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PROJECTED DISCRETE~ORCINATES METHODS
FOR NUMERICAL TRANSPORT PROBLEMS

Edwarcd W. Larsen
University of California
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

ABSTRACT

A class of "Projectec Discrete-Ordinates" (PDO) methods is described for
obtaining Iteratlve solutions of cdiscrete-ordinates problems with convergence
rates comparable to those observed using Diffusion Synthetic Acceleration
(DSA). The spatlially discretized PDO solutions are generally not equal to the
DSA solutions, but unlike DSA, which requires great care in tae use of spatial
discretizations to preserve stability, the PDO solutions remain stable and
rapidly convergent with essentlally arbitrary spat!al discretizations.
Numerical results are presented which illustrate the rapid convergence znd the
accuracy of soluticns obtained using PDO methods with commonplace differencing
methods.

I. INTROCUCTION

It 1s well known that {terative solutions of discrete-ordinates problems,
obtained using the standara Source-Iteration (SI1) method, can converge
extremf]§ slowly for optically thick regions with scattering ratios ¢ close to
unity. Acceleration of such S1 sclutions using rebalance often works sat-
isfactorily for ¢ not too close to one, but unfortunately can becomr unstnble
as 2 opproaches one - which {2 precisely the regime where acceleration ic most
necded, Chebyschev acceleration has not generally attajined the popularity cof
rebalance because when rebalance ls stable, it usually outperforims Chebyschev,
and when c¢ approaches onr, the Chebyschev method can sti.l converge very
slowly. Diffusion synthetic acceleration (DSA) methods do converge very rap-
fdly for all ¢ < 1, tut great care must be taken to ensure that these mcthods
remain stable. In particular, DSA schemes are characterized by having within
each iteration a transport and a diffusion sweep, and the spatial differcncing
of the diffusion part of the algorit m_must be consistent with that of the
transport part to guarantcee stability. *< 1In general multi-dimenaional geomc-
triea, the only transport differencing scheme for which this has been aucceas-
fully accomplished and fully tested is the diamond-difference =cheme, and for
this the spatiul mesh {8 required to be rectangular. Unfortunately, for reca-
sons which are algebralc In nature, the DSA method haa had little succeas to
date i{n general-geometry problems with non-diamond differencing schemes.,



In this paper we discuss & class of "Projected Discrete-Orainates™ (PDO)
methods, which are closely related to DSA methods, and which have the follow-
ing features:

(1) They generate numerical solutlions of the discrete-ordinates equations
by alternating transport sweeps and diffusion calculations, Just as in DSA.

(2) The transport and diffusion solutlons individually converge very
raplidly, with convergence rates which are comparable to those obtained using
DSA.

(3) These convergence rates are essentially independent of the differenc-
ing schemes used in the transport and diffusion parts of the algorithm and the
size of the spatial meah. Moreoaver, these properties seem to carry over to a
non-rectangular spatial grid.

(4) Generallyv, upon conve gence, the transport &nd diffusion soluti{ons
are nct equal to each other, neither equals the converged SI {or DSA) solu-
tion, and neither satisfies the conventioral balance equation.

(5) With commonplace differencing schemes. the PDO soluticns are gener-
ally less accurate than the SI or DSA solutions. 7This defect is probably due
Iin part to the loss of particle balance, but also to the discretized diffusion
bouncary conditions. Numerical results dcscribed below show that with suita-
ble care taken in the formulation of the discretized diffusion boundary condi-
tions, this loss of accuracy can largely, If not completely, be overcome.

Thus, FDO methods are not Sl acceleration methods, such as DSA; they do
not produce, on any given mesh, the unaccelerated SI (or accelerated DSA)
solution, However, the P[0 methods art legitimate numerical mcthods in the
same sense as the S] (or DSA) methods; namely, as the spatial mesh becomes
increasingly fine, the solutions obtalined from both 2¢ts of methods converge
to the exact discrete-ordinates soluticn. The maln dJdifference between the
S1-D5A solutions and the PDO solutions is that for each spatial grid, they
posscss cdifferent spatial truncation errors. The primery advantage of the PDO
methods over DSA {s that tney allcw great flcexibility in the choice c¢f differ-
encing achcues for the transport and diffusion parts of th: algorithm, with
little or no degradation in the convcrgence rates. Also, PDO methods appear
to be applicable in ncn-rectangular grids.

In short, there {s a trade-off: On any <iven spatisl grid, tre PDO u0Olu-
tions will generally nol be equal to the SI-DSA solutions, but they will be
obtained very rapidly, and with great treedom In the cholce of transport and
diffusfon differencing schemen, Therefore, PDO methods mmay be attractive for
multi-dimensfonal problems in which either the mesh is not rectangular, or the
diamond-difference method {8 not deemed adequatec,

In their basic form, PDO _methods are not new and hive existed in the 1lit-
erature for 3several years.3'- However, their stability and convergence prop-
erties have not becn discussed and appeuar to he largely unrecognized. The
purposc of this paper {s to skuw that these PDO methods exist, discuss thelr



properties, and introduce modiflications which improve some of their proper-
ties. In so doing, we hLope to demonstrate that one can, in a practical fash-
ion, obtalin numerical solutions of discrete-ordinates problems as rapidly as
one can with DSA, but under very general conditions pertaining to the geome-
try, the spatial mesh, and the chnlce of differencing schemes.

An outline of the remainder of this paper follows. 1In Sec. Ii we define
the varjious PDO methods in terms of analytic transport and diffusion opera-
tors, for & general three-dimensional geometry. In Sec. IIl we present slab
geometry nunerical results which demonstrate the rapid PDO convergence rates
and which compare the accuracies of the PDO and DSA solutions for commcnplace
differencing schemes. For these particular results, the PDO solutions are, as
stated above, generally less accurate than the DSA solutions. This and other
tor uvs are discussed briefly in Sec. IV.

I1. DERIVATIONS

To describe PDO methods, we consider the one-group transport equation in a
three-dimensional convex region D:

DTy oTw - °S°n +Q , red, 191 =1 | (2.1)

Here v(r,f) is the angular flux, Q(r,2) is the source, and ¢, is the scaler
flux,

0(D) [ o(r,)an . (2.2)

Letting n be the unit outer normal at a point r on the boundary 4D of D, we
prescr'be as a boundary condition the {ncident angular flux f on 3D:

v(r,n) ~ f(r,R) , redd , gfen<o0 . 2.3)

Other boundary conditions (e.g. derived by making use of symmetries In Lhe
problem) are possible but are not considered here. We define

$,(r) = 31; [ aude (P )
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Then ¢, is a scalar, consisting of the zero-th order spherical-harmonic moment
of v, ¢y Iis a vector whose components contaln only first-order spherical-
harmonic moments of y, and ¢, 1is a tensor, whose components contain only
second-order spherical harmonic moments of y. Likewise, we define

1
¢ () = 4 J Qen (2.7)
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In simplest terms, PDO methods are {teration schemes for solving the prob-
lem (2.1), (2.3) such that within each {teration, there is a transport swee[
and a narticular type of ciffusion calculation. For tre f-th iteraticn, the
transport sweep is alweys described by the problem

, 241/2 pe1/2 2 2
g._w + CTW - as¢0 + Q , (‘.93)
? .
v ‘1/8(5.2) - f(r,0) , resd , Qen<o , (2.9b)
w?ifhﬂ uniquely determines wq+1/2' and then the diffusion calculations use
A c

¥ / in varjous ways to compute ¢Ul‘1. These diffusion problems are based
on the following equations, which are obtained by multiplying Eq. (Z2.9a) by 1
and @ and integrating over Q:

AN A L, q

e, opd, ogb. * Q) (2.10)
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Chronologicelly, the first PDO method was progposceé by Gel'din.>
The transport part of this metho¢ consists of Ea. (2.9), while the diffusion
psrt, based on Eqs. (2.2), (2.6), (2.10), and (2.11), is defirec by

- 2’1 S
-9, + (op - o5, ¢, (2.12a)
AR V2 RS L+t A
!.: ¢o * OTQ“ =1 ] (r_ 12b)
D'1,2+1 - e ¢09‘1 - B, (2.12¢)
where
g+1/2
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Using Egs. (2.12b) to eliminete ¢,°*'/2 frem Egs. (2.10a,c), we cbtein the
following diffusion problem:

1 g+i/2, 141 L+ !
[T . -~ h = - 8 — ;". "‘a
3 o y-P * (OT GS)co s Ul TR fe.1ha)
T T
/e
LIS S5 7N S U L0 B 2 R (2. 1um)
Op = = = o o 0, = =1

Thus, Gol'din's methcd consists of Egs. (2.9), followrd elther by Eqs. (2.10)
or (2.14),

We emphasize that Gol'din's derivation of this method (which he termed the
"quasi-diffusion"” methud) is specificaily for spherical geometry, with the
incident flux f set equel to zero. Nevertheless, his fdeas apply quite gencr-
ally in other gcometries and for other boundary conditlions.

The logic tenind this {terative method ls as follows. The terms in the
diffusion part of the iteration [Eqs. (2.12) or (&.14)] which depend on in":“
are ] * and C*° , and these depend only on the anguler snape of ¢ vi/e
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not on its amplitude. Thus, if at any iteration, w2’1/2 has the exact angular
shape but the incorrect amplitude, then ¢1’1 will be exact and any further
iterations will merely reproduce the converged solutions. In other words, the
scheme 1s based upon the premise that the transport sweep [Eq. (2.9)] gener-
ates an accurate angular shape for ¢ (but not necessarily an accurate ampli-
tude), while the diffusion calculaticn with the transport corrections
[Eqs. (2.12) or (2.14)), given an accurate shape, generaies a much more accu-
rate amplitude.

Variations on Gol'din's method have appeared elsewhere in the Soviet 1lit-
erature; 5, all this work makes use of the basic ldeas stated above.

The second baslic PDO method was proposed by Lewis and Miller.7 To des-
cribe the boundary condition for the diffusion part of this method, we note
that at any point redD with 2-n<0, we have for every 1,

rera = w2 - 0 P20 ¢ 30, T2

r

« RV20r,0) (2.15)

wherc pi+i1/2 is a remzinder, expressible as a sum of spherical harmonics of
order greater than or equal to two. Multiplying Eq. (2.15) by Q-n, integrat-
ing over 2-n<0, and rearranging, we obtain the relation

/
¢02‘1/2(5) - 2g-$1£+1/2(:> - % an®* 2 - e L 2a16)

As before, the transport part of the Lewis-Miller method consists of
Eq. (2.9), while the difrusion part, based on Egs. (2.2), (2.6), (2.10),
(2.11), and (2.16), is defined by

£+1 ¢+ N
3'21 + (OT OS) ¢.0 . QO (c.173)
10, k1 20 24172 g41
AL Vi 7 v ooy =9 (2.17b)
0" ) - 2ﬂ'if" R I a-n(rR*'? - flan . (2.17¢)

2+n<0



Using the second of these equations te eliminate 211’1 from the first and
third, we obtain the following diffusion problem:

1 2+1 £+ 1
g 30T 2¢o * (°T oSMo = Qo - .. E1
T
pad 2
. gt pag U2 L, (2.18a)
_joT_.z _
¢ MV 2 e BTLL ] n(R¥172 - fyon
o] 301.——0 n -
£-n<0
2 2 2+1/2
+ == (n-g ERRAT ) , resp . (2.18b)

Thus, the Lewis-Miller method ccnsists of Ea. (2.9), follcwed either by
Eqs. (2.17) or (2.18).

The logic behind this iterative method is ag follows. The terms in the
diffusion Bart of theﬂlteration (Egqs. (2.17) or (2.18) ghloh depend on wﬁ‘1/2
are ¢ 24172 and R¥*1/2 and these terms vanish if v**1/2 1s a linear functicn
of 2,%1.e, 1f v¥*1/2 has the form

2 -0 Py s 0, P (2.10)

Thus, if the converged angular flux has this form (which implies that diffu-
sion theory is exact) iL will be computed in one iteration piovided the start-
ing guess itself {s the diffusion sclution. In other words, thls scheme is
based upon the premise that the transport sweep [Eqs. (2.9)] generates a more
accurate result in non-diffusive regions than in diffusive regions, while the
diffusion calculation with the transport corrections [Eqs. (2.17) or (2.1R8)]
generates a much better result in the diffusive regions. This logie is, the
same as that which motivates the DSA method.

We add that Lewis and Miller's published derivation of this method,7 which
they term the "second-moment" method, is specifically of Eq. (2.18a) for slab
geometry, and they glive no details on the derivation of boundary conditions,
However, the houndary condition used in the Ref. 7 numerical calculations dces
possess the property stated above,namely, the solution i3 computed in one
iteration if ¢ is linear in engle.’+10

At this point, we dliscuss scme features of the two methods presented
above,

-7-



(1) If for the spatially discretized discrete-ordinates equations one is
able to follow precisely the same algebraic steps as given above to derive a
discretized Lewis-Miller method, one will obtain a set of equations which is
algebraically equivalent to the DSA result. For these equatlions, the scalar
flux arising from the transport and diffusion parts of the algorithm will
agree, upon convergence. However, If one chooses another discretization for
the PDO Eqs. (2.18), one will retain the rapid convergence but the converged
transport and diffusion scalar fluxes will no longer precisely agree with each
other or the DSA result. If one chooses another discretization for the DSA
diffusion equation, the transport and scalar fluxes will still converge to the
SI result for small enough meshes, but for larger meshes, the scheme will
generally become unstable. We refer the reader to Ref. 2 for a full discus-
sicn on the stability issues pertalining to DSA,.

(2) If ¢ is linear in angle, i.e, if it has the form of Eq. (2.19), then
P = 1/3 ], and Eq. (2.14a) becomes independent of £+1/2. [However, this is
not true of Eq. (2.14b).] Therefore, use of Eq. (2.14a) with the boundary
condition (2.18b) will produce a method which generates the converged solution
in one iteration if the solution is linear in angle. This method has been
termed the "Variable Eddington Factor™ (VEF) met;hod,s"8 and 1-D numeri{cal
resuvlis in Ref. 8 have shown that it converges very rapidly.

(3) The application of Gol'din's method in 1-D is relatively straightfor-
ward, because in this case D reduces to a positive scalar. However, the solu-
tions must for each iterate remain positive so that P and C can be computed,
and with a sufficiently anjsotropic source Q, the Q, terms in Egs. (2.14)
could lead to a negative numerical solution. In 2- and 3-D, Egs. (2.14) are
more problematical because although D is a positive-definite, symmetric ten-
sor, Eq. (2.143) 1is inot positive-definite because [ is not suitably liocated
between the two gradient operators. Also, the boundary conditions contain
oblique (non-normal) derivatives, Thus, the issues of positivity and effi-
clency of computation in 2- and 3-D are of much greater concern than in 1-D.

(4) The Lewis-Miller method [Eqs. (2.18)] is straightforward in 1-, 2-,
and 3-D problems, although upon discretization, one cannit guarantee a pcesi-
tive solution. Kowcver, the method is linear and should be unaffected by
negative solutlons, the diffusion operator is symmetric and positive-definite,
and the boundary condition contains only outward normal derivatives, Also,
Fourier analyses on model x,y-geometry problems for both the analytic and
discretized methods (with general welghted-diamond Sy differencing) show that
the method converges rapldly, with a spectral radius always less than one-
third.

(5) Even though the converged analyt}c solutions of the Gol'din and
Lewis-Miller methods are guaranteed to be positive, there appears to be no way
to directly discretize these methods to guarantee a positive solution at the
end of any iteration, or even a positive converged solution.

To circumvent some of the difficulties listed above, we propose the fol-
lowing modifications to the Lewis-Miller method.



Let us define the right sides of Eqs. (2.18a and b) as 2172 ane 31‘1/2,

respectively:
120 - Lo v 2 g2 (2.20a)
- o =1 - 30, - =2
T T
o be
12 L [ et 00+ 2 (009, 2008, ) L 22200
2-n¢0 !
Then we modify Eq. (2.18) as follows:
; 201 12172 A2 01
- Ve — Vo + 0.0 ¢ é
= 30.-"0 T"S L4172 o}
T 2¢
o)
i} 15(“11;1/2, . a9,+'l/c) . red (2.212)
2
(1 . |82+1/2|_BE*1/-)¢ g4, 2 n+Vo g+1
/ - -
26 24172 o] 3°T o
0
1 /2 2+1/2
< 5 (™21 2172 peap (2.21b)

These equations have non-negative right-hand sides and thus can be differenced
positively, so that after each iteration and upon convergence, the =olution is
positivs. A minor varicclen of this method was proposed originally by
Larsen. Other modifications of the baslc Lewis-Miller and Gol'ein methods
are p.ssible, but will not be considered here.

To conclude this secticen, we note that all of the iter=tion methods pro-
posed above comhine a transport (or discrete-ordinates) sweep with a Py or
diffusion calculation, and that lhe latter calculation 1s derived by prcject-
ing the transport (discrete-ordinates) equation onto the space of functicns
which are linear In the angular variable. This 1is the origin of our term
"Projected Discrete~Ordinates" method.



III. NUMERICAL RESULTS

In this section, we discuss the following slab geometry transport problem:
Oy = 1.0, 0g = 0.97, Q = O, the right boundary (x = 20) has zero incident
f{ux. and the lef: boundary (x = 0) has an isotropic incident flux with magni-~
tude unity. A spatial mesh consisting of M equal cells, with

Ax = 20/M 3.1)
is used, and the pointwise convergence criterion

o
max | 1 - —‘;—ul <1072 (3.2)
.3

is imposed, where J spans tl.e spatial mesh.

We use the standard diamond difference scheme for each transpcrt calcula-
tion'! (with the starting guess ¢© « 0 for the first iterate), and standard
cell-center or cell-edge difrerenc?ng (unless stated otherwis.) for the vari-
ous diffusion calculations. For the S, and Sg Causs-Legendre quadrature sets,
the unaccelerated SI method requires approximately 300 iterations to achieve
convergence for each spatial mesh. and for tr. S, set all the various PDO
methods except for Gol'din's require two iterations to converge. (Only ove
iteration would have been required if the starting guess had been the diffu-
sion solution.) For the Sp; quadrature set, we present detailed numerical
results obtained using the following PDC methods:

DD-1'SA : Standard diffusion synthetic acceler ation,

G/C : GCol'din's method, with centrally-differenced diffusion.

LM/C : Lewis-Miller, with c-i.trally-differenced diffusion.

LM/E : Lewis-Miller, with edge-differenced diffusion,

VEF/C : Variable Eddington Factor, with centrally differenced diffusion,.
MLM/E : Eqs. (2.21), with edge-differenced diffusiorn.

MVEF/E*: Eqs. (2.21), with eccge-differenced diffusicn and discretized
diffusion boundary conditions which are fully consistent with
the diamond-differenced discrete-ordinites equations.,

The numbers of iterations required for thcse metknds to corverge the given
prcblem are listed in Table I. Essentlally, convergence takes place for all
but the G/C method In 7 to 11 iterations. The G/C method seems to deterliorate
somewhat with coarser meshes; this happens with both the diamond - nd the
(positive) step "transport differencing schemes, s - the deterioration is not
strictly due to the tendency of the diamond scheme to give negative solutlons
on coarse meshes,

—10-



TABLE I: NUMBER OF ITERATIONS VERSUS M

M DD-DSA  G/C LM/C LM/E VEF/C MLM/E MLM/E®
5 9 21 2 7 10 7 8
10 9 19 10 9 9 10 11
20 8 12 7 e 14 10 10
4o 7 13 7 8 e 3 g
80 7 " 7 7 8 9 9
160 7 9 7 7 8 9 9
320 7 1 7 7 8 9 9
640 7 12 7 7 8 9 9

To discuss the accuracy of the various methoas, we define A as the
absorption rate on the interval 16 < x < 20:

20
A= I Qo(x)dx . (3.3
16

The exact value of A, cdetermined by 2 very fine-mesh calculation, is

Aex = 0.01317920 . (3.4

The relative error in a numerical zpproxiration R um?

A
RE = 1 = A'“"" . (2.%)

€X

is given in Table II for the various methods and meshes treated in Trlle ',
(Here the upper numbers correspond tc the transport result, and the 1lower
numbers to the diffusion result.)

In general, the DD-DSA and MLN/F* methcds have errors which arc sceond-
order in Ax and are mor« accurate than the other methcds, which are firct-
order. The reason for these orders of error can be explained by considering
Eq. (2.18). 1n general, it is straightforward to construct a hlgh-order dif-
ferencing of Eq. (2.18a), but it is not straightforward to construct a differ-
encing of Eq. (2,18b) which Is compatible with the tramsport boundary
conditions to 0(Ax<). 1n particular, straightforward central or edge differ-
encings of Eq. (2.18) lead to a second-order approximation in Eq. (2.18a) and
& flirst-order approximation in Ea. (2.18b). Such diffecrencings were uaed In
all but the MLM/E* mecthod, where we did construct discretized adiffusion bound-
ary conditions which were consiatent with the transpo:~t calculstion; thls led
to the much more accurate reaults indicated for this mcthod {n Tatle JIl.

-11-



TABLE 1T: RELATIVE ERRORS IN THE TRANSPORT (UPPER) AND

DIFFUSICN (LOWER) VALUES OF A VERSUS M

M DD~-DSA G/C LM/C LM/E VEF/C MLM/E MLM/E®
5 ~3.73E-1 ~2.46 -2.80 =6.41E-1 ~2.77 ~9,30E-1 ~1.66
-3.75E-1 ~3.63 ~5.68 =6.91E-1 ~5.61 -9.50E-1 ~1.31
10 1.18E-1 -3.31E-1 -1.23E-1 -1,60E-1 -1,20E-1 =-2.M1E-1 ~2.48E-1
1.18E-1 =3.U49F-1 ~7.73E~2 ~1.65E~1 ~7.43E-2 -2.T6E-1 -2,55E~1
20 2.87E-2 -~9.14E-2 -1.17E~1 ~5,25E-2 -1.14E-1 -5,72E-2 -3.00E-2
2.87E-2 -9,M46E-2 -1.02E-1 -5.39E-2 -9,93E-2 ~5.87E-2 =-3.10E-2
4% 7.717E~3 ~3.15E-2 -6.02E-2 -1.98E-2 -5.79E-2 ~2.08E-2 =7.3%E-3
7.717E-3 -3.22E-2 -5.35E-2 -2.02E-2 -5.10E~2 =~2.12E-2 ~7.6CE-3
60 1.79E-3 -1,23E-2 =-3.,10k~2 =-B,34E-3 -2.99E~-2 -8.58E-3 -1.94E-3
1.79E-3 -1.26E-2 -2.83E-2 -8,50E-3 -2.U46E~2 -8.73E-3 -2.00E-3
160 4.46E-4 -5,4E-3 ~1.65E-2 ~3,78E-3 ~-1.55E~2 ~3.80E-3 -£.13E-4
4, U6E-4  ~5,H4BE-3 -1,U8E-2 =-3.85E-3 -1.36E~c ~3.87E-~3 ~5.28E-4
320 1.09e-4 -2 W9E-~3  -8.56E-3 ~1,80E-3 ~-7.92E~3 ~1.T7E-3 -1,34E~-4
1.09E-4 -2.53E-3 -7.67E-3 -1,82E-3  -6.97E-3 -1.80E-3 ~1.37E-4
640 2.73E-5 -1.21E-3  -U,37E-3 -B.T4E-4 -4,02E-3 -8.50E-4 -3.33E-5
2.73E-5 -1.21E-3  -3.92E~3 -8.89E-4 -3.53E~3 -~B.0O5E-4 ~3.64E-5
IV, DISCUSSION

The numerical results presented in Sec. 1Il1 show that PDO methods converge
with rates comparatle to that of DTA, but that in general, the FDO methods are
less accurate, However, we emphesize that we heve not, in thils papcr,
atlempted tc clscretize the various PDC metheds in ways which provide eptimal
accuracy; our primary 2im has been to demonstrate that with well-known trans-
port transport and diffusicon discretizations, PDO methods prcvide rapldly
convergent numerical solutiuvns of discrete-ordinates problems.

The dual questions of accuracy and efficiency for more general problems
cannot be addressed in detail here. However, we have seen that the proper
discretization of the PDO boundary counditlons are essential for good accuracy,
and it Is clear that the use of a positive differencing scheme can be impor-
tant for the nonlinear PDO mcchode, where division by zero or a negative num-
ber could be fatal.

The present situation can be summarized aa fcllows, For years, the G5}
method has been regarded as a legitimate procedure for obtalning discrete-
ordinates solutions jteratively, and much work haz gonc into the dcvelcopment
of spatial discretizations for (L. Due to the frequent slow convergence of
the &1 method, the DSA methnd was develcoped and graftcd onto $1, but It now
appears that DSA Is probably too algebraically complex to be of wide uae for
non-diamond differencing schemea in multi-dimensional geomelrrices, The PDO
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methods proposed here provide a different way to ootain rapidly convergent
solutions, but these methods are at too early 2 stage of development to know
whether discretizations evist which are accurate enough for problems of gen-
eral interest. Thus, only future work can determine whether the capabilitie~
of PDO methods are sufficient to solve problems of interest for which SI or
DSA methods are deemed to be inadequate.
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