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N O N L I N E A R  ERGODIC THEORY I N  BANACH SPACES 

by 
J- 

Simeon Reich" 

ABSTRACT 

We prove the  mean ergodic  theorerri f o r  nonl inear  
nonexpansive mappings i n  Banach spaces ,  extend i t  by 
a d i f f e r e n t  argument, deduce seve ra l  consequences, 
and po in t  out  open problems. 

In t roduct ion  

The purpose of t h i s  r e p o r t  i s  t o  present  a proof of t h e  mean 
ergodic  theorem f o r  nonl inear  nonexpansive mappings T i n  Banach 
spaces ,  t o  extend i t  by a d i f f e r e n t  argument, and t o  po in t  out 
s eve ra l  consequences and open problems. Theorem 1, announced i n  
[lo], e s t a b l i s h e s  the  weak almost convergence of t he  i t e r a t e s  
{Tnx} i n  uniformly convex Banach spaces with a Frechet  d i f f e r e n -  
t i a b l e  norm. I t s  proof uses the  ideas  of  Bai l lon [l] who proved 
t h e  weak convergence of  t h e  Ceshro means of {Tnx) i n  L p J  l < p < m .  

Although a s impler  proof i s  a v a i l a b l e  (Bruck [ 4 1 ) ,  we f e e l  t h a t  
Baillon's ideas, as well as our modifications of his arguments, 

a r e  of independent i n t e r e s t  and may be appl ied  t o  o the r  problems. 
Theorem 2 i s  an extension of  Theorem 1. I t  i s  concerned with the  
sequence {xn} def ined induc t ive ly  by x ~ + ~  = cnTxn+(l-cn)xn, 
O<c <1, and i s  proved by a d i f f e r e n t ,  s h o r t e r  argument. The 
Propos i t ion  i n  [ l o ]  i s  a l s o  used. The importance of  e s t a b l i s h i n g  
almost convergence i s  i l l u s t r a t e d  by t h e  f a c t  t h a t  both p a r t s  of 
Theorem 3 a r e  immediate consequences of  Theorem 1. They deal  
wi th  the  equivalence between the  weak asymptotic r e g u l a r i t y  of T 
and t h e  weak convergence of {Tnx) 

- n- 

and wi th  the  summability of 
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{Tnx} by s t rongly  r egu la r  mat r ices .  
analogous r e s u l t s  f o r  nonl inear  nonexpansive semigroups (Theorem 
4 ) .  F i n a l l y ,  we mention two open problems. They a r e  concerned 
with the p o s s i b i l i t y  of a "blow-up" r e s u l t ,  and with s t rong  con- S 

vergence f o r  odd ope ra to r s .  

The method of [ 7 ]  y i e l d s  

1. The sequence (Tnx) 

Let C be a c losed convex subset  of a Banach space E .  Recal l  

Ix-yl f o r  a l l  x and y i n  C ,  and t h a t  a sequence {xn} = E i s  weak- 
l y  almost convergent ( c f .  [ 6 ] )  t o  y E E i f  t he  weak 

. t h a t  a mapping T :  C -f C i s  s a i d  t o  be nonexpansive of ITx-Tyl - < 

n-1 
l i m  ( 1 xi+.)/" = y 
n- i = O  

uniformly i n  k - > 0 .  In  t h i s  s e c t i o n  w e  p re sen t  a proof of t h e  
following nonl inear  mean ergodic  theorem, announced i n  [ l o ] .  The 
proof uses the  ideas  of Bai l lon [l], who showed t h a t  i f  E = L p ,  
l < p < - ,  then t h e  CesBro means of t he  i t e r a t e s  {Tnx} converge weak- 
l y  t o  a f ixed  po in t  of T .  Theorem 1 improves upon t h i s  r e s u l t  
of Bai l lon .  

Theorem 1. Let C be a c losed  convex subse t  of a uniformly 
convex Banach space E with a Fr&chet  d i f f e r e n t i a b l e  norm, and 
l e t  T :  C + C be nonexpansive. I f  T has a f i x e d  p o i n t ,  then f o r  
each x i n  C ,  {Tnx} i s  weakly almost convergent t o  a f ixed  po in t  
of T .  

Proof .  Let 6 be t h e  modulus of convexity of E .  I f  

I (l-c)u+cvl 2 M1 1 - 2min(l-c ( 
f o r  a l l  O<c<l .  - -  Taking u = cT(cx+(l-c)y) 
(1-c)T(cx+(l-c)y) where x , y  E C and (x-y  

cTx and v = (1-c)Ty- 
< M ,  w e  ob ta in  - 
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I u ~ ,  [ V I  C(l-C)(~-yl = M1 - < M/4 
and 

2Mlmin (1-c, c) 6 c(i-c){lx-yl-lTx-Ty(). 

Since & ( E ) / €  is a nondecreasing function of E ,  it follows that 

Therefore for each M there is a nondecreasing f: [ O ,  M/21 + 

[0, M/2], with f(r) > 0 for r > 0, such that 

for all lx-yl - < M. Defining a function g: 10, M/21 -f [ O ,  M/21 
by 

r 
g(r> = f(t)dt , O < r < M / 2 ,  - - 

0 
we obtain 

where g is convex, strictly increasing and continuous. (6 is 
not a convex function in general.) 
fixed points of T, and let J: E + E* be the (normalized) duality 
mapping. 
tion in [ l o ] ) ,  it follows that if (k(n)) is an arbitrary sequence 
of natural numbers and s is a weak subsequential limit of  

Now let fl and f2 be two 

n Since L = lim(T x,J(fl-f2)) exists (see the Proposi- n- 

then 
(s,J(fl-f2)) = L . 
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Consequently, the  theorem w i l l  be e s t ab l i shed  i f  w e  can prove 
t h a t  such an s must be a f ixed  poin t  o f  T .  

To t h i s  end, we f i r s t  no te  t h a t  s ince  T has a f ixed  p o i n t ,  
we may assume t h a t  C i s  bounded, with diameter d .  Let 

n l+ .  . .+nq 
u2 +.. .+ T 

- - I T  -i"l u l + T  n1+n2 
q 

v ( n p 2 ,  * * * ,nq)  

with ui E C ,  l < i < q .  W e  now show, by induct ion on q ,  t h a t  t he re  - -  
i s ,  f o r  each q and N1, a constant  I(q,N1) such t h a t  

and 

l i m  I(q,N1) = 0 . 
N1- 

nl+. . . n  +n 
Denote v ( n l , .  . . , n  ) by w(n,) and T q+l uq+l by z (n ,> .  9 
We have 

. 

Summing, we see  t h a t  s i n c e  g i s  convex, we may take 
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Den0 t ing 

by Sn(xk),  and l e t t i n g  

"1 nl+n2 
sm(nl ,n2 , .  . . , np )  = Sm(T ul) + S,(T u2 ) 

n +n + . . . +  n 1 2  +, . .+  Sm(T 

we a l s o  ob ta in  

1 1  
Iq "" Np n =O n =O 

- 1  1 N1-l N2-1 1 . . .  Nf-11Tsm(nl,n2,. . . ,np)  
n =O 

1 2 P 

Note t h a t  I (q ,Nl)  i s  independent of  t u i} .  

Now l e t  x E C ,  xn = Tnx, and assume t h a t  t he  weak 

l i m  Sn 
J +O0 

of  T. Let K = { n . }  and 

= z .  We w i s h  t o  prove t h a t  z i s  a f i x e d  p o i n t  
j 

J 

sm(nl ,n2 , .  . . ,np) = ) 

. . .+  n +k(N 
1 P P 

+.. .+ Sm(xn + 

k (Nil 
( thus ui = T x). We claim t h a t  

l i m  limsup . . . limsup - 1 . . .  . . .  1 

P 
p-tm NI+m Kp- N1 

N, E K  
(3) 
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To prove ( 3 ) ,  we f i r s t  repa lce  the  norm of E by an equivalent  
norm f o r  which E;k i s  a l s o  uniformly convex. 
[ 5 ] .  Thus t h e r e  i s  [ 9 ,  p .  893 a continuous nondecreasing func t ion  
b :  [ O , - )  + [ O , - )  such t h a t  b(0) = 0 ,  b ( c t )  < c b ( t )  f o r  c > 1, and 

This i s  poss ib l e  by 

- - 

f o r  a l l  x and y i n  E .  L e t  

r = sm(ril, n2,  . . . ,np) - z  . P 

Since 

r = p - l r  p p - 1  +'(s p m (x nl+ . . .+  n +k(Np) 
P P 

w e  o b t a i n  
N -1 

l 2  + 

1 

P 

+ M 1 b ( i )  f o r  some M - > 1 . 
P 

It i s  not  d i f f i c u l t  t o  check t h a t  f o r  a f i x e d  i ,  

Since 

it  follows t h a t  
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( 3 )  implies that 
Nl-l N -1 

1 . . .  f 1 (~-Tr,J(s,-y)-J(z-y)) 1 
N1' ' ' N  lim limsup . . .  limsup - 

p+m Nl+m N +m p nl=O n =O 
N1eK N E K  

= o .  

P P 
P 

2 It follows that for each m, (y-Ty,J(z-y)) < d /m. Therefore 
(y-Ty,J(z-y)) - < 0 for all y in C. Taking y = (1-t)z+tTz, divid- 
ing by t, and letting t -+ 0+, we obtain z = Tz. This completes 
the proof. 

- 

2. The sequence { cnTxn+(l-cn)xn} 

In this section we establish an extension of Theorem 1 by a 
different argument. In the setting of the previous section, let 

For xo in C we define a sequence {xn} = C by 
< 1 for all n. {cn: n=0,1,2, . . . )  be a real sequence with 0 - < cn - 

X n+l - cnTxn + (l-Cn)xn , n > O .  - ( 4 )  - 

It is known [lo, Theorem 21 that if 

m 

then {xn} converges weakly to a fixed point of T. This happens, 
~~ 

of course, if c + p for some O < p < l ,  or if cn + 0 and 
nk 

m 

m 

the limit is not a fixed point in general.) 

'n 

The remaining case, 
+ 1, is covered by the following result, announced in [ll]. 
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. 

Theorem 2 .  Let C be a c losed convex subset  of a uniformly 
convex Banach space E with a Frechet d i f f e r e n t i a b l e  norm, and l e t  
T :  C -f C be a nonexpansive mapping with a f ixed  p o i n t .  
be def ined by ( 4 ) .  
convergent t o  a f ixed  poin t  of T .  

Let {xn} 
I f  l i m  cn = 1, then {xn} i s  weakly almost 

n- 

Proof.  Denote 

by Sn(xk).  
i n  [lo] implies t h a t  

I f  t he  weak Jim Sn ( x ~ ( ~ ~ )  ) = z ,  then the  Propos i t ion  
j J -+m 

f o r  any t w o  f i xed  poin ts  f l  and f 2  of T.. 

t o  prove i s  t h a t  z i s  a f ixed  poin t  o f  T .  

Therefore a l l  we have 

By [ l o ,  Theorem 21 we -may assume t h a t  

m c (l-c,) < m . 
n=O 

We may a l s o  assume t h a t  C i s  bounded with diameter d .  Induction 
on m shows t h a t  

Thus 

uniformly i n  m - > 0 .  
t h a t  

Since each Tm s a t i s f i e s  (l), i t  follows 

l i m  l sq  ( x ~ + ~ >  - T ~ s ~  (x,) I = o 
n- 

f o r  each f ixed  q - > 1. Noting t h a t  
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we obtain 

where lim E(q,n) = 0 for each q. 
n+m 
Let p be a seninorm for the weak topology of E, d (x,D) = 

P 
inf{p(x-y) : y E D} , and let F(T) be the fixed point set of T. 
It follows from [3, Theorem 31 that for each E > 0 there is 
6 > 0 such that if x E C and Ix-Txl < 6, then d (x,F(T)) < E .  

Given E > 0, we first choose q and then no such that 
P 

for all n - > no. 

We a l s o  have 

Hence 

nl -1 
) ,  1. E . 1 

j i=O J j+m n dp ('q (xi+k (n . ) - < limsup - 
I 

Consequently, z E F(T) and the proof is complete. 
v 

Theorem 2 can also be established by first showing that the 
set of sequences {xn} for which {Ixn+l-Txnl} is almost convergent 
to 0 is convex. To prove this fact, note that by (l), r 



-1 and that g 
method of [ 4 ] .  

is concave. Now Theorem 2 can be proved by the 

1 

3. Applications and open problems 

In this section we present some applications, as well as 
open problems. 
quences of the almost convergence of {Tnx} established in the 
previous sections (cf. [ 8 ] ) .  

The following two results are immediate conse- 

Theorem 3. Let C be a closed convex subset of a uniformly 
convex Banach space E with a Frgchet differentiable norm, 
T: C +- C a nonexpansive mapping with a fixed point, and x E C. 

(a) {Tnx} converges weakly to a fixed point of T if and only if 
the weak 1im(Tnx-Tn+lx) = 0. 

n- 

(b) If the matrix {a } is strongly regular and n,k 

then {yn\ converges weakly to a fixed point of T. 
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The method of [ 7 ]  y i e l d s  analogous r e s u l t s  f o r  nonexpansive 
semigroups on C .  
method used i n  t h e  proof of Theorem 2 . )  

(They can a l s o  be obtained d i r e c t l y  by the  

Theorem 4 .  Let C be a c losed convex subse t  of a uniformly 

[O,m)xC -f C a nonexpansive semigroup 3 7 I t h  a. f i xed  p o i n t ,  and 
convex Banach space with a Frgchet d i f f e r e n t i a b l e  norm, 
S:  

C .  

The weak 
T+c 

l i m  $ 1 S ( t ) x d t  
T + m  C 

e x i s t s  uniformly i n  c > 0 and i s  a f ixed  po in t  of S .  - 

S ( t ) x  converges weakly t o  a f ixed  po in t  of S i f  and only i f  
the weak l im(S(t+h)x-S(t)x)  = 0 f o r  a l l  p o s i t i v e  h .  

t-t- 

If  t h e  ke rne l  K i s  s t roEgly r egu la r  and 

m 

R(s)x = 1 K(s , t )S( t )xdt  J 

0 

then R(s)x converges weakly t o  a f ixed  po in t  of S .  

I n  the  s e t t i n g  of Theorem 1, i t  i s  no t  known i f  

T i s  f ixed  poin t  f r e e .  This i s  t r u e  i n  H i l b e r t  space.  
Also,  i n  t h e  s e t t i n g  of  Theorem 2 ,  i f  {xn} i s  def ined by ( 4 )  and 

m 

then IxnI -00 i f  T i s  f ixed  po in t  f r e e .  
n+m 

Another open problem i s  whether s t rong  almost convergence 
occurs i n  the  s e t t i n g  of Theorem 1 when T i s  odd. Again t h i s  i s  
known t o  be the  case i n  H i l b e r t  space.  Although the  same 
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question applies to part (b) of Theorem 3 ,  it is known [ 2 ] ,  that 
if T is odd, then the strong lim(Tnx-Tn+'x) = 0 if and only if 

n- 
{Tnx} converges strongly to a fixed point of T. 

8 

It would also be of interest to determine whether a pointwise 
ergodic theorem is possible, and whether similar results hold for 
other Banach spaces. 

Remark: We have already noted that Theorem 4 can also be 
established by the method used in the proof of Theorem 2. It 
follows that Theorem 4 remains true even if S is assumed to be 
only strongly measurable. (A strongly measurable S is continuous 
on (O,m), but not necessarily on [O,m).) 

. .. .. 
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