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Abstract

A new method of analyzing the toroidicity-induced Alfven eigenmode (TAE) from

kinetic theory is presented. The analysis includes electron parallel dynamics non-

perturbatively, an effect which is found to strongly influence the character and damping

of the TAE - contrary to previous theoretical predictions. The normal electron Landau

damping of the TAE is found to be higher than previously expected, and may explain

recent experimental measurements of the TAE damping coefficient.
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Toroidicity-induced Alfv6n eigenmodes (TAE) are currently of great interest because they

may destroy the confinement of fast ions in a burning tokamak plasma, t-z Their excitation

depends critically on the difference between the growth rate due to the fast ions and the

damping rate, mainly due to electrons. Past theories have predicted a very low Landau

damping for the TAE, 2'3and have determined the dominant form of damping of the TAE to

be Landau damping due to the magnetic curvature drift of the electrons? Perhaps stimulated

by recent Tokamak Fusion Test Reactor (TFTR) results 4 showing a higher excitation thresh-

old than expected, recent theoretical studies have focused on alternate damping mechanisms,

such as continuum damping, s's and trapped electron effects. 7 In contrast, the present study

attempts to demonstrate that a non-perturbative treatment of electron parallel dynamics

(the source of normal Landau damping) yields intrinsic Landau damping of the TAE signif-

icantly higher than originally thought. The theory also points out interesting rel_ionships

between the TAE and the global Alfv6n eigenmode (GAE).

Damping calculations, i.e. analytical estimates and numerical values obtained by direct

integration of the basic equations, are in good agreement for a wide range of parameters

including those relevant for the TFTR TAE experiment. In the latter case the calculated

damping is quite close to the experimental estimate. Numerical results indicate that there

is only one mode when no kinetic effects are present. It is found that equilibrium current

(essential for the GAE s-l°) and toroidal coupling are both essential for the formation of

this "MHD" (magnetohydrodynamic) TAE. Kinetic effects alter the mode structure of the

MHD TAE, shift its frequency, and cause it to damp. Kinetic effects also introduce a

countable infinity of new modes (also like the GAES), one of which may lie within the gap.

Quite surprisingly, depending on the plasma parameters, we find that this "kinetic TAE"

may have a lower damping coefficient than the MHD TAE. This is the case for the TFTR

TAE experiment, 4 and for a TFTR deuterium-tritium (D-T) burning experiment (discussed



subsequently). The modes further outside the gap generally have high damping coefficients.

They correspond to the continuum, which has been discretized by the electron dynamics.

Further such details will be given in a future publication.

We consider a TAE formed by the coupling between two poloidal harmonics ml and m2.

As our model, we use an equation describing Alfv,_n waves in an inhomogeneous, current

carrying, cylindrical plasma, corrected by toroidal coupling to first order in inverse aspect

ratio c(r)= r/R,

r K _ dr r K _ dr r - r K _(A ' - G1) + K , k l -_r r -_r - _ -_ -_r r "_r r - K _ E1

d w2 d K_e rE2. (t)= -

In this equation, the poloidal electric field E(r) ,,, ei("°+"_'-'_t), the poloidal wavenumber

K = (q2 + _2)-,/2(m q + e_n)/r, the parallel wavenumber k = (q2 + _2)-,/2(m _ nq)/R,

while LX = w2/v2A - k2, G = (dA/dr)/K - A2/K 2, cT = k2p_/[1 + _Z(_')]. In addition,

A = ¢(2qk - ¢K)/[r(q 2 + e2)l , p, = c,/w_, _ = _/(Iklv_), and Z is the plasma dispersion

function. The coupled system ;s completed with the equation formed by 1 _ 2. The left-

hand side of this equation was derived in Ref. 8 and used to examine kinetic Alf_dn waves

(KAW) and GAE. s-l° It stems from the well-known system of equations describing Alfvdn

waves derived in Ref. 11. Electron kinetics are described by the term containing a, while G

embodies the effect of equilibrium current (G _ +s where s = dlnq/dlnr). [To leading order

in ¢, G = (dk2/dr)/(rK2).] We note that the toroidal coupling term on the right-hand side

of Eq. (1) is the same as Eq. (30) of Ref. 1. Neglecting the kinetic term, Eq. (1), apart from

the last term on the right-hand side, is the same as Eq. (35) of Ref. 6. Equation (1) may

also be reduced to Eq. (2) of Ref. 5 under appropriate limits.

The essential features of the TAE may be obtained from Eq. (1) and its counterpart by

expanding A(r) in powers of r about the position ro where LX1= A2. For simplicity we

assume the radial variation in ali other quantities (except E) about ro is unimportant. We



take ¢(r) = rE(r), r = ro + x, A, = A - _,x, A2 = A + c_2x, where cq = -dA,Idrl.o,

_2 = dAiidrlro and obtain

(A- _) _ - K_(ZX- _ - a,) + _ _ - K_ _ =-_ _ _ - K_ _.
(2)

The other equation has 1 _ 2 and the opposite sign of a. tiara, the quantities A, a, e, VA,

K1, K2, G1, G2 are all evaluated at r = ro and are therefore constants. (The subscripts were

dropped on A and _ since 1 = 2.)

Equation (2) and its counterpart are conveniently analyzed in Fourier space. Parseval's

theorem implies that any function localized (square integrable) in x will also be localized in

the conjugate Fourier variable. We take

¢(x) = dp ¢(p)e ip_ (3a)

= 2"-_ dx ¢(x)e -''_ (3b)OO

and Eq. (2) becomes

[ d iA p iK_G, ia J is w2 p2aa + a, ---(P' + K_) ¢, = ---- + K_ _,. (4)

This equation and its counterpart may be symmetrized by defining the new functions

(Sb)

where 77= (c_i-1-ai "' )(Ap_½ap3)_a(K_ la1-I(_/a2)p-K_ G1a_ _at an (p/K, )+ K_G2a_.'atan(p/h'2 ).

Then Eq. (4) and its counterpart become

+ ih(y ¢1 = -g¢2f(Y) , (6a)

[d ]ig¢,-ih(y) ¢2- f_ , (6b)



where we have introduced the quantities: y = p/x, tc = [c_(K_/c_z + K_/c_2)l'/2, c_= (c_C1+

, " " = ' [d,,/(l+_/y_,)+O_/(z+y_/_)],a_')-' h(y) = A-G(y)-8_(y2+l), 7x ½_A/a, G(y) =

.. .. , o,_310,,g _(_1o<2)-'12_21t,_,mz = ,ca,/a,, a2 = ,cG2/a2,y, = g,l,¢,_,_= K2/,¢, 8. = _ =

f(y) = [(y2 + yg)/(y_+ y_)],/,, we have reduced the TAE problem to a coupled pair of

linear, first order, ordinary differential equations with the eigenvalue ca entering through

/'_(ca), _(ca), and g(w). For the TAE, we expect £(w) to be small (Tx ,,. g), and so it is a good

approximation to put _(w) = 8"(kvA) and g(ca) = g(kvA) and treat _ as the eigenvalue. It is

clear from Eqs. (6a) and (6b) that since _ is small, it will influence only the high frequency

components of the wave function, as expected.

Before solving Eqs. (6a) and (6b), it is illuminating to examine some properties of the

system with _ = 0. Then these equations may be combined into

(_')

Since f(y), G(y),g are ali real, we expect _ to be real. Since f(y) _ l and G(y) _ 0 as

y --_ ce, asymptotically Eq. (7) becomes

+ (£_- e_) ¢_= 0. (s)

Consequently for a bounded solution, _l _ g2 < 0. Taking the inner product ( ) = f°_oody

of Eq. (7) with _2" and adding the result to its complex conjug_te, we find

(7,'- :')(SlV,,l')= (il<te,/d_l')-(i0(0 - 2?,)1¢,1')• (o)

Since f(y) is positive for all y, this (virial-type) equation shows that finite G(y) is required

to make _2 _g2 < 0 and thus to create a localized mode. The function f(y) plays essentially

no role in the formation of the mode. Notice also that since g is small, it is quite likely that

there is only a single mode -- one with no nodes (zero crossings) in ¢2. This is because as

one creates a node, Idd..,21dyl2 increases, requiring I£1 to increase (on the right-hand side),
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but thereby preventing _2 _ ga < 0. It is also seen that a larger 10(y)l requires a larger

Ide2/dyl2 and a smaller 1 212,whichimplies a more localized mode in y-space (and thus

a broader mode in x-space). These tendencies are born out in the numerical solutions of

Eqs. (6a) and (6b).

If the -'_/_ i and K_ terms are dropped in the coupling terms on the right-hand side of Eq. (2)

and its counterpart (often used as an approximation), a similar virial-type construction shows

that a finite (_(y) is not required to make _x2 -ga < 0. It indicates, incorrectly, that a TAE

may be formed by toroidal coupling alone. Since it is more accurate to keep the K_ and K_

terms, this suggests that many terms are of the same order and so one must be cautious when

dropping various terms. Finally, we point out that with _ _ 0 the condition _x2 - ga < 0 is

no longer necessary to permit a localized solution.

We now analytically derive the dispersion relation and damping coefficient using a varia-

tional technique. Two derivations are presented. One includes _ perturbatively and is valid

when _ is sufficiently small. Here the damping scales as Im(_) as expected, but is enhanced

significantly by g and G. The other includes _ non-perturbatively. Here the dependence of

/_ on _ is in general quite complicated, but a simple iterative formula holds in the regime of

interest. Results are compared with values obtained by direct numerical integration of the

basic equations.

Recognizing from the previous arguments that f(y) plays a minimal role in the form

of the TAE, for simplicity we set f(y) = 1 in Eqs. (6a) and (65). We further make the

_,_ _= 1simplification G(y) Go/(y 2 + 1), where G0 7 (G_ + G2) (generally Go > 0). We write

_, = ¢[0) + ¢_1) and the same for ¢2 and £, where the superscript(') terms are of O(_).

Then to leading order

+ i £(o) _ = -ig7.,_ °) (10a)y2+l ,

00
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from which it is clear that ¢1(°) = lDio}*. With lD(°} = Czl + ilDz,

diD, [ £(o1 Go ]= g+ (y2+l) CR, (11)

and

d y2 + 1 dlDn _(o)2 Go(g-_l (°))+ -e2+ lDn =0, (12)dy y2 + li dy y2 + l

where li = (g- £(0) 2 + Clo)/(g- £(o)). Taking the inner product of Eq. (12) with lDn gives

As our variational procedure, we take the trial function ¢lt "- e-_2/2 with the parameter A,

substitute into Eq. (13), and carry out the integrals. This gives (approximately)

- A/2 + £(0)2 _ g2 + (rA),/2_o(g_ £(o)) = 0. (14)

The parameter A is determined by finding the extremum of Eq. (14), which corresponds to

= - • (15)

Substituting this into Eq. (14) gives the leading order dispersion relation

£(o)= __ 1- _&o_/2
1 + 7rGo2/2 " (16)

Thus /_ (°)2 < g2 as expected. At first order we have

_yy+i £(o) y_+l - - , (17a)

_-y - i _.(°) y2 + 1 - , (17b)

These equations may be combined into a single equation for _l). Taking the inner product of

the resulting equation with _(0), integrating by parts, substituting the leading order equation

for lD_o)and using the symmetry properties of CR and Ct leads to



/ (
--_<(¢_+¢,_)(N2+1)+i(¢_-¢_)[_(°)(y2+1)-Go]> • (18)

This may be simplified by noting that (¢_) _ g(¢_), _(o) .,, _g, g << 1, Go << 1. Then

_,(x) _ £(1) _ _ (¢_(y2 + 1))/(¢_), which may be evaluated with our trial function and

Eq. (15) simply as

8_r(g(_0) 2 . (19)

Thus the damping coefficient is proportional to Im(_) and is enhanced by the small param-
A

eters g and Go.

If _ is sufficiently large, the perturbation scheme fails_ The scaling of the dispersion

relation with _ in this case may be found from a non-perturbative variational analysis.

We point out, hQwever, that as _ increases, the wave function becomes more complicated.

This cannot be accounted for in our simple variational procedure. Consequently one should

ultimately verify the results by direct numerical integration of Eqs. (6a) and (6b).

Again for simplicity we set f(y) = 1 and (_(y) _ Go/(y 2 + 1) and then Eqs. (6a) and

(6b) may be combined into a single (Schrhdinger) equation for _2,

=0, (20)
dho(y)

+h o(y) -i ¢2

where ho(y) = £- Go/(y 2 + 1)__(y2 + 1). It is interesting to note the similarity between

ho(y) and the effective potential for the GAE discussed in Ref. 8 [c.f. Eqs. (23) and (24) and

Figs. 1 and 2]. However, the correspondence is not complete since in the present case the

effective potential is h2o- _e _ i dho/dy, making the problem significantly more complicated.

Taking the inner product of Eq. (20) with ¢_, using the trial function @2 = e-_¢2/2 with the

parameter A (now complex), and carrying out the integrals leads to

-21A.g2-_'-(_r_)l/20 ° 2_,-_do -_ 2(£-(_0).£/_ 43),_ =0. 1)
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The parameter A corresponds to the extremum of Eq. (21). A perturbative analysis of this

equation (neglecting 9, calculating _, then putting _ back and finding the correction to A)

gives results substantively similar to Eqs. (16) and (19). However, when the effect of 9 is
A

stronger, (enhanced by small A), the _A/A term dominates and we can write

-_ --_ =0. (22)

This has the extremum A = (29_) 1/2 and gives the dispersion relation

?'_ - _ = (2_/_) '/_ • (23)

This equation is easily solved iteratively. It is a result very different from the perturbative

analysis. There are three fundamental differences: 1) _, is independent of G0, 2) Re(_2) > g2,

and 3) Re(A) > 0. The second point does not necessarily imply that the mode lies outside

the gap. Because of the normalization, the value of _ corresponding to the gap boundary

is approximately given by /_s_p = 4"½g(a_cr_)x/2(cr_ 1 + a_ 1) "" zkg _'+'_ The mode- 2_"

corresponding to Eq. (23) is the "kinetic TAE" described in the introductory remarks. It

may, depending on the plasma parameters, have a lower damping coefficient than the MHD

TAE.

The dispersion relations given by Eqs. (16) and (19) or Eq. (23) are valid only when the

wave function is reasonably close to the assumed form _ = e-Au2/2. To verify this, _, _l,

and _/'2 were found by direct numerical integration of Eqs. (6a) and (6b) with a shooting

code (originally developed by J. Sedlak). The equations were solved as the coupled system

with the WKB-type boundary conditions

¢, +i[g _ - h_(y)] '/' - h(y)

= glf(y) (24)

at Y >> 1 and Y << -1 respectively. The code input G_, (_2, Y_, Y_, _, g 'which were

calculated from their definitions). The solutions were rapidly convergent and robust.

9



Numerically computed eigenv_tlues for the MHD and kinetic TAE modes for TFTR

plasma parameters are shown in Table 1. Also shown are the damping coefficients 7/_

corresponding to the lowest-damped mode and, for comparison, values of ('r/w)mca due to

the magnetic curvature drift of the electrons [calculated from Eq. (10) of Ref. 2]. The plasma

density and q profiles were chosen to scale parabolically with r/rp, while the temperature

Te _" [1 -(r/rp)] 2. Two cases are considered. The first corresponds to the TFTR TAE exper-

iment discussed in Ref. 4. Here, R = 2.4m, rp = 0.75 m, Te = 1.7 keV, n = 2.7 x 1013cm -3,

B - 1.1 T, q_tr = 1.04, and qeage= 2.8. The second case corresponds to a D-T burning ex-

periment with R = 2.5 m, rp = 0.8 m, Te = 10 keV, n = 1014cm -a, B = 5 T, q_tr = 1.04, and

q_age= 3.1. In both cases an effective mass of 2.5 was used. For each case, we consider a low

mode number: n = (1, 1), ra = (1,2) with q = 1.5, and a higher mode number: n = (2,2),

ra = (2,3) with q = 1.25. The latter case fits the experimentally measured q _, 1.3 of Ref. 4

with n = 2. As shown, the damping coefficients for the MHD TAE are a bit larger than

those for the "kinetic TAE." Note that the damping coefficients are higher for the higher

mode numbers. This is due to larger values of 0, which scales as x2(,_ mira2) relative to

the other normalized parameters. The predicted damping coefl:icient for the TAE experi-

ment is quite close to the experimentally measured value (of Ref. 4) of -., 3%. In each case

>

Figure 1 shows the wave function _bl(y) corresponding to the "kinetic TAE" for the

first row in Table 1. For n = 2,_l(y) has a slightly more oscillatory character due to

the larger value of O. The wave function for the MHD TAE is more oscillatory than the

"kinetic TAE" for these plasma parameters. The wave functions for the D-T burning case

are qualitatively similar. For other plasma parameters, e.g. for DIII-D, we find the situation

reversed, with the MHD TAE having a smooth profile and a lower damping coefficient.

Generally,7-'2(y)~ (--y).

Predictions of the real oart of A from Eq. (16) (the perturbative derivation) are found

10



to lie within 50% of the values shown in Table 1 for the MHD TAE. In contrast, predictions

of the imaginary part of A from Eq. (19) are small by up to an order of magnitude. The

largeness of _ for these cases causes the perturbation scheme to fail. We find better agreement

between the perturbative predictions and the numerical results for other plasma parameter3,

when _ is smaller. Values obtained iteratively from Eq. (23) are generally in close agreement

with those for the "kinetic TAE" in Table 1. The real part of A is within 20% for all

cases, while the imaginary part is within a factor of two. Better agreement should not be

expected because of the difference between the actual shape of the wave function and our

trial function.

In conclusion, a non-perturbative treatment of electron parallel dynamics (the source of

normal Landau damping) predicts ,_ non-negligible intrinsic Landau damping of the TAE.

This, combined with other damping mechanisms, including mode coupling to the kinetic

Alfv6n wave (continuum dampingS,6), could render the TAE harmless in a reactor environ-

ment.
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Table I: eigenvalues and damping rates

TFTR case n _MHD _KIN (7/03) ("//03)mcd

TAE 1 (-4.4- 1.6i) x 10-2 (12.- 1.2i) x 10-2 1.4 x 10-2 3.9 x 10-3

2 (-7.0- 9.6i) x 10-2 (21.-4.3i) x 10-2 2.8 x 10-2 5.1 x 10-a

D-T 1 (-4.3-0.74i) x 10-2 (9.5-0.63i) x 10-2 7.3 x 10-a 4.3 x 10-3

2 (-7.0- 5.3i) x 10-2 (16.- 2.0i) x 10-2 1.3 x 10-2 5.4 x 10-a

t
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Figure Caption

1. Numerically computed wave function _/'l(V) in Fourier space for the n = 1, na = 1,2

(q = 1.5) "kinetic TAE" and for plasma parameters corresponding to the TFTR TAE

experiment (Ref. 4).
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