEO I<£G RR 14 .Si!-9<000 4;7>

·1--------ji 18141 t 10141 H P-9£0 REG RR 1"' .S4-19Cca> -417\
T•N T•~ L P-8£0 REG RR La.. 'IR 14 .S4-10f8a~

~I ~

0< O<E 0< O<E

0< U .I'll-<! L &Z

OUf l£lCT tl Cl'Q.E • $·1 e L lUI t£XT t• CYCLE • 95· ttl L

RAG REG R LE."G B SEL 14 • &4- 19'9\ IP'I

P-SEQ 'RE'G AA 141 .S4-19tQXl.4:7\

"
..

PS IIEG R QP 9El. 12 • Sl-9<0: ,, I A•C ·~·B>C B Ill
9El. IlK

P-SE'Q ~G RA 14tE'.E'N. 4:7\

~

cot£>IT

P ~ R CP sa.cesu •

00: A
0t. A•B
10: B

IICI L

e

0000 :F-A•Ct

P-SEQ R£G RA &..OW~ 14 .~·10t~

REGISTER RDDRESS GENERRTION

~ -·U. .,
C/:1
M p

'.

....,

MG Clll REG - L! • S3-9t0a9 A1

-REG w <J'I'!IET ta .93-9<0a.s> ...,

~-=.,REG=-"W'-'CF1=F"_,SE'-'i'-"L!=-..;·.!:9l~-:.::9<:_,i!:;:~6>~...,:!!..J•!...!!!ee!!.... __ a

-REG w CJ'F'IET u .sJ-9<3•6> '" • - 3

P 1£6 A fSJ s:L•8:1• ..

PI REG d QP 58.. Ii! .U-9<1111>

" 9
A•C II•II>C B 18

SEL -
IICI

?I!
VIS OL.f

- REG 0<£

1-----------l:r 101•1 T
T•I'Wt-----<

0([J .1011-4! L liZ

-IE>CT IJ C1CI..£ .!Jo;-10 L

- REG W LEG 9 9El. tl • S4--18tll> A1

e

REGISTE~ ADDRESS GENERATION

;j_

H

p. 9EQ RFG Ioiii ll<

L

/0
f1l
GJ
H
(/)
-!
f1l
/0

D
0
0
/0
f1l
(/)
(/)

GJ•
f1l z
f1l
/0
D
-1
H

o8 : tA: II .S4-18tCXJf.F)

I I lR 11 .91-IEJtGOI.F\

tR 11 .S:4·101CD1.F".1.6) 1 eta

I~ I I • $4.-100 001.1100E> : ee

tR 11 .S4-10c(I)J.f"'X:E'\

e : Ui II .S0-100002.F>

1 t lR 11 .~10tOOC!.F1>

Ui II .S0-1&<002.1'.1.5> • ee

tR II .s-J.19&002.t'IX£> ' 0i2l

tA II .~l&fOOI.tt::Ja:')

PI R£G II OI?'SET SEL II • $4.-9< I' l'>

P-SEQ LOt:fi' IIClEX II .92-ll<'lo?>

PI IIEG II OI?'SET SEL I I • $>4-9< 8>

?'I RE'G R LEG 9 SEl. II .S4·3tlt])

:JRI S2 PREC II .s.2:·Bt011)

-ORI Sl PREC. II .S2·8t0: 1)

PI I~ 002 II .84-8

PI IIEG II LEG 8 SEL 11 .&0-8<8>

0 PS IIEG lol OFI'SET SEL II .&0-9< lol'>

z·
P. SEQ LOCP li'<C£X f I • 92-Qt .-' 7')

PI IIEG w OFI'SFT SEL II • S•H!< 8>

PI IIEG II LEG B SEL 11 .84·8<1•3>

$: CRI CE'ST A£C. II .SC:-9C0:1)

PS IIEG lol <.EG B SEL 11 .84-B<Il>

58tT
OOax:E
91201CilE Tf-----......J

OCI

5 BtT
OECOCE
01201CilE

IX2

()(A Tl .l"i-7 L

~ 001 REG 'Ui ttce:6> A1

RAG COra 11Bi ~ I 1 c li!h& A1

-H IllS IIEG I
CICE 2

1 10141 T 3

~·- ... 5
Cl< CICE

0< 1<! ,PI-3 L &Z

I-SEQ USING SA L

- 001 REG- 1<! .SJ-9<9o4> At

RAG 002 REG - I2 .U-9<0,4> At

12 .93-910:6) ,
I2 .SJ-'><0•6> At
12 .SJ-9t0t& A1
12 .93-9t01~ A1
12 .93-9C0:& A1
12 • S3-9t0:2) ;ot1

RAG 001 IIEG IS Ill 12 At

RAG 002 IIEG IS Ill I2 At

~ -tJ'

"0
Cl)

M p

....,
t.o

74 2 IBOX drawings

2.16 ISEQ.C

Drawings: ISEQ.C 1, ISEQ.C2, OPTYPS

This section computes certain !-Sequencer related control signals. It determines whether or not the
1-Sequeneer witt be doing read or write operations for register, cache, or .constant operands. It also

. determines which operand (OP 1 or OP2) the !..!Sequencer will be concerned with for the current
cycle.

Operand type selection is under microcode control. The three principal choices are register, cache, or
constant. One additional possibility uses either register or cache depending upon the virtual address
supplied. This is useful for emulation of architectures with registers in the address space, like the
PDP-10.

2.16 . ISEQ.C 75

PI I A 15 .53-..

PI I 90£0 " 15 • SJ.q

t-S£0 G A t5

PI I R IS .53-.. L

PI I SOED" 15 .Sl-9 L

1·9£0 I REG R lS

!·S£0 t !lEG " t5

PI >It Ia; " t5 .~l-" L

1-S£0 !lEG" IS

.;

1-S£0 C S£L IS

I-SEQ !lEG S£L IS
Ull D ~~~~" [l.ctaa.

0111

I· S£0 (0-IST S£L IS

I SEQ CO~~TROL

~

11
.

..
~

~
~

0
~

~
~

:jJ
m

!

~
1:1

~
~

I
~

.
"

~
~

:il

~
:il

01
r

~
a

~
01

"'
:n

..,
~

•
r

.. r
'II .. ~

H
 I (/
)

iT
I

0 (
)

0 z -
f ;;o

0 I
~

~
~

~
~

m

~

£
fJ

~
~

~
2

.
~

m

§
§

~
i!

~
~

..
..

"
"

;y
IY

;;;
;n

• 1'1 CP Tl"'E liE\. I5 o SJ-<o L<0>

It: rP T~ SEL IS .SJ·9c' i·l

tcS: ;oP

~
~
tea: ,..P

IC"91 .,.p

~
~
i7"fF-;p
~

tc 1.,) A'

~
~
ttl~..., .
ft'IE'\ .IP
~
~
~
~

I<~ ,p
tt24> ,..p

~
Jttf!b> Ai

lt27"- .,..p

Jte& ,p

JC"C9'· A'

It TD4 IOlE REG <01 CE'TE'C.T I'i • 2·8

II <7 T\'PE ~ IS oSl-" L<8>

• 1'1 f:P Tl'PE SEL.. 15 .SJ.Q Lt8)

~TYPE SEL ts .SJ.Q L<1~

It CP o~I'E ·9EL I5 o ~3-'"'8>

c.~

REG A'

8 II r:P T~ sa. ts .S:J..9r1" Gll CONS1' A'

~

I<SU>

CA.I
CONST A.l
~G A.l

OPERRND TYPE SEL

~ -Ol -C/)

M

~

.....,,

'78 2 IBOX drawings

2.17 PI

Drawings: PI l; Pl2

The PI drawings contain control signals which are generated by ·combining P- ·and !-Sequencer
generated signals. One class of signals is controlled normally by the !-Sequencer unless it chooses to
give control to the P-Sequencer. Control ~ usually transferred in this way during the !-Sequencer
address calculation routines. Since the !-Sequencer does not know during these routines exactly

·what the P-Sequencer wanted after the address calculation was done, it gives the P-Sequencer
control over loading operands into the operand queue and scheduling writes in the write queue.

These drawings are also the site of the generation of the precision and format fields. The precision
is a two bit field whose value decodes to quarter (00), half (01), single (10), and double (1 1). The
format is a four bit field indicating the ABOX internal f'ormat {see the ABOX description). 'These
format-precision fields are specified for !-Sequencer read and write operations and for P-Sequencer
register read and write operations. The !-Sequencer controls the generation for the !-Sequencer·
read and write format-precisions but may specify that they come from signals generated by the
P-Sequencer. The P-Sequencer, in turn, may let the decode RAM be the source of these signals. It
may also let the decode RAM generate the register read and write format-precision signals.

2,17 PI

~ l LO<U OP 13. S3·9

II O£CI< W l3 • S3-"
II 0£0< R 13 . S3·9
I. IO llEF 13 .S3·"

PS O£CK 1..1 13 . S3-9
~ 0£0< R 13 .SJ-9
PI 10 REJ=' 13 .93·9

II Glo..£ P-SEQ GOH1"ROL 13 • S3-9

Pt t L.0<C OP 13

t• L.O<C BOT>! CPS 13 • 83·9

PI)(I L(A) CP t3

PI 1 R Fl1T 13 • 83·9<0:3>

PI P REG R Fl1T 13 .S3-<H0:3>

I·S£0 !XES 002 13 • S3-Q

" I
1
3 ..
5
6

9

·s
6

9

H·
II
L I
H
II
L

ID :m
Tl Uill?l

116

0

i!
3 ..
s
6
7 a

H

Pt l R t3
P1 t"Le<U C.. t3
PI 1 SO£!) W 13

PIR£U:AS£.u::---u
Pt EW ASR CI'P 1Jf0: I~
• P1 ~-liP o"iil·13

- l'f RElEASinu. cj>9 13
• PI L.O<C 90T>i OP CTL 13

PI L.O<C SA 13

PI 0£0< w 13

[1 ___ PI 0£0< R I3
_PI lQ_IlEF_L3

PI L.Cl'=D CPI 13

PI L.O:C CP2: 13

PI OPI R Fl1T 13<0:3>

PI CP2 R F11T Ur013\

PI CONTROL SIGNRLS PIPELINE

79

t-'EQ IXiEll CDi! 12

tS R- PliEC U! .96-B.St 116>

U! .10011-B.S< ..

CIC U .P1·3 L &Z

lUI otEXT u cra.E • 95- "' t.

O<JI 12 .P:J.Z-7.0! l. &Z

PI CONTROL SIGNALS PIPE~INE

co
0

~.18 CONST 81

2.18 CONST

Drawings: IMCON 1, IMCON2, IMCDP

-These drawings show the data paths and addressing mode decoding for the generation of immediate
constants. There are two double word data paths, one for OPt and one for OP2. The constants
may come from the operand descriptors in the case of short constants, from the extended words in
the case of long constants, and from the physical address lines in the case of indexed constants. The
data paths perform atl the left and right adjusting and the sign/zero extending specified by the
addressing .modes.

CPI L£F'T OOl AI I
CP1 H- SI<;>! EXT . .., 1
CP1 IS 'IJ AI 1 - CP1 IS D1 A1 a
CP1 St0: 1• A1 3

CFe lEFT ,.,1 AI e
ClFe HIGH SIGH EXT ..., I
CPi!I9....,A1t ~OP219o.l,., 2:

00119UI • Sit«iLE IDlD COHSTIWT FRett F<! D IN LOW IDID•

~~IS~D9£D~~COHS~~r~ga~~U~-~94~·~1~0~~~,~~~~----~------~~

I·'3EO OOES 002 16 .94-10

It COfT1n. IIOTN CPS I6 • 54·18

• PI fP 1IEl. 16 .-10 Lte>
-PI CP SE'L 16 -S4-18 L4'1l

I·l1Ell OOES 002 16 .!14-10 ~

ClFe LEFT ,.,1 A1 9
OPl! HIGH SIGH EXT A1 I
OPaiS'IJA1:-CPaiSC)lr.1 a
~) ~ J

OP I LEFT ,.,1 A1 0
OPI lollGH SIGH EXT A1 I
CJ'1 IS l-to.l A1 1 - CP1 IS ~, 2

• It D9£D CONST SEL I6 .54·10 L'~

I·S£0 00£9 002 T6 • 94·10

It CCHTI<Q. IIOTN CPS U . 54· 19

• PI CP SEL 16 • SA-10 l.(~
• PI OP 5El.. 16 • SA- 10 L(P·

• l·S£0 DOES 002 16 . So<· 19 L

HIGH 1-----'

~C)j f-----_/ ..

-- I6 .9<-le<SW>

HIGH~----~'~

ICB
LOW 1----._/L.

IMMEDIATE CONSTANT·

lN~lSNOJ 31~I03WWI

/::7 ~--------------.,.=·i!IID='"'.e"'l'""....s=·;-;;91;-::lll:;-

U: ~ ~ • 4> CN> I • lC
6S3Wl I»GGX3 10!115

.l.tGa.IT.)

IV <84 ldll

W , 00 1191& ~lH I~ •

Ck t:> .P1-:J L &Z

1Ut lo£XT 16 lNl 17 Cnl..£'9 • 96-10 L

0 l6 .S4•1et6all H
IUt«; 16 . $4-..10«811, f1

II!Gif SlCi-1 EXT
Ito! TO B:l1'll

-<91>
LEJ'T ..,,
oo F~e,S\

sce:l ..
.-!TO B:l1'll

IMMEDI~TE CONSTRNT DRTR·PRTH

"

2.19 AWAR 85

2.19 AWAR

Drawings: WQ), WQ.2, WQ.3, WQ.4, WQ.5, WQ.6, WQ.7, CCAMl, CCAM2. REGCAM, XRCAM,
REGCER, REGCEW, XRCMP, ABFCMP, SNEM 1, SNEM2

The ABOX write address register (A WAR) drawings are somewhat elaborate. They implement the
write queue, which is a 16 entry queue of addresses at which results witt be written by the ABOX.

Rest,Jlts are first scheduled by the IBOX to be written tater by the ABOX. The IBOX must first
check that it is legal to write into the addressed locations. Then it makes sure for a memory
destination that the locations are present in the cache. These operations are no different than read
operations (except for the type of access that is checked) up to this point. However, instead of
reading the locations from the cache and writing them into the operand queue, a new entry is used
in the write queue which remembers the addresses of the locations to be written, whether they are to

be written in the cache or in the registers, and where exactly in the cache they are to be written.
The IBOX depends on the fact that a location witt remain In the cache until the ABOX generates
the result. ·when a result is actually generated by the ABOX, the next entry of the write queue is
read to determine where the result should be written.

There is another queue, built with content addressable memories (CAMs), which is written in
parallel with the write queue. The CAMs store the address to which the result witt be written later.
All of a CAM's entries are compared in parattel to the address of an operand that is being read.
Any of the entries matching indicates that the cache or register file does not have the correct value
of that operand; rather, the ABOX has yet to write the latest version of that location. It clearly
would be incorrect to let such an operand be read before the correct value was generated. There are
two possibilities in this case. One is to wait for the location to be written before delivering any more
operands. The other is to tell the ABOX somehow that the operand that is being delivered should
be ignored and that the true value is one of the last several results that the A~OX has produced.
There are certain (common) restricted cases in which this latter option can be exercised.

The !-Sequencer control over the scheduling of writes into the write queue is somewhat similar to
the operand queue control but is not as complex. The !-Sequencer can schedule register or cache
write operations, release att the unreleased write operations, and enable comparisons, on the
unreleased write operations. The state information of the write ·queue is contained in the following
signals: WQ.ENTRIES USED<0:4> is a count of the number of write operations that have been
scheduled (released or not), UNRELEASED COUNT-1<0:4> indicates one less than the number of
those used entries that have not yet been released, and CMP UNRELEASED ADRS indicates
whether or not comparisons are enabled for the unreleased entries. In addition, there is a current
read address and a current write address. Being somewhat more restrictive than the operand queue,
the write queue allows only one location to be used up at a time. Also, as in the operand queue, the
clocks must be stopped if a request to schedule a write would cause the write queue to overflow.

Most of the complexity of the write queue is in the CAMs. The CAMs are split into three pieces:
the index register CAMs, the register address CAMs and the cache address CAMs. Att of the
CAMs are addressed in parallel for writing and, in fact, att of the CAMs are written at the same
time. Any given write is either 'to the cache or to the registers, so either the index and register

86 2 mo X drawings

CAMs witt have a valid entry written or the cache CAMs witt.

There are two sets of register CAMs, one for OP1 and one for OP2. This is necessary because it is
possible to read registers on both operands in one cycle. The read addresses supplied to the CAMs
are the appropriate register read addresses for OP 1 and OP2. These addresses are double word
addresses and more information must be passed in order to determine exactly which registers are
being read. Within a double word there are eight quarter words and so an eight bit mask is
generated indicating exactly which quarter words are being read. A similar mask is generated for
writing. These masks are produced based upon the low order register address bits and the
precision.

There are also two sets of index register CAMs, corresponding to the two sets of index registers that
can be accessed simultaneously. The outputs of the index register CAMs are used somewhat
differently than those of the cache and register CAMs. In the latter case, the question of operand
wraparound must be decided. This is not possible for the index registers; if there is an address
calculation that needs to index by a value that has been scheduled to be written, then t~e indexing
must wait until that value becomes available. It is therefore necessary to stop the pipeline at the I3
stage where indexing occurs if there are any index register CAM matches.

The cache CAMs are the most complicated of all. Memory locations are broken down into quad
word blocks aligned on quad word boundaries. The quad word blocks are then further classified as
even and odd quad word blocks. Any given cache write (which may be a vector write) will occupy
at most a quad word. However, it need not be aligned on a quad word boundary. In any event, it
will overlap at most two quad word blocks; an even and an odd one. A pair of CAMs stores the
high order address bits indicating which even quad word block and which odd quad word block
are being occupied. Corresponding to these CAMs are another pair of CAMs which store 16 bit
vectors indicating which quarter words within the even and odd quad word are being read. The
first set of CAMs mentioned produces high order address match signals and the s~cond set of
CAMs produces overlap signals. A rmal set of CAMs stores tow order address bits, enable bits and
format bits. If the format bits do not match, then it is not possible to ask the ABOX to wrap
around its results and use them as operands. If the low order address bits and the high order
address bits and the format bits match and the enable bits are set, then there is an exact match.
When there is an exact match, results may be wrapped around within the ABOX. There is still a
problem, however. There may be an exact match (allowing results to be wrapped) but there may be
a more recent match that is not exact. That is, there witt be a match of the quad word addresses
and there wilt be some overlap but the futt addresses don't match. Since this partial match
corresponds to a more recent write, it is not correct to wrap around the older value. An exact
implementation, then, would wrap around only if there is no more recent partial match. The Mark
IIA implementation, however, will wrap only if there are no partial matches at all. This wilt be only
slightly suboptimal as it wilt be very rare to have partial matches in the first place. If there are no
matches (exact or partial) then the operands may be read from the cache. If there are partial
matches then the clocks must be stopped. This entire discussion applies equally well to the OPl and
OP2 register CAMs except that double words are used instead of quad words.

Once it is determined that wraparound can occur, it is stilt necessary to tell the ABOX which result .

2.19 AWAR. 87

it should select for the oper~d.. This is accomplished by first selecting the appropriate register or
cache exact-match lines for OP 1 and for OP2 and then rotating them to put them in order by time
of scheduling. These outputs are then priority encoded to find the relative distance. to the most
recently scheduled write that matches. These values are then sent to the operand queue to be
forwarded to the ABOX.

L::
/0
H

-l
fTl

0
c
rr:
c
fTl

8
1

?ell z
3 ~I'IE Q.E\.E

• 1'£11
s 1101'1

~:;'\- A1 6 ,
B olE.

Wl RR IQ . 9.2·&-9t:J) A1

~ <f'l I> .S4·10<1h3> A1

SO£) lj I? . 58-6 A1

&I
VIS OL1

!lEG T
I£)(T '-0 ENtRIES l.JSEDC'81 ... , A1 10141

T•P<I
\.liZ

0<

0 1
z
3

()(17 .Pe-C: L &Z

lUI t£XT I6 <Nl I? CYCLEl .S'!i-lll L

411
l.f'

I CNm
180136

Cl

IX)ca:tl(IJ[9L
l.f'

8L
FOE

()(
Q(E •

0< I10 .0'&-l! L &Z

yv
F'\..LnH PIPE: .C

IA.ID I6 .se-9 L 0
"-'-"=""'-"""'-"='-"'-~"'-"---------- 10GI? ~ t<ELE<ISE "'-'-~ u .. sz.a; L . j

IA.ID 16 -~·QL 0
~~-10!? ~OF 16 .9-4-~ L<(~ . UE;

I.A...IO 16 .SJ-~

&.Ill : 1.1 16 . SJ·GI 11'1

8 i I
z
3

• s
6 ,
B

t.ll E>m!IES USED I7 • sz. -· 4: A1

WQ E).I'T'RIES USED I7 • 94· I ~~.C: A1

, 09 IJRU'ASED lllR9 I? :sz.. A1
I ~CQH1-I I7 .se-e-e • .- A1
z t.ll <f'l I7 .se-&CJ:3" A1
J t.ll REG~ I6 .se-e A1

&.Ill c. 1.1 16 .S24.....,

0 OF l,H:ELERSEI) q)A9 17 .~A-1:D A'l
I ~CQJ'f1-l t? .s-c·H,·e:..: AI
2 WQ ~ 17 .94·UJ•0:.J: AI
3 t.ll REG~ I6 .-;4-U AI
4 &.llC.I.It6.~-Uitt

T wa RA t9 .sa-a·ez3- A1

T~

lUI I£XT I6 <Kl [? CYCLES • 9';- 10 L c: 1813&

Ll

II.

~ CCUIT-1 I7 .114-10<8&4> AI

AEU:I<SE IU. - I6

FUJ5>(PP'E

WQ ~. 17 .a.-retes31> At

-
110£1).., '16

" s
CII£S A-C. O£S

lei<

ACI

FUJ!lH Pl1'£ I Rollo c. 2EI!O
ZIRD 101<

~

oG E!mUES UiED I7 .$4-1818&4> A1

llO 183>< " 19

S0£1)WI6LA'I

lUI l£)(r I6 - I? C.TCL£9 • 96- 18

F1..LJS>< PIPE .C.

WRITE QUEUE
. ~c:

-~ ·.....-ul'f 'I
\ • I j.._,, ~-

t€XT ~ c:.o.HT~It81b A'1

l£l(f 0e1 ... e,;p

lt£)(1' loll &mnE'S L.I9EDIQ:4, A1

~ -co

>
~
>
:;d

~

.. ~II t6 .Si!-8 At

.. cu !6 .Si!-8'"

.... w 16 • 92-8

WRITE QUEUE

' '

~~LOW<OI
~ CCif'<llE

M
LOW~ f:I1T' EH M 17 .91·7 Lt0a2.0:1P A"1

Fl.£

-
q IE

-· y y
REG Of' EN~

CAC>£ "" C. 1'1 P .91·7 LfE'\.&ttCCO. 0: IP AI I-liEQ 01'1 REG ~ UlW <01 191!h2> LOW- IER)Dr; ~ p- M cc .
- a:::RF' p .. SEQ 'SEL CO«S1' IS L.t I ,

P sa REG ca.E1UOP
C ~ 17 .SI-7 L<£\.ENtCXlO 8: IIEP' ...,

- t-11E0 DCE1I Clli! !I; .Si!-9 sa 1 OPEN R P-~I
q IE -p "'lEt: I POE y y I

1G nax IA.tD d .84-18<£\.f)h(llll).ll> AI OPEN A
1111

WQ 'liUX REG~ t.l .94-le<e. .,7> AI •2
IIIli!>< R£G C"'

~
VIS cu· ~

>Giel INEX ~~ ~ t? .S1-7fE\.E'NaODD e~ IP A'l
REG 0<£ p " I 1111141 T

..a) R£'G CJ'P E'N 1.1 $.\4 t6f E\.€NI ~ A'f
OPEN W

lH --~· :r . T•A.I P- tQ REG~ 16 .Sl-91E\.£Nz(D) 4:71- A1 wq
t-SEQ CPi! R£G If> L:::O. <01 tS<Ooi!> \Ill

UlW - REII)Dr; ~ (l(Cl(£ q IE I'RSI(...
- DeAF' P-SEQ SEL CJNST 15 L<Z> p sa. R£G I I I.,.,.

l-EU ocn Clli! t5 • 9i!-a ~~- SOI'IE t1ClEX REG Of' 17
sa. I CPe 01' EN R ~

L

p "'lEt: ~~ t.a ttUX \.11..10 13 • S4-10fE\.£HtCX:O ,, ,
OPEN R

PI P ~EG R PII!E1: ts .92.-ace ,, (l(16 .19-2 L IZ loll 1N£X ~ RA 13 ,S""-191 I 4:7\ A'l •2
tiCll!>< REG C"'

~ >GiC2 ..
"

ttoU'K REliC CIP 17 .SI•7fE\.£IroltODD ihl&t ...,
PI 1 R FIREC 16 .9a-9tlllt t, ~aN t£Xr t6 'N::I t? C.YC&..E'S • Sti· te L '--- - OPEN~

,.__ wq

a CPI ~ R!Eq)Jt«<; Q.4 16 .94-18 l.(E\.ei•OCO 81~ A1
q IE -' loG OPI JB; OP Dt ~ I6 .94-IS L. I r -v- i! CPa REG IER)lfoG C:W 16 • S4-18 Lf E\.ENz e.:r. A1

~.X ..0 CP2 REG OF a-. R 16 .94-.10 L

'--- -<:: ~!:Cn-G Q.l

Ill ooe:- CP1 J£G QA 16 .94-19t'E\.EH•a:.D 4:7\
REG C"' OPI REG H P .$1·7 L<E\.&ttCIIl.0:11;) ..., -- ~

RCI " F'ES 'N ORT'Rt •• 7')
181-

REJ; ll!tTt~«; ~ 16<E\.EN•OOD 8o3> AI CPI REG~ 17 .91-7 L<E\.E'NaCXI) 8JI!j) AI
R8

T hRtrJ«P Q.l ca.E1UOP

- wq

loC ~lilA L.CIU ~ "16 .Si!-9t0Jb H q IE CS I:XRF oP2 REG RA 16 • S4- let E\.€Na a::D 4t 7' q IE --y I I E

~
PI W PREC 16 .'SC-&1011> VIS REG I CF 16

L
loa~ 17 .82-BcBI;!) At

10141 DEtOCE
REIIllNG "" FEIREGW~EN,-IE .CL I ~ Tt--- q 1ee1>a T

2.V

REG C"' .. CP2 REG t'l t:i' .91-7 LfE\.&IIQ[J) 0: I~ ,
a.IJ~O'PENWU.L

01 ~ RC2 M

(l(
CE '--1- wqtn..:;~ -~

CPC! REG OUE'R1.JP 17 .SI-7 LtE\.EN11XJD 0: I& A1

I <,)
'--- ~

161!
()(16 .P':' ... 9 L. 1Z q IE -a.o t.A.tD rRSK ve: •~ "'" ~TtH T ~ I I t 188158
SO£D w 17 0 58-6 ,_ "'" _...J

~
cl T

~ t~tev
2.V

CK 17 .P3-4 L lH I \0
El E29ET .a -I 90

I

lt IICEX I.A..lO 12 .96-18 L(0a1,. C!B

~==~==----~~1e~G61~) :_~DGI'CllL<a11> ~

lJrUX REG RA 1~0: I 4zs-

WRITE QUEUE

.]

I
0< LJ .F9.3-2.JI2W

lUI I£XT l3 Ctcl£ .11!>-10 L

" '--=L_,_+---'1«1=-IICEX=:.;. REG llA 13 .S2·9<0<1 ••B> A'1

u:a..to ts . sa-a L

U18
uts REG
CBAt ·•1--+---,

\A.. tO 16 , 92-9 L

r- l 1~· t----+--_r--..1 l

1.113
0< 00£

H

11111
VIS Q£G

OEl.At T r----
100141
CJ(£ 11)

~.~~.

0< CJ(£

L I
i!9

1010'iA
G1

I·9£C I R£G U ·15 [9.1 ,2.0]

ra.Joo fo£)n" [6 R-0 1:' CT'a..ES . SS-19 L

" 1
2

·,

.., 6D
·. o.v·a-<?S· £1'QO> ~ 6D

l•IGl Kl
w ·••e >e·i!S • a •-JHW 03SIGl3IH1

w CSL'0>, ~ Ol"b"'' Qt

-
,_. >G1 IV era~S~i!S' d 03681 63~ at'l

tal l<StW!11 ttl IV <e•e>e~· a -.. 111

till t--IV <1:18>8-~-61 1111 111

..
en
-C'i

t:S' E>cRCT l7<1ti!.B> ...,
I0 T0

t:S' EXAC7 W'ST->4 l7<1oi! 15> ...,
17' ~ T7<1:2. I> ...,

II Tl
CP ~ u:-sr ... ,., t;tch2 ,..,. ...,

17' ~ !7< h_<!,. 2> ...,
I2 21! T2

17' EXIIC7 o.PST->4 t:'<l o2 13> ...,
OP EXIICT 17< I o 2. 3> ...,

Ll U&lB TJ
OP EXIle·- W'ST-Il !?<I o2, 12> ...,

OP ~ 1?<1:2.4> ..., !lOT OP EXIIC-o.PST-tll7<1:2 11> ...,
!4 T4

(1P [)G:CT l?f II a_ (;:) ...,
IS T5

OP EXAC- L.PST·N 1.,<.112 1e- ...,
OP EXIICT I7< I :2. 6> ...,

l6 T6
OP ~T LA9T-N 1:;<1:2.9> ...,

OP~l?<1:2.7> AI
I? T?

OP EXRI.,. lAST -ll 1:><1 :2 8> AI

17' EICRCT 17< I Li!. 8> ...,
lB Til 17' ~T ..-r->4 1:>< I o2. ?> A1

17' EICRCT !?< I :_2,. 9> ...,
19 T9

CP E'XAI:T LAST·"i r,.." 1 t,2. 6l> ...,
17' EICRCT I?< 1o2. 18> AI

110 T10
17' ,__..,. LJlS'T-N pq :2. 5> AI

OP EICRCT I7< I :2. 11> AI Ill Til 17' ~T LJlS'T->4 1><1:2.4> A1

rR E>cRCT I?< 1 , a 12> AI
IIi! T12

17' ~T LJlS'T-Il P< I :2. J> A1

17' ~ !7<1:_?,_13> AI
I13 T13

17' ~ LRST-Il t:>< 1:2. 2> AI

OP EICRCT 1?< I :2. I 4> AI 114 T14 17' ~T ..-r->4 P<1:2. I> A1

17' E>R:r T7< h_2. 15> AI 116 .TIS OP ~ LJlS'T->4 17<1:2.9> A1

8s91\..T 4s8ffi"C .
818

9T
1oS<RT S:SLR.
i!ora.F 6oDIS
loAIII' ?oSGtl

s SGtl

41 r VIS REG

1G M t7 .s-18181::P. w OE

10191 [19141 T

• c Gl ""'
. CK OE

ex ::? _,.._z L 1121o1 I
-ll£l(r I6 11K1 l? CI'CL.E'S , 96-111 L

16 DAJT
FOliO ENCalER

10165 - Ill..- 17'1 !?
17' E>cRC.r ~ -ll 'D'< I ••IS> ·A1 I £1 WO .a:P CPI ~SU..T N.l'l 1'?(81])

T

- E

16 !Pfl.IT
PRIO E>4COOER

10165 ""1 Ill- oPi! t?
17' EXIICT L.JIST ->4 I7< 2. eo 16> AI

I
Ei! ..0 loRI=P CPa ~T "'-" 1"(01~

!
• E

001 I? .Pl-7 L &Z

~ -
(;~v

WRITE QUEUE

h!B --FEI II DAT<.ca: 16> 19>9'1H.
1!0 T

A .-;: 99

_y~
r-

FEI C R 0. 1!N ..-, .-;: .C L'e>

.
168 --19>9'1H

'-:" R1 T

OM C R aa L.ENmH 1'i • SJ-9< 0> J> 01 .-;: il9 . Q

FEI C R 0. EN..-,.-;: .C: L<l•

1·9E'O c: sa n; 1.. s:~ IIQC:Rl'5LA1
P11 R 1'> .SJ-91.. _v·

168 --19>9'1H
FEIII~a:16> 10.2 T

A· .-;: 9S -
FEI C II !001· EN ..-, IE .C: t.<e>

lo
168 --19>97111

'-- 'RJ T

'
gM C: II Ql LEIGTH·I 16 • SJ-9<0:.:1> H A IE B9

~·
Q

FA D IS< l21J!i> ~ c:

F'EI C. J.l Ql.ll at l¥n ~ .C L< , ..
:

FAD !'i<:ll• 101101)
Gl

~~ llltlll'iL...,
PI 1 SO£D II 1'i .S3·9 L. L:L/ 2

~
19132 T
I<ESET

"" T

f---1 S R~
c...-.-- v

r--.__
e 168

19132 T

~~ r"'-
._1 s~

l.--;.--

J ..,

r--
e 168

10132 T
~S£1'

IIi! T
-1 I R E

·-:...-

--=--e 168
181l2 T
I<ESET

tiJ T

'--I ~ R E

__...:...-

.N ..., .

CACHE CAM

~

A L<01i6l
pt:$(\.4'01 ~~

IEL

ttr0: I, 0z 19 .IV
~ L<E\.IEl-I:COJ, 0a 1~ IV

JolS
VIS DL1
A[(; 0<£ p A H

A I 101 .. 1 T
XL 'V
'V T.P\1

1)10.2

0< 0<£

~ .
.Ji!ll

VIS REG
H 0<£
L. 1 10H1 T

\.1<1

Cl< O<E

-
I 0< 16 .1'0-~ L. &Z

lUI >£)(T 16 1M) 17 tYCLE'S • 9'>-10 L.

~

c ~ltoG c.l 16 • 9o4-18 L.<£\9h<XO 811~ '"

.
t ~lTn«; Ql 16 .~·BIEI.£H•CD! 8: 16> AI

-

' .

~ -ID

>
~
>
XI

ID

"'

' 3!8
vn I1£G

AI
1'981411 c _,.uc; au t6 .92-StEIBh~flliG> 1 OC£ T
"-"'!

:
()(O<E

0< 16 _..,._,. &Z J
' CIC I7 .FJ6.. 0 .2&Z

J;!8

\lt1l I1£G

c. tE10itG Cll I6 • S4~ te t..<e.et•CXI) •: t&> AI 1e&141 T>--
I CICE

'-'13

r---_-----~
f----t 0

.3211 ~ H
I 168 ,T

100165 + L

.---< '""""' J..
HI T It(100142 "J" 1 '9l . S8 El Ei! ~ -< ~ Cl" "P ,

ff
A !£ __

C E3

I J;---
1 168 T v

H A

""'• li!ll -<>- LX _A"' I~ CA1

"-I>-100171
T .,_.

10e142

c: t12
v

cz T k - "P I L •.:2
OE A, I.E • I 0< I7 .PI.i!-3.2 &Z .

lUI OEXT 16 INI I7 C'I"CC..n .$·1· L

r---. _____ -,
~~~0~16~-~~-St~b~~~------------------------r-------ie ~ T~---------------------------------r--~ 

11!18151; 

113 Tp 11 ".~· 
I C'l8 T 

<: 
J6W IJ:r't 

It( 100142 " 0 

k - "P-
A i£ 

!!~!!...!lDC..~~-"Si!!!O:!·St~l!!;l>:_ ___________________ t---\
11811201 

C G1 

~ T~-----------------------;---1 I 1~!S6 Tp 
£1 02 ~ 

I 299 T 

<: 
16U :R1 

It( 199142 H 

c• l"f8( LoC8:1~ I'P _/' I'IASK "p--
A i£ 

IUII£>0 16- I? Cro..£9 .!IG-10 L A L<6: IS\ .... I 
I£ LA> 

CRCHE C8M 

18911~ 
OCRII7 Pe-l LIZ c ~ 

oil 

TK - "UE\9h(D) •• IP IP r x~>---~~~~~= 
L 

£1 Ei! SET 

·v 



.-rt'VIi CWE\.ENdll 01~ .IP H 

~E\efrCI:0.~,<417> AJ 
L 

01 I6 .P1.9 &Z 

Rfq)DG Q¥E\.91aaD. e. l't H 

s-.rE\&t. ttlD .... ..,... lfJ 
L 

OC l" .P1.2·l2 liZ 

JaN t£)(T 16 ~ l" C.10.£9 .'5-10 L 

DC V .PI.1·4.9 

• 'Uf I£XT 16 OK! I? C1CU'II • 8&- Ill 

168 
'1119 R£'G 

U!J0141 
OG1 
U<1 

0< OG1 

168 
Ul'3 REG 

100141 

>I 

L 

()( I? .1'6-9.~ 

OG1 T!---+--------1 
1M2 

••e H 
L 

>I 

L 

REG CAM 

tASk L•~!h 19 IP 

A t..<8zl~ IP 

I£LA> 

. T 

~
6<11 

LRTOI T 
l IC!Jii!fiW 

L1 T 

0<11 I? .1'8·1 L &Z 

-A L<9al9 
MS1< Lt0:19 

~~:<XD,4:.,. 

~E4..EN:cm.4:,.,. 

ROOitt«i CJ.I '-'E'l.E'Nr(D),0:3'f 
I£L 

a.RtTI~ Q¥£\..EN:(JX), 8:.J'Io 

11 LCE\..EH:CIX), 0: 1~ AJ 
~ LCE\.El'C:CID, 0z1~ A) 

£1 ~9£T 
~ 

~ -10 

> 
~ 
> 
~ 

~ LtE\€ttr(ll), e: 19 AJ 

11 '-lE\.ENzCII), 8zl9 At 

~ 



Of' EM R<EI.al> A' • _.E\et 4a"' AI 1 
Of' E>l R< CXD> .... i! II 1el 
~COl 4:~ IP 3 awl liM 

li'D.RTGt T 

OP EN "'£1.£>1> A' Gl -loAI'E\et. 41~ ,p 1 II 
OPEN "'OCD> A' 2 
...,<XI) 4a'J') Ai 3 

'-

tRiiC t.~ea 19 "' 

A L~8~19 '.19 

j;ELA' 

I !;8 T 
1t.W a.1 

()rte 1001~ ... 

l C1 

r-<i - "P 
A 1£ 

J 
L 

I 5B T 
1t.W em 

<:: rt( 1001-Q " Ci! - "P 
A o,£ 

y 
()fR 17 a .... I L &.! 

A a_t82l& 
Of' EN R<£\eloOCD> 
Of' EN "'£\elo CXD> 

PASIC Lt8: 19 
~E'I..etaCX:0,4a~ 

~£\.eoi1CIJJ, 4:~ 

I£L 

=t--.DE>< REG CAM 

.];!B 
t9t E\.afaCXO 9: 19 /P UltOI T 

I 1001!;1!1 
L1 TO 

£1 £i! ll 

' •v 

1W11ZII 
c 'Sol 



en 
-~ 

rv <e•e •aoo:ta"3), f'O 9G.oatt 
IV , II N3 o60 

1 '13S 
,!Eiti'13Sd 
,l:e,~d 

~·e~ tu'1 
~t•e,~l 

Cl N3 dWJ ::)3Cl 

, c-£d. 51 t:)O 

H 

,.,. 31'1-N31'011!13t:~ 



pt·l(( IBi >Ill L 

Of> £~ w tS<""""" A' 

-O'P EW II U'EI.£W:Im> AJ 
~ EW II t5<EI.£W•al0> AJ 

REG CMP EN W 

-0 
0 

;; 
0 
X 
0. ., 
~ .... 
:s 
~ 



2.19 
A

W
A

R
 

' 
·. · 

~
 

.. 

~ 

:'I;~ 
i&

:t 
&

Iii!) 
;i!i. .. 

.. 

.. 'i; ~
 

i 

' 
~-7 

.. 
.. 

!!; 
"; 

ft 
~
 

;; 
:t i!i 

~-7 

~
 

.. 

"; 

:'I;~ 
i
~
:
t
 

-lii!i 
;i!i. .. 

.. 

.. 'i; ~
 

;; ~-7 

~ 
~ 

ft 
~
 

:; 
:t i!i 

~
-
7
 .. 

Q
_ 

L
: 

u (.) 
w

 
(!:: 

X
 

w
 

0 z H
 

101 



e 
J-11£Q c; 9L 1\.. IB I 
WQ oPT 16 .SZ-8 L X I UII'Ci T 2X 
WQ oPi! t6 .82·8 ~ i! : 11l1211i8 J 
Flq016 .. 3 ~I T .., ~ 

I 
£1 ~SET AI L<0:1!:;) 

IV H 
.a;~ 

A~ 
r; L.(0,2,0,11$'Jo A) 

- I£ICT 16 <HI I? CYCLES .115-TG L 
t IllS T 

11101 Cl¥1 1'£ 

CkA 16 ..... 9-6.9 L &H L <::tt< T0ei-4C " . 
L..(: 

Cl ,p.--I£ 

A .a; 

I 8 
PI I R FlfT 16 .S4-T8<0:.l> I 
DCA' oPT REG llR Ulll 1011 I6 • S4-18<0;i!> i! 
T J H PI oPI R FlfT 16 .$4-18<,!13> ~ f---R i!IB /, DCJi!F' CPi! REG RA L04 A:R t6 .~ .. 191'02~ 5 ·::¥'1 R "" 
1 6 !ELKTCR T t 89 T 
PI CF2 R Fm' 16 .. 94·101BJ.l' .. 

~ \ <::tt< 
laJ C<n 1'£ 

~ -w 1001-4C 11 - ti Lt9:,2 8z16) ;P 

WQ C II 16 • SZ·B "' 8 l_____<;: 
C2 ~TCH T 

I£ " I 1001518 PI W F1'IT 16 .SC!·BtQh:J) I r-d L2 T 
WQ REG~ LB1 lUI t6 .'32-B<0•i!> i! A .a; 
WQ REG Of' £H II 16 3 y El Ei! SET 

IL ~ -s ·v - ~ 
--2.. 

t B9 T 
laJ Cl¥1 I£ 

<::tte lfleloOC " CJ 
I1E "f:>-

A liE 

y 

A L<e:t9 ... 
>£LA' 

CkA I7 'Pe-l L &Z .A 

181111.N -
c Gii: 

.... 

FORMRT LOW ADR ENABLE COMPARE 



2.19 
A

W
A

R
 

103 

§
§

§
 ' 

coH
!!!'".'·'· 

;;.;&
&

§§§ 
!!! 

I .rgu····-
&

 

&
 -

•• ·-~~~ 
~' 

::.~u::.::.::. -... ;:. 
~ ..... 

.,.&
-t\1

 ~ 
~,~~~n 

IIJ 

~
 

~
 

\" 
\" 

\" 
\" 

~ 
!!! 

§ 
!!! 

~ 
o; 

' 
.. 

o; 
o; 

o; 

"' 
a 

"" 
i 

4i 
:. 

::. 
::. 

~ 
"" 

r 
r 

r 

IIJ 
IIJ 

·~ 
~ 

~ 
l 

........ 
... 

...... 

... 
~
 

... 
! ~ 

~
 

~ 
a 

~
 

\ 
' 

\ 
'1: 

\ 
~ 

\ 
~ 

!!! 
!!! 

~ 
!!! 

!!! 
~
 

;!I 
~
 

\§
 

\ .. 
.. 

q, .. 
o; 

q, 
cii 

&
 

~
 

\" 
\" 

u 
u 

~
~
 

~
 

~ 
q, 

q, 

§ 
~ 

~ 
~ 

~ 
! 

~ 
§

§
 '".;;· 

~ 
@

 § 
~ 

!!! 
§ 

!!! 
§ 

_,. 
cii 

:. 
:. 

i 
:. 

:. 
:. 

.. 
cii 

• 
i 

.. 
~ 

:!! 
iS

 i&
 

• 
i 

&
 

~ 
u §::. 

~ 
a 

.. 
~ -

"' 
.. 

~ 
~ 

i 
i 

.. 
i 

§ i 
~ 

§ i 
i 

i 
i 

. ~ 
.. 

~ 
~ 

c 
::,:, ~~ 

:. 
:. 

:. 
:. 

... 
:. 

:. 
~ 

~" 
... 

... 
,!. 

!S 
.. 

! 
~ 

.. 
" 

" 
.. 

II' 
II' 

SOM
E 

NOT 
EX

RCT 
M

RTCH 



.. E«.T VI I~ A1 
SO£ t1 L< I 16> A1 

8L 

• ~TL<0: 
SO'£ P1 L.<0: 

Sf£11< I 2> A'l 

StE11C I) AI 

S>£111l< ... ...., [8] 

SOME NOT EXACT MATCH 

.• ~TL<9: 
;(I'£ 11 L<0: 

-~ 



2.20 PIPEC 105 

2.20 PIPEC 

Drawings: PIPEC 1, PIPEC2, PIPEC3 

The pipeline control unit is responsible for stopping the clocks when the stop lines are asserted and 
for keeping track of which pipeline stages have valid signals propagating through them. The clock 
stopping logic centers on a two-level 100179 carry took-ahead unit. The carry outputs of this unit 
are the •stop" lines. The least significant output corresponds to the latest pipeline stage (16 and 17). 
For a given stop line, the "generate" input is an unconditional stop signaL The "propagate" input is 
asserted if the next stage being stopped is sufficient to cause the current stage to be stopped. 
Typicatty this is the case if and only if the current stage has valid information in it. (Then, if the 
next stage is stopped, there is no place for the valid information in the current stage to go, so the 
current stage must be stopped too.) 



CI<A .P3- '7 L &Z 

""D 
H 

""D 
fT1 
r 
H 
z 
fT1 

(") 
0 z 
---1 
:;o 
0 r 

- ... _ -.. 

\A.lD 10 • s::J-9 

\A.ID II .83-9 

IA..ID 10 .83-9 

IA..1D 12 • Sil-9 
·-·-.. ·-
IA..ID II . 83-9 

~1D u .93-9 

- I£XT L1! CYaE .96-18 L 

IA..ID 12 . 93-9 L 

u:Lto t-4 .s:J..9 

IU4 I£XT 13 C !Co£ • 5-10 L 

IA-.10 13 . 93-9 i. 

~ I£XT t• CYClE .S'i-10 

'-"t.ID 15 .83-9 

~ 0£XT t• CYaE .ll'i-10 L 

u:L.lO 14 . s.:J-9 a. 

IUII£XT 15 CYClE .S'i-10 

~10 t6 .SJ-9 

.S'i-~ 
IR.=.,_I"-D-'!"'5'-.,_,S::3:.·9'--"L--~ 

u:LID 17 • S3-9 

"'LID 16 .S3-9 

I£XT <A-ID 1<0> _., 

IEXT IA.ID !<2r7> 

-
CIC .1'9·2 L &Z 

- ' 

0C .~1-.l L &2 

I£J(T \A.ID !<7> _...., 

68 0 <A-to u .e-e 
VIS REG I \A.1D 13 .11.2· 

101•1 2 \A.lD t• .82-9 
l -T 3 <A-1D ts .82-e 

• \A.lD 16 .82-9 
5 \A.ID 17 .82-B 

0< 

y 

68 0 \A.!D 12 • a::J-9 
VIS REG I \A.1D 13 .s -9 

10141 2 \A.lD 14 .Sl-9 
....:....__ r '-'ll T 3 ltA...tD IS .S3-9 .. ""-.ID 16 .Sl-9 

5 IA..ID 17 .s.J..9 
CK . y 

"' 



,.... 
0 

-

!O~lNOJ 3Nil3did 

, li"OA"J 0 ~ dO.LB "'>0 60 !)31 ><DU 
<9>1:1 60 !)31 )(DU 

<!1.0 60 !)31 )<3(1<1 

91 'TT1.i 0 l:j6 dO.LS 
a 'TT1.i o dO dO.LS 

II ?CI-QlS .... 
, unn ~~ CN:O 91 JJG& diU& 91 'TT1.i 1!11' dO.l& 



flCP C. OR liEG OW' 17 L oil 

I L 
• p. L 

AH ~ 
~L""I- v 

oA.jR 11 .!J!!-8 L _,._H ~ 
e L )(" L "l- v 

-v 
1 L H 
- II lAilT IN t2 . -8.'5 L -¢-L 

v 1 ..-.m u .9i!-8 L H L-(>+ "'- ~I 
2 LE\.El. 

!IIQP >£l(T u C.'t'CI.E - ~LDCJ(-

"r;--;-.._ 
IA.IO tl • ti!·8 L 

'V" L I 2 
lell179 CD G-? "-

e • P-SEQ U91HG 911 • 9!>-18 

3 
I 

STOP >£l(T 13 C.'t'CI.E L ~ 4 A 
CL 101.2 ·rP, - IU< 1€)(1' II C.'t'CI.E .IIi- Ul 

"'\11'6 
• - 1·9EQ USI>f) 911 .5'5-1111 

~ 
Ill 3 

IA.m 14 ,9i!•B L M J 6 I L o8 
r 4 

- OU< t£XT te c.rcu: .!IS-le 

9TCP liEiCf 14 Crf.LE L ~ ~ 
? -vi "= R£ 5 

- IU'l I£XT IJ C't'CI.E .5'5-1111 

'V" 8 
F'UJ9H PIPE ,;-;---

. (;' 6 
- IU'l I£XT I~ CTO..E . 9S·IIII 

IR.ID 15 • 9i!-8 L 

• l:a..H JI£XT tiS CfQ..E • 96& 19 

II 

7 - IU'l 1£>CT 16 <HI I? CTO..ES • 9S-IIII 

'TOP IE'>(T I~ C fCI..£ L L 
v 

I L 
ITa; >£XT 16 IHl 17 Cro..£9 L 

M -~ 
0tR • P3-~ L lZ ..J 

VI IIIII-

I L H 
Gl 

! L ~ 
'V 

PIP:::LINE CONTROL 



2.21 VREG , 109 

2.21 VREG 

Drawings: VREGE 1, SRCLR 

The vision registers are part of the low-level documentation but contain certain features that are 
worth describing in this high-level description. A vision register (VIS REG) acts, as far as the 
catllng macro is concerned, as a simple broadside load register with a clock enable. 

The register that is used to implement a VIS REG, however, provides additional features. It can 
hold or toad paraltet input data or shift its data one place to the left or right on any given clocking, 

. as determined by a two-bit select line. Normatty the select tines are driven from the clock enable 
signal to switch between load and hold. However, there are special connections which altow the front 
end maintenance processor to control the select lines. When the front end stops the clocks it can 
switch the select tines to the shift-left mode and pulse the register's clock line (through an XOR gate 
with a front end connection). This w111 shift the register one pl.ace to the left, shifting in data from 
the front end. In this way, the front end can load the contents of any VIS REG. It can also read out 
th~ contents of any VIS REG by examining the high bit while shifting all the bits out. 



' 

t··ertt2E·-1~ A' 

02:L..P•i! .J ..., 

Fel: SfoflF'1 CTL .CC' ih I' 

<n U19 R!."G 9EL .c 

CI<LA' 

F£0 SHI'T CK - .C 

otl912f:~--· 

:----211 
lllf58 , T 

:-r ,, 
~ 112£ •71 /II 

10117 

I IT·" 
V.!.·J REG 

-0 

IS!Z£1 
S><tr.~G 

t:LR 
H\!11141 TC019tzi•l) A' 

1 - P. T 

e LORD 
I ID"T 

9 2 ~IGHT 
3 HOLD 

ex 

~<0r'StC·I· AJ 

CKE 10141 



2.21 
V

R
E

G
 

111 
. 

~ .. 'r 
.. 'J 
ll1 -~ 

·~ 
.. ~ =

 ~ 
, ll 
;; ;: ~ ~ "I )c 

I ~ 
o; 

~ 
"\t 

.. 
llo 

.; " 
..-
(S

) 

~ .. 
~
·
 

;_ 
~9~; 

§§" 
~
-

C
P

-ftJ
P

\ 

" 
w

 
~
 

.J
 

.. 

.:_] 
~ 

u 
~ 

~
 

w
 

l( 
~
 

~ ~ 
? 

.. ~ 
' ; 

~ 
. 

4 

1
-

LL 
H

 
I (/) 

~ 
x i! 

;; 
~ 

;!. 
!'I 

; 
~
 

i1i 

.. 
~ 

• 
~ ~ >< 

'I; 
t: 

, ; 
x e 
~ ~ ~ 

·~ 
' 

~ ~ .. ! 
~
 

li 
>< 

. 
~ 

~ 
ci 

.. 
fl 



--"' 



llS 

3 ABOX drawings 
. I •. ' 

8.1 ABOX 

Drawings: ABOXl, ABOX2 

.. 

This is the defining macro for the ABOX. It is called from the IBOX. The explicit parameters are 
the two input operands (4 words -wide) and the result (also 4 words wide). The main data paths are 
shown on the first page. The second page contains mac~ for various pieces of control logic. 

. ' 



--.. 

8olll2 • 'I.LT I;£Q.LT R6<18J9> 

. 
"' 

rPY IU>< A IIi! .SS..IIteo ~ 

OP Aoeol..,.."'" t ~T TIIINIA"l0<10& 

TA "" 
'1m tU< A AI! .Sb-9f8JI.• 

CJ'EIWO 
A-

1191112 • lUI I;£Q.LT ---Clfll<eo7- A> t -· a !'FER 

118 B-

T 
~ RE'SU.,Tt0t7 ....,... A' 

lt1 tt>T ltJI< B ~ .so.-llteol' 

CP B<lhl.'V> AI t ~T -.-a--
TB '" 

A:o ~ e 'C. • S6--ete. u 
1191112 • IU.T RESU..T '16<<&J9> 

-8--
8>1112 • IU.T R£SU..T A6l<BJS> 

RBOX 



"l 

--

~ 
0 j:Q 

< 
-orl· 

' 

. -

XQ81j 

· ~ Er G ---1' ~ I . . 

QI~ Q D 



116 S ABOX drawings 

J.2 ASEQ. 

Drawings: ASEQ, ASEQ), ASEQ.2 

The A-Sequencer is the main control engine of the ABOX. It provides direct control for itself, the 
Operand Swap Buffer, the Translators, and the Moby Muxes. In addition it provides starting 
addresses for the Adder, Multiplier and Output Formatter microengines. The A-Sequencer also 
handles some of the hand-shaking necessary for communications with the IBOX. The A sequencer 
contains a 4k word by 150 bit microstore, an address counter capable of parallel loading, branch 
condition. multiplexers, and repeat co~trot. 

Through use of branch conditions and a pair of 2-input multiplexers, the A-sequencer is capable of 
taking its starting address from one of four sources. It can take a new starting address from the 
IBOX, from either of two branch addresses supplied by the current micro instruction, or from a 
return-from-subroutine address that may be modified by. one of the current micro instruction 
branch addresses. This modification is provided .to allow a return to any micro instruction in the 
micros tore. 

Repeat control is provided so that any microinstruction can specify the number of times that it is to 
be repeated. Each time that the instruction is executed the repeat counter is decremented. When 
the count reaches zero, a branch address is taken ~ased on one of the two microinstruction branch 
addresses. 

Also included in the A-Sequencer is a pipeline for some of the control bits supplied by the IBOX 
via the Decode RA.M. 



I'"-

--

.-

>0 

"W7<"171""'e'"'•":~o~-=-=cro=-------IJ. 
1•1~1 !1311 Slll 

WI 

·~ 

BB!il 

-1191 

.ltll"13dld ,. 

~ ";: 1--.-IV~"'Tru=:.::~==t$=-

"'.HXI=-=a""toY=.,,..----13«10 
"QWOJ 

.LII3d3ll 

91:1001 
lWO 

Slll 
WI 

~3StJ 

. ao-:-::-"~=.....----1~-$JII 

10' lli<O'l 

'136 GCXl "' 
IV~71acD~~--~liNX) 

l•:ld aot"' 
l•:ld 106 

l•:ld 
l-"' 

1-:ld hS 

.. I I 

~-•IINX)· ~lli<O'l· 

UGKO 

3K) )0 

1:11 
r--------~~~~~~----1~ 30 ...... 4LI181t16)1£1111 L•IGel 

!l3!l &J(I 
lEI 

30 lO 

811 

10'<11'8o'ld J.l!! J. 1 .. ~. 
9311 Sill 

lEI 

·-"' 
1: 

~--l 
-J.l!! 
-J.l!! e 

I ., .. ,, ......... IINXJ "'llB Ill! 



" 
" 

L 

" 

- ucaE<IZ> .AI 

• SA.€ REF-~ .Sl-9 

A 9R SEl. <=C .s.l-9 

A BR.;· SEl. ".2 • S3·B 

AIREFEAT ~CCHrRO... =\2 .'S3·6t0:-1) 

A tf'f LOW - 112 • 93-8 

A '"' liDil - saRCE 1IEt. 0<! • S3-B 

A - IRITE - SOlRCE <;a <Ia • SJ-8 

A - ISIITE EIO<II 112 • SJ-8 

RSEQ 

A tttl AEIIl - SO<J<C.E SE\. <Ia • S3-8 

A tttl RE9£T FIFO <l2 .93-9 

A tttl IRITE - A2 .S3-9<9:3> 

A tttl IRITE - S0<J<C.E SEl. 'l2 • S3-8 

A tttl ISIITE E>fl'· A2 .S3-8 

.... .... 
00 



0'1 

--

II <!3 13 , 
•• a·a · Ll lCJatt t.s lCIIIII " 

H 



120 3 ABOX drawings 

5.5 BR COND SEL 

Drawing: BRCOND 

This is the macro that implements branch condition selection for the A-sequencer. It is under direct 
A-sequencer control. 



I!EC!!P DCt£ r---... e UECtQR DCt£ 

~ID£~- I loEOtlR DCt£ ~ - • 

IU. F1l't9 El9N 
~ 

~ FD='OS Er'PT1 

NO AEil.L T9 I'EICIING 
J 

l«l AESLL T9 f'E>CllNG 

~IWTT 4 
18)>( EI'I'TT ' 

,I!EI'EAI CIN1 
5 

REPE<lT DCt€ 

LA!II" CP9 6 18 
LA!II" CP9 

IB 181l164 

::::;_ G.l (Qrl~'" LRIOt T ~:IN9TII 
~ ~ ,lr«er llAI 1 leB161l -

~- L0 .,. B 

El E~ R 9 

$USFE>t) lN9TII 

10 •o 
II 

~ 
1'1! .1'4&6.6 L 

IJ 

"' -

A BRI ,::.c:M) SOL 1'1! • U-111 0r J> ~ A~ COCI SEL 1'1! .S3·9<0rJ> 

A BU •:eM) 9EL Ai! • 93--9t ~ A ER! C(H) sa. A2 • S3-e< .. ., 

BR COND SEL 

r:---
I 

2 

3 

• 
5 

6 IB ,. 
1118164 

\ ~1 c:a rerll'" 
~ IU<I T lll(erl),., 

a tV .. 
0 

e 

II 

12 ~ .1'4.5-6.6 L 

IJ 

14 

y---

·• 
• IB 
LATCH 

1 teBI50 
Ll . ' 

El E2 R 
- v 

:~ 

T 
(.Cf()i!,P 

•!(> 

!A 
CA 

~· 

~ 

n 
0 z 
t::l 
en 
M 
r-' 

-~ -



122 ~ ABOX drawings 

3.4 REPEAT CONTROL 

Drawings: RC, RPTCTR 

Repeat control provides a branch condition signal "repeat done" to the branch condition . . 
multiplexers. The repeat count may be loaded directly from the microcode for small counts or from 
MOBY MUX A for up to 36 bits of count from any source. 



. , 3.4 ·R
E

P
E

A
T

 C
O

N
T

R
O

L
 

I 
~ 

~ Ill! ~ '15 

:t 
.. ~ I 

I 
...... 

~ 

~
 

.Iii ~ f5 ~ 

_
j 

0 (}:': 
1--­
z 0 u 1--­
C

I 
w

 
Q

_ 
w

 
(}:': 

123 



Rl 

.. 1.010 4 •'Xn' 
I CHr til S QJI 
a:-~r. 6- LF 
~· CHr , ? "'U) 

REP=:RT COUNTER 
srz=: ·Moo 4 = 0 



3.5 4K RAM ARRAY 125 

5.5 4K RAM ARRAY 

Drawing: 4KRAMA 

This is the RAM array for the A-sequencer. This array is 4k words deep by 150 bits wide. This 
macro contains two other macros, 4K USTORE and USTORE CONTROL. 



-~ 

><STEP • SUI! 

<SIZE> 

FES <lliEQ -8rl6> t "" r Tfe.st.!E·1"1'P 
US'TClliE 

.ecus 

II W[ cs 

..., .... ,,p - II 
<sm' 

Fn ..u.IIJIID<eriS> FE USTCIIE IE WOIII C()r.1IQ. 

Fn~WE .CL FE usc W[ 

FE. A!IF.> crMAQ. U9TCJIE L FE cs 
cna.. 

4K RRM ARRAY 



3.6 4K USTORE, 127 

5.6 4K USTORE 

Drawing: 4K US · 

This macro s,impty provides the buffering necessary to drive the various address and control lines in 
the RAM array. lK USTORE is called to provide more of the necessary buffering. 

'. 



~
 

A
: c (/
) 

--
-j

 

0 ;;o
 

fl1
 

lrt o;; ! ~ 

!l 
g '= ':f

 \ 

~
 '= \ 

1
--

--
+

--
-t

»
 

! I ~
 ~ 

1
--

--
-t

--
-<

)1
 

g .. ' \ 

1
--

--
t-

--
-i

»
 

! l ~
 ~ 

1
--

--
-t

--
-<

::
! 

~
!
 :!l 

"
i'
-
-
-
-
.
 .
.-
--
--
-'
~ . 

0::
 

Ill
 ;a 'tl 

" 



3.7 lK USTORE 

J.7 lK USTORE 

Drawing: lKUS 

This macro provides more of the buffering of the RAM array control lines. 

129 



C£..5'1 
UGI~ 

~2 ~~-----T~·~·~~~~~~~-t~·~~~ 

1K USTORE 

1f011P 
~Eh91-

CS L . 
~ L'e,r ~tZE'•I&l ,t~l) 

-<..o 
0 



'3.8 USTORE·CONTROL 131 

5.8 USTORE CONTROL 

Drawing: AUCTRL 

This macro provides the de~oding of the low order ad~ress bits to provide the chip-select signal to 
the various RAMs in the RAM array. It also provides the means by which the front end computer 
can load the microstore during the initialization .of the machine. 



AlAt •• ,,~ AJ 

FE llllll)c .. I6>A' 

~q.·er11" 

FE KlAD< 8.1 !i> 
f="E a.E' L 

FE CTR.. 1.. 

~ea9)A.J 

a.E LC4J:t(SUE•1'il,.16-IH.N 
CS -•9o3>J\I 

lllllc>---c.s-=..,L''-'•='"':o 

tCF• Zl 0----::CS:...:L._< :.:''='"' 
,.,.,._ 22 0 __ --::c9"""'""'' z-='"'" 

CIEIJ 

0£1 

I CF 16 
DECaE 

L'-.---------i II IOOI>IL 

0£ 

USTORE CONTROL 
> 
~ 
0 
X 
Q. ., 
~ 
~· 



3.9 AMSEQ. 133 

5.9 AMSEQ. 

Drawing: AMSEQ. 

\ 

AMSEQ. is the definition of the multiplier microsequencer. Th.e multiplier sequencer is very simple. 
It is composed of a vision register to hold the address, a RAM array called MPY RAM ARRAY, . 
and a means of toggling the tow order address bit. The ability to toggle the low address bit is 
provided so that pairs of addresses can be read out in succeeding 25 ns periods. 



-~ 

/ 

RMSEQ 



3.10 MPY RAM ARRAY 135 

!UO MPY RAM ARRAY 

Drawing: MRA · 

The MPY RAM ARRAYis a 256 word by 44 bit array. The macro MRA provides two things: the 
buffering nec:essary to drive the RAM array, and· the means for the front end computer to load the 
microstore during the initialization of the machine. 



H tC•1• 

F£'1 lf'T IIJAD<'e•lll> 

Zl' 

~ 
t 

I CF4 z: 
u•-...u· 

~ <JEW lEI 

F909'T~L 
Z3 

CEI 

~\.C. "" 
lol)lil) L.C 1 ~ "" 
w:::M) Lf 2' "" 

Fa !fiT IE .C L •~ 

MPY RRM RRRRY 

-i!$iM -JC. 
I'IJ>OIP .. 

- "TI------t 

u:r~ TI--T:.:.•.:::0:.:.14::3>:...:."'"-

1111"S0 
L0 

£1 E2 R 



3.11 AASEQ 137 

5.11 AASEQ. 

Drawing: AASEQ. 

AASEQ. is the macro that defines the adder microstore and sequencer. It is identical to the 
multiplier microsequencer and microstore array except that the microstore is lk deep and 56 bits 
wide. 



" 

A2 .P.J.e az 

:IB 
VU REG 

109141 ~----~~~----------~"'~~~,~-~-------------------------4 

CK 

• <14 .1'9·4 L-

RRSt.O 

" 

-

> 
td 
0 
~ 
c. ..., 
~ 
~-
"' 



3.12 ADD RAM ARRAY 139 

5.12 ADD RAM ARRAY 

Drawing: A RA 

' 
This macro provides for· the adder sequencer the function which the multiplier RAM array 
provides for the multiplier -sequencer. 



II IC•1<4 

FB lllD oiRl<ltl!i> 

2111 
IOOAD L< .. 

L • *AI~,, z·, 
IICRJ L.· Z> 

ZJ 
101) L•3> 

,.. lllD 

A1 

A1 

A1 

A1 

RDD RAM RRRRY 

-1~ U9TCOI!: 
~ T~--------~ 

1 L 

.: rr-------T'-'<-"0"'•9i='-"'::<. 
10015111 

L0 

E1 E<! I! 



3.13 ABUS DEFINITION 141 

5.13 ABUS DEFINITION 

Drawing: ABUS 

Internally, the ABOX uses a number format-..9ifferent from that specified by the S-1 architecture. 
The internal format consists of two exponent fields (the second is used for complex numbers) a 
'12-bit fraction field and two tag fields. Integers are stored left adjusted, zero filled in the fraction 
field with exponents of zero. For integer half-word complex, the data is stored in the rightmost two 
half-words of the fraction. There is a uniform internal floating-point format with th~ binary point 
of the fraction being between bits 2 and 3. Most floating-point operations assume that the fraction is 
b~tween 1 and 2. and att floating point operations produce such fractions. Excep~ion cases 
(overflow, underflow, zero divide) are detected by the functional.units; however, only the tags are 
modified to reflect this. The tags are propagated correctly (according . t? the current 
USER__5T A TUS modes) by use of RAM took-up tables in the functional units. The output unit · 
decides what to do for the exception cases by looking at the tag or tags and at the current user 
status. 

For integers the tags are: 

~ Use 

0 Zero 

2 Positive number 
3 Positive overflow 
4 Divide by zero 
5 Negative·overflow 
6 Negative number 

For floating-point the tags are: 

Iii: Use 

0 Zero 
1 Positive underflow 

2 Positive number 
s Positive overflow 
4 Not a number 

& Negative overflow 
6 Negative number 
7 Negative underflow 



D 
rn 
c 
(/) 

0 
fTl 
T] 
H 

z 
H 
-I 
H 

0 z 

e 1718 i!l .1!0 l2 D 

I IHSIJ I Q;RMR _, I 
e 620 20 2 

~~------~----------~~-~--~~~ -------~--~--·----~~~--~--~---~--•w __ ~-----~~~--------------------------------~~~T~-~~~~~~~ e 17• s 0 17€1 I? 0 :E 0 2 e 2 

I IH&D I 
e 

I lMJ9a) I 
9 l?e 59 

9' 

I . E>G'CHHI'I 

e 

I? 13 CJ 2-4 i!$-1!1 

~I 
1?0 

1?18 29 24 a.. 27 
,_,.,.I uvsml 

0 1?0 5 e 

t4t IF- Pe a3 
Blii'Rl' 
FO:>!T 

Iii! 53 5'0 68 

82BJ 

:E0 2 e 2 

'OS 96 o;e"" 101 

?I e 2 e 2 

'OS 96 o;e "" 101 

:Ee 2 e 2 

3;0 2 0 2 

>10 20 2 



3.14 OPERAND SWAP BUFFER 1'43 

3.14 OPERAND SWAP BUFFER 

Drawing: SWAPBF 

To implement the reversed form of TOP intructions, this simply reverses the operands depending 
upon the signal X SWAP OPERANDS. It also latches the data. · 



-~ 

., 

9<11•31W>,. 

"-~ :s .SJ.•·•e 

OPERRND :SWRP BUFFER 



3.15 TRANSLATOR A (and B) 

3.15 TRANSLATOR A (and B) 

· Drawings: TRANSA, TRANSB 

These set a text string TRANS to TRANSA (or TRANSB) and .call the common macro TRAN. 

-145 



"" 1<8•1 ....... 
J ~T 

1'1\ "" -

TRANSLRTOR R 

--~ 1'1181' • IGII'>U< ~ 
0' • OPI 
IH) • OP, 

LEG • 'II 

L£GI«) - ' 

Jt1t'8a1• ;9 

1<18.1!1> IP 

l¥'ttG11• ;9 



3.15 
T

R
A

N
S

L
A

T
O

R
 A

 (and B
) 

q, 
q, 

i ; 
~ 

;: 

£ .. I ~ ~
 

~ ':! .. ::. 

q, i ~ ~ 

I!! 

m
 

~
 

0 1
-

a _
j 

(/) 
z a ~ 
1

-

147 



148 3 ABOX drawings 

3.16 TRANSLATOR 

Drawing: TRAN 

The translator converts an operand (from the !BOX) from external to internal format. The external 
format is the architecturaJJy defined format (the format the programmer sees). The internal format 
is defined for convenience and speed from the point of view of the hardware design. For instance, 
it extracts the exponent from floating-point numbers and puts fractions into a canonical form. The 
standard internal format for integers is right-adjusted. Also, the translator is responsible for 
wrap-around (called SHORT -STOP on CDC and Cray machines, this is the use of specia~ data 
.Paths to get pending result operands from the ABOX internal state, rather than having to wait 
until they can come from the !BOX state). Thus the translator needs to keep a queue of 
PREVIOUS RESULTS ( 16 deep) and to remember what results are still in the process of being 
generated in one of the functional units. This queue is stored in internal format for m11.ximum 
speed. The IBOX can teJJ the ABOX to use the nth previous result. If X WRAP {1,2} is set then 
X WRAP {1,2} RESULT NUM <0:3> indicates which result to use. Zero indicates the last 
result-that Is, the last result which has come out of the ABOX or will eventuatty come out if no 
more instructions are executed-and 15 indicates the fifteenth previous result. Note that result are 
counted during vector operations even though they cannot wrap. Also, from the point of view of 
wrapping, the definition of a result is very precise: it is the the number of 4-word X RESULT 
DATA blocks given to the !BOX, regardless of how much data is stored in the blocks.· 



3.16 
T

R
A

N
S

L
A

T
O

R
 

~
 

~ ;:. 

'· 

... 

I!. 
~
-

H
 

:1 
H

 

' ' 
~
 

-
-

I 
f i 

i ' 
i 

i 
... 

itU 
II 

~~ ~ 5 

I I I I 

~
 

i ;:. ... 

~h~ i H
 

~
 

'.i 
H

 
~ 

i 

I 

{ 

{ 
3 

~
 

a ~ 
,(, 

! ~ ~ ~ 

" 
m

 i 
~
 
i .. 
H

 

~ 

3 
J t-

il i H
 

' i ~ 

ct 
0 1-­
a: 
_

l 
(/) 
z a: 
c
t 

1--

149 



150 ' ABOX drawings 

~.17 RESULT WRAP AROUND Q,UEUE 

Drawing: RWAQ. 

This implements the result wrapping as described in Section 3.15. A 16 by ABUS RAM stores the 
'data. Every scalar result is written Into this RAM {for vectors the garbage is written and the pointer 
is advanced). If X WRAP {1,2} is set then the RAM output is enabled and the read address will be 
set to the correct address by the WRAP ADR GEN. It is possible that the result is not yet in the 
RAM, in which case it is either on the output of a functional unit or is stilt in the process of being 
computed. The WRAP MUX CTL logic d~ides this for both the multiplier and the adder and sets . 
the input multiplexers (and/or stop logic) accordingly. 



-l:f'trG11l ~ 
tttc'll!hl) 1'4) 

Tti&J9> A) 

A Alii 1UC ...a;, A;! ,o-tl<lh I> [lh.3) It -­.en. rl -8•1•.., 

~ 111 IIAtT FtiA Alii U9t>G .,_ ~ 

lf'IPI9' 

A,.,. i"UC ...at' A2 a9J..8leall [etl] It -­en. Tl -llol> A' 

-­GEM 

IIIG 

._, IlEaL"' NOT tH -llr:J> At 

rK. 

lf'IP19' 

IP Ani.LTIIOT IK AII11U.T OIIIIDD<8r:J> At 

wl. IIAIT FtiA I9'T U9IIG ,_ ...s,, 

CIIINI' IIAI'A eli!<- lo 

1!1111211 

c 81 

ASt2EII 

1661-
1118146 

N) L.ATOf 
RQ 

AA IIA o.£0 o.£1 CEe eEl R 

19' AE'9IL Tl lOT 11M 011 IU. T< .. ]> At 

~ I I?'>?'> 

I ~-' ~ <08 I 

IIA >Rnu~ A!<llrl> '" }?;) AAI ~IIRA;!<IIrl> A'l I 

81 REIILT Oi! .Pa·6 L 10011211 

(I( .P3·4,S L &H C BJ 

Gl - A2 .s-4·10 L 10011211 

CJ( ,po;.q L &H C 94 

F'UJSH <8)1( • c 

RESULT WRRP RROUND QUEUE 

rl T<I8JS> .., 

!-'0 ·--...J 
X' 
M 
(/) 

c 
t""' ..; 

~ 
~ 
> 
'"t'J 

> 
~ 
0 c:: z 
t::l 

€ 
M c:: 
M 

-Ut 



152 ! ABOX drawings 

5.18 WRAP ADR CEN 

Drawing: WRAPAG 

The counter RC keeps track of the location of the "last" result in the wrap RAM. Thus it is simple 
to calculate the address of any previous result. To decide whether the result is in the RAM, on the 
output of a functional unit, or not yet available, there is a up/down counter to keep track of the 
number of results which have yet to be written into the RAM. 



A !Ia! -u to£IU.SI IIi! • s:J-8 

18 
I.RIOI T 

·-·~~~ l-\ .. Tl 
Et EZ A 

HE\1 IIE!ilL T 

IIE9.L T 0111 • ti6-9 

lEW IIE9.L T IO£DU..EI) Aa: • 96-9 

.., 
IJ' 

IJ' FI.U. DH DH 
CTR Elf'TY 

HDlD Ill T 
0< IR 

IIi! .Pa-te uw 

FUJSH 1&11( ·' 

""-£TETE 

RP<9:3> AJ 
IP<9:3> AJ 
19<9:3> AJ 
ICAt0;.]) /\) 
.... 9:3> AJ 

111 : ~fP'f ~ AE9U.T 00 • 9a·CJ 

RPt81:P tiP 

-~ foA9 AES.LT 08 , ~-'i L 

111 I • ...,y - I0£9l.LT 00 • 2·" IB 

8L 

- ,.,_ IIE9.LT >U1 IIi! .94-... 813> 

-
Ai! .1'8-18 &211 

0111 .PB-19 &211 

RE'llL T 0111 • 96·" L 

41 
VIS 
OfiYf 

1:36 Tl AA ~·9•l> AI 1 

41 
IllS 
OfiYf 

100136 

" 

FUJSH 18))( . c 1.. 

8L 

~e,,,., 

WRAP ADR-GEN 

_; 

1P<9:l> "' 

19<9:3> "' 

RAt9::J) ,...p 

CIJK><T 
IF t9 'n£ I'UIER OF' RE'9l.L TS 1'1-AT H¥JE HOT 
_,. ... ITTDI !>ITO T1£ ._, 1R1 

lP - T>IOSE ~ - ~!LJaE F"CO! .-.l¥!0lH) <I.E. ~ "ltv.l T>IOSE _,-~Y 
CN 11£ CIJ'1'PUT fF R F'\.H:.TtCHl.. LH[n 

"' IS T1£ Sl'f£ RS IP E><CEPT -T IS CK. f CIUfTS 
n£_ f'\.LT ~ '11-£ ~-

IT IS m.E ~ IF" BOT>i T1£ IU.T <Kl T1£ <UE1l lA£ 
IA.IO ~SU.TS. n£N T1£ IU.T IS ~fS nRST 
TO BE CliT>\JT 

~ -co 

:E 
::-::1 
> ., 
> 
t::' 
::-::1 

0 
trl z 

-"' (JO 



154 3 ABOX drawings 

3.19 WRAP MUX CTL 

Drawing: WRAPMC 

This generates signals to drive the select lines for the input multiplexers for the multiplier and the 
adder. If the microcode is selecting the translator and we are wrapping results, then we need to select 
the correct source to get the data there in the fastest possible way (or set WAIT if the data is not yet 
available.) If X WRAP {1,2} RESULT NUM is less than the number of results not yet in the 
RAM then we need to select either the adder or the multipler. Similiarly. if X WRAP {1,2} 
RESULT NUM is less than the number of results not yet in the RAM or on the output of the 
multiplier, then. we should select the adder. Finally if it is less than the number of results anywhere 
(in the RAM and on the output of the adder or multiplier) w~ should wait until the result is 
available. 



3.19-W
R

A
P

 M
U

X
 C

T
L

 

"' A .. ' I 

~
 

I ~
 

i ~ II! i ' ' ~ A
 

i IJ 

-" ~ 
.. '~ ~
 j ~
 

.. !i 
.. i ' 

155 

"' "' 
"' .,. 

_
j. 

I-u X
 

:J
 

L
: 

o_ 
C

I 
~
 

3 



156 . 3 ABOX drawings 

J.20 PARITY CHECKER 

Drawing: PARCK 

This strips off the parity put on X OP 1 and X OP2 and sets some global error flags if the parity is 
incorrect. 



J<e.B> IP m 28 
... _ ..... 

~ - c. 0 
lC .. 1~ AJ 

108168 
CII-I>AI JA F1 211 

1<1111.2111> IP m 28 CII-I!>AI 

PRI!Ilf 
c.~ Gal 

1081611 ltZ7r.5 AI JA . Po! 211 CII-3>AI 

------

I•.ll!ta_.., H rs m 
... _ ... ...., 

~Tr 

c.p ' GEII 

lf46t&Jio ..... 100:68 
Cll -S>AI JA Pl 211 

t•64·~ ;tP IB m QW ~6 .. '" 

P<RTTr 
c~ GE>o 

100169 1r63a?1') ;tP 
IA ... 211 

Cll -?>AI 

~ 

I<DP 

Tc~N 

- ERIUIA 

COIK1fT 
IT n IIS!UED 1>flf neE n 

CIIIIREU ~Tf E\£>1 -
~f _,. OF n£ MVT OP I9 

\A.m DAM. 

ltl)p) ..., 

MVT OP Cll -··"'AI Q.I_ .. .,..AI 

PRRITY CHECKER 

I, 

Dll8.E lllAD 
~TT !mnPPER 

T I T<D!IP 

DIAl .... IIN'Uf OP Cll _.,,AI 

All .1'8-IBIZ 

IIIII -­..... 1 
Ul T 

Q( 

H _ _... 

HCo8 
L 

c..D 
~ 
0 ., 
> 
)ltl 

=i 
-< 
n ::c 
M 
("') 
~ 
.M 
)ltl 

-U' 
~ 



158 .. 3 ABOX drawings 

5.21 ROTATE 

Drawing: ROT 

This attows the translator to align the data such that any quarterword of an operand is at the right. 
For vectors, the second half-cycle can do a different rotation to select the "next" operand in a vector. 
The amount of rotation can come from the low order bit of the address (for scalars) or from ABO X 
top-level microcode. Scalar data is doubleword aligned coming into the rotator. For instance, the 
doubleword starting at quarterword address 4 comes in with .the singtewords reversed, i.e. 8-11 in 
the leftmost word and 4-7 in the rightmost. Thus we need to reverse (rotate by 4) if bit 0 of X OP I 
LOW ORDER ADR<0:2> is set. Similar considerations apply to quarterwords, halfwords, and 
singlewords. 



·3.21 
R

O
T

A
T

E
 

159 
'I; ! 

'I; 
'I; 

'I; 
.'1; 

'I; 
'I; 

'I; 
'I; 

ell 
8> 

~ 
~ 

~ 
~ 

til 
~ 

~
 

o; 
~
 

§ 
~ 

~ 
if 

ii 
~ 

"' 
ii 

a; 
ii 

~
 

~
 

a; 
~
 

a; 
.;; ell 

21 
0 

21 
a 

(!, 
I!! 

8 
s 

xl!l 
w

H
!"' 

! 
;; 

~
 

n 
~
 

l!l 
;g 

~
 

'I; 
'I; 

'I; 
'I; 

.;; 

! 
~ ~ 

~ 
~ 

~
 -

i 
-

'I; 
'I; 

'I; 
'I; 

~ 
~ 

(i: 
'I; il 

'I; 
'I; 

'I; 
'I; 

'I; 
.. 

'I; 
~ 

~ 
~ 

~ 
~ 

~
 

o; 
§ 

;ij 
ii 

&. 
~ 

;ii· ~ ~ 2 
:. 

:. 
;:. 

;:. 
.;; 

0: 
;:. 

;:. 
;:. 

~
 

;:. 

.J 
.. .; 

~ a' 

' 
~
 

o; 
e 

~ 
;;; 

w
 

1
-

C
I 

i 
1

-
0 cr:: 

.J 
~ 

.J 
.. 

a' .. 
.. 

'f 
,.: 

~ 
.. 

I 
~ 

.
~
 

~
 

.;; 
R: 

I 
1'1-

0 
i 

a' 
.; 

Ill 
-~ 

a. 
~
 

a. 
~ 

~ 
.. 

:ll 
cll 

. 
~
 

e 
~ 

I!! 
; 

Ill 
I 

I. 
I 

I 
I 

t 

~ 
~ 

~ 

~ 
~ 

a' a 
" 

or 
" 

; 
.J 

i 
• 

or 



160 3 ABOX drawings 

5.22 EXP AND .OP MUX 

Drawings: TMUX 1, TMUX2, MUXCTR 

These macros do the unpacking necessary to convert to internal format. Since the. precisions of 
integers are taken care of by the rotator, there are only four modes of unpacking: 

1 Integer 
2 Half-word floating point 
3 Single-word floating point 
4 Double-word floating point 

Halfword floating point always translates two halfwords into the halfword complex format. If the 
second halfword is not desired, the hardware later ignores it. 



--1<1» 
941FT .... ,., 
utci&J!P 
a.F' t•e»> 

TllG C111..<9:l> IV 
Tf~AJ 

.ai'I<I>H ~ 
·BF ~-...~c H1 ElF<• AI 

loC2119A 

- 1<8>A' 
. HI DCPtti14)A't 

t<C19J'Dif) ~ .. .., 
-EI.F I<' I& ..,p .. SECOI) EXPr81.P"'" 

·HlE>CP<tl>-1.1 H 

-HI £>flo G>AI ' HI Ell'<lr<C> A'1 

> ... E>CP<0:17>A'1 

~· 

·>IIE>CP<0> ....... H 

-H1 E>F<e> AI • lit E»'< 1t B> A1 

. > so.IE>CP<0t17>1f\ 

·~ 

e.1B 

AI: ... ..., I 

If\: 91lF'P 

lit~1114) 

II.)( ~(8t1>A1 

FORe£ 2El!O If\ 

H 

·~L<·~ 

SEaN) £')f' LC ••• ,'" 

EXP AND OP MUX 

COHNT 
.A£><P<Nl9~ 

- IHIIASED 2S C<I9'1.D£NT ~ 

. .<!41 
utS ~G 

1001•1 

U0 

0< 

~ 

!->0 
~ 
~ 

M 
:>< 
'"d 

> z 
0 
0 
'"d 

a:: c 
X 

c;; -



tcea:J)-,P I)"T ~ 1111 
rJtS :R£6 

tc8l~a .y ... ,p' 1"6111't ... 
• fol,l ""' 1 "'I T >0(•11•1"' [I :31 .... 1001•1 

••t71 T t 
t•e...tt.a l .tc•*'• tcte:191'P •9NFPO! .. T~ 1/3 

1C8't~: -tc•iP 1 tc:tia4!1't..P •OII'P3 0£ 0< 

L--!--<~ 
Ai! .-.1e uw I 

f\.DC 'C"TTa.•Ch1~A'I 

~ZERO A! L 
I" 

r-
1<9: I"'A' • HI! 

'V1S REG 
14"1,la1"'1P s •3 I "'I T!--- -18•36> [loll ... U!111•1 100171 t Tf--tc 16ti!4)1'P 

2 Ill Tp oJ9 

lt'22:318>AI 

~r:r 
CIC 

• Ai! --IlliZI- I 
PUC ~ca.A'f ~ >Oe,71>1" ...... 

i! 
) ~ L:b It ~ W' 

Tt'~ ;P. 

tt- ~ 
r-

tc IBz.]li),.P ., 1111 
~.n<Fl¥1> 

-ll6•63> r .:ll .., 
vt~ REG 1 C J8) I'P92 I -tCIIPJP t ·t.,~tP.IPz .. 3 

I liB T!--- .. .,IT I lo!l0141 
100171 I Tl---

tc,25:J5)1'P a 8•7 i! 112 Tp <II 

ICll:e...P y - 0: 

Ai! ·-·Ill &~ II 
IUC c;TRL< ]> .... 

/ 

~ 
• 01 ""' l<II9:"1),P I 0.13 II 1111 - T UIS REG 

Ulll195 
>OC<&0•71> r .. .n ..., "801-41 

113 rp I 7 
tc36a71,..p • 01 Il!lT' 

I 91 911 £1 E2 Ui! II! 

J l-j> 0 0< 

I'LX CTiil...c9A1 Ai!.-111&:1,1 
I 
I 

l"l.P( CTRL.c4). A1 J.. 
I" 

<I!! .f'S·? L 

EXP 1RND OP MUX 



A,.._ ~s- Ai! .tJ-B<&JI•· 

A ',_, Tr"E Ai! • SJ-8 

A '~ 141 COftDC Ai! • SJ-9 

• - ..- A2 .111-& 

Ai! .011-i!.S L 

IB 
LJ'ITOt 1 
le91!lll 

La 

£1 Ei! q 
,.....,...--

ll 

COI7£IfT 

TYPE • 0 F'P 
~-1 'OfT 

A2 . ..-c.&o-:J L 
L 

~"·')"" 
T'II'E AI 

""' "' 

llli'P.-11 

,..tFTce,~ If' Jll~··<!>..., UITCI- T 
le91!lll 

Ll T 

£1 £i! q 

~ 

TYPE [011 
Fq£( L.<e--

·-AI 

~·II> 

PR£01) 

·-AI 

f"lp(.(TRL.c"" A1 

·ru< cna.c 4) ~-

~ 
M 
X 
'"tl 

> 
·Z 
'=' 
0 
'"tl 

3:: c: 
X 



164 3 ABOX drawings 

5.25 TRANSLATOR T AC GENERATOR 

Drawings: TTGEN I, TTGEN2, TTGEN3, TTGEN4, PTGEN 

This generates the tags used by the internal format as described earlier. 



IV ~~ ua 
~111BE!Ild 

CNI w , l.t •55 $3«) 

-
1110 !ltOJ. ~~ 

w "-95 0113l· ~..-
- w II< -95 0113l· 

-e.ua IV .SUS , 

"ua~ 
H 

IV ts .LIB 

CNI 
"', ts·<E 63ND 

- 8 
.... •trS•, 1 

W 09'81 8 S3ND 
.... «81•, I 

dl' ~·, 1 

w ts·<E 0113l· 
1110 

-
~f---

"¥.lllld 
IIIII) 

W2'S·<Eetl3l· , 
IV~UB BUB 

6"41f«JII 
8 

.... OS,, 1 
"' ,.g 91: '81 S3ND 

.... c.91:t, I 

.... .,.,, 1 

" 
W SC UB 

l.U.lB IOJ.d 

CNI W, SC·61 5.iiC) 

-1~ 1110 !aU. IV 5£'61 0113l· 
"'II.I.Wd 

W K-61 Oial· 
IIIII) 

WEI IV Bl .L1B , 
w ..s ea e OH3Z'· 

~IUBOOld 

·r 
IV £1 .LIB (V<!)t:U.tt)J,. 

CNI W', .t.l·1 6~ 

-~ 
i.61"al1~ 

1110 !ltOJ. :1 Cl8,'l3EI 
'IV <1·1 0!13Z· 

~ ftl>l 

-
w 91•1 Clt131Z'· 

~ 

IV 8 .LIB IIJ.IB 

.. 



01£9 1-17 L AI 

BIT 18 L. '" 

(J£!1 19-:E L At 

(J£!1 :Jl'-"" L At 

BIT S4 L A1 

(J£!1 $-~1 L AI 

Ot£S 1~t:rt. A1i 
·OJ£9 19-.,JI; L. A1 

ONES 37-103 L A1 

OES 1-r~ L A'f 
Ct£9 19-.S L ...., 
(J£!1 :Jl'-53 L ...., 

! 

0 

1011'181 

(J£!1 1-Ji AI 

01£9 37· n ·AI 

Ol£ii·'>1AI 

-2EIIO 1. 16 '" 
BIT I? A1 

BIT 1B At 
-ZEZ 1'"-.34 At 

-lE'lO :Jl'·Si! ,., 
BIT 5l AI 

BIT S4 A1 
-2EI!D 95· 70 ,., 

·.lERO I~ 17 ...., 
-ZE'IK) .q . .:JS A1 
-.lEJIO 37-SJ ,., 
-ZEZ o;J;-70 A1 
·2E"!! 1 36 S4 At 

-ZERO 1-1? A1 
-ZERO 19·34 A1 
-.lEJIO 37·53 .... 
-ZEI!O 9i· ?1 ,., 
-~ 9 18 54 ..... 

TRA~SL8TOR TAG GENERATOR 

B -~1-34A1 

B -ZEZ 37·70 AI 

-ZEilO 1-?9 '"' 



!.10 
~ 
(,0 

>-i 
C»£'9 1-1>' L AI. OI£S 1-35 LAI 

~ 
> z. 
C/:1 
t""' 

BIT J5 L A1 "' J 1 I ..------.._ > 
>-i 

.., T'AG:J<e>.., ..-------.... ----, 1001 o> I HI S.. T<IGJA1 0 
~ 

>-i 
> 

C»£'9 I~:J'> '-AI 01£9 :P- >1 Llfl C'l 
C'l 
M 

~ 'hi~ 
-2ERO J>'->0 A1 P-1 \-,I z .., BIT 71 L A'1 ______.,_ M 

~ 
..... TAG3C I'A1 ...------.... ----, 180117 I L()l s.. T'AGJAI > 

>-i 
0 
~ .._____..... .._____..... 

C»£'9 31'-53 L AI 0£9 1-?1 LA"' 

:g::~~l - 2EllD I - >0 AI 

..------.... !J.T ?I L A1 

ttl Tl¥l3<l!> AI ...------.... ~180117/ 0.. TAGJAI 

0tES 'i&-71 L AI C»£9 37-71. &-315 L A'1 

-2Ell!l 6&- >e AI 

BtT 71 L. AI BIT J5 L AI 

ttl Tl¥l3< 3> AI OW REV T~JI't1 

TRRNSLRTOR TRG GENERATOR 

-0) 
-....1 



.... 

.... 

TRRNSLRTOR TRG GENERRTOR 

OS 
\liS REG 
1001~1 

0< 

-~ 



· 3.23 
T

R
A

N
S

 L
A

 T
O

R
 T

A
G

 G
E

N
E

R
A

 T
O

R
 

169 

II; 
"' 

II; 
"' 

"' 
~
 

I! 
~ 

i5 
.J 

" 
i 

;: 
0 

Iii 
Iii 

f-C
I 
~
 

w
 

z w
 

C
) 

(._') 
C

I 

I 
~
~
~
~
~
 

f-
~ 

., 
.J

"
 

:. 
&;~3i~ 

_
j 

C
I 

H
 

f-~
 

"' 
cr. 

II; 
II; 

~ 
0... 

II; 
~ 

" 
II; 

&
 

:::. 
~ 

;:. 
;:. 

;:. 
~
 





3.24 MOBY MUX, MOBY MUXA (and B) 171 

5.24 MOBY MUX, MOBY MUX A (and B) 

Drawings: MM,· MMA, MMB 

MOBY MUX A (and B) set parameter strings and call the MOBY MUX ~aero. 

The MOBY ¥UX is a combination register file, constant table and giant multiplexer. The input 
multiplexer is capable of reading all of the functional unit results and most of the interesting fields 
in the ABOX. On every cycle, the ABOX can give a pair of read addre~ses and a pair of write 
addr~ to the MOBY MUX. The pairs must be aligned, i.e. the possible reads (or writes) are: 

I 

Address Address 
First 25 ns. second 25 ns. 

2X+0 2X+l 
2X+l 2X+0. 
2X+0 none (hold 2X+0) 
2X+l none (hold 2X+ 1) 

Read and write addresses are directly controlled by the top level microcode. If necessary, there is a 
path around the RAM so that writing one cycle and reading th~ next introduces no unnecessary 
delays ·(and/or incorrect results). · 

The MOBY MUX can be convenently used as a FIFO. There is a counter associated with both the 
read and write addresses. The value of the counter can be used instead of .the top level register 
address. The counter is incremented every time it is used. A minor trick is that the register address 
from the top level microcode is ORed with the counter value. This allows 3JlY table in the upper 
part of the register file whose size is a power of two to be used for the FIFO. 

The read/write portion of the register file itself is 16 ABUS words deep. However, there is a 
read-only portion comprised of 256 additional words for use as constants. Which portion of the file 
is read is controlled by a top level microcode bit. 



T<<B.JS> 

e-1112 • IU..T AI!!IU.T _ _, '[813l r:---
8<112 • lUI AE!l.LT -- llhJl 1 

eo1ea • "IIlJB IE9.L.1 -- re.n z r----
e-112 • asF 'E11< OBJS> r e: J: lm2EB 'ISI2E8 

"" 0111£(.T<<&J9> A1 3 180!63 LATCH T 0 

"' ~ 
n··- ..,I 11!9190 

'ISIZE'B T 
T(~ ;9 

lMIS<I<IIl<IB&iO.:Jl • L0 TP-
100193 
~ 

Tp e.102 • - ~ ..,_ re:::J s £1 E'2 II REIFIFO T lle:GF"l.f<- ..., 
1 Sl SO o1 EZ R 

e-1 ez • STM£ 'lb<• <~WS> r '' J: 6 v '----! ~ 
·v 

7 
rF 

CTL !lA >Ell loA""' 
11 I 

.. ~ ·Jt1, 1\! .477.5-8 L 

39 
lllllli!V 

T2<t'oi!> [8t',] A1 
<I .,.j, IUC 9EL. ~ .lll-ll<e:O!> [0oJJ L.¥01 T c 91 

1 l!le190 
T() <ISIZE'B 

-2 

E1 •o2 11 
1 l)lsPU( 

I'" "'"' ""' .•r .. ~-.!-5 L 
Ul 

,_ ~ .P6.S· 7 L 

MOBY MUX 



.3
 

0 Q
J -<
· 

,; 

i !
 

.3
 

id
 

c 
~
 

X
 

-< 

D
 

~l
.I
 

(g
 P

U
l!)

 V
 X

O
W

 A
H

O
W

 '
X

n
W

 A
H

O
W

 
J.
6·
~ 



I"'OBY MUX B 



!.25 REGFIFO 175 

5.25 RECFIFO 

Drawing: REGFIF, MMCM 

This is the register file for a MOBY MUX. It has a 16 by ABUS RAM which can be both read 
and written every half-cycle as welt as a constant RAM which can be read every half-cycle. 



~ 

l<<BJ9> 

en. -") 
Tot~ A) 

Fn-~I£.C 

CONSTAfr 191> EtA B.F L A'l 

OIST<HT 
"'EIO:RY 

Of 

C9 IOi 

FE'I ~ ~ A:Rc'GJ~ ~< co.tsTCNT REJD ~ a.F.-Cih~ AI lot 

' ~~ 

l'tCBY ltl>< --

! 
! 

H' 

ARI ( .. I 

REilO- ~013> 

- Ill I REG ..nrr<llll -e1J> ~~ 

""" '14 .PJ·•.S L LH 

tT£ 9fl1 A4 .91·6 L 

-. ""' llrrTE DN A4 . ,.._, e L 

"""A4 ....... 10 L 

~ 

1 .. ~.19 

IIEG IIIE'II IOi EU'< e. 3> .fl 

L 

'i'ISLZEB 
11\l.liR"t 
,0014.; 
~ 

I 

REG IRl"IE- EU'<EhJ> .... I ' 
REG IRl"IE E>*l L AI 

COIS"T<HT REAl E>*l EU' '" P---J 
Fl..U9H I8J>< .c 

WIST<HT REAl El'¥1 A2 ..., If 

RE"G """' - R2< 0: 3> .... 

o6 

~~ rl CTL A' 

}----~1 108150 L 
0 : REG t-RITE' ~ A4t e: 3- A1 

L0 

E'l E'2 R 

4"ft' A2 .IP6.S-7.'5 L 

~EGFIFO 

-of 

lA 

> 
td 
0 
~ 
c. 
'"t 
11.1 
~ .... 
::I 
~ 



::..,;-;,-.;srw="•1:------lJ. til~ 
:JWjb lt9Si! 

113ZIStl 

c:Y' 1 S'l 

J.(j0W3W lNtflSNOJ 

IV C.9>1 (101 

IV c.S>1 <RtOt1 

IV 

w ca .. , atat 

n 

Sl 0 

~z-:~3) , I 

a 8 !D I l3) 

zz 

ll tl , 
0l 

CL•:tt 



178 3 ABOX drawings 

5.26 MOBY MUX ADR GEN 

Drawing: MFIFO 1, MFIF02 

This generates the addresses used by the REGFIFO. It contains the read and write counters 
necessary to use a MOBY MUX as a FIFO. 



-
IIBII OCT 0111 L A1 

-
""' Ai! ---8 &2W 

IIUTE OCT 0111 L A1 

A "'1' AE!E'l" f:"'CF'' A2 aSl-9 L. [9r 

""" Ai! .P4~'7 L 

II ""' RERl ~ Ai! -~8 [8&3) ~ T~ ~~ ~ 
I 1801911 

L1 T 

El E2 ll 

_, Ai! ..... '5-15 L r 0 

• _, R£10- Ai! .U.9<1J!3> ..l!.!Jl.. 
4! 

IATOi T~ ~114> A' 
I 180100 

L2 T 

41 
lll9 
om· 

E1 E2 ll 

~ Ai! .P3.6·4.6 L ?. O 

~ 

RA ~o4t7) A1 

L 
1e::ia Tl ~0 - -lh3> "" I 

A _, R£10 ~ Ai! .S?·12 L 

O<~IIE 

11 '""llEIIl lllR 9CliR:.a: sa Ai! .SJ-9<e> 

'""Ai! .P3.15-•.!S L-

II -..<RITE-~ .S3-9<1h3> [lh 

411 
1119 .,_ 
1~36 Tl FIFO <RilE <U~<eo3> "" 

1 

A..,..,__ <RITE- sc:dlCE SEI. Ai! .S3·9<CI> 

f't1 REtiET L A1 --~0z,3) N 
i:At0:~ A) 

aH£NT 

<Dl~SB.. 

e USE F'IF'O c.o..H1"ER 
c 1~ IFT£R U$ll-«il 

USE MICI<OCOOE <llCR 

""- Ai! .1'8·12 L &HZW 

~ Ai!<0•3> "" 

-114 .P.B-3 &31 

MOBY MUX 8DR GEN 

<48 
Uts REG 

le0141 

Ill 

CJ( 

~cS:7) ,...p 

-9>"' 

~ 

~ 
:( 
0 o:; 
~ 
:( 
c 
X 
> 
t:1 
~ 

0 
M z 

H IA<Ib2> A 

Tl ~ A4<8o3> A'1 ( 

-3>A 
L 

~ ..nt, ~IT£~ A" .s-4~10 L 

......,, ~ 'p;;-q L ').01 

--.J 
IC 



-II~ RE111 lUI 9CtJIICI: 'JEL IIi! .Ql-9 L [Ch.Jl ~ 1001&1, 

~ "" ~ Ai! .P4-8 L 
-~ 

. 
18 

lATCH ,___ 
t 11!111150 

l2 

£1 Ei! q 

'V 

'""' ~::e .P~·& L 

IB 
LATCH - l 1011169 

Ll 

£1 £2 R 

00 
I 

-11 _, IRtT£ lUI 9QRE 'JEL IIi! .SJ·9 L [01Jl 
1e:e:Y 

A""' .-rT£ E:NA1 "" .SJ.a L re.JJ _.1 

..... """, ............... 

T 

rf:>-· R L'" 

II_._ R£q) ~IIi! .S>-12 L £0oJl 10010:-?. 
.,; Ri! ()o'T £><A '" 

""'- 110 • P0-3 L ~./ 

~- . 
II -,m.. IRllE ~ Ri! .S>•I2 L [0o.JJ 100101)~ T 

. ~ ~ ~~~'" 
T ... _... ~-' 

I 

111 CHT E:"" lf1 

MOBY'MUX RDR GEN 

~ .... .. ~·....., ... 
lc: 100102 

116 . 

WRIT£ CNT £>¥1 lf1 

I· 

-00 
0 

(JO 

> 
t:d 
0 
~ 
0.. .... 
IU 
~ .... 
:::3 
~ 



2 

~· 
.~·. 

SCALD II User's Manual 
(SCALD-2) 

Thomas M. McWilliams, Jeffrey B. Rubin, 
.L Curtis Widdoes, and Steven Correll· · 



Table of Contents 

1 What SCALD does arid why 

1.1 The Structure of SCALD 4 
1.2 How to use this manual 6 

2 How to use D (the Graphics Editor) 7 

2.1 Preliminaries 7 
2.2 Commands for manipulating drawing files '13 

2.2.1 Getting and saving drawings . 13 
2.2.2 Initializations 14 
2.2.3 Finishing a drawing 15 
2.2.4 Looking for errors 15 

2.3 Commands for Body Mode 17 
2.4 Commands for Point Mode 19 
2.5 Commands for Set Mode 21 
2.6 Commands for Edit Mode 22 
2.7 Using Alter Submode to Edit Text 27 
2.8 Defining and 'Using Editor Macros 29 

.s A guided tour of D 31 

S.l Running the program !2 
3.2 Initializing the workspace 34 
3.3 Positioning Bodies 3'7 
3.4 Drawing lines 42 
3.5 Putting text on your drawing 52 
3.6 Editor macros 59 
3.7 Using sets 61 
3.8 Final touches to your drawing 62 
3.9 . Creating a body template 63 

3.9.1 Getting started 63 
S.9.2 Drawing the box 65 
S.9.3 Ornaments 65 
3.9.4 Defining pins 67 
3.9.5 Creating body text 69 

8.10 Making a m•mu file 70 

4 · How to use the macro expander 73 

4.1 Typical design procedure 75 
4.2 General Rules for the macro expander language 77 
4.3. Inventing Bodtes to Repr~nt Macros 79 



ii Table of Contents 

4.3.1 Body Parameters 79 
4.3.2 Pin parameters 83 

4.4 How the macro expander binds bodies to drawings 8G 
1.5 Inventing Signal Names 87 
1.6 Putting together a signal name 88 

4.6.1 <Negation> 88 
4.6.2 <Class Name><Simple Name> 89 
4.6.3 <Timing Assertion> 90 
4.6.4 <Assert Low> 90 
4.6.5 <Bit Subseripts> 92 
4.6.6 <Wire Delay> 93 
4.6.7 <Timing Evaluation Directive>- 93 
4.6.8 <Scope:> 93 
4.6.9 <Multiplier> 95 

4.o.IU <Version> 97 
. 4.6.11 Constants as Signal Na,mes 98 

4.6.12 Text Substitutions 98 
4.6.13 Sundry Details About Naming Signals 100 

4.7 Matching Signals with 'Bodies 104 
4.8 Fictitious Bodies 106 
4.9 How to construct the Terminal File 110 
4.10 Running the M aero Expander 112 
4.11 The Macro Expander Listing 113 

5 A Guided Tour of a SCALD Macro 1?. 1 

6 How to use the timing verifier 127 

6.1 Theory of operation 128 
6.1.1 Circuit Period 129 
6.1.2 Value system for signals 129 
6.1.3 Combinational function 130 

6.2 Defining t:hlps 132 
6.~ Preparing inpu~ for the verifier 137 

6.3.1 Wire delays 137 
6.~.?. A.u~rtiom~ on Signo.b 137 
fl~.~ Evaluation Direc.tiv~s 139 
6.3.4 Correlations 140 

6.4 Input and output files for the timing verifier 142 
6.5 A timing verifier example 144 

7 The layout program 149 

7.1 Preparing instructions for the layout program 150 
7.1.1 The DATE statement 154 



Table of Contents iii 

7.1.2 The WITH statement 155 

7.1.3 The assignment statement 157 

7.1:4 The PLACE statement 161 

7.1.5 The BIND statement .163 

7.1.6 The CHIP statement 165 

8 References 167 

9 Implementation information 169 

9.1 Format of the WDP file 169 

10 Index 173 



.... <
 



1 What SCALD does and ~hy 
SCALD (the acronym· stands for •structured computer-aided logic d.esign system") cuts the cost and 
time required to design logk It does this .by letting the logic designer express ideas as naturally as 
possible, and by eliminating as many errors as. possible--through consistency checking, simulation, 
and timing verification--before th~ hardware is. built. 

This rpan~al describes SCALD II, intended, fo_r u~ in the design of the S-1 Mark IIA processor. 
The original version, SCALD I, was used • in the design _of the S 1 Mark I processor. · 

Destgning·hardware ~ith SCALD is in many respects analogous to programming in a high level 
language. First, the designer uses a graphics editor to draw logic circuit diagrams on a CRT screen, 
just as a progammer. would use a text editor to compose a source program. The diagrams form a 
hierarchy in which general, high level drawings are defined in terms ·of more specific, lower level 
drawings, just as the top level procedures in a wett structured program· calt more specific, low level 
procedures. (Actuatty, each drawing represents a macro which can be replicated as often as necessary 
within the design.) ::,_·· 

Then the designer feeds the drawings to the SCALD macro expander, which translateS the .logical 
design into a detailed ph,sical design just as a co.mpiler would translate source language into 
machine code. In the process, the macro expander can find many err.ors by checking syntax and 
design rules. 

The designer then uses the SCALD layout programs . and physical design programs to map the 
output of the macro expander onto actual circuit boards, just as a programmer uses a linker and 
loader to map the compiler-generated code onto the .actual computer hardware. And, just as a 
programmer can use a symbolic debugger ~o find runtime errors, the designer can use the· SCALD 
simulator and timing verifier to check the behavior of the

1
hardware before buildi~g it. 

Ultimately SCALD produces tapes and ·listings that permit . membly of a prototype either 
automattcatty or by hand. 



2 1 What SCALD does and why 

SCALD brings to hardware the top-down design principles that programmers have adopted for 
software. At the top level of a welt-structured program, a programmer does not deal with loops and 
branches and assignments, but with two or three procedures that divide the program's task logically 
into major subtasks. Similarly, at the top level of a digital circuit designed with SCALD, the 
designer does not deal with gates and signal polarity and fanout, but with two or three functional 
blocks that divide the circuit's task logicatty into major subtasks. 

Each of the major blocks is then defined in terms of other blocks, and each of those in terms of stilt 
other blocks, and so on, forming the hierarchy. Successive definitions become increasingly specific, 
until finatty the lowest teve~ drawings correspond to actual integrated circuits. Those integrated 
drcuits are themselves defined in terms of a few primitive logic elements--gates, flip-flops, 
multiplexers, adders, and so on-to permit simulation. 

This approach to logic design has a number of advantages. (R~aders who a.re already eonvinccd 
should skip the fottowing sales pitch and start with Section 1.1.) Some of them stem from the 
hierarchical structure, others from the basic use of a computer to automate the task, and still others 
from specific features in the SCALD programs. 

Advantages of hierarchical structure-In .hardware design as in programming, a top-down 
approach lets the mind tackle the most important and far-reaching questions first, deferring the rest. 
At any point, the designer confronts a manageable number of decisions. Structured design makes it 
easier to apportion work among, a group of designers, since splitti':'g the ·task into subtasks along 
functional tines provides a set of relatively independent chunks of work. Structured design makes it 
easier for a newcomer or outsider to underst~d the design by progressing from a general overview 
toward fine details. 

Some advantages of top-down design apply uniquely to hardware. In a design requirhrg many 
individuai drawings, structure reduces the confusion caused by wlr~ runniug from one drawing to 
the next on the basis of paper size rather than meaning. 

. 
Further, structured designs are subject to tess trauma as technology advances. The upper levels of 
the hierarchy tend to be general enough that they remain independent of the specific technology or 
logic family the designer uses. And as circuit packages come to hold increasing amounts of logic, the 
bottom level of the hierarchy may simply vanish because each frequentiy-used macro which was 
formerly deimed in terms of a network of a dozen integrated circuits can be implemented with a 
stngtP. gate o.rray chip • 

• Advantages of automation-Other advantages result simply because SCALD maintains the design 
on a computer in machine-readable form. 

e It imposes uniform conventions on the. design team. 

• The computer's normal procedures handle mundane concerns like sharing drawings 
between designers, archiving old drawings, placing drawings in safekeeping, and so forth. 



What SCALD does and.'why 

• The designs .are readily available to programs for simulation, error~hecking, cost 
estimating, parts counting, and so forth. 

e Handling post-design ·changes by computer makes it more likely they"tl be systematic and 
wett documented. 

Advantages of SCALD itself-The SCALD family· of programs provides a number of specific 
services to make design easier. . 

• A timing verifier and logic sim1,1lator help test the design before constructing it. 

• Semiautomatic layout and automatic routing speed construction .. 

• Extensive error-checking reduces the number of bugs before construction· even begins. 
For example, SCALD checks the assertion level of signals against the expected inputs to 
each functional block; it finds a· source for the inverse of a sighal when needed; it lets the 
designer specify niles to handle'fanout problems automaticatty; and it checks for· undefined 
signals, unconnected signals, outputs tied together unintentioriatty, and undefineCi inputs. 



4 1 What SCALD does and why 

1.1 The Structure of SCALD 

SCALD itself is, as hinted earlier, a family of programs rather than a single program, making it 
easier to alter the system to suit different needs. ·For example, changes in the graphics input 
hardware affect only the graphi~ editor. Changes in the wiring technology employed affect only the 
packager programs. 

For portability, all programs except the graphics editor and system-dependent utilities are written in 
PASCAL, and· generally allow configuration for varying memory usage. 

SCALD divides into a logical design system (programs which apply regardless of the technology 
used to implement the desi&n) and a physical design system (programs which implement the logical 
design using a particular technology). · 

Important parts of the logical design system are; . 

D, the graphics ~itor-This progra.m .. lets ~he designer define macros by drawing networks 
of logic elements on a CRT display using a special keyboard or a light pen. One of its 
outputs .is a file listing all the logic elements and the connections among them. 

Macro expander-This program takes in the logical design (a set of hierarchical macros 
defined by graphics editor drawings) and transforms it into the first stage of the physical 
design, outputting a set of actual IC fUnctions and a list of the connections among them. 

Alternatively, for simulating the design before construction, this program can further 
expand the actual IC functions into the logical primitives which the simutator works with. 

Logic simulator-Using a typical value for the logic delays, this program simulates the 
design. In tt!e case of a processor, it can even run small programs to check the processor's 
ability to execute various instructions. 

Timing verifier-This prOgram takes into account a range of logic delays, from minimum 
to maximum, along with timing skews. It checks all the combinations of timing and signal 
paths necessary to assure that the design .meets worst case timing constraints. 

Unlike tl'le simulator, it does not fully simulate the network; it concerns itself with whether 
a signal is true or false only to the degree necessary to determine the interval within which 
that signal is stable. This division of labor between the simulator and verifier allows 
SCALD to assure a thorough. simulation of large designs in a reasonable time. 

Important parts of the physical design system are: 

Layout-Within constraints specified by the designer, this program autornaticatty positions 
parts on circuit boards. 

Packager-This group of programs routes wires among parts on the circuit boards, 



1.1 The Structure of SCALD 5 

calculates waveforms of signals propagating along those wires. and manages post-design 
changes. ··. . .. · ·· · . ·.' ·· . . 

•,t 



6 1. Whll;t SCALD does and why 

1.2 How to use this manual 

This edition of the manual covers the graphics editor, macro expander, and layout program, but not 
the packager programs. 

In some cases it gives two diff~rent views of the same material: a "How-to" section with a concise 
description, foltowed by a •Guided tour" through iltustrative (that is, blatantly contrived) examples . 

. 
Installation-dependent information such as how to start a program running tends not to appear at 
all Information of interest to those modifying the programs rather than to those using them, .such as 
the formats of files, appears in appendices. 



7 

I 

2 How to use D (the Graphics Editor) 
This chapter is an abridged description of D, the graphics editor, describing a minimal subset of 
commands needed to create drawings for SCALD. For a description of many more commands, s~ 
the SUDS manual Usted in Section 8. 

2.1 Preliminaries 

Terminology-We will assume use ·or the Stanford ·keyboard, which has keys labelled CONTROL, 
META, TOP, and SHIFT.· This keyboard operates differently from that of either a·typewrtter or 
an ASCll computer terminal: 

Pressing a_ key without holding any shift key gives the lower case version of the bottom symbol 
printed on the key. 

Pressing a key while holding SHIFT gives the upper case (capital) version of the bottom symbol, not 
the top symbol as it would on a typewriter. If the symbol in question isn't a letter and thus can't be 
capitalized, then SHIFT has no effect. -

Pressing a key while holding TOP gives the top symbol printed on the key. 

Holding CONTR9L or META in addition to some other cOmbination of keys affects the .flavor of 
·the character but not its_ identity. For example, holding SHIFT changes •a" to •A "; but holding 
.META in addition merely produces a special version of •A" which the program regards as a 
command, not some entirely new character. Generally, CONTROL gives the weaker or more 
·ordinary version of that command while MET A gives a stronger or more exotic ver~ion. 

We'll use the following notation throughout this manual: 



8 2 How to use D (the Graphics Editor) 

~<character> says to hold down CONTROL while pressing the <character> 

,4<character> says to hold down META while pressing the <character> 

~.&<character> says to hold down both CONTROL and MET A while pressing the <character> 

(The program never requires use of the characters '"a" or •13" themselves, so there's no danger of 
confusion; throughout this document they always represent the CONTROL and META keys.) 

When using D, latch the SHIFT LOCK key down to avoid having to lean on the SHIFT key 
constantly, thus freeing all ten fingers to manipulate SHIFT, TOP, CONTROL, and META. 

Whenever the program expects a multiple. character string--the name of a file or logic element, for 
example-it permits use ·of the DEL key to backspace and erase mistakes. 

The commands that consist of a character with MET A and/or CONTROL held down wi11, 
however, execute immediately, giving you no chance to use DEL. If, as a result of the command, the 
program then prompts for additional information, the AL T key witt generatty abort the command; 
otherwise, you must simply figure out a way to undo the results of the command. 

FUes, libraries, and bodies-The program stores drawings in files with names of the form 
•<name>.DRW". At the top of the screen, it constantly displays an equation -:3=<name>" which tetls 
the name of the file (if any) that it is currently editing. 

In the most general sense, the program can do two things: it can develop templates for "bodies", and 
it can draw circuits by first drawing bodies based on those templates and then connecting lines 
between those boc;iies. For SCALD's purposes, a body generally represents either a macro or a logic 
primitive such as a gate or adder. A drawing generally defines a macro in terms of additional bodies 
connected together. 

The templates for bodies hide in the background until the designer either uses a template to place a 
body in a drawing or enters a special mode (Edit mode) capable of creating or modifying body 
templates. 

When editing a drawing, the program operates on a copy of the drawing in a special area catted a· 
workspace. A particular drawing file can be copied into the workspace in three distinct ways: 

1. The first drawing file copied in after clearing the workspace becomes the one named in 
the "3::::" tine. 

2. (One rarely uses this feature.) If you copy in any additional drawing files, their body 
templates are added to the repertoire of templates in the workspace, and their drawings 
become sets of elements superimposed on your existing drawing, just like the sets you 
yourself can create as described in Section 2.5. You may thenmove those sets around and 



· 2.1 Preliminaries 9 

add them to the existing d_rawing, 

!. If you bring in a drawing file as a library, its body templates are added to the repertoire 
of templates in the workspace, but its drawings (if any) are not used. There is nothing 
special. about a file used to hold libraries of body templates;- 3J1Y drawing can look like a 
library if brought in as one. 

Other files-The program can produce tw~ other files. corresponding to ''<name>.DRW": 
"<name>.PLT" is useful for making a paper copy of the drawing, and "<name>.WD" is a list of 
bodies and interconnections which ultimately becomes the input to the SCALD macro expander. 

Moving the cursor-The program wilt always display (though sometimes af the very edge of the 
screen) a set of crosshairs which serves as the cursor. Four keys above the RETURN key move it 
incrementatty to the left, to the right, up, and down: 

( 
) 

I 

' 

Left 
Right 
Up 
Down 

(On some keyboards, the sequence is , ] \ /"instead; in. any case, no matter what is marked on them, 
use the four keys immediately above the RETURN key, and associate the directions with fingers 
rather than with the mark,ings on the keys.) 

These are obviously intended to be convenient, not mnemonic; since you will probably use them 
more heavily than any others, it's easy to become accustomed to placing four fingers over them 
without looking at the keyboard or thinking about the symb~ls on the keys. 

Holding down various shift keys multiplies the distance these keys cause the cursor to move: 

CONTROL x2 
META . x4 
TOP x16 

Using several shift keys at once multiplies the factors. Holding down both CONTROL and 
META. for example,· multiplies the fundamental cursor motion by 8. 

Enlargement, reduction, and moving .. the paper-When the program starts, ·it shows a x 16 
enlargement of the "paper" it- will draw on. That is a convenient sc:aie for seeing everything clearly, 
but the entire paper wilt not .fit on the screen at 'once, so the screen acts as a sort of '!window" 
through which. you view the drawing. 

To move the paper to see a different part of it through this window, use the ~. "J..", "-+", and "~" 
characters. Typing such a character once moves the drawing by l/8 of the window dimension. As 
with the cursor, the CONTROL key multiplies this. motion by 2 and the MET A key by 4. (The 

.·,,.. 



10 2 How to use D (the Graphics Editor) 

TOP key isn't available as a multiplier in this case, because it is needed to obtain any of those 
characters in the first place.) 

As the paper moves, the cursor sticks to it until the cursor hits the edge of the screen. You can 
continue to move the paper further in that direction, but the cursor will remain at the edge of the 
screen until you move the paper in a different direction. If you move the paper far enough, you'll 
reach its edge and see a line representing the perimeter (assuming the SHOWBOX feature 
described in Section 2.2.2 is enabled). 

You can also reduce and enlarge the paper to see more or less of it through the screen, but this is 
inconvenient because the text remains the same size while the bodies and lines shrink and grow. 
The "*" key reduces, the "e" key enlarges, and once again CONTROL and META multiply the 
effect . 

If part of the drawing spills off the edge of the paper, the '"X PICCEN" command (Section 2.2.2) 
wilt recenter it, but the system automaticatty recenters the drawing anyway just before plotting a 
hard copy o{ it. If the centered drawing won't fit on the paper, however, the plot will clip it at the 
edges. 

Modes-At any time, the program is in one of several major modes, each of which may have one or 
more submodes. Only certain modes and submodes are essential to drawing circuits for SCALD. To 
describe bodies one uses edit mode; to draw circuits with them one switches back and forth among 
body mode, point mode, and set mode. The top tine of the screen witt always contain "MODE=" 
followed by one or two letters, The first letter generally tens the current mode and the second the 
current submode. 

The program begins in body mode. The following commands change back and forth among body, 
pl;)int, and set modes: 

apB Select body mode (MODE ... B) 
app Select point mode (MODE=P) 
~ Select set mode (MODE..,S) 

Many commands work equally well in any mode, others don't, and still others mean slightly different 
things in different modes. Uniess noted otherwise, assume the commands given here work in any 

.mode. 

Attaching the cursor and moving objects--When the. program enters body, point, or set mode, the 
cursor is detached from all objects 'so it may move at wilt without affecting the drawing. The 
program wilt superimp,ose a large flashing 1ett~r on the object of the appropriate type--a body if it 
is in body mode, a point in point mode, or a set in set mode--which is closest to the cursbr. 
Attaching the cursor to that object forces the object to follow wherever th~ cursor moves. The 
following commands accomplish this: 

Move the cursor to the object and attach the cursor to -it. The large flashing 



2.1 Preliminaries. 11 

letter identifying the object wilt vanish. 

Move the object to the cursor and attach the cursor to it. The large flashing 
letter identifying the object wilt vanish. 

<SPACE> Detach the cursor from the object. The large . flashing tetter identifying the 
object witl reappear. 

It's not critical to understand them, but the large flashing letters do convey meanings: 

B Body 
P Point 
PL Point with line(s) 
TL Line (and usuatty a point, too) with text 
PA Point to which you may attach a line. On a body, 

this is usuatty an input or output pin 
PLA Same as PA, but there's already a line attached 
BT Body text 
BTP Body property name/text pair 

Extended commands--A special set of commands beginning with "X" sets options and performs 
functions without regard to mode. When you see a command in this chapter described like this: 

X CLEAR 

it means that after you type "X" the program will type "WELL?" and wait for you to put in the 
remainder of the command ("'CLEAR" in that example). Since operating systems supporting the 
graphics editor generatty offer "typeahead" {that is, they will save up characters if you happen to 
produce them faster than a program can use them), it's usually safe to type the entire string without 
waiting for the "WELL?". 

In addition, you may combine these extended commands. The following example 

X 
WELL? EW,CLEAR 

shows how to perform "X EW" and "X CLEAR" together. Note that the program executes them in 
the order specified, so this would (with considerably more kindness than one has any right to expect 
from a machine) save the workspace before clearing it. 

Text-The graphics editor provides two kinds of text: simple text and property name/text pairs. 
Text is usually associated with a point or body, and thus appears, disappears, and moves around 
whenever the point or body does. To deal with a piece of text, move the cursor close to it and give 
the appropriate command· as described later in this chapter. Property name/text pairs give an 
additional means of access, a name associated with the text. Because the name is merely an· access 



12 2 How to use D (the Graphics Editor) 

key, it's invisible on the drawings .. 

The editor distinguishes between text created as part of the drawing and text that is copied from a 
body template. Though the editor provides a mode that can manipulate both kinds, we won't 
discuss that because you won't need to use it. Throughout the modes we'll describe, template text is 
sacrosanct: because you didn't type it in, you can't touch it. A default property_ name/text pair is 
semi-sacrosanct: you can replace its. text completely, and thereafter you can edit the replacement, but 
you can't edit the default text. 



2.2 Commands for manipulating drawing files 13 

2.2 Commands for manipulating drawing files 

2.2.1 Getting and saving drawings 

X CLEAR 

,41 

'otW 

X CETLIB 

X TITLE 

X PACE 

X PROJECT 

XEW 

Clear the workspace, deleting drawings and body definitions but not macros. 
This also resets the editor to MODE·B, LEVEL=O, SCALE=16, and 
3=<nothing>. 

Bring in a new drawing file. (The program will prompt for the name.) If the 
workspace is clear, the new file becomes the "'3 .. " file; otherwise, it becomes a set 
within the existing drawing. Specifying 7 as the new file clears the remembered 
name (the "'3=" feature) at the top of the screen. · 

Save the workspace into a drawing file and change the "3=" line, if necessary, to 
p_oint to that file. (The program will prompt for the name. If the "3=" already 
shows the filename, reply "'3" and the drawing will automatically go back into 
that file, which is a lot safer than attempting to retype the name.) 

List all body templates in the workspace (both bodies described in this drawing 
file and those described in any libraries you are using). 

Get a file and use it as a library. The program will prompt for the filename .. 
Once a particular drawing knows about a certain library, it wi11 remember it, so 
you need not repeat the command the next time you edit that drawing. 

Invent a title for the drawing. (The program w111 prompt for the first line of the 
title and then for the second.) The title is a label that appears at the bottom of 
the drawhag, ·and is quite distinct from the name of the file containing the 
drawing. 

· The SCALD programs do not require it, but for documentation purposes you 
may paginate drawings. This command prompts for SHEET (the current page 
number) and OF (the total number of pages). The numbers appear in the form 
-page X of Y" at the bottom of the printed version of the drawing. 

Specify which project the drawing belongs to. (SCALD does not require this, but 
you may wish to partition your design into projects, with a certain number of 
macros in each project. If you do, SCALD will print the project name on listings · · 
to help you mentally sort macros into categories.) 

Identical with •aw" followf.'rl by '"3". It's a good idea to use this command 
periodically as you edit, just as insurance against a system crash. 



14 

X EP 

X EL 

· 2 How to useD (the Graphics Editor) 

Write a plot file called '"<name>.PLT" based on this drawing, provided the") .. " 
line contains a name. 

Write a wirelist file called '"<name>.WD" based on this drawing, provided the 
'"3=" tine contains a name. 

2.2.2 lnitializations 

We recommend using the fotlowing commands to set up initial conditions in the program. The most 
painless approach is to make them into an editor macro catted INIT as explained in Sect.ion 2.8. 
Then .create a dummy drawing with nothing in it but the INIT macro. To create a new drawing (as 
opposed to editing an ·existing one), make it a practice always to start by clearing the workspace and 
bringing in the dummy. 

X -LOCS Disables the displaying of a feature that SCALD doesn't use. 

X BOARD Sets a number of characteristics that in general don't matter to SCALD .. The 
program wi11 prompt for the board type, and you should reply "DECPC". 
Consistency throughout att your drawings in this respect witt spare you countless 
annoying, hut har•f11ess error messages. 

X SHOWBOX · Tetts the graphics editor to provide a border around the drawing similar to those 
conventionatty used for engineering drafting. Boxes attached to the border have 
room for the title, date, site, engineer's name, signature of approval, and so on. 
Aside from the title, SCALD needs none of these, though it will print page 
numbers and project names on' its output listings for documentation purposes. 
Various '"X" commands (explained in the SUDS manual} ~x.ist to specify each of 
these items. Paper plots show the entire border, hnt f'!n the Ec:reen, ntt. that 
appears is a simple rectangle defining the •edge" of the •paper". 

The program wiU prompt for the type of box, the drawing scale, and the plot 
scale. Repty •A 16/1". 

X PICCEN Centers the drawing within the box provided by '"X SHOWBOX". This is 
primarily a convenience, since the program which produces a ·paper copy of the 
drawing centers it within the SHOWBOX anyway. 

X UNDERLINE Positions signal names so that signal wires always go under them, not at the end 
of them. 



2.2.2 lnitializations 15 

X DIAMONDS Engineering drafting is afflicted with one great unanswerable question: when two 
lines cross. are they meant· to connect?' The DIAM.ONDS option causes D to 
supply a diamond at the intersection point whenever the lines are indeed meant 
to connect, but only on the copy of the qrawing that. gets plotted on paper. 

The program wilt also ask now whether to plot a diamond whenever only three 
Unes connect Answer -v". (Terminology gets confusing here. What looks like 
two lines crossing and connecting is; as far as D is concerned, a matter of four 
lines-two pairs of colinear segments. And what iooks like one line meeting 
another in a -r'" may, in some cases; be three discrete segments in the eyes of the 
program.)· 

2.2.5 Finish.ing a drawing 

When you are satisfied with a drawing and plan to make a paper copy, we recommend· using the 
fottowing commands, .which prepare it for plotting and clear the workspace in preparation for the 
. next drawing. We use a macro catted PLOT {Section 2.8 explains macros) to perform them 
automaticatty. 

X SCALE 

X -DEFPIN, 
EW,EP,CLE 

Prompts for the scale of the drawing. Reply •ts". 

Described individ,uatty elsewhere. 

2.2.4 Looking for errors 

The following command looks for errors which occur when tines appear connected on the graphics 
display screen, but are not connected from the point of view of the,program. 

X DANGLE Mark att dangling points. Once they're marked, you can enter point mode and 
use •aF" repeatedly to move the cursor from one marked point to the next. 

A dangling point is one which: 

1. Has no tines or text associated with it (in which case you should delete the 
point), or 



16 2 How to use D (the Graphics Editor) 

2. Has two colinear lines associated with it (in which case you should, within 
point mode, trpe "~D" to delete the point and merge the lines), or 

3. Has exactly one line associated with it but no text (in which case you should 
label the point with some text), or 

4. Has text but no line (in which case you should either supply one or more tines, 
or delete the point and its text), or 

5. Lies atop another point (in which case you should· type "aA ". The program 
will put a stllr atop the twin points and ask, -rhis one?" Reply ~, and Lh~ 
program will combine the points. 

,• 



2.3 Commands for Body Mode 17 

2.5 Commands for Body Mod.e 

In body mode, aJI the commands implicitly refer :to bodies in the drawing itself. ~hey can create a 
copy of a body based on a specified body template and place the new copy in the drawing; they can 
move a body about, delete a body, rotate _a body, or label a body. 

TypicaJiy one first draws bodies in this mode and then switches to point mode to connect lines 
between them. 

otD 

otY 

~y 

otO 

Place a new copy of a body at the cursor position, leaving the cursor attached to 
it. (The program will prompt _for the body name.) 

Delete the body closest to the cursor. 

Create or replace the text of a property name/text pilir for the body closest to the 
cursor. The command works whether ·the text came from a body template or 
from one of the commands that let you type in text. The program wilt prompt 
fClr the property name and, if it does not already exist, wilt establish a new one, 
Then it will prompt for a text to go with the property name. That text may be 
any str:ing, incl~ding embedded blanks and using the character "++" to break the 
string across multiple lines. To replace an existing property text rather than to 
create a new property name/text pair, the "tJY" command is-safer. 

Replace the text for an existing property name/text pair. (This command works 
just like- •av", but requires you to type only enough of the property name t9 
identify the property unambiguously. In addition, this command won't create a· 
new property if you happen to mistype the old property name.) 

Rotate the body closest to t,he cursor by 90 degrees counterclockwise. After 
rotating it,SSO degrees, the prCJgram will replace it with its mirror image. · 

Enter text/property submode for the body closest to the cursor, showing 
· "MODE-=BT" at the top of the screen. This submode of body mode lets you 

manipulate text or properties of that body by attaching and detaching the cursor, 
moving the cursor, and issuing commands. Until you attach the cursor, a large 
flashing letter or letters wilt identify the text or property closest to the cursor. 

This mode wilt not alter text derived directly from a body template, but only text 
you ha.ve created or replaced yourself. 

Note that everything you do within propert,/text submode of bod' mode applies to 
the bod' that was closest to the cursor on entering the submotk. Once inside the 
submode, moving the cursor to another body doesn't alter this; before working 
with the properties or text or another body, you must get out of the submode, 
move the cursor to the Qther body, and get back tn. 



18 2 How to use D (the Graphics Editor) 

The following commands apply to text/property submode (while the "(3Y", and 
•a.v" commands for body mode work equally welt within text/property submode, 
it's a bad idea to use them here because if you forget which body the cursor was 
closest to when you entered the submode, you can easily create a piece of text that 
appears within one body but belongs to another as far as the graphics editor is 
concern~): 

o£D Delete. the property or text closest to the cursor but belonging 
to the current body 

Use Alter submode to edit the text or property tex.t closest to 
the cursor but belonging to the current body. You witt see 
~ODE•BA" at .the top of the screen. Note that this 
command cannot change text obtained directly from a body 
temp1ate. Only after you have used "aY", a{3Y", or aaT" to 

replace or produce text can you use "a(3A" to alter it 

Return to normal body mode. 



2.4 Commands for Point Mode 19 

2.4 Commands for Point Mode 

White point mode does deal with points, its principal use ·is to create lines ~y drawing between 
points. The commands in point mode which explicttly create or delete_ a point are used far less than 
those which draw lines, implicitly creating points as they do so. 

atD 

otT 

atK 

+ 

Create a point at the current cursor position. 

Delete the point at the current cursor position, along with any lines or text 
associated with that point. If two or more points coincide, the program deletes 
whichever'it likes. (If the point is really a pin on a body, the program deletes 
lines.and text associated with the point, but not the point itself.) 

Like ·~T", but doesn't provide offset. 

Label the point closest to the cursor with text and offset the text if necessary to 
make it pretty. (The program will prompt for tex~.) You may use the "t+" 
character to separate the text into multiple lines. 

Delete the text (if any) labelling the point closest to the cursor. 

Use Alter submode to edit the text, if any, labetling the point closest to the 
cursor. You will see "MODE=PA" at the top of the scree~. 

Starting at the point closest to the cursor, draw a perpendicular line toward the 
line closest to that point The program will place a star on the line it proposes to 
connect to and -wilt ask you to confirm the command. 

Draw a blinking line or pair of lines connecting the cursor with the point closest 
to it (The program wants to avoid slanted lines, so if necessary it will use .two 
perpendicular lines, one vertical and one horizontal). These lines are temporary 
and will stretch and contract to follow the cursor wherever it goes. As the cursor 
travels, the program puts a star on its current favorite "point of attachment" (that 
is, the point to which it wilt extend the lines automati~ally if you so choose.) 

The command leaves you in a line-drawing submode of point mode, from which 
you can ls3ue the following commands: 

<ALT> 

<SPACE> 

+ 

Delete the blinking line(s) and return to ordinary point mode. 

If there are two lines blinking, swap them. In other words, if 
the program previously chose to go from the point to the 
cursor by drawing first horizontally _and then vertically, it will 
now draw first vertica11y and then horizontally. 

If only one line is blinking. make it permanent by creating a 



20 2 How to use D (the Graphics Editor) 

new point at the end. If two lines are blinking, make the one 
furthest from the cursor permanent by creating a new point at 
their intersection. Once it is permanent, the line stops 
blinking. 

In either case,_ leave the program in tine-drawing mode so 
that blinking tines continue to follow the cursor. 

Extend the blinking line(s) as nece~sary to reach the current 
favorite point of attachment (that is, the point marked with a 
star) and then make the lines permanent. 



2.5 Commands for Set Mode, 21 

2.5 Commands for Set Mode 

Set mode manipulates groups of bodies and Jines;·i~.duplicates, moves, or deletes the entire group as 
a single entity. 

<SPACE>, 
+, <AL T>, and - These work more or less as described under point mode in Section 2.4, but are 

used to draw a box around a group of bodies and points. The tw.o important 
differences are that you must use •-" to. close the box, and that the lines of the 
box wilt continue to flash after you've used "+" to make them permanent. Then 
the box will vanish and the bodies and points become members 0~ a set, which 
you can manipulate as a single entity, attaching the cursor to it, moving it, 
deleting it, and so on. The program wilt flag the bodies and points with large 
flashing "B" and "'P" characters to indicate they're members, and will place a 
flashing "'S" at the center of the set When you attach the cursor, all the flashing 

otD 

·letters vanish, and when you detach it, they reappear. 

Release all members of" the set which is closest to the cursor. The points and 
bodies stilt exist, but don't belong to the set. 

0 
Delete all members of the set which is closest to the cursor: The points and 0 
bodies no longer exist, so various Jines and text associated with them must 
vanish too. · · · 



22 2 How to useD {the Graphics Editor) 

2.6 Commands for Edit Mode 

Edit mode creates body templates, which you typically put into libraries and use to cre!lte bodies for 
drawings. This mode differs from point, body, or set mode in certain basic ways. First, the drawing 
temporarily hides in the background while you create or modify the template. Second, you must type 
a specific command to leave edi~ mode before switching to one of the other modes. 

Edit mode performs three functions: drawing vectors' to represent the body, defining pins on the 
body, and tabetting the body and pins' with text. For each function, there is a particular submode: 
insert submode, grab-body submode, pin submode, and text/property submode. 

When inside edit mode but not inside· any of these submodes, the program will place a star at the 
point on the body closest to the cursor. Resist the temptation to treat this like the star tbat appears 
in normal point mode; to draw the body you must use insert sub~ode. 

cd 

Enter edit mode. '"MODE=E" will appear at the top of the screen. The program 
will prompt for the name of the body templa~ to be edited and, if that template 
doesn't already exist, will create a new one. 

While edit mOde creates and modifies body templates, it does not delete them. 
Instead, the command "X DEL TYP", which may be used only outside of edit 
mode, will ask you for a body name and then delete that body's template along 
with all occurrences of that body in your drawing. 

Leave edit mode and return t.o hntiy mode. (You maytsa.fely do this even from 
within one of th~ submodes of edit mode.) Note that if bodies derived from the 
template just edited exist in the drawing, the changes are reflected in the 
drawing immediately. In particular, deleting pins can cause havoc because lines 
formerly attached to them will vanish. 0 

Enter insert submode within edit mode so as to draw vectors to make the body 
template. "MODE ... £1" witt appear at the top of the screen. Within this mode the . . . 
commands resemble those used in point mode to draw lines; they are just similar 
enough to tnst111 ~ false sense of confidence. · . 0 

When you enter this submode, the cursor is resting at the point which witt be. the 
•origin" for the body--:-that is, the point the cursor wilt move to when you attach 
it to the body, and the point upon which the program wilt superimpose the 
flashing "B" when appropriate. By convention, we draw a body so its origin is at 
the upper left, though nothing in the program requires this. 

From the origin, proceed to draw visible and invisible vectors forming a single 
path around the body. Provided it is not invisible, the vector you are currently 
working with will appear a bit brighter than the others. 

Theae vectors must form a single path. To make three lines meet at a point, for 



2.6 Commands for Edit Mode 

example,· you .must draw through . the point, then use an invisible vector to 
backtrack to it, and finally start a new visible vector headed outward from the 
point. Trying . to attach the cursor to the intersection of two vectors and then 
moving the cursor to start a new vector will either overlay two visible vectors or 
move the intersection point without creating a new vector at an. 

Here are the commands atlowed within insert submode: . 

ot:+ 

ot:-

<'RUBOUT>. 

<SPACE> 

End the pending vector (if any) and start a visible vector that 
wilt fotlow the cursor wherever. lt goes. 

End the pending vector (if any) and start an invisible vector 
that will fotlow the cursor wherever .it goes. 

End the pending vector (if any)· and' move the cursor back 
along the path of vectors,_ toward the origin. Each time you 
pres.S <RUBOUT>, the cursor travels . the length of the 
preceding vector and lands at it~ "starting point. The vectors 
on either side of that star~ng point appear extra bright 
(unless they're invisible), and if you move the cursor using the 
up/down/right/left keys, the vectors wilt stretch to fotlow it. 

When <RUBOUT> causes the cursor to reach the origin, it 
stops there, and further use of <RUBOUT> has no effect. 

Just like <RUBOUT>, but moves the cursor forward along 
the path of vectors, away from the origin. It's a good idea to 

use <RUBOUT> and <SPACE> to travel the path, checking 
for any duplicate or unwanted vectors, before leaving edit 
mode. If it takes two <RUBOUT>s to pass a certain point, for 
example, then you have inadvertently placed a zero length 
vector there, and should delete it. 

Delete a vector. 

If the cursor lies at a point .on the path with one vector 
preceding it and another fotlowing It, this command deletes 
the preceding vector and stretches the fottowing one to take its 
place, maintaining an unbroken path. 

If the cursor Ues at the last point on the path, this command 
deletes the vector preceding it and makes the previous point 
into the last point on the path. 

If the cursOr- lies at the origin, then this command deletes the 



24 

<ALT> 

2 How to use D (the Graphics Editor) 

first vector on the path and moves the cursor to the next 
point. This becomes the first point on the path, but doesn't 
change the origin-though <RUBOUT> will not move the 
cursor back to the origin, the origin is stilt there. 

End the pending vector (if any), leave insert mode, and return 
to normal edit mOde. 

Grab a copy of an existing body template and add it at the cursor position to the 
body template being edited. The program will ask for ·that body's .name. 
*MODE=EO" will appear at the top of the screen. For example, this command 
allows you to define a diamond or "'bubble" body template and grab that body 
whenever necessary tn show that a. pin Pxpects .its .§ignal to assert low. 

The new body arrives with the cursor attached, and you can move it by moving 
the cursor. The following commands are valid within this submode: 

<SPACE> 

<ALT> 

otO 

Detach the cursor from the new body, incorporate it into the 
body template being edited, and return to normal edit mode. 
Once. detached, the cursor cannot be reattached; attempting to 
do so witt put you into insert submode, dealing with its path 
of vectors.· 

The reason will become clear if you enter insert submodP. anrl 

use <SPACE> and <RUBOUT> to travel the path; the 
prOgr-am has already converted th'e new body into a series of 
vectors inside the path. 

Delete the body just grabbed and return to normal edit mode. 

Rotate the body just grabbed, exactly as you would in body 
mode. 

Enter pin submode within edit mode. "MODEaEP" wilt appear at the top of the 
screen. Within this subinode, use the cursor as you would within ordinary point 
mode tu allat:h to pins, move them around, delete them, and so on. Important 
commands within this mode are: 

o£P Create a pin at the cursor position. The program witl ask for 
a pinname (actually, this -rtame" must begin with a number.) 
To create an invisible duplicate of a pin for bus-through 
purposes, end the name with •/B": thus, a pin called •t" and a 
pin called· •t/B" are electrically identical though physicatly 
they appear in two separate places on the body. 



2.6 Commands for Edit Mode 25 

X DEFPIN 

X -DEFPIN 

otD 

<ALT> 

(You can actually create pins outside of pin submode, but it's 
a disorderly sort of practice since you must then get into pin 
submode to do anything else with them.) 

Delete the pin closest to the cursor. 

Leave pin submode .and return to normal edit mode. 

Display the pinname next to each pin, within edit m<x,i~ and in the normal 
drawing modes. It's handy to turn this feature on white working with pins within 
edit mode, but one customarily turns it off in the normal drawing. 

Don't display the pinname next to each pin. 

Enter text/property submode within edit mode. ~ODE .. ET" wilt appear at the 
top of the screen. Here you can label the body with text, create properties for the 
body or for pins, attach the cursor to text or properties, move them around with 
the cursor, delete them, alter them, and so on.· Important commands within this 
submode are: 

otT 

oeY 

oeK 

Create text at the cursor position. Such text merely labels the 
body, as a sort of comment that has no more significance to 
SCALD than does the shape of the body itself. 

Create or replace the text of a property name/text pair just as 
in normal .drawing modes. 

Replace the text for an existing property name/text pair just 
as in normal drawing modes. 

You can actually use exT, cxY, and (!,Y in edit mode without 
getting into text/property submode, but that's a disorderly sort 
of practice since you must then get into the· submode to do 
anything else with the text you've created. 

Delete the text or property name/text pair closest to the 
cursor. 

Kllt the text or property closest to the cursor. If it's simple · 
text, this deletes it If it's a property name/text pair, this 
doesn't delete it, but simply hides the text so it doesn't appear 
when you use the body in a drawing. This is handy because it 
all~ws you to label pins as SCALD requires while avoiding 
clutter on simple bodies, such as gates, where the purpose of 
each pin is understood by convention. · 



ot./lA 

<ALT> 

2 How to useD (the Graphics Editor) 

If you use aK by mistake on a property, the only way to undo 
the damage is to delete the property in question and create it 
anew. 

Use Alter submode to edit the property or text closest to the 
cursor. "MODE=EA" wilt appear at the top of the screen. 

Leave text/property submode and return to normal edit mode. 



2.7 Using Alter Subm~e to Edit Text 27 

2.7 Using Alter Submode to Edit Text 

Alter submode ls a· text· editor into which you may mom~ntarity descend from within a drawing 
mode or submode. When you leave alter submode, you return to whatever you were doing before. If, 
for example, you were in the text/prop~rty stibmode ·of body mode when you decided to alter 
something, you'll be back in text/property submode when you return. · 

Invoking alter submode from point mode edits the text associated with the point closest to the 
cursor, or creates text if that point has none. 

Invoking alter submode· from a text/property submode edits the text closest to the cursor. If that text 
· is part of a property name/text pair, then alter mode affords you the side benefit of finding out the 
property name associated with that text, which is otherwise invisible. 

Within alter submode, the program displays the text with the "++" character indicating any point at 
which the text breaks into multiple lines. Undernellth the text, an L-shaped tine serves as a pointer. 

In the Ust of commands that fottows, <-> indicates that placing "-" before the command reverses its 
operation-backward instead of forward or forward instead of backward. <n> indicates that placing 
a digit in front of the command causes it to repeat itself the specified number of times. 

<ALT> 

<·><n><.SPACE> 

<•><n><R UBOUT> 

(-><n>S<char> 

<·><n>D 

<-Xn>K <char> 

I 

Enter alter submode. 

Leave alter submode. 

Move the pointer forward one character. 

Move the pointer backward one character. 

Move. the pointer forward past the next occurrence of character <char>. If 
<char> doesn't occur, leave the pointer at the end of the text. With <-;>, the 
pointer wilt move badward and come to rest before the character, or at the 
beginning of the text if the character doesn't occur. 

Delete the character to th~ right of the pointer. 

Delete characters to· the right of the pointer up to and including the next 
occurrence of. <char>. If <char> doesn't occur, leave the pointer at the end of the 
text without deleting anything. 

With <->, the program will delete characters to the left of the pointer through 
the next occurrence of the character. If the character doesn't occur, the pointer 
wi11 land at the beginning of the text without deleting anything. 

Insert text at the pointer position. The program wilt prompt you by asking 



28 

<-Xn>R. 

2 How to use D (the GraphiCs Editor) 

'"INSERT TEXT~". Type the characters you want to insert and press 
<~ETURN>. (To put a carriage return inside the text, use the"++" character.) 

Replace characters. Equivalent to a •<-><n>D" command fottowed by an 'T' 
command. 



2.8 Defining and Using Editor Macros 

2.8 Defining and Using Editor Macros 

To speed repetitive tasks, you can cotlect together into an ,editor macr!). any set of commands you 
could have performed individually. Such a macro can even define or use another macro. Note that 
editor macros, which are convenient ways to reduce the amount you must type, are quite different 
from SCALD macros, which are drawings representing functional blocks of circuitry. 

Macros are not associated with particular drawings, but rather with. t~e ~sion at the editor. 
Clearing the workspace doesn't delete them, and saving a drawing doesn't necessarily save them 
unless the "'X SMACRO" command described later is in effect. 

The macro commands· actu.ally need only begin with •a;" when. used within.,a macro definition; 
outside, the •a;" is optional 

Note that after you type the initial •a;" for any (Jf the following commands, the program will print 
•.-" to prompt for the rest of the command. The •a; C" command will also print ~YPE MACRO 
NAME" to prompt for the <id>. 

As you enter and exit macros, the number to the right of ~EVEL="· at the top of your screen will 
keep track of their nesting. If LEVEL is 0, no macros. are pending. 

ot;P 

ot; s 

ott R<num> 

ot1 M<id> 

Define a temporary, uimamed macro. After you type •a; P", each command you 
type will execute within the dr:awing and. also become part of the macro. This 
wilt continue until you use •a; S" to abort the macro or •a;.R" to call it repeatedly. 
After executing the proper number of ~es, the macro va.rtishes . 

. I 

Abort att ·macros currently pending. This· is the command. to use when you're 
inside one or more levels of macros and realize you've made a mistake or lost 
track of the situation. , · 

Stop adding commands to the current macro, end it, and execute it the number 
of times specified by <num>. That number should include the first execution, 
which for •a; P" or •a; M" has already tak.en place within the drawing. For 
example, •a; R4" witt execute the macro three additional times. 

Like •a; P", this begins by executing commands as it collects them into a macro 
and ends by executing the entire macro enough additional times to satisfy the 
closing •a; R" command. But it also gives the macro the name <id> so you can 
calt it again with •a; C". 

The name "'INIT" gives a macro two special properties that make it useful for 
initializing various ·aspects of the program. First, the program witt save this 
macro in the •<name>.DRW" file along with the drawing whether or not the '"X 
SMACRO" command is in effect. Second, it will execute tbe macro automatically 
when you bring the f'ite into your workspace. 



so 

ot; C<id> 

0(; A <s>, <i> 

XSMACRO 

X -SMACRO 

XDMACRO 

X MACRO 

2 How to useD (the Graphics Editor) 

If, for e"ample, you want to set the scale to "x 1 7" whenever you begin a drawing 
but don't want to have to remember to use the "*" command, create a macro 
catted· INIT containing that command. 

Catt the macro named. <id>·and execute it the number of times specifed by the 
•a; R" command used to close the macro when you originatty defined it. 

This command puts a counter inside a macro. It is valid anywhere· inside a 
macro definition--even partway through a string of characters. Every time the 
macro executes, the •a; A" expression replaces itself with the text representing a 
number, starting ~ith the number <S> and incrementing by <i>. 

Associated with each macro is a flag telting the program whether that macro 
should be saved in the drawing file whenever you perform a "aW" or "X EW" 
command. 

When you bring in a drawing file that contains a macro, or when you use such a 
drawing file a5 a library, you acquire the macro and retain it, even if you clear 
your workspace, until you leave the program or use the "X DMACRO" 
command to get rid of it. 

This command asks you for a macro name and sets the flag for that particular 
macro. 

Clears the flag for a particular macro, thus tetting the program not to save the 
macro in the drawing file when you use -x EW" or "aW". 

Deletes a macro from the work area. (The program will prompt for the name of 
the macro.) 

· Lists all macros associated with this editing session. 



31 

3 A guided tour of D 
This section proceeds step by step through an entire session with the graphics editor, showing how 
to create a typical drawing. It makes a number of assumptions which-if true-will make it much 
easier to learn to use the program: 

e We assume you're using a Stanford keyboard, whose distinguishing features are shift keys 
· labelled -r'OP", •coNTROL ", and "'META". If not, consult a friendly local wizard, or 

refer to the SUDS manual mentioned in Section 8, for the conversion procedure. 

e We assume you know, or can find out from a friendlr local wizard, how to ~tart the 
program running at your installatiOn. 

• .we assume someone has already described and placed in libraries called '"SIMLB". and 
"STDLB" the bodieS your drawing will need, and that they've given you a blank drawing 
·caJted "BLANK" that initializes the appropriate options for yolJ. 

e We uk you to assume the complete drawing ·was revealed to you in some mysterious flash 
of insight, so we can concentrate on the graphics editor, and postpone discussion of the 
SCALD language. 

Before you start, you should read the first few pages of the preceding chapter--Section 2.1 should be 
plenty. 

In the examples that follow, we use italic type for the characters you produce and normal type for 
the characters the computer produces. We use •a" and ·~., as explained in Section 2.1, and use 
<ALT> to represent the key labetled 11ALT" or 11ALTMODE"; <SPACE> to repre5ent the space. bar; 
and <RETURN> to represent the key marked ~ETURN". 



32 3 A guided tour of D 

5.1 Running the program 

Get the program running by whatever means, fair or foul, your local wizards have taught you. You 
should see something similar to Figure 3-1. The program devotes most of the screen, below the 
'"MODE=" line, to your drawing. On the bottom quarter of the screen it superimposes the 
character-by-character dialog between the program and the keyboard. Soon you'll probably find 
yourself focusing on the drawing rather than the characters you type~ since the drawing is a lot more 
fascinating, and. it will seem as if your fingers control the image directly. When the keys don't seem 
to be working, however, you can often tell from the character-by-character dialog what's wrong. 

"MODE=" 
LINE ---7 MODE=B SCALE=16 

CURSOR 

CHARACTER- BY- . 
CHARACTER -~ · • 
INTERACTION 

X 

Figure ~1 
An empty screen 

LEUEL=0 3= 

The top line shows you're in body mode ('"MODE=B") with scale set to 16, no macros pending· 
\LEVEL=O"), and no file brought into your workspace("'] .. "). Throughout· the rest of the chapter, 
we'll show only the drawing portion of the screen, leaving the top line implicit. · , · ... . , . 

To get accustomed to moving the cursor, place the four fingers of your right hand on the keys 
marked T. )", "\", and "'/" above the RETURN key. Press with your index finger and you should 
see the cursor move left. The long finger should make the cursor move right. The next finger 

· should move the cursor up, and the little finger should move it down. 

Experiment with holding down the shift keys-:--CONTROL, META, and TOP--first by themselves 
and then in combination--to make the cursor.move further with each· keystroke. With CONTROL 
alone, it should move twice as far as it does without any shift key; with MET A, four ·umes as. far; 
with TOP, 16 times as far. With CONTROL, META, and TOP together, it should whiz across 
the screen 128 times as far as it does with none of the shift keys. 

Practice moving the cursor around till you · feet bored or comfortable with it Soon, you will 



3.1 Running the program 

automaticatty associate the four fingers with the four directions: without thinking about the keys 
they're pressing. · 



. 
0 

3 A guided tour of D 

1.2 Initializing the workspace 

Before you can start drawing, you need to initialize certain options and to gather bodies from the 
libraries. 

At our installation, we keep around a drawing catted "BLANK" whose function is to bring in bodies 
from a library and to call an INIT macro which performs without toil or strain on your part the 
initializations covered in Section 2.2.2. Remember that, as explained in Section 2.1, "13" means you 
should liold down the META key while you press the succeeding character. Thus, the command for 
bringing in a new drawing is written •131" and stands for "MET A 1": 

*f.U FILENAME? BLANK 
READING BLANK.DR~[MK2,Sll 

LIBRARY STOLB.DRIJ CMK2;Sll 
PLOT 
I NIT 
LEAVING MACRO LEVEL .1 

The reply from the program· {which may vary slightly from that shown here indicates that the it 
found· the file you wanted (BLANK[MK2,S 1]), brought in one of the libraries you'tt need bOdies 
from (STDLB[MK2,Sl]), and carried in with it a couple of macros. Among the macros was INIT, 
which is unique in that it executes as it enters your workspace, performing the initializations you 
need. 

To list the bodies you received use of through that deal, use the "aL" (remember--"CONTROL L ") 
command: 

STDLB.DRIJCMK2,Sll 
8&.100 3&.10 5&.10 R8MERGEO 8MERGEO 
(and eo on ••• ) 

You'll need bodies from a second library, too, so bring the drawing SIMLB into your workspace as a 
library: 

*X 
!JELL ?GET Ll B 

GETLIB 
LIBRARY FILENAME?S/~LB 

LIBRARY SIMLB.DRW[MK2,Sll 
INIT 

Now if you try •aL" again, you"ll see a lot more bodies: 



· 3.2 Initializing the workspace 

SIMLB.DRW[MK2,Sll 
2 ANDO 2 AND 5 ORO 4 ORO 3 ORO 5 OR 4 OR 
(and eo on ••• ) 
STDLB.DRW[MK2,Sll 
8WOO 3WO SWO R8MERGEO 8MERGEO 
(and so on ••• ) 

Before you draw anything, it's not a bad idea to write your workspace into a file, just to get the file 
established. Since the "3-" in the header makes it clear that the program has no idea what you· 
want .. to catt the file, you'll have. to tetl it. For this example, we want to can the file •10016~: 

*«WFILENAME?10016 
WRITING 1001S.DRW[MK2,Sll 

Notice that the top line of the screen now says "'3=10016[MK2.Sll". The program now remembers 
which file it is dealing with, so from now on you can use a shortcut to save your workspace into that 
file without your having to retype the filename: 

*X 
WELL? EW RITE 
EWRITE 
FILENAME? 10016 

WRITING 1001S.DRW[MK2,Sll 

We won't mention it, but it's a good idea to. use the command periodicatty--just after you've done 
something particularly difficult, or just before you leave the keyboard to answer the telephone or a 
catt from nature-so that even if your computer system crashes, you won't lose att of your work .. 

~ ,· '. 



"IN I'II.JE WIOT>I 
PI 

HtG>t-4 ••• 
LQ4 ..... S£1\J'oi! ••• 

>G.D •I.e 
Cl( 

3 A guided tour of D 

41 
~~<!!L!!:.---------+----------1!---1R REG AS 

. e. .. 
~ ~:-oot( 

a / . t tr111'-Z.6. 
~----<L >t:II.D ... 6 

()( 

J 

T L4' I~ 
T Lf'b 
T <:J> 

F~re s-.-2 

S Rl T< .. :J> ;p 
+--~ t DE\Af• T'l-----=~ 

z.e,::J.~s.e 

q< 

m>l I'U.JE W1IJTH 
=-:;.:__ __ ...__--il l'e 

Ht-3.6, 
LG4 •3.6 

r•ea~ 
(J( 
R 

PEL 
CNTE L 

Tt'8s,. N 
TC L N 

Our .. goal is a d-rawing like this 

This seems a good time to take a look at Figure S-2, which shows the drawing we will practice upon. 
It is the definition of. an ECL 10016 IC in terms of the primitive bodies that the SCALD logic 
simulator understands. we•n split the work up systematically: first position all the bodies, then 
draw lines between them, and finally add text. 



S.~ Positioning Bodies S7 

S.S Positioning Bodies 

To position bodies in your drawing, you must get into bod' mode, and to do that you should type: 

(Of course, this isn't necessary this time, because you were already in body mode by virtue of having 
just started to run the program, but the command will prove useful in the future:) · 

Whereas the commands we've shown you so far apply more ·or less anywhere in the prograin, you'd 
better assume that the ones that follow will live up to our promises for them only within the proper 
mode. For example, in body mode the "aP" command we're about to introduce places bodies, but it 
has an entirely different effect in point mode .. 

Let's start with the body called '"MIN PULSE WIDTH" at the top of the drawing. Each body has a 
short location parameter below its name; in this case, it's -p1", so we can refer to the body as MIN 
PVLSE WIDTH at P 1 to distinguish it from the copy of MIN PULSE WIDTH at P2 on the right 
side of th~ drawing. To place a copy of a body at the cursor, type: 

*«:PTVPE BODY NAME 
MIN PULSE WIDTH 
SEARCHING FOR MIN PULSE WIDTH IN SIMLB.ORW£MK2•Sll 

and presto, you~l see the body before you, with the cursor at its top left earner. The cursor happens 
to be attached to the body--that's always the case when you f'rrst place a body--so that wherever you 
move the cursor, the body wilt' follow. Try it. · 

MIN PU...SE WIDTH 

I 
+X 

. HIGH=0.0; 
LOW =0.0 

FigureS-~ 

Your first body, with cursor detached 

To detach the cursor, press <SPACE>. You'll immediately see a big flashing '"B" atop the body 
(Figure S-S). Now try moving the cursor, and observe that the body doesn't follow. There are two· 
ways to reattach the cursor. "aM". moves the cursor to the body and reattaches it, while "a,3M" moves 
the bod.y to the cursor and reattaches it Once reattached, you can .Qnce again move the body by 
moving the cursor, and then detach the cursor by pressing <SPACE>. 



S A guided tour of D 

This sort of thing works throughout body mode. Once you have more than one body on the screen, 
the program operates on the body closest to the cursor; it alone will have the flashing '"B". 
Experiment .with moving this body until you feel jaded, then put the body back near the center of 
th~ screen and detach the cursor by pressing pressing <SPACE>, but leave the cursor in position on 
the body. 

Let's place the body SETUP HOLD CHK in location 52 next. Move the cursor to the right by one 
CONTROL-TOP. (That is, while holding down both CONTROL and TOP, make one stroke 
with your long finger to move the cursor to the right.) Now place the body, whose name is, as far as 
the program's concerned, simply -sETUP HOLD": 

*otPTVPE BODY NAME 
SETUP HOLD 
SEARCHING FOR SETUP HOLD IN SIMLB.ORW[MK2,Sll 

Now detach the cursor from the body by pressing <SPACE>. 

Why did we emphasize that you should move the cursor by one CONTROL-TOP? Obviously it 
doesn't make any difference to the final drcuit where you place a body. Conventionally, however, it's 
considered good drawing styt~ to place bodies so that the tines connected to them tie a uniform 
distance. apart. And it's considered better to use a few large increments than several assorted smatt 
ones. 

There are two reasons for this. First, uniform spacing makes it easier to apply editor ·macros to 
reduce repetitive typing, as you'll see later in the chapter. Second, it just plain takes. fewer keystrokes 

. to get from one body or line to another when they're CONTROL-TOP apart rather than a TOP 
plus a META plus a CONTROl,. apart. 

Unfortunately, this empyrean goat of style is tough for a beginner to achieve, particularly because 
one can't always tell precisely where on a body the program wilt want to attach a particular line. Just 
keep the goal in mind as you position the bodies, and comfort yourself with the knowledge that you 
can always move things around later to repair any irregularities you cause now. 

Next, place a REG RS body at position R 1, right under the previous body. To do this, first type a 
space to detach the cursor from the previous body, then move it down by a META plus a TOP, 
(first hold down META and move the body, then hold down TOP and move it again) and then 
place the new body: 

*otPTVPE BDDV NAME 
REGRS 
SEARCHING FOR REG RS IN SIMLB.DRW 

B~ause this body is narrower than the previous one, it's riot centered beneath it {Figure 3-4), so 
move it to the right by one CONTROL before you type a space to detach the cursor (Figure S-5). 



3.3 Positioning Bodies 

. ' 
' 

MIN PULSE loiiDTH 

I 
+X .. 

HIGH=0.0; 
LOW =0.0 

XB 
SETUP HOLD CHI< 

I 

/ 

+X 

SETUP=0.0; 
HOLD =0.0 

CK 

XB 
R REG RS 
S +X 

. I DELAY= T 

0.0, 0.0, 0·.0 

. CK ... 
A. 

· FigUre S-4 

Thiid body off center 

X8 
SETL.P HCXJ) CH< 

MIN PULSE loiiDTH 

I 
+X 

HIGH=0.0; 
LOW =0.0 

I 

Figure S-5 

+X 

SETUP=0.0; 
HOLD =0.0 

CK 

XB 
R REG RS 
S +X 

I DELAY= T 
0.0, 0.0, 0.0 

CK 

Third body centered and cursor detached 

39 

Moring the paper-Before you proceed to place the rest of the bodies in your drawing, there are a 



40 3 A guided tour of D 

few loose ends to clear up. 

Sooner or later, for example, you're going to run out of room on the screen. Fortunately, the •paper" 
you're drawing on is tnuch larger than the screen; at any time, you effectively look through the 
screen at a small area of it. To move the paper to the right, press the • ~" key (you,l have to use 
TOP to produce .this character). Do this repeatedly until the bodies you've drawn disappear. Keep 
doing it, and pretty soon a vertical line wilt emerge from the left side of your screen, representing the 
left edge of the paper. ·· 

Now press the "+-" key repeatedly until your bodies come back onto the screen. You can use "t" and 
•J." similarly to move the drawing up and down. · 

You already know how to move a, body around if you accidentally put it in the wrong place-simply 
bring the cursor close to it, use the •ocM" or "<XIJM" command to attach the cursor, and move the 
body by moving the cursor. Yo~ also need to know how to get rid of a body entirely if you need to. 

First move the cursor so·it's clOser to that body than to any other (the big flashing B will appear 
atop the potential victim) and t~en type •ceo". 

Now go ahead and position the rest of the. bodies. Some of them are pretty obvious--the adder is 
called •ADDER", the multiplexer is called "2-MUX" and the gate is called "4 OR"-but others are a 
little tricky. The parameter list at the lower right corner needs a body called "PAR", and the two 
Y -shaped gizmos at the lower left which look like lines are actually bodies called "'W2MERGE" .. 
When you finish placing bodies, your drawing should look something like Figure 3-6. 



;! 

l bD
 

c 
"§ .... .... 
.... ~· 

·' 

ifT
' 
~
 

.
~
J
 

0 
o

Q
 

• 

1 '!8'! .. 
·~. 

. 
. . 

. 

~ .. 
·~'! Ji ~ 

·:. z/'-..J 



42 3 A guided tour of D 

5.4 Drawing lines 

In the graphics editor, as in high school geometry, any two points define a line, and therefore you 
must get into point mode to draw lines: 

At the top of the screen, you'U now see "MODE=P ... , and the flashing '"B" on the nearest body wilt 

vanish. Instead, you11 see a flashing letter "P" or string of letters beginning with "P" atop the nearest 
point. Try moving the cursor around; you11 see letters hop from one point to another. 

Every pin on a body provides a point you may connect to, and you will create points implicitly as 
you draw lines between them, Whereas geometry tells us that points are everywhere--lines consist of 
an infinite number of them side by side, and planes consist of giant smorgasbords of points spread 
out endlessly-the graphics editor takes a more manageable view: aside from the points provided 
free with bodies for the purpose of attaching lines, points exist only where you explicitly or 

. . 
implicitly create them. Like ~ry, however, it witt let you put tw9 points in the same spot, 
usually to your own distress. 

You're about to learn three different ways to create a line: drawing from one existing point to 
another, drawing from an existing point intO midair, and drawing from- an existing point to the 
closest point on an existing line. Those three tec~niques wilt cover every situation you'll encounter in 
this drawing, and in just about any other. 

Point to point-First, let's try a line from pin *r" on the multiplexer at M 1 to pin "'" on the 
-sETUP HOLD CHK" body at S2. 

Move the cursor close enough to pin toy'" on body M 1 so you see a big "P A" flashing atop the pin 
(Figure S-7). 



~.4 Drawing lines · 43 

1 2 ] 

>II lfiN 1'\U!r llllmf ... 
IGN OV..tl: llllmf . >e 

£1\J' ICIU) Of( 
•>I 

1E'U' ICIU) Of( 
•>C 

9ETU' IQJ) Of( 

•>C ... •>C -..., ~a-.e, 
1iiE1\J'.e.e: LOW-e.e ti:'IP4.8: LOW .... 9£1\Foll ... 
IQJ) .... IIILD .... IIILD ... e 

0< oc Cl< 

X,. >f. >e -i~oEG>ei!S >e' 
II REG 119 -it REG liS 
8 •>C tl •>C s •>C 

I DEVtf• T I'DEUir- T I IEI.AY• T 

•·•·····•·• ........... •·•·•·····• oc 0< ~ X 

MOVE CURSOR CLOSE TO 
STARTING POINT OF LINE 

TYPE + TO START LINES. 
MOVE CURSOR SO BEND IS 
IN RIGHT P~ACE 

TYPE + TO SOLIDIFY FIRST 
LINE. 

tiiH f\LJE­
I •>< 

HI-·•: LOW -e.e 

4 

>II 
1E'U' IIILD 0« 

•IC 
--x-'!~.o... 

.. 1 ·!""~ .. 
I IIILD -e.e 
I 

0< 

>e 
IIIIE6111 
s •>C . 

ICEUn'• T .. , ....•.• 
~ 

MOVE CURSOR SO SECOND 
BEND IS .IN THE 
RIGHT PLACE 

•>< -··· LOW .... 

5 

... 
~ IIILD Of( 

.----•Wit ... 
IQ..D .... 

>e 
IIIIEGIII 
8 •>C 
1 CIEUn'• T 
e.e,e.e,e.e 

0< 

AFTER MAKING ~ THE 
CURSOR IS CLOSE'ENOUGH 
SO THE STAR IS ATOP THE 
.END POINT, PRESS -

Figure S-1 
Drawing a line from point to point .. 



S A guided tour of D 

Now press • +" and you"tl see a flashing line or lines from the cursor to pin '*T". Try moving the 
cursor around; the lines wilt stretch and move to fottow it wherever it goes. If the cursor happens to 
be directly in line with pin '*T" verticalty or horizontalty, you'll see a single line, but otherwise the 
program draws two lines intersecting at a right angle, so as to avoid having to draw a sloping line 
between the pin and the cursor. · 

With the cursor positioned so you see two flashing lines, try pressing <SPACE>. Every time you do 
so, the lines wilt trade places. The program tries to guess whether the vertical or horizontal should 
come first--it knows, for example, tha~ lines customarily attach to bodies perpendicularly-but 
sometimes it isn't too bright, and you must then use <SPACE> to help it along. 

Now position the cursor so that the first bend in the line is where you want it, and type • + ", The 
flashing line attached to pin '7" wilt stop flashing; you've just made it a fixed, permanent iine and 
implicitly created a point at the end where it intersects the other line. 

Now try moving the cursor and you"11 see a second right angle, with an additional flashing line 
helping to follow the cursor wherever it goes. In general, every time you press "a+" in this 
line-drawing submode within point mode, you solidify the oldest flashing line and make it possible 
to add a new flashing line at the cursor. 

While you're in this mode, you'll see a star flashing atop the point which is closest to the cursor but 
also eligible to have a line attached to it. Move the cursor close enough to pin "'" so that the star 
appears on that pin, type a space if necessary to put the second bend in the line roughly where you 
want it, and type •a-" (or just "-"). In one fett swoop, the program will extend the flashing lines to 
reach the star, attach them to that point, make them permanent, and free the cursor to move without 
dragging any lines around behind it. 

And that, in essence, is the technique for drawing a line between two existing points. Move the 
cursor close to one point and type "a+" to 'get a pair of stretchable, flashing lines. Move the cursor 
around, and whenever you need a new flashing line, type "a+" to solidify the oldest flasher and give 
you an additional one. When you get the last pair of fl~hing lines you need, make sure the cursor is 
close enough to the destination point that the star appears atop it, and type •a-" to finish the job. 

The line from pin •cK" on the body at 52 to the unnamed pin at the top of the body at R 1 is even 
easier, since it has rio bends. Move the cursor close to pin "CK" so that "P A" flashes atop the pin. 
Press "a+" to start the flashing lines. Move the cursor close enough to the unnamed pin that the star 
appears atop it (you're probably so close that the star is already there) and press "a-" to finish it off. 

Correcting mistakes in lines-To get rid of a line, you simply delete the points that define it. 
Fortunately, the program is intelligent about this. When you delete an ordinary point in midair, it 
vanishes together with all the lines attached to it, but when you delete a point that represents a pin 
on a body, only the tine vanishes; the pin remains intact for future use. 

If you discover a mistake while you're still drawing the line, press <AL T> to escape. The flashing 
lines will vanish, leaving the cursor free. With the cursor free, you simply move it close enough to 



3.4 Drawing tines 45 

the point you want to zap so that large flashing letters appear over that point, and then type •an". 

To illustrate this, let's deliberately draw a tine from pin. "F" on the adder to pin "0" (rather than pin 
•t") on the multiplexer. Move the cursor close to pin "F" so "PA" flashes above it, and type "a+" to 
get stretchable lines. When you have the first bend where you want it, type •a+" again. Move the 
cursor close enoug~ to pin "0" that the star appears atop the pin, and type •a-" to finish .off the line. 

N·ow that you've successfully committed a blunder, how do you undo it? Notice· that you want to 
. wipe out both the horizontal line attached to pin •Q" and the vertical line, because the latter is longer 

than it should be. The easiest way to blow both of them away at once is to delete their point of 
intersection. So move the cursor close enough to that point so that large letters "PL" flash above it 
(Figure 3--8) and then type •an". Both lines (and the point at which they intersect) will vanish. 

·.· .•:,. 

. . ~ 

·:. 



1 

MOVE THE C~SOR CLOSE 
TO THE INTERSECTION 
OF THE TWO LINES 
YOU WANT TO DELETE 

4 

&
-~•·• r)< 

II 

a 

2 

'.:X 

TYPE CONTROL 0 TO 
GET RIO OF THEM 

S A guided tour of D 

] 

MOVE THE CURSOR CLOSE 
TO THE REMAINING LINE 

AS BEFORE, TYPE + TO 
BEGIN A t'EW PAIR 

..• AND- TO COMPLETE 
THE JOB. 

OF LINES ••• 

Figure S-8 
Correcting an erroneous Une 



3.4 Drawing lines 47 

To finish repairing the damage, proceed as you wou!d when ·dra~.ing.,from body to body, but use 
the end of the line. that's dangling in midair as the starting p~i~t. Move the cursor close to .. it so 

"'PL" appears .. over the point, type "a+~ to start [lashing tines, type ~·space if necessary to. get the 
bend to go in the proper direction, bring the cur5or close enough to the. ~l" pin to place the star over 
that pin, and type "a-" to finish. 

just for practice, draw the two remaining point-to-point tines: the line from the adder to the upper 
MERGE body and the line from the body at S 1 to the other MERGE body. Each is easy compared 
with the tines we just finished, because neither has any bends; in fact, the instant you type "a+" to 
start the tine, the star will probably appear on the destination point so you can type "a-" to finish it. 
Don't try to draw lines from the register to the body at P 1, or to the body at P2;· we'11 use other 
techniques for those: :W.hen you're finished, the drawing should look like.Figure S-9. 

L 

" 

L 

... 
~HIU)o« 

•>C 

S£nP-e.e: 
tD.D .... 

oc 

"'"PU..I£-
l •>C 

OIIGW.e, 
1.01 ..... 9£1\P..e.e: 

tD.D .e.e 
oc 

>Gl 
R JIEG All 
S •M 
I DEUIY• T 
e.e.e.e.e.e 

~ 
~ 

~ 

Figure ~9 

'ltlilfll&.tE.aan4 
•>C 

~~~--·· LGI-e.e 

After finishing the point-to-point lines

Point·t~midair lines-When a line originates at an existing point but terminates in midair, you
must use. a second, slightly different technique to draw it. To illustrate, let's draw the line that begins
at pin "S" on the multiplexer at Ml and ends with the label "-PE[0.5]" at the left edge of the
drawing.

(You may n~ to use t~e •..,." key to shift the entire paper to the r~ght so yotJ have room to work.).

48 3 A guided tour of D

The first part of the procedure· will look familiar. Move the cursor close enough to pin "S" so that
the letters "P A" flash atop it (Figure 3--1 0). Type •a+" to get a pair of flashing lines, and move the
cursor down until the bend is in the proper place. Then move the cursor to the left until the
horizontai line is the length you want.

X

MOVE CURsOR SO
"PA" FLASHES
ABOUE PIN •••

4

TYPE .. TO
SOLIDIFY SECONO
LINE ..•

X--,

2

I

>E.- .J

TYPE .. TO
GET FLASHING
LINES •••

s

NOW, TO GET
RID OF NEW
FLASHING LINES ••.

Ftgure S--10

X

]

TYPE .. TO
SOLIDIFY FIRST
LINE •••

6

••• PRESS < AL T>

Drawtn1 from a point to midair

Now type '"a+" once to solidify the vertical line, and' again to solidify the horizontal one. Actually,
you've just created two new stretchable, flashing lines from the left endpoint to the cursor. But since
the cursor is atop the endpoint, you don't see them. Move the cursor a bit (try it) and there they are.

To get rid of those unwanted flashing lines, simply press <AL T>, rubbing them out and freeing the
cursor.

Now you know how to create a point-to-midair line. Note that you've implicitly created two points:
one where the two segments of the line intersect, and another at the endpoint in midair. That agrees
with what we said earlier: once you're inside this line-drawing submode, every time you U:St! '"a+" you

3.4 Drawing lines 49

S?lldify a line and create a point at the end Of it, too.. This has two implications. First, if you ever
decide to delete the segment that ends in midair, you must make sure to delete the midair. -mdpoint.
You can get the line to vanish by deleting its other endpoint,. but that witt leave an unused {and
invisible) point in midair.

Second, you must not use <ALT> in pla~e of •a-" to finish up .a pqint:-to-point (body:-to-body) line
even if you have the cursor directly atop the destination point, becase it wilt create. a second point
atoP- the e~isting destination point.

just for practice, draw the rest of the point-to-midair tines: the two attached tq pins "T" and "R" of
the register at Rl, the one atached to pin. •o" of the multiplexer at Ml, the one attached to pin "A"
of the adder, the four attached to the merge bodies, the one attached to pin •cK" of the body at St,
the one to the right of gate G 1, and the o~e from pin "'" of the body at P2 to the endpoint tabetled
-cK /P". That's an impressive enough list, so for now don'~ bother to draw any of the four, tines to
the left of gate G 1. When .You're.flnishc!d, the drawing should look .like Figur~ .~11. ·

lfiM I'I.UIE Wmn4
•II

H194o4.e,
UIW ~ ...

10.1)

0<

>II
----------------------------------~---;R.o8

9 ·~
I DEUI'I'• Tf----------
e.e.e.e.e.e

0<

• L

H

L

Figure '-11
Drawing with point-to-midair lines finished

Point-tc.-line lines--The third and last way to draw a line is to go from an existing point to the
closest spot on an existing line, and to connect to the line by creating a new point there. (Thus, this
is not the way to connect a new line to a bend on an existing line; because a bend always provides
an existing point, you would use the point-to-point technique for that.)

50 S A guided tour of D

To illustrate, let's draw a line from pin "I" of the bod·y at P 1 to the horizontal line below it. As you
may suspect, the opening moves will be the same as those you've used for the last two kinds of lines;
only the endgame is different.

Move the cursor close enough ~pin 'T' so that "PA" flashes above the point, and type "a+" to get a
pair of stretchable, flashing lines. Move the cursor and, if necessary, type a space to put the bend
where you want it, and then move the cursor down close to the place on the existing line where
you'd like to connect the new lines. Type "IJA ". The program wilt put .a star on the line where it
plans to make the new connection {Figure 3-12) and ask you whether that's the right place:

*flATHIS ONE?

Answer "Y" and the program will complete the connection; answer "N" and the program will decide
not to connect the lines, giving you a chance to move the cursor closer to the precise spot where
you'd like the connection before you try again.

lt1N I'U.9E lltDnl
r---t •OC
I HtGtoe.ll:
I L!W -tl,ll
I
I
I

x

Figure S-12
Connecting a line to an existing line

For practice, draw the two remaining point-to-line lines: one from the -cK" pin of the register at
R 1 to the line below it, and the other from the 'T' pin of that register to the line to the left of it.
When you're finished, the drawing should iook like Figure 3-13 .

.
Q

- lo
ll

g ••
~'!I;

.
~

t ..
~ a

h

'a '!Ja
rJ

• i
.5
--"
;

'
- 01) ...

2
••

. · :;:
!

l'~··.l;
.!

• ~

f!
" ..

.i»s
1&4

~

b
D

.5

~
~

••
...

'i'! .. u ~
~

'.

.J
:r

.J

rJ c
=

 bO

c
.... ~ ... ~ ~

0
')

52 S A guided tour of D

5.5 Putting text on your drawing

The text you'tt add to your drawings belongs to either of two catego~ies: signal names and body
parameters.

Signal names-Before you can add signal names,'the program must be in point mode. (It is probably
already in point mode if you've beeh.fottowing .these instructions, but if not, type •apP".)

Typicatty, you put text on a tine near a point where the tine ends in midair. To iltustrate, let's label
the line at the tower left corner of the drawing. First, move the cursor close enough to the midair
point that -pL" flashes atop the point. Type: · ··

a~TTF.>f!? ..

CK /P ·'

And that's att there is to it

If you make a mistake, simply repeat the. command and retype the text; the new version wilt replace
· the old.

For practice, move the cursor upward and label the tine above that one:

•trrTEXT?
CE

and move the cursor upward once again to label the next line, too:

•trrTEXT?
PE

This works fine so long as the signal names are short and you are a fairly good typist When both
of those conditions cease to be true and the probability of making an error every time you retype the
signal name to correct an error therefore approaches unity, it's lucky that the graphics editor
provides for you a simple text editor.

This text editor is catted alter submodl. To i11ustrate its use, let's deliberately put the wrong text on
the fourth line up from the lower left comer:

•trrTEXT?
NOW IS THE TIME

Now. type •apA" to enter alter submode, which wiU show you the text plus a pointer, a horizontal
tine under the characters which bends upward at its right end to mark th~ current editing position.
On the screen, you'll see the text you're editing in large letters at the top and the characters you type
in small letters near the bottom. To make the fottowing discussion more compact, we'll act as if they
appeared together on alternate lines:

3.5 Putting·text on your drawing 53

*o£~.A
_NOW IS THE TIME

To move the pointer forward to the next occurrence of a character, type "S" followed by the
character (with no intervening <RETURN>). it will stop just beyond that character:

*s
+-M
NOW IS THE TIME

· To move the pointer back. ward to the previous occurrence of a character, type • -S" followed by- the
·character. It will stop just in front of that character... . . · ...

*­
.s
+-E
NOW IS THE TIME

In addition, you can type a space to move the pointer forward one character at a time or . a
<RUBOUT> to move it backward one character at a time. To delete characters to the right of the
pointer, type the number you'd· like to delete, followed by "'D": · ·

*2
*D
NOW IS THTI ME

To delete characters .to the left of the pointer, use a negative number instead:

To insert characters at the pointer, type I followed by the char.acters you'd like to insert, ending with
a <RETURN>:

•llNSF,RT TEXT?SUPPER

NOW IS SUPPERTIME

. ~ . .

There are a number of other, more powerful commands within Alter submode, some of which are
described in Section 2.7, ·but the ones you just saw should suffice for now. After you've eradicated, .
the damage we just did and you feet satisfied with the result, press the <ALT> k.ey to leave alter
submode and return to potnt mode:

•4
•D
NOW IS SUPPER

·-*1
*J
*D
*/INSERT TEXT?-PE/0.5}
-PE £0.51
~ALT>

S A guided tour of D

Just for practice, put text on the rest of the signal lines that end in midair, using alter submode if
you find it helpful in correcting mistakes. When you finish; the drawing should look like Figure

~14.

'···.

ltlH 0'111 lllD'DI
PI

~~~-... 
L.Gol-4 •• 

,.. . 
~==~~----------~~----~--------~--~~~~~ 

- .. 

L 

tE't\J>oi!.6. 
l«lJJ .e.G 

ex 

Figure S-14 

9 Ill T<e.:l> A' 
+----il DnAr- rl-----~~!:....!!: 

0!.0.1.,5 •• 
0( - ......... ~ 

ltDI 1'1&.. IIIVnt 
=.:::::..._--~--4 N 

Ml9t.:J.S, 
Lilli .U.5 

tot8J~ 

0< 
R 

I'£L 
Olli! L 

T.-e.~ AJ .... ~ .... 

Drawing with (almost) att signals labelled 

Text for bodies-The text y()u see on a body can be either of two kinds.: simple text which, like a 
signal name, consists of a string of characters. at a particular place; or the text portion of a property 
name/text .pair, a piece of text which has an invisible name that you can use to access it. 

On your drawings, however, you~l need to deal only with property name/text pairs. Usually the 



S.5 Putting text on your drawing 55 

body comes to you from the library with these name(text pairs already created. To change one, you 
simply ask for it by name and tell the program what to use for the text. Sometimes, you have to 
create the property name/text pair yourself. 

For most bodies, you'll deal with three properties: 

SIZE 

LOC 

VAR 

usually appears above the body name and arrives from the library set to '"XB". 
You'll want to change it to reflect the number of bits the body is supposed to 

deal with, such as "iB". 

usually appears below the body name and arrives from the library set to "+X". 
You'll want to change it to the_ location code which, as mentioned earlier, helps 
differentiate between multiple occurrences of the same kin4 of body in one 
drawing: something like "G7" or "A2". 

is ·additional information about the body. for later use by. SCALD. It can begin 
with "DELAy ... " or "SETUP=" or '"HIGH=" followed by a series·of numbers.· 

To illustrate, let's start with a body for which all three property name/text pair already exist, but 
need ·.changes: the one at the lower left .corner of the drawing. 

To work with body text, you must first get into body mod.e- -~Y typing •apB". You will see 
'"MODE=B" on the-top line of your screen. ' ... 

Now move the cursor close enough to the body at the ·lower left corner of the drawing so that a 
large '"B" flashes atop it. Now when you ask to work with a particular property, the program knows 
it must be a property ass~iated with that body. 

First, you must change the '"X~" to "2B". As we just explained, this is doubtless the property called 
"SIZE", so type the following command to replace the text associated with that property name: 

*~YPROPERTY NAME £ENOUGH TO UNIQUELY SPECIFY IT)? 
SIZE· 
SIZE 
NEW TEXT? 

·2B 

You'll see the '"X"·.magicalty change to a "2". Actually, the program tolerates shortcuts when you type 
the property name. Since no other property begins with "S", you could have typed "S" instead of 
"SIZE". Notice that the program echoed "SIZE". If you do get into the habit of using this shortcut, 
it's not a bad idea to check the echo to make sure yQu really get the property you want. If not, you 
can escape from the command by pressing the <ALT> key. 

Now do the sa.tne sort of thing for -the iiJ..OC" prop_erty: , 



56 

*~YPROPERTY NAME <ENOUGH TO UNIQUELY SPECIFY Ill? 
UJC 

LOC 
NEW TEXT? 
Sl 

S A guided tour of D 

and magically the "+X" will change to an "S 1". Finatty, change the "V AR" property, noting that you 
use the"++" character instead of the <RETURN> key to break the text across two lines: 

*~YPROPERTY TEXT <ENOUGH TO UNIQUELY SPECIFY ITl? 
VAR 
VAR 

·NEW TEXT? 
SETVP=2.5,·++HOLD =0.5 

If you make a mistake, simply repeat the command and type the text again, correctly. The new 
version wilt replace the old. 

Sometimes you'll have to create a property name/text pair for yourself. On this drawing, a good 
example is the PAR body, where each signal name in the list requires a separate property. To 
create these, move the cursor over toward the word PARAMETER in the tower right corner and 
place it where you'd like the center of the first name, "1<0:3>", to be. The name you give to each 
property isn't important, but by convention we use •o", "1", and so on. Type the fotlowing command 
to create a new property name/text pair: 

- . ' 

*C(;YPROPERTY NAME? 
0 
NEW PROPERTY, TEXT? 
I<O:J> 

Now move the cursor down by a CONTROL and create the next property:· 

~yrnorcnTv NAMe? 
1 
NEW PROPERTY, 'I EXT'l 

CK 

The "aY" command will actuatty edit an existing property if the name you gtve has already been 
used, so it's a good idea to make sure the program prints "NEW PROPERTY" as those examples 
showed. If not, you can escape from the command by pressing the <AL T> key. 

If you mistype a piece of text, you can simply repeat the command and retype it correctly. If you 
create a property you don't want, or if you inadvertently put a property in the wrong place, you must 
get into text/property submode of body mode to repair the damage. 



\ 

!.5 Putting. text on your drawing ·'57 

To illustrate, suppose there's something wrong with the "CK" text. First, make sure the ~ursor is 
close enough to the PARAMETER body so that "B" flashes above it. Type ·~y" and you'll see 
""MODE=BT" on the top line of t~e screen, indicating you're in the submode. Now as you move the 
cursor around, you will see large letters flash atop whichever property is closest to the cursor. Move 
it so that the letters are atop "CK" and type "aM" to attach the cursor to that property. Now 
wherever the cursor moves, the property will follow. Try it. When you have that property in an. 
appropriately ridiculous p~ace, press <SPACE> to detach the cursor. Now move the cursor and you'll 
see that the property no ·1o~ger .follows it. 

You may also use alter submode on a property once you're-within text/property submode. Simply 
move the cursor close enough so that the big letters flash above.the text you warino edit, and type 
"a{JA ". Then you can proceed as you did when editing signal names. When you press the <AL T> 
key to leave alter. submode, you'll find yourself back in text/property sul)mode as you were before. 

Suppose you want to ·get rid of the property altogether. Make sure the cursor is close enough that 
the big flashing letters are atop our intended victim, and type "aD". to vaporize it. Now that you're 
finished playing, type "at3B" to reU1rn to ordinary body mode. . · ,. . 

You should observe two important limitations about body text/property ~ubmode: First, you can edit 
and delete only the text that you yourself have created or at least replaced, n()t text that arrived 
along with the body from the library. For example, you cannot edit a SIZE property that stilt has its 
original "XB", but you can edit it once you have, replaced that "'XB" with "2B". Second, everything 
you do within the submode applies to the ·body that was Closest to the cursor when you entered that 
submod.e. The program witt let you move the cursor to another body while you're still within . 
text/property sub mode, but before you· can deal with properties associated with that body you must 
get out of the submode and back in again. 

Now that we've enticed you into destroying the perfectly good "CK~ property you just created, 
practice your property creating and replacing skills by_ completing the properties for the rest of the 
drawing. When you're finished, the drawing should took like Fig\Jre 3-15. 



• 
H

.
J
I
 

11 
~~

 x
~l

 
.1

--
--

--
--

.,
.,

 
; 

• 
a 

. ~ 



3.6 Editor macros 59 

5.6 Editor macros 

By now you are no doubt wondering why we have postponed so long drawing the four lines to th~ 
left of gate G 1. . · ~'t : 

The reason is that they're an excellent way to demonstrate the use of graphics editor macros to 
eliminate repetitive typing. If you were to draw those four lines and label them in the obvious 

I 

fashion, you would wind up doing almost exactly the same thing four times in a row. 

An editor macro lets you draw and label one line, and then tell the program to repeat the process 
three additional times for you .. 

. To see how it works, get into point mode by typing "<XIlP". Move the cursor close enough to the top 
diamond 5o that '"P A" flashes above the diamond, type "aM" to attach the cursor to that point, and 
press <SPACE> to detach it. The attaching and detaching simply assures that the cursor is really 
directly atop the point; precise alignment is important when you're using macros. 

To begin the macro, type "a;P" (use the CONTROL key on the";" but not on the "P"). From now 
on, each command you type wilt execute, changing the drawing; but the program will also save each 
command into the macro for future use. On the top line of the screen, you'll see "LEVEL= 1 ", 
showing that you're one level deep inside a macro. If you get confused or make a mistake while 
inside the macro, type "a;S" to escape. You can then delete whatever the macro has done so far and 
start over. 

Type "'+" to start a line, move the cursor left by one TOP, and type "+" to solidify the line. Then 
press the <AL T> key to finish off the line. 

Type "/JT" to label the midair end of the line with its signal name. Now we have a slight problem: 
the signal name ought to be slightly different for each line we want the macro to ·draw. The first 
line represents bit 0, the second represents bit 1, and so on. Fortunately, the program's macro facility 

· provides a "a;A" command that puts a counter in the middle of the macro for you. The first number 
after the "'A" gives the initial value for the counter, and the second number gives the increment. 
Thus, the part of the macro that creates text will took like this: 

•,8TTEXT? 
T L<ot.; 

+-..40 
END JA 

·Now move the cursor down by a CONTROL and right by a TOP. That puts it back where it was 
when we started the macro, except that it's now on the second diamond rather than the first. Now 
we want to stop adding commands to the macro and to have the program repeat the commands 
three additional times to produ(:e a total of four lines. To accomplish this, type "a;R 4" and press 
<RETURN>. You'll see three more lines appear below the one you ju~t drew. On the top line of 
the screen, "LEVEL=O" shows you that you're no longer inside the macro. 



60 3 A guided tour of D 

Now that you've used it, the macro vanishes. Section 2.8 explains several other useful macro 
commands, including one whiCh allows you to create a macro that remains after you've used it, but 
for now this should suffice. 



3. 7 Usi!lg sets . 61 

5.7 Using sets 

As you'll discover if you try, the program is very obliging.about patching up the damage that occurs 
wheri you move a body that has signals attached to it. Often it manages to stretch lines and 
introduce bends carefully enough that the result is still pretty. 

When you want to move a group of objects including one or more bodies and one or more points 
and one or more lines, however, you can avoid this interobject stretching by defining a set that 
includes the objects, and then moving the entire set together. 

To itlu.strate this, let's move gate G 1 around a bit First, get into set mode by typing "atJS". On the 
top line. of the screen you'll see "MOD~aS". 

Now the strategy is to draw a box around the part of the drawing you want to move (in this case, 
encompassing the lines cconnected to the inputs of gate. G 1 in addition to the gate itself). Every 
body and point in~ide the box belongs to the set, and if both endpoints of a line are inside the box 
then effectively the line belongs, too. · 

Move the cursor to the spot you'd like to become the ·upper left corner of the box and type "a+" to 
start a line~ Move the cursor to the right until the line is l01tg enough and type "a+" to make the line 
permanent (In set mode, by contrast with point mode, the line won't stop flashing when you do this.) 
Move the cursor downward until the right side of the box is long enough and type "a+" ag3.in. 
Move the cursor left until the bottom of the ~ox is long enough and type "a+" again. Finally, move 
the cursor up to complete the box and this time type "a-" to finish it off. {Actually, the program 
offers you a shortcut. After you've drawn the first two sides, you can simply type "a+a-" without 
moving the cursor and the program will complete the third and fourth sides for you.) 

As soon as you complete the ·box, a big flashing letter witt appear atop each point or body in the set, 
and a big flashing "S" will appear near the center of the set. Type "aM" to attach the cursor to the 
set Now try moving the cursor; you'll see the entire set move with it. As with individual points and 
bodies, you press <SPACE> t~ detach the cursor and leave the set where it is. You can then go 
define another set elsewhere in the drawing; within set mode, as within body or point mode, 
commands always refer to the set closest to the cursor. 

Once the cursor is detached you can delete the set definition by typing "aD". This doesn't delete any 
points or bodies, but merely releases them from membership in the set. Typing "t3D" (don't try it!) 
deletes each point and body belonging to the set closest to the cursor. 

Wheri you're tired of playing with sets, you can type "<XIJB" to return to body mode or "atJP" to 
return to point mode. 



62 S A guided tc~mr of D 

5.8 Pinal touches to your drawing 

Just a few steps remain before your drawing is finished. 

Because it's so easy to place one point atop another, the program provides a command to check for 

this and other faults. Type "cxJJP" to get into point mode, and then type: 

*X 
WELL?DANGLE 
DANGLE 

lf the program tells you "'NO MATCHES FOUND", congratulations-it found no errors. Otherwise, 

press (jcxF" and the program wilt place the cursor atop the first error. Section. 2.2.3 explains possible 
errors and the usual solutions. After ·you correct the first one, type "cxF" to move the cursor to the 
next (if any), and so oil ·until typing "cxF" ceases to move the cursor. 

When you think you've fixed them att, try the '"X DANGLE" command again, just to be sure. 

Now the drawing is fine as far as the graphics editor is concerned. You must give it a title so that 
SCALD knows what body this drawing defines. Type: 

*X 
WELL?TITLE 
TITLE 
NEW TITLE LINE l ?10016 

NEW TITLE LINE 2?SIZE=4B 

Finally, write the files that hold the drawing, allow you to plot it on paper, and provide a wiring list 
for ultimate use by SCALD: 

*X 
WELL?EW, EP, · EL, CLE 

You've tmished the drawing. In the next section of this chapter, you'll learn how to describe a body 
to represent the drawing. 



:• 

3.9 . Creating a body template 63 

. 5.9 Creating a body template 

Now that you've drawn the definition of an ECL- 10016 IC, you need a template for a body that you 
can use in your drawings to represent that IC arid invoke its definition. In a realistic situation, you'd 
probably add the template for this body to an existing library, perhaps one called "E10K";· and then 
place the body on a menu drawing, perhaps one called •E 10K 1", that shows people what bodies are 
available from that library. But since this is the first body template you've created, we'll assume yo.u 
want to create a brand new library file and menu file. 

5.9.1 Getting started 

First, imagine that a flash of inspiration tetls you that the body should look like Figure 3-16. Now 
clear your workspace and perform a few necessary initializations to .establish the file ··E10K" which 
wilt become your library: 

*X 
WELL?-LOCS 
-LOCS 
d 
WELL?BOARD 
BOARD 
BOARD TYPE? DEC PC 
*olW 
FILENAME?EIOK. 
WRITING E19K.DRL.HMK2,Sll 

*X 
WELL?GETLIB 
GETLIB 
L1 BRARY NAME?ST DLB 

LIBRARY STDLB.DRW[MK2,Sll 



. ' 

! A guided tour of D 

PIN NAME = 2/8 PIN NAME ? 3/8/' PIN NAME = 7 

~ 1 PROP NAME= 7L• 
. ~ PROP TE><T ~ TC 

PIN NAME = 1 
PROP NAME 1 
PROP TEXT = I 

PIN NAME 
PROP NAME 
PROP TEXT 

) I 

71 2/ - 2 '. 

= CK 

PfN NAME = 3 
PROP NAME = 3 
PROP TEXT = R 

XB 
10016 

+X 
T 

( 
PIN NAME = 6 
PROP NAME = 6 
PROP TEXT= T 

l r"::~ 
· PIN NAME = 5 

PIN NAME = 4 
PROP NAME = 4L• 
PROP TEXT = PE 

Figure 3-16 

PROP NAME = 51.!.• 
PROP TEXT = CNTE 

This is what you want tO create 

Body templates are hidden in the background of a file, entirety separate from the drawing portion 
of the f'ile, if ind'eed there is one. To create or edit a body template, you enter Edit mode, in which 
the drawing vanishes temporarily. Of course, you won't notice this because you haven't started a ' 
drawing in this workspace (and you probably never witt since it's supposed to be used as a library). 

·.Type: 

*ot/3ETYPE BODY NAME? 
10016 

NEW BODY. 

On the top line of your screen you'll see "MODE=E". At the center of the screen you'll see the 
familiar cursor. The initial position of the cursor is special because it will become the origin of the 
bo4y. When, in the process of making a drawing, you attach the cursor to a body, it moves to the . 

. origin; and when you detach the cursor, the flashing letter "B" appears atop the origin. By 
convention, though nothing in the program demands it, we always draw a body so the upper left 
comer is the origin . 

. Within edit mode, four submodes let you perform four different tasks: add or insert lines to define 
the body shape, grab bodies from elsewhere to add to this one, create pins to which you can connect 
signals, and label the body and pins with text. 



3. 9.1 Getting started 65 

5.9.2 Drawing the box 

First, get into insert submode by typing "al". You'll see "MODE=EI" on the top line of the screen. 

Now we want to draw lines. Edit mode is deceptively similar to point mode, but with two important 
differences. First, you're not drawing lines .between existing points, but creating a series of brand 
new vectors. Some of the vectors are visible and others are invisible, but each starts where the 
previous one leaves off. Second, the program is perfectly willing to let you draw slanted lines, and 
thus doesn't bother with pairs of lines at right angles as it does in point mode. 

Type "a+" to start a visible vector and move the cursor to the right by TOP. Type "a+" a second 
time· to finish that vector and begin another, and move the cursor down by TOP. Type "a+" a 
third time to finish that vector and begin a third, and move the cursor left by TOP. Finatty, type 
"a+" a fourth time and move the cursor back ~p to the origin by TOP. 

To finish off that fourth vector without starting another, press <ALT>. You'tt find. yo4rself out of 
insert submode and back in plain edit mode. 

Actuatly, there was no need to get out of insert submode just then, because we're about to draw more 
vectors, but we wanted to illustrate the use of <AL T>, which is the only way to end a vector without 
starting a new one. 

5.9.5 Ornaments 

That produced a fine box, but we're missing the triangle th<lt represen.ts .the clock input, and the 
three diamonds that represent inputs and outputs that assert low. Once you've drawn the outline of 
your body there are two ways to add details to it: use invisible vectors to skip around, or grab bodies 
from elsewhere. 

Based on your experience with the program so far, you might guess you could move the cursor to 
the point at which you'd like to add something, enter insert submode, and start using the cursor to 

draw vectors. If you try that. however, you'll find that the cursor hops back to the origin on it.s way 
into the submode. The program insists that a body consist of a single. path of vectors', ~o the' only 
way to add to the body is to follow the path to its end and append vectors there. If you want to go 
back to a point along the path, you must go to the end of the path and append an invisible vector 
that jumps back to the desired point 



66 3 A guided tour of D 

Type "exl" to enter insert submode again. The cursor will appear at the origin. Now press <SPACE> 
repeatedly. The cursor witt travel one vector's length along the path every time you do so. When it 
stops moving and the drawing doesn't even blink at <SPACE>, you've reached the end of the path 
and can add more vectors. 

Invisible vectors-To start an invisible vector, type •ex-". Now move the cursor downward by TOP 
and to the right by a singie unit {that is, an unshifted keystroke), and it wilt rest where the left edge 
of the triangle should be (Figure 3-17). 

D 
STARTING WITH CURSOR 
AT ORIGIN ••• 

4 

L 
THEN MOVE CURSOR 
RIGHT 1 STEP, , , 

2 

L 
C ENLARGED> TYPE 
CONTROL - AND 
SKIP TO LOWER LEFT 
CORNER ••• 

5 

L_ 
TYPE "CONTROL +, 

MOUE CURSOR DOWN 
1 AND RIGHT 1 ••• 

Figure 3-17 

1 

L 
TYPE. CONTROL + 

AND MOVE CURSOR 
UP 1 STEP •.. 

6 

D 
••• iYPt: < AL T> 
AND SKIP TO RIGHT 
TO BEGII-1 1-IEXi 
OR"IAMENT , 

A closeup view of drawing the triangle 

To draw the left slant. type "ex+", move the cursor up by a single unit and to the right by a single 
unit. To draw the right slant, type "ex+", move the cursor down by a single unit and to the right by a 
single unit. 

Obviously, one could now skip to the point at which the first diamond should appear, and draw it 



3.9.3 Ornaments 67 

in the same fashion. But there's an easier way, so press <ALT> to leave insert submode. 

Crabbing bodies from elsewhere-The easier way is to grab a copy of an existing body and add it 
to this one. Suppose that one of your libraries contains a body ca11ed DIAMOND which is useful 
for indicating that a pin asserts tow. 

To grab it, move the cursor so it rests on the bottom line of the box, five CONTROLs from the 
tower left corner. Then type: 

*ctGTVPE BODV NAME 
DIAMOND 
SEARCHING FOR DIAMOND IN STDLB.DRW[MK2,Sll 

First you'll see "MODE ... EG" appear on the top line of the screen and then you'U see the diamond 
appear at the cursor position. The cursor is actuatly attached so that the diamond will fo11ow it 
wherever it goes. Experiment with moving it. When you have the diamond back where it belongs, 
press <SPACE> to release the cursor. The diamond will become part of the body, and you witt find 
yourself back in normal edit mode. 

• :p· 

To add_-the next diamond, move the cursor to the proper position and;use the •ac" command again. 
Finally, move up to the top line and add the third and last diamond. 

8.9.4 Defini:~~g pins 

Corresponding to the seven inputs and outputs listed under PARA METERS in the drawi~g we just 
made, the body has seven labe11ed pins. In addition, it has two invisible "bus-through" pins at the 
top. Pin "'2/B", for example, is identical electrically with pin 2, as if any signal you connect to pin 2 
travelled underneath the body and reemerged on the opposite side (Figure 3-18); 



68 S A guided tour of D 

<'> 

vv 

<'> 

vv 

BUS- THROUGH PINS 
LET US DRAW THIS .•• ... TO REPRESENT THIS. 

Figure 3-18 
Using bus-through pins 

To define the pins, type •c41P" to enter pin mode. You'tt see ~ODE=EP" c:>n the top line of thP. 

screen. Ordinarily we don't want pin numbers nn rinw!niS, t,l~cf\u5e they repre&flnt. unnPI"'doo clutter, 
but until you have a chance to create labels near the pins, pin numbers make it easier to find the 
pins, so type; 

*X 
WELL?DEFP/N 
ocrriN 

As you create each pin, you w111 have to supply its pin n~mber (which the program refers to as a 
"'pin name"). To begtn, move the cursor to the midpoint of the left side of the box and type: 

*otPP IN NAME? 1 

Now move the cursor down to the bottom line of the body, directly under the apex of the triangle, 
and type; 

*otPPIN NAME?2 

Continue until you've created all the pins. If you make a mistake, move the cursor to the erroneous 



3.9.1: Defining pins 

pin, type "a:D" to detete·it, and then use "a:P" to create it anew. 

When you're finished, hide the pinnames once again so they won't clutter your drawings: 

X 
WELL ?-DEF PIN 

-OEFPIN 

. Press <AL T> to leave pin submode and return to plain edit mode. 

5.9.5 Creating body text 

69 

The last step in describtng your body. is to cr:a~ a property name/te~t. pair for e~ch of the pins, 
plus a few pairs for the body as a ~hole. Type "aPT" tQ ~nter text/property sub~ode: You will .. see 
~ODE,;.ET" qn .th~ top line of.the sereen. Within thts submode you c~ create, ~Iter, d,elete, and 
move tex,t for: a body templ~te just as you would edit text ~n ordinary body mode or body text. . . ···. . . : .. • ,, ' . . . 
submode for the drawing as a whole. 

·')· 

Each visible pin has a property name/te?Ct pair ~iated with it To begirt, move .. t~e cursor to the 
cente~ ~f the ar~a· where you'd like the label for pin 1, ~1". to. appear. Create a property name/text. . . . . . . . ' . . . . 

pair: 

*otY 
PROPERTY NAME? 
1 

NEW PROPERTY, TEXT? 
I . 

Now move the cursor to the spot where you'd like the lab.el for pin 4,• "PE" to appear. As Figure 
S-16 shows, the property name for this pin is more elaborate. We'll postpone explaining the reason 
until chapter 4, but note that the difference is important to SCALD: 

. *otY 

PROPERTY NAME? 
4L• 
NEW PROPERTY, TEXT? 
PE 

For the sake of practice, create the property nam~/text pairs for the rest of=the visible pins-R,.CK, 
CNTE, T, and TC. When you're finished, the body shguld look. like FigUre S-19. 



70 3 A guided tour of D 

TC 

I 
T 

Figure ~-19 
Body with all pin properties 

As you've probably guessed, the •xB" in the middle of the body is the text of property SIZE and 
the ''+X" is the text of property LOC. The name of the body, "10016", is the text of a property 
called MNAME. For each of these, position the cursor to the center of the place you'd like to pur 
the text and use .. a.Y" to create the property. Remember that if you make a mistake, you can 
proceed as we did with properties in the drawing as a whole: attach the cursor to the one you want 
to correct and either move it, delete it, or use alter submode to edit it 

When you're satisfied with the text, the body is done. Press <AL T> to escape from text/property 
submode and return to normal edit mode. Then type "a.E" to escape from edit mode. 

Now save the file and clear. your workspace: 

*X 
IJELL?EW, CLE 
EIJRITE 
IJR IT I NG E18K. ORIJ [MK2, Sll 
CU:AA 

5.10 Making a menu file 

If you were to plot the library file •EtOK" which you just created, you'd see nothing. You've 
described the body "10016", but you won't see it until you use it in a drawing. It turns out to be 
convenient to put the body templates in one file for use as a library and to put a rogues• gallery of 

· their portraits h'l another file for use as a menu. 

Now that your workspace is clear, type the following to create a new fi1e •EtOKl" to serve as a 



3.10 ·Making a menu file 

menu:. 

*OCW 
FILENAME?ElOKl 
WRITING E10Kl.ORW[MK2,SlJ 
*X 
WELL?-LOCS, GETLIB, SHOWBOX 
-LOCS 
GETLIB 
LIBRARY NAME?E10K 
SHOWBOX 
A16/1. 

71 

Now move the cursor to an appropriate point--near the upper left, for example--and place a copy 
of body "10016" in the drawing: · 

*OCPTYPE BODY NAME 
10016 
SEARCHING FOR 10016 IN E10K.ORW[MK2,S1J 

I 

Press <SPACE> to detach the cursor from the body. In this case, it's obvious what name to use 
when you want to fetch a copy of the body from the library: 10016. Sometimes, h~wever, the name 
of the body may differ from the text of the MNAME. parameter that appears on the body, so it's a 
good idea to put the name above the bOdy on the menu drawing. To do this, move the cursor to an 
appropriate place near the body and create some text: 

*otT TEXT? 
10016 

In a realistic case, you would fill the menu with many different bodies belonging to the ECL 10K 
family, but since you have defined only one so fat, save the file and you're finished: 

*X 
WELL?EW, EP, CLE . 

And that's the end of the tour. Congratulations. You have made a drawing to define .ECL IC 
10016, a body template to represent it, and a menu drawing to advertise its existence to the world . 

. L 



>
 

~
 .... 0
. 8. 



4 How to use the macro expander 
Like the graphics editor, the SCALD macro expander deals with bodies and the lines connecting 
them. 

A body represents a logic element, and the pins on the body to which you may connect signals 
represent inputs and outputs. 

A line between bodies represents a signal, whose characteristics are determined partly by the bodies 
it connects and partly by the name, if any, used to label it on the drawing. 

A body may represent a macro-a functional block which must be expanded into the logic elements 
that comprise it-in which case. an additional drawing. must exist to define it in terms of other 
bodies connected with signals. Or a body·may represent a terminal--a fundamental, irreducible logic 
element-in which case the program looks for entries in a special text file called the TERM file (or 
tnminal file), which describes the body's inputs and outputs. 

Visually, connecting a line from one body to another with the graphics editor •reeds" the signal from 
the output of one body to the input of the other. Effectively, this calls the two macros, using the 
output parameter of one macro as the input parameter of the other. The task of the SCALD macro. 
expander is to replace each body which represents .a macro with the set of bodies and signals which 
define that macro. Because a macro may be defined in terms of additional macros, the program 
repeats the process until it obtains a network of bodies and signals in which all the bodies are 
terminals. 

Exactly what constitutes a terminal depends on whether you want to obtain a wirelist for actually 
building a prototype, or whether you simply want to simulate the logical design. When building a 
prototype, you regard a macro as a terminal if it corresponds to an actual IC or chip to be used in 
the prototype. By using a TERM file containing entries for these chips, the macro expander 
produces a list of chips and interconnections for use by the SCALD physical design system. 

When simulating a design, however, you define each IC or chip with a drawing that uses only 



74 4 How to use the macro expander 

logical primitives-that is, idealized gates, adders, latches, multiplexers and so on--which the 
simulator can deal with. By using a TERM file containing entries for the logical primitives, the 
macro expander can expand the design past the IC or chip level, producing a network of logic 
primitives for use by the SCALD simulator and timing verifier. (The behavior--the truth or state 
table--of each logical primitive is built into the simulator and verifier.) 

Thus, the choice between an lC terminal file and a primitive terminal file determines the operation 
of the macro expander. 

Incidentally, SCALD has no trouble dealing with an IC or chip which contains several copies of a 
particular logic function-a quad latch or dual flip-flop, for example. In such a case, the body 
representing that terminal, the· entries for it within the IC terminal file, and the drawing defining 
the terminal in terms of. logical primitives all pertain to a single copy of the function. A file called 
CHIPS (which also contains electrical characteristics of the· IC inputs and oUtputs) cakes care of 
telling the physical design system that it can obtain multiple copies of the function from a single 
package. 



4.1 Typical design procedure 75 

4.1 Typical design procedure 

The remainder of the chapter is full of rules for the syntax of bodies and signals that makes up the 
input language for the SCALD macro expander. . Those rules may make better sense after an 
outline of the typical procedure for designing a large project with the macro expander: 

1. For each kind of IC to be used in the design, make entries in the IC Terminal File. · 

2. If you will want to simulate· the design, make a drawing for each IC. that defines it in . 
terms of the logical primitives--adders, gates, and so on~ ... available in the graphics editor 
library "SIMLB ". (These primitives are· sufficiently general to apply regardless. of the 
actual logic technology used to implement the design, though the numbers for timing will 
of course vary.) If· the IC contains multiple units in one package--a quad latch, for 
example--the drawing should define a single unit. 

3. Develop a graphics editor library containing a body template for each of the ICs. The 
S-1 Mark II designers, for example, developed a library called "ElOK" containing bodies 
representing ECL lOK parts. Note that the body template for a multiple-unit IC should 
represent a single unit. 

Since body templates are invisible until used' to place bodies in drawings, it helps to make 
one or more menu drawings for each library. A menu drawing simply shows each IC 
available in the library, and next to it gives the proper name for its macro. SCALD itself 
doesn't use these menus, :but they aid designers in picking out the proper bodies to use. 
For the ECL IOK library, for example, the menu drawings are called "ElOKI", "E10K2", 
and so on. 

4. Now define any macros expected to be osed frequently throughout the design, invent 
body templates for them, and place those bodies in a library so designers can find them 
easily. ~s work progresses, designers can add new templates as needed .. 

For example, the S-1 Mark II design frequently uses vision registers, registers with 
auxiliary logic that accesses the register contents for diagnostic purposes. Placing in a 
library a set of body templates representing vision registers makes it as easy for a designer 
to incorporate one of them as it is to design with an ordinary register. 

5. Now the designers can start at the top level of the machine and proceed hierarchically 
down toward the bottommost, detailed level. At each level, the designer makes a drawing 
by connecting signals between bodies representing macro calls and/or terminals. The 
designer can obtain bodies for the terminals from the templates in the library described 
above. For a body representing a macro cail, the designer must invent a body template and 
then make a further drawing defining that body in terms of additional bodies; thus the 
process recurs. 

6. SCALD does not consider the top level drawing in the hierarchy as a speCial case, so to 
start the macro expansion process, someone must invoke that drawing through a macro 



i How to use the macro expander 

call. The usual approach is to make a dummy drawing of the "universe" con'sistin~ of 
appropriate drivers and receivers attached to a single body representing the entire design. 
When it comes time to lay out hardware to implement the machine, simply allocate the 
contents of this drawing to a separate c;ircuit board which never actually gets built. 

While this· outline suggests proceeding hierarchically from the top level of the design toward the 
bottom, SCALD is actually quite flexible in this ~espect. If it becomes obvious at some point that the 
design catls for additional types of ICs or that some functions occur so frequently that'it is worth 
repackaging them as standard macros,lt is quite easy to change these aspects. 

It is possible to expand the upper levels of the design to check for syntax errors and design rule 
. . 

violations even if the tower levels are not finished--simply ignore the errors generated by the 
missing drawings. Similarly, it is possible to expand a subsection of the design--a subtree Within 

the hierarcy-without expanding the design, simply by concocting a dummy '"universe" file that ca11s 
the topmost drawing of the subsection rather than the topmost drawing of the entire design. 



i.2 General Rules for the macro expander language 77 

4.2 General Rules for the macro expander language 

Expre~sions--Wherever the macro expander accepts an integer, it will generally accept an expression 
instead. The expression syntax is that of a subset of PASCAL, which includes the following 
operators (where "0" indicates the highest pre~edence):· :· ·• 

sxmbol Meanini: Precedence 

NOT Logical NOT 0 
Unary minus 0 

+ Unary plus 0 

* t1 u ltip lication 

I Integer division l 

MOD Modulo l 
AND Logical AND 1 

+ Addition 2 
Subtraction '·' 2 

OR Logical OR 2· 
... Equals 3 

<> Not equals. 3 

<= Less than or equal to 3 

>• Greater than or equal to 3 

> Greater than ~ 

< Less than 3 

Parentheses override precedence as usual in Algebra. 

When the macro expander needs to convert a logical value to an integer, it treats '"FALSE" as 0 and 
-rRUE"as 1. When it needs to convert an integer to a logical value, it treats "if as false and 
anything else as 'TRUE". Thus, the fotlowing example evaluates to either "SIGNAL<0:5>" or 
"SIGNAL< 1:5> ": 

SIGNAL<ASIZEalS:S> 

Note that within a bit subscript (Section 4.6.5), which normally uses "<" and ">" as brackets, you 
must parenthesize an expression that uses">" to mean "greater than", or the macro expander {which 
parses with limited lookahead) will think it has reached a right bracket: 

SIGNAL<£ASIZE>15l:5> 

Throughout the the macro expander language, integers can end in -x" {for "tim~j or "B" (for 
"bits") to improve readability; thus "SB" and "5X" are the same as "5". 

Signal, pin, and macro· names--While. most programming languages prohibit blanks or spaces 
within identifiers, the macro expander permits them in signal names, pin names, and macro names. 
And while most languages require identifiers to begin with an alphabetic: character, the macro 
expander permits digits. Thus, it"s perfectly legal to use .the kind of multiple word signal names and 



78 

numeric part names that designers are accustomed to: 

P SEQUENCER 
PARITY CHECK INHIBIT 

54LS181 
CLK ENABLE 

4 How to use the macro expander 

This freedom is possible because the graphics editor, with its "text" and "property'' features, takes 
care of specifying where one chunk of text begins and ends, so the macro expander does not need to 
reserve blanks for use in delimiting such chunks. 

In general, the macro expander deletes leading and trailing blanks in names, and reduces several 
con!Uutivc blanka: to a singiP hl~nk. 

As noted in chapter 2. the graphics editor also allows the use of the •++" t:haracter to split a piece of 
text across two lines. It converts that character to a blank before sending the text to the macro 
expander, however. 



4.3 Inventing Bodies to Represent Macros 

4.3 Inventing Bodies to Represent Macros 

Parameters--A SCALD macro accepts two kinds of parameters .. Pin parameters represent signal 
inputs and outputs, while body parameters specify SQme general characteristics of the macro. · 

' 
Now, most programming languages match actual parameters (the values or variables you plug into a 
macro or procedure) with formal parameters (the dummy arguments that specify what inputs and 
outputs the macro wants to see) strictly by their position in a list. The macro expander, by contrast, 
matches actual parameters with formal parameters by name; whenever you feed a parameter to a 
macro, you implicitly or explicitly state the name of the formal parameter you're dealing with. The 
property nam.e/text feature of the graphics. editor helps. accompl.shthis~ 

For a pin parameter, the pin name points to a property name, and. the. text pajred with that property 
name gives the formal parameter name. 

For a body parameter, the property. name holds the form~l parameter name and the property text 
holds the actual parameter. Thus, to set the SIZE body paranu!ter to "14B~ for a particular macro, 
use the graphics editor to create or modify the property named SIZE and then specify "HB" as the 
property text. ·· 

4.5.1 Body Parameters 

By convention, SCALD macros have up to five standard body parameters; whereas signal 
parameters are invented by, the designer and vary from one macro to another, body parameters are 
concepts built into the macro expander which govern the way it expands each macro. Body 
parameters are somewhat unusual in that some of them have an initial value which will appear in 
the drawing until you supply a value. 

MNAME 

_SIZE · 

Actually not a parameter, but rather the name of the macro. To f"md the 
definition of the macro, the macro expander will search for a drawing with this 
name. in the first line of its title. (It may also use a selection equation as 
explained in Section 4. 4.) 

Basically, an integer specifying how many times the macro should occur.· This is 
useful for creating several independent copies of a macro--for example, to 
generate 36 copies of a flip-flop to build a register to store' data from a 36 bit 
bus, set SIZE to 36. 

A more precise explanation is that the macro expander invokes any macro 
repeatedly in a loop using a special counter variable -x", which starts at 
X FIRST, increments by X STEP, and quits at SIZE-1. You can set X FIRST 
and X STEP using the DEFINE list described later in this chapter. 



80 

TIMES 

~ How to use the macro expander 

X FIRST defaults to 0. X STEP defaults to 1 if SIZE is 1, but otherwise you 
must (as a safety feature) explicitly set X STEP. Failing to do so produces an 
error message and sets X STEP equal to SIZE. 

The variable '"X" is available for use within the macro definition, and will be 
replaced with successive loop-counter values when the macro expander expands 
and replicates the macro. 

The initial value of SIZE is '"XB", deliberately chosen to be nonnumeric and 
therefore invalid so that the system wilt produce an enor message if you forget to 
specify a size; 

An integer telling the macro expander to invoke the macro repeatedly to obtain 
anultiple cople.s, and then to tie together the corresponding inputs on all the 
copies white leaving the outputs independent. This is useful as shown in Figure 
+-1 when you'd like several different gates to produce the same signal because a 
single gate doesn't have enough fanout capability. If not specified, the TIMES 
parameter defaults to 1. If TIMES is 0, the macro expander ignores the body 
instead of expanding it. 

SETTING' TIMES •3 ... 

Figure 4-1 

DEUn' ..... 

DEUIT-e.e 

... PRODUCES 
THREE OUTPUTS 

The body TIMJ:S parameter 

When the macro expander invokes a macro repeatedly due to the · TIMES 



4.3.1 Body Parameters.· 81 

LOC 

VAR 

parameter, it sets a special variable catled TIMES to a different value on each 
invocation, starting at .t and incrementing by 1. You may use this variable to 
distinguish one invocation from another if you wish. 

Within a drawing, every body must have a unique alphanumeric location label; 
the actual iabels don't much matter, but conventionally we label gates as G 1, G2, 

G3 ... and registers as Rl, R2, R3 ... and so on. It's quite safe to use the same label 
for two bodies in two different drawings. (These labels are used internally by 
the macro expander to make local ·signal names unique when the same macro is . . 
invoked in two or more places. Section 4.6. 13 recites. the details). 

The ihitial value for LOC is "+X", ·a deliberately invalid choice which will 
produce an error if you forget to specify a location. 

This parameter passes information through the SCALD macro expander to the 
logic simulator and timing verifier. Its exact purpose varies from one body to 
another--sometimes it specifies setup and hold requirements and other times it 
specifies delays-but by convention the initial value will always be something like 
"DELAY=" or "'SETUP=" which explains·what the parameter is for. 

Figure 4-2 shows two versions of the same body,. first exactly as it comes from the library, with 
parameters set to initial values; and then with values sp~fied by a user . 

. ' 

., 



82 

X8 
R REG RS 
s +X 

I DCUW- T 

0.0,0.0,0.0 

~ 

BODY PARAMETERS: 
INITIAL VALUES 

·. 

4 How to use the macro expander 

48 
-----i R REG RS 
----iS R7 
----~1 · T~----

DCU:W-

Figure 4-2 
Body parameters 

1. 5, 2. 2, 3. 7 

' BODY PARAMETERS: 
USER VALUES 

Note that while the property names (that is, the formal parameter names) don't appear explicitly on 
the drawings, the graphics editor witt identify any of them within Alter submode as explained in 
Section 2.7. 

One point concerning SIZE and TIMES deserves mention. When you use these parameters on a 
terminal macro, the physical design system witt ultimately generate the specified number of copies of 
th11 mKru's fum:Uuu. 

But when you use these parameters on a nonterminal macro, the definition of the macro determines 
whether replication actually occurs. If a signal inside the definition has its number of bits expressed 
in term$ of SIZE and TIMES, or if a body has its own SIZE and TIMES parameters expressed in 
terms of SIZE and TIMES, then replication wilt take place. Otherwise, a signal or body inside the 
definition is a amstant, independent of SIZE and TIMES. 

A. good analogy is a procedure in a high level language which accepts an integer parameter and 
then doem't use that parameter anywhere in its body. Only when the procedure uses a parameter 
does it have an effect 



4.3.2 Pin parameters 83 

4.3.2 Pin parameters 

The graphics editor always associates a "pinname" (actually a numbe~) with each pin on a body. For 
each pin, the macro expander requires a property name/text pair that ties the pinname to the 
corresponding signal parameter name. · 

If the body in question is a terminal, then by convention each pinname should be the number of the 
corresponding pin on· the actual I C. (If there are multiple units within one IC, use the pin numbers 
for the "first" unit--the one that has the lowest numbered pin. The CHIPS file will take care of 
mapping the remaining units onto the first.) If the body represents a macro, the numbering can be 
arbitrary, but each pin must have a unique number. 

The property name/text pair for a pin is derived from the pinname. For the property name, start 
with the pin name im,d append an "L" if the corresponding signal parameter inside the macro asserts 
low (see .Section 4.6.4). Then app.en~ a "*" . if the pin has a diamond or "bubble" on it, telling the 
macro expander to check to be sure that any signal connected to this pin invokes tow. 

The property text should include the <Class>, <Simple Name>, and <Timing Spec> portions of the 
signal parameter name. Essentially, it should be identical with the version of the signal name that 
appears in the parameter list (Seetion 4.6.8) but without the "IV" appendage or <Bit Subscripts>. 
Figure ·4-S is an example. 



PINNAME = 3 
SIGNAL NAME = CLR L /P 

PROPERTY NAME = 3•L 
PROPERTY TEXT = CLR 

LU~ 

4 How to use the macro expander 

XB 
COUNTER 

+·X 

PINNAME = 2 

. ·, 

CK 

T 

SIGNAL NAME= T<0;SIZE-1> /P 
PROPERTY NAME = 2 
PROPERTY· TEXT= T 

PINNAME = 1 
SIGNAL NAME = CK L /P 

PROPERTY NAME = 1L 
PROPERTY TEXT = CK 

Figure 4-~ 
Pin properties 

Removing the -x." from the property text and puttlng lt in the property naml:' allows the property 
text to label the pin on drawings; the car." is customarily omitted in such labels. 

Why have a separate •*" to telt the signal checker that the signal asserts low when you already have 
an car."? Because the macro's internal notions about the signal polarity may have nothing to do with 
the outside world. Consider the case of an AND gate which could just as welt be represented as an 
OR gate for inputs and outputs that assert tow. A single macro defines both gates equatty welt, but 
as Ftgure 4-4 shows, one body expects its inputs to assert tow and the other doesn't 



4.3.2 Pin parameters 

PROPERTY . NAME = 12 
PROPERTY TEXT = IO 

PROPERTY NAME = 1 3 
PROPERTY TEXT I 1 

PROPERTY NAME = 12• 
PROPERTY TEXT = IO 

PROPERTY NAME = 13• 
PROPERTY TEXT = 11 

DELAY ... 0.0 

2 AND 
+X 

.DELAY=0.0 

()--

Ftgure 4-4 
Gates for high and tow assertion 

PROPERTY NAME = 9• 
PROPERTY TEXT = T 

PROPERTY NAME = 15L 
PROPERTY TEXT = T 

PROPERTY NAME = 9 
PROPERTY TEXT = T 

PROPERTY NAME = 15L• 
PROPERTY TEXT = T 

85 



86· 4 How to use the macro-expander 

4.4 How the macro expander binds bodies to drawings 

When the macro expander encounters a macro body in a drawing, it takes the text from the 
property MNAME and looks for a drawing with that text in the first line of its title. 

Note that two other names exist and thereby confuse the issue. The body template itself has a name 
which the graphics editor recognizes when you ask to place a copy of that body in a drawing. The 
file containing the drawing that defines a body has a filename by which the computer: operating 
system recognizes it. Neither of those names has anything to do with the process of finding which 
drawing to use to expand a macro. 

(There are gonrl reasons for that. Keeping the budy name separate from the macro name permits 
multiple bodies to have the same MNAME and thus the same marro definition: for example, 
consider ag-ain a gate which can be either an AND pte which expects iti ~ignats to assert high or 
an OR gate which expects them to assert low. T.he macro expander can use two different bodies 
called "2 AND" and "2 ANDO" (the latter looking suspiciously like an OR) to represent the same 
function. And keeping the drawing filename out of the picture makes SCALD less dependent on 
the operating system.) 

If the macro expander finds .. more than one file with the same name in the first line of the title, it 
then goes to the second line of the title in each file and evaluates it as a selectiort equation. It uses the 
drawing for which the selection equation evaluates to "TRUE". 

This is handy because in many cases you will want to implement a function differently depending 
on some parameter such as (for example) the size. If the numhPr of bit£ you're generating parity for 
1s 1'2 or less, fur example, you may want to use on~ circuit but if it's greater than 12 you'll want to 

use another. By putting a selection equation like "SIZE<=l2" on the second title line of one drawing 
and an equation lt.k.e "'S~ZE> 12" on that of another, you c:an a<:tornpli&h thi~. . 

Of course, you must invent these selection equations so that for each value of SIZE you expect to 
use, the equation inone and only one drawing evaluat.E!s.to TRUE. 

A typtcai selection equation is a function of one of the macro body parameters--SIZE, TIMES, or 
VAR-but can in general be any expression. If you provide only one drawing to define a given 
macro, leave its second title line blank and the expander wilt always select that drawing. 



4.5 Inventing Signal Names 87 

4.5 Inventing Signal Names 

Not every signal need have a name. If, for example, a signal originates at one body and terminates 
at another within the same drawing, the macro expander can infer from the characteristics of the 
output and input pins everything it needs to know about the signal: its width in bits, its assertion, 
and so on. 

But attaching a name to a signal--which, within· the graphics editor, merely· requires attaching text 
to a point along the line that represents the signal--can provide additional information: wire delay, 
clock skew, and so on. 

And sometimes the macro expander requires a name for a signal--when, for example, the signal is 
an input or output parameter; or when the signal should be made global so other drawings can refer 
to it. 

Concatenation--To combine se'?erat different signals into one multiple-bit signal, use ":" between 
their names to indicate concatenation. The signal whose name is leftmost provides the most 
significant bits: 

HIGHBYTE : MIOOLEBYTE : LOWBYTE 

Conditional signals-To make a signal name depend. on an expression, use an IF/THEN/ELSE 
construct If the expression is true, the macro expan~er ,uses the name fottowing the word THEN, 
but otherwise it uses the name fottowing the· word ELSE. The. quotation marks shown in the 
following example are required: 

II IF" SIZE<8 "THEN" FIRSTBYTE "ELSE" -FIRSTBYTE 

Do not omit the ELSE part, and do not nest the IF /THEN/ELSE construct. 

Comments--Everything following a ";" in a signal name becomes a comment. Thus, when you use 
concatenation or IF/THEN/ELSE, you're allowed only one comment: 

RIGHT. 
CA : OR WA ; Pacific states 

"IF" FLAKY "THEN" CA "ELSE" WA : OR ; A pointed comment 

WRONG 
CA 1 Far out UA ; Far up OR Far gone 



88 i How to use the macro expander 

4.6 Putting together a signal name 

Who11y apart from concatenation or IF/THEN/ELSE, an individual signal name consists of a series 
of individual pieces strung together, each of them describing some aspect of the signal. 

The syntax of a signal name is: 

<Name> ::= 
<Negation> 
<Signal Class> 
<Simple Name> 
<Timing Assertion> 
<Assert Lo...,> 
.. a it Suoscr i pt> 
<!.lire Delay> 
<Timing Evaluation Directive>· 
<Scope> 
<Mu I t i p I i er > 

<Vereion> 

Not all of the information is meaningful to the macro expander; the <Timing Assertion>, <Wire 
Delay>, and <Timing Evaluation. Directive>, for example, are included for the benefit of the timing 
verifier. All the components except the <Simple nam~> are optional, and the· last five may appear in 
any order." Thus, a rather elaborate example of a: name is: 

-SHAKESPEARESHAMLET.Cl-2,3-4 L <9:6:2,4:8> [2.5,3.7l&A /M *<SIZE> /18 

and a. simple example of a name is: 

CLOCK 

In order to persuade the macro expander that two signals are the same, the <Signal Class>, <Simple 
Name>, and <Timing Assertion> pieces must be identical, character for character. Other pieces of 
the name may or may not appear in various places in a drawing. We"tl proceed to talk about the 
various pieces of syntax, one by one. 

4.6.1 <Negation> 

To invert a signal without indicating that it asserts low, put a minus sign at the front of the 
sub name: 

DECODE I 



4.6.1 <Negation> 89 

-DECODE I 

. Contrast this with the use of <Assert Low>,. deScribed later in this chapter, which requires that the 
pin receiving the signal have a ~ubble" or "diat)"lond" indicatin·g that it expects a signal that asserts 
tow. 

If a signal· is generated by a gate with the complementary outputs, then the macro expander 
recognizes that the inverse of the signal is available, too, and will allow you to use that inverse in 
the drawing without explicitly connecting a line to the inverse output of the gate. 

The absence of"-" implicitly indicates the uninverted form of the signal. Note that putting a"+" in 
front of a signal name creates an entirely different signal name; a plus sign. is ·not a superfluous 
symbol.·: .. ·.; 

A "-"inverts each individual bit of a multiple-bit signaL 

4.6.2 <Class Name><Simple Name> 

Within <Class Name> and <Simple Name>, you may use alphabetic characters, digits, "+", "-", "(", 
. and ")" as you wish, though you should be prudent about it: if you put a "-" at the front of the 
name, for example, the macro expander will think it's a <Negation> rather than an innocent 
character in the name. 

Similarly, if a <Simple Name> ends in • L", and there is no <Timing Assertion>, the macro 
expander interprets the "'1:." to mean "<Assert 'Low>" as described later in this chapter. 

And if there's no 'Class Name> and the <Simple Name> consists of nothing but digits "rt' and "1" 
then the signal is a binary constant as described iri Section 4.6.11. 

<Class Name> is a sort of p.refix, consisting of a string .of the characters just mentioned, followed by· 
"'", which you can attach to each member of a family of signal names, making it easy to pick them 
all out of the crowd. If signals -rlECODE INST", "SHIFT LEFT", and "SKIP" are all .part of a 
fUnctional block called "ARITH BOX", for example, you might want .to make that clear by using 
"AJUTH BOX" as a signal class: 

ARITH BOXSOECOOE. INST 
-ARITH BOXSSHIFT LEFT·· 

ARITH BOXISKIP: 

<.Simple Name> is just a name made up of the 1P.ga1 characters listed a few paragraphs ago: 



90 

4.6.5 <Timing Assertion> 

IJ 
e 

2BY4 
MANY MANY MANY WORDS 

4 How to use the macro expander 

This specifies the tirne varying behavior of the signal. It's useful· for documenting the expected 
behavior of signals entering and leaving a functional block. In addition, it lets the timing verifier 
check a sub~ion nf th11 design even if the enttre design is not complete; the verifier can use the 
<timing assertion> on an input instead of evaluating the unfinished circuitry that will eventually 
feed that input. 

When the macro expander parses a signal name, it does not actually regard the <timing assertion> 
as separate from the <simple name>. Only the timing verifier recognizes the <timing assertion> as 
anything more than a few additional characters in the name. The exact syntax of a· <timing 
assertion>' appears in Section 6.3.2. 

4.6.4 <A.uert Low> 

To indicate that a signal asserts low, ·place • L" after the <timing assertion>. Note that in the 
absence of the timing assertion, the " L" wilt fotlow the signal name, reducing to the con~entional 
notation: 

MULTIPLICAND READY L 
CLK .Ci-~, 3-4 L 

Note. also that if a gate has complementary outputs, the maqo expander recognizes Lhat the output 
and its inver~ both ~~txtst, and will allow you to refer to both even if you connect a line and invent a 
signal name for only one. · 

The distinction between the •-" preceding a signal name and the '"I.." following it is import.,.uL Each 
indicate.' inversion; but only '"L .. tndtcates that the signal asserts tow. Thus, a signal with "L" implies 
that the pin receiving the signal must have a -,ubble" or "diamond", as Figure 4-5 shows. 



4.6.4 <Assert Low> 

'· ~. 

IEUit-e.e IIEI.Rr .... 

~ 
~ L:_)· 

llBA'f .... . 

~ 
WRONG 

~ 
~ L:_). 

- ,.. IEUit-e.e .. 

~ 
RIGHT 

Figure 4-5 
Assertion checking 

91 

Two special techniques tell the system precisely how to :check assertions. F:irst, ~o regard a· signal as 
asserting low withour actually inverting it, use both "-" and "L ". The effect is th!lt of using neither 
"-" nor "L ", except than he system will check to make sure all receiving pins have bubbles (Figure . 
4-6). 

DELA"f=0.0 

20R 
+X 

-SIGNAME L 

Figure.4-6 
Assertion checpng without inversion 

· .DELA:Y =0. 0 

20R 
+X 

Second, to flout the convention that a signal originating at a pin with a bubble asserts low and a 
signal originating aL a. pin without a btJhbte asserts high, use a fictitious bOdy called a "NOT"; see 
Section 4.8. 



/ 

92 4 How to use the macro expander 

4.6.5 <Bit Subscripts> 

Bit subscripts tell the macro expander that a signal consists of one or more bits of a multiple-bit 
signal-that is, a bus. 

The macro expander accepts either one- or two-dimensional signals. The following examples specify 
single bits out of multiple-bit signals: 

ONE OIMENSION<6> 
TWn nTMENSIONS<G,3~ 

Either or both $ubscript.s can specify a range of bits, Which the macro expander processes in row 
major order. Thus, the following two examples specify identical three-bit signals: 

M_UL TI BIT <0: 2> 
MULTI BIT<0>:MULTI BIT<l>:MULTI BIT<2> 

And likewise, the following two examples specify identical four-bit signals: 

. TWO 0<1: 2, 5: 6> 
TWO 0<1,5>:TWO 0<1,6>:TUn 0~2,S>aTWO 0,2,6> 

Either or both subscripts may also specify a step-size for the r::~nge of bits. Thus, th~ follOWing 
example lndudes bits from the fourth through the tenth, incrementing by 3: 

ONE 0<4:19:3> 
ONE 0<4>:0NE 0<7>:0NE 0<10> 

A single bit signal name--one without any bit subscripts-:is by default the same as a signal name 
with, both subscripts zero. Thull, the following three ~x.amples are identical: 

LONE BIT 
LONE I:H T <9> . 

LONE BIT<0,0> 



4.6.6 <Wire Delay> 9! 

4.6.6 <Wire Delay> 

For any input signal to a body, you may specify a wire delay or range of delays within square 
brackets: 

· See Section 6.3.1 for details. 

POP L[6.81 
CK [2. 5:3.71 

4.6.7 <Timing Evaluation Directive> 

When several signal~ feed into a gate, the timing verifier ordinarily uses the individual timing 
assertions for each of the inputs in determining the output. But sometimes you may want it to ignore 
certain aspects of the other inputs when propagating one of them through the circuitry. For details 
on the syntax for doing this, see Section 6.!.3. 

4.6.8 <Scope> 

The scope of a signal is the environment within which the macro expander recognizes that 
particular signal by name. Within a macro name you can specify either of two scopes: •tP" for 
parameters or "/M" for module-specific signals. 

Parameters-If a signal is a format parameter, then its name is really just a stand-in for the name of 
whatever signal is used as the actual parameter when ·the macro is invoked. Thus, it's "hidd~n" from 
the world outside the macro; you can use the same name inside another macro and no conflict wiJJ 
result. After at~ signal parameters and pin labels are the same thing, and for example it's 
understood that when a counter and a shift register both have a pin labelled 11CLK", the two pins 
are nevertheless distinct from each other. 

By convention, when a parameter is •common"-that is, when it requires only a one-bit signal even 
when its body gets replicated due to the SIZE parameter-we give its signal a name ending in •c": 
"CLR.C", "'INHIBC", and so on. . 



4 How to use the macro expander 

To provide extra error-checking, the macro expander requires that each drawing that defines a 
macro contain a PARAMETER list giving the name of each parameter. 

To create a PARAMETER list, add to the drawing a fictitious body (typically one keeps a template 
for it in a graphics editor library} catted PAR, which has no visible tines or pins, but whose 
MNAME is PAR and whose main purpose in life is to support property name/text pairs. For each 
parameter signal name, create a body property name/text pair. By convention, we name the 
properties "1", "2", "3", and so on (but it doesn't matter). Each property text should contain the 
<Signal Class>, <Simple Name>, <Timing Assertion>, and <Bit Subscripts>, if any, from the signal 
name. Omit all other pieces of the name. List either a signal or its inverse, but not both; including 
either automatically declares both. (For ECL, the timing verifier wilt benefit if <Assert tow> is 
included in the parameter list where appropriate, though the macro expander does not require this.) 

If a signal parameter is an output, append "/V'' to its name. Do this only in the parameter list, not in 
the drawing as a whole. (This tells the macro expander which signals to tie together when the 
TIMES body parameter, described in Section 4.3.1 causes it to duplicate a macro). 

Module-specific signal-Like a parameter, a module-specific signal is "hidden" from the outside 
world; the macro expander regards it as distinct from any other signals with the same name in other 
macros. In addition, the macro expander creates a different incarnation of it every time the macro is 
invoked. · 

As a safeguard against accidents, a module-specific signal name must not duplicate that of any 
$ilflal that is g-lobal to the macro. You cannot by creatin&" a module-spetific signal name dethrone a 
global name that your macro would · otherwise recognize. To see whether a particular 
name-ALPHA, for example--is allowed to be module-specific inside a particular macro, simply 
ask, "'f the signal had some other name! would ALPHA always be meaningles~ and undefined, 
every titne the tnacto gets called?" If the answer is "yes", then it's safe to use the name ALPHA. 

Global signals-Any signal which lacks "/P" or "/M" is global. Ordinarily, a global signal is visible 
from within every macro; throughout the entire design, every reference to its name means the same 
signal. 

Thus if you call a macro several times, the corresponding global signals in every invocation of the 
tnacro all get connected together. And if you use the Saf!le global signal name in two different 
macros, both those signals get connected together. 

A feature catted DECLARE creates nested scopes similar to those found in many high level 
programming languages. If you place a global signal name in a DECLARE Ust inside a macro, the 
macro expander creates a different incarnation of that signal every time the macro is invoked. In 
addition, while that incarnation is "hidden" from other macros in general, it's visible throughout the 
subtree of this macro--that is, within this macro catl and also throughout all the. circuitry resulting 
from the macros which it calls in turn. 

A signal declared in a macro is local and hidden as far as the caller of that macro is concerned, but 



4.6.8 <Scope> 95 

global and visible as far as att of the callees of the macro are concerned. 

This is similar to the dynamic nesting of scope found in languages like LISP. 

To create the DECLARE list, add to the drawing a fictitious body (available from a graphics editor 
library) called DECL. This works just as the PARAMETER list does: create a body property 
name/text pair for each signal name in the list; name the properties "1", "2", "!", and so on; and put 
the <Class Name>, <Simple Name>, and <Timing· Assertion> portion of each signal name in a 
property text. List either a signal or its inverse, but not both. The "/V" rule doesn't apply to the 
DECLARE list. .. . 

4.6.9 <Multiplier> 

To guard against errors and to help enforc;e design· rules concerning fanout capability, the macro 
expander requires the designer to specify very explicitly how to interconnect bodies. 

To feed the output of a gate into three different .inpl,lts, .a conventional schematic would· show 
something like F~gur~ 4-7. , .. 

. 
2 AND ) 

·, 

LATCH 

I T 

EN 

: 

Figure 4-.7 
Conventlona.l schematic 

LATCH 

I T 

EN 

LATCH 

I T 

EN 
' 

But the macro expander makes it easy to replicate a logic. element without drawing multiple copies 
of it, simply by setting the SIZE parameter of the corresponding body to the desired number of 
copies. Thus, on first thought, one might try to draw something like Figure 4-8. 



96 

DEL~Y=0.0 

2~ND 

G3 

0 
) 

Figure 4-8 
Wrong way 

i How to use the macro expander 

.38 
LATCH 

LS 
I QELAY= 

T 

0.0,0.0,0.0 

EN 

However, that would generate an error because· the macro expander knows the gate generates a 
one-bit signal but, because of its definition, the T input of a three bit latch requires a three bit 
signal. The solution is to eliminate the line connecting the gate to the latch. Instead,· give the output 
of the latch a name-"A ", for example--and use that name along with a "*S" multiplier to feed the 
input of the latch (Figure 4'-9). 

DEL~Y=0.0 

2AND 
G3 

38 
LATCH 

SOURCE•3 L5 
..:;.__;.;.__;=-.;:;__-----ji T 

Figure 4-9 
Correct way 

DEL~'r's 

0.0;0.0,0.3 

EN 



'/ 

'i 

4.6.9 <Multiplier> 97 

The multiplier effectively concatenates the signal to itself the specified number of times. Thus, 
•A*3" is equivalent to 8 A:A:A". A multiplier will concatenate multiple bit signals, too, so the 
following examples are equivalent: 

8<1:5>~ 

B<l : 5>: B<l: 5>~<1 : 5> 

The value for <Multiplier> may be any expression, but it must begin· with •*"· If the value is 0, the 
macro expander creates a zero-width signal by concatenating no bits. 

Note that using a multiplier -does not increase the number of gates that drive a signal; to automate 
the entire issue, inake the TIMES parameter on the gate a function of the SIZE parameters on all 
logic elements driven by the gate. 

4.6.10 <Version> 

Using the TIMES parameter to duplicate a logic element as explained earlier in this chapter 
automaticatty generates multiple physical output· signals for each logical output signal shown and 
labeled on the drawing. The ability to gather a handful of similar physical signals and deal with 
them as one logical signal is a particular advantage of the macro expander. The macro expander 
itself, however, must deal individuatty with the physical signals, and thus needs a unique name for 
each one for use in preparing wirelists and so on. It derives these names by placing a stash and a 
version number after the name you invent 

Ordinarily, these versions need not concern you until it actually comes time to build the prototype. 
If you ever do need to specify a particular version during the design phase, however, you ·can do so , 
using the same syntax: 

MULriVERSION SIGNAL /8 
MULTIVERSION SIGNAL /1 
MULTIVERSION SIGNAL /2 

Note that although the macro expander uses numbers, you may place any alphanumeric string after 
the stash provided it cannot be confused with the <scope> portion of the name. · 

You can, in fact, use the <Version> option as a general-purpose qualifier on a signal name, for 
whatever purpose you wish. 

A stgnal name may accumulate multiple version numbers as one macro calls another. The macro 
expander concatenates the version numbers, separated by dots, with the version contributed by the 



98 4 How to use the macro expander 

highest level macro at the right: 

A SIGNAL /2.3.1 

4.6.11 Constants as Signal Names 

Naming a signal "1" or "O"indicates that it is permanently TRUE or FALSE-a binary constant 
rather than a variable. Putting a row of "l"s and "O"s together concatenates them ju$t as the ":" 
operator wouici. Thus, the followtni examples are equivalent: · 

18118 
1:8:1:1:8 

Essentially the only valid options to apply to a binary constant are <Negation>, <Assert Low>, and 
<Multiplier>. A "-" preceding such a constant or an " L" following it applies to all the bits, 
inverting'each one. Note that the <Multiplier> doesn't multiply the numbers, but rather concatenates 
each individual bit with itself the specified number of times. Thus "101 *4" is the same as: 

1:1:1:1:0:0:8:8:1:1:1:1 

not •101:101:101:101" or "10110100". 

4.6.12 Text Substitutions 

Within a drawing,· you can provide a list of text sybstitutions or abbrP.villtir.:ms to be Uied 

through~ut that drawing. 

Effectively, these are "text macros", but we'll call them "substitutions" to avoid confusion with 
drawing macros. Each substitution rule should look like "A=B", where A is the abbreviation and B 
is its meaning. The abbreviation must be a single word (that is, em~edded spaces are forbidden) but 
its meaning may be any string of characters including leading or embedded blanks. 

To define text substitutions, you use a DEFINITION list similar to the PARAMETER and 
DECLARE lists described in Section 4.6.8. Add to your drawing a fictitious body called DEF 
(usually one keeps a template for it in a graphics_ editor library) and give it a property name/value 
pair for each substitution rule. The properties are unimportant (by convention one uses "1" as the 
first name, "2" as the second, and so on) but each value should give a substitution rule in the form 



4.6.12 Text Substitutions 

"A=B": 

DEFINE 
LOI.IBVTE=8:1S . . 
HIGHBVTE=9:7 

99 

Except inside the <Bit Subscript> portion of a signal name, you must surround an abbreviation 
with "\" characters. This is a safety feature to prevent destruction of a signal name that happens to 
contain one o( these abbreviations within an otherwise innocent word. 

(A more precise explanatic;m is that the. entity within the macro e:xpander which scans signal name-s 
operates in two states, either looking for abbreviations to expand or not looking for them. When it 
gets to the beginning of the signal name, it enters the not-looking state. Each "\" toggles the state. 
Thus, you could place a single "\" J?efore the first abbreviation in a name and leave the scanner in 
the same state until the end. But it's safer and l>rettier ·to turh it off again with another "\" 
immediately after the abbreviation. 

. . . . 'l 

When the scanner reaches the beginning of the_ bit _subscrip~ part, it enables text substitu~ions. If it 
encounters a "\ .. within the bit subscript, 'it will actually turn substitutlons off.) . 

Substitutions are illegal in the first line of the title_ of a drawing. 
. '· . 

The text substitutions defined in the previ_ous ex~ple would cause the macro expander to expand 
the following signal names as shown: , · . . · · · . 

TOP oF STACK<HIGHBVTE> ..... > TOP ·.OF STACK<e: 7> 
TOP OF STACK<LOI.IBVTE> s=> TOP OF STACK<S:lS> 

The scope of an abbreviation-The definition of an abbreviation takes 'effect throughout the 
drawing containing the definition, and throughout any macros called from that drawing, unless 
those macros themselves override it by rec;lefining the same abbreviation. Thus, the DEFINE list 
implements dynamic scope similar to that of the LISP language and the macro expander'~ own 
DECLARE feature. 

Special variables-As mentioned earlier, when you catt a macro with SIZE set to a value other than 
1, the macro expander executes an implidt ioop from X FIRST to SIZE-1 by X STEP.· The 
variables X FIRST and X STEP default to 0 and 1 respec~ively, but a macro can use the DEFINE 
list . to set them to any desired values during its own evaluation. This has no effect, however, on 
their value during evaluation of any macros which it calls in turn. 



100 4 How to use the macro expander 

4.6.13 Sundry Details About Naming Signals 

The material in this section will interest the serious user of the macro expander, but the casual 
reader may skim it without loss. 

The PATH mechanism--When you use "/M" to make a signal module-spedfic, or when you use the 
DEFINE list to create a local scope for a signal, the macro expander must find a way to generate 
multiple, distinct signal names from each of the names you invent It accomplishes this by prefixing 
the signal name with various patlu. . 

A path is a route from the roo~ of a tree to a particular rtode you're interested in. You can visua_Ji7.1:' 
the process of expanding macros as a tree, where each node represents the invocation of a macro, 
and the father of a node is whoever called .the macro. You can derive a unique name for a 
path-and thereby for a particular node--by tracing the chain of macro calls from the root (topmost 
macro in, you·r design) to the node you're interested in, making a list of the LOC body parameters of 
all the macro calls in the chain. 

Thus, when the macro expander wants to make a unique incarnation of a "/M" name (or of a global 
name mentioned in a DECLARE list) for a particular invocation of a macro, it simply prefixes the 
name with the path (in parentheses) to the node that represents that invocation. 

Suppose a module called GAMMA has a module-specific signal called "MINE /M". In Figure 4-10, 
the invocation of GAMMA at the lowest level of the tree will have a signal named 
\A 1 B 1 0 t)MINE /M" white the other invocation of GAMMA will have a signal named 
-cA 1 G l)MINE /M". 



4.6.13 Sundry Details About Naming Signals 

ALPHA 

LOC = A1 

BETA GAMMA 

, LOC = 81 LOC = Gl 

GAMMA DELTA 

LOC = G1 ~OC = 01 

FigUre 4-10 
M aero expansion tree 

101 

When the SIZE parameter causes the macro expander to repli~ate a ma.crO, the specilll variable X is 
different for each copy. Since the macro appears only once in the drawing, there's only onevalue of 
LOC for all the copies. To distinguish them, the macro expander appends a "•". followed by the 
value of X, to the LOC value of each copy for which X is not 0. Thus, if X FIRSTaO and 
X STEP= 1 and· SIZE·2. then a body at location S 1 in the drawing will generate three bodies as 
locations $1, S1•1, and S1•2. 

(Inddentatly, the macro expander follows a similar convention to distinguish multiple copies 
resulting from the TIMES body parameter. It appends a"+" f~llowed by a number to each copy 
after the first, so that a body at location S2 with TIMES set· to 3 generates three bodies with 
locations S2, S~+ 1, and S2+2. If a location has both a TIMES and a SIZE appendage, the TIMES 
append~ comes first.) 

·The PATH text abbreviation-Ordinarily, such path construction is transparent. But the macro 
expander ·makes the feature available to the designer, too, by providing a special predefined text 
abbreviation "PATH". When you use "PATH" (inside most of the signal name, of course, you'tt 
have to write \PATH\ as you would with any. abbreviation) in a signal name, the macro expander 
will automatically substitute a parenthesized path for it during macro expansion. 

DOWN THE PRIMROSE \PATH\ 

becomes 

OCIJN THE PRIMROSE (G3 Ml R7> 



102 4 How to use the macro expander 

Obviously, it's a good idea to place paths in the middle or at the end of signal names so there's no 
confusion between them and the ones the system adds for module-specific signals. 

How is the PATH feature useful? Suppose you want to be able to access any register in your design 
from a special piece of diagnostic hardware to aid in field servicing. You can hide this extra 
complexity by providing a special macro called REGISTER which automatically generates the 
proper circuitry. Each incarnation of this macro wilt need a pair of signals connecting it to the 
diagnostic hardware. Giving the macro extra input and output parameters for the diagnostic signals 
makes it more complicated to draw. But using globals poses a problem because each incarnation of 
the macro needs a set of globals with unique names. 

The solution is to use global signals but include PATH in each global name so that all incarnations 
of the macro will use the same global name--with a unique path name attached to the end of it. 
When the design is finished, these global signals will produce error messages because no hardware 
exists to generate them, and you can then design the diagnostic hardware specifically to generate the 
signal names that appear in these error messages. 

Naming Unnamed Signals--When the designer does not name a signal, the macro expander always 
derives an internal name for the signal For each pin the signal connects tO, the macro expander 
constructs a possible name by taking the LOC parameter of the pin's body, then appending a "1.", 
next appending the signal parameter name from the property text field, and finally tacking on "L" 
if there's a"*" in the property'·name for that pin: · 

<body LOC>%<signal parameter name> 

Then it alphabetizes this list of possible names and uses the one that appears first. 

When an unnamed signal connects to a body which has. no LOC parameter, the macro expander 
doesn't construct a possible name for that connection. If that leaves the macro expander with no 
possible names to choose from, then it will reluctantly construct a name of the form: 

~<number>~<signal parameter name> 

followed by " L" if the signal invokes low. Then it alphabetizes these and selects the first. 

Synonyms-Putting two names on the same signal is perfectly legitimate so long as the n~es don't 
conflict on matters like timing or the_ number of bits the signal represents. The macro expander 
considers such names to be S'j1lonyms. 

When the signal in question has multiple_ bits, the macro expander ·matches the individual bits of 
one name with those of the other in row major order. Thus if signal A:B:C is synonymous with 
signal Z<0:2>, then A is the same as B<O>, B the same as Z< 1>, and C the same as Z<2>. If signal 
X<O:S> is synonymous with Y<O:l,O:l>, then X<O> is the same as Y<0,0>, X<l> the same as Y<O,l>, 
X<2> the same as Y<l,O>, and X<S> the same as Y<l,l>. 



4.6.1S. Sundry Details About Naming SignalS 

IN 

XB 
BIT REVE~ 

•X 
-

OUT 
c~·BE 

DEFINED AS •.•. 

IN< 0: SIZE- 1 : 1 > /P oUT<SIZE-1:0:-1> /P 

IN<X> /P 

Figure 4-11 
Bit reversal 

OR 

OUT<SIZE-X-1> /P 

103 

Figure 4-11 shows two different ways to reverse the bits of a bus using synonyms. The first uses a 
step size of -1 in the bit specification, while the second uses the special variable X which the macro 
expander increments from X FIRST through SIZE.;..1 as it expands any macro. 



104 4 How to use the macro expander 

4.7 Matching Signals with Bodies 

Just as programming languages demand that actual parameters match formal parameters in terms of 
data type and number, so the macro expander demands that signals match body pins in terms of 
assertion level and number of bits. 

As mentioned earlier, if a signal has the" L""'(<:Assert Low>) option, you may connect it only to pins 
which have diamonds. If a signal asserts high, then you may connect it only to pins which don't 
have diamonds. 

Similarly, the number of bits that a signal name represents must match the number of bits that a 
body pin represents. It's not always apparent from the outside of a body which pins represent 
multiple bits. as the .figure i-12 shO,wS. 

j'• 

: .. ·.· 

48 
CONTRIVED 

EXAMPLE 

+X 

I T 

. : • ..... 

CK 

Figure 4··12 
Common pins 

The CK input of this register is a one-bit signal or common pin, since a single clock suffices for 
multiple cells of the register; the I input and T output are four-bit signals, since they are a function 
of size. The parameter list inside the drawing that defines the ma.cr9 determines this by specifying 
CK independent of SIZE and by dimensioning I and T to have the number of bits specified by 
SIZE: 

CK 
1<0:SIZE-1> 
T <0: SI ZE-1> · 

Reconciling bits-the macro expander deals with vectors and arrays of bits in row major order. 
That is, whenever it processes the bits it travels through an array from the Oth bit to the highest 



4.7 Matching Signals with Bodies 105 

order bit, varying the rightmost subscript most rapidly . 
. ' 

When a multiple-bit signal connects to. a multiple-bit.input on.a b9dy, the only requirement is that 
the n·umber of bits in the signal matches the number of bits in the input. The means of arranging 
the multiple bits or multiple inputs into a vector or array doesn't matter; in effect, the system 
converts the pins into ~.vector (a one-dimensional arr,ay) using ·row-major order, converts the .signal 
bits into a vector using row-major:.order, and c~nnects the two.vectors bit by. bit. 

Obviously, this works most neatly when the pins and· signals comprise arrays with precisely the same 
dimensions. But using arrays with like numbers of elements bu~ different dimensions (connecting a 
~6 array of signal bits to a ~4 array of pins, for example) is permitted also. 

. . 
Similarly, concatenation always decomposes various signals into vectors (that is, one dimensional 
arrays) of bits if necessary before •gtueing" them together. The decomposition takes place in row 
major order as just explained. 

··'· 



106 4 How to use the macro expander 

4.8 Fictitious Bodies 

Along with aU the bodies that eventually result in semiconductors and wmng, macro expander 
drawings also use bodies that denote no hardware whatsoever, but convey information to the macro 
expander and router. 

Not--As mentioned earlier, a NOT body allows you to flout assertion-checking conventjons for a 
particular signal. o·n one .side of the NOT body, the signal is considered to assert high and on the 
other to assert low, as Figure 4-13 shows. 

WRONG 

Figure 1-13 
Using NOT bodies 

RIGHT 

Slash-A vertical or horizontal slash has no effect, but makes clear the number of bits on a bus 
(Figure 4-1 4). 



4.8 Fictitious Bodies 

368 
R REG RS 

36 
S R3 

Z<5:40> 
I DELAY= T t---7"'---=-::....:........:;._ 

0.0,0.0,0.0 

CK 

Y< 4:39> 

Ftgure 4-14 
S1asl't body 

DELAY= 
0.0,0.0,0.0 

s 

107 

Merge-Using the ":" opera~or to. combine individual signal names as explained earlier in this 
chapter can leave a lot of ugly unconnected lines. A prettier means to the s~e en~ is to use a. 
fictitious body catted a "MERGE", which joins the lines repr~nting two or more signals. The signal 
on the- branch marked "H" supplies the high order bits, the signal on the branch marked "M" (if 
any) supplies the middle order bits, and the signal on the branch marked !'!." supplies the low order 
bits (Figure 4-15). 

lliUIT .... .. 
unot 

•>I 
I lliUIT~ T ........... 

01 

FigUre +-15 
Three way merge 

.. 
unot 

•>I 
/----"-'7----ii aa.RI'• T 

••••••••••• 

., 



. 108 i How to use the macro expander 

You can similarly use a reverse MERGE to split a multiple-bit signal and feed pieces of it to 
various destinations {Figure i-16). 

· Figure i-16 
Reverse merge 

Sign Extension-To widen a signal by replicating the sign bit, u'se the body shown in Figure i-17. 
That ~xample would convert SIGNAL<0:'3> into SIGNAL<O>*S:SIGNAL< 1:3> and· call the resuit 
WIDESIG~AL<b:7>. MNAME Is the property that provides the text "i to 8". 

,•' ' • ' I ' •' 

SIGNAL<0:3> ~ WIDESIGR..<0:7> ~~~~~--~~~~~-JT~O~B__j~------~==~~~~-

Figure 4-17 
Stgn P"M:tP.n~inn 

Wire-Or-As mentioned earlier, the macro expander does its level best to prevent you from 
connecting outputs together accidentally. If you truly intend to connect two signals, you must use a 
WIRE-OR body to do so. Unlike an actual OR, tlte WIRE-OR implies no h_ardware. but simply 
connects the signals. Bodies exist for positive and negative assertion (Figure 4-18). 



4.8 Fictitious Bodies 

. Figure. 4-.18 
Wire-Or bodies 

109 

Comment, Par, Def, Dt~ci-The PA.R, DEF, and DECL bodies were mentioned in sections 4.6.8 and 
4.6.12. The COMMENT body works similarly, alloWing you to. attkh to it body text which appears 
on· your drawin~ as a comment and has no effect on·the macro expander. 



110 4 How to use the macro expander 

4.9 How to construct the Terminal File 

As mentioned earlier in the chapter, there are two kinds of terminal files: an actual IC terminal file 
for use when generating wirelists for the router, and a primitive terminal file for generating input to 

the simulator. When you run the macro expander program, you tell it which file to use. 

The format of the terminal file is the same in either case: a series of entries listing the inputs and 
outputs of the macro. 

On any particular line of- the file, anything to the right of a -r' is a comment. Otherwise, the entries 
'appear in free format, each ending with a semicolon. 

Here's a typical entry: 

PARITY GEN 100160 £SIZE~91 (100160,1) IA<0:8>, 18<0:8>, ZA /V, 
ZB /V, C L /V; 

The individual items in the entry are: 

e The name of the macro ·representing the actual IC (which should exactly match the name 
of the drawing that defines that IC and the macro body that represents it). In the 
preceding example, the name is "P~RITY GEN 100160". 

·~ 

e An optional expression like "'SIZE-9" which serves as a seiection equation similar to that 
of the second line of a drawing title. You can make multiple entries in the tern:tinal file for 

.• • ·.,. • • -· • -.1· " • ' • 

a given IC, and the ·macro expander .will choose from then:a ~he, entry whose .. s~lection 
equation evaluates. to TRUE: (In the terminal· file, .. it's ,permissable for non~ of th~ 
equations to evalu~te to TRUE, ill which case the macro expander will dect~e 'ttiat it 
hasn't reached t~e definition of an actual IC after all, and wilt go search for a drawing to 
expand. This is handy, for example, when you want to use an actual IC when SIZE is 
small enough but cascade several ICs when SIZE is too large.) 

If it appears, this optional expression must be enct~ in square brackets. 

• A pair of items inside parentheses: the chip name followed bJ the number of copies of the 
same function within each IC. Typically, the chip name is simply. the manufacturer's part 
number. SCALD allows you to use an elaborate macro name during the logical design 
phase, translating it into the actual part number for use during the physical layout and 
prototyping. 

e The names of the input and output signal parameters for the macro, separated by commas. 
Each name should include the desired <Class>, <Simple Name>, <Timing Assertion>, and 
<Bit Subscript> parts. List either the uninverted or the inverted form of a signal, but not 
both. If a signal is an output, append a "/V" to the name. · 



4;9 How to construct the Terminal File 111 

For a logical primitive, each parameter name must.; maUh the corresponding one built into 
the SCALD logic simulator. -~or either an actuat,IC or_a,logicat primitive, each parameter 
name must match that in the property text field for_ the, .corresponding .pin of the body 
definition, except that the property text field witt tack the <Assert Low> and ·<Bit 
Subscript> portions of the name. 

. Note again that the entry for each macro ~hds ~ith;.·a ~icoton~ 

··J' 

; .: 

I· 



112 4 How to use the macro expander 

4.10 Running the Macro Expander 

Once att the drawings are prepared, using the macro expander is simply a matter of running the 
program and specifying all the files it needs. 

First you must run the WDPR program to translate binary files from the graphics editor into a form 
that the macro expander can read. It will ask you for the name of a "WD input file" (the one you· 
want to convert) and a '"WDP output file" (the one it will put the conversion into;) When it's 
finished, it will print "Done." and ask you for a new pair of names, again and again till you abort it. 

To run MAC, the macro expander itself, first prepare a file containing nothing but the word 
"END11

, which you'll use to terminate input to the expander. 

Then run the program. It will ask for the following files: 

MACLST--The file into which the program writes its listing. 

MACEXP-The file into which the program writes the list of bodies and connections resulting from 
the macro expansion, which wilt serve as the input to the next phase of SCALD. 

TERM-The TERM file from which the program reads parameters of terminal bodies. 

WDP-Tett the program the names of the files produced by the WDPR program for the individual 
drawings. The macro expander will ask again and again for FILEO until you give it the file 
containing only •END". 



1:.11 The Macro Expander Listing 113 

4.11· The Macro Expander Listing 

The ma~ro expander produces an extensive listing. We'll discuss the individual phases of the listing 
in order of appearance, showing an example of each phase. The examples are occasionally distorted 
somewhat to squeeze within the ·width of. the page, or to illustrate additional features of the 
program. 

Progress report-This gives a dutiful account of the program's activities: 

READING TERniNAL BODY DEFINITIONS 

FINISHED READING TERMINAL BODY DEFINITIONS 

READING MACRO DEFINITIONS STARTED · 

FINISHED READING nACRO DEFINITIONS 

Undefined macros-A list of each macro you failed to define, along with the name of the macro 
which attempted to call it. Despite' these· errors, the program expands the design as far as it can; 
conn~_ons to undefined macros are simply missing from the output file. 

To help you find macro. definitions· in the listing, the program assigns a number to each macro that 
does have a definition, according to. the order in which you supplied the macro names to the 
program. Thus in the following example, "93" is the number assigned to macro "FORMAT 
CONTROL". 

UNDEFINED MACRO<Sl: 

"DUAL 1 OF 4 DECODE 188178l 

"INT FP SUBTRACT 

"INT FP AIJOER 

"188178 

"188178 

""OBV !!UX 

""OBY nux 

• 
" CALLED FRO" "FORMAT CONTROL 193" 

• CALLED FRO" "INT FP A-8 1183" 

" CALLED FROM "~NO NORM i111" 
". 

• CALLED FRO" "1 OF 8 DECODE 188178 #143" 

• CALLED FRO" "1 OF 8 DECODE 188178L 1144" 

"r.AII.Fn FROI! "RSOX IU9" 

" CALLED FRO". "ABOX 1149" 

Alphabetic macro list-The names-as given by the MNAME property and by title line 1-of all 
the nonterminal macros that are def"med, in alphabetic order. Again, each macro's number follows its 
name. 

The column marked "CALLS" gives the num~er of static catts on the macro: the number of times it 
appears in somebody else's definition, rather than the number of times it actually occurs once the 
expansion takes place. For example, suppose a macro ca~ted POPULAR appears once in the 
definition for macro ALPHA and twice in the definition for macro BET A. Static catts on 
POPULAR total S even if ALPHA gets used gs times and BETA never gets used at alt. 

The column marked .• FILE" gives t.he project name {see Section 2.2.1 for details), if any, fottowed by 
a dot and the name of the file holding the drawing for this macro. Sometimes _several different 
drawings may define a given macro; iri' that case, the •macro portrait" phase of the listing (described 



114 'l How to use the macro expander 

later on) gives att of their names, but only the first of them appears here. 

SEQ CALLS FILE nACRO DEFINITIONCALPHABETICALLY ORDERED> 

1 OF 8 DECODE 188178 1143 1 8 LOW.178ArnK2,51l 

2 2 LOW.17880rnK2,S1l 

3 2 LOW.187CnPrnK2,51l 

4 22 188112.188112[nK2,S1l 

s S LOW.18BADD[nK2,S1l 

B 4 RC"PY.23X18R[nK2,S1l 

1 OF 8 DECODE 188178l 1144 

188187 cnP 1142 

188112V 181 

18 BIT ADDER 188K 185 

18X18 RECDDE nPY 179 

Readin-ordered macro Jist--Identical with the preceding .list, but with the macros appearing in the 
order in which you supplied their names to the program. 

Termin.al body list--A list of terminal macros--that is, the macros at the very end of the chain of 
expansions, which cannot themselves be expanded. If you are going to use the logic simulator, these 
wilt be logical primitives; otherwise, they,l be macros representing actual integrated circuits. 

For each macro, the CALLS column gives the number of static calls upon that macro, the 
TERMINAL BODY column gives the macro name corresponding to the MNAME property or to 
title line 1, and the CHIP NAME column gives the chip name that witl be used by subsequent 
programs in the SCALD family. (The terminal file tells SCALD which chip name to use for each 
terminal macro; see ·section 4.9 for details). 

SEQ CALLS CHIP NAnE TERniNAL &ODY 

1 57 188181 188181 

2 74 118182 188182 

3 1 n&7871H 258W RAn nB7871H 

4 3 188183 2X8 BIT RECDDE nPY 188183 

5 7 188179 CARRY LOOK-AHEAD 188179 

.. 
Terminal portrait-For each terminal macro, the program provides a detailed description. First the 
program prints the MNA ME or the macro and the number assigned. to the macro. Then it prints 
the number of .static catts upon the m'acro, and the filenames and MNAMEs of aU the other macros 
which ca11ed it 

After the MNAME of each caller, the program prints the catter's number, and the values of' 
parameters LOC and SIZE which the caller used in invoking this terminal macro. (The program 
omits the SIZE parameter here if SIZE= 1.) 

Fottowing the list of catters, the portrait shows the format parameters for the terminal macro, just as 
they appear in the terminal file. 

In the example below, for instance, macro -cARRY LOOK-AHEAD 100179", whose identifying 
number is 69, was catted four times by macro •72 BIT CARRY OUT ADDER", whose number is 
118. The drawing defining macro 118 is in file COA[MK2,S 1] which belongs to project COA. 



4.11 The M aero Expander Listing 115 

Since the program didn't print the SIZE parameter, COA must have invoked this terminal macro 
with SIZE= 1. It did so at locations C 1, ·c2, C3, and ·c-t. 

The macro's parameters are "C0+2168 L<0:3> /V",."PG L<0:7,0:l>", and "CI L". 

TERniNAL: . CARRY LOOK-AHEAD 188179 NUnBER 69 

CALLED 7 TinES FROn: COA.COA£nK2,Sll 72 BIT CARRY OUT ADDER #118(L0C=C2l 

COR. COR rnK2, S 11 72 BIT CARRY OUT ADDER 1118 <LOC=C 1l 

COA.CDA£nK2,S1l. 72 BIT CARRY OUT ADDER #118<LOCaC4l 

CDA.CDACnK2,S1l 72 BIT CARRY OUT ADDER 1118<LOCaC3l 

LOY.18BAODCnK2,Sll 18 BIT ADDER 188K #8S(L0C=CLAl 

LOY.36BADDCnK2,S1l 36 BIT ADDER 188K 184(L0C=CLA1l 

LOY.36BADDCnK2,Sll 38 BIT ADDER 188K #84(L0CcCLA2> 

PARAnETER C0+2468 L<8:3> IV, PG'L<8:7~8:1>, CI L 

--------------------------------------------------------· -------

Macro portrait-A detailed description of an individual non-terminal macro. 

The program first prints the macro MNAME and identifying number. In the fotlowing example, the 
name is HW MPY RND NORM and the number is 106. 

Then it lists all files which .define the macro; elsewhere in the listing, only the first of these 
filenames will appear. (Typicatly one would encounter:multiple files because ecu;h file has a different 
selection equation as explained in Section 4.1, not because a ·macro definition won't fit in a single 
file.) For each file, the program prints the 'project name (explained in Section 2.2.1) foiJowed by a 
dot and the actual name of the file. In the example. a single file called HWRN l[~K2,S I) in project 
HWMRN dermes the macro. ·· 

Next the program gives the number of static calts on this macro and lists each of the catlers; for 
details, see the preceding explanation of the terminal portrait. In th.e example, macro 106 is called 1 
times by macro "HW ADDER ROUNDER". 

.· 
Next it lists the formal parameters of the m~cro, just as they appear in the PAR body inside the 
macro's definition .. 

Next the program lists each of the synonyms-signals which have p1ore than one name--within the 
macro's definition. In the example, for instance, ~ignal · ~1~ ill thP. same a.s 
MUX~O:MUX01.1:MUX0~2. (Evidently, this resulted from using a MERGE to concatenate three 
unnamed signals into one.) 



116 4 How to use ttte macro expander 

Next the program lists· all of the text substitutions given in the DEFINE body inside the macro's 
definition. In the example, X STEP is defined to be "1". Next the program prints a list of the 
synonyms that result when a fictitious SLASH body splits one signal into two identical pieces within 
the drawing that defines the macro. In the example, for instance, a 9 bit wide signal from the body 
at LOC=TG apparently got interrupted, forcing the macro expander to invent two synonymous 
names, 1.21. and TG1.T, instead of just one. 

Finatly, the program prints one entry for each of the macros called by this macro. At the left of the 
entry is the LOC parameter for the call. To the right of that -is a paragraph beginning with the 
macro MNAME and number. If the SIZE parameter for the call is not 1, it appears in parentheses 
following the macro number. Then the program prints a Jist of formal/actual parameter pairs, also 
In parP.ntheses. 

If the macro being called is a terminal, a "*" appears in front of its name; if it's undefined, a "?" 
appears in front of its name. 

If, from the caller's viewpoint, a formal parameter asserts low (in other words, the pin corresponding 
to that parameter has a diamond), a "*" appears after its name in the parenthesized list. If the 
caller did not supply a signal for a· particular formal parameter (in other words, left a pin 
unconnected in the drawing), then the formal/actual paramete~ pair wiD look. lik.e 

FORMAL "" , 

instead of 

FORMAL c: ACTUAL, 

In the following ex~ple, for instance, the macro calls another macro "HW EXP" with LOC==EXP 
and SIZE= 1 (we k.now that because no size appears on the listing). The macro expander connects 
signal EXP1.EXP to formal parameter EXP, signal EXP1.0VFL UNFL L to formal parameter 
OVFL UNFL L*, and so on. Formal parameter OVFL UNFL L* asserts low, as shown by the"*" 
following its name. The macro also catls "100171", which is a terminal macro as shown by the "*11 

preceding its name, with LOC.:MUXO and SIZE==6B, and so on. 

When a macro lack.s one of the features just described, the program omits the corresponding portion 
of the profile. Thus, if a macro contains no text substitutions or synonyms, the DEFINE and 
SYNONYM portions of the profile would not appear at alt 

NUnBER 186 

CALLED 4 TinES FROft: HUAODRND.HWADDR[ftK2,S1l HU ADDER ROUNDER 1112<LOCaRN3) 



i.ll. The M aero Expander List~ng 

H~ADDRND.HIIADDRCnic2,Sll . Hll ADDER ROUNDER lll2CLOC•RN2> 

HIIADDRND. HIIADDR [nK2! Sll Hll ADDE.R ROUNDE~ 1112 CLOCaRN1> 

HIIADDRND.H~ADDRCnic2,S1l Hll ADDER ROUNDER 1112CLOCaRN8> 

PARAnETER T<8:26>1V, CTRL, I<HIIBUS> 

SYJIONYn %1% .. nuxex8snuxex1:nUX8%2 

%2% " nUX1%8:nUX1X1:nUX1%2 

.SLASH <SIZE=9>X2% = TG%T 

DEFINE 

<SI2E-18>Xl% •.EXP%EXP 

<SI2E:1lTG%INT OVFL L • RN%0VFL L 

CSI2Ea6lEXPXOVFL UNFL L = TG%FP OVFL UNFL L 

X STEP• 1 

nACROS CALLED 

EXP HW EXP 1187 < EXP = EXPXEXP, OVFL UNFL L~." EXPJOVFL UNFL L, 

I m I<HIIEXP>IP JHERE AT START OF A?> 

nux8 •188171 168<SI2E·6B> < T L• ~, , _ 8 • liUX8Xe, 1 .. nuX8%1, 

2 • nUXtl2, 3 • 886, S m EXPONENT OFFSET<8:1>1n, 

T • T<8:S>IP, OE Lo = nPY HW SEL ENA A3.C3 L) 

nUX1 •188171 168<SI2Ea38) < T Lo • , 8 a nUXlxt, 1 • nUXl%1, 

2 a nUXl%2, 3 " 8~, 9 = EX~ONENT ~FFSET<8:l>tn, 
T • T<24:26>1P, OE L• • nPY HW SEL ENA A3.C3 L) 

RN RND NDRn 1111 < EXP • EXPONENT OFFSET<8s1>1n, OVFL L• • RN%0VFL L, 

T • T<6t2~>1P, I = I<HWFRAC>IP ;H~R~ AT START OF Al, 

CTRL a CTRL/P > 

TG HU TAG nDDIFIER 1189 C T • TGZT '· INT ~VFL L• ,. TGZINT OVFL L, 

FP.OVFL UNFL L• • TGZFP OVFL UNFL L, 

I = I<HIITAG>IP ;HERE AT START OF A3> 

-~---

Expansion trace-As it processes your design, the program prints a line of text every time it 
expands a macro. Up to now, the lis~ng has dealt with the. static structure of the macro hierarchy; 
this part of the listing traces an the dynamic ~ails. The left half .of each line describes the path 
(defined in Section 4.6.13) leading to that particular m~o call, and the right describes the call. 



118 4. How to use the macro expander 

To describe the calt, the macro expander prints the level of the calt-that is, how deeply the calt is 
nested--the name of the macro it's expanding, the value of the special variable X (as described in· 
Section 4.3.1, the macro expander uses X to count from X FIRST to SIZE in increments of 
X STEP, determining how many times it will replicate a given macro), and the value of the SIZE 
parameter used in this call. 

., 
In the following example, the first tine represents the expansion of the body at loc~tion ABOX. 
This occurs at level 1, and involves a macro called "ABOX" whose number is 149. X is 0 during 
this call, so the expansion produces a: single copy of ABOX. The parameter SIZE is l. 

The second line shows that the program expanding the body at location lAM 1 within the macro at 
location ABOX. This one is a terminal called •100171" whose number is 68. Again, X=O and 
SJZ.E.,o.f. 

The third line shows the program expanding the body at location 1AM2 within the macro at 
location ABOX, and so on. 

I 

The next interesting expansion occurs several lines later in the original listing, so our example skips 
the boring part. Look at the line immediately following the skip. Here you can see what happens 
when the loop from X FIRST to SIZE produces more than one copy of a macro during a single 
expansion. The fourteen lines. following the skip alternate be~een macro 129 at level 6 and 
terminal macro 58 at level 7: The first instance of macro 129 occurs with X=O, the second with X=8, 
the third with X= 16; and .5o on; we can infer that X runs from X FIRST=O to SIZE=48 with an 
inc;rement of X STEP=8. 

11ACRO EXPANSION PASS 1 

CABOXl LEVEL: 1 11ACRO: ABOX 1149 <X=8,SI2Ec1l 
· .. 

<ABOX 1AH1l LEVEL a 2 TERHINAL: 188171 188 <X=8,SIZE=182l 

CABOX 1Rn2l LEVEL: 2 TERniMAL: 188171 188 <X=8, SI2Ec182l 

CABOX 1nn1> LEVEL: 2 TERniMAL: 188171 188 cx .. 8, SIZ£ .. 182> 

CRBOX 111112> LEVEL: 2 TERniMAL: 188171 188 <X=8, SI2E=182l 

CABOX !nUL TFUl LEVEll 2 ftACRO: nULTIPLIER FCN UNIT 1158 <X•8,SI2Ec1l 

CABOX 111Ul TFU IIWARl li!YI:la ::1 ftRCRO: HW ADDER ROUNDER 111Z <Xs8,Silfell 

CABOX 1nULTFU H~AR RftBl . i.EVElt 4 ftACRO: IMT FP A-8 1183 <X=8,SI2E=1l 

CABOX 1nULTFU H~RR AftB 11008) LEVEL1 5 11ACRO: A+-8 TAG ftDDIFIER 1114 <X•8,SI2E=1l 

<here we skip • few linea to avoid .anotony> 

CABOX 1ftULTFU H~AR AftB Y8 Rl 

CABOX lftULTFU HWAR AnB V8 R R1l 

CABOX 1nULTFU HWAR Aft& Y8 Rl8l 

LEVEL: 6 11ACRO: SHIFT REG CLR 188141 1129 CXa81 SI2E=54l 

LEVEL: 7 TERftiNAL: SHIFT REG 188141 158 <X=8,SIZE=1l 

LEVEL: 6 nACROt SHIFT REG CLR 188141 1129 <X=8,SI2E=54l 

CAaOX 111ULTFU HWAR Rna V8 RIB R1l LEVEL: 7 TERftiNRL: SHIFT REG 188141 158 <X=8,SIZEc1l 

<Raox lftULTFU HWAR Rna V8 Rl18) LEVEL: 6 nACRO: SHIFT REG CLR 188141 1129 CX:16,SIZE=54l 

CRBOX 1nULTFU HWAR Ana V8 Rl18 R1>" LEVEL: 7 TERniMAL: SH,IFT REG 188141 158 <X=I,SIZ£,.1) 
·' 

CABOX 1ftULTFU HWRR AftB Y8 Rl24l LEVEL: 8 nACRO: SHIFT_ REG CLR 1881411129 <X=24,SI2E=54l 
·. ; 

<ABOX 1nULTFU HWRR Al18 Y8 Rl24 R1l LEVElz 7 TERniMAL: SHiFT REG 188141 158 <X=8,SI2E=1l 

CABOX 1nULTFU HWAR AftB Y8 Rl32l LEVEL: 6 ftACRO: SHIFT REG CLR 188141 1129 <X•32,SI2Ea54l 



4.11 The Macro Expander Listing 119 

CABOX 1ftULTFU HYAR AftB V8 Rl32 R1) LEVEL1 7 TERftiNAL1 SHIFT REG 188141 158 CX•8,SIZE•1), 

LEVEL: 6 ftACR01 SHIFT REG CLR 188141 1129 CX•48,SIZEm54) 

CABOX 1nULTFU HYAR AftB V8 Rl48. R1) LEVEL1 7 TERniNALI SHIFT REG 188141 158 CX•8,SIZE•1) 

CABOX 1ftULTFU H~AR AftB V8 R148) LEVEL: 6 nACROI SHIFT REG CLR 188141 1129 CX•48,SIZE=54) 

CABOX 1nULTFU HYAR AftB V8 Rl48 R1) LEVEL: 7 TERniNALI SHIFT REG 188141 158 CX•8,SIZE•1) 

CABOX 1ftULTFU HWAR APB) .LEVEL1 4 ftACR01 INT FP A+B 1184 CX•8,SIZE•1) 

Chip counts--For each nonterminal macro, the program tells you the names and numbers of all the 
terminals that it requires. This includes terminals it uses indirectly--that is, by catling other 
nonterminals which in turn use the terminals--as well as the terminals that appear directly in this 
macro's definition. And the totals for a particular macro represent all calls on that macr~ throughout 
the system, not just a single invocation. 

This is useful for estimating the cost of any particular part of the design. And the listing for the 
highest-level macro in your design witt, by definition, give totals for att chips used throughout the 
design. 

Note that these totals count each invocation of a terminal macro, even when orie actual IC 
containing multiple sections can provide several copies of a macro. 

SUftnARY OF' TOTAL CHIPS USED BY EACH nACRO 

ftACR01 18X18 RECODE ftPY NUnBER 79 

CHIPS TYPE 

38 188117 

188 188183 

144 

nACR01 PARTIAL PRODUCT SHIFTER NUftBER 88 

CHIPS TYPE 

4 188182 

4 188188 

a 

Error summary-At the end of the listing, the n<acro expander prints the\ number of errors found 
throughout att passes of the. program. The actual m!!ssages are printed in various phases of the 
listing. 



120 • How to use the macro expander 



·121 

5 A Guided Tour of a· SCALD Macro 
If you followed the guided tour of the graphics editor in Section ~.you are now no doubt sick of the 
drawing that defines ma(:ro 10016. But you are also no doubt very famUiar with it, so it seems tik'e · 
the best. locale for a guided tour of the aspects of 10016 that relate to the macro expander language 
itself. . 

.. . 

This Ume, we won't try to take you step by ·step through the th~ught pr~ess · of the guy who made 
the drawing originally but instead wilt let you wander around enjoying the sights while we offer 
random comments. · 

FigUres S-1 and S-2 give a reprise of the dr!Lwing and the body respectively. 



122 

111M RUE' t.mml 
PI 

~ .... 
L.llll-o.e 

5 A Guided Tour of a SCALD Macro 

41 
E1ll' IIU) Of( 

R 

~ ... 
ltiUI _, •• 

(I( 

~~~~#~--------~------~------------------~t-----~R ~~ 

..

>- ::!:~Of(
~C£!---------~L IIU) ... 5

oc

oc ... I

T .._,.
T Lf'1~
T L.tlll

L<

Figure ~1
The drawing

S .1 Tf'e._:s. ,p
t----l I llElAT• Tf----------'"-"'=.!::

z.e,14s.e
0.:

.. ~, /'

:·.

tc8J,31J
0(

A
PEL

CHT'£ L
T<8131 AJ
1t. L.N

5 A Guided Tour of a SCALD M aero

PIN NAME = 1.
PROP NAME = 1
PROP TEXT = I

) I

PIN NAME = 2 /
PROP NAME = 2
PROP TEXT = CK

PIN NAME = 3
PROP NAME = 3
PROP TEXT.= R

XB
10016

•X

T

TC

T
(

PIN NAME = 7
PROP NAME = 7L •
PROP TEXT = TC

17'IN NAME = 6
PROP NAME = 6
.PROP TEXT= T

~ ..

~ PIN NAME = 5
. , PROP NAME = SL•

·PROP TEXT= CNTE PIN NAME = 4
PROP NAME = 4L•
PROP TEXT = PE

FigUre 5-2
The body

• I

123

The drawing's mission in life is · to describe a four bit binary counter in terms that the SCALD
simulator can understand. The counter has a clock input CK and a four·bit p~altet output T, as
you woutci expect It also has a reset input R, a count enable input CNTE~ a four bit parallel inpuf
I, a paraltel toad enable PE, and a terminal count TC which goes low when T reaches 15 dedmai.

The various inputs and outputs work together like this:

CNTEL PEL R CK Function
X L L t · Load paraltet
L H L t ·caunt ··

H H L t Hold
X X H ·x Reset

Now one way to represent such a counter is to cascade four' master;;,.stave flip flops and -a bunch of
. gates. But that way madness ties, because white the manufacturer provides such a representation on

124 5 A Guided Tour of a SCALD -Macro

the data sheet, the data sheet parameters don't deal with it on such a microscopic basis. Rather, they
simply describe the setup and hold times for the various clock and enable signals, plus the delay
from the time the device is clocked until all outputs have responded.

An easier representation of ;i counter is an adder which adds one to its outputs every time a clock
pulse occurs {Figure 5-3), which is basically the approach that the drawing takes.

~T.;_< 0:...:::.;:3>:;;,._ ___ ---1 A

0001

CK

DELAY= 0.0

1-------tl

48
LATCH

L1

DELAY=
2.0,3.6,5.0

EN

Figure 5-S
A simple view of a counter

T< 0: 3>

. ,.· ;

The extra bodies and signals in the actual drawing serve either to represent extra functions like TC
and PE, or to specify setup, hold, and delay times.

For example, the data sheet specifies that you must set up PE or CE 2.5 ns before CK and hold
them 0.5 ns after CK; the body in the lower left corner informs the simulator of this.

The data sheet specifies that the delay between CK _ ap(i T is 2.0 ns minimum, 3.6 ns .typical, and 5.0
ns maximum; the VAR p_arameter on register R 1 _expresses this. The delay from R to T is 4.0 ns
typical, so a delay of "[0.0,0.61' on the R signal itself adde4 to the. 3.6 ns typic~l delay on register R I
achieve& this.

The drawing illustrates a few intimate details of SCALD syntax, too. For example, we want the
adder to add the CNTE_ signal to the outputs so that the counter counts when CNTE is high and
holds when CNTE is not That's fine, ~~t the macro expander will not let you apply a one l;)it s_ignal
like CNTE to a four bit body tik.e the adder, so you must use a MERGE body to concatenate the
three bit binary constant signal •ooO" to CNTE.

When the outside world asserts PE, the signal goes low, so we want the low state of PE to select the
0 input of our multiplexer and. thereby choOse the parallel inputs t But using PE L would cause
problems because the multiplexer's S _input has no diamond, so we use -PE inste~: same signal as

5 A Guided Tour of .a SCALD Macro 125

the PEL which the outside world sees, but no diamond required.

Note that you must use a bit of care in a case iike this: the macro expander will permit you to use
PE rather than -PE or PEL in your drawing even though the outside world gives you only PEL,
but if you carelessly omit the •-" or '"L ", the rriacto expander will invert· the signal for you for free,
either by finding ari inverted form in the outside world or by permuting inputs to the multiplexer.

The first Une of the title indicates that this drawing is · a candidate to define any body whose
MNAME parameter is •10016". The second line, however, makes it a successful candidate only if
the body's SIZE parameter is 4. If you use this body with SIZE set to some other value, you"tl
presumably have another drawing with •10016" as the rust line of its title, which cascades enough
four bit units to make up the required size.

126 5 A Guided Tour 'of a SCALD Macro

.: :.

127

6 How to· use the tim_ing verifie~
The timirig verifier reads the ·output of the ~~ro expander and checks for ti~ing errors using
knowledge of the minimum and maximum propagation delays of the circuit components, their
set-up and hold times, minimum pulse widt~ constr:aints, and wire delays.

An t.rnportant feature permits verification of individual modules instead of_}he entire design. This -
permits the program to execute on _cor:nputers with limited_ mem()ry size, allows errors to· be
discovered daily, before they can propagate t~rough the design; and helps estimate a machin~'s cycle

_ time before the design is complete.

The verifier gets information about the design from several different iources:

• For each terminal body-that is, each actual IC function_.-used in the d:esign, the designer
must provide' a macro definition in terms of logical primitives. These primitives describe
the timing ·eonstraints of that terminal body. ·

• Within the logical design of the machine, the designer may estimate wire delays for certain
critical signals as part of t~e signal names.

• The designer may optiona1ty make assertions about th~· timing of a particular signal,
incorporating them in the signal n~e. _

• The designer may specify how to evaluate the timing of certain gates by incorporating
_ directives in signal names.

• After the physical design system lays out the parts and routes _wires, it provides wire delay
information, based on chip electrical characteristics and actual wire lengths, for all signals.

Tht' section wilt first explain the theory behind the verifier, then explain how to define chips in '
terms of logical primitives, and finally explain how to use wire lengths, assertions, and evaluation
directives in a design. ' · ·

128 6 How to use the timing verifier

6.1 Theory of operation

Within synchronous sequential circuits, most signals can change only during particular parts of the
clock period. For example, it may be possible for a particular signal to change only during the
second half of the dock cycle, provided all of the components making up the system are within their
timing specifications.

Consider a register that r.an b~ docked only at a pat:ticulilr time within the clock period. The output
of the register can change only during_ a short time after it is clocked, so it is guaranteed to be stable
for the entire clock period except around the point at which it is clocked. The output of a gate
driven from this register can then be changing _o~ly during a period of time de~ermined by its
propagation delay and when the output of the register is changing.

Determining when within the clock period a given sigoal may be changing and when it is stable is
the key s~ep for the timing verifier. Once this has been done, It is relat~vely easy to check all of the
timing constraints placed on the circuit. For instance, to check the set-up and hold times on a
register, the· timing verifier need only determine whether ~ts input could be changi~g at a time when
it might be clocked.

If the timing of the circuit never depended on the values of signals, but merety.on when they were
changing or stable, the timing verifie~ would be very simple. Clock signais have a value which is
periodic, and have the same. value every cycle, ~ they are easy to handle. The signals which are
difficult to treat are those whose values affect .the circuit timing, and wh1~h have different values
during different cycles of the drcuit. For example, a control signal which determ.ines whether a
register is clocked during a given cycle affects whether the output of the register might change that
cycle. If the drcu~t relies on t~e register not changing every cycle, then the timing verifier must do
case anal,sts to keep from generating false error messages. This requires the timing verifier to
check the type of cycle when the control signal is true. and to chf'('k the type of cycle when il is f'ctlse.
ThiS could be a time-consuming process, but in practice is not, because most signals have a
"worst-case" state. For example, thP. worst cue for most r~teu is tu assume that they are docked
every cycle. Only in those situation.~ where both the clnr"k~ ancl unclock.cd cases need to be checked
separately does the timing verifier have to compute both of them. In those cases, the timing verifier
remembers the values of all the signals which are not affected by the signal which is subject to case
analysis, and thus has to recompute only the signals which change with the signal being analyzed.

The designer must specify which signals require case analysis and list the cases; most circuits have
proven to contain fairly few such signals. ·

Basically, the timing verifier then takes the first case, calculates when .each signal in .the system could
be changing, and checks for violation of timing constraints for that case. It then goes on to the next

S.l Theory of operation 129

case, recomputing only the signals which are different from those in the first case, and checking for
any possible timing errors. It repeats this process for att of the cases.

6.1.1 ·circuit Period

The circuit being verified must contain one basic clock, whose period is specified to the timing
verifier: If different parts of the circuit run at different clock rates, then the period specified to the
timing verifier is the least common multiple of the clock P.eriods. ·. For ~xamel~, for a processor
whose instruction unit has a period of SO nsec and whose exeeution unit has a period of 15 nsec the
designer would specify a SO nsec period to the timing verifier. Within the circuit, clock signals may
occur at any phase within the basic period.

6.1.2 Value system for signals

·At any instant, each and every signal has one of seven. values:

0
1
S or STABLE
Cor CHANGE
R or RISE
For FALL
UorUNKNOWN

false, or 0
true, or 1

signal is stable, not changing
signal may be changing ·
signal ls golng fron1 zero to one
signal is going from one to zero
initial value used for all signals

The value of a signal over. the clock period is represented by a linked list, each node of which
specifies a value and the duration of that value. The sum of the durations of all the nodes· in the
list must equal the period of the drcuit being analyzed.

When a signal propagates through a gate or wire where it is delayed by a variable amount of time,
then skew is added to the signal, representing the uncertainty in when the sign.al will subsequently

. change. This skew is maintained separately in the representation of the signal to preserve
information about the width of pulses in the signal, in order to avoid bogus timing errors as~rting
that minimum pulse width requirements have not been met. If two or more changing signals are
combined, the skew then cannot be sim.ply represented separately. It is therefore incorporated into
the signal representation by using the CHANGE, RISE, and FALL values.

130 · 6 How to use the timing verifier

6.1.5 Com binational function

The fottowing tables define the INCLUSIVE..;.QR (OR), EXCLUSIVE~OR (XOR), AND,
CHANGE (CHG), and NOT functions for the seven-value logic system used in the timing verifier . .

A OR B

e- e 1 s c R F u
A
~ 0 1 s c R F u
1 1 1 1 1 1 1 1
s s 1 s c R F u
c c 1 c c c c u
R R 1 R c R c u
F F 1 F c c F u
u u 1 u u u u u

A AND B
8--+ 0 1 s c R F u

A
I 0 9 9 0 0 9 9
1 8 1 s c R F u
s 9 s s c R F u
~ I ~ ~ E ~ c u c u
F 0 F F c c F u·
u 0 u u u u u u

A XOR B
a 8 1 s c R· F u.

A
j 9 1 s c R F u
1 1 8 s c F R u
s s s s c c c u
c c c c c c c u
R R F c c c t; u
F F R c c c c u
u u u u· u u u u

6.1.3 Combinational function 131

A CHG B

B-+ 0 1 5 c R F u
A

I 5 5 5 c c c u
1 5 5 5 c c c u
5 s s 5 c c c u
c c c c c c c u
R c c c c c c u
F c c c c c c u
u u u u u u u u

NOT A i..i

A

' 1
1 0
5 5
c c
R- F
F R ''·.:. u u

The output of the CHANGE function has the value _CHANGE 'if any of its inputs ~e changing;
otherwise it has the value STABLE, It is a useful function in modeling complex combinational
logic, where the actual function being performed is not important .to the . verification process.
Common examples are in the modeling of parity trees and adders, for which the timing verifier
cares only' when the outputs of these circuits are changing, not for their actual value.

132 6 How to use the timing verifier

6.2 Defining chips

As· Section 4 explained, the macro expander operates in either of two modes, depending on which
TERM file it uses.. It can expand the design into a network consisting of macros which represent
chiptypes, or it can expand one level further, repladng each chiptype with a network of logical
primitives which describes the function and timing of the chiptype.

To produce input for the timing verifier, the macro expander must run. in the latter mode, and
therefore the designer must provide a drawing for each chiptype, defining that chiptype in terms of
the logical primitives shown in Figure 6-1. {This is actually a subset of the. primitives; logic
simulation can use. additional kinds not shown here.)

Delay-Most of the bodies have associated with them a string beginning "DELAY =0.0". This is the
body parameter catted VAR (represented in the graphics editor as a property name/text pair whose
name is V AR and whose text is that string). When using these bodies in a drawing, th~ designer
usually replaces the "0.0" with a delay expressed in nanoseconds, or a pair of delays (minimum and
maximum) separated by .a comma, or a trio of delays (minimum, typical, and maximum) separated
by commas. Regardless of the number of zeros in the initial DELAY string for a particula~ body
template, any body can accept one, two, or three delay paramters ..

Minimum pulse width-T!'Je body catted MIN PULSE WIDTH. accepts a single bit input and
checks that the pulses at that input exceed specified widths. The VAR parameter for this body is a
string, initially set to "HIGH=O.O, LOW =0.0", which specifies in nanoseconds how long the input
must remain high and how long it must remain low to avoid error.

Setup and hold check-The body whose body name is SETUP HOLD and whose macro name is
SETUP HOLD CHK accepts an input (whose width is dictated by the SIZE parameter) at pin "'"
and a common (one-bit) clock signal at 11CK". Its VAR parameter specifies in nanoseconds the
minimum setup and hold times for those inputs with respect to the rising edge of that clock.

The body whose body name is SETPP RISE HOLD FALL and whose macro name is SETUP
RISE HOLD FALL CHK works in similar fashion, but checks the setup time with respect to the
rising edge of the clock and the hold time with respect to the falling edge.

CHANGE gates-The gates whose names include "CHG" strip away information about the actual
values-high or low-of their inputs. Their outputs have instead the two states STABLE and
CHANGING. This simplifies the definition of the timing of complex functions for which
knowledge of the exact logical operation is unnecessary.

AND, OR, an~ XOR gates-These operate in obvious fashion.

Latches and registers--Each of these accepts an input at pin "'I" and an output at 'T"; the SIZE
parameter dictates the width of those inputs and outputs. The "CK" (clock), •EN" (enable), "R"
(reset), and "S" (set) pins are common (each accepts a one-bit signal).

'

The first kind of register has only "CK" and "'" inputs, and changes its output on the rising edge of

6.2 Defining· chips 133

"cK". The output of the register will be set to the "cHANGE" state between the time determined
by the minimum and maximum delays of the reguter following the rising edge of "CK". Unless the
cor' input is a true or false during the rising-edge of the "CK" input, the output will be set to the
"STABLE" value for the rest of the cycle; otherwise, it will be set to the value of the "'" input.

, .The second kind of register has asynchronous "S" and "R" inputs in addition to the "'" and "CK"
inputs. If the as" (or "R") input is one, then it sets. (or resets) the output of the register after the
specified propagation delay. . •

The output of the first latch merely follows the "I" input when the "EN" input is high, and is stable
for the remainder of the cycle. ·The second latch has additional ·asynchronous as" and "R" inputs,
which set or clear the' latch when the aEN" input is low, after th_e spectfied propagation delay.

Multiplexers--Each of these bodies accepts an input at each of the numbered pins and an output at
~"; the SIZE parameter dictates the :width of those in'puts and outputs. The as" input is
common--one· bit wide for the 2 MUX, two bits wide for the 4· MUX, and three bits wide for the

SMUX.

'
If the select lines are changing, the output of a multiplexer is changing. If the select lines are stable
but their value is not known, the output is the worst case of an the inputs. If the select lines have a
known value, the output reflects the appropriate input. A change in the "5elect li~es or the input·
propagates to the output with the specified delay.

Note that these primitives are deliberately idealized, so it may take more th~ just _a primitive latch
· to mo4el aceurately a real latch, and more than just a primitive multiplexer to model a real
· multiplexer, and 59 on. In particular, the primitives provide the same delay from each input to the

output. If the real part exhibits different d~lays--if, for example, the "SET" input of a latch
propagates to the output more rapidly than does the data input--then the definition must use a
buffer at the slower input to increase its del~y.

134

LJitOI ->II >II
LJitOI -•IC •X

1 DElAY~ T
1·DEI.AY·

T

e.e,e.e.e.8 0.0. 0.e. 0.0

I:H
'01

lJnOf <19 REG RS

>II >II
R """ '" ~ 14!.!; 11!1
s •>< 9 •X
1

DElAY•
T t oo.AT'• T

0.0. 0.0, e.0 0.8,8.8, 0.8

E>l ex

·-

SETlf' II1JI

>II
SETlf' IO..D Of(

•IC

~.e:
10..0 -e.8

ex

SE'IIJ' lll'SE .0..0 . """'
>II

S£tu> IUSE"
II1JI FlU. Of(

1 •IC
9£1\P-8.0:
IO..D .e.e

ex

ltl>II'U..!£ .. llll>l.
•X

H1Gifo8.0:
l.Ql .e.e

811J><

2

' IELAT•
e:0.0.e,e.e

'

llEl.AY -8. 8

20«; B201G
•X

. .

l oc:; f,S\
LY
llEl.Af-8.0.

·~B
llEl.AY -e. 8

IICIG E ~0
Figure 6-1

6 How to use the timing verifier

CEUit.e.e 50RoD
SOR
•><

CEl.A,...,.e

I::\. b6

Timing verifier logical primitives

Figures 6-2 and 6-2 provide two examples showing how to define the timing of a chip using these
primitives.

Figure 6-2 shows the definition of a 10145A, a 16-word RAM. Figure 6-3 shows the definition of
a 10158, a 2-input multiplexer. The 10145A example models only timing, not logic function, thanks

6.2 Defining chips 135

to the CHANGE gates, which strip away information about logic state. The model for the 10158, on
the other hand, is an accurate model, which could be used to do full logic simulation. For the 10158,
the model of its complete logical operation is necessary to verify timing constraints in many circuits.

.·IE At

SEnP-4.&:

ICIU) -··· oc

IB
9£flP ICIU) Of(

Si!

SEnP-4.6:
ICIU) o8.6

0<

"" SET\1' RtSE
A<~81,:<:Ji'~IP:!:,_ ______ -ItiCIU) ~Of(

9£TIP-3.6:
ICIU) ••••

TST AI

· "I•e•SIZE·t•
IEL
C:SL

"'··~
T'lf1Bt2E-t~ AI

DEl='D£

tC 9'IEP • 91ZE

·.

lf!N 1'\.La: lltOnt

oc -. '·. l.t ~-•:.
IE......::A>::.._ _________ _.. ____ ~ LOW o8.8

Figure 6-2
A 10145A 16-word RAM

136

Of ea 91ZE- 1 •
•~erttZE-1•

s

IC STEP • S~

Figure 6-S
A 10158 2-input multiplexer

6 How to use the timing verifier

6.3 Preparing input for the verifier 137

6.5 Preparing input for the verifier

Assertions, estimated wire delays, and evaluation directives are all incorporated in the names of
signals in the drawings that make up the design (not in the drawings that .define individual chips).

6.5.1 Wire delays

To specify a wire d~lay for a particular input signal, the designer must raame the signal and include
a <wire delay> after the <bit subscript> part (if any}, as described in Section 4.5. Expressed in

. nanoseconds, this consists of either a single value or .. a pair of values (min~mum and maximum,
reSpectively) separated by a colon. In either case, enclose the delay in square brackets:

SHORT WIRE L<0:7>[1.9l
LONG WIRE£49.71
INDETERMINATE WIRE<9:35>[1.0:49.7l

If the timing verifier i~ using wire d~lay inforinatio~ ;ftom the router based on ~ctual wire lengths, it
ignores these specifications.

In traversing the macro expansion tree, the timing verifier associates each predicted wire delay with
the input which the signal feeds but not with the output t~at generates the signal, thus assuring that
a single delay does not affect the network twice. As a result, placing a wire delay specification on a
signal which is an output parameter of a macro definition has no effect.

6.5.2 Assertions on Signals

Assertions s~e two purposes. Before a design is complete, the. designer can isolate one .. module and
place timing assertions on all the inputs and outputs of that module; the verifier wilt then use those
assertions to take the place of the timing information it would otherwise obtain from the circuitry
surrounding that module. Within a module or complete machine, the designer can place timing
assertions on any sipal for documentation purposes. ·an~ to convey to ~he ·timing verifier additional
requirements that he or she wishes. to impose; the verifie~ will then lsiue warnings 1f ·the ·'assertions ' ,
are not at least as generous as the actual timing.-:...even if the actual timing is riot strictly e~roneous.

. .
When it comes time to integrate separately verified modules into a complete machine, the macro
expander automatically checks to see that the assertions on the outputs of one module match the
assertions on the corresponding inputs of another. It considers an assertion to be part of a signal
name, so two otherwise identical names with different a.~c;erttons represent two different.:..:..and
Incompatible--signals. · · · ·

138 6 How to use the timing verifier

If the timing of a signal is not defined by preceding circuitry or by an assertion, then the verifier
assumes the signal is always stable; thus, one need not place assertions on input.signals whose timing
is not of interest.

The <timing assertion> part of a signal name appears after the <simple name> as mentioned in
Section 4.5 and consists of a string beginning with a period. The syntax is:

<timing assertion> ::=<clock assertion type>
<value specification> <skew specification> I
<C l.ock assertion type> <va I ue spec if i cilt ion>
<atable assertion type> <value specification>

<Clock assertion type> .::~ C I P

<stable assertion type>::= S

<value specification> ::= <time range>
<time range>, <value specification>

<time range> ::• <time> I <time>- <time>

::~~real number>

<skew specification> ::.. (<minus· ske1o1> , <pI liB skaJ.I> }

<minus skew> ::• <negative real or zero>

<p I us ekal·J> 11• cpoeitive real or zero>

For a clock signal, a typical <timing assertion> is:

XVZ .C4-6 L . '

. ,·

which says that the signal goes from high to low at time 4, and from low to high at time 6. (Each . . .
time unit represents a fraction of the cycle time; when you run the verifier program, you specify the
number of units in a cycle. This convention keeps the assertions independent of the duration of the
cycle time.) The signal:

· XYZ .P2-S.~

is high from 2 to S and from 5 to 6, and is low for the rest of the clock cycle. If a single time is
given instead of a ran~ then a time interval of one clock unit is assumed. For e~ample,

6.3.2 Assertions on Signals 139

XYZ .P2,5

is equivalent to the previous signal.

For clock signals, the "C" and ""P" assertions are both useful, the only difference being the default
. skew used when none is explicitly given. Skew is generated by variations in the delay from the

clock generator to different parts of a large digital system, due to varying wire lengths and buffer
·propagation delays. In a large digital system, these variations can become large enough to degrade
performance unacceptably. Tq reduce this skew, the shorter clock paths can have additional delay
deliberately inserted into them. Because the delays in a clock. distribution system may vary between
successive implementations of a design, in many cases it must be adjusted by hand, by using some
type of adjustable delay for each of the clock lines. Using this technique, the skew can be reduced
below some designer-specified amount A '"P" assertion assures the verifier it can rely upon such
adjustments; a "C" assertion does ·not.

For a control or data signal, use the. "S" assertion, which specifies whether the 'signal"is stable or
changing, but not its actual value. For example, the name:

XVZ .S4-8

says that the signal is stable from time 4 to time 8, and may be changing during the rest of the cycle.
Note that an "S" assertion never specifies a skew.

6.5.5 Evaluation Directives

Evaluation directives tell the timing verifier how to evaluate certain gates. They can also specify the
exact point in a circuit at which a precision clock is adjusted to reduce skew.

As mentioned in Section 4.5, an <evaluation directive> fottows the <wire delay> in a signal name. It
consists of "&" immediately followed by a string of letters. The first tetter in the string refers to the
logical primitive (ordinarily a gate) 'immediately following the signal, the second refers to the second
level of gating following the signal, and so on.

The fottowing letters are permitted:

w

z

A

Zero the wire delay going into the gate that this evaluation directive refers to.

Zero the wire delay going into the gate and· the delay of the gate itself. ·

When this Sign!ll is asserted, make sure all other inputs to the gate are stable. If
so,· operate as lf the directive were T: ignore the other inputs and base the
timing of the gate's output .solely on· that of this signal. If not, issue an error

140

I

H

6 How to use the timing verifier

message.

Ignore the other inputs of the gate and base the timing of its output solely on
that of this signal.

This directive is equivalent to applying the aA" and "7." directives together at a
single·level.

6.5.4 Correlations

When the operation of a network relies on known correlations between clock signals, the timing
verifier must be told the correlations or it wilt generate spurious errors. Consider the two examples
in Figure 6-4, each driven by a clock ,exhibiting plus· or minus 2 nsec skew. The first example
represents an authentic timing error because if the. clock arrives at register R 1 2 nsec before it
arrives at register R2, the input of R2 will be changing as the clock rises. The timing verifier sees
the second case no differently, but in reality no error can occur because the input and output of the
latch are governed by exactly the same clock.. No matter how great the skew, the changing output
cannot propagate back to the input tp conflict with the rise of the same c.lock pulse that caused the_
changing output.

211
UI10f

L1

l IEUI1• T
"'

oc.a-• 6-.. ·ol. Zl

a
LJI'I04

1.2
1 1EU11•

T
EN

0<.(2. '-"•· Zl

F·igure 6-4
Uncorrelated and correlated clocks

19
LJI'I04

u
1-------il IEUI1• T

•·•·•·····• E'N

To solve the problem, add to the signal catted 'T /M" .a wire delay sufflctent to eclipse the clock
skew. To make clear that this delay is meant to convey a correlation rather than to suggest a lengthy

6.3.4 Correlations 141

wire, it is customary to define a text substitution called CORR and use it as the delay:

T /M [\CORR\l

': ;·

\,

142 6 How to use the timing verifier

6.4 Input and o.u.tput files for the timing verifier

The verifier accepts the foltowing input files:

MACEXP

OPTION

WIRES

This is the output data from the macro expander.

This file contains a set of reid-number equates specifying various options and
parameters. A typical OPTION file might look like:

Cy~.:leTime .. se.e,
ClockUnite•S.25;
f:lnr.k!=lkAu .. ;,e,
PrecCiockSkews1.0;
Ma>do!Oelay ... 2.0;
MiniJOela\:j .. 0.9;

C~leTLmt is the length in nsec of the least common multiple of alt clock periods
in the network..

ClockUnits is the length in nsec of one of the time units used in the <timing
assertion> syntax. Usuatty CycleTime is evenly divisible by ClockUnits, though
this is not a requirement.

ClockSk1w is the default skew used when a clock signal bears no timing assertion
or bear's a •.c" assertion with no skew specified. In the preceding example, thP.

default skew is -5 to +5 nsec.

PriCClockSkn» is the default skew used when a •.P" timing assertion specifies
that a clock is precision adjusted but does not specify ttie resulting skew. In the
pr«eding example, the default skew for precision clocks is -1 to + 1 nsec.

MaxWD1la' .uul MlnWD8la' are the wire deiay values iri nsec used when a
signal name does not specify a wire delay. In the preceding example, defaulting
the wire delay would have the same result as specifying -ro:2f.

Produced by the physical design system router program, this file provides wire
. delays based on actual wire lengths and chip electrical characteristics. If this
information is not yet available, provide a file containing the word •END;" and
the verifier ~II use the wire delay estimates specified within signal names.

The timing verifier produces the fottowing output files:

TIMLST This is a listing of timing errors plus a listing of each signal along with a
description of its behavior versus time.

6.4 Input and output files for the timing verifier

LCROSS

CCROSS

. BCROSS

This is a cross reference 9.f local signal names.

This is a cross reference of global signal names.

This is a listing of signals which f9r various reasons appear to be "dangling" .
These are not neq!SSarily errors, but ,might be conscious omissions by the
designer.

'i'•.

'.•:

144 6 How'to use the timing verifier

6.5 A timing verifi~r example

Figure 6-5 shows a sample SCALD macro consisting of a IS-word by 32-bit RAM, a 32-bit
register, a 2-input multiplexer and several gat~ It .. illustr.~tes the use . of assertions, evaluation
directives, and predicted wire delays in signal names. 'It in turn calls several more macros, the two
most interesting of which appeared earlier as Figures 6-2 and 6-3.

. . : : . .

The assertion on the signal •w DAtA .S0-6<0:31>" says that it is stable from time 0 to time 6,
allowing the verifier to check the timing of this circuit without knowing how the signal is generated.
The assertion on the clock signal "CK .P2-3 L" says that it is low between times 2 and 3, and high
for the rest of the cycle. The signal "ADR<0:3> [O.O:S.OT states that the 4 address wires on the
RAM can be between 0.0 and 6.0 nsec long.

The ctnck signal •cK ,P2-~ L" is being ANDed with the control signal "WRITE .S0-6 L.. to
generate a write-enable pulse for the RAM array. If the data is stable every cycle during the p~riod
in which the RAM is to be written, then the most efficient way to check for timing errors is just to

analyze the case in which the signal "WRITE .S0-6 L" enables a write operation. The "&:H"
directive shown at. the end of the clock signal says to ignore the value of the "WRITE .S0-6 L"
signal, allowing the clock signal always to propagate thfough the gate. In addition, it says the timing
specified by the clock signal is to be adjusted so that it refers. to the time at which the output, rather
than the input, of the gate changes. T~e •&:H" directive also specifies to check that the control
signal '"WRITE .S0-6 L" is stable while the clock is asserted, to ensure that the write will be either
solidly enabled or solidly disabled.

The •&:z;; directive on the ~ignal "CK .P0--4" statPs th~t th~ clock timing refer:. to the time at which
the output of the gate changes.

· 6.5 A timing verifier example

Ill
Tf--.::::MI<=II•'-"'ll._> --'-i

A IE Cll

IEL

Ftgur~.&-5

Example to be verified

145

CK

The first step in verifying the timing is to run the ·macro expander to expand the design into logical
primitives. Then run the timing verifier, which processes the MACEXP file generated by the macro
expander. It generates a listing {somewhat condensed here to fit the page) which begins with a
play-by-play description of its operation:

Reading wire list •••

I error(s) detected

Doing cr.oss ref•r.•n~• li~tlng

Initializing signals •••

8 error(a) detected

Doing tl•lng analysis •••

Circuit evaluation coapleted

Totti nuMba~ of evaluation pa••••• G

rotal nu.ber of events processed& 28

146 6 How to use the timing verifier

Next the listing shows setup, hold, and pulse width errors:

Setup, Hold, and "inlmum Pulse Yidth errors ••••

Setup tiaa error; Setup Ti .. = 3.5, Hold Ti .. • 1.8

CK INPUT = liE

DATA INPUT ~ ADR

8:8.8, R:11.S, 1:15.5, F:17.8, 8:21.8

S:8.8, C:8.S, 5:11.5, C:25.5, 5:36.5

Setup time error; Setup Ti .. = 2.5, Hold Time = 1.5

CK INPUT • REG CLK R:8.8, 1:3.8, F:24.8, 8:28.8, Rt49.8

DATA INPUT a RAn 5:8.8, Ca5.8, 5:22.5, C:38.8, 5:47.5

' '

Because of. the tong wire specified ·on the signal •ADR<0:3> [0.0:6.0]", two set-up time errors occur.
The first error message shows the address inputs to the RAM becoming stable at 11.5 ns, just as the
write enable (WE) signal starts rising. Since the RAM requires a setup time of 3.5 nsec, the wire
delay on the address signal must be reduced to 2.5 nsec to eliminate the error. The second error
message shows the data output of the RAM becoming stable at 47.5 nsec and the clock starting to

rise at 49.0 nsec, giving only 1.5 ~sec of setup time instead of the required 2.5 nsec.

Next it prints a list of signal values:
Values of all signals

RDR<8:3> •

CK .P8-4 •

CK .P2-3 •

CK .P4-1 •

OUTPUT<8:3b •

RRn<la31>.

READ ADR .94-9<8:3>.

REO CLK •

II DATA .58-6<8:31> •

liE ,

WRITE .88-6

WRITE KUK .S¥-ti<¥!~>

8:8.8, C:8.5, s:5.s, c:25.5, 5:38.5 .

R:8.8, 1:1.8, F:24.8, 8:28.81 R:49.8 (constant value)

818.8, R:11.5, 1:13.5, F:17.8, 8:19.8 (constant value>

F:8.8, 8:1.81 R:24.8, 1:26.8, F:49.8 <constant value>

9:8.8, C:8.5, S:7.S

Sa8.8, C:S.8, Sa28.5, Ca38.8, 5:45.5

5:8.8, c:e.3, 5:25.8

R:8.8, 1:1.81 F:24.8, 8:26.8~ R:49.8

5:8.8, C:37.5

8:1.1, lt:ll.!l, 1:!3.5, F'd7.iS, 8:19.8

8:8.8, C:37.s·

8:8.8, C:37.5

In that listing, "S" stands for •stable", "'C" for "changing", ''F" for "falling", "R" for "rising", "U" for
"unknown", •t" for the high· state and •o" for the tow state .. Consider the first signal in the list,
•ADR <0:S> ". Because the timing is identical for all four of its bits, the listing describes them att in
one Une. The signal is stable at time 0 (the beginning of the cycle), changes from 0.5 nsec to 5.5 nsec,
remains stable until 25.5 nsec, changes from 25.5 nsec until !0.5 nsec, and fina11y remains stable from
!0.5 nsec until the end of the cycle.

Next it prints a list of signals whose timing failed to fatt within the limits set by assertions. (These
are signals for which the designer specified assertions even though the verifier could calculate their

6.5 A timing verifier example 147

timing without those assertion. The verifier thus calculates the timing independently and uses the
assertions as a check.) This example has no such· errors, b!Jt a typical one . might look like the
following example, which gives the signal name including the assertion, followed by the calculated
timing:

Signals not .Meting th~ir stable assertions
)

DC "ODIFIED 18 .S6-12 S:t.e, C:23~8, S:28.6

I-SEQ USING SA .SS-18 S:8.8, C:18.8, S:31.5 .

Finally, the listing shows how. much storage· the program used. This is useful when running the
verifier· on computers with limited address spaces, because it helps predict when a design is about to

grow so large that it must be split into modules which can be verified individually:

A 11 done

Storage summary:

Record Na118 Number Used Total Bytes

Value 416 4992

ValuaBaae 125 2588

ValueHaad 128 1448

Signal 17 688

Oaf 35 1828

Calllst 13 468

PriMDef 23 3864

ParArr 35 148

CalllatArr 248 992

StrlngC.hr 527 527

Str 111 1332

SortSigArr 14 58

188.11

148 6 How to use the timing verifier

149

7 The layout .program
Starting with the circuitry established by the macro expander plus a set of instructions from the
designer, the SCALD layout program positions chips on circuit boards. The program is·
semiautomatic: for !;>est results, the. designer specifies how to lay out important or complicated
macros, but lets the program do the routine part of the job automatically.

Thus the program requires ~hree inputs: a drcuit description from the macro expander, two files
called . CHlPSLA Y and. CHPTYP ,LAY (derived from the CHIPS file by another part of the
SCALD. physical design system) which describe tlte chips themselves, and a file of instructions from
the designer. It puts out a listing, a file of runs for use by the SCALD router, a file of unconnected
signals for error-checking, and a file describing the position of each chiptype laid out

To avoid confusion, this chapter· will, use ,ocation' to mean the label generated by the graphics
editor and used by the macro expander to indicate where within a drawing a particular macro ties.
-A IQ!:ation is simply an identif)ing. string su~h as •o 1" or "M6". · It will use 'position' to indicate
where upon a board a particular macro or c;:hip lies. A position is a set of coordinates on a circuit
board. In fact, the main tas~ of the layout program is to map a set of locations onto a set of chips at
specified positions.

150 7 The layout program

7.1 Preparing instructions for the layout program

To give instructions to the layout program, the designer creates a file containing a sort of program
that consists of statements, analogous to the statements of a high level language like PASCAL or
FORTRAN.

Context-The layout program starts at the top level of· the macro expansion tree and works
downward toward the most primitive elements. Similarly it starts at an initial board position and
works onward from there. At any time, the program works within a context, consisting of the
location label for a particular macro call, plus a board position. All of its work takes place relative to
that macro call and that position.

Position-several of the statements use identical syntax for positiQn, A position can sper::ify four·
elements or 'coordinates': a board, a column of chips on that boaJ'd, a row of chips on that board,
and a section within the chip at that row/column. Mo5t of the statements allow the designer to
default one or more of these elements.

Specifying board, row, and column pinpoints exactly one socket; and sockets are all equivalent,_asfar
as the layout program is concerned; within the constraints · imposed by the instructions from the
designer, the program will map chips onto sockets in whatever fashion minhnizes wire lengths. (The
layout program treats a socket as if it were a point to be placed at a certain coordinate position.
Other programs in the physical design system know the true size of each socket, how many pins it
has, whether it is ·interchangeable with sockets at other coordinate positions on the board, and so
forth~ They worry about checking to make sure sockets don't overlap each other, and so forth.) ·

The section coordinate, on the other hand, indicates a· fUnctional unit within a chip arid thus
depends on the chiptyp~. as we wit1 explain tater. For now, regard the section as simply another
coordinate. Similarly, we .will postpone the question of chipll that. rP.quire more than one socket.

Boards, .columns, and rows have integer numbers· beginning at . l. Sections have names, given to
them by the CHIPS.LA Y and CHPTYP.LAY files, which consisr-of ari optional alphabetic string
followed by a number-'AO', for example, or 'SG 12',. or .. just '7'. · To Jt;ientify ·a board, precede it.ll

number with '11B'; for a column, precede its number with '8C'; for a row, 'eR'. For a section, precede
the alphabetic/numeric name with 'aS'. The following specifies board 5 row 16 column 12 section
AI:

.es .R1S at12 &SAl

The folJowing specifies row 12 column 5 within the current board:

itR12 eC5

More commonty, however, the designer wi11-by omitting. the '•'--specify position relative to the
current context If the program is already working with board 3, for example, then 'Bl' indicates
board 3 (the current board), 'B2' indicates board 4, 'B3' indicates board 5, and so on. In a section
name, the numeric part is taken relative to that of the context· white the alphabetic part (if any) is

7.1 Preparing instructions for the layout program 151

absolute. If the program is already working with section A3, for example, then 'SAO' indicates
section A3 (the current one), 'SA I' indicates section A4, and so on.

For example, if the current context is 'e'BS eR16 .C12 .SB1', then the following:

R4 CS

actually indicates board 5, row 19, column 17 section B 1.

A simple rule: given the context and a set of context-relative coordinates, determine the position by
adding each relative coordinate to the corresponding context coordinate and then subtracting 1 (for
board, row, or column) or 0 (for ·section) •.

Some layout program statements require a list of positions separated by commas, such as:

RlS C12, RlS C13,.R1S C14,. RlS ClS, RlS ClS ·

To abbreviate this, one can use an implied loop by specifying the initial value ~or the loop and the
number of times the loop should execute (not the final value of the loop as in many programming
languages). The fotlowing example steps from C12 through CIS:

c (12,5)

and thus is equivalent to:

Cl2,C13,C14,Cl5,C1S

An optional stejl size increments or. decrements the loop by any desired integer. The following
example steps from C12 through C16, incrementing by 2:

CU2,3,2)

and thus is equivalent to:

C12,C14,C1S

Ordinarily the order of the board, column, row, and section specifications doesn't matter. When you
·use more than one of these implied loops, however, the loops nest, with the rightmost loop
incrementing most rapidly. The following examples are thus equivalent:

RU,'2l CU,2)
Rl Cl, Rl C2, R2 Cl, R2 C2

but different. from the following two, which are Ulr.ewise equivalent:
...)

152 '·, •• ; 1 ... ~ · ~ 7 The layout program

C£1;2) ·R£1,2) ·· . : ~

Rl Cl, R2 Cl, Rl C2, R2 C2

An implied loop for section names looks like this: . ·

SA(9,4,2>

which is equivalent to:

SA0, SA2, SA4, SA6

Locations--As mentioned before, a location is simply the label designer chose to identify a particyJ;~,r
macro catt to the macro expander. (originally, the te~t field of the LOC prnpPrty o~me/text pair for
the body that calls .the macro). The designer needs to keep in mind three additional details.

First, when the SIZE parameter causes multiple invocations of .the same macro call, the macro
expander appends a '•' and a number to each invocation after the first. Thus, a body fQr which
LOC=G5 and SIZE=3 results in locations c·atled· G5, GS.2, and GS.3.

Second, when the TIMES parameter ·causes multiple invocations of the same macro call, the
expander appends a '+' and a number to each invocation after: the first. The TIME.S suffix precedes
the SIZE suffix, if any, so that the last invocation of a body with LOCaGS, SIZE=3, and TIMES=2
would be called 'G6+2•3'. (SCALD customarily deals with these invocations alphabetically, so SIZE
varies faster then TIMES as the macro expander steps through the two--dtrnensional matiix of calls
resulting from such a body.)

Third, when more than one drawing defines a macro, the expander prefa<:ei each locatinn with. ~he
page number of -the drawing. Thus, a body for which ·LOC=G5 would result in location IG5 if it
lay on page 1 of the drawing, location 2GS if it lay on page 2. and so on.

Chiptypes-Many ICs contain several functions inside one package. The layout program recognizes
an entity catted a chipt,pe which embodies that concept.

Defined by the CHIPS.LA Y and CHPTYP LAY files, each chiptype is a collection of one or more
terminal macros within. a single unit which the layout program can place on a board. Such a
chiptype contains one or more secticm.s, each corresponding to one terminal macro.

·,

An ECL 10105 chip, for example, contains two 2-input OR/NOR gates and one 3-input OR/NOR
gate. The macro expander need know ·nothing about this. Simply use two different macros to
represent the two different kinds of gate; for example, one macro called 10105A to represent a
2-input OR/NOR gate and another called 10105B to represent a 3-input OR/NOR gate. The
CHIPS.LA Y and CHPTYP .LAY files must then tell the layout program that a chiptype called
10105 wilt provide two 10105A's {in sections 'AO' and 'A1') and one 10105B {in a section catted 'BO').

...~

Some chiptypes are a good deal simpler, of course. The chiptype 10016 corresponds to exactly one

A :r -.uo le .113-8

~ .P.:J-4 L

tel AE'lll. T

......_. ae ·•"

..
LA"'f Tl !!!(IESLLT IOBOUD lila •­,.,.

... T

Ef E2 R

41
II' II' Fill. lllf lllf

CTA Elf'TY

IIlLO
Ill T

0< IR

Aa uw

FI..IISH-.c

~

RP<II:.J> AJ
IP<II:.J> AJ
r9<0:.3>"'
'Ar9a)) J"\J
~0:3:t"""

11 t , .,..,. >tOS AE'lll. T ae . 9i!·9

P813l i'P

·IIXl ,m REU.T Oil • 92-" L

111 1 ·f'Ff Jot:$ T 01iJ ;S2:a9

8L

- ·~ AE'lii.T -- ~ .94-... e..J>

-
lli!.P8-teUW

..
IllS
CHm
·:36 Tl IIA omET<Ih.J> ... I

8L

tel ..,.._T «HDUD AI! • S6-• L

oe _,..,. uw

~·oe .96-"L

411
IllS

.~36 •I -0.,. ,.

Fl..1JS>I <8)>(.t L

WRRP ADR GEN

IP<0o.J> If'

I'Pf8;:P H

-0:3> A>

tot£>tT:
IP N- ~OF AniJ..TS -...rr 1RJE t«<T
1EE>t IR!TI'Eif. 000 - ,_, l¥fl

"tp- T>IDSE ~ - LI+A.IIt..-£ t'CII
.-.<RllH) <t.e:. ,.. "'lUI T>IDSE -• - ~r
CIN l1E C1JTPUT fF A ~n~. \.HITl

.., ts - · ~ <IS IP E><CCPT -MIT ts lllfL r alHT9 --ru..··----
IT tS n:a.E "MIT It' IIOT>fTt£ rU_T <M1 --<UEII ~
o.A.tD IIESU.TS. Tt£>< Tt£ IU..T IS ~fS nAST
TO BE' QJTFIUT , .

~ -00

~
~
> .,
>
t::l
~

0
M z

-U'.
(A.

154 7 The layout program

7.1.1 The DATE statement

To help document the layout. the designer may include a DATE statement at the beginning of the
file of instructions, gi'ving the date and the designer's initials. The layout program will pass this
string along to subsequent programs in the SCALD physical design system. (Actually, th~ statement
will in general accept any string of characters not including ";"):

DATE 9-Dqt-79.JBR;
LJITH *:

LJITH C3;
GS .. Rl ·cs Sl;
M4 "' Rl CS Sl;

END;
END;

-~·

,.

7.1.2. The WITH statement 155

7.1.2 The WITH statement

A WITH· statement establishes a context within which other statements work. Every WITH
statement must pair with an END statement; the context it establishes applies to every statement
between the matching WITH and END.

The simple form of the WITH statement specifies a single location.,..-in other words, specifies a
particular macro call- and causes the statements within its scope to work within the context of that
macro. The following example operates on macro calts G5 and M 4 within the context of (that is;
within the expansion of) macro call CS:

IJITH C3;
G5 • Rl CS Sl;
M4 = Rl CG Sl;

END;

Commonly, the instructions for a layout program wilt nest WITH statements. Each WITH statement
descends one level deeper into the macro ex~ansion tree, and concatenating the WITH statement
locations one by one creates a path that completely and unambiguously describes the context (that is,
the particular macro call) within which the innermost statements work. In the fottowing example, the
innermost statements deal with the macro calls whose .paths are (C 1 G2 A 1416 G5) and
(C 1 G2 A t•7 MS): . ,., · - · · ., - · · · · ' -

· IJJ.TH Cl; ·
IJHH G2;

IJITH Al#S;
GS m Rl C5 Sl;

END;
IJITH A1117;

M3 • R2 CG Sl;
END;

END,
END;

••.. t•

f/'

Because the topmost level of the macro tree-the macro representing the entire design--never gets
called by any other macro, it has no location ·name. Thus, the first WITH statement in any layout
program must use the· special symbol '*' to indicate the topmost level of the design. Other statements
may precede this initial WITH (provided they do not require a context in which to
operate-statements which actually cause the program to place chips on boards always require a
surrounding WITH to tell them what part of the design to work on) but its matching END must be
the last statement of the program:

SET XVZ • 15;
IJITH *'

IJITH AlJ
G2 • R2 CG Sl1

156

G7 .. R2 C6 Sl;
END;

END;

7 The layout program

Specifying position-Any WITH statement may include an AT clause, specifying a position relative
to that of ·the pre'vious WITH conteXt. The program starts at position 'eB 1 .C 1 eR 1 .SO', so in the
following example the innermost statement· operates in a context whose macro call path is (04 A6)
and whose position is board !, tow 17, column 7: ·

WITH * AT R3 C2;
COMMENT Now we're at board 1 row 3 column 2;
WITH G4 AT 83 RS_C2;

COMMENT Nn1.4 1-l@'ra at board 3 row 7·column 3;
WITH AS AT All C4;

COMMENT No1.4 ~o~e're

GS .. R1 C2 S0;
END;

at board 3 row 17 column S:
.,
. •· . '· .

END;
END; ..;._;

·:<.

q'

If a WITH statement doesn't include an AT clause, then the context inside that WITH has the
same poSition as the context enclosing it. Note that while intervening layout statements may have
altered the position at which the program is working, a WITH statement ignores them, goes back to
the previous WITH statement, and alters the context position relative to it. Thus the innermost
context is identical in the fotlowing two examples:

WITH •:
WITH Gl AT Rl6 C7;

M5 = R2 Cl1
WITH GS AJ RS1

MS ... R1 Cl;
END;

END;
I:.NU;

iJi TH *'
WITH Gl AT R16 C7;

WITH G5 AT RS;
MS = Rl Cla

ENDt
END;

END;

Because the AT clause specifies a single pn~ition. the notation for an implied IOOJI is Ulegnl within it

7.l.S The assignment statement 157

7.1.5 The assignment statement

An assignment statement tells the. layout program to place a particular piece of circuitry at a
particular position on a board. In its simplest form, it consists of a location name for a terminal
macro (that is. a macro which maps directly to a single -section of a chiptype), the name of a
chiptype, an '=' symbol, and a position. ·The board, row, and column coordinates of the position
are--unless they contain '•'-interpreted relative to the context of the enclosing WITH statement.
Any omitted coordinate defaults to that' of the enclosing context. Thus, the following example places
macro call C7 on the board specified by the context, at the column specified by the context, one row
beyond the row specified by the context,· and at the third "B' section of the chiptype:

C7 ... R2 Cl 582;

Note that· the position in an assignment statement is not relative to that of a previous assignment
statement.

If a terminal macro has its SIZE or TIMES body parameter set to a number larger than one, then
that macro will require multiple chiptype sections and thus multiple positions on the board. If, for
example, macro C7 had SIZE set to 3, the designer must give a list of positions, one for each
invocation of the macro. Either of the following examples would accomplis~ this:

C7- R2 Cl 58(0,3};
C7 • R2 Cl 580, 581, 582;

An entire subtree at once-If the designer specifies the location of a nonterminal macro call, the
layout program will automatically expand that macro call to obtain a list· of terminal macro calls, and
will then lay out each of the terminal macro calls. In other words. the p~am will traverse the
subtr~ resultin.J from a nonterminal macro.

In such a case, the assignment statement must give a list of positions to the right of the ' ... • sign, one
position for each terminal macro resulting from the expansion, and taking into account the multiple
copies of a terminal that result from SIZE or TIMES parameters that exceed 1. In the following
example, the macro at location CS.2 (which is itself the second invocation of macro C6, resulting
from the SIZE parameter being greater than one) expands to produce five different terminals. and
thus requires a list of five positions:

CS#2 m Rl Cl, Rl C3, Rl CS, R2 Cl, R2 C3;

The list of positions must contain at least one position for each terminal resulting from the
expansion, but may contain· more. The layout program will simply ignore the extra positions rather
than using them up or leaving them empty. This makes it easier to use the loop notation to simplify
a list. The following assignment statement has precisely the same effect as the preceding example,
even though it specifies an extra position:

CS#2- R(1,2) C(l,3.2);

158 7 The layout program

When the layout program expands the subtree of a macro for you, it does .sO predictably. After
expanding the subtree into .a list of terminal macros, it sorts the list in alphabetic order by path
name. (These path names are identical with those that appear in the output listing from the macro
expander except that a blank space appears immediately before the closing parenthesis of the path
to prevent the parenthesis from spoiling the alphabetizing.)

Inversion-Certain chiptypes allow you to use the complementary form of some ·of their inputs
simply by rearranging connections. With a multiplexer, for example, simply rearranging the data
inputs permits use of complemented. (assert tow) forms of the select lines. This is particularly
important with ECL logic families which typically provide both true and complemented forms of
gate outputs; using both outputs effectively doubles the fanout capability of the gate.

PrQvided the CHiPS.LA Y file describes the required signal rearrangement. tit~ assigHanent
statement permits the designer to choose whether to use true or complemented connections for any
particular instance of a given chip. Simply add a '/' to the end of the assignment statement, followed
by a list of 'H' and 'L' letters:

CS#2 = R<1,2) C<l,3,2l I H L H H L;

Every time it positions a chip on the board, the layout program looks at the next letter in the H/L
list. An 'H' tells it to connect the chip according to the drawing that defines that chip, and an 'L'
tells it to rearrange the inputs to use complemented inputs.

Two shortcuts make. the H/L list easier to use.· First, .. placing a number immediately after a letter is
equivalent to repeating the letter that· number of times, so the following two examples have the same
effect:

CS#2 = R<1,2) C(l,3,2l I H L H H H L;
CS#2 "" RU,2l C£1,3,2} I H L H3 L;

Second, if the layout program exhausts the H/L list before positioning att the chips, it returns to the
beginning and reuses the list as many times as necessary (just as, in FORTRAN, a WRITE
statement which exhausts its FORMAT list reuses the list) .. Thus, if the H/L list repeats a pattern,
the designer need write only one cycle of the pattern:

CG#2 ... R U, 3 l C <1, 3, 2 > I H L H H L H H L . H;
CS#2 = R<l,3l C(1,3,2) I H L H;

. If the H/L list is too long, the layout program simply ignores the extra letters.

Versions-As explained in Section 4.3.1, the macro expander provides any macro call with a
parameter catted TIMES which allows the designer to obtain multiple copies of that macro with
their respective inputs tied together and their respective outputs left independent.

Within the drawings, the designer need not distinguish among these independent outputs: a single

7.1.3 The assignment statement . 159

line and a common name represent atl of them. The macro expander does, however, derive a unique
name for each actual o_l!tput by appending to. t~:te common. ~arne. a '(.' fotlowed by .a number.

. .

When laying out circuitry automaticatty with the PLACE statement, the designer need not specify
which version to connect to .whi~h inp1,1t, because the: physical design system router program handles
this detail. But with the assignment statement, the designer may either leave the decision to the
router. or state exP.l.icitly. wt1ich . version of. a mulQversion output to cor;mect to each possible
destination.

To specify this, :use a coionstri.ng which. give~ a sign~l name, and a list· of v~rsion numbers, one for
each macro. catt in . tl;!e subtree. The fottow.ing .example connects . vers~~~ 2 (of whatever signal is
appropriate) to inp~t pin 'CNT ENBL' of the first macro in the ·.subtree,. version 1 to the
corresponding pin of the second macro in the subtree, and version 3 to the corresponding pin of the
third macro in the subtree:

C5 a R£1,3> C5 59 :CNT ENBL • 2, 1, 3;
.....

Note that the s~at name must be an input, never an output If th.e. stat~ent uses an H/L list, th~
colon string may either fottow or precede it

As with the H/L list, the program permits shortcuts. If the version list is not tong enough, the
program rereads it; if tt}e ti~t is too tong, it. igrtores tb~ latter .Part .To repeat a version, append a '*' .. , ,. '

fottowed by the number of repetitions desired. For example, the fottowing two assignments are
identical:

cs =·R(1,7> cs se
cs = R£1,7> cs se

CNT ENBL = 1, 2, 2, 3, 3, 3, 3;
CNT ENBL 1, 2~. 3-.;

Note that the program expects to read from the list one version number for each macro in the
expansion, whether or not the macro in question actuatty has an input pin with the specified name,
and whether or not the macro is a terminal. To 'skip over' macros which do not have a particular
.tnput, wr•it the version number but include the appropriate repetition fac:;tor. Thus, the fottowing
example skips over the first macro and the last three macros in the subtree:

C7 = R(1,8l CS 59 : PRESET a •1, 1~. 2~. ~;

This ability to skip over certain macros in the expansion is also useful when a subtree contains t~o
different kinds of macro calls with the same input signal name, where one set of calls needs version
specifications and the other set does not

It is pc:wible for the macro expander to produce a signal name with multiple versions, one after .
another. To cope with this situation in the colon string, specify the versions in the proper order,
separated by dots:

C8 c R£1,41 C4 58 :CLEAR ~ 1.2•2, 1.1~1

160 7 The layout program

If more than one input signal requires version speeifications, simply use multiple colon strings in any
order:

·'

C9 = R£1,81 C4 50 :CNT ENBL ~ 1*4, 2~ :CLEAR = 2.2~. 2.1*2;.

Adding drive capability during layout.:.By including a TIMES expression in parentheses after the
location label, the designer can override the TIMES parameter ·used for that macro call during
macro expansion. This is useful for adding extra drive c_.,ability. Like the macro expander TIMES
parameter, this feature replicates the macro, ties together the corresponding input signals of the
resulting copies of the macro, and leaves the output signals independent, aSsigning a different
version number to each output.

The list of sections in the assignment statement must be large enough to take ~nto account thP.sP

extrA cupl~ uf the macro.

The following example produces three copies of the macro at location C7 and assigns them new
location labels C7, C7+1, and C7+2:

C7C$3l = R2 C1 SBC2,3}

The layout program permits this TIMES expression only with terminal macro calls.

7.1:4 The PLACE statement 161

7.1.4 The PLACE statement

Whereas the assignment statement. lays out chips manuatty, the PLACE statement lays them out
automatically. ·While the assignment statement dictat~s::·exactly wher.e· to put each macro, the
PLACE statement attows the program to rearrange the chips {through pairwise interchanges) among
the specified positions in an attempt to minimize wireiengths.' · · " ·

To use this automatic layout feature, specify a list of location labels and a Ust of positions:
' ..

PLACE GS, M6, A4, R2 J.JITHIN 82 R<l,S,2> CU:i,l2·) 5(9,2);

If the list of positions is larger than it need be,· the program wilt simply allow· itself extra freedom in
placing chips anywhere within the set of positions.

As With the assignment statement,'lf. the.·macro ·call designated bJ a location label is a nonterminal,
the program automatically expands the macro to obtain a list of.terminal·macros. Jn:other words, it
lays out the entire subtree resulting from that macro call

Combining automatic 8Jld manual layout-Using a'*' instead of a list of locations tells the PLACE
statement to lay out automatically all macros within the current context for which there are no
assignment statements. In the following example, the program expands macro call G6, lays out catts
M 4 and R 1 according to the assignment statements, and lays out the remainder of the subtree
resulting from G6 automatically:

J.JITH GS;
M4 • AS C7 SBa
Rl .. AS C7 51:
PLACE* J.JITHIN RS·C(8,9) S<B,ll;

END;

The layout program does not actuatty perform assigment and PLACE statements in order. Instead, it
performs all manual layout throughout the design and then all automatic layout. Thus the automatic
layout algorithm . can minimize the length of wires between manuatty-postttoned illld

automaticatty-po5itioned chips along with that of the wires within the automatic areas ..

As a result, assignment statements may actuatly occur either before or after the PLACE statement.
In addition, the list of locations (or the subtree of a location) given to a PLACE statement may
include some macro calls specified in manual layout statements elsewhere; PLACE will process only
the macro calls which are not positioned manuatly.

Chiptypes of varying sizes--Because the layout program wilt rearrange the chips anyway, the order
of positions within the list does not matter. But the 'resolution' of positions does matter: if each chip
is two rows tatl and one column wide, for example, the positions in the list should be two rows apart.
Or, for another example, if each chip is three rows tatl and two columns wide, the positions should
be three row~ apart and two columns apart. Otherwise, because the layout program deats only with
the upper left comer position of each chip and not with the actual size of the chip. chips may

162 7 The layout program

overlap.

If a particular macro expands to require chiptypes of varying sizes, there are several solutions:

• Specif)' positions far enough apart to accomodate the largest chiptype, wasting some board
space on the smaller chiptypes.

• Use the BIND statement to group macro$ into 'super-chiptypes' which are then all
identical in size and shape.

• Use multiple PLACE statements to force the layout program to segregate the chiptypes by
size into different areas.

• Take a chance, hoping that none of the chiptypes overla.p, and later r•pla.ce the PLACE
statement with assignment statement.s if they do.

,.:

7.1.5 The BIND statement 163

7.1.5 The BIND statement

The BIND statement aids the PLACE statement by pointing out patterns and symmetries that the
automatic layout algorithm might otherwise miss. Ordinarily, the PLACE statement maps terminal
macro calls onto chiptype sections in alphabetic order by pathname, without attempting to optimize
section assignments or exploit symmetries. The BIND statement, however, allows the designer to
group together in one chip the ~inal macro calts which logically belong together.

A BIND statement applieS to· every PLACE statement ~ithin the scope of the enclosing WITH
statement~ even if the BIND actually appears following the PLACE.

The BIND statement takes the form:

BIND <location>= <list of sections># <list of c~iptypes>
& <list of instances>

The <location> names a macro call. If the macro is not a termmal, the layout program will expand it
as usual in alphabetic orde~ by path name.

The <li~t of sections> includes a section for each terminal macro resulting from the <loc.ation·>
specified. Its syntax is identical with that described for the list of sections within the assignment
statement, and may list more sections than necessary.

The <list of chiptypes> is a series of chiptype names 5eparated by commas.

The <list of instances> is a ~ries of names invented by the designer and separated by commas. Each
name must consist of one or more letters, digit~, or'+' and '-'characters . ..
For each terminal m~o call in the subtree of <locatio~>, the layout program will read the next
section from <list of sections>, the next chiptype from <list of chiptypes> and the next instance name
from <list of instances>. It maps that call onto the specified section of the specified chiptype, which
will be shared with all other macro catlshavlng the same instanc:e name.

The following example binds the first and third macro calls within the subtree of RA to sections 0
and I of one instance (called 'M I') of chip type 94559, binds the second and fifth . to sections 0 and 1
of another instance (catted 'M2') of chiptype 94550, and binds the fourth . and sixth calts to sections
AO and BO of an instance (calted 'W2') of chiptype 20021:

BIND RA • 88, 58, Sl, SA8, Sl, SB0
#94558, 94558, 94550, 28021, 94558, 20821 .
&I'll, M2, Ml, 1.12, M2, 1.12;

Using various shortcuts makes the statement easier to write but harder to read:

BIND RA "' S8, S0, Sl, SA0, 51, SB9
#9455"*3. 20821 ' 94550, 28921

164 7 The layout program

&Ml, M2, M1, W2, M2; W2;

Obviously, it's easy to violate the rules when writing a BIND statement. A particular instance name
must not pair with two dit:ferent chiptypes; each section name must be valid for the corresponding
chiptype; and the chiptype and instance lists must not be too short (though they may be too tong).

That example suggests that chiptype 20021 may welt have additional sections (A 1 and B 1, perhaps),
not mentioned in this BIND statement. Additional BIND statements can, by referencing common
instance names, access sections within the same chips that .this BIND statement uses. Thus, one
would expect to see another BIND statement referencing sections A 1 and B 1 of instance W2 of
chiptype 20021. Two BIND statements which share instances in this manner must be within the

, scope of one common PLACE statement, but they can be in different WITH contexts beneath it.

If alt t._~ BIND statemP.otS referenc;ing aCction.J of a part.kutar instance Qt' a chiptype fait to use up
all the sections available in that chiptype, the remainder are available for the PLACE .Jtatemefll t.u
use in laying out locations not involved in any BIND statement

One additional shortcut exists for specifying chiptypeS. Omitting the chiptype but including the
repetition factor is equivalent to specifying the default chiptype. Thus, if 94550 is the default
chiptype for each of the macro calls referencing it in the previous example, then a simpler way to
write the BIND statement would be: ·

BIND RA = S0, S0, Sl, SA0, S1, SB0
11*3, 20021, *1, 20021
&Ml , M2, M1, . W2, M2, W2a

BIND statements are not compatible with manual layout, If a particular macro catt appears in a
manual layout statement, don't .attempt to bind it. If a particular macro call appears in a BIND
statel":l~t, do~'t attempt to.l.ay it out manually. The program wilt flag any such errors.

7.1.6 The CHIP statement 165

7.1.6 · The CHIP statement

Provided a macro is being lai~ outmanually, the CHIP statement can override the default chiptype
for a terminal macro call by specifying a particular chiptype at the board position which that macro
will occupy.

For example, if I'?Cation X 4 is a call on a terminal macro, the following pair of statements places it
five rows and two columns beyond the current context and forces it to use chiptype 2002S:

CHIP 20023 • RS C2;
X4 = RS C2;

Provided the designer knows which macro catts result from ·a nonterminal macro, the CHIP
statement can specify chiptypes for them as well. If location X6 is a call on a nonterminal macro
which expands so as to place terminal G 7 at the second column from its· starting position, then the
following pair of statements forces G7 to use chiptype 19711:

CHIP 19711 = RS C4;
X6 a RS C2;

A single CHIP statement can dictate a number of different positions:

CHIP X7 • RS C2, R7 Cl, 82 Rl Cl;

The CHIP statement may precede or follow an assignment statement

,_

8 Refere-nces;
1. A manual providing complete information on D, the graphics editor, is kept in a file on the SAIL
computer system at· Stanford University. D is one piece of a package of programs called SUDS
(Stanford University Drawing System), so the manual includes information on other programs {such
as one for PC board layout, for example) which don't pertain to SCALD.

Since the manual hasn't been published, you must either sign on to the SAIL computer system to·
read it, or have someone with access to SAIL print a copy for you. The filename ·is
SUDS.RPH[UP ,DOCl

2. These papers describe the philosophy behind SCALD. Because they deal with SCALD I, an
earlier ·version, some details may differ from those. you've read about here.

McWiiliams, T. and Widdoes, L., SCALD; Structured Computn-Aidld Logic Design.
Lawrence Livermore Laboratory Report UCRL-80950, March 1978.

-.-,The SCALD Ph,stcal Destgn Subs,stem. Lawrence Livermore Laboratory Report
UCRL-80951, March 1978.

•.

169'

·'; ·~·

, ..

9 Implementation information

9.1 Format of the WDP file

Each. WDP file gives the macro expander the equivalent of the information in one drawing
produced by the graphics editor D-Joosely speaking, the definition of a single macro. The file is
organized by lines. If column 1 is not blank, the line should contain either ~he keyword "END" or
the keyword ~UL "'. "END" signifies the end of a Jist .of elements, and "NUL" signifies a· null text
string on a line. Blank lines are ignored. The format of the file is as follows:

"MName

Selection
equation

PageOf

FileName

Section

The name of the macro being defined; identical with title U.he 1 in a drawing
generated by the graphics editor D.

This is title line 2 in a drawing generated by D.·

Each drawing bears a page number in the form "Page x of y''; strictly for·
documentation. The WDP file expresses this as "x/y"

The name of this file; strictly for documentation.

Project name; strictly for documentation.

For each macro called from this drawing, include the following:

-MName Name of the macro being called.
. ','

For each body parameter, include the following pair of Jines:

170

END

END

Body parameter
name

Body parameter
value

9 Implementation information

The format parameter name of a body
parameter, such as "LOC" or "SIZE". This
corresponds to the · name portion of a
property name/text pair in D.

The value of the format parameter just
named. This corresponds to the text
portion of a. prop~rty name/text pair in D.

At the end of the Ust of body parameter names and vah.tes, include:

END This terminates the list of body parameters.

For each ·signal parameter, include the following pair of lines:

PinNa me

Signal

The format parameter mlme for a signal;
this corresponds to the "pinname" in D

·. The actual signal name for that parameter;
this is the name of the signal connected to
the pin in question;

.f\t the end of the list of pinnarnes and signal names, include:

·END· This terminates the list of pinnames

This terminates the list of catted macros

This terminates the file

An example of a WOP file is:

AOOER 18181
(SIZE < 5)
1/1
AOOER.DRW
ADDERS
18181
LOC
A
SIZE
48

;CALL MACRO 18181
,PASS IT LOC PROPERTY WITH VALUE A

;PASS IT A SIZE PROPERTY WITH VALUE 48

9.1 Format of the WOP file

END
A
A<0:SIZE-1> /P
B

B<0:SIZE-1> /P
F
F<0:SIZE-1> /P

END
END
END

;PASS PARAMETER "A" THE SIGNAL "A<0:SIZE.:.l> /P"

;PASS ••••

;END OF MACRO CALL
; END 01: MACRO DEF.I NIT I ON
1END OF FILE

171

.·.·

10 Index
A, evaluation directive, l39.
Abbreviations, in macro expander, 98.
Adaptors, in layout program, 153.
Alt key, 8.
Alter submode, in graphics editor, 27.
AND function, in timing verifier, 1 SO.
AND, logical primitive, 1S2.
Assert low, in layout program, 158.
Assert tow, in macro expander, 90.
Assertion checking, in timing verifier, 146.
Assertions, in timing verifier, 137.
Assignment statement, in layout program, 157.
Automatic layout, 161.
BCROSS file, in timing verifier, .143.
BIND statement, in layout program, 16!.
Binding, in macro expander, 86.
Bit subscripts. in macro expander, 92.
Board coordinate, in layout program, 150.
Body mode, in graphics editor, 17.
Body parameters, in macro expander, 79.
Body tempt~. creating, in graphics editor, 22.
Body templates, described, 8.
Boolean constants, in macro expander, 98.
Case analysis,.128.
CHANGE function, in timing verifier, ISO.
Change gates, in timing verifier, 1 !2.
CHANGE state, for signals in timing verifier, 129.
CHG function, in timing verifier, ISO.
Chip counts. on macro expander Usting, 119.
CHIP statement, in layout program, 165.

173

.. ··

''

,. : . . ~· . ·~ : ~·

. ·,•·. ···.··

· .. :

174

Chips file, described, 74.
Chips, defining them for timing verifier, 132.
CHIPS.LA Y file, in layout program, 149.
Chiptype, in layout program, I 52.
Chiptype, overriding default, 165.
CHPTYP.LA Y file, in layout program, 149.
Circuit period, 129.
Class name. in macro expander, 89.
Clear workspace, in graphics editor, IS.
Clock period, 129.
Clock period, in timing verifier, 142.
Clock skew, 129.
Clock skew in timing aMertion, 139.
Clock skew, in timing verifier, 142.
Clock timing assertion, 139.
Colonstring, in layout program, 159.
Column coordinate, in layout program, 150.
Combinational functions, in timing verifier, ISO.
Comment body, in macro expander, 109.
Comments, in macro expander, 87.
Common pins. in macro expander, 93.
eomplementary outputs, in layout program, 158.
Complementary outputs, in macro expander, 90.
Concatenating signal names, in macro expander, 87.
COndtttcmal signal names, in macro expander, 87.
Constant signals, in macro expander, 98.
Context, in la.yout p1 ~nun, 150.
Control key, 7.
CORR text substitution, 140.
Correlations, in timing verifier, 140.
Cursor, in graphics editor, 9.
Cycle tim~ 12g.
Cycle time, in timing verifier, 142.
D, description of, 4.
D, guided tour, St.
P. USQ of. 7.
Dangling points, in graphics editor, 15.
DATE statement, in layout program, 154.
Declare list, in macro ~xpander, 94.
Define Ust, in macro expander, 98.
Defining chips for timing verifier, 132.
Del key, 8.
DELAY parameter, in timing verifier, 132.
Drawing library, 8.
Drawings, manipulating in graphics editor, 13.

10 Index

.·

10 ·Index

Dynamic scope, in macro expander, 94.

Edit mode, in graphics editor, 22.
END statement, in layout program, 155.

Enlargement, graphics editor, 9.
Error messages, macro expander, 11 ~­

_Errors, in timing verifier, 146.
Evaluation directive, in timing verifier, 1~9.
Expressions, in macro expander, 77.
Extended commands, graphics editor, 11.
FALL state, for signals in timing verifier, 129.
Files, formats of, 169.
Files, input and output to timing verifier, 142.
Flashing letters, in graphics editor, 11.
Gates, logical primitives, 132.
GCROSS file, in.timing verifier, 143.
Global signals, in macro expander, 93.
Graphics editor, description of, 4.
Graphics editor, guided tour, ~1.
Graphics editor,- use of, 7.
Guided tour, graphics editor, 31.
Guided tour, macro expander, 121.
H, evaluation directive, 140.
H/L list, in layout program, 158.
Hold time checking,_ in timing verifier, 146.
Hold time checking, primitive for, 132.
I, evaluation directive, 140.
IC terminal file, definition, 73.
IF/THEN construct, in macro expander, 87.
Inclusive. OR fUnction, in timing verifier, 130.
lnitiatizations, in graphics editor, 14.
Inversion of signals, in layout program, 158.
Keyboard, Stanford, 7.
Latch, logical primitive, 1 ~2.
Layout program, description of, 4.
Layout program, use of, 149.
LCROSS file, in timing verifier, 143.
Letters, flashing in graphics editor, 11.
Library, graphics editor, 8.
Lines, drawing in graphics editor, 19.
Listing, from timing verifier, 145.

Listing, macro expander, 11 !.
LOC parameter, in macro expander, 81.
Location 1ahets, in layout program, 149.
Logic simulator, description of, 4.
Logic states, for signals in timing verifier, 129.

175

176

Logical design system, 4.
Logical primitive, 73.
Logical primitives, used in timing verifier, 132.
MACEXP file, 112.
MACEXP file, in timing verifier, 142.
MACLST file, 112.
Macro expander, description of, 4.
Macro expan~er, guided tour, 121.
Macro expander, how to run. the program, 112.
Macro expander, listing, 113.
Ma.cro expander, use of, 73.
Macro, description, in macro expander, 73.
Macros, graphics editor, 29.
Macros. text, in macro expander, 98.
Menu drawings, in macro expander, 75.
Merge body, in macro expander, 107.
Meta key, 7.
MIN PULSE WIDTH, 192.
Minimum pulse width checking, logical primitive, 132.
MNAME parameter, in macro expander, 79.
Modes, graphics editor, 10. ·
Module-specific signals, in macro expander, 93.
Multiplexer, logical primitive, 133.
Multiplier, in macro expander, 95.
Mux, logical primitive, 133.
Name syntax, in macro expander, 77.
Negation, in macro expander, 88.
NOT body, in macro expander, 106.
NOT function, in timing verifier, 130.
OPTION file, in timing verifier, 142.
OR function, in timing verifier, 130.
OR, logical primitive, 132.
Park agpr, r.l.escription of, 4.

Paper, moving in graphics editor, 9.
Parameter list, in macro expander, 94.
Parameter signals, tn macro expander, 93.
Parameters, in macro expander, 79.
Path name, in macro expander, 100.
Period, clock, 129.
Period, clock, in timing ve1· ifier, 142.
Physical design system, 4.
Pin parameter syntax, in macro expander, 83.
Pin parameters, in macro expander, 79.
Pinname, use in macro· expander, 83.
PLACE statement, in layout program, 161.

10 Index

.··
'

10 Index

Point mode, in graphics editor, 19.
Position, defined, in layout program, 149.
Position, syntax for, in layout program, 150.
Precedence of operators, in macro expander, 77,
Precision clock timing assertion, 139.
Precision clock, iri timing verifier, 139 .

. Primitive terminal file, definition, 73.
Primitives, logical, used in timing verifier, 132.
Propagation delay, in timing verifier, 132.
Pulse width chec~ing, in timing verifier, 146.
Reduction, graphics editor, 9.
Register, logical primitive, 132.
RISE state, for si~ats in timing verifier, 129.
Row coordinate, in layout program, 150.
S-1 Mark ITA, 1.

SCALD I, 1.

Scope, in macro expander, 93.
Screen, graphics editor, 32.
Section coordinate, in layout program, 150.
Selection equation, in macro expander, 86.
Set mode, in graphics ·editor, 21.
Setup checking, in timing verifier, 146.
Setup time checking, primitive for, 132.
Shift key, 7. .
Sign extension body, in macro expander, 108.
Signal class name, in macro expander, 89.
Signal constants, in macro expander, 98.
Signal name syntax, in macro expander, 87.
Signal names, in macro expander, 77.
Signal parameter, in macro expander, 93.
Signal parameters, in macro expander. 79.
Signal times expression, in macro expander, 95.
Simple name, in macro expander, 89. ·
SIZE parameter, in layout program, 152.
SIZE parameter, in macro expander, 79.
SIZE parameter, in path name, .101. ·
Skew, 129.
Skew, in clock timing assertion, 139.
Skew, in timing verifier, 142.
Stash body, in macro expander, lOS.
SQCket, in layout program, 150.
Stable stgnal timing assertion, 139 ..
STABLE state, for signals in timing verifier, 129.
Stanford keyboard, 7.
States, for signals i;n timing verifier, 129.

177

178

Storage requirments, timing verifier, 117.
Synonyms, in macro expander, 102.
TERM file, 112.

Terminal file, 112.

Terminal file, how to construct, 110.

Terminal file, in macro expander, 73.
Terminal, description, in macro expander, 73.
Terminals, on macro expander listing, 114.

Text substitution macros, in macro expander, 98.

Text, editing in graphics editor, 27.
Text/property submode of body mode, in graphics editor, 17.
TIMES body parameter, in layout program, 152~
TIMES body parameter, in macro expander, 80.
TIMES expression, in layout program, 160.
TIMES parameter, in path name, 101.

Times signal expression, in macro expander, 95.
TIMES variable, in macro expander, 80.
Timing assertion, in macro expander, 90.

Timing assertions, in timing verifier, 137.
Timing evaluation directive, in macro expander, 93.

Timing verifier, description of, 4.
Timing verifier, how to use, 127.
Timing verifier, input and output files, 142.
Timing verifier, theory of operation, 128.
TIMLST file, in timing verifier, 142.
Top key, 7.
Undefined macros, on listing, 11 S.
Universe drawing, in macro expander, 75.
UNKNOWN state, for signals in timing verifier, 129.
Unnamed signals, in macro expander, 102.
Values, for signals in timing verifier, 129.

VAR body parameter, in timing verifier, 132.
V AR parameter, in macro expander, 81.
Version, in macro expander, 97.
Versions, in layout program, 158.
W, evaluation directive, 1~9.
WDP file, format of, 169.

WDPR program, 112.
Wire delay estimate, in timing verifier, 137,
Wire delay, in macro expander, 93.

Wire delay, in timing verifier, 14.2.
Wtre OR body, in macro expander, 108.
WIRES file, in timing verifier, 142.
WITH statement, in layout program, 155.
X commands, graphics editor, 11.

'.

10 Index

10 Index

X FIRST variable, in macro expander, 79.

X FIRST variable, scope of, 99~
X STEP variable, in macro expander, 79.
X STEP variable, scope of, 99.

X variable, in macro expander, 80.

XOR function, in .timing verifier, ISO.
XOR, logical primitive, 1!2.
Z, evaluation directive, 139 .

. ,

179

U.S.GP0:1980-689-102/8782

09SWI ~JOP.Ie:l 'aJOW.Jat\111 B!WOJ"e:l JO ht!SJ&'\!Un
A~Vi:IOSYI ~l::t31\fl 30N~YI

~uew~·ede(J L/Ofi'BUJJOPJt fEIO/UIP61

•
\
~-'

\ I

I

