

PPL-2186

UC20-G

165
2/20/85
DHS

1-14-85
R 07994


~~ELECTRON CYCLOTRON HEATING OF A TOKAMAK REACTOR
AT DOWN-SHIFTED FREQUENCIES~~

By

I. Fidone, G. Giruzzi, and E. Mazzucato

JANUARY 1985

**PLASMA
PHYSICS
LABORATORY**

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

**PRINCETON UNIVERSITY
PRINCETON, NEW JERSEY**

PREPARED FOR THE U.S. DEPARTMENT OF ENERGY
UNDER CONTRACT DE-AC02-76-CH-3473.

Printed in the United States of America

Government Printing Office

National Technical Information Service
U.S. Department of Commerce
5205 Port Royal Road
Springfield, Virginia 22161

Price Printed Copy \$ Microfiche \$4.50

NTIS
Selling Price

100-100	\$7.00
200-200	\$8.50
300-300	\$10.00
400-400	\$11.50
500-500	\$13.00
600-600	\$14.50
700-700	\$16.00
800-800	\$17.50
900-900	\$19.00
1000-1000	\$20.50
1100-1100	\$22.00
1200-1200	\$23.50
1300-1325	\$25.00
1300-1350	\$26.50
1300-1375	\$28.00
1300-1400	\$29.50
1300-1425	\$31.00
1300-1450	\$32.50
1300-1475	\$34.00
1300-1500	\$35.50
1300-1525	\$37.00
1300-1550	\$38.50
1300-1575	\$40.00
1300-1600	\$41.50

For documents over 600 pages, add \$1.50 for each additional 100 pages

ELECTRON CYCLOTRON HEATING OF A TOKAMAK REACTOR
AT DOWN-SHIFTED FREQUENCIES

PPPL--2186

I. Fidone,^a G. Giruzzi,^a and E. Mazzucato

DE85 007221

Plasma Physics Laboratory, Princeton University
Princeton, NJ 08544

PACS Numbers: 52.55Gb, 52.50Gj

Abstract

The absorption of electron cyclotron waves in a hot and dense tokamak plasma is investigated for the case of the extraordinary mode for outside launching. It is shown that, for electron temperatures $T_e > 5$ keV, strong absorption occurs for oblique propagation at frequencies significantly below the electron gyrofrequency at the plasma center. A new density dependence of the wave absorption is found which is more favorable for plasma heating than the familiar n_e^{-1} scaling.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

^aPermanent address: Association Euratom-CEA, Centre Etudes Nucléaires, 92260 Fontenay-aux-Roses, France.

MASTER

Recent experimental results obtained in the T-10¹ and Doublet III² tokamaks have shown that electron cyclotron resonance heating (ECRH) is a very efficient method of plasma heating. So far, the most attractive type of ECRH for a tokamak reactor has been considered that with an outside launching of waves in the ordinary mode. However, this method is very questionable in the case of dense plasmas in large magnetic fields because it requires the use of high frequency microwave sources. For instance, for parameters similar to those of an INTOR-type tokamak, i.e., toroidal magnetic field $B(o) = 55$ kG, minor radius $a = 120$ cm, major radius $R = 500$ cm, central electron density $n_e(o) = 3 \times 10^{14} \text{ cm}^{-3}$, the use of the ordinary mode requires wave sources at frequency f close to the central electron gyrofrequency $f_c(o) = 154$ GHz. Moreover, since the central plasma frequency $f_p(o) = f_c(o)$, a large part of the plasma column is not accessible.

In order to overcome these difficulties, ECRH at frequencies $f < f_c(o)$ with the extraordinary mode launched from the low field side has been proposed.³ In this method, bulk heating is achieved via wave absorption by the fast electron tail generated during rf current drive in a low temperature plasma. In this note, we point out that the method is also applicable to a Maxwellian plasma for sufficiently high values of the electron temperature T_e . At first glance, ECRH by the extraordinary mode in dense plasmas also seems questionable because of the well-known n_e^{-1} dependence of the damping rate. As shown below, this undesirable density scaling is generally valid for wave absorption at $f = f_c$. For large down-shift of the resonant frequency, i.e., for $f_c^2 - f^2 \gtrsim f_p^2$, wave damping for moderate values of the plasma density is nearly independent of n_e . For the case considered below it is only for densities $n_e > 10^{14} \text{ cm}^{-3}$ that the n_e^{-1} law holds. The mildly relativistic dispersion relation⁴ for oblique propagation is discussed elsewhere⁵ and we

only present the numerical results.

We consider the following spatial profiles of the plasma parameters: $n_e(r) = n_e(o)(1-r^2/a^2)$, $T_e(r) = T_e(o)(1-r^2/a^2)^{1.5}$, $B(x) = B(o)/(1+x/R)$. In order to couple the extraordinary mode to the plasma for wave launching from the low-B side of the torus, the wave frequency must fulfill the accessibility condition $f_-(o) < f < f_+(a)$, where

$$f_{\pm}(r) = [f_c(r)/2] \left[\left(1 + \frac{4f_p^2(r)/f_c^2(r)}{1 - N_{\parallel}^2} \right)^{1/2} \pm 1 \right], \quad (1)$$

and N_{\parallel} is the parallel refractive index. For $f_p < f_c$ and $N_{\parallel}^2 \ll 1$, one finds $f_-(o) \lesssim 0.62 f_c(o)$ and $f_+(a) = f_c(o)/(1 + a \cos\theta/R)$, where θ is the poloidal coordinate. For $f_c(o) = 154$ GHz, $f_-(o) \lesssim 95.5$ GHz and $f_+(a) > 123.2$ GHz, thus, for $f = 115$ GHz the accessibility condition is fulfilled.

We now discuss the case of the extraordinary mode for propagation in the equatorial plane ($\theta = 0$). We first consider the INTOR case for $T_e(o) = 5$ keV. In Fig. 1, we present $\eta(x) = 1 - \exp(-2 \int_{x_0}^x k''_e dx')$ versus x for $f = 115$ GHz, $n_e(o) = 10^{14}$ cm⁻³, and $\psi = 25^\circ$ and 30° , where k''_e is the imaginary part of the x component of the propagation vector, $N_{\parallel} \approx \sin\psi$, and x_0 is the initial position at the plasma edge. It appears that appreciable absorption in the first transit occurs for $\psi \gtrsim 25^\circ$. The fraction of the wave energy absorbed between x_0 and x is very sensitive to the value of N_{\parallel} and the maximum of the power deposition occurs near $x \approx 50$ cm. As T_e increases above the initial value, the plasma density can be raised further. In Fig. 2, we show $\eta(x)$ versus x for $\psi = 25^\circ$, $n_e(o) = 3 \times 10^{14}$ cm⁻³, and $T_e(o) = 8$ and 10 keV. Most of the wave energy is deposited near $x = a/2$. Note that for wave absorption midway between the plasma axis and the plasma edge, the relevant accessibility condition is $f_-(x_1) < f < f_+(a)$, where x_1 is defined by

the region of maximum power deposition. In the case of $T_e(o) = 8 - 10$ keV, $x_1 = 60$ cm. This allows a raise in the central density. For $T_e(o) = 10$ keV, $f = 115$ GHz, $\psi = 25^\circ$, and $n_e(o) = 5 \times 10^{14}$ cm $^{-3}$, the value of η before the cut-off point ($x_1 = 70$ cm) is $\eta = 0.4$ in the first transit. The reflected part of the incident wave will cross again the absorption region located near 90 cm and it is almost totally absorbed in the second transit.

We now investigate the density dependence of the wave damping. As known, several authors⁵⁻⁸ have shown that the damping of the extraordinary mode scales as n_e^{-1} . This result holds for $f = f_c$ for which the anti-Hermitian part of the dielectric tensor is predominant in the computation of the wave polarization. For $N_1^2 \ll 1$, the wave polarization is approximately given by $(1 - i \epsilon_{12}/\epsilon_{11})$, where ϵ_{11} and ϵ_{12} are the components of the plasma dielectric tensor. For $f = f_c$, it is found that $|1 - i \epsilon_{12}/\epsilon_{11}| = n_e^{-1}$, hence, $k_e'' = |1 - i \epsilon_{12}/\epsilon_{11}|^2 \text{Im } \epsilon_{11} = n_e^{-1}$. For large values of $(f_c - f)$, however, the wave polarization tends to that of a cold plasma, i.e.,

$$1 - i \epsilon_{12}/\epsilon_{11} = 1 - (f_c/f) f_p^2 / (f_c^2 - f^2 + f_p^2) .$$

For $f_c^2 - f^2 \gtrsim f_p^2$, $(1 - i \epsilon_{12}/\epsilon_{11})$ decreases slower than n_e^{-1} for increasing values of n_e . Since $\text{Im } \epsilon_{11} = n_e$, we find that k_e'' is nearly independent of n_e for moderate values of n_e . For $f_c^2 - f^2 \ll f_p^2$, $(1 - i \epsilon_{12}/\epsilon_{11})$ is similar to the case $f = f_c$ and thermal effects are important. In this case, $k_e'' = n_e^{-1}$. This qualitative argument is illustrated in Fig. 3 where we show k_e'' versus x for $T_e(o) = 5$ keV, $\psi = 25^\circ$, $f = 115$ GHz, and $n_e(o) = 3 \times 10^{13}$, 10^{14} , and 3×10^{14} cm $^{-3}$. The same pattern is obtained for $T_e(o) > 5$ keV. It appears that k_e'' is nearly independent of n_e for 3×10^{13} cm $^{-3} < n_e(o) < 10^{14}$ cm $^{-3}$ where $f_c^2 - f^2 \gtrsim f_p^2$ and decreases approximately as n_e^{-1} for $n_e(o) >$

10^{14} cm $^{-3}$. The maximum value of k''_e for $n_e(o) = 3 \times 10^{14}$ cm $^{-3}$ is approximately 1/3 of the value for $n_e(o) = 3 \times 10^{13}$ cm $^{-3}$ rather than 1/10 as predicted by the n_e^{-1} dependence.

It is of interest to determine the range of velocities of the absorbing electrons. This is obtained using the relativistic resonance condition

$$p_{\parallel}/mc = [N_{\parallel}(f_c/f) \pm (N_{\parallel}^2 - 1 + f_c^2/f^2)^{1/2}] / (1 - N_{\parallel}^2) . \quad (2)$$

where m is the electron rest mass, c is the speed of light, and p_{\parallel} is the electron parallel momentum. For the case of $T_e(o) = 8$ keV, $n_e(o) = 3 \times 10^{14}$ cm $^{-3}$, and $\psi = 25^\circ$ (Fig. 2), the maximum power deposition occurs near $x = 70$ cm where $f_c/f = 1.17$ and $N_{\parallel} = 0.42$. Using Eq. (2) with minus sign (the other root is irrelevant), we obtain $p_{\parallel}/mc = -0.30$, i.e., $|p_{\parallel}| = 3.3 (mT_e)^{1/2}$. This value of p_{\parallel} lies in the low velocity part of the electron tail for which the density of the absorbing electrons is high enough for appreciable wave damping and Coulomb collisions with the electron body are sufficiently frequent to achieve thermalization in a time less than the energy confinement time. As shown in Figs. 1 and 2 and by Eq. (2), electron heating takes place via superthermal electrons in the momentum space and away from the plasma axis. This calls for two comments. First of all, for large wave powers the relatively weakly collisional electrons may experience quasilinear effects which in principle tend to reduce the damping rate. A quantitative answer to this problem requires a Fokker-Planck kinetic code. However, we expect that the power dependence of k''_e is rather weak since the wave energy is deposited over magnetic surfaces of large radius. Secondly, as shown by experiments¹ for noncentral ECRH, the global energy confinement time is not worse than that obtained for power deposition near the plasma axis. Furthermore, for electron

heating far away from the plasma axis, the possibility of suppressing the $m = 2$ mode has been demonstrated. Note also that numerical simulations⁹ of the ignition experiment in the INTOR tokamak point out the advantage of noncentral heating. The results presented in Figs. 1, 2, and 3 are obtained using a slab model and are valid for propagation in the equatorial plane. We have checked that in this case a ray tracing code yields the same results. Plasma heating for lower values of $B(o)$ and f is possible in present day large tokamak devices. For instance, using the TFTR parameters, $a = 80$ cm, $R = 250$ cm, $B(o) = 30$ kG, $f = 60$ GHz, $\phi = 45^\circ$, $n_e(o) = 5 \times 10^{13} \text{ cm}^{-3}$, and $T_e(o) = 4$ keV, we find that more than 90% of the extraordinary mode is absorbed in the first transit, and that half of the energy is absorbed in the regions with $r < 40$ cm and $r < 55$ cm, when the wave is launched from the high field side and the low field side, respectively. Most of the wave energy is deposited in the vicinity of 45 cm and 55 cm, respectively. The investigation of wave absorption for large down-shifted frequencies for $T_e(o) = 1-2$ keV is also possible if the electron tail is activated by an external pusher. This occurs in a low density ohmic plasma or in the lower hybrid current drive regime. In both cases, the electron distribution possesses a mildly relativistic tail which can be used to investigate the properties of electron cyclotron wave absorption by energetic electrons.³ In addition, an interesting by-product of wave absorption for down-shifted frequencies is the generation of an additional current and, therefore, the method can be used for optimization of current drive.¹⁰

In conclusion, we have shown that the two major difficulties of ECRH, namely, the development of high frequency gyrotrons and the cut-off density of the ordinary mode can in principle be overcome by using the extraordinary mode for external launching at down-shifted frequencies. We have also shown that

for wave absorption far away from the region where $f = f_c$, the damping of the extraordinary mode is weakly dependent on the plasma density. This contrasts with the density dependence for wave absorption near $f = f_c$. Since, in high temperature plasmas, most of the wave energy is absorbed far away from the region where $f = f_c$, the limitation due to density raising is less severe than generally expected. Finally, in most cases considered in this work, the ordinary mode damping is found to be negligible.

ACKNOWLEDGMENT

This work is supported by US DOE Contract No. DE-AC02-76-CHO-3073.

REFERENCES

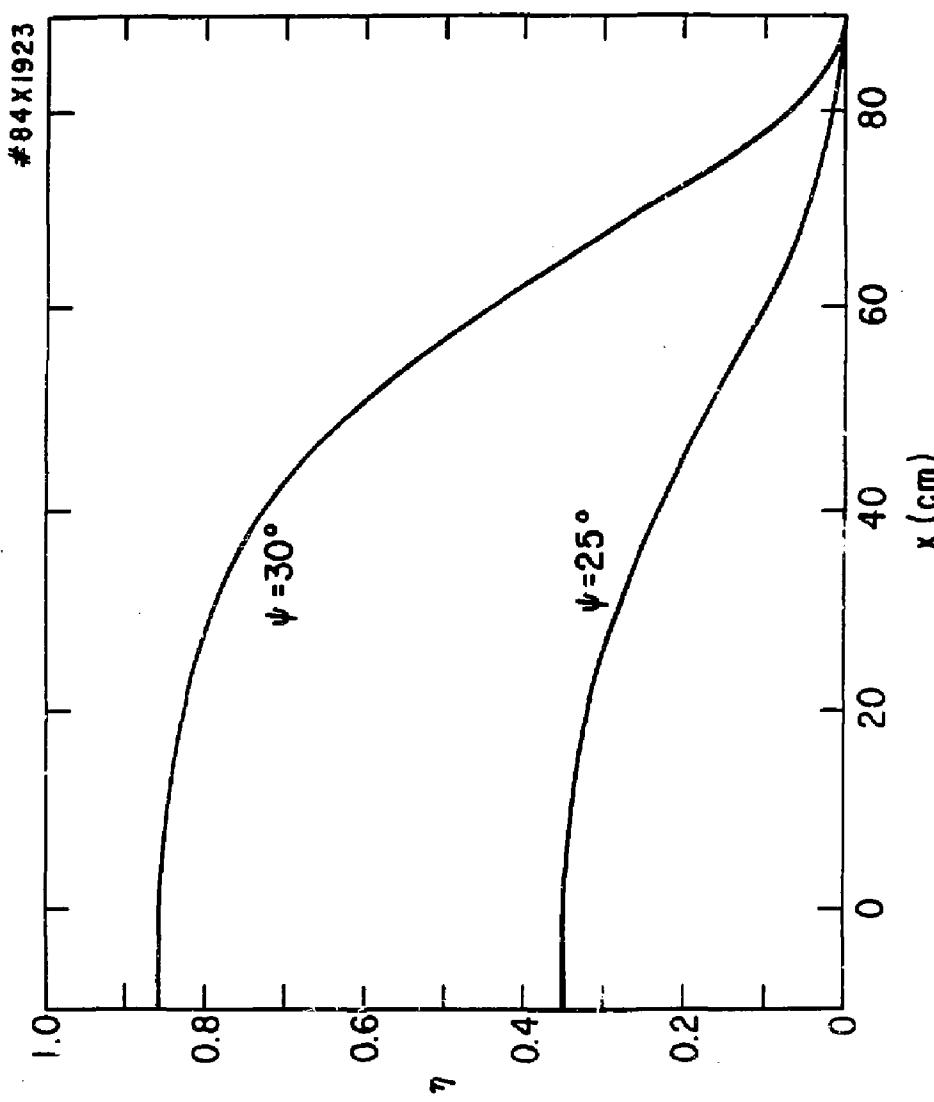

- 1 V.V. Alikoaev, Yu. I. Arsentiev, A.A. Bagdasarov, E.L. Berezovskij, A.A. Borshegovskij, V.V. Buzankin, N.L. Vasin, A.E. Verin, A.N. Vertiporokh, V.A. Vershkov, N.M. Gegechkory, E.P. Gorbunov, A.V. Gorshkov, Yu. V. Esipchuk, S.L. Efremov, V.S. Zavryaev, A. Ya. Kislov, Yu.Yu. Korzhavin, K.M. Likin, S.Yu. Lukjanov, S.Yu. Medvedev, V.S. Mukhovatov, G.E. Notkin, A.B. Pimenov, I.A. Popov, K.A. Razumova, V.V. Rozhdestvenskij, M.M. Stepanenko, V.S. Strelkov, A.V. Tarakanov, V.M. Trukhin, V.G. Usov, V.A. Flyagin, I.N. Khromkov, and V.I. Chepizhko, S.M. Egorov, B.V. Kuteev, V.Yu. Sergeev, IAEA-CN-44/F-1-1, London, UK, 12-19 September 1984.
- 2 R. Prater, Bull. Am. Phys. Soc. 29, 1259 (1984).
- 3 I. Fidone, G. Giruzzi, G. Granata, and R.L. Meyer, Phys. Fluids 27, 661 (1984).
- 4 I.P. Shkarofsky, Phys. Fluids 9, 561 (1966); 9, 570 (1966).
- 5 I. Fidone, G. Granata, G. Ramponi, and R.L. Meyer, Phys. Fluids 21, 645 (1978); I. Fidone, G. Granata, and R.L. Meyer, Phys. Fluids 25, 2249 (1982).
- 6 V.V. Alikoaev, Yu. N. Dnistrovskii, V.V. Parail, and G.V. Pereverzev, Fiz. Plasmy 3, 230 (1977) [Sov. J. Plasma Phys. 3, 127 (1977)].
- 7 A.G. Litvak, G.V. Permitin, E.V. Suvorov, and A.A. Frajman, Nucl. Fusion 17, 659 (1977).
- 8 M. Bornatici, F. Engelmann, and G.G. Lister, Phys. Fluids 22, 1664 (1979).
- 9 R. Cano, A. Cavallo, and H. Capes, Nucl. Fusion 21, 481 (1981).
- 10 I. Fidone, G. Giruzzi, G. Granata, and R.L. Meyer, Phys. Fluids 27, 2468 (1984).

FIGURE CAPTIONS

FIG. 1 η vs x for $n_e(0) = 10^{14} \text{ cm}^{-3}$, $T_e(0) = 5 \text{ keV}$, $f = 115 \text{ GHz}$, and $\psi = 25^\circ$ and 30° .

FIG. 2 η vs x for $n_e(0) = 3 \times 10^{14} \text{ cm}^{-3}$, $f = 115 \text{ GHz}$, $\psi = 25^\circ$ and $T_e(0) = 8 \text{ keV}$ and 10 keV .

FIG. 3 k''_e in cm^{-1} vs x for $f = 115 \text{ GHz}$, $T_e(0) = 5 \text{ keV}$, $\psi = 25^\circ$, and $n_e(0) = 3 \times 10^{13} \text{ cm}^{-3}$, 10^{14} cm^{-3} , and $3 \times 10^{14} \text{ cm}^{-3}$.

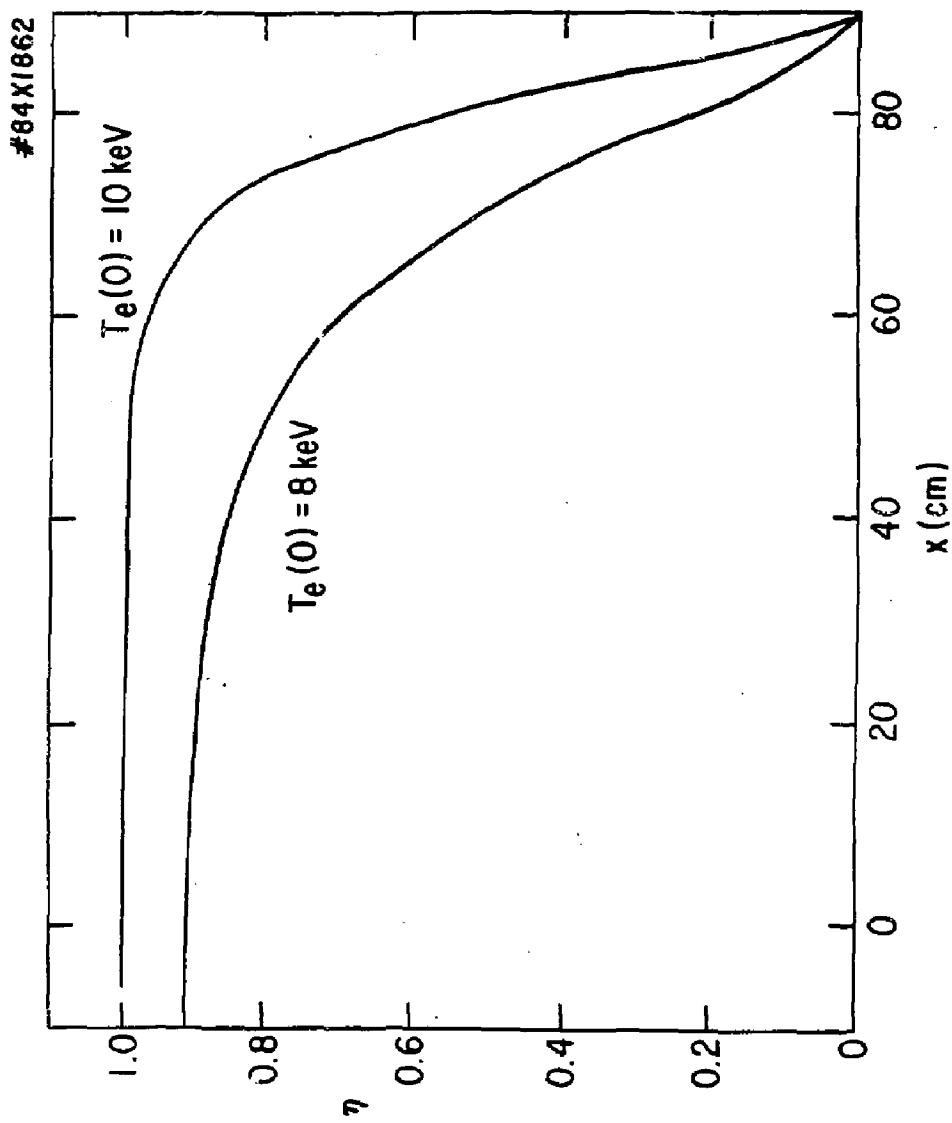


Fig. 2

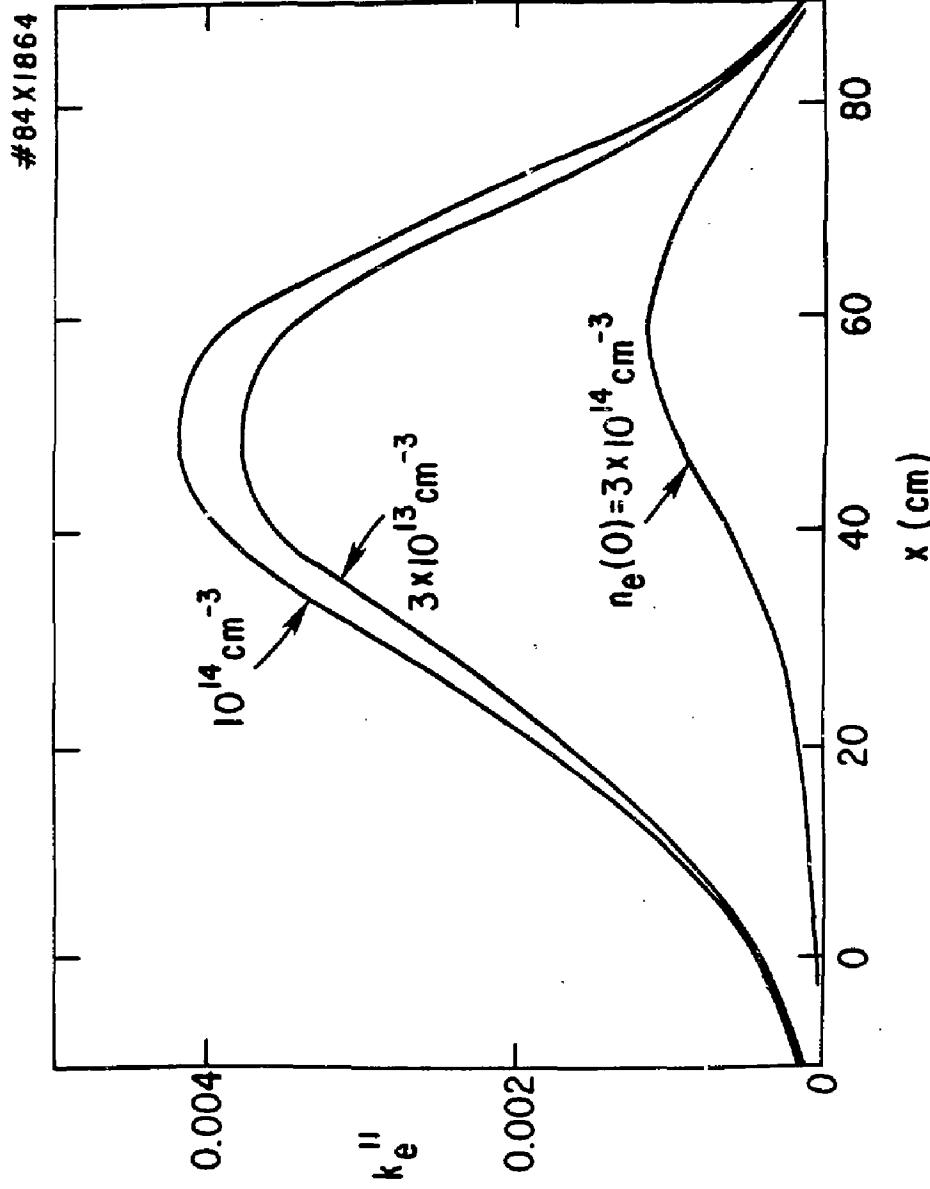


Fig. 3

EXTERNAL DISTRIBUTION IN ADDITION TO UC-20

Plasma Res Lab, Austr Mat'l Univ, AUSTRALIA
Dr. Frank J. Paoloni, Univ of Wollongong, AUSTRALIA
Prof. I.R. Jones, Flinders Univ., AUSTRALIA
Prof. M.H. Brennan, Univ Sydney, AUSTRALIA
Prof. F. Cap, Inst Theo Phys, AUSTRIA
Prof. Frank Verhaest, Inst theoretische, BELGIUM
Dr. G. Palumbo, Og XII Fusion Prog, BELGIUM
Ecole Royale Militaire, Lab de Phys Plasmas, BELGIUM
Dr. P.H. Sakanaka, Univ Estadual, BRAZIL
Dr. C.R. James, Univ of Alberta, CANADA
Prof. J. Teichmann, Univ of Montreal, CANADA
Dr. R.M. Staszard, Univ of Saskatchewan, CANADA
Prof. S.R. Sreenivasan, University of Calgary, CANADA
Prof. Tudor W. Johnston, INRS-Energie, CANADA
Dr. Haines Barnard, Univ British Columbia, CANADA
Dr. M.P. Bachynski, MFB Technologies, Inc., CANADA
Chalk River, Nucl Lab, CANADA
Zhengru Li, SW Inst Physics, CHINA
Library, Tsing Hua University, CHINA
Librarian, Institute of Physics, CHINA
Inst Plasma Phys, Academia Sinica, CHINA
Dr. Peter Lukac, Komenskeho Univ, CZECHOSLOVAKIA
The Librarian, Culham Laboratory, ENGLAND
Prof. Schatzman, Observatoire de Nice, FRANCE
J. Radet, CEN-EDF, FRANCE
AM Dupas Library, AM Dupas Library, FRANCE
Dr. Tom Muul, Academy Bibliographic, HONG KONG
Preprint Library, Cent Res Inst Phys, HUNGARY
Dr. S.K. Trehan, Panjab University, INDIA
Dr. Indra Mohan Lal Das, Banaras Hindu Univ, INDIA
Dr. L.K. Chavda, South Gujarat Univ, INDIA
Dr. R.K. Chhajlani, Vikram Univ, INDIA
Dr. B. Dasgupta, Saha Inst, INDIA
Dr. P. Kaw, Physical Research Lab, INDIA
Dr. Phillip Rosenau, Israel Inst Tech, ISRAEL
Prof. S. Cuperman, Tel Aviv University, ISRAEL
Prof. G. Rostagni, Univ Di Padova, ITALY
Librarian, Int'l Ctr Theo Phys, ITALY
Miss Clelia De Palo, Assoc EURATOM-ENEA, ITALY
Biblioteca, del CNR EURATOM, ITALY
Dr. H. Yamato, Toshiba Res & Dev, JAPAN
Dirac. Dept Ig, Tokaim Dev. JAERI, JAPAN
Prof. Nobuyuki Inoue, University of Tokyo, JAPAN
Research Info Center, Nagoya University, JAPAN
Prof. Kyoji Nishikawa, Univ of Hiroshima, JAPAN
Prof. Sigeru Mori, JAERI, JAPAN
Library, Kyoto University, JAPAN
Prof. Ichiro Kawakami, Nihon Univ, JAPAN
Prof. Satoshi Itoh, Kyushu University, JAPAN
Dr. D.I. Choi, Adv. Inst Sci & Tech, KOREA
Tech Info Division, KERI, KOREA
Bibliotheek, Fom-Inst Voor Plasma, NETHERLANDS
Prof. B.S. Lilley, University of Waikato, NEW ZEALAND
Prof. J.A.C. Cabral, Inst Superior Tecn, PORTUGAL
Dr. Octavian Petrus, ALI CUZA University, ROMANIA
Prof. M.A. Hellberg, University of Natal, SO AFRICA
Dr. Johan de Villiers, Plasma Physics, Nuclear, SO AFRICA
Fusion Div. Library, JEN, SPAIN
Prof. Hans Wilhelmsson, Chalmers Univ Tech, SWEDEN
Dr. Lennart Stenflo, University of OME, SWEDEN
Library, Royal Inst Tech, SWEDEN
Centre de Recherches, Ecole Polytech Fed, SWITZERLAND
Dr. V.T. Tolk, Khar'kov Phys Tech Ins, USSR
Dr. O.D. Ryutov, Siberian Acad Sci, USSR
Dr. G.A. Eliseev, Kurchatov Institute, USSR
Dr. V.A. Glukhikh, Inst Electro-Physical, USSR
Institute Gen Physics, USSR
Prof. T.J.M. Boyd, Univ College N Wales, WALES
Dr. K. Schindler, Ruhr Universitat, W. GERMANY
Nuclear Res Lab, Juelich Ltd, W. GERMANY
Librarian, Max-Planck Institut, W. GERMANY
Bibliothek, Inst Plasmaforschung, W. GERMANY
Prof. R.K. Janev, Inst Phys, YUGOSLAVIA