

Distribution Category:
Mathematics and Computers
(UC-32)

ANL-79-69

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

NONLINEAR ERGODIC THEORY IN BANACH SPACES
by
Simeon Reich

Applied Mathematics Division

July 1979

NOTICE
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Department of Energy, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

fly

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

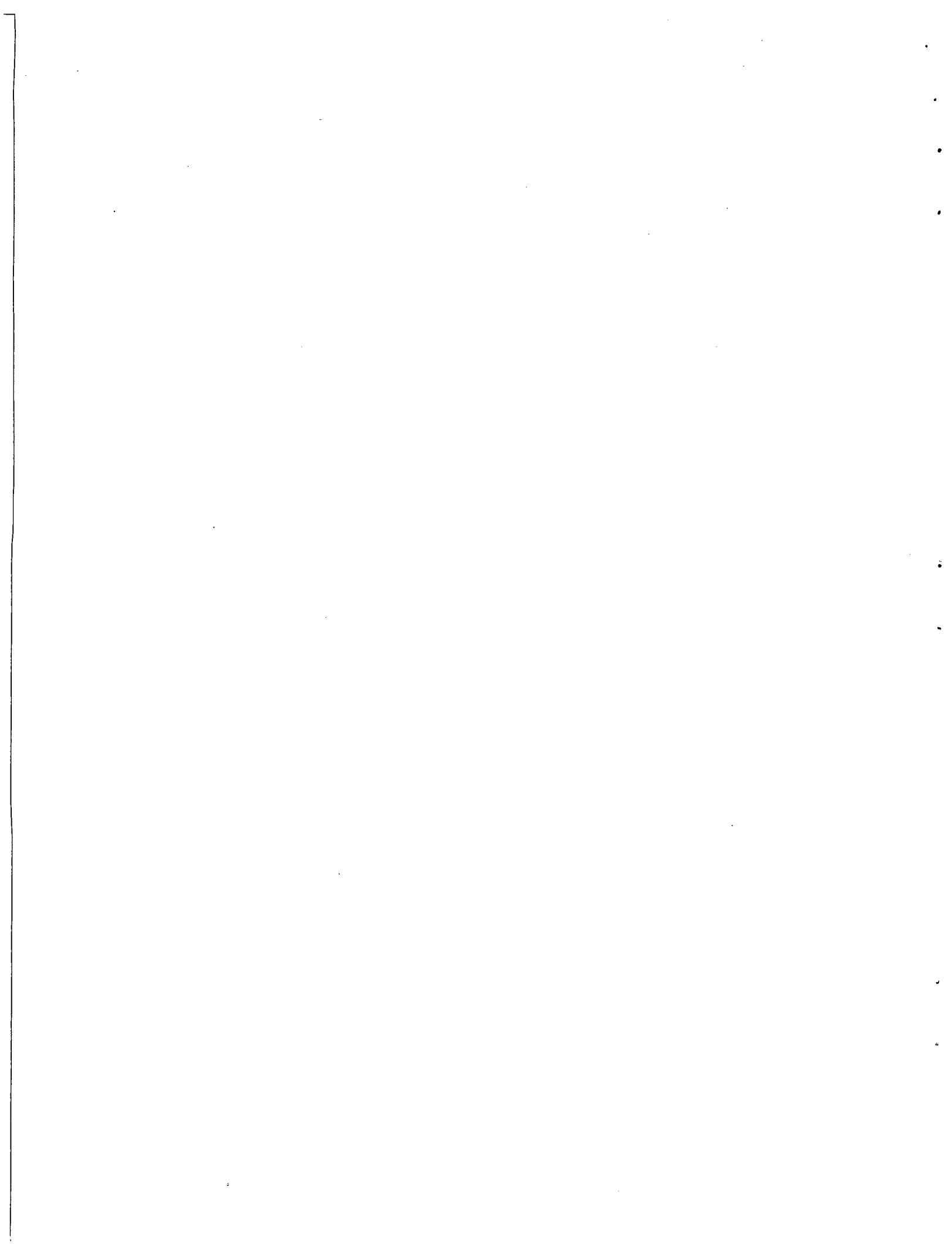


TABLE OF CONTENTS

ABSTRACT.	5
Introduction.	5
1. The sequence $\{T^n x\}$	6
2. The sequence $\{c_n T x_n + (1-c_n) x_n\}$	12
3. Applications and open problems.	15
References.	18

NONLINEAR ERGODIC THEORY IN BANACH SPACES

by

Simeon Reich*

ABSTRACT

We prove the mean ergodic theorem for nonlinear nonexpansive mappings in Banach spaces, extend it by a different argument, deduce several consequences, and point out open problems.

Introduction

The purpose of this report is to present a proof of the mean ergodic theorem for nonlinear nonexpansive mappings T in Banach spaces, to extend it by a different argument, and to point out several consequences and open problems. Theorem 1, announced in [10], establishes the weak almost convergence of the iterates $\{T^n x\}$ in uniformly convex Banach spaces with a Fréchet differentiable norm. Its proof uses the ideas of Baillon [1] who proved the weak convergence of the Cesàro means of $\{T^n x\}$ in L^p , $1 < p < \infty$. Although a simpler proof is available (Bruck [4]), we feel that Baillon's ideas, as well as our modifications of his arguments, are of independent interest and may be applied to other problems. Theorem 2 is an extension of Theorem 1. It is concerned with the sequence $\{x_n\}$ defined inductively by $x_{n+1} = c_n T x_n + (1 - c_n) x_n$, $0 \leq c_n \leq 1$, and is proved by a different, shorter argument. The Proposition in [10] is also used. The importance of establishing almost convergence is illustrated by the fact that both parts of Theorem 3 are immediate consequences of Theorem 1. They deal with the equivalence between the weak asymptotic regularity of T and the weak convergence of $\{T^n x\}$, and with the summability of

*Current address: Department of Mathematics, University of Southern California, Los Angeles, CA 90007

$\{T^n x\}$ by strongly regular matrices. The method of [7] yields analogous results for nonlinear nonexpansive semigroups (Theorem 4). Finally, we mention two open problems. They are concerned with the possibility of a "blow-up" result, and with strong convergence for odd operators.

1. The sequence $\{T^n x\}$

Let C be a closed convex subset of a Banach space E . Recall that a mapping $T: C \rightarrow C$ is said to be nonexpansive if $|Tx-Ty| \leq |x-y|$ for all x and y in C , and that a sequence $\{x_n\} \subset E$ is weakly almost convergent (cf. [6]) to $y \in E$ if the weak

$$\lim_{n \rightarrow \infty} \left(\sum_{i=0}^{n-1} x_{i+k} \right) / n = y$$

uniformly in $k \geq 0$. In this section we present a proof of the following nonlinear mean ergodic theorem, announced in [10]. The proof uses the ideas of Baillon [1], who showed that if $E = L^p$, $1 < p < \infty$, then the Cesàro means of the iterates $\{T^n x\}$ converge weakly to a fixed point of T . Theorem 1 improves upon this result of Baillon.

Theorem 1. Let C be a closed convex subset of a uniformly convex Banach space E with a Fréchet differentiable norm, and let $T: C \rightarrow C$ be nonexpansive. If T has a fixed point, then for each x in C , $\{T^n x\}$ is weakly almost convergent to a fixed point of T .

Proof. Let δ be the modulus of convexity of E . If $\max(|u|, |v|) \leq M_1$, then

$$|(1-c)u+cv| \leq M_1 \left(1 - 2\min(1-c, c)\delta \left(\frac{|u-v|}{M_1} \right) \right)$$

for all $0 < c < 1$. Taking $u = cT(cx+(1-c)y)-cTx$ and $v = (1-c)Ty-(1-c)T(cx+(1-c)y)$ where $x, y \in C$ and $|x-y| \leq M$, we obtain

$$|u|, |v| \leq c(1-c)|x-y| = M_1 \leq M/4$$

and

$$2M_1 \min(1-c, c) \delta\left(\frac{|u-v|}{M_1}\right) \leq c(1-c)\{|x-y| - |Tx-Ty|\}.$$

Since $\delta(\varepsilon)/\varepsilon$ is a nondecreasing function of ε , it follows that

$$(M/2) \delta\left(\frac{4|u-v|}{M}\right) \leq |x-y| - |Tx-Ty|.$$

Therefore for each M there is a nondecreasing $f: [0, M/2] \rightarrow [0, M/2]$, with $f(r) > 0$ for $r > 0$, such that

$$\begin{aligned} f(|T(cx+(1-c)y) - (cTx+(1-c)Ty)|) \\ \leq |x-y| - |Tx-Ty| \end{aligned}$$

for all $|x-y| \leq M$. Defining a function $g: [0, M/2] \rightarrow [0, M/2]$ by

$$g(r) = \frac{2}{M} \int_0^r f(t) dt, \quad 0 \leq r \leq M/2,$$

we obtain

$$\begin{aligned} g(|T(cx+(1-c)y) - (cTx+(1-c)Ty)|) \\ \leq |x-y| - |Tx-Ty|, \end{aligned} \tag{1}$$

where g is convex, strictly increasing and continuous. (δ is not a convex function in general.) Now let f_1 and f_2 be two fixed points of T , and let $J: E \rightarrow E^*$ be the (normalized) duality mapping. Since $L = \lim_{n \rightarrow \infty} (T^n x, J(f_1 - f_2))$ exists (see the Proposition in [10]), it follows that if $\{k(n)\}$ is an arbitrary sequence of natural numbers and s is a weak subsequential limit of

$$\left(\sum_{i=0}^{n-1} T^{k(n)+i} x \right) / n,$$

then

$$(s, J(f_1 - f_2)) = L.$$

Consequently, the theorem will be established if we can prove that such an s must be a fixed point of T .

To this end, we first note that since T has a fixed point, we may assume that C is bounded, with diameter d . Let

$$v(n_1, n_2, \dots, n_q) = \frac{1}{q} \left(T^{n_1} u_1 + T^{n_1+n_2} u_2 + \dots + T^{n_1+\dots+n_q} u_q \right)$$

with $u_i \in C$, $1 \leq i \leq q$. We now show, by induction on q , that there is, for each q and N_1 , a constant $I(q, N_1)$ such that

$$\begin{aligned} & \frac{1}{N_1} \frac{1}{N_2} \dots \frac{1}{N_q} \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} \dots \sum_{n_q=0}^{N_q-1} |Tv(n_1, \dots, n_q) - v(n_1+1, n_2, \dots, n_q)| \\ & \leq I(q, N_1), \end{aligned}$$

and

$$\lim_{N_1 \rightarrow \infty} I(q, N_1) = 0.$$

Denote $v(n_1, \dots, n_q)$ by $w(n_1)$ and $T^{n_1+\dots+n_q+n_{q+1}} u_{q+1}$ by $z(n_1)$. We have

$$\begin{aligned} & |Tv(n_1, \dots, n_{q+1}) - v(n_1+1, \dots, n_{q+1})| \leq \\ & \left| T \left(\frac{q}{q+1} w(n_1) + \frac{1}{q+1} z(n_1) \right) - \left(\frac{q}{q+1} Tw(n_1) + \frac{1}{q+1} Tz(n_1) \right) \right| \\ & + \frac{q}{q+1} |Tw(n_1) - w(n_1+1)|, \end{aligned}$$

and by (1),

$$\begin{aligned} & g \left(\left| T \left(\frac{q}{q+1} w(n_1) + \frac{1}{q+1} z(n_1) \right) - \left(\frac{q}{q+1} Tw(n_1) + \frac{1}{q+1} Tz(n_1) \right) \right| \right) \\ & \leq |w(n_1) - z(n_1)| - |Tw(n_1) - Tz(n_1)| \leq \\ & |w(n_1) - z(n_1)| - |w(n_1+1) - z(n_1+1)| + |Tw(n_1) - w(n_1+1)|. \end{aligned}$$

Summing, we see that since g is convex, we may take

$$I(q+1, N_1) = \frac{q}{q+1} I(q, N_1) + g^{-1}(d/N_1 + I(q, N_1)) .$$

Denoting

$$\left(\sum_{i=0}^{n-1} x_{k+i} \right) / n$$

by $S_n(x_k)$, and letting

$$s_m(n_1, n_2, \dots, n_p) = \frac{1}{p} \left(S_m(T^{n_1} u_1) + S_m(T^{n_1+n_2} u_2) + \dots + S_m(T^{n_1+n_2+\dots+n_p} u_p) \right) ,$$

we also obtain

$$\begin{aligned} & \frac{1}{N_1} \frac{1}{N_2} \dots \frac{1}{N_p} \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} \dots \sum_{n_p=0}^{N_p-1} |T s_m(n_1, n_2, \dots, n_p) \\ & - s_m(n_1+1, n_2, \dots, n_p)| \\ & \leq I(mp, N_1) . \end{aligned} \quad (2)$$

Note that $I(q, N_1)$ is independent of $\{u_i\}$.

Now let $x \in C$, $x_n = T^n x$, and assume that the weak $\lim_{j \rightarrow \infty} S_{n_j}(x_{k(n_j)}) = z$. We wish to prove that z is a fixed point of T . Let $K = \{n_j\}$ and

$$\begin{aligned} s_m(n_1, n_2, \dots, n_p) &= \frac{1}{p} \left(S_m(x_{n_1+k(N_1)}) \right. \\ &+ \dots + \left. S_m(x_{n_1+\dots+n_p+k(N_p)}) \right) \\ (\text{thus } u_i &= T^{k(N_i)} x) . \end{aligned}$$

We claim that

$$\begin{aligned} \lim_{p \rightarrow \infty} \limsup_{\substack{N_1 \rightarrow \infty \\ N_1 \in K}} \dots \limsup_{\substack{N_p \rightarrow \infty \\ N_p \in K}} \frac{1}{N_1} \dots \frac{1}{N_p} \sum_{n_1=0}^{N_1-1} \dots \sum_{n_p=0}^{N_p-1} \\ |s_m(n_1, n_2, \dots, n_p) - z| &= 0 . \end{aligned} \quad (3)$$

To prove (3), we first replace the norm of E by an equivalent norm for which E^* is also uniformly convex. This is possible by [5]. Thus there is [9, p. 89] a continuous nondecreasing function $b: [0, \infty) \rightarrow [0, \infty)$ such that $b(0) = 0$, $b(ct) \leq cb(t)$ for $c \geq 1$, and

$$|x+y|^2 \leq |x|^2 + 2(y, Jx) + \max(|x|, 1)|y|b(|y|)$$

for all x and y in E . Let

$$r_p = s_m(n_1, n_2, \dots, n_p)^{-z} .$$

Since

$$r_p = \frac{p-1}{p} r_{p-1} + \frac{1}{p} \left(s_m(x_{n_1+\dots+n_p+k(N_p)})^{-z} \right) ,$$

we obtain

$$\begin{aligned} \frac{1}{N_p} \sum_{n_p=0}^{N_p-1} |r_p|^2 &\leq \left| \frac{p-1}{p} r_{p-1} \right|^2 + \\ \frac{2}{p} \left(\frac{1}{N_p} \sum_{n_p=0}^{N_p-1} s_m(x_{n_1+\dots+n_p+k(N_p)})^{-z} \right. &\left. J \left(\frac{p-1}{p} r_{p-1} \right) \right) \\ + M \frac{1}{p} b \left(\frac{1}{p} \right) &\text{ for some } M \geq 1 . \end{aligned}$$

It is not difficult to check that for a fixed i ,

$$s_{N_p} \left(x_{i+k(N_p)} \right) \xrightarrow[N_p \rightarrow \infty]{N_p \in K} z .$$

Since

$$\left| \frac{1}{N_p} \sum_{n_p=0}^{N_p-1} s_m(x_{i+n_p}) - s_{N_p}(x_i) \right| \leq \frac{(m-1)d}{2N_p} ,$$

it follows that

$$\limsup_{\substack{N_p \rightarrow \infty \\ N_p \in K}} \frac{1}{N_p} \sum_{n_p=0}^{N_p-1} |r_p|^2 \leq \left(\frac{p-1}{p}\right)^2 |r_{p-1}|^2 + M \frac{1}{p} b\left(\frac{1}{p}\right) .$$

Hence,

$$\begin{aligned} f(p) &= \limsup_{\substack{N_1 \rightarrow \infty \\ N_1 \in K}} \frac{1}{N_1} \sum_{n_1=0}^{N_1-1} \limsup_{\substack{N_2 \rightarrow \infty \\ N_2 \in K}} \frac{1}{N_2} \sum_{n_2=0}^{N_2-1} \dots \limsup_{\substack{N_p \rightarrow \infty \\ N_p \in K}} \frac{1}{N_p} \sum_{n_p=0}^{N_p-1} |r_p|^2 \\ &\leq \left(\frac{p-1}{p}\right)^2 f(p-1) + M \frac{1}{p} b\left(\frac{1}{p}\right) . \end{aligned}$$

Since $\lim_{p \rightarrow \infty} b\left(\frac{1}{p}\right) = 0$, it follows that

$$\lim_{p \rightarrow \infty} f(p) = 0 \quad \left(\sum_{p=1}^{\infty} \frac{1}{p} = \infty \right) .$$

Since

$$\left(\frac{1}{n} \sum_{i=1}^n a_i \right)^2 \leq \frac{1}{n} \sum_{i=1}^n a_i^2 ,$$

(3) follows too.

Now let $y \in C$, denote $s_m(n_1, n_2, \dots, n_p)$ by s_m , and consider

$$\begin{aligned} (y - Ty, J(s_m - y)) &= (y - s_m + Ts_m - Ty + s_m - Ts_m, J(s_m - y)) \\ &\leq (s_m - Ts_m, J(s_m - y)) = \\ &= (s_m - s_m(n_1+1, n_2, \dots, n_p) + s_m(n_1+1, n_2, \dots, n_p) - Ts_m, \\ &\quad J(s_m - y)) . \end{aligned}$$

By (2),

$$\begin{aligned} \frac{1}{N_1} \frac{1}{N_2} \dots \frac{1}{N_p} \sum_{n_1=0}^{N_1-1} \sum_{n_2=0}^{N_2-1} \dots \sum_{n_p=0}^{N_p-1} (y - Ty, J(s_m - y)) \\ \leq d^2/m + dI(mp, N_1) . \end{aligned}$$

(3) implies that

$$\lim_{p \rightarrow \infty} \limsup_{N_1 \rightarrow \infty} \dots \limsup_{N_p \rightarrow \infty} \frac{1}{N_1} \dots \frac{1}{N_p} \sum_{n_1=0}^{N_1-1} \dots \sum_{n_p=0}^{N_p-1} |(y - Ty, J(s_m - y) - J(z - y))| \\ = 0.$$

It follows that for each m , $(y - Ty, J(z - y)) \leq d^2/m$. Therefore $(y - Ty, J(z - y)) \leq 0$ for all y in C . Taking $y = (1-t)z + tTz$, dividing by t , and letting $t \rightarrow 0+$, we obtain $z = Tz$. This completes the proof.

2. The sequence $\{c_n T x_n + (1-c_n) x_n\}$

In this section we establish an extension of Theorem 1 by a different argument. In the setting of the previous section, let $\{c_n : n=0,1,2,\dots\}$ be a real sequence with $0 \leq c_n \leq 1$ for all n . For x_0 in C we define a sequence $\{x_n\} \subset C$ by

$$x_{n+1} = c_n T x_n + (1-c_n) x_n, \quad n \geq 0. \quad (4)$$

It is known [10, Theorem 2] that if

$$\sum_{n=0}^{\infty} c_n (1-c_n) = \infty,$$

then $\{x_n\}$ converges weakly to a fixed point of T . This happens, of course, if $c_{n_k} \rightarrow p$ for some $0 < p < 1$, or if $c_n \rightarrow 0$ and

$$\sum_{n=0}^{\infty} c_n = \infty.$$

(If

$$\sum_{n=0}^{\infty} c_n < \infty,$$

the limit is not a fixed point in general.) The remaining case, $c_n \rightarrow 1$, is covered by the following result, announced in [11].

Theorem 2. Let C be a closed convex subset of a uniformly convex Banach space E with a Fréchet differentiable norm, and let $T: C \rightarrow C$ be a nonexpansive mapping with a fixed point. Let $\{x_n\}$ be defined by (4). If $\lim_{n \rightarrow \infty} c_n = 1$, then $\{x_n\}$ is weakly almost convergent to a fixed point of T .

Proof. Denote

$$\left(\sum_{i=0}^{n-1} x_{k+i} \right) / n$$

by $S_n(x_k)$. If the weak $\lim_{j \rightarrow \infty} S_{n_j}(x_{k(n_j)}) = z$, then the Proposition in [10] implies that

$$(z, J(f_1 - f_2)) = \lim_{n \rightarrow \infty} (x_n, J(f_1 - f_2))$$

for any two fixed points f_1 and f_2 of T . Therefore all we have to prove is that z is a fixed point of T .

By [10, Theorem 2] we may assume that

$$\sum_{n=0}^{\infty} (1 - c_n) < \infty.$$

We may also assume that C is bounded with diameter d . Induction on m shows that

$$|x_{n+m} - T^m x_n| \leq \sum_{k=n}^{n+m-1} (1 - c_k) |x_0 - T x_0|.$$

Thus

$$\lim_{n \rightarrow \infty} |x_{n+m} - T^m x_n| = 0$$

uniformly in $m \geq 0$. Since each T^m satisfies (1), it follows that

$$\lim_{n \rightarrow \infty} |S_q(x_{n+m}) - T^m S_q(x_n)| = 0$$

for each fixed $q \geq 1$. Noting that

$$|s_q(x_{n+1}) - s_q(x_n)| \leq d/q ,$$

we obtain

$$|s_q(x_n) - Ts_q(x_n)| \leq d/q + \epsilon(q, n) ,$$

where $\lim_{n \rightarrow \infty} \epsilon(q, n) = 0$ for each q .

Let p be a seminorm for the weak topology of E , $d_p(x, D) = \inf\{p(x-y) : y \in D\}$, and let $F(T)$ be the fixed point set of T . It follows from [3, Theorem 3] that for each $\epsilon > 0$ there is $\delta > 0$ such that if $x \in C$ and $|x-Tx| < \delta$, then $d_p(x, F(T)) < \epsilon$. Given $\epsilon > 0$, we first choose q and then n_0 such that

$$|s_q(x_n) - Ts_q(x_n)| < \delta$$

and

$$d_p(s_q(x_n), F(T)) < \epsilon$$

for all $n \geq n_0$.

We also have

$$\left| \frac{1}{n} \sum_{i=0}^{n-1} s_q(x_{k+i}) - s_n(x_k) \right| \leq \frac{(q-1)}{2n} d .$$

Hence

$$\begin{aligned} d_p(z, F(T)) &= \lim_{j \rightarrow \infty} d_p(s_{n_j}(x_{k(n_j)}), F(T)) \\ &= \lim_{j \rightarrow \infty} d_p \left(\frac{1}{n_j} \sum_{i=0}^{n_j-1} s_q(x_{i+k(n_j)}), F(T) \right) \\ &\leq \limsup_{j \rightarrow \infty} \frac{1}{n_j} \sum_{i=0}^{n_j-1} d_p(s_q(x_{i+k(n_j)}), F(T)) \leq \epsilon . \end{aligned}$$

Consequently, $z \in F(T)$ and the proof is complete.

Theorem 2 can also be established by first showing that the set of sequences $\{x_n\}$ for which $\{|x_{n+1} - Tx_n|\}$ is almost convergent to 0 is convex. To prove this fact, note that by (1),

$$\begin{aligned}
 & |(1-a)x_{i+1} + ay_{i+1} - T((1-a)x_i + ay_i)| \\
 & \leq |(1-a)(x_{i+1} - Tx_i) + a(y_{i+1} - Ty_i)| \\
 & + |(1-a)Tx_i + aTy_i - T((1-a)x_i + ay_i)| \\
 & \leq (1-a)|x_{i+1} - Tx_i| + a|y_{i+1} - Ty_i| \\
 & + g^{-1}(|x_i - y_i| - |Tx_i - Ty_i|) \\
 & \leq (1-a)|x_{i+1} - Tx_i| + a|y_{i+1} - Ty_i| \\
 & + g^{-1}(|x_i - y_i| - |x_{i+1} - y_{i+1}| + |x_{i+1} - Tx_i| + |y_{i+1} - Ty_i|) ,
 \end{aligned}$$

and that g^{-1} is concave. Now Theorem 2 can be proved by the method of [4].

3. Applications and open problems

In this section we present some applications, as well as open problems. The following two results are immediate consequences of the almost convergence of $\{T^n x\}$ established in the previous sections (cf. [8]).

Theorem 3. Let C be a closed convex subset of a uniformly convex Banach space E with a Fréchet differentiable norm, $T: C \rightarrow C$ a nonexpansive mapping with a fixed point, and $x \in C$.

- (a) $\{T^n x\}$ converges weakly to a fixed point of T if and only if the weak $\lim_{n \rightarrow \infty} (T^n x - T^{n+1} x) = 0$.
- (b) If the matrix $\{a_{n,k}\}$ is strongly regular and

$$y_n = \sum_{k=0}^{\infty} a_{n,k} T^k x ,$$

then $\{y_n\}$ converges weakly to a fixed point of T .

The method of [7] yields analogous results for nonexpansive semigroups on C . (They can also be obtained directly by the method used in the proof of Theorem 2.)

Theorem 4. Let C be a closed convex subset of a uniformly convex Banach space with a Fréchet differentiable norm, $S: [0, \infty) \times C \rightarrow C$ a nonexpansive semigroup with a fixed point, and $x \in C$.

(a) The weak

$$\lim_{T \rightarrow \infty} \frac{1}{T} \int_C^{T+c} S(t)x dt$$

exists uniformly in $c \geq 0$ and is a fixed point of S .

(b) $S(t)x$ converges weakly to a fixed point of S if and only if the weak $\lim_{t \rightarrow \infty} (S(t+h)x - S(t)x) = 0$ for all positive h .

(c) If the kernel K is strongly regular and

$$R(s)x = \int_0^\infty K(s, t)S(t)x dt ,$$

then $R(s)x$ converges weakly to a fixed point of S .

In the setting of Theorem 1, it is not known if

$$\left| \left(\sum_{i=0}^{n-1} T^i x \right) / n \right| \xrightarrow{n \rightarrow \infty} \infty$$

when T is fixed point free. This is true in Hilbert space.

Also, in the setting of Theorem 2, if $\{x_n\}$ is defined by (4) and

$$\sum_{n=0}^{\infty} c_n(1-c_n) = \infty ,$$

then $|x_n| \xrightarrow{n \rightarrow \infty} \infty$ if T is fixed point free.

Another open problem is whether strong almost convergence occurs in the setting of Theorem 1 when T is odd. Again this is known to be the case in Hilbert space. Although the same

question applies to part (b) of Theorem 3, it is known [2], that if T is odd, then the strong $\lim_{n \rightarrow \infty} (T^n x - T^{n+1} x) = 0$ if and only if $\{T^n x\}$ converges strongly to a fixed point of T .

It would also be of interest to determine whether a pointwise ergodic theorem is possible, and whether similar results hold for other Banach spaces.

Remark: We have already noted that Theorem 4 can also be established by the method used in the proof of Theorem 2. It follows that Theorem 4 remains true even if S is assumed to be only strongly measurable. (A strongly measurable S is continuous on $(0, \infty)$, but not necessarily on $[0, \infty)$.)

References

1. J. B. Baillon, Thesis, and Comportement asymptotique des itérés de contractions non linéaires dans les espaces L^p , C. R. Acad. Sci. Paris 286 (1978), 157-159.
2. J. B. Baillon, R. E. Bruck and S. Reich, On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces, Houston J. Math. 4 (1978), 1-9.
3. F. E. Browder, Semicontractive and semiaccretive nonlinear mappings in Banach spaces, Bull. Amer. Math. Soc. 74 (1968), 660-665.
4. R. E. Bruck, A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces, to appear.
5. P. Enflo, Banach spaces which can be given an equivalent uniformly convex norm, Israel J. Math. 13 (1972), 281-288.
6. G. G. Lorentz, A contribution to the theory of divergent series, Acta Math. 80 (1948), 167-190.
7. S. Reich, Nonlinear Evolution equations and nonlinear ergodic theorems, Nonlinear Analysis 1 (1977), 319-330.
8. S. Reich, Almost convergence and nonlinear ergodic theorems, J. Approximation Theory, to appear, and Notices AMS 24 (1977), A-293.
9. S. Reich, An iterative procedure for constructing zeros of accretive sets in Banach spaces, Nonlinear Analysis 2 (1978), 85-92.
10. S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., to appear, and Notices AMS 25 (1978), A-240.
11. S. Reich, Constructive techniques for accretive and monotone operators, Prof. Conf. Applied Nonlinear Analysis, to appear.

Distribution for ANL-79-69

Internal:

G. T. Garvey	M. Gibson (13)
R. J. Royston	A. B. Krisciunas
G. K. Leaf	ANL Contract File
H. G. Kaper	ANL Libraries (5)
M. Minkoff	TIS Files (6)
P. C. Messina	

External:

DOE-TIC, for distribution per UC-32 (191)
Manager, Chicago Operations and Regional Office, DOE-CORO
Chief, Office of Patent Counsel, DOE-CORO
President, Argonne Universities Association
Applied Mathematics Division Review Committee:
P. J. Eberlein, SUNY at Buffalo
G. Estrin, U. California, Los Angeles
W. M. Gentleman, U. Waterloo
J. M. Ortega, North Carolina State U.
E. N. Pinson, Bell Telephone Labs.
S. Rosen, Purdue U.
D. M. Young, Jr., U. Texas, Austin
H. A. Antosiewicz, U. Southern California
J. B. Baillon, Ecole Polytechnique, Palaiseau, France
A. Ben-Israel, U. Delaware
J. R. Blum, U. of Arizona
H. Brezis, Universite de Paris VI, France
F. E. Browder, U. Chicago
R. E. Bruck, U. Southern California
M. G. Crandall, U. Wisconsin, Madison
M. Edelstein, Dalhousie U., Canada
P. Enflo, Mittag-Leffler Inst., Sweden
L. C. Evans, U. Kentucky
K. Fan, U. California, Santa Barbara
R. Fefferman, U. Chicago
J. A. Goldstein, Tulane U.
W. A. Harris, Jr., U. Southern California
S. Kakutani, Yale U.
L. A. Karlovitz, Georgia Tech.
T. Kato, U. California, Berkeley
W. A. Kirk, U. Iowa
V. Lakshmikantham, U. Texas, Arlington
T. M. Liggett, U. California, Los Angeles
G. G. Lorentz, U. Texas
R. H. Martin, Jr., North Carolina State U.
J. W. Neuberger, North Texas State U.
R. D. Nussbaum, Rutgers U.
A. Pazy, Hebrew U., Jerusalem, Israel
W. V. Petryshyn, Rutgers U.
S. Reich, Univ. Southern California (25)
M. Reichaw, Israel Inst. of Technology, Haifa, Israel

J. Reinermann, RWTH Aachen, Germany
E. Schechter, Duke U.
R. E. Showalter, U. Texas, Austin
L. Sucheston, Ohio State U.
G. F. Webb, Vanderbilt U.
F. B. Weissler, Brown U.