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NONLINEAR ERGODIC THEORY IN BANACH SPACES

by

ot

Simeon Reich

ABSTRACT

We prove the mean ergodic theorem for nonlinear
nonexpansive mappings in Banach spaces, extend it by
a different argument, deduce several consequences,
and point out open problems.

Introduction

The purpose of this report is to present a proof of the mean
ergodic theorem for nonlinear nonexpansive mappings T in Banach
spaces, to extend it by a different argument, and to point out
several consequences and open problems. Theorem 1, announced in
[10], establishes the weak almost convergence of the iterates
{Tnx} in uniformly convex Banach spaces with a Fréchet differen-
tiable norm. Its proof uses the ideas of Baillon [1l] who proved
the weak convergence of the Cesaro means of {Tnx} in Lp, l<p<e,
Although a simpler proof is available (Bruck [4]), we feel that
Baillon's ideas, as well as our modifications of his arguments,
are of independent interest and may be applied to other problems.
Theorem 2 is an extension of Theorem 1. It is concerned with the
sequence {xn} defined inductively by X 41 = chxn+(l—cn)xn,
Oicnil» and is proved by a different, shorter argument. The
Proposition in [10] is also used. The importance of establishing
almost convergence is illustrated by the fact that both parts of
Theorem 3 are immediate consequences of Theorem 1. They deal
with the equivalence between the weak asymptotic regularity of T
and the weak convergence of {T"x}, and with the summability of
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{Tnx} by strongly regular matrices. The method of [7] yields
analogous results for nonlinear nonexpansive semigroups (Theorem
4). Finally, we mention two open problems. They are concerned
with the possibility of a "blow-up'" result, and with strong con-

vergence for odd operators.

1. The sequence {T'x}

Let C be a closed convex subset of a Banach space E. Recall
that a mapping T: C » C is said to be nonexpansive of |Tx-Ty| <
|x-y| for all x and y in C, and that a sequence {xn} c E is weak-
ly almost convergent (cf. [6]) to y ¢ E if the weak

n-1 _
Az (i__f.o Xm) / nT

uniformly in k > 0. 1In this section we present a proof of the
following nonlinear mean ergodic theorem, announced in [10]. The
proof uses the ideas of Baillon (1], who showed that if E = LP,
l<p<=, then the Cesaro means of the iterates {Tnx} converge weak-
ly to a fixed point of T. Theorem 1 improves upon this result

of Baillon.

Theorem 1. Let C be a closed convex subset of a uniformly
convex Banach space E with a Fréchet differentiable norm, and
let T: C » C be nonexpansive. 1If T has a fixed point, then for
each x in C, {Tnx} is weakly almost convergent to a fixed point

of T.

Proof. Let § be the modulus of convexity of E. If

max(|ul,|v]) < M;, then

| (L-c)utev| < My (1 - 2min(l-c,c)s (lEﬁXl))

1

for all O<c<l. Taking u = cT(cxt(l-c)y)-cTx and v = (1l-c)Ty-
(1-¢)T(cx+(l-c)y) where x,y ¢ C and |x-y| < M, we obtain
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|ul, |v] < c(l-c)|x-y]| = Ml < M/4

and

2M1min(l—c,c)6<lgﬁ%L> < c(l-c){|x-y|-ITx-Ty|}.

Since 6§(e)/e is a nondecreasing function of e, it follows that

(M/Dé(ﬂLVL) < |Ix-y| - |Tx-Ty|

M

Therefore for each M there is a nondecreasing f: [0, M/2] ~
[0, M/2], with £(r) > 0 for r > 0, such that

f(|T(cx+(1-c)y)-(cTx+(1-c)Ty)|)

< |x-y|-]Tx-Ty]

for all |x-y| < M. Defining a function g: [0, M/2] - [0, M/2]
by

r
g(r) = & J f£(t)de | 0<r<M2,
0

we obtain

g (| T(ex+(1-c)y) - (eTx+(1-c)TY) |) -

< |x-y|-|Tx-Ty|,

where g is convex, strictly increasing and continuous. (§ is

not a convex function in general.) Now let fl and f2 be two
fixed points of T, and let J: E » E* be the (normalized) duality
mapping. Since L = %iQ(Tnx,J(fl-fz)) exists (see the Proposi-
tion in [10]), it follows that if {k(n)} is an arbitrary sequence

of natural numbers and s is a weak subsequential limit of

<nil Tk(n)+i x)/n ,
i=0

(s,J(fl—fz)) =L .

then
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Consequently, the theorem will be established if we can prove

that such an s must be a fixed point of T.

To this end, we first note that since T has a fixed point,
we may assume that C is bounded, with diameter d. Let

125 nj+no n1+...+n
V(nl’nZ""’nq) = %(T uy + T uy, +...+ T cluq

with u; e C, 1l<i<q. We now show, by induction on q, that there

is, for each q and Nl’ a constant I(q,Nl) such that

N,-1 N,-1 N -1

L l—...l— % % . |Tv(n,,...,n_)-v(n,+l,n,,...,n )|
N1 N2 Nq n1=0 n2=0 n =0 1 " q 12 " q
q
< I(q,Ny)
and
lim I(q,Nl) =0
N, »o |
1 nl+...n +n +1
Denote v(nl,...,nq) by w(nl) and T 9 9 uq+1 by z(nl)
We have
1Tv(n1,...,nq+l)—v(n1+1,...,nq+1)|
1 " 1
lT(a%T w(nl) + FES z(nl)) - (E%T Tw(nl) + T Tz(nl)>'
+ EﬁT ITw(nl)-w(nl+l)| ,
and by (1),
1 1
g<‘T<a§T w(nl) + T z(nl)> - <E%T Tw(nl) + =T Tz(nl)),>
< lwp-z@)| - |Tw(n))-Tz(n) | <
[w(nl)—z(nl)] - !w(nl+1)-z(nl+l)| + [Tw(nl)—w(nl+1)|

Summing, we see that since g is convex, we may take
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Il Ny) = A 1(q,Np) + g1 (d/N] + I(q,N))

Ci; xk+i)/n

by Sn(xk)’ and letting

Denoting

1 nl nl+n2
Sm(nl’nZ’ ,np) = E(Sm(T ul) + S _(T u2)
n,+m,+ +n
1 2 p
+,..+ 8 (T up)> ,
we also obtain
N,-1 N,-1 N -1
1 2
T T TR
=— . ..%— Ts_(n,,n n_)
N N N m 19 2) »
1 72 =0 n,=0 =0
P 2 oy
- sm(n1+l,n2,...,np)| (2)
< I(mp,N,)
Note that I(q,N;) is independent of {u,}.
Now let x ¢ C, X, = Tnx, and assume that the weak
%ig Sn.(xk(nj)) = z. We wish to prove that z is a fixed point
of T. Let K = {nj} and
s_(n,,n n) = l(s (x )
m*12 Y p pl"m n1+k(Nl)
+...+ S_(x
m n1+...+np+k(Npa
k(N,)
(thus u, =T 1'x). We claim that
Nl-l N -1
1i . . 1 1
im limsup ... limsup N N T
pre N1+oo Np+oo 1 P n1=0 n =0 (3)
NleK N_.eK P
P

Ism(nl,nz,...,np)-zl =0
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To prove (3), we first repalce the norm of E by an equivalent

norm for which E* is also uniformly convex. This is possible by
[5]. Thus there is [9, p. 89] a continuous nondecreasing function
b: [0,») » [0,=) such that b(0) = 0, b(ct) < eb(t) for ¢ > 1, and

|ty | 2 < 1x|2 + 2(y,Jx) + max(|x|,1) |y|b(ly])

for all x and y in E. Let
r = sm(nl,nz,...,n )-2

P

Since

= p-1 1 ,
rp P rp-l + p<ém(xn1+...+np+k(Np)) Z> ’

we obtain

N -1 2

1 2 p-1
N_ =17 < |5 rp-1‘ *
p n_=0

P

N -1

2 1 ' p-1
= = S -z, J r
P Np ng=0 m(xn1+...+np+k(Np)) z ( p p—l)
+ M Lb(l) for some M > 1

P p -

It is not difficult to check that for a fixed i,

S (X. ) ——————
+k (N N_»o
Np i+k ( P) p+ z

NpeK
Since
N -1
1 (m-1)d
N_ E_O Smipn ) - Sy ()| < TR
P np— P P

it follows that



N -1
2
. 1 2 p-l 2 1,1
e i Lol < G I P e f o)
N €K P
p
Hence,
Nl-l 1—1 N -1
f(p) = limsup %— y limsup L Y ...limsup %— E ]rpl2
ﬁlﬁf 1 nl=0 Ny=e 2 n2=O Jp+w P np=0
hleK NzeK N_eK
P

1,2 1.1
(25—) E(p-1) + M b(a)

| A

Since lim b(%) = 0, it follows that

p—>oo

lim £(p) = O ( ;7 L- m>
p—»oo p:lp
Since
2 n
1 2 \ 1 2
&L oe) =50 e
i=1 / i=1

(3) follows too.

Now let y ¢ C, denote Sm(nl’nZ”"

(y-Ty, J(sm-y)) = (y-s

< (sm-Tsm, J(sm—y)) =

(sm—sm(nl+l,n2,..

J(s_-y))
By (2),
%_ %_...é_ N%—l Ng-l N§_1
1 72 o) n1=0 n2=0 np=0

< dz/m + dI(mp,Nl)

.,np) + sm(nl+1,n2,...

,n_) by s_, and consider
p m

+ Tsm-Ty + sm—Tsm, J(sm—y))

,n )-Tsm.

(y-Ty,J(s-¥))
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(3) implies that

N,-1 N -1
lim limsup...limsup %—...%— ) | (y-Ty,J(s_-y)-J(z-y)) |
pro Nl+w Np+m 1 p n,=0 np=0 m
NleK N_eK
p
=0

It follows that for each m, (y-Ty,J(z-y)) < dz/m. Therefore
(y-Ty,J(z-y)) < 0 for all y in C. Taking = (l-t)z+tTz, divid-
ing by t, and letting t - 0+, we obtain =z Tz. This completes

o<

the proof.’

2. The sequence {chxn+(1-cn)xn}

In this section we establish an extension of Theorem 1 by a
different argument. In the setting of the previous section, let
{cn: n=0,1,2,...} be a real sequence with 0 < c, <1 for all n.

For x; in C we define a sequence {x_} < C by
X4 = CnTXn + (1—cn)xn , n>0. (4)

It is known [10, Theorem 2] that if

nZO Cn(l-cn) = ® .,
then {xn} converges weakly to a fixed point of T. This happens,

of course, if ¢, P for some O<p<l, or if c, > 0 and
k

(If

the limit is not a fixed point in general.) The remaining case,

c, 1, is covered by the following result, announced in [11].

«“

«
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Theorem 2. Let C be a closed convex subset of a uniformly
convex Banach space E with a Fréchet differentiable norm, and let
T: C > C be a nonexpansive mapping with a fixed point. Let {Xn}
be defined by (4). If %ig c, = 1, then {xn} is weakly almost

convergent to a fixed point of T.

Proof. Denote

n-1 \ '
Xy . n
<i£0 k+1>//

by Sn(xk). If the weak lim Snj(xk(nj)) = z, then the Proposition

']-H:o

in [10] implies that

(z,J(fl-fZ)) = lim(xn,J(fl—fZ))

N>

for any two fixed points f; and f2 of T. Therefore all we have

to prove is that z is a fixed point of T.
By [10, Theorem 2] we may assume that

o]

2 (1-cn) <

n=0
We may also assume that C is bounded with diameter d. Induction
on m shows that

n+m-1

m
|xn+m—T xn] < kz (l—ck)le-TxOI
=n
Thus
. . -
Ho [Tl =0

uniformly in m > 0. Since each ™ satisfies (1), it follows
that

lim |S

n—»>ow

m -
q(xn+m)—T Sq(xn)| =0

for each fixed q > 1. Noting that




-14-

18 (Rpi1) =8q (xp) | < d/a

we obtain

|8 G =TS, (x) | < d/q + e(a,m)

where lim e(q,n) = 0 for each q.

n-w
Let p be a seminorm for the weak topology of E, dp(x,D) =

inf{p(x-y): y ¢ D}, and let F(T) be the fixed point set of T.

It follows from [3, Theorem 3] that for each ¢ > 0 there is

§ > 0 such that if x ¢ C and |x-Tx| < &, then dp(x,F(T)) < e,

Given ¢ > 0, we first choose q and then ng such that

ISq(xn)—TSq(xn)l < 6
and :
dp(Sq(Xn),F(T)) < €

for all n > Ng-

We also have

1 n-1
n Ly Sqrs) 7 SnCyd

< (9"1) d
- n

Hence

1

dp(z,F(T)) = 1lim d

Hn 4,8, G y)e FO)

n.-1
- lim ¢ <r11— y sq(xi+k(nj)), F(T))

jreo 3 i=0
n,-1
. 1
< limsup — d (S (x. ), F(T)) < ¢
= jse [y 429 P4 1+k(nj)

Consequently, z ¢ F(T) and the proof is complete.

Theorem 2 can also be established by first showing that the
set of sequences {x_} for which {|xn+1-Txn|} is almost convergent

to 0 is convex. To prove this fact, note that by (1),

©»
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|(l—a)xi+l +oay, . - T((l-a)xi+ayi)|

{ A

[ (1-a) (x; 1 1-Tx;) + alyyyq-Ty) |

+ {(l—a)Txi + aly, - T((l-a)xi+ayi)f

'A

(l-a)lxi+l-Tx. + aly

i Ty

i+1" i'

-1
+ g (lxi'yi(_'TXi-Tyil)

| A

(1-a)[x;1-Txs | + aly;y -Ty,|
-1
Te TUxgmygloc Iy b Iy Tl + dy Ty D

and that g_l is concave. Now Theorem 2 can be proved by the
method of [4].

3. Applications and open problems

In this section we present some applications, as well as
open problems. The following two results are immediate conse-
quences of the almost convergence of {Tnx} established in the
previous sections (cf. [8]).

Theorem 3. Let C be a closed convex subset of a uniformly
convex Banach space E with a Fréchet differentiable norm,
T: C » C a nonexpansive mapping with a fixed point, and x ¢ C.

(a) {Tnx} converges weakly to a fixed point of T if and only if
the weak 1im(Tnx—Tn+lx) = 0.

N-+e

(b) TIf the matrix {an k} is strongly régular and

(o]

K
y.= z a T'x ,
noogsp mk

then {yn} converges weakly to a fixed point of T.
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The method of [7] yields analogous results for nonexpansive

X

semigroups on C. (They can also be obtained directly by the
method used in the proof of Theorem 2.)

-

Theorem 4. Let C be a closed convex subset of a uniformly
convex Banach space with a Fréchet differentiable norm,
S: [0,2)xC » C a nonexpansive semigroup with a fixed point, and

x ¢ C.

(a) The weak
15 1 JT+C
im T—

T—)oo c

S(t)xdt

exists uniformly in ¢ > 0 and is a fixed point of S.

(b) S(t)x converges weakly to a fixed point of S if and only if
the weak %im(S(t+h)x—S(t)x) = 0 for all positive h.
-0

-

(c) 1f the kernel K is strorngly regular and

R(s)x = J K(s, t)S(t)xdt ,
0
then R(s)x converges weakly to a fixed point of S.

In the setting of Theorem 1, it is not known if

(;; ) /

when T is fixed point free. This is true in Hilbert space.
Also, in the setting of Theorem 2, if {xn} is defined by (4) and

——— 0
n->o

n£0 Cn(l_cn) = ®, ;

then [x_ | —« if T is fixed point free.
n 11>

Another open problem is whether strong almost convergence
occurs in the setting of Theorem 1 when T is odd. Again this is
known to be the case in Hilbert space. Although the same
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question applies to part (b) of Theorem 3, it is known [2], that
if T is odd, then the strong 1im(Tnx-Tn+l

>

x) = 0 if and only if
{Tnx} converges strongly to a fixed point of T.

It would also be of interest to determine whether a pointwise
ergodic theorem is possible, and whether similar results hold for

other Banach spaces.

Remark: We have already noted that Theorem 4 can also be
established by the method used in the proof of Theorem 2. It
follows that Theorem 4 remains true even if S is assumed to be
only strongly measurable. (A strongiy measurable S is continuous

on (0,»), but not necessarily on [0,«).)
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