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Abstragg

Experiments have been performed with the FELIX facility at Argonne
National Laboratory to study the coupling between eddy currents and deflec-
tions and to provide data for validating eddy current computer programs.
Experiments with cantilevered beams in crossed steady and decaying magnetic
fields verify that coupling effects act to alleviate the large currents,
deflections, and stresses predicted by uncoupled anaiyses. Measurements of
magnetic fields induced in conducting hollow cylinders are analyzed by expon-
ential fitting and by transfer functions. Spatial variation in the parameters
of the exponential fit and in those of tne one- and two-pole transfer func-
tions suggests that several eddy current modes are acting in the cylinder test
pieces.
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1. Introduction

Existing eddy current codes, and new ones as they are developed, must be
validated against experimental data representing geometry and operation simi-
lar to those of a fusion reactor. Consequently, the early experiments with
the FELIx[l-ZJ facility have been devoted to obtaining data which can be used

to validate eddy current computer codes.

The FELIX facility at Argonne National Laboratory (ANL) includes:

-

1) A solenoid magnet producing fields up to 1 V.

2) A dipole magnet surrounding the solenoid and producing fields up to
D.5 T perpendicular to the solenoid field.

3) A switching circuit capable of discharging the dipole field with a time

constant as low as 5 ms.

4) A cylindrical experimental volume within the fields of the two magnets
of dimensions 1.2 m axially by 0.9 m diameter, and with convenient

access.
5) Non-conducting test-piece supports.

6) Instrumentation suitable for measuring currents, magnetic fields,
angular displacements, temperatures, and stresses.

7) Computerized data acquisition with provision for recording values at
2048 times on as many as 30 data channels.

Five major series of experiments have been conducted:
1) Experiments on the coupling between eddy currents and angular displace-

ments of loops and plates in crossed constant and changing fields as a
model of tokamak limiters. These experiments were carried out by a team



of investigators from Princeton Plasma Physics Laboratory (PPPL) and
ANL, and verified that coupling effects lower the eddy currents and
displacements and thus decrease the design constraints on limiters.

2) Experiments on the coupling between eddy currents and angular
displacements in cantilevered beams. These experiments carried out for
a PhD dissertaion from the University of Washington, Seattle, extended
the coupling results to a more realistic model of tokamak limiters.

3) Experiments measuring eddy current effects in hollow cyiinders. These
experiments explored the limitations of using 2-D codes to model 3-D
geometries.

4) Experiments measuring eddy current effects in flat plates. These
experiments were conducted to validate 2-D and 3-D eddy current computer
codes.

5) Ixperiments measuring eddy currents aad field patterns around conducting
bricks. These experiments provided data to validate 3-D eddy current
codes on geometries with slots or multiple connections.

(3,41

this paper describes the analysis of the second and third series. The canti-
levered beam experiments are treated in Section 2. Section 3 describes the

Analysis of the first series of experiments is appearing elsewhere

anayisis of the cylinder experiments by a fit to two exponentials; and Section
4 the analysis by a transfer function.

2. Cantilevered Beam Experiments

In a tokamak fusion reactor or other magnetically confined fusion device,
a rapid decay of magnetic field due to a disrupting plasma current induces
eddy currents in the limiter and surrounding structures. The eddy currents,
through interaction with the applied toroidal and poloidal magnetic fields,
produce large mechanical torques and forces that deflect the structural
components.  Such undesired deformations and the resulting electromagnetic
stress may compromise the integrity of the structural design.



Fortunately an important coupling effect between deflection and eddy
currents can help mitigate the potential damages to the structures predicted
by performing independent electrical and structural analyses. Thi; coupling
occurs when, as it deflects, the component intercepts additional magnetic
flux. Experiments on the magnetic coupling in rigid body rotation were
performed by a team of investigators from PPPL and ANL with FELIX. The
results of these experiments [3,4] showed that the coupling between rotation
and eddy current could reduce the peak current, deflection and other
electromagnetic effects to a level far less severe than would be predicted if

coupling is disregarded.

The study of cantilevered beams is the next logical step, and a
significant one, beyond the study of moving rigid bodies. Since structures
near the plasma are typically cantilevered, the beams provide a better model
for the limiter blades of a tokamak fusion reactor than do the rigid body
experiments. The beams, which consist of several types of material and have
differing dimensions, were clamped rigidly at one end and subjected to
simultaneous time-varying and constant magnetic fields. The time-varying
field simulates the decaying field during a plasma disruption and the constant
field models the. toroidal field. The ratios of solenoid to dipole field are
kept in a range of 10:1 to 20:1 as would be appropriate to tokamak limiters.

2.1 Analytical Model

Consider a cantilever beam of length i,, width a and thickness h (Fig. 1)
clamped rigidly at one end. Initially everywhere parallel to a uniform and
constant magnetic field By, which in the experiment is called the soiencid
field, the beam is also perpendicular to a uniform but time-varying magnefic
field qy. which in the experiment is called the dipole field. The time
changing field will induce eddy current in the beam. The current in paths
parallel to the z direction will interact with constant field Bx and produce a
Lorentz force that causes lateral beam deflections in the y direction. As it
deflects, the beam will intercept some flux from the field Bx. The changing
flux produces an additional eddy current that opposes the current produced by
the time-varying field and creates a restoring force. Thus the total eddy
current is reduced, as is the force from the interaction of the total eddy
current and the uniform field.
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Fig. 1. Schematic of cantilevered beam.



For the purpose of apalysis, the current induced in the beam is

characterized by a single current loop.
The governing equations can be written as:

4 2
£1 ) ng,t) - p(X,t) -m ] '; _ _g_: (1)
ax at
dl . d¢ 2
Lag *RL = - (2)
where:
w(x,t) = the vertical deflection
EI = the flexural rigidity
m = the mass per unit length
o = the mechanical damping constant
p{x,t) = the distributed Lorentz force
L = the effective inductance
R = the effective resistance
$ = the magnetic flux
- Cow(e,t)
¢--AtBy+ABx—E— . (3)

Ay and A are the effective total area and unclamped area of the beam.
In this model By decays exponentially from some initial value B, with
decay time constant T4

By(t) = B, exp(-t/t, ) (4)

We assume the general solution for w(x,t)} of the form

a
wix,t) = 7§

L Xn(x) fn(t) (5)

where X (x)'s are the eigenfunctions satisfying the differential equation for
free vibration
d4Xn(x) -y
£l —g— = u mxX ,
dx



or
—— - kX =0 (6)
and the four boundary conditions at the fixed end (x = 0) and at the free end
(x = ).
The first four =zigenvalues knz and the corresponding eigenmodes of

vibration are given in Table 1.

2.2 Test Pieces and Measurements

Die to the numerous factors contributing to the caupling effect
(damping), several test pieces of various sizes and praperties were
employed. Half hard copper, phosphor bronze, half hard cartridge brass, and
6061-aluminum alloy were chosen as test materials.

A total of 12 beams with 14 cantilever setups were investigated experi-
mentally. The physical dimensions and properties of the beams are summarized
in Table 2. A1l beams are 48.7 cm long, 10 cm wide, and clamped 7.6 cm from
one end unless atherwise stated.



Table 1

EIGENVALUES AND EIGENMONES FOR THE CANTILEVERED BEAM

n knz Characteristic Modes of Vibration
1 1.857 a ' _
[ £ >

2 1.694 g a7l

q T\-
Vi
3 7.854 2/‘—"\95&//
c ECEL
4 10.995 s6f Gc&l
i ¢¢ .
4 SN
0. b4l

The test beams were held rigidly with a nonconducting support frame.
Beam deflection was measured with an electro-optical tracking device. The
target, which has a light-dark interface, was attached to the edge of the beam
at two locations: the free end and 16.7 cm from the end.

The total transient eddy current in the beam was measured with a Rogowsk1
coil linking through a central hole 2.54 cm in diameter.

Strain gauges were ysed to measure strain and thercfore stress in the
beam. Strains were measured at two locations, near the clamped end and 16.7
cm from the free end. At each location, a pair of gauges were attached to the
top and bottom surfaces of the test beam. The use of double gauges effec-
tively doubles the signal to noise ratio.

The solenoid and dipole fields were measured with a pair of single-axis
Hall probes. The probes were excited with a high frequency AC carrier making



them somewhat immne to noise pickup by lead wires.

2.3 Dipole Field Alone

Wwhen the solenoid field is zero, there is no deflection of the beam, and
the circulating current, as measured with the Rogowski coil, experiences a
time behavior similar to that described below for the induced field in the

cylinder experiments.
Table 2

DIMENSIONAL AND PHYSICAL PROPERTIES OF THE BEAM

Material Electrical Mass Young's Beam Thickness Remarks
Resistivity Density Modulus # (mm)
(Q m) (kg/m>) (Pa)
Cu 1.72x10"8 8912. 1.1x101! 1 2.337
2 3.175
3 4.597
Bronze 1.13x107 8857. 1.1x10!! 4 3.175
Brass 6.10x10°8 8525. 1.1x10! 5  3.175
Al 3.95x10™8 2713. 6.89x1010 6 2.350
7 3.175
8 4.153
Cu 1.72x10°8 8912. 1.1x101! 9 3.175  9.lcm slot
10 3.175 18.2cm slot
11 3.175 57.8cm long

clamped 16.7cm
12 3.175 70.0cm long
¢lamped 28.9cm

-

Figure 2 compares the analytic solutions with experimental results for
three beams of the same size but of different resistivities: copper, aluminum
and brass. In general the analytic prediction agrees well with experimental
results. The peak current may differ by up to 10%, but the shape aof the
predicted curves are preserved.

2.4 Combined Dipole and Solenoid Fields

During the combined field tests the solenoid fields used were 0.2, 0.5,
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0.7 and 0.9 T for each dipole field and decay time. Measurements of the
solenoid fields with a horizontal Hall probe when there was no test piece
showed the actual fields were close to the nominal values.

Deflection of the beam, through interaction with solenoid field,
generates eddy currents that counteract the contributions to the eddy currents
resulting from the dipo.2 field decay, and thus can significantly alter the
subsequent beam motion. This interaction increases with increasing solenoid
field. Figures 2 through 6 show the analytical and experimental results for a
medium aluminum beam. In each figure, deflection at the end and 16.7 cm from
the end, total eddy current, and strain measured at 3.1 cm and 24.4 cm from
the clamped edge are shown. The dipole field was initially 0.0557 and decayed
exponentially with a time constant of 6.6 ms.

The progression from Fig. 3 to Fig. 6 shows the effect of the coupling.
In Fig. 3 (Bx = 0.27) coupling was weak, the beam osZillated at its natural
vibration frequency, the current decayed quite smoothly with only small
perturbation due to deflection. The presence of the second mode of vibration
could be seen from the strain gauge signal, especially from the gauge located
at the widdle of the beam. There were practically no contributions from modes
higher than the second mode. This observation is consistent with the
analytical calculéfion which predicts higher modes have very little effect on
the outcome of the solutions. In Fig. 4 (Bx = 0.5T) the coupling effect
became obvious, the second peak in deflection was markedly less than the first
peak. The total current decayed faster and a second peak was induced which
opposed the beam motion. 1In Fig. 6 (Bx = 0.9T) the coupling effect was more
pronounced. After a first swing, the beam slowly returned to rest at the
equilibrium position . It is also interesting to observe that the second made
of vibration was damped more heavily at higher solenoid fields.

Note from Figs. 3 and 6 that the maximum end deflection increased by a
factor of 2.1 when the solenoid field increased 4.5 times. Without coupling,
the peak deflection would be expected to increase linearly with field
intensity. For comparison, the analytical solution without the coupling term
are included for the cases of Fig. 3 (weak coupling) and Fig. 6 (strong
coupiing). See Figs. 7 and 8.
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3. Hollow Cylinder Experiments
A series of experiments was performed to provide data to investigate the
limits of applying two-dimensional eddy current codes to three-dimensional
geometries. The test pieces were hollow aluminum cylinqers with axis hori-
zontal (perpendicular to the dipole field). Each cylinder; had two full-length
slits located diametrically opposite one another. The slits vere located in a
horizontal plane, and did not impede the eddy-current flow.

The dimensions of the three cylinders are shown in Table 3. The dimen-
s.ons were chosen so that all three would have about the same L/R time
constant and that the cylinder with the smallest thickness could be approxi-
mated closely by a two-dimensional shell, and the other two could be more
essentially three-dimensional. The medium cylinder, originally 60 cm long,
was later cut into two pieces, 40 cm and 20 cm long.

Table 3

DIMENSIONS OF SPLIT-CYLINDER TEST PIECES

Test Piece  Length (cw) Thickness (cm) 3.0. (zm) 1.0. (cm)
Large 120 0.48 21.3 26.3¢
Medium 60,40,20 1.27 13.97 11.43
Small 60 2.54 10.16 5.08

Results were presented[5] for the induced field at various axial posi-
tions in the large, medium-60 cm, and small cylinders for a nominal dipole
field level of 100 mT and nominal decay time of 40 ms. The data was recorded
every 2 ms. For completeness, those results are tabulated below. .

The analysis described here was primarily for the induced field at
various axial positions in the large, medium-40 cm, medium-20 cm, and sma]i
cylinders for a nominal dipole field level of 50 mT, nominal decay time of 5
ms, and data recorded every 1 ms. Some date were also obtained and analyzed
for the large, medium-40 cm, and medium-20 cm cylinders for a nominal dipole
field level of 100 mT, nominal decay time of 10 ms and 40 ms, and data
recorded every 1 ms.

The induced field is the difference between the total field and the
dipole magnet field, measured by the Hall probe when the cylindrical test
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piece is absent. Before the measured dipole magnet field is subtracted, it is
normalized by the ratio of the initial total field to initial dipole magnet
field, both measured over a 100 ms time period.

An arbitrary time scale is recorded with the data. In general, the time

at which the dipole field begins to decay, t., is taken as an unknown which is

o’
to be determined from the data. For convenience, a reference time (550 ms in
what follows) is chosen on the arbitrary time scale, and t, and other times
are measured relative te that reference time.

3.1 Fit to Two Exponentials

To put the experimental results in a form convenient to users, they
should be expressed by a small number of parameters. One reasonable <2t of
parameters are those of a pair of exponential functions. For the general
case, in which the decay begins at an unknown time t , the induced field B can
be written as

B = C exp(-ylt) +C, exp(-yzt) (7)

The experimental results will be characterized by performing a least-
squares fit of Eq. (7) to the data over a suitable time period. However, it
is well known that an exponential equation of this type in which all four
parameters are tod be fitted is extremely 111 conditioned.[G]

In general, values or ranges of values are chosen for Y1 and Y2, and Cl
and C, are determined by a least squares prccedure. Figure 9 .epresents the
two-exponential fitting of the induced field at the center of the large
cylinder for a nominal 5 ms dipole field decay (actual v = 6.87 ms, 1/t =
0.14556 ms'l). The sum of squared deviations (SSD) is given by

50 2
$sb = § (B _-Bg)
L f

where t is the time in 1 ms steps from the reference time, By is the measure&
induced field and B; 1s the field from the fit to Eq. (7). The figure shows
the values which minimize SSD (v, = 0.0959 ms™!, y, = 0.1786 ms™}), the curve
of the y] which minimizes SSD for specified yp, and the contours for SSD 0.05
mT2 greater and 0.20 mT2 greater than the mimimum value, 1.237 mTZ.

As can be seen in the figure, large changes in y; and y, along the -
minimum curve will result in only a small increase in SSD.

Analysis of the cylinder experiments with a time constant of 40 msts]
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showed that the induced field B could be fit Eq. (7) and that v, and Yo could
be identified as the reciprocals of the applied field decay time { and the
For Yy < 0.0252 ms'l, as determined from the data with
no test piece, a three-parameter fit for Yo Cis and CZ yielded values
of Yo for different axial positions in a given cylinder that varied up to 10%
with one another as shown in Table 4.

test-piece L/R time.

A four-parameter fit to the large

cylinder data for 1 = 6.87 ms; shows that both y; and yp vary with position,

and neither of them is near vy = 1/1 = 0.14556 ms~L.

Table 4
THO EXPONENTIAL FIT TO INDUCED FIELD IN THE LARGE CYLINDER r = 39.68ms
vy = 0.0252 ms™

Position cm 0 10 20 30 40 45 50
Yo ms~l  0.0977 0.0960 0.0942 0.1000 0.10785 0.1110 0.0973
C, mrT 25.67  23.536 22.25 27.30 18.26  15.30  9.983
Co m  -20.41 -18.19 -17.17 -21.04 -14.05 -11.40  -7.169
C mT  27.800 25.797 24.459 29.804 19.779 16.681 11.132
t, ms -3.163  -3.639 -3.756 -3.482 -3.171 -3.429 -4.523
ty-t,  Ms 18.690 18.891 19.110 18.427 17.591 17.281 18.737
By mT 12.880 11.819 11.069 14.012  9.730  8.342  5.144
B, mi/ms  2.005 1.826  1.688  2.229  1.635  1.431  0.802
B 2.925  2.919  2.914  2.932  2.956  2.965  2.923
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TWO EXPGNENTIAL FIT, MEDIUM & SNALL CYLINDER ¢ = 39.68 ms
y, = 0.0252 ms!

“Medium Small
Position cm 0 10 20 0 10 20
Y2 ms ™! 0.0778 0.0791 0.0864 0.0741 0.0743 0.0823
€y mT 48.465 48.323 35.298 51.059 48.991 47.898
Co mT -41.474 -41.46 -28.77 -43.888 -41.91 -42.1
o mT 52.220 51.911 38.399 55.201 53.078 50.705
t ms -2.962 -2.842 -3.341 -3.095 -3.179 -2.260
tm-to ms 21.431 21.222 20.133 22.057 20.022 20,727
Ba mT 20.573 20.721 16.376 720.895 20.137 20.866
B mT/ms 2.747 2.798 2.350 2.699 2.606 2.895

By 2.861 2.866 2.889 2.849 2.850 2.876
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Table 5

TWO EXPONENTIAL FIT TO INDUCED FIELD IN LARGE CYLINDER

Y, = 0.14556 ms™, ¢ = 6.87 ms

Position cm 0 10 20 30 40 45 55
Yy ms ™1 0.0959 0.0967 0.0993 0.1016 0.1005 0.1026 0.1060
Y, ms~} 0.1706 0.1669 0.1689 0.1733 0.1972 0.2077 0.2203
Cy mT 79.67 82.40  76.47 100.61  45.3¢  43.95  13.11
Cy mT -61.36 -63.69 -60.17 -70.24 -33.63 -30.37 -10.83
C mT 111.37117.49 107.64 100.61  61.85  63.06  15.65
t, ms 0.53  0.35 0.58 0.48 0.93 0.50 2.35
ta-to ms 7.1 7.18 7.63 7.45 6.97 6.71 6.40
tn ms 8.24  8.13 8.21 7.93 7.90 7.21 9.75
B, mT 23.28 23.3¢  20.79 19.53  15.06  16.03 4.12
8, mT/ms  8.322 8.246  7.493  7.211  5.983  6.626  1.789
Bg 2,756 2.752  2.750  2.750  2.770  2.774  2.779
5SD mTe 1.237 1.558  1.492 0.725 1.105 1.942  1.089

Since different values of v; and v, fit the experimental data for induced
field almost equally well, as seen in Fig. 9, it seems worthwhile to seek
unique parameters to characterize the data. .

Four parameters with more physical significance are shown in Fig. 10: to,
the initial time, at which 8 = 0; BO. the rate of change of B at to; tm' the
time at which 8 is a maximum; and Bys the field at ty These four parameters
(tys ty. By, BO) can be expressed in terms of (Y], Yp» Cps Cp).  The values
of Yoo €. and C, which give the best fit vary strongly with yl.but the

1 .
values of (¢t , t., B, Bo) calculated from (yl, Yps Cps Cp) vary only slowly

The two-exponential expression, Eq. (7) can be rewritten as:
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Fig. 10. Four physical parameters characterizing the induced

field data.
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B = C [exp -y, (t - to)} - exp {-v, (t - to)}] {(8)
with

t, = &n (- CZ/Cl)/(Y2 - Y]) (9)

C =0Cy exp (-y]to) = - C.exp ('tho) (10)

Differentiating Eq. (8), we find

t, - t, = n (Y1/Y2)/(Y] - YZ) {11)

B =C O - Y1/Y2) exp {-v, (tm - to)} (12)

30=C (YZ ‘Y]) (13)
Combining Eq. (11) - (13) yields the result that the dimensionless
form Ba obeys

36 = BO (tm - to)/Bm =e if Y 2T {14)

>eif YWY,
Tables 4 and 5 show the values of these physical parameters.

3.2 Three Exponential Fit

If the cylinder displayed a single eddy-curreat mode, then y;, vo, .
and to would not vary with axial position. The observed variation suggests
that more than one eddy current mode is active. If two are acting, then thg
data might be better fit by:

B = C,[exp {-v (t-t )} - exp {-y (t-t )}]
+ C[exp {-yb(t-to) - exp {-yo(t-to)}] 18)

In the two current mode model, the values of Ca and Cy would be expected
to vary with axial position, but the values of the tys Yor Ya and vy, would
not. In practice the fit with Eq. (15) was never appreciably better than the



- 25 -

fit with Eq. (7), and goed fit required v ., vps Yq» and/or t, to vary with
axial position. Such behavior is inconsistent with a model of two dominant
eddy current modes, but could be consistent with several dominant modes.

4. Transfer Function Analysis

The electromagnetic behavior of the cylinder can be thought of as a
linear system which generates an output g(t), i.e. the induced field, from an
input f(t). The time derivative of the dipole field without the test piece is
considered as the input. The transfer function H(w)} characterizes the system

and is given by
Hw) = G(w)/F(u) (16)

where F(w) and G(w) are the Fourier transforms of input f(t) and output g(t),
respectively.[7] The transfer function is unique and independent of the
input. Once the transfer function has been calculated, the output from any
input is calculated from the inverse-Fourier transfer of H(w) F(w), or the
convolution of input f(t) and system impulse response h(t). The impulse
response h(t) is the response of the system when the input is a delta func-
tion s(t); it is calculated as the inverse-Fourier transform of H(w).

To better understand the electromagnetic induction mechanism and put the
experimental results in a form convenient for comparison with the results of
eddy-current code computation, the transfer function H{w) is analyzed in terms
of its pole(s). If the electromagnetic induction does not incorporate any
capacitance, the poles are located on the positive pure-imaginary axis, and
correspond to an exponentially decaying impulse response. From a real system
condition, i.e. H(w) = H*(-w), the coefficients of the poles are also pure
imaginary and the transfer function may be written as

H(w) =
n

W~ 8

! -iCn/(m -1 Yn) - (17)

where Yn and C, are real numbers.

For an expoquﬁ?ally decaying function with time constant L 1/70.
i.e. f(t) = fye 0 as input, the transfer function Eq. (17) is equivalent
to an induced field
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f C
0 ’n

g(t) = 1 [exp (-v t) - exp [~y t)] -

n=1 Yo~ 'n

In the cas> of a single pole (n=1 only),

f C
0
g(t) = o [exp (—ylt) - exp (-yot)] .
4.1 Transfer Functions with One Pole

If the test cylinder is characterized by a single L/R time constant, the

transfer function will have only one pure-imaginary pole; i.e.

2y 8

Hla) = H (u) + T, (0) = -iC/(w - Ty) = C( v= iw)/(u® * ¥
where y and C are real values identifying the location and amplitude of the
pole, and Hr(“) and Hi(”) are the real and imaginary parts of H(w), respect-
ively. As shown in Fig. 2(a) this one-pole transfer function is best chara-
Cterized by the maximum of Hr at w = 0, and minimum and maximum of H;
at w = ty. It 1is worth noticing that lHr(0)|=2IHi (ty)1 = C/y. Another
important characteristic of one-pole transfer functions is that the real and
imaginary parts of its reciprocal, G(w) = 1/H(w) are constant {y/C) and
linear (w/C), respectively (Fig. 11).

Therefore, provided the reciprocal of the transfer function calculated
from experimental data shows constant real part and linear imaginary part, the
transfer function has only one pole y = Gr/(G{/dm) and coefficient C
= (G{/dm)-l, where G. and GI are the real part and the derivative of the
imaginary part of 1/H(w), respectively.

4.2 Transfer Functions with Two Poles

If the test cylinder has two distinct current patterns with different
time constants, the transfer function may also have two pure-imaginary poles,
corresponding to the two time constants, as '

- iC] - iC2
H{w) = H () + i H {u) = — + .
r 1 w = ’IY] w - 'IYZ
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IS S D 207 SRS 1 . 2
ol gt gl [t ],
w *t Y-l w t YZ w ot Yl w o+ Y2
and its reciprocal becomes
. - ; _ 1 D8 . 0
1/Mw) 2 Glw) = Gr(m) + 1 G](u)) = E [A - —2——;?] +1 —Ei [] + ) 2] ’ (20)
w w + B
where
M- 5. %2t SN
G4 GG
2
(Y] - 72)

C=C, +C , D= ¢, C, .
1 2 lC] + Czi2 172

Now G. is'no longer constant, except in the limits of small w, lwl << IBf,
and large w, i.e. |w|l >> [D}. Also G; is linear in the same limits (Fig.
12).  Therefore, from the values of G.(0), G.(=), G{(O), and G{(m), one can
calculate poles and their coefficjents. However, accuracy of the transfer
function calculation at high frequencies is hard to achieve, especially from
experimental data.with substantial noise and low sampling rate.

A more practical method starts with approximate values for one pole.
Under the assumption that iy] is a pole of the transfer function, the other
pole and coefficients can be calculated as

Hr(Y]) + Hi(Y]) .

= (21
Y2 Ho(ry ] - (0] - H (v,) noe ?
2
.2 . (21b)
c, = P [Hr(O) 1 Hi(O)] ,
and
Cy = vy [H.(0) - Cpy,] . (21c)

Also Yy should satisfy an equality such as

[H.(xy) - HLO) = H, (v,)]° ‘
H;(Y]T*' Hihﬂ B Hr(O) * Hr(Y]) * Hi(Y]) =T Hi(O) . (22)
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Fig. 12. Reciprocal of theqtransfer function, G(u) =
1/H(w), with two pure imaginary poles .,



- 30 -

In actual data analysis one may need to iterate to satisfy Eq. (22) and/or the
condition of minimum standard deviation between experimental data and the two-
pole-fit data.

4.3 Analysis Procedure

Transfer functions from FELIX cylinder experiments are analyzed for
several axial positions. Four different cylinders, i.e. large cylinder,
medium cylinders with 40 cm and 20 cm length, and small cylinder, all with
horizontal slits, are used for the experiment. Experimental data with 5 ms
{nominal) dipole decay time constant are selected to investigate axial-
position dependence of the transfer functions. Also saveral data with 10 ms
and 40 ms nominal dipole decay time constant are analyzed to check the inde-

pendence of the transfer function from input.

First the actual time constants of input dipole field were calculated.
The Fourier transforms of the dipole field without any test piece show
characteristics of one-pole transfer function as described in the previous
csection and Fig. ll. Actual time constants turn out to be 6.87, 12.03, and
39.40 ms for nominal 5, 10, and 40 ms data, respectively. Then the input is
calculated as

Flw) =i BO Yo/(w - YO) s

where Y, and B, are time constant and field magnitude at t = 0, respective-
ly. MNote that the time differentiation of the dipole field has contributed a
factor of Y, ON F(w). This analytic input was used in all subsequent analy-
sis.

For each set of experimental data a transfer function {s calculated from
the Fourier transform of the induced field and F(w), and is fitted to the one-
pole representation. Since the sum of squared deviations between the calcu-
lated transfer function H(w) and one-pole fitted H(w) varies very rapidly with
small changes in the zero-time ty, the transfer function was multiplied by
exp (iuw at ) to best-fit the one-pole representation.. The at_ values, less
than 1 ms for FELIX experimental data, may be an indication of uncertainty in
experimental dipole-discharge zero times. Then Eqs. (21) and (22) are applied
using the one-pole as Yo to determine if there is a second pole, and if so,
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to determine its location and its coefficient. Also the real and imaginary
parts of the 1/H(w) are examined for characteristics of a two-pole transfer

function.

4.4 Results

Over the central region of each cylinder, the induced signal is strong
enough to permit the transfer function analysis. However near the ends the
induced field is too weak to find a meaningful transfer function.

Figure 13 shows the transfer function and its reciprocal at the center of
the medium (40 cm) cylinder. The real part of 1/H(w) is close to constant,
and the one-pole representation of the transfer function is almost identical
to the one calculated from experimental data. Hence the amplitude of the
second pole is very small compared to the first pole, and the two-poles
representation is nearly the same as the one-pole representation except for
very small w.

Near the ends of the cylinders the induced field is weak, and the dif-
ference between actual data and one-pole fit becomes prominent for small 4 as
shown 1in Fig. 14. The two pole fit gives better results for small w, but is
almost identical for others. However the second pole is still very weak and’
small, and may come from experimental errors.

Results of the fittings are summarized in Tables 6-9. The values
of Ato in the tables are measured from the beginning of the range used for the
Fourier transform.

The variation of the dominant pole values with axial position for each
cylinder is shown in Fig. 15, Poles of 6.87 ms dipole decay time are
connected by lines. Other poles of 12.03 and 39.40 ms data are also shown for
comparison, and support the independence of the transfer functions from the
input field. It is worth noticing that the pole becomes bigger, i.e. the
induced field decays more rapidly, as its position approaches the ends of the
cylinders. This interesting phenomena may indicate the existence of many eddy
current modes in the cylinders. Also the pole amplitude becomes smaller as
its axial position approaches the c¢ylinder ends.

The sum of squared deviations divided by the sum of the square of the
transfer function, i.e. r [H(w) - HTm)]Z/ z H(w) exhibits steep minima as a
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function of pole position, where H(w) and H(w) are actual and fitted transfer
functions, respectively. That behavior indicates very good selectivity of the
poles using this transfer function analysis.
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Table 6

TRANSFER FUNCTIONS FOR LARGE CYLINDER

- -1
Yo 145.56 s

Axial Pole 1 Pole 2
Position y} C1 Yy Cy SSDR* Ato
(cm) (s-hy  (s7h (s71) (s~h) (x1073)  (ms)
0 1 pole fit 107.2  0.971 - -, 0.291 -0.48
2 pole fit 107.1  0.962 16.3  0.48 x 10~ n.188
10 1 pole fit 108.0  0.956 - - 0.175
2 pole fit 108.7  0.953 20.6 0.34 x 10” 0.138
20 1 pole fit 111.4  0.927 - - 0.203
2 pole fit 111.4  0.921 15.0  0.32 x 1072 0.136
30 1 pole fit 118.1  0.856 - - 0.217 -0.51
2 pole fit 117.3  0.852 7.2 0.25 x 1073 0.212
40 1 pole fit 125.4  (.713 - - 0.498
2 pole fit 129.0 0.714 18.1  0.52 x 1072 0.330
45 1 pole fit 134.1  0.594 - - 0.430
2 pole fit 143.4  0.600 26.5 0.11 x 107} 0.488
50 1 pole fit 139.8  0.484 - - 1.010
2 pole fit 151.9  0.49] 22.8  0.80 x 10~° 0.886

* SSDR (Sum of Squared Deviation Ratio) = ¢ (H - FWZ/E H
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Table 7

TRANSFER FUNCTIONS FOR MEDIUM 40 cm CYLINDER
Y, = 145.56 571

Axial Pole 1 Pole 2
1t x*
Position I{ C} yzl Cgl SSDR-3 Ato
(cm) (s™*) {(s™*) (s™) (s™*) (x1077) (ms)
0 1 pole fit 88.4 0.986 - - 3 0.094 -0.80
2 pole fit 87.7 0.980 9.4 0.54 x 10~ 0.107
5 1 pole fit 90.6 0.929 - - 9 0.190 -0.34
2 pole fit 90.7 0.923 15.3 0.30 x 10~ 0.152
10 1 pole fit 97.4 0.805 - - 2 0.332 -0.45
2 pole fit 98.6 0.799 20.5 0.58 x 10~ 0.231
15 1 pole fit 106.5 0.551 - - 2 1.114 -0.69
2 pole fit 107.3 0.545 14.7 0.40 x 10” 0.812

* SSDR (Sum of Squared Deviation Ratio) = ¢ (H - ﬁ)z/ r He
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Table 8

TRANSFER FUNCTIONS FOR MEDIUM 20 cm CYLINDER
v, = 145.56 5”1

Axial " pole 1 Pole 2
Position Y} Cl Y2 Cz SSOR* Ato
(cm) shy  s7h (s-1) (s~ (x1073)  (ms)
0 1 pole fit 120.6 0.804 - - 5 0.251 -0.62
2 pole fit 121.0 0.80Q 13.9 0.30 x 10~ 0.167
5 1 pole fit 125.4 0.618 - - 2 0.305 -0.62
2 pole fit 125.2 0.615 13.5 0.16 x 10~ 0.248

* SSOR (Sum of Squared Deviation Ratio) = ¢ (H - M2/t H
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Table 9

TRANSFER FUNCTLONS FOR SMALL CYLINDER
Y, = 145.56 s”1

Axial Pale 1 Pole 2
Position Yi Ci Yy Cy SSDR* Ato
(cm) (s-hy  (s7h (s71) (s~ (x1073)  (ms)
0 1 pole fit 80.4 1.065 - - 5 0.204
2 pole fit 80.9 1.094 14.6 0.33 x 107 0.186
10 1 pole fit 80.8 1.122 - - 9 0.232
2 pole fit 81.1 1.112 18.7 0.09 x 107 0.126
20 1 pole fit 86.7 1.084 - - 5 0.156 -0.72
2 pole fit 87.2 1.079 18.4 0.58 x 10~ 0.112
25 1 pole fit 101.9 0.9 - - 1 0.453 -0.74
2 pole fit 103.7 0.917 29.6 0.13 x 107 0.324

*SSDR

(Sum of Squared Deviation Ratio) = ¢ (H - ﬁ)zl z H2

5. Discussion

Results of the one- and two-pole transfer function analysis and the two
and three exponential fitting for the induced field from the cylinders are in
agreeement. In particular:

1) The one-pole transfer function and two exponential expression fit the
data well, but only if the parameters are permitted to change with axial
pasition.

2) The two-pole transfer function and three exponential expression do not
give much better fits. Here too a good fit requires that the parameters
change with axial position.

Figure 15 shows the striking result that the pole location for the one-
pole transfer function varies with axial position but not with the dipole
field decay time. Figure 9 shows that large changes in 1 and y, along the
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minimum 1line for the two exponential expression increase the SSD only
slightly. Nevertheless, Table 5 shows that for the best four-parameter fit,
both 01 and Yo change with axial position, and neither y; nor Yo are near vy
= 0.14556 ms™1.

A three-parameter (yl.cl,cz) fit was also tried, with y, = 0.14556
ms~l. Table 10 compares the four-parameter fit, the three-parameter fit, and
the pole position for the one-pole fit. The value of y; in the three-
parameter fit agrees well with the pole position. The SSD for the three-
parameter fit exceeds that for the four-parameter fits by about 0.2 to 0.4
mTZ, a value comparable to the large contour on Fig. 9 and ten to twenty times
larger than the difference between the best two-exponential fit and the best
three-exponential fits in comparable cases.

Figure 16 shows the three-parameter and four-parameter fits to the
induced field at the O cm and 30 cm positions. Differences between the curves
are just discernable. If the induced field data really represents the com-
bined effects of many current modes, then perhaps it is not surprising that a
three-parameter fit to two exponentials fits the data well, but a four-
parameter fit fits it better.

Table 10

COMPARISON OF TWO-EXPONENTIAL AND ONE-POLE ANALYSES
FOR THE LONG CYLINDER, 6.87 ms time CONSTANT

Position cm 0 10 20 30 40 45
Four-Parameter Fit

Y] ms~1 0.0959 0.0967 0.0993 0.1016 0.1005 0.1005
Yz ms ™1 0.1706 0.1669 0.1689 0.1733 0.1972 0.2077
SSD mT2 1.237 1.558 1.492 0.725 1.105 1.942
, .1 Three-Parameter Fit: v = 0.14556 w1

1 ms .1065 0.1059 0.1100 0.1147 0.1236 0.1300
SSD mTe 1.529 1.760 1.672 0.919 1.517 2.423
ASSD mT2 0.292 0.202 0.180 0.194 0.412 0.481

i One-Pole Fit: y, = 0.14556 ms~!
Y ms 0.1072  0.10801 0.1114  0.1181  0.1254  0.1341




100.0 150.0 200.0 25(

S0.0
4

INDUCED FIEILD IN GAUSS

.0 IN GAUSS

INDUCCO FIE

~——ty e

. /

—_—r——
\

T P
"_‘,4;5_0 55‘5.0 $65.0 575.0

[ N T A A

dy
/ \

2

I ot
’I )/ ’ |

g/

s

o

° 515.0/ 555.0 565.0 575.0

TIME IN MS

Fig. 16. Three and four parameter fits to the induced field with large cylinder

with 1 = 6.87ms. (a) O cm axial position, \u, 30 cm axial position.



6. Acknowledgment

The authors gratefully acknowledge the assistance of Gary Gunderson,

Martin Knott, Alphonso Sistino and Thomas Summers in analyzing the data.

(1]

(2]

[31

(4]

[5]

L6l

7]

References

W. F. Praeg, L. R. Turner, J. Biggs, J. Bywater, R. Fuja, M. Knott, R.
J. Lari, D. G. McGhee, and R. B. Wehrle, "FELIX, An Experimental
Facility to Study Electromagnetic Effects for First Wall, Blanket, and
Shield Systems," in Proc. 9th Symp. on Engineering Problems in Fusion

Research, IEEE Pub. No. BICHI715, 1981, pp. 1763-1766.

L. R. Turner, W. F. Praeg, M. J. Knott, R. J. Lari, D. G. McGhee, and
R. B. Wehrle, “FELIX Construction Status and Experimenta: Program,"
Nucl. Technol./Fusion, Yol. 4, No. 2, Pt. 2, pp. 745-750, 1983.

D. W. Weissenburger, J. M. Bialek, G. J. Cargulia, M. Ulrickson, M. J,
Knott, L. R. Turner, and R. B. Wehrle, "Experimental Observations of
the Coupling between Induced Currents and Mechanical Motion in
Torsionally Supported Square Loops and Plates," to be published.

T. Q. Hua, R. E. Nygren, and L. R. Turner, “Studies of Coupling
between Displacement and Eddy Currents in the FELIX Plate Experiment,”
to be published.

L. R. Turner, G. R. Gunderson, M. J. Knott, D. G. McGhee, W. F. Praeg,
and R. B. Wehrle, "Results from the FELIX Experiments on Electro-
magnetic Effects in Hollow Cylinders," IEEE Transactions an Magnetics,
Vol. Mag-21 (1985) pp. 2324-2328.

F. S. Acton, Numerical Methods That Work, New York: Harper and Row,
1970, pp. 252-253.

A. Papoulis, Signal Analysis, New York: McGraw-Hill, 1977, pp. 13-24.




