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ABSTRACT 

A numerical study of heat, transfer in 90", constant cross-section 

curved duct, steady,laminar flow is presented. The work is aimed pri­

marily at characterizing the effects of duct geometry on heat transfer by 

considering, especially, the role of secondary motions during the 

developing period of the flow. However, due consideration has also been 

given to varying initial conditions of velocity and temperature at the 

entrance section to the duct. In addition, an assessment is made of the 

relative contributions of individual duct walls 1.0 heat transfer in the 

flow. It is found that, in general, heat transfer increases with Dean 

number with the largest transfer rates occurring through the duct side 

walls and outer-curvature wall. Duct geometries with aspect ratio greater 
t 

or smaller than unity have weaker secondary motions and are less effective 

for heat transfer. Similarly, plug-flow entrance profiles for velocity 

retard the development of cross-stream flow thus inhibiting a significant 

contribution to heat transfer. It is concluded that short ducts with 

strong curvature (2Rc/D,.< 10) and intense secondary motions can be as 

effective for heat transfer as longer ducts which are less strongly 

curved. 

Calculations are based on fully elliptic (in space) forms of the 

transport equations governing the flow. They are of engineering value 

and are limited in accuracy only by the degree of computational mesh 

refinement. A comparison with calculations based on parabolic equations 

has been made and it is shown how the latter can lead to erroneous results 

for strongly curved flows. 
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NOMENCLATURE 

a curved duct width 

b curved duct breadth 

Cp heat capacity at constant pressure 

C, friction coefficieru at •: plane 

C pressure loss coefficient at •; plane 

Do Dean number (R f-(" R~ 

D,. curved duct hydraulic diameter (4x surface/perimeter) 

h perimeter average heat transfer coefficient at •; plane 
(q /(Tw-T)) 

k thermal conductivity 

Nu perimeter average Nusselt number at <j- plane (hD„/k) 

P pressure at a point in the flow 

P surface average pressure at <).. plane Pr Prandtl number iic / k 
I' .it. 0" plane 

T ' f 

[ i 

heat f l u x at a point, on a wal l 

[ 'er i i i ieter average heat f l u x at ••',. plane 

rad ia l d i r e c t i o n in c y l i n d r i c a l coord inates 

inner curvature wal 1 

ou te r curvature wa l l 

Re duct radius of curvature ((r. + 0 / 2 ) 

/ D H " V B \ 
Re Reynolds number 1 I 

T value of temperature at a point in the flow 

T mass average temperature at # plane 

T. inlet temperature 



wall temperature 

modulus of secondary motion vector ve loc i ty at a point in the 

surface average longi tudinal velocity at ip plane 

longitudinal veloci ty component 

radial velocity component 

axial veloci ty component 

axial d i rect ion in cy l indr ica l coordinates 

/ T w - T \ non-dimensional temperature at a point in the flow I j — ^ — I 
\ w" i n ' 

/ T - T . 
non-dimensional mass average temperature at <j> plane! -* 

\ in 

v iscos i ty 

density 

wall shear stress 

longitudinal d i rect ion in cy l indr ica l coordinates 
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INTRODUCTION 

Considerable effort has been expended on the experimental 

measurement and calculation of flows in curved ducts of rectangular 

cross-section, principally because of the practical significance of such 

flows. Curved duct geometries frequently arise in engineering con­

figurations where, besides providing a necessary conduit, for the fluid, 

it may be required to enhance heat and/or mass transport processes. In 

curved ducts this is achieved mainly due to the prolonged residence 

times of fluid elements which must move along spiraling paths as they 

evolve in the main (longitudinal) flow direction. Thus, the centrifugal 

force-radial pressure gradient imbalance acting on slow moving fluid 

near the side walls of the duct induces a motion of the fluid along the 

side walls and directed from the outer towards the inner curvature wall. 

In turn, faster moving fluid in the core region of the flow moves along 

the center (symmetry) plane of the duct,being directed from the inner 

to the outer curvature wall. The cross-stream motion just, described is 

commonly referred to in the literature as secondary motion of the "first 

kind" or, simply, secondary motion [1]. It is obvious that the extent to 

which heat, and mass transport can be enhanced in curved duct flows will be 

a strong function of the intensity and spatial variation of the secondary 

motion. 

Even though experimental works on curved duct flows abound (a recent 

review may be found in [2]), data availability for engineering purposes is 

often defficient or simply inadequate. Whereas considerable work has been 

carried out to obtain useful design correlations for pressure losses and 

friction coefficients [3], there is no equivalent body of knowledge de­

scribing three-dimensional velocity, energy and mass transport phenomena 



2 

in s u f f i c i e n t d e t a i l and over a wide enough ranqe of re levan t d imensionless 

f low parameters. That t h i s should be the case may be understood by 

cons ider ing the phenomenal task requ i red only to o b t a i n de ta i l ed measure­

ments of three v e l o c i t y components f o r d i f f e r e n t cond i t i ons of duct aspect 

r a t i o . Dean number, radius r a t i o 2Rc/D., ( f o r t u r b u l e n t f lows [ 4 ] ) and, f o r 

developing f l ows , a t various duct d e f l e c t i o n angles. I t is not s u r p r i s i n g 

t.o f i nd therefore; that, ava i l ab le v e l o c i t y data is main ly r e s t r i c t e d to the 

l o n g i t u d i n a l component d i r e c t i o n and that the m a j o r i t y of heat and mass 

t r a n s f e r s tud ies have focussed on cases of f u l l y developed curved duct 

f low w i t h boundary condi t ions of s p e c i f i c relevance to the p a r t i c u l a r 

^ases i n v e s t i g a t e d . 

Whoreas exper imentat ion in curved duct qeometries may be labor ious 

(and complex), i t i s poss ib le , i n p r i n c i p l e , to compute these f lows q u i t e 

accura te ly i n the laminar regime. This has been shown by, among o t h e r s , 

Cheng and Akiyama [ 5 ] , Chenq, L in and Ou [ 6 ] and Joseph, Smith and Ad le r [ 7 ] 

f o r f u l l y developed flow and by Ghia and Sokhey [ 8 ] and Humphrey, Tay lo r and 

Whitelaw [ 9 ] f o r developing f l ow . Of the above on ly the procedure used by 

Humphrey, e t . a l . [ 9 ] is based on f u l l y e l l i p t i c forms ( i n space) o f the 

equations o f mo t ion . Ca lcu la t ions f o r t u rbu len t f l ow regime have been 

performed by Pratap and Spalding [ 1 0 ] using a s e m i - e l l i p t i c numerical 

procedure. However, the agreement between c a l c u l a t i o n s and measurements 

o f v e l o c i t y i s less s a t i s f a c t o r y i n t h i s case. Al though the authors 

a t t r i b u t e the d iscrepancies to f a i l i n g s in the model o f turbulence employed 

in the c a l c u l a t i o n s , i t i s Doss ib le t ha t t h e i r neg lec t of h igher o rder 

curva tu re terms in the equations o f motion may have con t r i bu ted to the 

n d e r - p r e d i c t i o n o f secondary v e l o c i t y components. 

Experimental i n v e s t i g a t i o n s o f heat t r a n s f e r i n curved duct f lows have 

oeen descr ibed by, f o r example, K r e i t h [ 1 1 ] , Mor i , Uchida and Ukon [ 1 2 ] 



and Yang and Liao [13] wh i le corresponding numerical ca l cu l a t i ons are 

repor ted by Cheng and Akiyama [ 5 ] and Cheng, e t . a l . [ 6 ] . Except f o r the 

experimental works of K re i th [ 1 1 ] and Yang and L iao [13 ] ( i n t u r b u l e n t 

regime) the remaining s tudies deal w i t h the problem o f f u l l y developed 

laminar f l ow . In genera l , these and s i m i l a r s tud ies show tha t heat t ransfer-

in curved duct f l ow is enhanced r e l a t i v e to tha t occu r r ing in s t r a i g h t 

duc ts , w i t h t r a n s f e r rates at ou te r curvature w a l l s being t y p i c a l l y 2 to 5 

times l a rqe r than corresponding values at inner w a l l s . Non-dimensional izer i 

values of temperature p r o f i l e s show trends s i m i l a r to those d isp layed by 

the l o n g i t u d i n a l v e l o c i t y component, w i th maximum values s h i f t e d towards 

the outer cu rva tu re w a l l . Equ iva len t in format ion appears to be l a c k i n g 

fo r the case of developing laminar f l ow. Espec ia l l y not iceab le i s the 

dearth of i n fo rma t i on fo r ducts w i t h r e l a t i v e l y s t rong curvature (smal l 

rad r , s r a t i o : 2 Rc/Dj. 10) where spa t i a l e l l i p t i c i t y in the f low f i e l d 

may be pronounced. 

The present study is d i r e c t e d toward p rov id ing (through numerical 

computation) necessary f l u i d mechanical and heat t r a n s f e r data fo r 

developing steady laminar f l ow o f an .ncompressible f l u i d in s t r o n g l y 

curved ducts w i t h 90° d e f l e c t i o n ang le . The c a l c u l a t i o n s are of eng ineer­

ing accuracy and a l low a r e l a t i v e comparison of duct performan. e and 

de ta i l ed f low c h a r a c t e r i s t i c s as a func t ion o f r e levan t dimensionless 

parameters, such as Dean and Reynolds number, aspect r a t i o and rad ius r a t i o . 

Because of the numerical approach in the study i t has been poss ib le to 

examine an ex tens ive combination o f geometrical con f i gu ra t i ons f o r var ious 

i n i t i a l and boundary cond i t ions f o r temperature and v e l o c i t y . The ex-

peri'mental equ iva len t of t h i s (o r a s i m i l a r ) study would be exceedingly 

l abo r ious , time consuming and expensive to per fo rm. This subs tan t ia tes 
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the need for developing and applying calculation procedures which can be 

used with confidence, relatively easily and (by comparison to experiments) 

at moderate costs. The numerical procedure used in this study is presently 

the basis for similar calculations in turbulent single and two-phase flow 

to be reported at a later date. 



CALCULATION PROCEDURE AND TEST CASES 

The c a l c u l a t i o n procedure used to compute the f lows in t h i s study 

has already been described in [ 9 ] . Extension o f the-procedure to a r b i t r a r y 

orthogonal coord ina te qeometries and. e s p e c i a l l y , i t s a p p l i c a t i o n to 

developing curved pipe flows o f s t rong curvature have oeen documented by 

lU 'Vphrey ! The l a t t e r re ference contains general f i n i t e d i f f e r e n c e 

forr.s fit the conservat ion equat ions fo r mass, momentum and t r a n s f e r a b l e 

• M i l i r q u a n t i t i e s (species and enerqy) . De ta i l ed in fo rmat ion concerning 

t.hr d e r i v a t i o n o f the d i f f e r e n c e equat ions, t h e i r numerical s o l u t i o n and 

resu l t s fo r var ious tos t cases solved to evaluate the procedure Are 

reported in the above rwn references and in [ ? ] . This sect ion presents 

a sui'imnry o f the essent ia l f ea tu res c h a r a c t e r i z i n g the c a l c u l a t i o n 

method together w i th .1 d e s c r i p t i o n of i t s a p p l i c a t i o n to f lows ; n curved 

ducts w i th neat t r a n s f e r . Some of the resu l t s f o r two ca lcu la ted t e s t 

cases or" a lso 'v;'rir,'.ed. 

L i juat jons, wo^iory Condit ions and Procedure f o r Numerical Sol u t i o n 

N'iss conse rva t i on , momentum and energy equat ions f o r th ree-d imens iona l , 

sf.eany. in compressible laminar f l ow in curved ducts of c y l i n d r i c a l geometry 

i iT fespond ing to F ig. 1 are g iven by 

y + .1 
. r r 

+ ---"•- + - • - 0 
t? r 

z -z 

•iv 

2 ">: 

• v 

' r • r 
J. v 

v v 
r : 

z -iz 
1 -4P 
r a,; 

2 ^ 2 
V . + -o 
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IV V . IV. 

r :;; 

-iV 

+ v . / \i 
;,p ,? 

+ 11 v v 
1/ i 

(» f -r v iT + Jfc HI + v 11 
r Dr r -w|. z riz k[V 2T] 

(4 

where 

(6) 

I t is required to solve ( l ) - ( 5 ) toqether with various combinations 

of the boundary conditions as shown below: 

In le t plane (if. = 0° ) . 

v •= v = 0 , v = plug flow or developed duct flow 

T = constant or f(r) 
(7; 

Exit plane (all r and z at <[> = 90°). 

-IV 
;)<)> 

-IV nv, 
r)<p 

with overal l cont inui ty of mass and energy imposed. 

Side walls (a l l I(I at z = ± b / 2 and r = r., r ). 

v r = v z = v<t> = ° 
T = constant or f(c|>) at specif ied walls 

q = 0 at specif ied walls 

(9) 

Symmetry plane (a l l r and $ at z = 0), 

3z 
_ i 
9z 

9 1 
9z :io) 



The conditions imposed for velocity at the inlet and exit planes have 

been carefully discussed in [14]. It is shown there that the curved duct 

has a minimal effect on the incoming fluid stream, thus allowing a fairly 

arbitrary prescription of the velocity distribution at ; ^ 0° . While not 

strictly correct, the velocity condition at the exit plane (>; = 90°) is a 

good approximation and is substantiated by the satisfactory agreement found 

hero (and in [9,14]) between measurements and ca 1culations. 

The finite difference equations are obtained by integrating (l)-(5) 

over volume elements on "cells" discretizinr the flow domain. The velocity 

components, pressure and temperature nre the dependent, variables computed 

on a number of staggered, interconnected grids, ea>.l~. of which is 

aw'tcir'.teri with a specific variable. The general form of the finite 

difference expression is given by 

P -( ^ V i + S o ) / A Ai 
\ i - l / / i = l 

where • '•.••> oc.it/ component, pressure or temperature) is the variable 

solves, for ,.ir. a position P in the discretized flow domain. The A. co­

efficients are determined at the cell surfaces and represent the combined 

contributions of convection and diffusion to the balance of <t>. Other 

contributions arising from pressure, body forces and temperature (sources 

or sinks) are contained in S . Detailed forms for S in variable property ' o o 
flows are available in [15]. 

Solution of the system of finite difference transport equations with 

appropriately differenced boundary conditions is achieved by means of a 

cyclic series of predictor-corrector operations as described in [9,14]. 

Briefly, the method involves using an initial or intermediate value of the 

http://oc.it/
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pressure f i e l d to solve f o r an in termediate v e l o c i t y f i e l d . A pressure 

corriM t. ion to the pressure f i e l d is determined by b r ing ing in te rmed ia te 

v e l o c i t i e s i n t o conformi ty w i t h c o n t i n u i t y . Correct ions to the pressure 

and v e l o c i t y f i e l d s ara app l i ed and the enerqy equat ion is solved fo r T 

( i n flows where energy and momentum are not l i n k e d through temperature 

e f f e c t s t h i s las t s tep i an be taken , i f t e r the v e l o c i t y and pressure 

f i e l d s have been determined) . The above steps are repeated u n t i l some 

p re -os tab l i shed convergence c r i t e r i o n is s a t i s f i e d . 

Test Cases 

i x t e n s i v o t es t i ng and an (.'valuation o f the c a l c u l a t i o n procedure for 

p r e d i c t i n g f lows wi thout heat t r ans fe r have been documented in [2] and 

repor ted in par t in [ c ) , 1 4 ] . I t has been shown i n these references that, 

f u l l y e l l i p t i c , three-d imensional computations o f s u f f i c i e n t accuracy fo r 

engineer ing purposes can be obta ined on unequal ly spaced g r ids as coarse 

as \? x 1? x ?0 ( r x z x <;>). The p red ic t ions presented here and in the 

f o l l ow ing set I inns have been performed on a 12 x l f i / 20 mesh. While f i n e r 

g r ids i i tv > ,ip,iMe nf y i e l d i n g more accurate r e s u l t s , they ^r^ i n c reas ing l y 

more expensive to compute. Whereas numerical schemes based on parabo l i c or 

s e m i - e l l i p t i c forms of the t ranspo r t equations w i l l handle equ iva len t and 

f i n e r c a l c u l a t i o n meshes a t s i g n i f i c a n t l y less c o s t , f o r f lows such as the 

ones o f i n t e r e s t here where curva tu re e f f e c t s can be pronounced, i t is not 

poss ib le to determine a p r i o r i i f less than f u l l y e l l i p t i c equat ions are 

j u s t i f i e d . For two i n t e r e s t i n g examples i n v o l v i n g f low reversa l i n curved 

: i c t s . see [ 9 , 1 1 ] . 

? r o f i l e r - o f l o n q i t u d i n a l v e l o c i t y and pressure , r espec t i ve l y ca lcu la ted 

.-. --. e ' ^ i o t i c and parabo l ic forms of the t r a n s p o r t equat ions, are shown 

- : .. >'r)-c) where they are compared w i th exper imental v e l o c i t y data from 
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[9]. The parabolic calculations were readily obtained by nodif"ing tne 

elliptic procedure of [9,14] as explained in, for example, Launder [16]. Tne 

plots allow a relative comparison between the two approaches for a duct of 

relatively strong curvature (case 1 in Table 1 ) . It can be seen that the 

elliptic results yield significantly better predictions of longitudinal 

velocity (and cross-stream components nor shown here), especially between 

; - '•; <° ana : = 90'' whe-e elliptic effects <\vr strongest. The pressure 

profiles in fig. 2-<; show, in part, trie reason for the discrepancy. In the 

p.irnbolic cumulations pressure linK in ! he lonoitudin.il direction arc 

oeojpled and lead to over-predicted v.ilues ,tt r ~ r and under-predicted 
o 

v.lines at r r.. Thus, even though the v e l o c i t y f i e l d is " p a r a b o l i c " in 

rh. i ' i t conta ins no reverse;; f l ow /ones, e l l i p t i c i t y in tne pressure f i e l d 

is s t i l l s t rong and must be d e a l t w i t h acco rd ing l y . 

Aii'ii t. ion.i l indie n t ions o f the d i f fe rences which can a r i se between 

e l l i p t i ; and parabol ic computat ional approaches in s t rong ly curved f lows 

isiv t..e gleaned :"ro; a comparison of the resu l t s presented fo r v e l o c i t y 

: jnponents and te: .;.era lu re in F igs . 4-a a r .d4-h , r espec t i ve l y . The f i gu res 

..or.t.i: • ,", i j ts of ca lcu la ted r e s u l t s at ; -- 90° which are s i g n i f i c a n t l y d i s -

s i m i l u r . In p a r t i c u l a r , the pa rabo l i c l o n g i t u d i n a l v e l o c i t y contours show 

hign speed f l u i d trapped near the outer curvature wal l between the s ide 

wal l and symmetry plane. This e f f e c t con t rad i c t s experimental evidence 

in [ 9 ] and is due to the o v e r - p r e d i c t i o n of an unfavorable l o n g i t u d i n a l 

pressure g rad ien t at the ou te r curvature w a l l . The o v e r - p r e d i c t i o n a lso 

expla ins why secondary motion a t the outer rad ius w a l l , near the symmetry 

plane, is d i r e c t e d away from the wal l and i n t o the f l ow . Of course , 

d i f fe rences in the temperature contours w i l l a r i s e because of the d i f f e rences 

in v e l o c i t y and w i l l be in e r r o r as w e l l . I t may be concluded t h a t f o r 

http://lonoitudin.il


developing curved duct f lows w i t h Tie • o",o, s i g n i f i c a n t e r ro r can a r i s e 

through the use of parabo l ic schemes. A l l tne < a 1 o j l at ions performed f o r 

the parametr ic study presented in trie next sec t i on have been based on 

f u l l y e l l i p t i c forms of the t r anspo r t equations •^ gwen in f l j - ' h ) . 

As a check fo r the v a l i d i t y of the c.aIcu'ln t ion procedure in the 

presence of heat t rans fe r e f f e c t / , , narer :< a I computations were performed 

for two of the experimental cases presented b/ Mori , e t . .11 . [ I ?'] f o r 

f u l l y developed curved duct f l ow . The agreement between c a l c u l a t i o n s 

and measurements can be ',,,dd''d ' r ' . - ' >,-. | i r ,,r i ] ,,•, >,,,- v i • 1 f ir •? *. / and 

temperature shown in r i g . *',. ! r. i . mso;.•!•,•; fa !.>• ,.>' . ', ' : ! ,•'/ : : n-< 

the unce r t a i n t y reported in r onnet 11 ai y( i '.ii the <•<;.<• r : ' or,; \ rit;i'h 

were a f f ec ted by the presence o f large f ur'nu 1 ence r 1 ac'.aa ' ions at ' ' e 

entrance se< t i on of the curved duc t , i f is snowr iri \,: \ '.hat the !ar,<•'•'. 

tu rbu len t f l uc tuat ions in curved souare dui t f low a r i se a ' the ou te r 

curvature w a l l . To ' f 1 uc tua t i oris w i l l • 'ncT ibu? e f " ' uc-hslent d i ' T i s i o o 

from the wa l l region in to the core flow and can ai.r.nun! f n r tne iowor 

experimental va.ues of temperature found in '.]','• i t the outer rad ius 

W.i I i . 

Rigorously, the procedure should be tested for its capacity to predict 

^Omentum and heat transfer effects during the developing period of duct 

flow, oowever, tne authors are unaware of any experimental data in curved 

ducts which would serve for such a comparison. Notwithstanding, calculations 

performed for developing temperature profiles in straight duct flow show, 

excellent agreement with experimental measurements and analytical results. 

For this and more detailed discussion of the test cases reported here see 

Vee [17]. 
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CASE STiOIES, RESULTS AND DISCUSSION 

A summary of the case studies and conditions calculated for this 

investigation is presented in tabulated form in Table 1. From the table 

it ;.'ill be seen that various curved duct geometries were combined with 

parabolic (fully developed straight du< t flow) prnfiles for velocity and 

uniform tonperature (T,. 300"!-') distrihutions .it the entrance plane 

'• ; 0"). The effects of varying initial temperature and velocity 

distribution were also investigated, finally, the effects of heating 

curved duct walls singly, with adiabat.ii conditions imposed for the re­

maining walls, were explored. In all cases the boundary condition was that 

of constant wall temperature (T r - 350" i\) except for where the adiabatic 

condition was enforced. Although not calculated here, variable wall 

temperature or variable1 (or constant) heat: flux conditions could have just, 

as readily been specified at the boundaries. 

Inc oiiipres'. ihle, constant property (Pr = 1.0) flow was assumed for the 

i a',culat ions arid i'. an acceptable supposition for the range of temperatures con-

siderod •:(•,'(.. While the calculation of temperature dependent fluid properties 

is a standard feature in the numerical procedure, it does increase the cost 

o' predictions through additional storage and computing time requirements. 

"v:i'•• il values for storage and CP times for the case studies presented here 

were ;60 K„ and 235 seconds, respectively on a CDC 7600. The average time 
o 

roguired per node x iteration for all runs was 1.44 x 10 ' CP seconds. 

The remainder of this sectiin is devoted to the presentation and 

and discussion of some of the results calculated for the test cases in Table 1. 

Tne presentation is subdivided according to the topic of interest both for 

ease of discussion and to enhance the separate roles of the various 

uaramete s affecting heat transfer in curved duct flow. 
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Vejocit^y and Teripc*'atun_' His t_rj_hut i_nns 

Plots o f non-dimensional v e l o c i t y and temperature d i s t r i b u t i o n s 

are given in F i g . 4 (a -h ) . Long i tud ina l v e l o c i t y and temperature arp shown 

in the form of equal-value contours whereas the cross-st ream motion is 

ind ica ted in v e c t o r i a l form. 

I'.end .too le ( ; ) . 

The distributions shown in the figures are typical of the bulk of the 

results and illustrate clearly the important: role played by secondary motions 

insofar as he.it and momentum transport arc concerned. Thus, for example, the 

sequence shown in Tin. 4-a,l>,c provides ,i clear impression of the way 

the H o w and temperature fields evolve to produce maximum values in the 

respective distributions displaced toward the outer-radius wall. The 

similarity between longitudinal velocity and temperature contours is 

striMng but not surprising in view of the convective nature of the flow. 

Th<> energy field is decoupled from the momentum field and in all cases 

evolves in a manner' dictated primarily by the fluid mechanics. 

A-,per f ™t:_î o_JjT/aJ_. 

The e f f e c t o f vary ing aspect r a t i o may be shown by a r e l a t i v e comparison 

of i ' i i . . . 1-L , r l ,o . I t is immediately obvious t ha t the vector p l o t s f o r 

cross-stream v e l o c i t y d i f f e r cons iderab ly depending on the aspect r a t i o . 

For b/a - 1 the secondary mot ion is r e l a t i v e l y h igh in the reg ion o f the 

inner -cu rva tu re ( r - r . ) and s ide (z = b/2) w a l l s , whereas f o r b/a = 3 i t 

is high at a l l three wa l ls but l o c a l i z e d mainly i n the region of the s ide 

w a l l . For b/a = 1/3 the c ross-s t ream f low i s in tense along both the duct 

symmetry plane and side wa l l s b u t , by comparison, i s r e l a t i v e l y weak a t 

the inner- and ou te r - cu rva tu re w a l l s . Long i tud ina l v e l o c i t y and temperature 

http://he.it


1 J. 

contours show distributions corresponding to the sense of the secondary 

motion. For b/a = 1/3 it is worth remarking on the peak value of longi­

tudinal velocity which has been displaced from the duct symmetry plane 

whence it evolved. A corresponding peak in the temperature distribution 

is not observed. In addition, for this last case, longi tudinal vRlw.it'.' 

and temperature profiles i\ro most- dissimilar and is probably due to a 

relatively largo contribution to heat; transfer through conduction along 

the z axis. 

Velocity entrance condit ion. 

The effect of a plug flow entrance condition may be assessed by 

comparing Figs. 4-c and f. Secondary flow evolves considerably more slowly 

in the case of a flat profile entrance condition and is to be expected 

since the boundary layers on the side walls, where the transverse pressure 

gradient, has its strongest effect, are initially very thin. As a 

consequence both the longitudinal velocity and temperature develop slowly 

also. Although not shown here, the longitudinal velocity for this case 

was observed to develop a potential-flow-like appearance over the first 

20 to 3f) degrees in the duct. While this effect is hardly noticeable at 

; - gnr', remnants of its presence may be detected in the temperature profiles 

which display double maxima near the inner-radius wall. 

IndividuallyJi_eated waj_ljs_. 

Figure 4-g shows temperature distributions at 90° for three cases 

in Table 1 where only one of the two curved walls or both of the side walls 

were heated while keepinq the remaininq walls adiabatic. The fluid mechanics 

of these cases are identical to Figs. 4-a, b and c but the manner in which 

the temperature fields evolve are strikingly different. In all cases the 

http://vRlw.it'.'
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calculations show graphically how the secondary notion scoops warn fluid 

from the vicinity of the heated wall arid ennvects it in the sense of the 

secondary motion. It would appear that this is achieved most successfully 

for case 11 with heat, ''lowing into the duct through the side walls, "he 

point that emerges clearly from the comparison is that heat transfer rates 

throuqh the three types of walls present in curved duct flow can, and in 

general will, differ markedly depending on flow conditions, geonietrical 

characteristics and fluid properties. 

Pressure loss (C p) and friction (f,,) coefficients. 

Profiles for the pressure loss and friction coefficients corresponding 

to the case studies in Table 1 are qiven in Figs. 5(a) and (b). C p is 

seen to decrease with increasing duct angle ;> and decreasing De, and (from 

the trend in the results at <; = 1.5 radians) with decreasing b/a. The C.p 

curve for the plug flow entrance profile is also plotted for comparison 

wi th the other cases. 

In all f.ises the friction coefficient at the outer wall (r = r ) 

increases (at least initially) with increasing duct angle. However, the 

rate of increase is largest for b/a = 1 and smallest for b/a = 1/3. High 

values of Cp at r = r are initially favored by low values of De but the 

reverse is true for <i > 1.2 radians. At the inner curvature wall C f 

appears to be relatively insensitive to changes in De and for <\> > .7 is 

largest for b/a = 3. The potential flow profiles show C f decreasing at r = r 

and increasing at r = r,, respectively and is due to the boundary layer 

growth occurring on these walls. 

Variation of temperature and Nusselt number. 

Figures 6-a, b and c show the effects of duct geometry, flow 

characteristics and duct entrance conditions on normalized temperature and 



Nusselt number, respectively. In the plots the Nusselt number has been 

calculated from 

hD 
N - ,-H 

u k 

where t, is the (local) heat transfer coefficient averaged over the duct 

perimeter at a duct angle ;. Thus, 

l» " q/(T w-T) 

where g i \ the (per imeter ) averaged heat f l ux at the ;• plane and T and T 
I I K w 

rire tiic w.il', r.f;!iperaturn and average f low temperatures, r e s p e c t i v e l y , at 

the same l o m . i t u d i n a l p o s i t i o n . 

li ic curves in h 'g . 6-a a l l show Nu increas ing asympto t i ca l l y w i t h 

ducr. a r c - l e n g t h , a f t e r an i n i t i a l and ra ther abrupt per iod of decay. The 

, , , i t i . : . decrease in Nu is due to the r e l a t i v e l y weak mix ing e f f e c t o f the 

secondary motion dur inq t h i s stage of the f l ow. However, as the f l ow 

develops and the i n t e n s i t y o f the secondary motion increases, heat t r a n s f e r 

is enhanced and Nu increases w i t h ; . The minima in the curves are seen 

;.'i depend on the value of De and, in genera l , Nu increases w i th i nc reas ing 

l)e. I n i t i a l l y , the average temperature of f l u i d i n the ducts appears to 

be i n s e n s i t i v e to v a r i a t i o n in the Oe number. E v e n t u a l l y , however, 



secondary motions in the s h o r t e r but more s t r o n g l y curved duct 

(De 106) enhance heat t r ans fe r to the po in t where a d e f i n i t e t rend 

i n the temperature p r o f i l e s emerges, i t . may be concluded the re fo re 

t h a t , for c e r t a i n c o n d i t i o n s , sho r t ducts wi th in tense secondary motion can 

t r a n s f e r as much heat or more compared to ducts o f longer length but w i t h 

weaker c ross-s t ream f low. Thai, t h i s is indeed the case was independent ly 

conf i rmed by per forming t o ta l heat balances for cases 1 and 1A in Table 1 . 

Thus, for cond i t i ons of ogual arc l e n g t h , L I S times more heat was 

added to the duct, w i t h higher De. 

From F ig . F-b i t is seen tha t Nu is highest f o r b/a ~ 1 for ;. • .4 

radi r ins. I t would appear that, i n i t i a l heat t r ans fe r gains through increased 

sur face arva arc even tua l l y o f f s e t by reduct ions due to weaker cross-s t ream 

f lows f o r both b/a '.', ami b/a - 1/?.. The pilots a lso show that, temperature 

gradient.'", at the oiAcr radius wa l l have a more pronounced e f f e c t on the 

ra te o f heat t r a n s f e r than corresponding gradier r, a t the inner w a l l . This 

i s p a r t l y flue to a surface e f f e c t but also to the presence of h igher 

grad ients of v e l o c i t y at the ou te r radius w a l l . 

In order to assess the r e l a t i v e con t r i bu t i ons to heat t r ans fe r 

a r i s i n g from separate duct wa l l s du r ing f low development, c a l c u l a t i o n s were 

performed f o r the condi t ions corresponding to cases 10-12 in Table 1 , The 

r e s u l t s f o r Nu and o are shown i n F ig . 6-c. I f al lowance is made f o r the 

d i f f e r e n c e in wa l l areas among the cases the p lo t s s t i l l i nd i ca te tha t the 

hi ghost rates o f heat t r ans fe r occur through the s ide and outer rad ius wa i l s 

in curved duct f l o w . This r e s u l t i s l i nked to the h igh values of secondary 

motion which a r i s e , espec ia l l y i n the v i c i n i t y o f the s ide w a l l s , and i s the 

fo r the pronounced maximum in the Nu p l o t corresponding to case 1 1 . By 



comparison similar variations and maximum values of Nu are less for the 

case of heat transfer through the inner curvature wall. Energy balances 

for these three cases show that the total heat added to the duct heated 

through the outer wall was 1.58 times larger than that added to the duct 

heated through the inner wall. In turn, the total heat added to the duct 

heated through the side walls (allowing for the fact that there were two) 

was 1.0? times larger than that added to the duct heated through the outer 

wall . 



CONCLUSIONS 

The f o l l o w i n g major conc lus ion ' , MIC de r i ved from t.hi* present 

study: 

1 . Secondary motions in developing curved duct flow are l a rge l y 

responsib le fo r enhanced rates of heat t rans fe r a f t e r an 

i n i t i a l per iod t ransp i res to a l low s i g n i f i c a n t development of 

the cross-st ream f low. In the present, study t h i s pe r iod 

corresponded to a bend angle of '',f)n •• ; •• W approx imate ly . 

?. Short ducts w i t h s t rong curvature may t r ans fe r as much or more 

heat ( to a moving f l u i d in which the secondary motion is 

in tense) as longer ducts which arc not as s t rong ly curved 

(and in which the secondary motion is weaker). 

3. Higher rates o f heat t r ans fe r dre favored try large De, 

b/a • 1 , parabo l i c v e l o c i t y entrance cond i t i ons , and la rge 

temperature and v e l o c i t y g rad ien t cond i t i ons at ou te r curvature 

and side w a l l s , r e s p e c t i v e l y . 

4 . For a p lug - f l ow entrance v e l o c i t y c o n d i t i o n i n i t i a l heat 

t r a n s f e r rates are large but are subsequently reduced ( q u i t e 

cons iderab ly ) due to the much slower development o f the cross-

stream f l ow . 

5. Whereas hiqh values of De number f avo r large heat t r a n s f e r ra tes , 

the advantage must be weiqhed aga ins t corresponding increases in 

f r i c t i o n losses. 
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<>. f lows in curved ducts wit.n strong cu rva tu re re isnre a f u l l y 

e l l i p t i c , numerical t reatment to y i e l d s a t i s f a c t o r y computat ions. 

Ca lcu la t ions based on parabol ic forms o f the t ranspor t equat ions 

can produce erroneous r e s u l t s . 

In g e n e r a l , the study shows that heat t r a n s f e r in developing curved 

duel, laminar f low can be u s e f u l l y and ronprohensive ly i nves t iga ted through 

numerical computation of f i n i t e d i f f e rence t ranspor t equat ions. The 

resu l t s obta ined arr of s u f f i c i e n t accuracy f o r engineer ing use and are 

l im i t ed in r e s o l u t i o n only by the degree of mesh ref inement imposed in the 

c a l c u l a t i o n s . Equivalent experiments would be labor ious , time consuming 

and expensive to perform. 

The c a l c u l a t i o n procedure used fo r t h i s work is present ly the basis 

for t u rbu len t s i ng le and two-phase f low p red i c t i ons in curved duct geometr ies. 

Because of the hirih turbulence f l u c t u a t i o n s observed at the curved and 

side wa l l s in these flows [ ? ] , i t . is an t i c i pa ted tha t c o n t r i b u t i o n s 

through t u r b u l e n t d i f f u s i o n o f p a r t i c l e s and/or heat w i l l s i g n i f i c a n t l y 

in f luer i 'V sca la r t ranspor t even though the f l u i d mechanics appear to be 

d i c ta ted p r i m a r i l y by pressure grad ient and body fo rce f i e l d e f f e c t s . 
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FIGURE CAPTIONS 

Fiq. 1 Curved duct cylindrical coordinate qeometry. 
Fig. 2-a,b Comparison of elliptic ( - ) and parabolic 

(—) calculations with experimental (0) 
measurements of Innqitudinal velocity. 
Measurements are from Humphrey, et. al . [9]. 
(a): z/(b/2) ' 0; (b): z/(b/2) = 0.5. 

Fiq. ?-L Comparison of elliptic (••-) and parabolic (—) 
calculations of pressure at inner and outer 
curvature walls. 

riq. 3-a,h Calculated ( - ) and measured (o,,'.) lonqitudinal 
velocity. Experiments are from Mori, et._al. 
[I?J. (a): K • ,"2 De :Wi; (b) K - / T De = 076. 

Fiq. 3-c,d Calculated ( • ) and measured (o,A) temperature. 
Experiments are from Mori, et. al. [12]. r 
is wall temperature gradient. 0.49°C/_cm. 
(c): K - t? De = 3 M ; (d): K ~ / 2 De = 376. 

Fi'q. 4-a Longitudinal velocity (V,/Vp), secondary 
motion ( V /V„) and temperature " at 
: - 0° for Case 1 in Table 1. 

Fiq. 4-b Longitudinal velocity (V /V„), secondary 
motion ( V /V„) and temperature (i at 
: = 45 c for Case 1 in Table 1. 

Fig. 4-c Lonqitudinal velocity (V ( l/Vp), secondary 
motion ( V /V„) and temperature ;> at 
,h = 90° for Case 1 in Table 1. 

Fiq. 4-d Longitudinal velocity (V,/Vg), secondary 
motion ( \? /V R) and temperature 0 at 
<; = 90° for Case 2 in Table 1. 

Fig. 4-e Longitudinal velocity (V / V R ) , secondary 
motion ( v" /V„) and temperature " at 
•!; = 90° for Case 3 in Table 1. 
Longitudinal velocity ( V K / V R ) , secondary 
motion ( \? /V p) and temperature o 
;. = 90° for Case 7 in Table 1. 
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Fig. 4-g Temperature at 90'' fnr Cases 10, 11 and 12 
in Table 1. 

Fig. 4-h Longitudinal velocity (V (/Vp), secondary 
motion ( V /Vp) and temperature •; at 
; - 90" for Case 13 in Table 1 . 

Tig. 5-ri Pressure loss curves for case studies in 
Table I. 

Fig. 5-b Friction coefficient curves for case 
studies in Table 1. 

Fin. C-a Longitudinal variation of Nusselt and 
temperature for different De. 

lig. 6-b Longitudinal variation of Nusselt for 
different b/a (Cases 1,2,3) and for 
different temperature and velocity 
entrance conditions (Cases 7,K,9). 

Fig. 6-c Longitudinal variation of Nusselt and 
temperature for individually heated walls. 
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