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PRWEC?ED DISCRETE -ORDINATES METHODS
FOR NUMERICAL TRANSP5RT PROBLE141

Edwarc! M. Lar3en
Unlverslty of California

Los Alamos National Laboratory
Los Alamos, New Mexico 87545

ABSTRACT

A class of “Projected Discrete-Ordinates” (PDO) methods 1s described for
obtalnlng ltel”atlve solutlons of discrete-ord~nates problems with convergence
rates canparable to those observed usin~ D~ffuslon Synthet!c Acceleration
(DSA). The spatially dlscretlzed PDO solutions are generally not eqlJa] to the
DSA solutlons, but unlike DSA, which rcqulres great care In t.le uqe of spatial
dlscretlzatlons to preserve stablllty, the F’CQ solut.ions remain stable and
rapidly convergent with essentially arbitrary spat!al dlscretlzatlons.
Numerical results are presented which illustrate the rapid converFencc Gnd the
accuracy of solutlcns obtained using PDO methods with commonplace dlffermclnR
methods.

I. INTRODUCTION

It 1s well known that lteratlve solut.lolm of discrete-ordinates problems,
obtained using the standarn Sourm?-Itrratlon (S1) method,

:::;;mf]~ Slowly

can converge
for optically thick regions with scatterln~ ratios c close to

t
● Acceleration of such S1 sclutlons usln~ rebalance often works sat-

isfactorily for c not too close to one, hut. unfortun~tely can be~’om~ unstablr
as c ilpproaches onc - whleh 1s preclse!y the regime where accelerotlon Is mcwt
needed. Chebyschev acceleration has not generally attained the popul:irlty rf
reba!ance because when rebalance 1s stable, lt usually outperforms Chebyschpv,
&nd when c approaches ono, the Chebyachev method can stl.1 converge vpry
slowly. Diffusion synthetic acceleration (DSA) methods d@ converFe very f’ap-
ldly for all c $ 1, hut great care IIWt he triken to ensure that these mrthods
remain stable. In particular, DSA schemes are chararterlzed by havln~ wlt.hln
e~ch lteratlon i? transport and a diffusion sweep, and the spatial dlffercnclnv
of the dlffuslon part of the i+lgorlt mqmust be consistent wlt,h that of tho

?transport part to guarantee stablllty. ‘c In Ecneral multl-dlmmslonal ge@mr-
triea, tlie only transport dl?ferenclng scheme for which this h~s been surceos-
fully accomplished and fully tested 1s the diamcnd-difference Scheme, and for
this the spatl~l mesh 1s required to be rectangular. Urlfortunately, for rea-
sons which are algebralc in nature, the f)SA method has had l!ttle succcs~ 10
date in general-gmnetry problems with non-dlanxmd dlfferenclng schemes.



In this paper we discuss a class of “Projected Discrete-Ordinates” (PIM)
methods, which are closely related to DSA methods, and which have the follow-
ing features:

(1) They generate numerical solutions of the discrete-ordinates equations
by alternating transport sweeps and diffusion calculations, just as in DSA.

(2) The transport and dlffuslon solutlons individually converge very

rapidly, with convergence rates which are comparable to those obtained lJSing
DSA .

(3) These convergence rates are essentially independent of the differenc-
lng schemes used in the transport and diffusion parts of the algo?ithm and the
size of the spatial mesh. Moreover, these properties seem to carry over to a
non-rectangular spatial grid.

(4) Cenerallv, upon conve gence, the transport and diffusion solutions
ire net equal to each other, neither equals the converged S1 [or DSA) solu-
tion, and neither satlsfles the conventional balance equatlan.

(5) with commonplace diffe?enclng schemes, the PDO solutlcns are gener-
ally less accurate than the S1 or DSA solutions. This defect is probably due
in part to the loss of particle balance, but also to the dlscretlzed diffusion
bouneary conditions. Numerical results jcscribed below show that with suita-
ble care taken in the formulation of the discretized dlff~slon boundary condi-
tions, this loss of accuracy can largely, lf not completely, be overcome.

Thus, PKl methods are not S1 acceleration methods, such as DSA; they C!O
not produce, on any given mesh, the unaccelepated S1 (or accelerated DSA)
solution. However, the PL@ methods ar} legitimate numerical methods in the
samo sense as the S1 (or DSA) methods; namely, as the spatial mesh becomes
increasln~ly fine, the solutlons obtained frcm botti sets of methods converge
to the exact discrete-ordlnatcs solutlcn. The main difference bet~een the
SI-DSA solutions and the PDO solutions is that for each spatial grid, they
possess different SiJatlRl truncation errors. The primary advantage of the PDO
methods over DSA 1s that Lney allcw great fluxlblllty in the choice cf dlffer-
enclng schcines for the transport and ~lffuslofi parts of th, algorlthm, with
little or no degradation in the ccnvfrgence rates. flso, PDO methods appear
to be applicable in non-rectan&ular grids.

In short, there 1s a trade-offl On any qivrn spatial ~rld, tnc PDO bolu-
tlons w1ll Rencrally not be equal to the S1-DSA solutions, but they will be
obtained very r“~pidly, arid with qre~t !reedom in the choice of tt’nnsport and
dlffuslon dlfferenclng schemen. Therefore, PDO m?thods may bc attr~ctlve for
rriultl-dimensional problems in which elth~r the mesh 1s not rectangular, or the
diamond-difference m~thod 1s not deemed adequate.

In their basic form, PIKl methods ar? not ncw
‘-9 Howevnr,

and hlv~ oxlsted in the lit-
erature for 3t’vcral years.- thelr stablllty a!ld convergence prop-
erties hav~ not bwm dlscussud nnd Bppeur to hc largely unrecognized. The
purpose of this paper 1s to s~tiw that these PDO methods exist, discuss thclr
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properties, and introduce ❑odlflcatlons which improve sane of their proper-
ties. In so doing, we hope to demonstrate that one can, in a practical fash-
ion, obtain numerical solutlons of discrete-ordinates problems as rapidly as
one can with DSA, but under very general conditions pertaining to the geome-
try, the spatial mesh, and the choice of dlfferencing schemes.

An outline of the remainder of this paper follows. In Sec. Ii we define
the various PDO methods in terms of analytic transport and diffusion opera-
tors, for e ge9eral three-dimensional geometry. In Sec. 111 we present slab
geometry nuft!erical results which demonstrate the rapid PDO convergence rates
and which ccxnpare the accuracies of the PDO and DSA solutions for comnc?nplace
differencing schemes. For these particular results, the PDO solutions are, as

stated above, generally legs accurate than the DSA solutions. Th~s and other
to~,cs are discussed briefly in Sec. IV.

11. DERIVATIONS

To describe PDO methods, we consider the one-grc~lp transport equation in a
three-dinlenslonal convex region D:

(2.1)

Here ~(r,fl) is the angular flux, Q(r,il) 1s the source, and @o 1s the scalar
flux, - -

--

(2.2)

Letting ~ be the unit outer normal at a point ~ on the boundary ~D of D, wc
prescr’be as a boundary condition the lncldent angular flux f on a~:

*(r,fl) * f(r,f?) ,-- ~caD , C“n<O..- -- (?.3)

Other boundary cot?dlticms (e.g. derived by making use of symnetrles in Lhc
problem) are possible but nre not considered here. We define
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and

(2.5)

(2.6)

Then $0 is a scalar, consisting of the zero-th order spherical-harmonic moment

;:rmg;jc4.~ment~ of *is a vectol- whose components contain only first-order sphe?ical-
and S2 is a tensor, whose components contain only

second-order spherlcai hlrmonic moments of V. Likewise, we define

GO(Q = + J ml , (2.7)

(2.8)

In simplest terms, PDO m~thods are lteratlon schemes for solving the prob-
lem (2.1), (P.3) such that wlthln each iteration, there is a tr?nspolt sweep
and a particular type of tlffMIOn Ct31CUliItiOn. For tt?e t-th it.eratlon, the

transpcrt sweep 1s always described bj’ the problem

(2.9a)

(2.9b)

which uniquely determines Wfli’”2, and then the diffusion calculations usc
~,?+l /2 in var~cus way~ to compute $L,~+l. These diffusion problems are based

on the followlnp equations, which are obtained by multiplying Eq. (2.~a) by 1

and n and integrating over Q:

Y“t+
9.+1/2 9+1/2 11

‘ ‘Tdo
+Q

- ‘S”o o’

y[+ I &/u’ ““2(ln] + oTtjl
1+1 /2

‘s”

(2.10)

(?.ll)
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Chronologically, the first POO method was proposal by Gcl’din.~

The transport part of this method consists of Ea. (2.9), while the diffusion
part, based on Eqs. (2.2), (2.6), (2.10), and (2.11), is d~firl~~ by

Ml 1+’ + (IJT - Qoof+’ -co,

where

(2.12a)

(2.125)

(~mli~)

l!sinF Eqs. (2.12b) to cl~m!n=t~ 41~+”2 frcm Eqs. (~.12Fj,c), wc cbr,~l~ t~:r
following diffusion problem:

Thus, Gol’din’s methcd consists of Eqs. (7.9), f@llou~’d ejther by Eqs. (2.12)
or (2.14).

lie emphasize that Gol ’dln’s derivation of this method (which he t~rmf?d t}!~

“quasi-dlffuslon” methud) is speclflcaily for spherical geometry, with the
incident flhlx f svt. equtil to zero. Nevertheless, hln ld?es apply quite Fcncr-

ally in other geometries and for other boundary conditions.

The 10E!c b?hlncl this iterative method 1s as follows. The terms in ~.hr

diffusion part. of the iteration [Eqs. (2.12) or (:.111)] which deprnd on “9’+”2
i+W!are pt+l/2 and Cf”’1 /2, and these depend only on the an~uler shapu of $ ,
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t+l/2 has the exact angularnot on its amplitude. Thus, if at any iteration, @
shape but the incorrect amplitude, then $1+1 will be exact and any further
iterations will merely reproduce the converged solutions. In other words, the
scheme is based upon the premise that the transport sweep [Eq. (2.9)] gener-
ates an accurate angular shape for $ (but not necessarily an accurate ampli-
tude), while the diffusion calculation with the transport corrections
[Eqs. (2.12) or (2.14)], given an accurate shape, generates a much more accu-
rate ampl~tude.

Variati ns on Gol’din’s method hcve appeared elsewhere in the Soviet lit-
4~g all this work makes use of the basic ideas stated above.crzture;

The secor?d basic PDO method was proposed by Lewis and Miller.7 To des-

cribe the boundary condition for the diffusion part of this method, we note
that at any point ~c~D with n=n<O, we have for every R,.-

+ ~9,+1/2
(r,fl) ,-- (2.15)

bfheru RR+l/2 is a remainder, expressible as a sum of spherical ha~monics of
order greater than or equal to two. Multiplying Eq. (2.15) by O“n, integrat-
ing over fi”n<O, and rearranging, we obtain the relation

-.
--

~ R+l/2
(~) - ZQ, I

‘+’ ’2(~) - + -_ ““2fl”n(R - f)dfl . (2.16)
o

n“n<O--

As before, the transport part
Eq . (2.9), while the dlfr”usion
(2.11), and (2.16), ~s defined by

of the Lewis-Hlller method consists of
part, based on Eqs. (2.2), (2.6), (2.10),

(2.17a)

(2,17b)

(2.17c)



Using the secocd of
third, we obtain the

.

R+l from the first andthese equations to ellmlnate ~1
following diffusion problem:

(2.18a)

(2.16b)

thus , the Lewis-Killer method ccnsists cf Ea. (2.9), follcwec! either by

Eqs. (2.17) or (2.18).

The logic behind this iterative method 1s as follows. The terms in the
dlffus;:;, art of the iteraticn [Eqs.

5
(2.17) or (2.18) which depenc! on {P’41’2

are 22 and RR’1/2, ?and these terms vanish if WV-+ ‘2 is a linear functic.n
of ~, l.e, if WE+l’2 has the form

dJ
q,+l/2

(r,fl) - $
9+1/21+1/2(1) + 3!”.Q1

o
(~) .-- (2.19)

Thus, if the converged anEular flux has this fol’m (which implies that diffu-
sion theory 1s exact) lL will be computed in one iteration piovlded the start-
ing guess itself 1s the dlffuslon solution. In other words, this scheme is

based upon the premise that the transport sweep [Eqs. (2.9)] generates a more
accurate result in non-diffusive regions than in ciiffuslve regions, while the
diffusion calculation with the transport corrections [Eqs. (2.17) or (2.18)]
generates a much better result In the diffusive regions. This logic is,the
same as that which motivates the DSA method.

We add that Lewis and Miller’s publlshed derlvat.ion of this method,7 whlck
they term the “second-moment” method, 1s specifically of Eq. (2.18a) for slab
geometry, and they give no details on the derivation of boundary conditions.
However, the boundary condition used in the Ref. 7 numerical calcl)lations dce:.
posgess the property stot~d abovc,namely, the solution 1s computed in onc
iteration if $ is linear in engle.7~10

At this point, we discuss sc!r!?e featurc3 of the two methods presented
above.
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(1) If for the spatially discretlzed discrete-ordinates equations one is
able to follow precisely the same algebraic steps as given above to derive a
discretized Lewis-Miller method, one will obtain a set of equations which is
algebraically equivalent to the DSA result. For these equztions, the scalar
flux arising from the transport and diffusion parts of the algorithm will
agree, upon convergence. However, if one chooses another discretization for

the PDO Eqs. (2.18), one will retain the rapid convergence but the converged
transport and diffusion scalar fluxes will no longer precisely agree with each
other or the DSA result. If one chooses another discretization for the DSA
diffusion equation, the transport and scalar fluxes will still converge to the
S1 result for small enough meshes, but for larger meshes, the scheme will
generally become unstable. We refer tp,e reader to Ref. 2 for a full c!iscus-
sicn on the stability issues pertaining to DSA.

(2) If $ is linear in angle, i.e. if it has the form of Eq. (2.19), then

Q- 1/3 ~, and Eq. (2.14a) beccxnes independent of R+l/2. [However, this is
not true of Eq. (2.14b).] Therefore, use of Eq. (2.14a) with the boundary
condition (2.18b) will produce a method which generates the converged solutlon
in one iteration if the solution 1s linear in angle. This method has been
termed the ‘Variable Eddington Factor” (VEF) method,5~8 and 1-D numerical

results in R~f. 8 have shown that it converges very rapidly.

(3) The application of Gol’din’s method in 1-D is relatively straightfor-
ward, because in this case Q reduces to a positive scalar. HowevQr, the solu-
tions must for each iterate remain positive so that ~ and C can be computed,
and with a sufficiently anjsotropic source Q, the ~1 terms in Eqs. (2.14)
could lead to a negative numerical solution. In 2- and 3-D, Eqs. (2.14) are
more problematical because although p is a positive-definite, symmetric ten-
sor, Eq. (2.14a) Is Ilot positive-definite because ~ is not suitably iocated
b~tween the two gradient operators. Also, the boundary conditions contain
oblique (non-normal) derivatives. Thus , the issues of posltlvlty and effi-
ciency of computation in 2- and 3-D are of much greater concern than in l-D.

(4) The Lewis-Miller method [Eqs. (2.18)] is straightforward in 1-, 2-,

and 3-D problems, although upon dlscretization, one cannct guarantee a pcsl-

tive solution. Eowcver, the method is linear and should be unaffected by
aegative solutions, the diffusion operator is symmetric and positive-definite,
and the boundary condition contains only outward normal derivatives. Also,
Fourier analyses on model x,y-geometry prablems for both the analytic and
discretlzed methods (with general weighted-diamond SN dlfferencing) show that
the method converges rapidly, with a spectral radius always less than one-
third.

(5) Even though the converged analyt)c solutions of the Gol’dln and
Lewis-Miller methods are guaranteed to be positive, there appears to be no way
to directly dlscretize these methods to guarantee a positive solutlon at the
end of any iteration, or even a positive canverged solution.

To circumvent some of the difficulties listed above, we propose the fol-
lowing modifications to the Lewis-Miller method.
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Let us define the right sides of Eqs. (2.18a and b) as G~+l/2 and $1+1/2,
respectively:

(2.20a)

fi+l/2 1
B I fl”n(R

9,+1/2.-
r ‘f)dfl + 2 (g.Q1-$n.V.?2B+1’2) .-- -- (2.2Cb)

fl-n<O
‘T

--

Then we modify Eq. (2.18) as follows:

(2.21.2)

(2.21b)

These equatior,a have non-negative riEht-hand sides and thus can be difference
positively, so that after each iteration and upon convergence, the solution is
positiv

5“
A minor vari~~lon of this method was proposed originally by

Larsen. Other modifications of the basic Lewis-F!iller and Gol’o!n methods
are pvssible, but will not be considered here.

To conclude this section, we note that all of the lterat.lon methods prc-
posed above combine a transport (or discrete-ordinates) sweep with a PI cr
diffusion calculation, and that Lhe latter calculation is derived by prc~ect-
~ the transport (discrete-ordinates) equation onto the space of functicns
which are linear in the angular variable. This 1s the origin of our term
“Projected Discrete-Ordinates” method.
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III. NUEERICAL RESULTS

In this section, we discuss the following slab geometry transport problem:
o

T
= 1.0, 0s = 0.97, c1 = O, the right boundary (x = 20) has zero incident

f UX, and the left boundary !X = O) has an isotropic incident flux with magni-
tude unity. A spatial mesh consisting of M equal cells, with

AX = 20/M ‘3.1)

is used, and the pointulse convergence criterion

(3.2)

is imposed, where J spans tl”,e spatial mesh.

He use the standard diamond difference scheme for each transprrt CalcUla-
tlOn’l (with the starting guess 4° =

f
O for the first iterate), and standard

cell-center or cell-edge different ng (unless stated otherwis~) for tile vari-
ous diffusion calculation:+. For the S2 and S8 Gauss-Legendre quadrature setS,
the unaccelcrated S1 method ‘?qulres appl’oximat~’ly 300 iterations to achieve
convergence for each s;~atlal mesh. and for th S2 set all the vatious PDO
methods except for Gol’din’s require two iterations to converge. (Only ol.e
iteration }.ould have been required if the starting guess had been the diffu-
sion solution.) For the S8 quadrature set, we present detailed numerical
results obtained using the following PDC methods:

DD-L’SA : Standard dlffuslon synthetic acceleration.
G/c : Gol’din’s method, wlt}l rentrally-differenced diffusion.
LM/C : Lewis-}!iller, with (-:1.tr’ally-dlfferenced dlffuslon.
LF!/E : Lewis-Miller, with edge-differenced diffusion.

VEF/C : Variable EddJngton Factor, tiith centrall ydifferenced dlffuslon.
MLM/E : Eqs. (2.21), with edue-dlfferenced diffusion.
MVEF/E* : Eqs. (2.21), with eLge-differenced dlffusi~n and discr~tized

diffusion boundary conditions which are fully consistent with
the dlamncd-dl fferertced discrete-ordln.+tes equations.

The numbers of it.eratlons required for these methods to converge the given
prcblem are listed in Table I. Essentially, convergence takes place for all

but the G/C method in 7 to 11 iterations. The G/C method seems to deteriorate
somewhat with coarser meshes; this happens with both the diamond :lnd the
(positive) step !ltransport differenclng schemes, s the deterioration is n~t,

strictly due to the tendency of the diamond scheme to give negative Solut!olls
on coarse meshes.
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H m-m G/c LWC LH/E VEF/C MWE PUWE*

59
10
20 :
40
80 ;

160 7
320 7
64o 7

21
19
12

13
11

9
11
12

q

10
7
7
7
7
7
7

7
9
F!
e
7
7
7
7

10
!2

11

e.
8
8
8
8

7
10
10

3
9
9
9
9

8
11
10

&
9
9
9
9

To discuss the accuracy of the various methoos, we define A az the
absorption rat~ on the interval 16 f x ~ 20:

!
20

A. @o(x)dx .
16

(3.3)

The exact value of A, determined by a very f!ne-t!!csh calculation, is

A = C.01317920 .
ex

(3.U)

The relative error in a numerical approxiratlon Anum,

A
RE-1

nu m-—,
A

ex

is glvvn in Table 11 for the various methods and meshes treated in T:l.1~ !.

(Here the upper numbers correspond! te the transport result, ancl the “lower
numbers to the diffusion r~sult..)

In general, the DD-DSA and MLWl?* methcds have errorr which arc scccml-

order in Ax and are mor~: accurate than the other methcds, whlc% are rirrt-
order. The reaaon for these orders of’ el’ror Pan b~ explalned by COnSid(?l’inF
Eq. (2.18). in general, lt 1P stral~ht.forward to construct a hl~h-order dlr-
ferencln~ of Eq. (2.18a), but it 1s not streight.forward to construct a c!l!Yer-
enclng of Eq. (2:18b) which 1s compatible with the tra;lsport bcundary
conditions to ()(AxC). in particular, straightforward cr!ntral or edge dlrrrr-
cnclngs of Eq. (2.18) lead to a second-order approximation in Eq. (L’.lh) and
6 first-order approximation in I@. (2.18b). Such dlffcrencln~s tierc und in
all but the MLWE* method, where we did construct dlsc~etlzed dlffuslon bounc!-
ary conditions which were censistmt wlt,h the trenspcvt ralcul~f..lon; this IMI
to the much more accurate result-s jndlrated for this mcthocl in TBFle 11.
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DIFFUSI~ (LOUER) VALUES OF A VERSIE R

H DD-M G/c LH/c Mm VEF/C 1#1/E MwE*

5 -3.73 E-1 -2.46 -2.80 -6.41 E-1 -2.77 -9.30 E-1 ~
-5.68 -6.91 E-1 -5.61 -9.50 E-1 -1.31

-2.48 E-1
‘2.55 E-1

-3.00E-2
-3. !cE-2

‘7.35 E-3
-7.6CE-3

-1 .54 E-3
-2.00E-3

‘5.13E-U
-5.28E-b

-103UE-4

-1.37E-4

:;.::;-;
.-

-3.7jE-l -3.53

-1.60E-1
-1.65E-1

10 1.18E-1
1.18E-1

-3.31E-1
-3.49E-1

-1.23E-1
-7.73E-2

-1.20E-1
-7.43E-2

-2.41E-1
-2.76E-1

20 2.87E-2
2.87E-2

-9.14E-2
-9.46E-2

-1.17E-1
-1.02E-1

‘5.25E-2
-5.39E-2

-1.14E-1
-9.93E-2

-5.72E-2
-5.87E-2

-2.08E-2
-2.12E-2

40 7.717E-3

7.717E-3

-3.15E-2
-3.22E-2

-6.02E-2

‘5.35E-2

-1.98E-2
-2.02E-2

-5.79E-2
-5.1OE-2

-8.34E-3
-8.50E-3

-2.99E-2
-2.46E-2

-8.58E-3
-8.73E-3

60 1 .79E-3
1 .79E-3

-1.23E-2
-1.26E-2

-3.1OE-2
-2.83E-2

160 4.46E-4
iI.46E-4

-5.40E-3
-5.48E-3

-1.65E-2
-1.lI~E-2

-3.78E-3
-3.85E-3

-1.55E-2
-1.36E-L

-3.80E-3
-3.87E-3

-8.56E-3
-7.67E-3

-1.80E-3
-1.82E-3

-?.77E-3
-1.80E-3

320 1.09E-4
1 .09E-4

-2.49E-3

-2.53E-3
-7.92E-3
-6.97E-3

64o 2.73E-5
2.73E-5

-1.?lE-3
-1.21E-3

-4,37E-3
-3.92E-3

-8.74E-4
-8.89E-4

-9.02E-3
-3.53E-3

-8.50E-4
-8.G5E-4

Iv. DISCIJSSION

The numerical results presented in Sec. 111 show that PDO methods converge
with r,?tes ?omparable to that of D?fl, but that in general, the PDO methods are
less accurate. However, we emphesize that we hcvc not, in this paper,
atL.empted tG c!ls.cr~tize the various PDC mcthcds in ways which providr eptlmal
accuracy; our primary elm has been to demonstrate that with well-known trang-
port transport and difl’usicm dlscretjzztlons, PDO methods provide rapidly
convergent numerical solutluns of djscrete-ordinates problems.

The dual qucstjofis of’ accuracy and cfrlclency rcr more genera] prct!lems
cannot be addressed in detail here. However, wc have seen that the proper
dlscretlzation of the PDO boundary cunditlons are essential f’or g@oc! accuracy,
and it 1s clear that the us@ of a positive dlfrerenclng scheme cm be jmpor-
tant for the nonlinear PDO mt~hode, where dlvl$lon by zero or a nepatjve num-
ber could be fatal.

The present sltuatlon can be gummarlzecl as fcllowa. For years, th~ G]
method has been regarded as a legltlmnto procedure for ohtalnlng dlwrete-
ordlnates solutions lucratively, and much work hac gone into the drvrlcpmmt
of epatial dlscrctizations for It.. PUCJ to thr f’requcnt S1OU convergence of’
tile S1 method, tlw MA method was devo]eped and grafted onto S1, but lt now
appears that CSA 1s probably too algebraically COMPIPX to M of h’jdr USF I’or
non-diamond cllrf”wcnclng schemes In mult.j-dlmenslcww+l H(WIINJI.I’ICS. Tlw PDO
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methods proposed here provide a dlf’ferent way to ootain rapidly convergent
aolutlons, but these methods are at too early a stage of development to know
whether discretizations evtst which are accurate enough for problems Of gen-
eral interest. Thus, only future work can determine whether the Capabilities”
of PDO methods are sufficient to solve problems of interest for which S1 or
DSA methods are deemed to be inadequate.
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