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Abstract

Experiments have been performed with the FELIX facility at Argonne

National Laboratory to study the coupling between eddy currents and deflec-

tions and to provide data for validating eddy current computer programs.

Experiments with cantilevered beams in crossed steady and decaying magnetic

fields verify that coupling effects act to alleviate the large currents,

deflections, and stresses predicted by uncoupled analyses. Measurements of

magnetic fields induced in conducting hollow cylinders are analyzed by expon-

ential fitting and by transfer functions. Spatial variation in the parameters

of the exponential fit and in those of the one- and two-pole transfer func-

tions suggests that several eddy current modes are acting in the cylinder test

pieces.
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1. Introduction

Existing eddy current codes, and new ones as they are developed, must be
validated against experimental data representing geometry and operation simi-
lar to those of a fusion reactor. Consequently, the early experiments with
the FELIX^1'2^ facility have been devoted to obtaining data which can be used
to validate eddy current computer codes.

The FELIX facility at Argonne National Laboratory (AND includes:

1) A solenoid magnet producing fields up to 1 T.

2) A dipole magnet surrounding the solenoid and producing fields up to

0.5 T perpendicular to the solenoid field.

3) A switching circuit capable of discharging the dipole field with a time

constant as low as 5 ms.

4) A cylindrical experimental volume within the fields of the two magnets

of dimensions 1.2 m axially by 0.9 m diameter, and with convenient

access.

5) Non-conducting test-piece supports.

6) Instrumentation suitable for measuring currents, magnetic fields,
angular displacements, temperatures, and stresses.

7) Computerized data acquisition with provision for recording values at

2048 times on as many as 30 data channels.

Five major series of experiments have been conducted:

1) Experiments on the coupling between eddy currents and angular displace-

ments of loops and plates in crossed constant and changing fields as a

model of tokamak limiters. These experiments were carried out by a team
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of investigators from Princeton Plasma Physics Laboratory (PPPL) and

ANL, and verified that coupling effects lower the eddy currents and

displacements and thus decrease the design constraints on limiters.

2) Experiments on the coupling between eddy currents and angular

displacements in cantilevered beams. These experiments carried out for

a PhD dissertaion from the University of Washington, Seattle, extended

the coupling results to a more realistic model of tokamak limiters.

3) Experiments measuring eddy current effects in hollow cylinders. These

experiments explored the limitations of using 2-D codes to model 3-0

geometries.

4) Experiments measuring eddy current effects in flat plates. These

experiments were conducted to validate 2-0 and 3-D eddy current computer

codes.

5) Experiments measuring eddy currents and field patterns around conducting

bricks. These experiments provided data to validate 3-D eddy current

codes on geometries with slots or multiple connections.

Analysis of the first series of experiments is appearing elsewhere"- •-" ;

this paper describes the analysis of the second and third series. The canti-

levered beam experiments are treated in Section 2. Section 3 describes the

anaylsis of the cylinder experiments by a fit to two exponentials; and Section

4 the analysis by a transfer function.

2. Canti levered Beaa Experiments

In a tokamak fusion reactor or other magnetically confined fusion device,

a rapid decay of magnetic field due to a disrupting plasma current induces

eddy currents in the limiter and surrounding structures. The eddy currents,

through interaction with the applied toroidal and poloidal magnetic fields,

produce large mechanical torques and forces that deflect the structural

components. Such undesired deformations and the resulting electromagnetic

stress may compromise the integrity of the structural design.
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Fortunately an important coupling effect between deflection and eddy
currents can help mitigate the potential damages to the structures predicted
by performing independent electrical and structural analyses. This coupling
occurs when, as i t deflects, the component intercepts additional magnetic
flux. Experiments on the magnetic coupling in rigid body rotation were
performed by a team of investigators from PPPL and AML with FELIX. The
results of these experiments [3,4] showed that the coupling between rotation
and eddy current could reduce the peak current, deflection and other
electromagnetic effects to a level far less severe than would be predicted i f
coupling is disregarded.

The study of cantilevered beams is the next logical step, and a
significant one, beyond the study of moving r igid bodies. Since structures
near the plasma are typically cantilevered, the beams provide a better model
for the limiter blades of a tokamak fusion reactor than do the rigid body
experiments. The beams, which consist of several types of material and have
differing dimensions, were clamped rigidly at one end and subjected to
simultaneous time-varying and constant magnetic fields. The time-varying
field simulates the decaying f ie ld during a plasma disruption and the constant
f ie ld models the toroidal f ie ld . The ratios of solenoid to dipole f ie ld are
kept in a range of 10:1 to 20:1 as would be appropriate to tokamak limiters.

2.1 Analytical Model

Consider a cantilever beam of length * t , width a and thickness h (Fig. 1)
clamped rigidly at one end. In i t ia l l y everywhere parallel to a uniform and
constant magnetic f ield Bx, which in the experiment is called the solenoid
f ie ld , the beam is also perpendicular to a uniform but time-varying magnetic
f ie ld B , which in the experiment is called the dipole f ie ld . The time
changing field will induce eddy current in the beam. The current in paths
parallel to the z direction will interact with constant f ie ld Bx and produce a
Lorentz force that causes lateral beam deflections in the y direction. As i t
deflects, the beam wi l l intercept some flux from the f ield B¥. The changing
flux produces an additional eddy current that opposes the current produced by
the time-varying f ie ld and creates a restoring force. Thus the total eddy
current is reduced, as is the force from the interaction of the total eddy
current and the uniform f ield.



-4a-

r
•I

8 (constant)
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For the purpose of analysis, the current induced in the beam is

characterized by a single current loop.

The governing equations can be written as:

±tL = p ( x > t ) _ m _ 3 ! w _ _ | w (1)

ax4 at*

where:

w(x,t) = the vertical deflection

El = the flexural rigidity

m = the mass per unit length

c = the mechanical damping constant

p(x,t) = the distributed Lorentz force

L = the effective inductance

R = the effective resistance

$ = the magnetic flux

• - - V y • » x aUjtL . (3)

A.J. and A are the effective tota l area and undamped area of the beam.

In this model B decays exponentially from some i n i t i a l value BQ with

decay time constant TJ

B ( t ) = B exp f - t / r . ) (4)
y o d

We assume the general solution for w(x,t) of the form

w(x,t) = I X(x) f (t) (5)
n=l n n

where Xn(x)'s are the eigenfunctions satisfying the differential equation for

free vibration

d \ ( x ) . 2

El ? = U j mXn ,
dx
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or

and the four boundary conditions at the fixed end (x = 0) and at the free end

(x = i).

The first four eigenvalues kn* and the corresponding eigenmodes of

vibration are given in Table 1.

2.2 Test Pieces and Measurements

Due to the numerous factors contributing to the coupling effect
(damping), several test pieces of various sizes and properties were
employed. Half hard copper, phosphor bronze, half hard cartridge brass, and
6061-aluminum alloy were chosen as test materials.

A total of 12 beams with 14 cantilever setups were investigated experi-
mentally. The physical dimensions and properties of the beams are summarized
in Table 2. All beams are 48.7 cm long, 10 cm wide, and clamped 7.6 cm from
one end unless otherwise stated.
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Table 1

EIGENVALUES AND EIGENMQDES FOR THE CANTILEVERED BEAM

Characteristic Modes of Vibration

1.857

>|

4.694

7.854

10.995

The test beams were held r igidly with a nonconducting support frame.
Beam deflection was measured with an electro-optical tracking device. The
target, which has a light-dark interface, was attached to the edge of the beam
at two locations: the free end and 16.7 cm from the end.

The total transient eddy current in the beam was measured with a RogowskT
coil linking through a central hole 2.54 cm in diameter.

Strain gauges were used to measure strain and therefore stress in the
beam. Strains were measured at two locations, near the clamped end and 16.7
cm from the free end. At each location, a pair of gauges were attached to the
top and bottom surfaces of the test beam. The use of double gauges effec-
t ively doubles the signal to noise rat io.

The solenoid and dipole fields were measured with a pair of single-axis
Hall probes. The probes were excited with a high frequency AC carrier making
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them somewhat immune to noise pickup by lead wires.

2.3 Pi pole Field Alone

When the solenoid f i e l d is zero, there is no deflection of the beam, and

the c i rculat ing current, as measured with the Rogowski c o i l , experiences a

time behavior similar to that described below for the induced f i e ld in the

cylinder experiments.

Table 2

DIMENSIONAL AND PHYSICAL PROPERTIES OF THE BEAM

Material Electr ical
Resist ivity

(a -m)

Mass
Density
kg/m-*)

Young's
Modulus
(Pa)

Beam Thickness
# (mm)

Remarks

Cu

Cu

1.72x10 -8

1.72x10-8

8912.

Bronze

Brass

Al

1.

6.

13x10 '

10xl0~8

3.95xlO"8

8857

8525

2713

8912.

111.1x10

l.lxlO1 1

1.1x10U

6.89x1010

1.1x1011

2-337
3.175
4.597

3.175

3.175

6
7
8

9
10
11

12

2.350
3.175
4.153

3.175
3.175
3.175

3.175

9.1cm s l o t
18.2cm s l o t
57.8cm long
clamped 16.7cm
70.0cm long
clamped 28.9cm

Figure 2 compares the analytic solutions with experimental results for
three beams of the same size but of different resistivities: copper, aluminum
and brass. In general the analytic prediction agrees well with experimental
results. The peak current may differ by up to 10%, but the shape of the
predicted curves are preserved.

2.4 Combined Pi pole and Solenoid Fields

During the combined field tests the solenoid fields used were 0.2, 0.5,
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0.7 and 0.9 T for each dipole field and decay time. Measurements of the

solenoid fields with a horizontal Hall probe when there was no test piece

showed the actual fields were close to the nominal values.

Deflection of the beam, through interaction with solenoid field,

generates eddy currents that counteract the contributions to the eddy currents

resulting from the dipoie field decay, and thus can significantly alter the

subsequent beam motion. This interaction increases with increasing solenoid

field. Figures 2 through 6 show the analytical and experimental results for a

medium aluminum beam. In each figure, deflection at the end and 16.7 cm from

the end, total eddy current, and strain measured at 3.1 cm and 24.4 cm from

the clamped edge are shown. The dipole field was initially 0.Q55T and decayed

exponentially with a time constant of 6.6 ms.

The progression from Fig. 3 to Fig. 6 shows the effect of the coupling.

In Fig. 3 (B = 0.2T) coupling was weak, the beam oscillated at its natural

vibration frequency, the current decayed quite smoothly with only small

perturbation due to deflection. The presence of the second mode of vibration

could be seen from the strain gauge signal, especially from the gauge located

at the middle of the beam. There were practically no contributions from modes

higher than the second mode. This observation is consistent with the

analytical calculation which predicts higher modes have very little effect on

the outcome of the solutions. In Fig. 4 (Bx = 0.5T) the coupling effect

became obvious, the second peak in deflection was markedly less than the first

peak. The total current decayed faster and a second peak was induced which

opposed the beam motion. In Fig. 6 (Bx = 0.9T) the coupling effect was more

pronounced. After a first swing, the beam slowly returned to rest at the

equilibrium position . It is also interesting to observe that the second mode

of vibration was damped more heavily at higher solenoid fields.

Note from Figs. 3 and 6 that the maximum end deflection increased by a

factor of 2.1 when the solenoid field increased 4.5 times. Without coupling,

the peak deflection would be expected to increase linearly with field

intensity. For comparison, the analytical solution without the coupling term

are included for the cases of Fig. 3 (weak coupling) and Fig. 6 (strong

coupling). See Figs. 7 and 8.
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3. Hollow Cylinder Experiments

A series of experiments was performed to provide data to investigate the
l im i ts of applying two-dimensional eddy current codes to three-dimensional

geometries. The test pieces were hollow aluminum cylinders with axis hori-

zontal (perpendicular to the dipole f ie ld) . Each cylinder had two full-length

slits located diametrically opposite one another. The slits v.ere located in a

horizontal plane, and did not impede the eddy-current flow.

The dimensions of the three cylinders are shown in Table 3. The dimen-

sions were chosen so that a l l three would have about the same L/R time

constant and that the cylinder with the smallest thickness could be approxi-

mated closely by a two-dimensional shel l , and the other two could be more

essentially three-dimensional. The medium cyl inder, or ig ina l ly 60 cm long,

was later cut into two pieces, 40 cm and 20 cm long.

Table 3

Test Piece

Large
Mediurn
Small

DIMENSIONS

Length (cm)

120
60.40,20

60

OF SPLIT-CYLIHDER

Thickness (cm)

0.48
1.27
2.54

TEST

0

PIECES

.D. (cm)

27.3
13.97
10.16

I.D.

26
11
5

(cm)

.34

.43

.08

Results were presented"-^ for the induced f ield at various axial posi-

tions in the large, medium-60 cm, and small cylinders for a nominal dipole

field level of 100 mT and nominal decay time of 40 ms. The data was recorded

every 2 ms. For completeness, those results are tabulated below.

The analysis described here was primarily for the induced field at

various axial positions in the large, medium-40 cm, medium-20 cm, and small

cylinders for a nominal dipole f ie ld level of 50 mT, nominal decay time of 5

ms, and data recorded every 1 ms. Some date were also obtained and analyzed

for the large, medium-40 cm, and medium-20 cm cylinders for a nominal dipole

field level of 100 mT, nominal decay time of 10 ms and 40 ms, and data

recorded every 1 ms.

The induced field is the difference between the total f ie ld and the

dipole magnet f ie ld , measured by the Hall probe when the cylindrical test
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piece is absent. Before the measured dipole magnet field is subtracted, it is

normalized by the ratio of the initial total field to initial dipole magnet

field, both measured over a 100 ms time period.

An arbitrary time scale is recorded with the data. In general, the time

at which the dipole field begins to decay, tQ, is taken as an unknown which is

to be determined from the daM. For convenience, a reference time (550 ms in

what follows) is chosen on the arbitrary time scale, and t0 and other times

are measured relative to that reference time.

3.1 Fit to Two Exponentials

To put the experimental results in a form convenient to users, they

should be expressed by a small number of parameters. One reasonable >ct of

parameters are those of a pair of exponential functions. For the general

case, in which the decay begins at an unknown time tQ, the induced field B can

be written as

B = Ct exp(-Ylt) + C 2 exp(-Y2t) (7)

The experimental results w i l l be characterized by performing a least-

squares f i t of Eq. (7) to the data over a suitable time period However, i t

is well known that an exponential equation of this type in which a l l four

parameters are td be f i t t e d is extremely i l l conditioned.'-6-'

In general, values or ranges of values are chosen for Y I and Y2» a n d ^ l

and C£ are determined by a least squares procedure. Figure 9 .^presents the

two-exponential f i t t i n g of the induced f i e l d at the center of the large

cylinder for a nominal 5 ms dipole f i e l d decay (actual T = 6.87 ms, 1/T =

0.14556 ms ). The sum of squared deviations (SSD) is given by

50

t=0 n r

where t is the time in 1 ms steps from the reference time, Bm is the measured

induced f ield and Bf is the f i e l d from the f i t to Eq. (7). The figure shows

the values which minimize SSD ( Y l = 0.0959 ms"1, Y2 = 0-1786 ms"1) , the curve

of the Y I which minimizes SSD for specified Y2> anc ' t n e contours for SSD 0.05

mTc greater and 0.20 mTc greater than the mimimum value, 1.237 raT .

As can be seen in the figure, large changes in YI an^ Y2 a^ o n9

minimum curve will result in only a small increase in SSD.

Analysis of the cylinder experiments with a time constant of 40 ras'-5^
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showed that the induced f i e l d B could be f i t Eq. (7) and that ^ and T_ could

be ident i f ied as the reciprocals of the applied f i e l d decay time T and the

test-piece L/R time. For y. = 0.0252 ms" , as determined from the data with

no test piece, a three-parameter f i t for Y2» CJ_, and Cg yielded values

of Y2 f ° r d i f ferent axial positions in a given cylinder that varied up to 10%

with one another as shown in Table 4. A four-parameter f i t to the large

cylinder data for x - 6.87 ms; shows that both Y I and Y2 v a ry with posit ion,

and neither of them is near YQ = 1/T = 0.14556 ms"1.

Table 4

Posi

ci

c2

c

t0

Bm

Bo

Bo

TWO EXPQMEMTIAL FIT

tion cm

ms-1

mT

mT

mT

ms

: ms

mT

mT/ms

0

0.0977

25.67

-20.41

27.800

-3.163

18.690

12.880

2.005

2.925

TO IMDUCED

10

0.0960

23.536

-18.19

25.797

-3.639

18.891

11.819

1.826

2.919

FIELD IN

= 0.0252

20

0.0942

22.25

-17.17

24.459

-3.756

19.110

11.069

1.688

2.914

THE LARGE CYLINDER T = 39.68ras

ms"1

30

0.1000

27.30

-21.04

29.804

-3.482

18.427

14.012

2.229

2.932

40

0.10785

18.26

-14.05

19.779

-3.171

17.591

9.730

1.635

2.956

45

0.1110

15.30

-11.40

16.681

-3.429

17.281

8.342

1.431

2.965

50

0.0973

9.983

-7.169

11.132

-4.523

18.737

5.144

0.802

2.923
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Position

Y2

Cl

c2

C

t0

Bm

Bo

Bo

TWO EXPONENTIAL FIT

cm

ms-1

mT

mT

mT

ms

ms

mT

mT/ms

0

0.0778

48.465

-41.474

52.220

-2.962

21.431

20.573

2.747

2.861

, MEDIUM

Hedi um
10

0.0791

48.323

-41.46

51.911

-2.842

21.222

20.721

2.798

2.866

& SMALL CYLINDER T =

.0252 mi1

20

0.0864

35.298

-28.77

38.399

-3.341

20.133

16.376

2.350

2,889

0

0.0741

51.059

-43.888

55.201

-3.095

22.057

7:0.895

2.699

2.849

39.68 ms

Small
10

0.0743

48.991

-41.91

53.078

-3.179

20.022

20.137

2.606

2.850

20

0.0823

47.898

-42.1

50.705

-2.260

20.727

20.866

2.895

2.876
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Table 5

Position

Yl

Y2

cl

c2

C

t0

Bm

50

BQ'

SSD

TWO

cm

ms"1

ms"1

mT

mT

mT

ms

ms

ms

mT

mT/ms

mT2

EXPONENTIAL FIT TO INDUCED

Yc

0

0.0959

0.1706

79.67

-61.36

111.371

0.53

7.71

8.24

23.28

8.322

2.756

1.237

= 0.14556 ms ,

10

0.0967

0.1669

82.40

-63.69

17.49

0.35

7.78

8.13

23.30

8.246

2.752

1.558

20

0.0993

0.1689

76.47

-60.17

107.64

0.58

7.63

8.21

20.79

7.493

2.750

1.492

FIELD IN

T = 6.87

30

0.1016

0.1733

100.61

-70.24

100.61

0.48

7.45

7.93

19.53

7.211

2.750

0.725

LARGE CYLINDER

ms

40

0.1005

0.1972

45.34

-33.63

61.85

0.93

6.97

7.90

15.06

5.983

2.770

1.105

45

0.1026

0.2077

43.95

-30.37

63.06

0.50

6.71

7.21

16.03

6.626

2.774

1.942

55

0.1060

0.2203

13.11

-10.83

15.65

2.35

6.40

9.75

4.12

1.789

2.779

1.089

Since di f ferent values of y^ and Y2
 f i t t n e experimental data for induced

f i e l d almost equally wel l , as seen in Fig. 9, i t seems worthwhile to seek

unique parameters to characterize the data.

Four parameters with more physical significance are shown in Fig. 10: t Q ,

the i n i t i a l time, at which B = 0; 6 , the rate of change of B at tQ ; t^,, the

time at which B is a maximum; and Bm, the f i e l d at tm« These four parameters

( t Q , t,,,, Bm, B \ ) can be expressed in terms of ( y , , Y?» C].» ^ K The values

of Yo. C j , and C2 which give the best f i t vary strongly wi th Yi ibut the

values of ( t Q , tm , Bm> 6Q) calculated from ( Y l , Y 2 , CJ , C?) vary only slowly.

The two-exponential expression, Eq. (7) can be rewritten as:
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•m
Fig. 10. Four physical parameters characterizing the induced field data.
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B = C [exp {-Y]_ ( t - t 0 ) } - exp {-Y 2 ( t - t Q ) } ] (8)

with

tQ = m (- C 2 / C 1 ) / ( Y 2 - Y l ) (9)

C = C1 exp ( - Y ^ J = - C.exp (-Y2t0) (10)

Dif ferent iat ing Eq. (8), we find

Bm = C (I - T l / y 2 ) exp { - T l (tm - t o ) } (12)

Combining Eq. (11) - (13) y ie lds the result that the dimensionless

form 8 ' obeys

= e i f Y l = Y2 (14)

> e i f Y l * Y2

Tables 4 and 5 show the values of these physical parameters.

3.2 Three Exponential F i t

I f the cylinder displayed a single eddy-current mode, then Y ^ . ?£» t^ .

and tQ would not vary with axial posi t ion. The observed variation suggests

that more than one eddy current mode is active. I f two are acting, then the

data might be better f i t by:

B - Cjexp [-Ya(t-to)} - exp {-Y0(t-tQ)}]
+ Cb[

eM> {-Yb(t-t0) - exp {-Y0(t-tQ)}] US)

In the two current mode model, the values of Ca arid Cb would be expected

to vary with axial posit ion, but the values of the t 0 , Y 0 . Ya
 a n d Yb would

not. In practice the f i t with Eq. (15) was never appreciably better than the
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fit with Eq. (7), and good fit required ya. Y D , Yo. and/or tQ to vary with

axial position. Such behavior is inconsistent with a model of two dominant

eddy current modes, but could be consistent with several dominant modes.

4. Transfer Function Analysis

The electromagnetic behavior of the cylinder can be thought of as a

linear system which generates an output g(t), i.e. the induced field, from an

input f(t). The time derivative of the dipole field without the test piece is

considered as the input. The transfer function H U ) characterizes the system

and is given by

H U ) = GU)/FU) (16)

where FU) and GU) are the Fourier transforms of input f(t) and output g(t) ,
respectively.'-'•• The transfer function is unique and independent of the
input. Once the transfer function has been calculated, the output from any
input is calculated from the inverse-Fourier transfer of HU) FU), or the
convolution of input f(t) and system impulse response h(t). The impulse
response h(t) is the response of the system when the input is a delta func-
tion 6(t); i t i s calculated as the inverse-Fourier transform of HU).

To better understand the electromagnetic induction mechanism and put the
experimental results in a form convenient for comparison with the results of
eddy-current code computation, the transfer function HU) is analyzed in terms
of i ts pole(s). If the electromagnetic induction does not incorporate any
capacitance, the poles are located on the positive pure-imaginary axis, and
correspond to an exponentially decaying impulse response. From a real system
condition, i . e . HU) = H*(-w), the coefficients of the poles are also pure
imaginary and the transfer function may be written as

HU) = E -iCn/(u) - i rn) - (17)

where y and Cp are real numbers.

For an exponentially decaying function with time constant T = 1/y .
i . e . f{t) = f0 e ° , as input, the transfer function Eq. (17) i s equivalent
to an induced field
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=0 f C

g ( t ) = E Y ° " [ e x p ( - Y t ) - e x p ( - Y t ) ]
n = l T o ' n

In the cas of a single pole (n=l only),

f C,

4.1 Transfer Functions with One Pole

I f the test cylinder is characterized by a single L/R time constant, the

transfer function wi l l have only one pure-imaginary pole; i . e .

? 2
HU) = H U) + iH .U) = - iC /U - iY ) = C( Y- i<u)/(u + Y ) (18)

r i

where Y and C are real values identi fying the location and amplitude of the

pole, and H U) andH.U) are the real and imaginary parts of HU), respect-

ively. As shown in Fig. 2(a) th is one-pole transfer function is best chara-

cterized by the maximum of Hr at u = 0, and minimum and maximum of Ĥ

at a) = ±Y. I t is worth noticing that |H (0)|=2|H. (±Y)I = C/y. Another

important characteristic of one-pole transfer functions is that the real and

imaginary parts of i t s reciprocal, GUI E 1/HU) are constant (Y/C) and

linear U/C), respectively (Fig. 11).

Therefore, provided the reciprocal of the transfer function calculated

from experimental data shows constant real part and linear imaginary part, the

transfer function has only one pole Y = Gr/(Gr/dw) and coeff ic ient C

= (Gr/du)"1, where Gr and Gr are the real part and the derivative of the

imaginary part of 1/HU), respectively.

4.2 Transfer Functions with Two Poles

I f the test cylinder has two d is t inc t current patterns with different

tima constants, the transfer function may also have two pure-imaginary poles,

corresponding to the two time constants, as

- TC - TC
H U ) = H ( « ) + i H . ( u ) = J- + J

r 1 ui - ^y,
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Fig. 11. (a) One pole transfer function H(u), and (b) its reciprocal
1 / ( )
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c v c c ( 1 9 )

] l t + ]-—^ + -TT-1 ] " lw t 2——̂ z + T T
+ Y-J uj + Y 2 ui + Y 1 ID •*•

and i t s reciprocal becomes

1/HU) • GU) = G U) + i G.U) = 1 [A - 2
 DB

 2 ] + 1 g [1 + -g-5—?] , (20)
(o + B w + B

where

. _ V l V2 p _ L1Y2 V i

C = C1 + C2 , D =

Now G is'no longer constant, except in the limits of small o», lul << |B|,
and large m, i.e. Ul >> |D|. Also G; is linear in the same limits (Fig.
12). Therefore, from the values of Gr(0), Gr(«), Gr(O), and Gr(«>), one can
calculate poles and their coefficients. However, accuracy of the transfer
function calculation at high frequencies is hard to achieve, especially from
experimental datawith substantial noise and low sampling rate.

A more practical method starts with approximate values for one pole.
Under the assumption that IY, is a pole of the transfer function, the other
pole and coefficients can be calculated as

2

C = ~ — - [H (0) + Y l Hr(0)] , (21b)

and

C] = Y i [Hr(0) - C 2 / Y 2 ] . (21c)

Also Y, should satisfy an equality such as

Vo ) + Hr^i) + W - ^ Hf(0) • (22)
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IMAGINARY PART G- (w)

REAL PART Gr (w)
cay

1

Fig. 12. Reciprocal of th^'ttransfer function,
1/H(oi), with two pure imaginary poles .
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In actual data analysis one may need to i terate to satisfy Eq. (22) and/or the

condition of minimum standard deviation between experimental data and the two-

po le- f i t data.

4.3 Analysis Procedure

Transfer functions from FELIX cylinder experiments are analyzed for

several axial positions. Four dif ferent cylinders, i .e . large cyl inder,

medium cylinders with 40 cm and 20 cm length, and small cylinder, a l l with

horizontal s l i t s , are used for the experiment. Experimental data with 5 ms

(nominal) dipole decay time constant are selected to investigate axial -

position dependence of the transfer functions. Also several data with 10 ms

and 40 ms nominal dipole decay time constant are analyzed to check the inde-

pendence of the transfer function from input.

F i rs t the actual time constants of input dipole f i e l d were calculated.

The Fourier transforms of the dipole f i e l d without any test piece show

characteristics of one-pole transfer function as described in the previous

section and Fig. 11. Actual time constants turn out to be 6.87, 12.03, and

39.40 ms for nominal 5, 10, and 40 ms data, respectively. Then the input is

calculated as

FU) = i BQ Y O / ( « - i yQ) ,

where Y0 and BQ are time constant and f i e l d magnitude at t = 0, respective-

l y . Mote that the time d i f ferent ia t ion of the dipole f i e l d has contributed a

factor of y o i FU) . This analytic input was used in a l l subsequent analy-

s is .

For each set of experimental data a transfer function i s calculated from

the Fourier transform of the induced f i e l d and F(w), and is f i t t e d to the one-

pole representation. Since the sum of squared deviations between the calcu-

lated transfer function HU) and one-pole f i t t e d H"U) varies very rapidly with

small changes in the zero-time t 0 , the transfer function was mul t ip l ied by

exp (iuj At ) to best - f i t the one-pole representation. The At values, less

than 1 ms for FELIX experimental data, may be an indication of uncertainty in

experimental dipole-discharge zero times. Then Eqs. (21) and (22) are applied

using the one-pole as y to determine i f there is a second pole, and i f so,
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to determine i ts location and i ts coefficient. Also the real and imaginary

parts of the 1/HU) are examined for characteristics of a two-pole transfer

function.

4.4 Results

Over the central region of each cylinder, the induced signal is strong
enough to permit the transfer function analysis. However near the ends the
induced f ield is too weak to find a meaningful transfer function.

Figure 13 shows the transfer function and i ts reciprocal at the center of
the medium (40 cm) cylinder. The real part of 1/HU) is close to constant,
and the one-pole representation of the transfer function is almost identical
to the one calculated from experimental data. Hence the amplitude of the
second pole is very small compared to the f i r s t pole, and the two-poles
representation is nearly the same as the one-pole representation except for
very small to.

Near the ends of the cylinders the induced f ie ld is weak, and the dif-
ference between actual data and one-pole f i t becomes prominent for small <u as
shown in Fig. 14. The two pole f i t gives better results for small OJ, but is
almost identical for others. However the second pole is s t i l l very weak and
small, and may come from experimental errors.

Results of the f i t t ings are summarized in Tables 6-9. The values
of At in the tables are measured from the beginning of the range used for the
Fourier transform.

The variation of the dominant pole values with axial position for each
cylinder is shown in Fig. 15. Poles of 6.87 ms dipole decay time are
connected by lines. Other poles of 12.03 and 39.40 ms data are also shown for
comparison, and support the independence of the transfer functions from the
input f ie ld. I t is worth noticing that the pole becomes bigger, i.e. the
induced f ield decays more rapidly, as its position approaches the ends of the
cylinders. This interesting phenomena may indicate the existence of many eddy
current modes in the cylinders. Also the pole amplitude becomes smaller as
i ts axial position approaches the cylinder ends.

The sum of squared deviations divided by the sum of the square of the
transfer function, i.e. r [H(w) - F(w)]2/ I H2(u) exhibits steep minima as a
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function of pole position, where H(u) and H"(w) are actual and f i t ted transfer

functions, respectively. That behavior indicates very good selectivity of the

poles using this transfer function analysis.
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Table 6

TRANSFER FUNCTIOMS FOR LARGE CYLINDER

Y Q - 145.56 S"
1

Axial Pole 1 Pole 2
Position i. CL Y 2 C2 SSDR* At

(cm) (s"M (s"M (s"1) (s"M U10'3) (ms)

0

10

20

30

40

45

50

1
2

1
2

1
2

1
2

1
2

1
2

1
2

pole
pole

pole
pole

pole
pole

pole
pole

pole
pole

pole
pole

pole
pole

f i t
fit

fit
fit

fit
fit

fit
fit

fit
fit

fit
fit

fit
fit

107.2
107.1

108.0
108.7

111.4
111.4

118.1
117.3

125.4
129.0

134.1
143.4

139.8
151.9

0.971
0.962

0.956
0.953

0.927
0.921

0.856
0.852

0.713
0.714

0.594
0.600

0.484
0.491

16.3

20.6

15.0

7.2

18.1

26.5

22,8

0.48

0.34

0.32

0.25

0.52

0.11

0.80

X

X

X

X

X

X

X

io-2

ID"2

10-2

io-3

10-2

l O " 1

io-2

0.291
0,188

0.175
0.138

0.203
0.136

0.217
0.212

0.498
0.330

0.430
0.488

1.010
0.886

-0.48

-0.51

* SSDR (Sum of Squared Oeviation Ratio) = z (H - H)2/z H2
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Table 7

TRANSFER FUNCTIONS FOR MEDIUM 40 cm CYLINDER

YQ = US.56 s"
1

Axial Pole 1 Pole 2
Position Y C, Y~ C2 SSDR* At

(cm) (s"M (s"M (s"1) (s"1) (xlO"3) (ms)

0

5

10

15

1
2

1
2

1
2

1
2

pole
pole

pole
pole

pole
pole

pole
pole

f i t
f i t

f i t
f i t

f i t
fit

fit
fit

88.4
87.7

90.6
90.7

97.4
98.6

106.5
107.3

0.986
0.980

0.929
0.923

0.805
0.799

0.551
0.545

9.

15

20

14

.4

.3

.5

.7

0.54

0.30

0.58

0.40

X

X

X

X

io-3

io-2

10"Z

io-2

0.094
0.107

0.190
0.152

0.332
0.231

1.114
0.812

-0.80

-0.34

-0.45

-0.69

* SSDR (Sum of Squared Deviation Ratio) = E (H - H ) 2 / z H2
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Table 8

TRANSFER FUNCTIONS FOR MEDIUM 20 cm CYLINDER

YQ = 145 .55 s ' 1

Axial Pole 1 Pole 2
Position Y, Z\ Y 2 C2 SSDR* AtQ

(cm) (s"M (s"1) (s"1) (s"1) (xlO"3) (ms)

0 1 pole f i t 120.6 0.804 - - 0.251 -0.62
2 pole f i t 121.0 0.800 13.9 0.30 x 10"* 0.167

5 1 pole f i t 125.4 0.618 - - 0.305 -0.62
2 pole f i t 125.2 0.615 13.5 0.16 x 10"^ 0.248

* SSDR (Sum of Squared Deviation Ratio) = z (H - H)2/z Ht
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Table 9

TRAMSFER FUNCTIONS FOR SMALL CYLINDER

YQ * 145.56 S"1

Axia l Pole 1 Pole ?
Posit ion y C, Y 2

 C 2 S S D R* A t
0

(cm) (s'M ($"*) (s"1) (s"1) (xlQ-3) (ms)

0

10

20

25

1
2

1
2

1
2

1
2

pole
pole

pole
pole

pole
pole

pole
pole

f i t
f i t

f i t
f i t

f i t
fit

fit
fit

80.4
80.9

80.8
81.1

86.7
87.2

101.9
103.7

1.065
1.094

1.122
1.112

1.084
1.079

0.931
0.917

14.6

18.7

18.4

29.6

0.33

0.09

0.58

0.13

X

X

X

X

10-2

ID"2

io-2

lO" 1

0.204
0.186

0.232
0.126

0.156
0.112

0.453
0.324

-0.72

-0.74

*SSDR (Sum of Squared Deviation Ratio) = E (H - H)2/ z H2

5. Discussion

Results of the one- and two-pole transfer function analysis and the two
and three exponential f i t t ing for the induced f ie ld from the cylinders are in
agreeement. In particular:

1) The one-pole transfer function and two exponential expression f i t the
data well, but only i f the parameters are permitted to change with axial
position.

2) The two-pole transfer function and three exponential expression do not
give much better f i t s . Here too a good f i t requires that the parameters
change with axial position.

Figure 15 shows the striking result that the pole location for the one-
pole transfer function varies with axial position but not with the dipole
f ie ld decay time. Figure 9 shows that large changes in Y l and y2

 a lo"9 the
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minimum l ine for the two exponential expression increase the SSD only

s l ight ly . Nevertheless, Table 5 shows that for the best four-parameter f i t ,

both Y, and y? change with axial position, and neither y^ nor ^ a r e n e a r YQ

= 0.14556 ras"1.

A three-parameter ( Y - . C ^ C J f i t was also t r ied , with y2
 = 0-14556

ms"1. Table 10 compares the four-parameter f i t , the three-parameter f i t , and

the pole posit ion for the one-pole f i t . The value of Y I 1n the three-

parameter f i t agrees well with the pole posit ion. The SSO for the three-

parameter f i t exceeds that for the four-parameter f i t s by about 0.2 to 0.4

mT2, a value comparable to the large contour on Fig. 9 and ten to twenty times

larger than the difference between the best two-exponential f i t and the best

three-exponential f i t s in comparable cases.

Figure 16 shows the three-parameter and four-parameter f i t s to the

induced f i e l d at the 0 cm and 30 cm positions. Differences between the curves

are just discernable. I f the induced f i e l d data really represents the com-

bined effects of many current modes, then perhaps i t is not surprising that a

three-parameter f i t to two exponentials f i t s the data we l l , but a four-

parameter f i t f i t s i t better.

Table 10

Position

n
'2

SSD

n
SSD

ASSO

Y

COMPARISON OF TWO-EXPONENTIAL AND 1

FOR THE LONG CYLINDER, 6.87 «s

cm

m s " 1

ms" 1

mT2

ms" 1

mT2

mT2

ms" 1

0

0.0959

0.1706

1.237

10 20

Four-Para«eter Fit
0.0967 0.0993

0.1669

1.558

Three-Parameter Fi t :
0.1065 0.1059

1.529

0.292

1.760

0.202

One-Pole F i t : Y 0

0.1072 0.10801

0.1689

1.492

Y ? « a
0.1100

1.672

0.180

DNE-POLE ANALYSES

t i a e CONSTANT

30

0.1016

0.1733

0.725

.14556 ms.-1

0.1147

0.919

0.194

= 0.14556 ms'1

0.1114 0.1181

40

0.1005

0.1972

1.105

0.1236

1.517

0.412

0.1254

45

0.1005

0.2077

1.942

0.1300

2.423

0.481

0.1341
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