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A COMPARISON OF COMPUTATIONAL RESULTS OF THE SABRE MFBR P I N  
BUNDLE BLOCKAGE CODE WITH DATA FROM WELL-INSTRUMENTED 

OUT-OF-PILE TEST BUNDLES (THORS BUNDLES 3A AND 5A) 

J. F. Dearing 

ABSTRACT 

The Subchannel Analys is  of Blockages i n  Reac tor  Elements 
(SABRE) computer code,  developed by t h e  United Kingdom Atomic 
Energy Au thor i ty ,  i s  c u r r e n t l y  t h e  only  p r a c t i c a l  t o o l  ava i l -  
a b l e  f o r  performing d e t a i l e d  a n a l y s e s  o f  v e l o c i t y  and tempera- 
t u r e  f i e l d s  i n  t h e  r e c i r c u l a t i n g  f low r e g i o n s  downstream of 
blockages i n  l i q u i d - m e t a l  f a s t  b reede r  r e a c t o r  (LMFBR) p i n  
bundles.  SABRE i s  a subchannel a n a l y s i s  code; t h a t  i s ,  i t  ac- 
c u r a t e l y  r e p r e s e n t s  t h e  complex geometry of n u c l e a r  f u e l  p i n s  
a r ranged  on a t r i a n g u l a r  l a t t i c e .  The r e s u l t s  of SABRE compu- 
t a t i o n a l  models are compared h e r e  wi th  tempera ture  d a t a  from 
two out -of -p i le  19-pin t es t  bundles  from t h e  Thermal-Hydraulic 
Out-of-Reactor S a f e t y  (THORS) F a c i l i t y  a t  Oak Ridge Na t iona l  
Laboratory.  One of t h e s e  bundles  has  a small c e n t r a l  f low 
blockage (bundle  3A), wh i l e  t h e  o t h e r  has  a l a r g e  edge block- 
age  (bundle  5A). Values t h a t  g i v e  b e s t  agreement w i t h  ex- 
per iment  f o r  t h e  empi r i ca l  thermal  mixing c o r r e l a t i o n  f a c t o r ,  
"FMIX," i n  SABRE a re  suggested.  These v a l u e s  of FMIX a r e  
Reynolds-number dependent ,  however, i n d i c a t i n g  t h a t  t h e  coded 
t u r b u l e n t  mixing c o r r e l a t i o n  i s  not  a p p r o p r i a t e  f o r  wire-wrap 
p i n  bundles .  

Keywords: sodium, LMFBR, computer code,  subchannel  ana l -  
y s i s ,  f low blockage,  ou t -of -p i le  experiment.  

1. INTRODUCTION 

The c o r e  of a Liquid-Metal F a s t  Breeder  Reac tor  (LMFBR) is  a r eg ion  

of ex t remely  h igh  power d e n s i t y  which i s  cooled e f f e c t i v e l y  by sodium 

f lowing between t h e  f u e l  p i n s  under  normal o p e r a t i n g  cond i t ions .  

t enance  of  design-temperature  l i m i t a t i o n s  of t h e  f u e l  and c l add ing  i s  

c r i t i c a l l y  dependent  on t h e  small sodium f low channe l s  between t h e  

t i g h t l y  packed f u e l  p i n s  remaining open. 

now a p p e a r s  remote)  t h a t  t h e  blockage of on ly  a few f low channe l s  c o u l d  

l e a d  t o  a whole c o r e - d i s r u p t i v e  a c c i d e n t  l e d  t o  e x t e n s i v e  ou t -o f -p i l e  

Main- 

The p o s s i b i l i t y  ( a l though  i t  
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f low blockage t e s t i n g  a t  t h e  Thermal-Hydraulic Out-of-Reactor Sa fe ty  

(THORS) F a c i l i t y  a t  Oak Ridge Nat iona l  Laboratory. (ORNL). These tests 

were run w i t h  two planar  blockage c o n f i g u r a t i o n s  - a small c e n t r a l  

blockage (bundle  3A) and a l a r g e  edge blockage (bundle  5A). 

3A and 5A were 19-pin e l e c t r i c a l l y  hea ted ,  wire-wrap bundles  t h a t  were 

des igned  t o  s imula t e  c o r e  thermal-hydraul ic  behavior  of t h e  Fast  Flux 

Tes t  F a c i l i t y  (FFTF) and Cl inch  River  Breeder Reactor  (CRBR). 

Both bundles 

Computational s imula t ion  of f low and tempera ture  s t r u c t u r e  i n  t h e  

complex geometry of a blocked p i n  bundle i s  ve ry  d i f f i c u l t ,  and ,  u n t i l  

r e c e n t l y ,  most a n a l y t i c a l  work involved s imple  r e s idence  t i m e  models. 

The Subchannel Analys is  of Blockages i n  Reactor  Elements 1-3 (SABRE) 

computer code,  developed by t h e  United Kingdom Atomic Energy Au thor i ty  

(UKAEA), i s  t h e  f i r s t  a t t e m p t  t o  s o l v e  t h e  three-dimensional  coupled 

m a s s ,  momentum, and energy conse rva t ion  equa t ions  i n  blocked p i n  bundle 

geometry. 

p i r i c a l  c o r r e l a t i o n s  have y e t  t o  be p r e c i s e l y  determined,  comparing t h e  

code as developed t o  d a t e  w i t h  experimental  d a t a  i s  worthwhile.  Compari- 

sons  such as t h i s  should r e f i n e  t h e  computa t iona l  model and i n d i c a t e  pos- 

s i b l e  f u t u r e  development. 

Although development of t h e  code i s  cont inuing  and many em- 

The f i r s t  h a l f  of t h i s  r e p o r t  (Sec ts .  2 ,  3 ,  and 4 )  d e a l s  w i th  t h e  

small c e n t r a l  blockage of THORS bundle 3A. This i s  no t  a ve ry  d i f f i -  

c u l t  tes t  f o r  SABRE because t h e  a c t u a l  r e c i r c u l a t i o n  zone i s  ve ry  small, 

encompassing l e s s  than  one subchannel ( i . e . ,  every blocked subchannel i s  

a d j a c e n t  t o  an unblocked one) .  Because SABRE d e a l s  i n  subchannel  average  

v e l o c i t i e s ,  i t  does not  even "see" a r e c i r c u l a t i o n  zone. The SABRE code,  

however, does p r e d i c t  a c c u r a t e l y  t h e  ra te  of f low recovery  behind t h e  

blockage because agreement wi th  experimental  d a t a  i n  t h i s  r e g i o n  i s  

e x c e l l e n t .  

The second h a l f  of t h i s  r e p o r t  (Sec t s .  5, 6, and 7 )  d e a l s  w i th  t h e  

l a r g e  edge blockage of THORS bundle  5A. 

c i r c u l a t i o n  zone -40 t o  60 m long ( f o r  i n l e t  f low 10 t o  100% nominal).  

SABRE-computed tempera tures  can  be made t o  f i t  THORS d a t a  by a d j u s t i n g  

t h e  t u r b u l e n t  thermal  mixing parameter, "FMIX," but  t h e  f i t  i s  dependent 

on i n l e t  v e l o c i t y .  

This  blockage produces a re- 

A wire-wrap d i v e r s i o n  c ross f low model and a mixing 
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. c o r r e l a t i o n  f o r  wire-wrap bundles  w i l l  be necessa ry  i f  SABRE i s  t o  be 

used e x t e n s i v e l y  as a t o o l  i n  wire-wrap bundle  blockage a n a l y s i s .  

The v e r s i o n s  of SABRE used h e r e  a re  SABRE-1 (Amendment 2 ) 2  and 

SABRE-1A.3  

ca l  d i f f u s i o n  e r r o r  in t roduced  by t h e  upwind f i n i t e  d i f f e r e n c i n g  scheme 

i n  SABRE-1. Details of t h e  s o l u t i o n  procedure in SABRE are cons ide red  

"Commercial i n  Confidence,"  so they  w i l l  n o t  be  d i scussed .  Although a 

v e r s i o n  of SABRE c o n t a i n i n g  p r o v i s i o n s  f o r  wire-wrap fo rced -d ive r s ion  

c r o s s f l o w  h a s  r e c e n t l y  been made a v a i l a b l e ,  i t  w a s  no t  used h e r e  because 

i t  does n o t  c o n t a i n  t h e  v e c t o r  upwind d i f f e r e n c i n g  a l g o r i t h m  ( f o r  e l i m i -  

n a t i n g  f a l s e  d i f f u s i o n )  of SABRE-lA, n o r  i s  i t  a p p l i c a b l e  t o  r e c i r c u l a t -  

i n g  flow. Nondi rec t iona l  thermal  mixing e f f e c t s  of w i r e  wraps are ac- 

counted f o r  (by ad jus tment  of t h e  empi r i ca l  f a c t o r  FMIX) i n  t h i s  r e p o r t ,  

b u t  d i r e c t i o n a l  e f f e c t s  a r e  not .  

SABRE-1A w a s  developed t o  e l i m i n a t e  t h e  " f a l s e "  o r  numeri- 
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2. DESCRIPTION OF THORS BUNDLE 3A 

The THORS F a c i l i t y  a t  ORNL i s  a l a r g e ,  high-temperature  sodium loop 

i n  which p i n  bundles  s i m u l a t i n g  LMFBR c o r e  segments are t e s t e d .  

tests i n c l u d e  both normal and off-normal cond i t ions .  The f low blockage 

i s  a n  impor tan t  off-normal c o n d i t i o n ,  and THORS bundle 3A w a s  designed 

t o  i n v e s t i g a t e  t h e  e f f e c t s  of a small ,  s ix-channel  c e n t r a l  blockage. 

Those 

Bundle 3A c o n s i s t e d  of 19 e lec t r ic  c a r t r i d g e  h e a t e r s  w i th  o u t s i d e  

d iameters  of 5.8 mm (0.23 i n . )  t h a t  were spaced by 1.4-mm-diam (0.56-in.) 

wire-wrap space r s  on a 305-mm (12-in.)  p i t c h .  

s t a i n l e s s  s tee l  p l a t e  blocked f low i n  t h e  s i x  c e n t r a l  subchannels  (F ig .  

1 )  a t  381 mm.(15 i n . )  downstream from t h e  beginning of t h e  533-mm-long 

(21-in.)  hea ted  s e c t i o n .  The i n t e r i o r  of a l a r g e  subassembly was simu- 

l a t e d  us ing  a sca l loped  duc t  w a l l ,  as shown i n  Fig.  1. 

A 6.4-mm-thick (0.25-in.)  

F igu re  2 shows t h e  l o c a t i o n  of thermocouple in s t rumen ta t ion  used 

i n  t h i s  r e p o r t .  Included a r e  wire-wrap,  h e a t e r - i n t e r n a l ,  and ex i t - r ake  

thermocouples.  Because of t h e  d i f f i c u l t y  i n  comparing computed subchan- 

ne1  average  sodium tempera tures  wi th  h e a t e r - i n t e r n a l  thermocouple d a t a ,  

only wi re -wrap  and ex i t - r ake  d a t a  are used here .  The d i f f e r e n c e  between 

ORNL-DWG 77-19533 

n 

Fig. 1. Cross s e c t i o n  of THORS bundle  3A showing s ix-channel  c e n t r a l  
blockage. 
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INCHES FROM O R N L - D W G  73-3684 

BEGINNING- ,-WIRE WRAP POSITION OF HEATED 
ZONE --, (360' E 12 In I / (UNGROUV3EO J C T l  , 

/ W I R E  W R A P  POSITION 

wSpacer  Wire and ln le rna l  Thermocouple L o c a t t o n s  
FFM Bundle 3 A  

X THERMAL ELEMENTS LOST DURING 
ASSEMBLY AND BPERATION 

Fig. 2. Cross s e c t i o n  of THORS bundle  3 A  showing o u t l i n e  of blockage 
and l o c a t i o n s  of thermocouples ( 1  i n .  = 25.4 mm). 

t h e  tempera ture  measured by a w i r e - w r a p  thermocouple and t h e  average  so- 

dium tempera ture  of t h e  subchannel i n  which t h e  thermocouple i s  l o c a t e d  

is probably small ((5°C). The e x i t  rake  i s  downstream of t h e  hea ted  sec-  

t i o n ,  s o  t h e r e  should be no d i f f e r e n c e  between exit-rake thermocouple and 

subchannel average  temperatures .  

F igu re  3 shows t h e  bundle 3A- . t e s t  s e c t i o n .  Sodium e n t e r s  near  t h e  

b o t t o a ,  flows up through t h e  bundle ,  and e x i t s  near  t h e  top.  A complete  

d e s c r i p t i o n  of bundle  3A, a long  wi th  a l l  exper imenta l  d a t a ,  may be  found 

i n  Ref. 4 .  
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3. SABRE MODEL OF THORS BUNDLE 3A 

A one-s ix th  s e c t i o n  model of bundle  3A i s  shown i n  Fig.  4.  Sub- 

channel  t y p e s  a re  i d e n t i f i e d  as " B , "  "lC," " l E , "  etc. The model ex tends  

from t h e  beginning of t h e  hea ted  s e c t i o n  t o  t h e  end of t h e  bundle ,  a d i s -  

t a n c e  of 610 mm (24 i n . ) .  The hea ted  s e c t i o n  i s  533 mm (21 i n . )  l ong ,  

ending 76 mm ( 3  i n . )  be fo re  t h e  end of t h e  bundle ,  where t h e  ex i t - r ake  

thermocouples are  loca ted .  Axia l  nodes a r e  a uniform 6.35 mm (0.25 i n . )  

l ong ,  except  f o r  t h e  f i r s t  node and t h e  node con ta in ing  t h e  end of t h e  

hea ted  s e c t i o n ,  which a re  9.53 mm (0.375 i n . )  long. These two nonuni- 

form nodes are  necessary  t o  l o c a t e  t h e  blockage p l a t e  p rope r ly  i n  t h e  

a x i a l  n o d a l i z a t i o n .  This SABRE model r e q u i r e d  -430 K b y t e s  of s t o r a g e  

and -5 min of running t i m e  on a n  I B M  360/91. 

ORNL-DWG 77-11235A 

UN H E ATE D 
DUMMY 
EDGE PINS 

Fig.  4. SABRE model of THORS bundle  3A - one-s ix th  s e c t i o n .  
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A one-s ix th  s e c t i o n  model was p o s s i b l e  because t h e  blockage i s  sym- 

metrical about a one-s ix th  s e c t i o n  and because SABRE does  n o t  i n c l u d e  

p r o v i s i o n s  f o r  wire-wrap fo rced -d ive r s ion  c r o s s f l o w  (which would de- 

s t r o y  t h e  symmetry). Bundle 3A does  have w i r e  wraps,  however, s o  i t  i s  

not exactly symmetr ical .  The e f f e c t  of t h i s  d i screpancy  w i l l  be seen  i n  

t h e  next  c h a p t e r  as a sca t te r  of d a t a  r e p r e s e n t i n g  t h e  same channel  t ype  

( i n  one-s ix th  s e c t i o n )  but  i n  d i f f e r e n t  s e c t i o n s  of t h e  bundle.  The 

s ca t t e r  w i l l  be  s e e n  t o  be l eas t  s i g n i f i c a n t  i n  t h e  impor tan t  c e n t r a l  

blocked channels .  

b 

SABRE h a s  t h e  o p t i o n  of i n l e t  v e l o c i t y  (me te r s  p e r  second)  o r  pres -  

s u r e  drop  ( P a s c a l s )  boundary cond i t ion .  The p r e s s u r e  drop  boundary con- 

d i t i o n  i s  t h e  more d e s i r a b l e ,  bu t  t h e r e  are no exper imenta l  d a t a  f o r  pres -  

s u r e  d rop  a c r o s s  t h e  a x i a l  r e g i o n  modeled. I f  a p r e s s u r e  drop  boundary 

c o n d i t i o n  i s  t o  be used,  t h e  c o r r e c t  i n l e t  f low (which i s  measured ex- 

p e r i m e n t a l l y )  must b e  achieved by i t e r a t i o n .  

c a s e s  on both  bundle  3 A  and 5 A  models. There were no s i g n i f i c a n t  d i f f e r -  

ences  i n  t h e  s o l u t i o n s  ob ta ined  us ing  t h e  two t y p e s  of boundary condi-  

t i o n s ,  so  t h e  i n l e t  v e l o c i t y  boundary c o n d i t i o n  i s  used throughout  t h i s  

a n a l y s i s .  

Th i s  w a s  done f o r  s e v e r a l  

The subchannel  f low areas and wet ted  p e r i m e t e r s  used i n  SABRE are  

modif ied t o  account  f o r  t h e  presence  of t h e  w i r e  wraps. These are aver -  

age  m o d i f i c a t i o n s ,  t h a t  i s ,  t h e  f low area and wet ted  pe r ime te r  of a 

p a r t i c u l a r  subchannel  do n o t  change w i t h  a x i a l  p o s i t i o n  ( a s  wire wraps 

sweep i n  and o u t ) .  

Defau l t  v a l u e s  of a l l  c o r r e l a t i o n  parameters  are used throughout ,  

except  f o r  t h e  t u r b u l e n t  thermal  mixing c o r r e l a t i o n  parameter  FMIX and 

"GAMBL," t h e  thermal  c o n d u c t i v i t y  d i v i d e d  by t h e  s p e c i f i c  h e a t  of t h e  

blockage material. 

mental  d a t a ,  w h i l e  GAMBL w a s  ass igned  a v a l u e  of 0.02 kg sec-' m - l  ( f o r  

s t a i n l e s s  s t e e l ) .  However, t h e  e f f e c t  of GAMBL i s  only  s i g n i f i c a n t  t o  

t h e  SABRE-computed tempera tures  a t  nodes with in  t h e  blockage,  and t h e s e  

tempera tures  are ignored i n  t h i s  a n a l y s i s  ( t h e  SABRE r e p r e s e n t a t i o n  of 

in-blockage h e a t  t r a n s f e r  i s  too  s i m p l i f i e d  t o  be  of va lue ) .  

w a s  f a s t e s t  u s ing  a v a l u e  of 0.3 t o  0.4 f o r  t h e  v e l o c i t y  u n d e r r e l a x a t i o n  

f a c t o r ,  "URFVEL." 

FMIX i s  v a r i e d  t o  g i v e  b e s t  agreement wi th  expe r i -  

Convergence 
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4. COMPARISON OF SABRE RESULTS WITH THORS BUNDLE 3A DATA 

SABRE r e s u l t s  and THORS d a t a  are compared f o r  t h r e e  runs ,  r e p r e s e n t -  

i n g  " 1 0 0 ,  80, and 60% nominal flow. Table  1 g i v e s  exper imenta l  condi- 

t i o n s  f o r  t h e s e  t h r e e  c a s e s : '  r u n s  1 0 1 ,  1 0 4 ,  and 1 0 7  of t e s t  2 ,  series 4 

of  t h e  bundle  3A tes t  program (Ref. 4 ) .  

Table  1 .  Experimental  c o n d i t i o n s  f o r  t h r e e  runs  
of tes t  2 ,  series 4 ,  bundle  3A t e s t  program 

Ap pr  oxima t e Bulk 

r ise ,  TB 

I n l e t  
t e m  pe r a t  u r  e Run nominal I n l e t  f low Powerlpin t empera tu re  

("C) ("C) No. f low ( l i t e r s  s e c - l )  (kW) 
( % I  

1 0 1  1 0 0  
1 0 4  80 
107  60 

3.39 17.52  44  1 90 
2.72 17 .55  434 1 1 0  
2 .10  17 .54  418 1 4 2  

F i g u r e  5 shows SABRE-computed r e l a t i v e  subchannel a x i a l  v e l o c i t i e s  

( v e l o c i t y / i n l e t  v e l o c i t y )  i n  subchannel  t y p e s  B, l C ,  and 1E as f u n c t i o n s  

of  a x i a l  d i s t a n c e  from t h e  f r o n t  f a c e  of t h e  blockage p l a t e  f o r  100% of 

nominal flow. 

f a l l s  r a p i d l y  t o  z e r o  upstream of t h e  blockage and r ecove r s  s lowly  down- 

stream. The v e l o c i t y  i s  p o s i t i v e  everywhere - SABRE does n o t  "see" a 

r e c i r c u l a t i o n  zone because i t  i s  t o o  small t o  be de f ined  on a subchannel  

ave rage  b a s i s .  

Note t h a t  t h e  a x i a l  v e l o c i t y  i n  B ( t h e  blocked subchannel )  

SABRE tempera tu res  and THORS wire-wrap  and ex i t - r ake  thermocouple 

d a t a  are  compared us ing  p l o t s  of normalized t empera tu re  vs a x i a l  pos i -  

t i o n  i n  t h e  bundle. Normalized tempera ture  i s  de f ined  

where T i s  t h e  i n d i c a t e d  tempera ture  ("C), T i n  i s  t h e  bundle  i n l e t  tem- 

p e r a t u r e  ("C), and TB i s  t h e  bulk  tempera ture  r ise through t h e  hea ted  

s e c t i o n  ("C). 
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flXIflL DISTANCE: FROU FRONT FflCE OF BLOCKAGE PLf l fE [UUl 

Fig. 5. SABRE-1 computed r e l a t ive  a x i a l  v e l o c i t i e s  f o r  subchannel  
t y p e s  B ,  l C ,  and 1 E  f o r  c o n d i t i o n s  of tes t  2 ,  run  101. 

Values used f o r  T i n  and TB f o r  each run  may be found i n  Table  1. 

F igu res  6 ,  7, and 8 show normalized tempera ture  v s  a x i a l  p o s i t i o n  

f o r  subchannel t ypes  B ,  l E ,  and 2EC, r e s p e c t i v e l y ,  f o r  run  101 (100% 

nominal f low).  

1.0, was used. 

f o r  t h e  blocked c e n t r a l  subchannel B. S c a t t e r  of d a t a  a t  t h e  same axial  

l o c a t i o n  i s  caused by wire-wrap mixing and i s  more p reva len t  a t  t h e  edge 

of t h e  bundle (2EC) t h a n  i n  t h e  c e n t e r  (B). These p l o t s  are  inc luded  t o  

show t h a t  SABRE-1 (Amendment 2)  does a very  adequate  job  of  modeling t h i s  

small blockage case. 

The remainder of t h e  a n a l y s i s  i n  t h i s  r e p o r t  w i l l  u se  SABRE-1A. 

SABRE-1 (Amendment 2 ) ,  w i t h  t h e  d e f a u l t  v a l u e  of FMIX = 

The agreement wi th  experiment i s  ve ry  good, e s p e c i a l l y  

Apparent ly ,  f a l s e  d i f f u s i o n  i s  no t  a problem he re .  
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A X I A L  DISTANCE FROM BEGINNING OF H E A T E D  SECTION lmml 

Fig.  6. Normalized t empera tu re  vs  ax ia l  p o s i t i o n ,  subchannel  t ype  B ,  
SABRE-1 ( F M I X  = 1.0) computation and THORS d a t a  a t  100% nominal f low ( tes t  
2 ,  run  101, bundle  3 A ) .  

ORNL-DWG 79-6014 ETD 

~ 

A X I A L  D ISTANCE F R O M  BEGINNING OF H E A T E D  SECTION lmml 

Fig. 7.  Normalized t empera tu re  vs  ax ia l  p o s i t i o n ,  subchannel  t ype  l E ,  
SABRE-1 ( F M I X  = 1.0) computation and THORS d a t a  a t  100% nominal f low ( t e s t  
2 ,  run 101, bundle  3 A ) .  
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A X I A L  DISTANCE FROM BEGINNING OF HEATED SECTION lmml 

Fig. 8. Normalized t e m p e r a t u r e  v s  a x i a l  p o s i t i o n ,  subchannel  type  
2EC, SARRE-1 (FMIX = 1.0) computation and THORS d a t a  a t  100% nominal f low 
( t e s t  2 ,  run 101, bundle  3A). 

The r e s u l t s  of u s ing  SABRE-1A t o  model run  101 wi th  FMIX = 1.0 a r e  

shown i n  Fig.  9 f o r  subchannel  t ype  B. 

e n t  t u r b u l e n t  mixing c o r r e l a t i o n s ,  and ,  as  shown i n  Fig.  9 ,  u s ing  FMIX = 

1.0 induces  too  much mixing downstream of t h e  blockage. Reducing FMIX t o  

z e r o  g i v e s  t o o  l i t t l e  mixing,  a s  s e e n  i n  Fig.  10. 

t o  g i v e  b e s t  agreement f o r  t h i s  c a s e ,  as shown i n  Fig.  11. 

SABRE-1A and SABRE-1 have d i f f e r -  

A va lue  of 0.3 seems 

F igures  1 2  and 13  show r e s u l t s  f o r  subchannel t ypes  1E and ZEC, re- 

Agreement i s  good, cons ide r ing  s p e c t i v e l y ,  f o r  run  101 wi th  FMIX = 0.3. 

t h e  l i m i t a t i o n s  of t h e  one-s ix th  s e c t i o n  model. 

F igu res  1 4 ,  15,  and 16 show r e s u l t s  f o r  subchannel  t ypes  B,  l E ,  and 

2EC, r e s p e c t i v e l y ,  f o r  run 104 (80% nominal f low)  wi th  FMIX = 0.3. Agree- 

ment i s  good, w i th  Fig. 1 4  sugges t ing  a n  a p p r o p r i a t e  v a l u e  of FMIX between 

0 and 0.3. F igu res  17 ,  18, and 19 show r e s u l t s  f o r  subchannel t ypes  B ,  

l E ,  and 2EC, r e s p e c t i v e l y ,  f o r  run  107 (60% nominal f low).  Again, agree-  

ment i s  good, w i th  Fig.  17 sugges t ing  t h a t  a v a l u e  of FMIX s l i g h t l y  lower 

than  0.3 might improve t h e  comparison. 

. 
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A X I A L  DISTANCE FROM BEGINNING OF H E A T E D  SECTION lmml 

Fig.  9. Normalized t empera tu re  vs  axial  p o s i t i o n ,  subchannel  t ype  B, 
SABRE-1A (FMIX = 1.0) computation and THORS d a t a  a t  100% nominal f low 
( t e s t  2 ,  r u n  101, bundle  3A). 

ORNL-DWG 79-601 7 ETD 

A X I A L  DISTANCE FROM BEGINNING OF H E A T E D  SECTION lmml 

Fig. 10. Normalized t empera tu re  vs a x i a l  p o s i t i o n ,  subchannel  type B, 
SABRE-1A (FMIX = 0.0) computation and THORS d a t a  a t  100% nominal f low 
( t e s t  2 ,  r un  101, bundle  3A). 
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Fig. 11. Normalized tempera ture  vs  a x i a l  p o s i t i o n ,  subchannel  type  B,  
SABRE-1A ( F M I X  = 0 . 3 )  computation and THORS d a t a  a t  100% nominal flow 
( tes t  2 ,  
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run  101, bundle  3A). 
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A X I A L  DISTANCE FROM BEGINNING OF H E A T E D  SECTION lmml 

Fig. 12. Normalized tempera ture  vs axial  p o s i t i o n ,  subchannel  type  
l E ,  SABRE-1A ( F M I X  = 0 . 3 )  computation and THORS d a t a  a t  100%'nominal f low 
( t e s t  2,  run  101, bundle  3 A ) .  

n 
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Fig. 13. Normalized tempera ture  vs  a x i a l  p o s i t i o n ,  subchannel  t ype  
2 E C ,  SABRE-1 ( F M I X  = 0.3) computat ion and THORS d a t a  a t  100% nominal f low 
( t e s t  2 ,  r un  101, bundle  3 A ) .  

Fig. 14. Normalized tempera ture  vs  a x i a l  p o s i t i o n ,  subchannel  t ype  B,  
SABRE-1A ( F M I X  = 0.3) computat ion and THORS d a t a  a t  80% nominal f low ( t e s t  
2 ,  r un  104, bundle  3 A ) .  
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0 1m.o 200.0 Mo. 0 im. o sm.o 600.0 

A X I A L  DISTANCE F R O M  BEGINNING OF H E A T E D  SECTION (mml 

Fig. 15. Normalized tempera ture  vs  ax ia l  p o s i t i o n ,  subchannel  type  
l E ,  SABRE-1A (FMIX = 0.3) computation and THORS d a t a  a t  80% nominal flow 
( t e s t  2 ,  run  104, bundle  3A). 

ORNL-DWG 79-6023 ETD 

D 100.0 mb. 0 M0.0 1m.o sm.0 600.0 

A X I A L  DISTANCE F R O M  BEGINNING OF H E A T E D  SECTION lmml . 
Fig. 16. Normalized tempera ture  vs a x i a l  p o s i t i o n ,  subchannel  type  

ZEC, SABRE-1A (FMIX = 0.3) computation and THORS d a t a  a t  80% nominal f low 
( t e s t  2 ,  run  104, bund1,e 3A). 
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A X I A L  DISTANCE FROM B E G I N N I N G  OF H E A T E D  SECTION lmml 

Fig. 17. Normalized t empera tu re  vs  ax ia l  p o s i t i o n ,  subchannel  t ype  B, 
SABRE-1A (F'MIX = 0.3) computation and THORS d a t a  a t  60% nominal f low ( t e s t  
2 ,  r un  107, bundle  3A). 

ORNL-DWG 79-6025 E l  

0.0 100.0 200.0 Ya.0 100.0 5 m . O  600.0 
A X I A L  DISTANCE FROM B E G I N N I N G  OF H E A T E D  SECTION lrnrnl 

Fig. 18. Normalized t empera tu re  vs axial  p o s i t i o n ,  subchannel  t ype  
lE, SABRE-1A (FMIX = 0.3) computat ion and THORS d a t a  a t  60% nominal f low 
( t e s t  2 ,  r un  107, bundle  3A). 
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. .. p-- BLOCKAGE i 
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0 im.0 zoo.0 , 300.0 tm.o sm.0  600.0 
A X I A L  D ISTANCE F R O M  BEGINNING OF H E A T E D  SECTION lmml 

Fig. 19. Normalized tempera ture  vs  a x i a l  p o s i t i o n ,  subchannel  type  
2EC, SABRE-1 (FMIX = 0.3) computation and THORS d a t a  at 60% nominal flow 
( tes t  2 ,  run  107, bundle  3 A ) .  

. 

. 
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5. DESCRIPTION OF THORS BUNDLE 5 A  

THORS bundle  5 A  c o n s i s t e d  of 19 e lec t r ic  c a r t r i d g e  h e a t e r s  w i t h  

o u t s i d e  d i ame te r s  of 5.8 mm (0.23 i n . )  which were spaced by 1.4-mm-diam 

(0.056-in.) wire-wrap s p a c e r s  on a 305-mm (12-in.)  p i t c h .  A 3.2-mm-thick 

(0.125-in.)  s t a i n l e s s  s tee l  blockage p l a t e  blocked -35% of t h e  t o t a l  f low 

area 102 mm ( 4  i n . )  i n t o  t h e  457-mm (18-in.) hea ted  s e c t i o n .  The pos i -  

t i o n s  of t h e  edge blockage and wire-wrap thermocouple i n s t r u m e n t a t i o n  

are shown i n  Fig.  20. Hal f - s ize  wi re  wraps were used a d j a c e n t  t o  t h e  

duc t  w a l l  t o  dec rease  t h e  f low area i n  t h e  edge subchannels  and t o  f l a t -  

t e n  t h e  r a d i a l  t empera ture  p r o f i l e .  F igu re  21  shows t h e  test s e c t i o n  

i 

Fig.  20. Cross  s e c t i o n  of THORS bundle  5A showing l o c a t i o n  of 
blockage p l a t e  and thermocouple i n s t r u m e n t a t i o n  ( 1  i n .  = 25.4 mm). 
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Fig.  2 1 .  THORS bundle 5A test sec t ion  assembly ( 1  in .  = 2 5 . 4  mm). 
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assembly. A complete d e s c r i p t i o n  of  bundle  5A, a l o n g  w i t h  expe r imen ta l  

d a t a ,  may b e  found i n  Ref. 5. 

Most of t h e  bundle  5A t e s t  program was r u n  wi th  f u e l  p i n  s i m u l a t o r  

No. 16 (Fig.  20) and a l l  h e a t e r - i n t e r n a l  thermocouples i n o p e r a t i v e  ( t h e y  

became i n o p e r a t i v e  du r ing  bundle f a b r i c a t i o n  and assembly).  The bundle  

was r e b u i l t  and des igna ted  bundle 5B, and a more e x t e n s i v e  tes t  program 

w a s  run. I n i t i a l  comparat ive a n a l y s i s  (Ref. 6) used bundle  5B d a t a  and 

t h e  SABRE-1 code. Comparison of d a t a  from bundles 5A and 5B i n d i c a t e s ,  

however, t h a t  t h e r e  w a s  probaby a small l eakage  between t h e  duc t  w a l l  and 

t h e  blockage p l a t e  i n  bundle  5B, lowering t empera tu res  i n  t h e  wake re- 

gion.  For t h i s  r eason ,  bundle  5A d a t a  a r e  used h e r e .  No power w a s  ap- 

p l i e d  t o  f u e l  p i n  s i m u l a t o r  No. 16 i n  t h e  SABRE model. 
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6. SABRE MODEL OF THORS BUNDLE 5A 

The computat ional  mesh begins  a t  t h e  beginning of t h e  heated sec- 

t i o n  and ends 203 mm (8 i n . )  i n t o  t h e  hea ted  s e c t i o n .  The 3.2 mm-thick 

(0.125-in.) blockage p l a t e  i s  l o c a t e d  102 mm ( 4  i n . )  i n t o  t h e  heated sec- 

t i o n ,  midway i n  t h e  computat ional  mesh. Experimentat ion i n d i c a t e d  t h a t  

t h e s e  i n l e t  and o u t l e t  boundaries  a r e  f a r  enough from t h e  blockage so as 

not  t o  s i g n i f i c a n t l y  a f f e c t  t h e  f low s o l u t i o n  nea r  t h e  blockage. The ax- 

i a l  nodes are a uniform 6.35 mm (0.25 i n . )  i n  l e n g t h ,  twice t h e  t h i c k n e s s  

of t h e  blockage p l a t e .  I d e a l l y ,  t h e  a x i a l  node s i z e  should be t h e  same 

o r  smaller than  t h e  blockage t h i c k n e s s ,  bu t  machine s t o r a g e  l i m i t a t i o n s  

p r o h i b i t  t h i s  here .  Again, exper imenta t ion  i n d i c a t e d  t h e  flow s o l u t i o n  

w a s  not  s i g n i f i c a n t l y  a f f e c t e d  by us ing  a 6.35-mm a x i a l  node. Machine 

s t o r a g e  requi rements  are -430 K ,  and -5- t o  10-min running t i m e  i s  re- 

qu i r ed  f o r  s a t i s f a c t o r y  convergence on a n  IBM 360/91. 

q u i r e  r e s u l t s  from SABRE-1 cases as i n i t i a l  f low cond i t ions .  

SABRE-1A cases re- 

A c r o s s  s e c t i o n  of t h e  SABRE bundle 5A model i s  shown i n  Fig.  22. 

Note t h e  o u t l i n e  of t h e  blockage p l a t e  and t h e  l o c a t i o n  of t h e  x and y 

c o o r d i n a t e  a x i s ,  which w i l l  be used i n  three-dimensional  tempera ture  

p l o t s  i n  t h e  next  s e c t i o n .  

t i n g  a c r o s s  t h e  c e n t r a l  row of p ins  ( c r o s s  s e c t i o n  one) and t h e  o t h e r  

c u t t i n g  through t h e  edge channels  on t h e  l e f t  s i d e  of t h e  bundle  ( s i d e  

view). Two-dimensional f low f i e l d s  w i l l  be g iven  a t  t h e s e  two c r o s s  

s e c t i o n s .  

Two c r o s s  s e c t i o n s  are a l s o  shown, one c u t -  

The fo l lowing  comments on SABRE modeling, d i scussed  i n  Sect. 3,  a l s o  

apply  here .  

1. SABRE provides  a d e t a i l e d  model of t h e  f low geometry of bundle  

5A except  f o r  wire-wrap forced-d ivers ion  c ross f low.  

areas and wet ted pe r ime te r s  are c o r r e c t e d ,  n o n d i r e c t i o n a l  thermal  mixing 

i s  covered by t h e  mixing c o r r e l a t i o n  f a c t o r  FMIX, bu t  d i r e c t i o n a l  w i r e -  

wrap f low sweeping i s  not  included.  

Subchannel f low 

2. The blockage i n  bundle 5A i s  no t  symmetr ical  about  a one-s ix th  

s e c t i o n ,  so  a f u l l  bundle model must be used. 

3. I n l e t  v e l o c i t y  boundary c o n d i t i o n  (meters  per second)  i s  used. 

4. Defaul t  v a l u e s  of a l l  parameters are used except  f o r  FMIX and 

GAMBL. 
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Fig. 22. Cross s e c t i o n  of THORS bundle  5A showing l o c a t i o n s  of two 
cross s e c t i o n s  and x,y indexing  scheme. 
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7. COMPARISON OF SABRE RESULTS WITH THORS BUNDLE 5A DATA 

SABRE r e s u l t s  and THORS d a t a  are  compared f o r  t h r e e  runs ,  r ep resen t -  

i n g  "100, 40, and 10% nominal f low. Table  2 g i v e s  experimental  condi- 

t i o n s  f o r  t h e s e  t h r e e  cases: runs  151, 158, and 162 of tes t  2 ,  s e r i e s  4 

of t h e  bundle  5A tes t  program (Ref. 5) .  Fue l  p i n  s imula to r  No. 16 i s  no t  

f u n c t i o n a l  f o r  t h e s e  runs  ( a s  explained i n  Sec t .  5 ) ;  subchannel  power d i s -  

t r i b u t i o n  i n  SABRE i s  a d j u s t e d  t o  r e p r e s e n t  t h i s .  

Table 2. Experimental conditions fo r  three runs 
of t e s t  2,  ser ies  5,  bundle SA t e s t  program 

Bulk 

r i s e ,  TB 
( " C )  

a Inlet  Approximate 
Run nominal Inlet  flow Powerlpin temperature temperature 
No. flow ( l i t e r s  sec- l )  (kW) ( " C )  (XI 

151 100 2.63 7.40 326 45 
158 40 1.08 7.59 326 110 
162 10 0.31 5.53 242 274 

a Except pin No. 16,  which i s  not heated. 

The SABRE f low f i e l d  nea r  t h e  blockage i s  shown i n  Figs .  23 and 2 4  

f o r  run  151 (nominal f low).  Re fe r r ing  t o  Fig. 22, t h e  c r o s s  s e c t i o n  one 

i s  shown i n  Fig.  23 and t h e  s i d e  view i n  Fig. 24. The r e c i r c u l a t i o n  

zone ex tends  t o  -165 mm (from t h e  beginning of t h e  heated zone) ,  o r  -60 

mm behind t h e  blockage plate.  

t o r  l e n g t h s ,  except  where only t h e  t i p  remains.  Note t h a t  t h e s e  p l o t s  

are  two-dimensional c r o s s  s e c t i o n s  of a three-dimensional  flow. The cen- 

ter  of t h e  r e c i r c u l a t i o n  zone appears  t o  be a t  120 t o  130 mm, which i s  

c l o s e  t o  t h e  1271nm (5-in.)  l o c a t i o n  of wire-wrap thermocouples t h a t  a re  

used i n  comparat ive a n a l y s i s .  

R e l a t i v e  v e l o c i t i e s  are i n d i c a t e d  by vec- 

The SABRE f low f i e l d  f o r  run 158 (40% flow) i s  shown i n  F igs .  25 

( c r o s s  s e c t i o n  one)  and 26 ( s i d e  view). 

similar t o  t h a t  of run  151 (100% f low) ,  bu t  s l i g h t l y  s h o r t e r .  In  t h i s  

case, i t  extends  t o  -155 mm, o r  "50 mm from t h e  blockage p l a t e .  

The r e c i r c u l a t i o n  zone i s  ve ry  

The SABRE f low f i e l d  f o r  run 162 (10% flow) i s  shown i n  Figs .  27 

( c r o s s  s e c t i o n  one) and 2 8  ( s i d e  view). The r e c i r c u l a t i o n  zone i s  a g a i n  
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Fig .  23. SABRE-1A computed f low f i e l d  ( c r o s s  s e c t i o n  one)  a t  nominal 
f low ( t e s t  2 ,  run  151,  bundle  5A). 
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Fig .  24.  SABRE-1A computed f low f i e l d  ( s i d e  view) a t  nominal f low 
( t e s t  2 ,  run  151,  bundle  5 A ) .  
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Fig .  26. SABRE-1A computed f l o w  f i e l d  ( s i d e  view) a t  40% nominal 
f low ( t e s t  2 ,  r u n  158, bundle  5 A ) .  
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Fig .  2 7 .  SABRE-1A computed f low f i e l d  ( c r o s s  s e c t i o n  one) a t  10% 
nominal f low ( t e s t  2 ,  run 162,  bundle  5 A ) .  



30 

ORNL-DWG 79-6033 ETD 
I 
I 

s i  
r i  
r i  
# i  
# i  I 

t i  
r i  

I 
I 

I 
I 

I 

I 

I 

I 
I 

I 
I 

f l  

Jf l  

f l ;  

-'I 

I 
I 

I 
I 

I 
I 

I 
I 

# I  
I 
I 
I 
I 

7 1  

I 
I 
I 

d l  
I 
1 
I 

I I I 

1 
I 

I 
I 
I 
I 

I 
I 
I 

* I  

- 1  

- 1  

r :  
I .  
I 

I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

! 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I :- 
F- 
? 

I 
I 
I 

I 
I 

I 
I 
% 
I 
I 
I 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 
CHf3NNEL 

Fig .  28. SABRE-1A computed f low f i e l d  ( s i d e  view) a t  10% nominal 
f low ( t e s t  2 ,  r u n  162,  bundle  5 A ) .  
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s l i g h t l y  s h o r t e r ,  extending t o  -145 mm,  o r  -40 mm behind t h e  blockage 

p l a t e .  

SABRE tempera tu res  a t  127 mm ( 5  i n . )  a re  compared w i t h  bundle  5A 

wire-wrap d a t a  u s i n g  three-dimensional  p l o t s  of normalized t empera tu re  

[ (T  - T i n ) / T ~ ]  vs  p o s i t i o n  i n  t h e  x,y c o o r d i n a t e  mesh shown i n  Fig.  22. 

The s u r f a c e  p l o t t e d  i n  Fig.  29 r e p r e s e n t s  t h e  SABRE-1A t empera tu re  f i e l d  

a t  127 mm ( n e a r  t h e  c e n t e r  of t h e  r e c i r c u l a t i o n  zone).  Vectors  are  drawn 

from t h e  s u r f a c e  t o  t h e  l o c a t i o n  of experimental  d a t a  p o i n t s .  These a re  

wire-wrap thermocouple da ta  p o i n t s ,  excep t  f o r  t h e  two w i t h  D s  n e a r  t h e  

v e c t o r  head,  which a re  duc t  w a l l  thermocouple d a t a .  Duct wa l l  thermo- 

coup les  a re  s l i g h t l y  o f f s e t  from t h e  subchannel sodium flow and a re  less  

ORNL-DWG 79--6034 ETD 

Fig. 29. Comparison of SABRE-1A and expe r imen ta l  d a t a  (shown by 
v e c t o r s )  a t  100% nominal f low,  FMIX = 1.0 ( t e s t  2 ,  r un  151, bundle  5A). 
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s i g n i f i c a n t  t h a n  t h e  wire-wrap  thermocouples f o r  comparison w i t h  SABRE. 

P o i n t s  i n  t h e  r e c t a n g u l a r  g r i d  of Fig.  22 t h a t  l i e  o u t s i d e  t h e  subchannel  

f low f i e l d  are  a s s igned  t h e  average  tempera ture  of neighboring p o i n t s  

w i t h i n  t h e  f low f i e l d  i n  Fig.  29. 

Seve ra l  t h i n g s  are  r e a d i l y  appa ren t  from i n s p e c t i o n  of Fig.  29. 

The o u t l i n e  of t h e  blockage p l a t e  i s  i n d i c a t e d  where tempera tures  r i s e  

sha rp ly .  The d e p r e s s i o n  i n  t h e  s u r f a c e  nea r  t h e  middle  of t h e  blockage 

i s  due t o  p i n  No. 16 be ing  i n o p e r a t i v e .  F i n a l l y ,  SABRE tempera tures  a re  

h i g h e r  t han  exper imenta l  d a t a  a t  t h i s  a x i a l  p o s i t i o n ,  which i s  nea r  t h e  

c e n t e r  of t h e  computed r e c i r c u l a t i o n  zone. I n c r e a s i n g  F M I X  t o  2.0 pro- 

duces a much b e t t e r  f i t ,  a s  shown i n  Fig.  30. 

SABRE tempera tures  and bundle  5A d a t a  are compared i n  Fig. 31 f o r  

run  158 (402 f low) w i t h  FMIX = 1.0. Agreement h e r e  i s  q u i t e  good. Using 

ORNL-DWG 79-6035 ETD 

A 

' 0  

Fig .  30. Comparison of SABRE-1A and expe,rimental d a t a  (shown 
by v e c t o r s )  a t  100% nominal f low,  FMIX = 2.'O ( $ e s t  2 ,  r un  151, bundle  5 A ) .  

c 
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- 0  

Fig. 31. Comparison of SABRE-IA and experimental  d a t a  (shown by 
v e c t o r s )  a t  40% nominal f low, FMIX = 1.0 ( t e s t  2 ,  r u n  158, bundle  5 A ) .  

a v a l u e  of 1.0 f o r  FMIX a t  10% flow ( r u n  162) g i v e s  tempera tures  much 

lower t h a n  THORS d a t a ,  a s  shown i n  Fig.  32. Reducing FMIX t o  z e r o  g i v e s  

b e t t e r  agreement,  as  shown i n  Fig. 33. Comparative a n a l y s i s  a t  t h i s  low 

f low is d i f f i c u l t ,  however. 

t h e  p o s s i b i l i t i e s  i n c r e a s e  f o r  d i f f e r e n c e s  between experimental  t e m -  

p e r a t u r e s  measured by wire-wrap i n t e r n a l  thermocouples and subchannel 

ave rage  t empera tu res  c a l c u l a t e d  by SABRE. T h i s  can  be seen  i n  t h e  d i s -  

crepancy between SABRE c a l c u l a t i o n s  and THORS d a t a  i n  t h e  unblocked sub- 

c h a n n e l -  (x,y) c o o r d i n a t e s  (8,2) and (5 ,3 )  i n  Fig. 33. 

must d e c r e a s e  w i t h  subchannel Reynolds number i n  o r d e r  t o  g i v e  b e t t e r  

agreement wi th  THORS d a t a .  

c o r r e l a t i o n  i n  SABRE-1A is not  adequate  f o r  wire-wrap bundles  (which i s  

As t h e  laminar  flow regime i s  approached, 

However, FMIX 

This, in t u r n ,  means t h a t  t h e  d e f a u l t  mixing 

no t  s u r p r i s i n g ) .  
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Fig.  32. Comparison of  SABRE-1A and expe r i -  Fig. 33. Comparison of SABRE-1A and expe r i -  
men ta l  d a t a  (shown by v e c t o r s )  a t  10% nominal 
flow, FMIX = 1.0 ( t e s t  2, r u n  162, bundle  5 A ) .  flow, FMIX = 0.0 ( t e s t  2 ,  run  162, bundle  5 A ) .  

menta l  d a t a  (shown by v e c t o r s )  a t  10% nominal 

t .') 
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8. SUMMARY AND CONCLUSIONS . 
SABRE i s  a f a s t - runn ing ,  easy-to-use program w i t h  g r e a t  p o t e n t i a l  

v a l u e  f o r  p i n  bundle  blockage a n a l y s i s .  SABRE-1A r e s u l t s  f o r  t h e  blocked 

channe l s  of a six-channel c e n t r a l  blockage a re  i n  good agreement w i t h  

wire-wrap and ex i t - r ake  thermocouple data  i n  t h e  range of 60 t o  100% of 

nominal f l ow us ing  a v a l u e  of 0.3 f o r  t h e  parameter  F M I X .  A p o s s i b l e  

s l i g h t  d e c r e a s e  of FMIX wi th  i n l e t  f low i n  t h i s  range i s  i n d i c a t e d .  

SABRE-1A r e s u l t s  c a n  be fo rced  i n t o  e s s e n t i a l  agreement w i t h  wire-wrap 

thermocouple d a t a  f o r  t h e  l a r g e  edge blockage of bundle  5A by a d j u s t i n g  

FMIX. A v a l u e  of 2.0 i s  a p p r o p r i a t e  a t  nominal f low,  a v a l u e  of 1.0 a t  

40% nominal f low,  and b e s t  agreement a t  10% nominal f low i s  wi th  a v a l u e  

of z e r o  f o r  F'MIX. The p robab le  reason f o r  t h e  changing va lue  of FMIX i s  

t h a t  t h e  SABRE-1A t u r b u l e n t  mixing c o r r e l a t i o n  i s  not  a p p r o p r i a t e  f o r  

wire-wrap bundles .  A more a p p r o p r i a t e  c o r r e l a t i o n  w r i t t e n  i n t o  a ver- 

s i o n  of SABRE, which i n c l u d e s  both t h e  v e c t o r  upwind d i f f e r e n c i n g  method 

of SABRE-1A and a wire-wrap forced-crossf low model a p p l i c a b l e  i n  r e c i r c u -  

l a t i n g  flow, would make SABRE a t r u l y  v a l u a b l e  t o o l  i n  wire-wrap bundle  

blockage a n a l y s i s .  
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