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Abstract

A new method of analyzing the toroidicity-induced Alfvén eigenmode (TAE) from
kinetic theory is presented. The analysis includes electron parallel dynamics non-
perturbatively, an effect which is found to strongly influence the character and damping
of the TAE - ;:ontrary to previous theoretical predictions. The normal electron Landau
damping of the TAE is found to be higher than previously expzcted, and may explain

recent experimental measurements of the TAE damping coefficient.
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Toroidicity-induced Alfvén eigenmodes (TAE) are currently of great interest because they
may destroy the confinement of fast ions in a burning tokamak plasma.!~7 Their excitation
depends critically on the difference between the growth rate due to the fast ions and the
damping rate, mainly due to electrons. Past theories have predicted a very low Landau
damping for the TAE,?? and have determined the dominant form of damping of the TAE to
be Landau damping due to the magnetic curvature drift of the electrons.? Perhaps stimulated
by recent Tokamak Fusion Test Reactor (TFTR) results* showing a higher excitation thresh-
old than expected, recent theoretical studies have focused on alternate damping mechanisms,
such as continuum damping,®® and trapped electron effects.” In contrast, the present study
attempts to demonstrate that a non-perturbative treatment of electron parallel dynamics
(the source of normal Landau damping) yields intrinsic Landau damping of the TAE signif-
icantly higher than originally thought. The theory also points out interesting relationships
between the TAE and the global Alfvén eigenmode (GAE).

Damping calculations, i.e. analytical estimates and numerical values obtained by direct
integration of the basic equations, are in good agreement for a wide range of parameters
including those relevant for the TFTR TAE experiment. In the latter case the calculated
damping is quite close to the experimental estimate. Numerical results indicate that there
is only one mode when no kinetic effects are present. It is found that equilibrium current
(essential for the GAE®~1%) and toroidal coupling are both essential for the formation of
this “MHD” (magnetohydrodynamic) TAE. Kinetic effects alter the mode structure of the
MHD TAE, shift its frequency, and cause it to damp. Kinetic effects also introduce a
countable infinity of new modes (also like the GAE®), one of which may lie within the gap.
Quite surprisingly, depending on the plasma parameters, we find that this “kinetic TAE”
~may have a lower damping coefficient than the MHD TAE. This is the case for the TFTR
TAE experiment,* and for a TFTR deuterium-tritium (D-T) burning experiment (discussed



subsequently). The modes further outside the gap generally have high damping coefficients.
They correspond to the continuum, which has been discretized by the electron dynamics.
Further such details will be given in a future publication.

We consider a TAE formed by the coupling between two poloidal harmonics m; and m.
As our model, we use an equation describing Alfvén waves in an inhomogeneous, current
carrying, cylindrical plasma, corrected by toroidal coupling to first order in inverse aspect
ratio (r) =r/R,
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In this equation, the poloidal electric field E(r) ~ ei(mé+né-wt) the poloidal wavenumber

2
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K = (¢° +~ €2)~Y2(mq + €*n)/r, the parallel wavenumber k = (¢® + €%)~*(m — nq)/R,
while A = w?/v] — k?, G = (dA/dr)/K — A?/K?, ¢ = k*p?/[1 + ¢Z(¢)]. In addition,
A = &(2qk — eK)/[[r(q* + €%)], ps = ¢s/wei, ( = w/(|k[ve), and Z is the plasma dispersion
function. The coupled system is compléted with the equation formed by 1 « 2. The left-
hand side of this equation was derived in Ref. 8 and used to examine kinetic Alfvén waves
(KAW) and GAE.®*~1° It stems from the well-known system of equations describing Alfvén
waves derived in Ref. 11. Electron kinetics are described by the term containing o, while G
embodies the effect of equilibrium current (G ~ +s where s = ding/dinr). [To leading order
in €, G = (dk?/dr)/(rK?).] We note that the toroidal coupling term on the right-hand side
of Eq. (1) is the same as Eq. (30) of Ref. 1. Neglecting the kinetic term, Eq. (1), apart from
the last term on the right-hand side, is the same as Eq. (35) of Ref. 6. Equation (1) may
also be reduced to Eq. (2) of Ref. 5 under appropriate limits.

The essential features of the TAE may be obtained from Eq. (1) and its counterpart by
expanding A(r) in powers of r about the position ro where A, = A,. For simplicity we

assume the radial variation in all other quantities (except E) about rg is unimportant. We
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take ¢(r) = rE(r), r =ro+z, Ay, = A — a1z, Az = A + azz, where a = —dA,/dr|

roy

az = dA;/dr|,, and obtain

2
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The other equation has 1 « 2 and the opposite sign of a. Here, the quantities A, o, €, vy,
K., K, Gi, G; are all evaluated at r = ry and are therefore constants. (The subscripts were
dropped on A and o since 1 = 2.)
Equation (2) and its counterpart are conveniently analyzed in Fourier space. Parseval’s

theorem implies that any function localized (square integrable) in z will also be localized in

the conjugate Fourier variable. We take

8(z)= [~ dpd(p)es (32)
~ 1 oo .
- —ipz
¢ = 5 /_oo dz ¢(z)e (3b)
and Eq. (2) becomes
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This equation and its counterpart may be symmetrized by defining the new functions

Py = ‘3;1 [alein(l’z + 1‘,12)] v (5a)

b2 = & [ae(p? + k7)) (5b)

where n=(ay'-a; ') (Ap—i0p®)— —o(K}/ay—K}/ay)p—K,Giaf! atan(p/[\1)+]\2Gza~, atan(p/ k).
Then Eq. (4) and its counterpart become

[% + ih(y)] = =& f(y) , (6a)
d 2€¢'1
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where we have introduced the quantities: y = p/x, & = [a(K}/a1+ K} /)]?, a = (7' +
a7')™Y h(y) = A-G(y)-3(y*+1), A = L A/, G(y) = L (G /(1+y*/y}) +Ga/ (1 4y2/42)],
Gi = kG an, Gz = kGafag, y1 = Ky [k, ys = Kafk, & = 3083/, € = ex(arap)~12W2 02,
f(y) = [(¥* + ¥2)/(y* + y})]'/%. We have reduced the TAE problem to a coupled pair of
linear, first order, ordinary differential equations with the eigenvalue w entering through
A(w), 5(w), and &(w). For the TAE, we expect A(w) to be small (A ~ &), and so it is a good
approximation to put &(w) = &(kv4) and &(w) = &(kv4) and treat A as the eigenvalue. It is
clear from Eqs. (6a) and (6b) that since & is small, it will influence only the high frequency
components of the wave function, as expected.

Before solving Eqgs. (6a) and (6b), it is illuminating to examine some properties of the

system with & = 0. Then these equations may be combined into

d d ™ 1\ 2 ~2 . d ~ . _ -
{‘@f@‘*f[(A—G) —El—z@[f(A——G)]}zng—O. (7)
Since f(y), G(y),& are all real, we expect A to be real. Since f(y) = 1 and G(y) — 0 as

y — oo, asymptotically Eq. (7) becomes

[%:;+(52—€2)] Y =0. (8)

Consequently for a bounded solution, A? — &% < 0. Taking the inner product { ) = [*_dy

of Eq. (7) with ¢ and adding the result to its complex conjugute, we find
(B2 — &) (flal*) = (Fldvba/dy]?) = (fG(G ~ 2B) [ ]?) . 9)

Since f(y) is positive for all y, this (virial-type) equation shows that finite G(y) is required
to make A? —&% < 0 and thus to create a localized mode. The function f(y) plays essentially
no role in the formation of the mode. Notice alsoi that since € is small, it is quite likely that
‘there is only a single mode — one with no nodes (zero crossings) in ,. This is because as

one creates a node, |di;/dy|? increases, requiring |A| to increase (on the right-hand side),



but thereby preventing A? — &% < 0. It is also seen that a larger |G’(y)| requires a larger
|d2/dy|® and a smaller |i,|?, which implies a more localized mode in y-space (and thus
a broader mode in z-space). These tendencies are born out in the numerical solutions of
Egs. (6a) and (6b).

If the A’} and K? terms are dropped in the coupling terms on the right-hand side of Eq. (2)
and its counterpart (often used as an approximation), a similar virial-type construction shows
that a finite G(y) is not required to make A? — &2 < 0. It indicates, incorrectly, that a TAE
may be formed by toroidal coupling alone. Since it is more accurate to keep the K? and K?
terms, this suggests that many terms are of the same order and so one must be cautious when
dropping various terms. Finally, we point out that with & s£ 0 the condition A? — 82 < 0 is
no longer necessary to permit a localized solution.

We now analytically derive the dispersion relation and damping coefficient using a varia-
tional technique. Two derivations are presented. One includes & perturbatively and is valid
when & is sufficiently small. Here the damping scales as Im(&) as expected, but is enhanced
significantly by £ and G. The other includes ¢ non-perturbatively. Here the dependence of
A on 7 is in general quite complicated, but a simple iterative formula holds in the regime of
interest. Results are compared with values obtained by direct numerical integration of the
basic equations.

Recognizing from the previous arguments that f(y) plays a minimal role in the form
of the TAE, for simplicity we set f(y) = 1 in Eqs. (6a) and (6b). We further make the
simplification G(y) = Go/(y? + 1), where Gy = %(@1 + G,) (generally Gy > 0). We write
Y = wi"’ + d){l), and the same for ¥, and Zi, where the superscript(!) terms are of O(3).

Then to leading order

d . [~ G "

[a +1 (A(O) - F-f—l)] © = _igpl® (10a)
d (3 Go © _ ;2,(0)

[@ -1 (A(O) - ;;—ﬁ)] Yy =&Y, (10b)



from which it is clear that wéo) = I,bgo)*. With 1/)£0) = Yr + 1y,

#r _|sp a0 ___Go ]
i [5+A T+ D) YR , (11)

and

d y +1 dp [A(o)2 & 4 6'0(5—&(0))] R=0

12
dy y* +pu dy (12)

where y = (€ — A 4+ Go)/(€ — A®). Taking the inner product of Eq. (12) with ¢p gives

2 2 - _ _ 2
- <§2 i:‘ (-4;/)7“) > + (A(O) _gz) (w,’;) + Go(E — AD) <y2_¢ff> =0. (13)

As our variational procedure, we take the trial function YR = e~ /2 with the parameter ),

substitute into Eq. (13), and carry out the integrals. This gives (approximately)
— A2+ A0 &2 L (2 A)V2G(e - A@) =0 . (14)
The parameter ) is determined by finding the extremum of Eq. (14), which corresponds to
A=n [Go(e - A)]* . (15)

Substituting this into Eq. (14) gives the leading order dispersion relation

1 + 7rG 2/2
Thus AP < 2 a5 expected. At first order we have
4 i(am_ i— 1) +igpg) = i [AW ~ 547 4 1)] y(® (17a)
dy y + 1 1
4 _i(a0_ _Co_ i) —igplt) =i [AW _5(y? + 1)] wf? (17b)
dy v+1/]"? ' '

These equations may be combined into a single equation for wg‘). Taking the inner product of
the resulting equation with ¢§°’, integrating by parts, substituting the leading order equation

for ¢§°’ » and using the symmetry properties of ¥z and Y1 leads to



A . .
A“’( 24k + (62— vh) (Ao—y2:1)>
= 5 (] + PRI +1) +i(¥] - vh) [AO W +1) - Go]) . (18)

This may be simplified by noting that (¥}) ~ & (v}), AO® ~ —z < 1,Gy € 1. Then
AM) = A = G (yp3(y? + 1)) / (v}), which may be evaluated with our trial function and

Eq. (15) simply as
A~ 0

- SF(géo)z |

Thus the damping coefficient is proportional to Im(&) and is enhanced by the small param-

(19)

eters £ and éo.

If & is sufficiently large, the perturbation scheme fails. The scaling of the dispersion
relation with & in this case may be found from a non-perturbative variational analysis.
We point out, hqwever, that as & increases, the wave function becomes more complicated.
This cannot be accounted for in our simple variational procedure. Consequently one should
ultimately verify the results by direct numerical integration of Egs. (6a) and (6b).

Again for simplicity we set f(y) = 1 and G(y) = Go/(y?® + 1) and then Eys. (6a) and
(6b) may be combined into a single (Schrédinger) equation for .,

d2 2 ~2 . dho(y)
a?+h0(y)—6 -1 dy

where ho(y) = A — Go/(y* + 1) — (y?® + 1). It is interesting to note the similarity between

¢‘2 = O I (20)

ho(y) and the effective potential for the GAE discussed in Ref. 8 [c.f. Egs. (23) and (24) and
Figs. 1 and 2]. However, the correspondence is not complete since in the present case the
effective potential is h3 — &2 — i dho/dy, making the problem significantly more complicated.
Taking the inner product of Eq. (20) with 13, using the trial function ¢, = e~M?/2 with the

parameter A (now complex), and carrying out the integrals leads to

L o S R
—-2-/\+A2—e‘-(m\)"’Go(?A—%Go)—G[Z(A—Go)-l-A/,\—%%]=0. (21)
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The parameter A corresponds to the extremum of Eq. (21). A perturbative analysis of this
equation (neglecting &, calculating A, then putting & back and finding the correction to A)
gives results substantively similar to Eqs. (16) and (19). However, when the effect of & is

stronger, (enhanced by small }), the &A/ ) term dominates and we can write

Q)

_hyiaoe 28

2 > =0 (22)

This has the extremum A = (26A)"/? and gives the dispersion relation
A? — & = (26A)V/2 (23)

This equation is easily solved iteratively. It is a result very different from the perturbative
analysis. There are three fundamental differences: 1) A is independent of Gy, 2) Re(A?) > &2,
and 3) Re(A) > 0. The second point does not necessarily imply that the mode lies outside
the gap. Because of the normalization, the value of A corresponding to the gap boundary
is approximately given by A, = +3 8(a1az)?(ar! + a5!) ~ d:é‘%l_,;"'—“lm.l;. The mode
correspending to Eq. (23) is the “kinetic TAE” described in the introductory remarks. It
may, depending on the plasma parameters, have a lower damping coefficient than the MHD
TAE.

The dispersion relations given by Eqgs. (16) and (19) or Eq. (23) are valid only when the
wave function is reasonably close to the assumed form ¥ = e~**/2, To verify this, ZS, Yy,
and ¥, were found by direct numerical integration of Eqs. (6a) and (6b) with a shooting
code (originally developed by J. Sedlak). The equations were solved as the coupled sysiem

witn the WKB-type boundary conditions

L) bl ) e 1 €) (24)
P2 €/ f(y)

at y > 1 and y <« -1 respectively. The code input Gy, G, y2, y3, &, € "vaich were

calculated from their definitions). The solutions were rapidly convergent and robust.



Numerically computed eigenvalues for the MHD and kinetic TAE modes for TFTR
plasma parameters are shown in Table 1. Also shown are the damping coefficients v/w
corresponding to the lowest-damped mode and, for comparison, values of (v/w)mceq due to
the magnetic curvature drift of the electrons [calculated from Eq. (10) of Ref. 2]. The plasma
density and q profiles were chosen to scale parabolically with r/r,, while the temperature
T, ~ [l —(r/rp)]®. Two cases are considered. The first corresponds to the TFTR TAE exper-
iment discussed in Ref. 4. Here, R=2.4m, 1, =0.75m, T, = 1.TkeV, n = 2.7 x 103 cm~3,
B =1.1T, g = 1.04, and gegge = 2.8. The second case corresponds to a D-T burning ex-
periment with R =2.5m,r, = 0.8m, T. = 10keV,n = 10" cm™3, B=5T, gener = 1.04, and
gedge = 3.1. In both cases an effective mass of 2.5 was used. For each case, we consider a low
mode nuinber: n = (1,1), m = (1,2) with ¢ = 1.5, and a higher mode number: n = (2,2),
m = (2,3) with ¢ = 1.25. The latter case fits the experimentally measured g ~ 1.3 of Ref. 4
with n = 2. As shown, the damping coefficients for the MHD TAE are a bit larger than
those for the “kinetic TAE.” Note that the damping coefficients are higher for the higher
mode numbers. This is due to larger values of &, which scales as xk%(~ m;m,) relative to
the other normalized parameters. The predicted damping coefficient for the TAE experi-
ment is quite close to the experimentally measured value (of Ref. 4) of ~ 3%. In each case
v/w > (7/@W)mea.

Figure 1 shows the wave function ¥,(y) corresponding to the “kinetic TAE” for the
first row in Table 1. For n = 2,v¢,(y) has a slightly more oscillatory character due to
the larger value of &. The wave function for the MHD TAE is more oscillatory than the
“kinetic TAE™ for these plasma parameters. The wave functions for the D-T burning case
are qualitatively similar. For other plasma parameters, e.g. for DIII-D, we £ind the situation
reversed, with the MHD TAE having a smooth profile and a lower damping coefficient.
- Generally, ¥2(y) ~ ~1(--y).

Predictions of the real oart of A from Eq. (16) (the perturbative derivation) are found
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to lie within 50% of the values shown in Table 1 for the MHD TAE. In contrast, predictions
of the imaginary part of A from Eq. (19) are small by up to an order of magnitude. The
largeness of & for these cases causes the perturbation scheme to fail. We find better agreement
between the perturbative predictions and the numerical results for other plasma parameters,
when & is smaller. Values obtained iteratively from Eq. (23) are generally in close agreement
with those for the “kinetic TAE” in Table 1. The real part of A is within 20% for all
cases, while the imaginary part is within a factor of two. Better agreement should not be
expected because of the difference between the actual shape of the wave function and our
trial function.

In conclusion, a non-perturbative treatment of electron parallel dynaniics (the source of
normal Landau damping) predicts a non-negligible intrinsic Landau damping of the TAE.
This, combined with other damping mechanisms, including mode coupling to the kinetic
Alfvén wave (continuum damping®®), could render the TAE harmless in a reactox.' environ-

ment.
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Table I: eigenvalues and damping rates

5MHD
(—4.4 — 1.6i) x 10-2
(—=7.0 — 9.6i) x 102
(—4.3 — 0.74i) x 10-2

(=7.0 — 5.3i) x 10~2

Ak
(12. —1.2i) x 10-2
(21. — 4.34) x 10~?
(9.5 — 0.63i) x 10~?

(16. — 2.0i) x 10~2

13

(v/w)
1.4 x 10-2
2.8 x 102
7.3 x 1073

1.3 x 10~2

(7/w)mcd

3.9 x 103
5.1 % 103
4.3 x 10°3

5.4 x 10~3



Figure Caption

1. Numerically computed wave function ¥1(y) in Fourier space for the n = l,m=1,2

(¢ = 1.5) “kinetic TAE” and for plasma parameters corresponding to the TFTR TAE
experiment (Ref. 4).
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