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ABSTRACT

A numerical study of heat transfer in 907, constant cross-section
curved duct,steady, laminar flow is presented. The work 15 aimed pri-
marily at characterizing the effects of duct geometry on heat transfer by
considering, especially, the role of secondary motions during the
developing period of the flow. However. due consideration has also been
given to varying initial conditions of velacity and temperature at the
entrance section to the duct. In addition, an assessment is made of the
relative contrihutions aof individual duct walls Lo heat transfer in the
flow. It is found that, in general, heat transfer increases with Dean
number with the largest transfer rates occurring through the duct side
walls and outer-curvature %?11. Duct geometries with aspect ratio greater
or smaller than unity have weaker secondary motions and are less effective
for heat transfer. Similarly, plug-flow entrance profiles for velocity
retard the development of cross-stream flow thus inhibiting a significant
contribution to heat transfer. It is concluded that short ducts with
strong curvature (ZRC/DH< 10) and 1intense secondary motions can be as
effective for heat transfar as longer ducts which are less strongly
curved,

Calculations are based on fully elliptic (in space) forms of the
transport equations governing the flow. They are of engineering value
and are limited in accuracy only by the degree of computational mesh
refinement. A comparison with calculations based on parabolic equations
has been made and it is shown how the latter can lead to erroneous results

for strongly curved flows.
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NOMENCLATURE
a curved duct width
b curved duct breadth
Cp heat capacity at constant pressure
Cf friction coefficient at « plane
Cp pressure loss coefficient at | plane
,. by /2y
e Dean number <R((’T&?') )
UH curved duct hydraulic diameter (4x surface/perimeter)
h perimeter average heat transfer coefficient at ¢ plane
(6 /(Tw-T))
k thermal conductivity
Nu perimeter average Nusselt number at ¢ plane (EDH/k)
P pressure at « point in the flow
b Brandl mumpero ErpRuTe ot ¢ piane
Piog 1ot 0" plane
0 heat flux at a point on a wall
q nerimeter average heat flux at + plane
r radial direction in cylindrical coordinates
o inner curvature wall
Y outer curvature wall
Re duct radius of curvature ((ri + ro)/2)
IyVg
Re Reynnlds number <f-75“_>
T value ot temperatu}e at a point in the flow
T mass average temperature at ¢ plane
T inlet temperature

in



wall temperature

modulus of secondary motion vector velocity at a point in the flow

surface average longitudinal velocity at ¢ plane
longitudinal velocity component

radial velocity component

axial velocity component

axial direction in cylindrical coordinates

T T
non-dimensional temperature at a point in the ﬂow<T:T
non-dimensiorial mass average temperature at ¢ p]ane(
viscosity
density

wall shear stress

longitudinal direction in cylindrical coordinates

w )
W in

T-T.
n

T
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|

iy



INTROBUCTION

Considerable effort has been expended on the experimental
measurement and calculation of flows in curved ducts of rectanqular
cross-section, principally because of the practical significance of such
flows. Curved duct geometries frequently arise in engineering con-
figurations where, besides providing a necessary conduit for the fluid,
it may be required to enhance heat and/or mass transport processes. In
curved ducts this is achieved mainly due to the prolonged residence
times of fluid elements which must move along spiraling paths as they
nvolve in the main (lonyitudinal) flow direction, Thus, the centrifugal
force-radial pressure gradient imbalance acting on slow moving fluid
near the side walls of the duct induces a motion of the fluid aiong the
side walls and directed from the outer towards the inner curvature wall.
In turn, faster nmoving fluid in the core region of the flow moves along
the center (symnetry) plane of the duct.being directed from the inner
to the outer curvature wall. The cross-stream motion just described is
commoniy referred to in the literature as secondary motion of the "first
kind" or, simply, secondary motion [1]. It is obvious that the extent to
which heat and mass transport can be enhanced in curved duct flows will be
a strong function of the intensity and spatial variation of the secondary
motion.

Even though experimental works on curved duct flows abound (a recent
review may be found in [2]), data availability for engineering purposes is
often defficient or simply inadequate. Whereas considerable work has been
carried aut to obtain useful design correlations for pressure losses and
friction coefficients [3]. there is no equivalent body of knowledge de-

scribing three-dimensional velocity, energy and mass transport phenomena



in sufficient detail and over a wide enough range of relevant dimensionless
flow parameters. That this should be the case may be understood by
considering the phenomenal task required gnly to obtain detailed measure-
ments of three velocity components for different conditions of duct aspect
ratio, Dean number, radius ratio ZRC/DH (for turbulent flows [4]) and, for
developing flows, at various duct deflection angles. [t is not surprising
to find therefore that available velocity data is mainly restricted to the
longitudinal component direction and that the majority of heat and mass
transfer studies have focussed on cases of fully develnped curved duct
flow with noundary conditions of specific relevance to the particular
~ases investigated.

Whereas experimentation in curved duct geometries may be laborious
(and complex), it is pnssible, in principle. to compute these flows quite
accurately in the laminar reqgime. This has been shown by, amonqg others,
Cheng and Akivama [5], Chenq, Lin and Ou [6] and Joseph, Smith and Adler [7]
for fully developed flow and by Ghia and Sokhey [8] and Humphrey, Taylor and
Whitelaw [9] for developing flow. Of the above anly the procedure used by
Humphrey. et, al. [9] is based on fully elliptic forms (in space) of the
equations of motion. Calculations for turbulent flow regime have been
performed hy Pratap and Spalding [10] using a semi-elliptic numerical
procedure.  However, the agreement between calculations and measurements
of velocity is less satisfactory in this case. Although the authors
attribute the discrepancies to failings in the model of turbulence employed
in the calculations, it is possible that their neglect of higher order
curvature terms in  the equations of motion may have contributed to the
mder-prediction of secondary velocity components.

Experimental investigations of heat transfer in curved duct flows have

been described by, for example, Kreith [11], Mori, Uchida and Ukon {12]



and Yang and Liao [13] while corresponding numerical calculations are
reported by Cheng and Akiyama [5] and Cheng, et. al. [6]. Except for the
experimental works of Kreith [11] and Yang and Liao [13] (in turbulent
regime) the remaining studies deal with the problem of fully developed
laminar flow. In general, these and similar studies show that heat transfer
in curved duct flow is enhanced relative to that occurring in straight
ducts, with transfer rates at outer curvature walls being typically 2 to 5
times larqger than corresponding values at inner walls. Non-dimensionalized
values of temperature profiles show trends similar to those displayed by
the Tongitudinal velocity component., with maximum values shifted towards
the nuter curvature wall. Cauivalent information appears to be lacking

for the case of develnping laminar flow. Especially noticeable is the
dearth of information for ducts with relatively strong curvature (small
radi.s ratio: 2 RC/DH - 10) where spatial ellipticity in the flow field
may he prongunced,

The present study is directed toward providing (through numerical
computation) necessary fluid mecuanical and heat transfer data for
develnping steady iaminar flow of an .ncompressible fluid in strangly
curved ducts with 90° deflection angle. The calculations are of engineer-
ing accuracy and allow a relative comparison of duct performan, e and
Jetailed flow characteristics as a function of relevant dimensionless
parameters, such as Dean and Reynolds number, aspect ratio and radius ratio.
iecause of the numerical approach in the study it has been possible to
pxamine an extensive combinatinon of geometrical confiqurations for various
inifial and boundary conditions for temperature and velocity. The ex-
perinental equivalent of this {or a similar} study would be exceedingly

Taborious, time consuming and expensive to perform. This substantiates

(€%



the need for developing and applying calculation procedures which can be

used with confidence, relatively easily and (by comparison to experiments)

at moderate costs. The numerical procedure used in this study is presently

the basis for similar calculations in turbulent single and two-phase flow

to be reported at a later date,



CALCULATION PROCEDURE AND TEST CASES

The calculation procedure used to compute the flows in this study

has already been described in [9]. Extension of the-procedure to arbitrary
orthogonal coordinate geonetries and. especially, its application to
developing curved pipe flows of strong curvature have peen documented by
Hurohrey D137 The Tatter reference centains general finite difference
fores ot the conservation equations for mass, momentum and transferable
calar quantities {(soecies and enerqy). Detailed information concerning
the dorivation of the difference equations, their numerical solution and
ricsaits for various test cases solved to evaluate the procedure are
reported in the above two references and in [2]. This section presents
a sutinary of the ewsential features characterizing the calculation
method tonether with o description of its application to flows in curved

ducts witn neat transfer, Some of the results for two calculated test

CASeS are alan ceraried.

sy

a%% conservation, momentum and energy equations for three-dimensional,
steaay, incomprassibie laminar flow in curved ducts of cylindrical geometry

corresponding to Fig, 1 are given by
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It is required to solve (1)-(5) together with various combinations

of the boundary conditions as shown below:

Inlet plane (4 = 0°).

Ve TV, T 0, vm = plug flow or developed duct flow (7)

T = constant or f(r)

Exit plane (a1l r and z at ¢ = 90°).

g N DV
Ve My My ar "
o By ) BT '

with overall continuity of mass and energy imposed.

Side walls (all ¢ at z = +b/2 and r = res ro).

Ve TV, TV, T 0 (9)
T = constant or f(¢$) at specified walls

g = 0 at specified walls

Symmetry plane (all r and ¢ at z = 0).

oV v
__r _ ¢ _ 8T _
V2 T 3z 3z oz 0 (10)
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The conditions imposed for velocity at the inlet and exit planes have
been carefully discussed in [14]. 1t is shown there that the curved duct
has a minimal effect on the incoming fluid stream, thus allowing a fairly
arbitrary prescription of the velocity distribution at ; = 0°. HWhile not
strictly correct, the velocity condition at the exit plane (¢ = 90°) is a
good approximation and is substantiated by the satisfactory agreement found
here (and in [9,14]) between measurements and ca'culations.

The finite difference equations are obtained by inteqrating (1)-(5)
over valume elements an “cells” discretizine the flow domain. The velocity
camnnnents, prossure and temperature ore the dependent variables computed
an a nunmber of staqgered, interconnected grids, ea.h of which is
aesocinted with a specific variable. The general form of the finite

difference espression is qiven by
6 6
:p :( ; A].1 + SO ) Aj (]])
\ 1=

wheroe e Cee i1ty component, pressure or temperature) is the variable
soiven YL oat a position P oin the discretized flow domain, The Ai co-
cificients are determined at the cell surfaces and represent the combined
contributions of convection and ¢iffusion to the balance of ¢. Other
contributions arising from pressure, body forces and temperature (sources
or sinks) are contained in SO. Detailed forms for SO in variable property
flows are available in [15].

Solution of the system of finite difference transport equations with
appropriately differenced boundary conditions is achieved by means of a
cyclic series of predictor-corrector operations as described in [9,14].

Briefly, the method involves using an initial or intermediate value of the
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pressure field to <olve for an intermediate velocity field, A pressure
corvecbion to the pressure ficld i determined Ly bringing intermediate
velocities into conformity with continuity. Corrections to the pressure
and velocity fields are applied and the energy equation is salved for T
(in flows where cnerqy and momentum are not linked througn temperature
effects  thin dast step can be Laken after the velocity and pressure

fields have been determined).  The above steps are repeated until sone

pre-established convergence criterion io satisfied,

Tesl Canes

Extensive testing and an cvatuation of the calculation procedure for
predicting (lows without heat transfer have been documented in [2] and
reported in part in [9,14]. 1t has been shown in these references that
fully elliptic. three-dimensional computations of sufficient accuracy for
engineering purpnses can be obtained on upequally spaced grids as coarse
as 12 x 12 x 20 (r x 2 x ). The predictions presented hore and in the
foltowing oo tinns have heen performed on o 12 % 15 % 20 wesh. While finer
aride are capeble of yielding more accurate results, they are increasingly
more cxpensive Lo compute.  Whereas numerical schemes based on parabolic or
semi-elliptic forms of the transport equations will handle equivalent and
finer calculation meshes at significantly less cost, for flows such as the
ones of interest here where curvature effects can be pronounced, it is not
nossihle to determine a priori if less than fully elliptic equations are
‘ustified. For two interesting examples involving flow reversal in curved
“ants, see [9,14].

Profiles of longitudinal velocity and pressure, respectively calculated

«"Viptic and parabolic forms of the transport equations, are shown

v"4-c) where they are compared with experimental velocity data from



97, The parabolic calculations were reasily obtained by modifving the
elliptic procedure of [9,14] as expiained 1n, for exampie, Launder (167, The
plots allow a relative comparison between the two approaches for a duct of
relatively strong curvature (case 1 in Table 1). It can be seen that the
e1liptic results yield significantly better predictions of lengitudinal

velocity (and cross-stream components not vhown here), especially hetween

= 5% ang ;o= 90° where elliptic effects are strongest.  The pressure
profiles an Fig., ¢-c show, in pari, the reason for the discrepancy.  In the
varahol1C caloulations pressure Tinks in the lonnitudingl direction are
ae oapled dand ledd te over-prodicten velues at ro- Y, dand under-predicted
gt gt or ri. Thus, even thougn the velocity rield is "parabolic” in
that 1t containg no reverses flow sones, eilipticity in toe pressure field
is still strong and must be dealt with accordingiy.

Adsitional indicetions of the differences which cdn arise between
fiiptic and parabolic computational approaches in strongly curved flows
ray o be 5leaned Trocoa corngrison of the results presented for velocity
Cunponents and terlerature in Figs. 4-a and 4-h, respectively. The figures
cunwat sty of calculated resulits at ;o= 907 which are significantly dis-
simiiar. in particular, the parabolic longitudinal velocity contours show
tian speed fluid trapped near the outer curvature wall between the side
wali ernd wymmetry plane. This effect contradicts experimental evidence
in ;9] and is due to the over-prediction of an unfavorable longitudinal
pressure gradient at the outer curvature wall. The over-prediction also
i laing why secondary motion at the outer radius wall, near the symmetry
plane, 1s directed awily from the wall and into the flow. Of course,

i ifferences in the temperature contours will arise because of the differences

in velocity and will be in error as well. It may be concluded that for
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developing curved duct flaws with Je - 00, qigrificant errcr can arioe
through the use of parabolic schemwes, A1 tne caleglatinng perforrmed for
the parametric study presented in tne next secting have heen based on
fully elliptic forms of the transport equetions as gizen in (1)-7457.

As a check for the validity uf the caiculation peocedure 1n the
presence of heat transfer effects ) nurorica) computations were nerforred
for two of the experimental cases presenteed by MAori, ob. al, 117 fur
Fully developed curved duct flow. The agrocment between caloalations
and measurements can e gl e e g P e Vo yidar 1t g
termorature shown in Tig, S0 T 50 el P et oty ey iy
Lhe uncertainty reportad 1n connection with Lhe eonee i onta gt b
were arfected by the vrecence of Garge furnuience Tt aations gt
entrance section of the curved duct. [t in snowre in (O et the Targens
turbulent Tluctuations in curved <ouare duct flow arise a° the guter
curvature wall, Tre Shactuations wiid confribute to Carbilent G098 g0
from the wall region into the core flow ard can acenunt Tor tne towor
experimentai vioues of terperature founa in 7 rbothe auter redins
Wil

Rijorousiy, the procedure should be tested for its capacity to predict
rosentuin and heat transfer effects during the developing perind of duct
Jiow.  aowever, tne authors are unaware of any experimental data in curved
ducts which would serve for such a comparison. Notwithstanding, calculations
performed for developing temperature profiles in straight duct flow show.
excellent agreement with experimental measurements and analytical results.
For this and more detailed discussion of the test cases reported here see

Tee [17].



CASE SToults, RESULTS ARG DISCUSSION

A surmary of the case studies and conditions calculated for this
investigation is presented in tabulated form in Table 1. From the table
it will be seen that various curved duct geometries were combhined with
parabolic (fully developed straignht duct flow) profiles for velocity and
uniforn temperature (T#’I ©ANN7Y) distributions at the entrance planc
‘ Ny, The offects of varying initial temperature and velocity
distribution were alao investinated., inglly, the effects of heating
curved duct walls singly, with adiabatic conditions imposed for the re-
maining walls, were explored,  In all cases the boundary condition was that
of constant wall temperdature (Tw = 35071) except tfor where the adiabatic
condition was enforced. Although nol calculated here, variable wall
tomprrature aor variahle (or constant) heat flux conditions could have just
as readily been specified at the boundaries,

Incompreae.ible, constant property (Pr = 1.0) flow was assumed for the
cavculations and booan gcceptable supposition for the ranqge of temperatures con-
iderod beee. dnnde the calculation of Ltemperature dependent fluid properties
i ¢ tandard feature in the numerical procedure, it does increase the cost
o' nredictions through additional storage and computing time requirements.
“voical values for storage and CP times for the case studies presented here

were 60 K, and 235 seconds, respectively on a CDC 7600, The average time

8
required per nade x diteration for all runs was 1.44 x IO'5 (P seconds.

The remainder of this section is devoted to the presentation and
and discussion of some of the results calculated for the test cases in Table 1.
Tne presentation is subdivided according to the topic of interest both for

rase of discussion and to enhance the separate roles of the various

varaimete 3 affecting heat transfer in curved duct flow,
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Plots of non-dimensinnal velocity and temperature distributions
are given in Fig. 4(a-h). Longitudinal velocity and temperature are shown
in the form of equal-value contours whereas the ¢ross-stream motion s

indicated in vectorial form,

Bend angle ().

The distributions shown in the figures are typical of the bulk of the
rosults and illustrate clearly the importent role played by secondary motions
mnofar as heat and momentum transpart are concerned.  Thus, for example, the
sequence shown in ia. A-a,b.c provides o clear jopression of the way
the flow and temperature fields evnlve to produce maximum values in the
respective distributions displaced toward the outer-radius wall. The
similarity between longitudingl velocity and temperature contours is
stribing bhut not surprising in view of the convective nature of the flow.

The onevagy ficeld s decoupled from the momentum field and in all cases

evolves o g mannere dictated primarily by the fluid mechanics,

fapect ratio (b/a).

The effect of varying aspect ratio may be shown by a relative comparison
of Fie . A-cydye. It is immediately cbvious that the vector plots for
irosa-siream velocity differ considerably depending on the aspect ratio.

For b/a = 1 the secondary motion is relatively high in the region of the
inner-curvature (r = ri) and side (z = b/2) walls, whereas for b/a = 3 it
i~ high at all three walls but localized mainly in the region of the side
wall. For b/a = 1/3 the cross-stream flow is intense along both the duct
symnetry plane and side walls but, by comparison, is relatively weak at

the dinner- and outer-curvature walls. Longitudinal velocity and temperature
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contours show distributions corresponding to the sense of the secondary
motion. For b/a = 1/3 it is worth remarking on the peak vatue of lonqi-
tudinal velocity which has been displaced from the duct symmetry plane
whence it evolved, A corresponding peak in the tewperature distribution
is not observed, In addition, for this last case, longitudinal velocit:
and temperature profiles are most disoimilar and is probably due to o
relatively larqe contribution to heat transfer through conduction along

the z axis.

Velucily entrance condition.

The effect of a plug flow entrance condition may be assessed by
comparing Figs, 4-¢ and . Secondary flow evolves cansiderably more slowly
in the case of a flat profile entrance condition and is to be expected
since the bhoundary layers on the side walls, where the transverse pressure
gradient has its strongest effect, are initially very thin. As a
consequence both the longitudinal velocity and temperature develop slowly
also,  Althouyh not shown here, the longitudipnal velocity for this case
was observed to develop a potential-flow-like appearance nver the first
20 to 30 deqgrees in the duct. While this effect is hardly notliceable at

- 907, renmants of its presence may be detected in the temperature profiles

which display double maxima near the inner-radius wall.

Individually heated walls.

Fiqure 4-q shows temperature distributions at 90° for three cases
in Table 1 where only one of the two curved walls or both of the side walls
were heated while keeping the remaining walls adiabatic. The fluid mechanics
of these cases are identical to Figs. 4-a, b and ¢ but the manner in which

the temperature fields evolve are strikingly different. 1In all cases the
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calculations show graphically how the secondary motion scoaps warm fluid
from the vicinity of the heated wall and convects it in the sense of the
secondary motion. It would appear that this is achieved most successfully
for case 11 with heal “lowing into the duct through the side walls. The
point that emerqes clearly from the comparison is that heat transfer rates
through the three types of walle present in curved duct flow can, and in
gencral will, differ markedly depending on flow conditions, geometrical
characteristics and fluid properties,

Pressure loss (CP) and friction (CF) coefficients.

Profiles for the pressure loss and friction coefficients corresponding

to the case studies in Table 1 are given in Tigs. 5(a) and (b). Cp is
seen to decrease with increasing duct angle o and decreasing De, and {from
the trend in the results at ¢ = 1.5 radians) with decreasing b/a. The Cp
curve for the plug flnw entrance profile is also plotted for comparison
with the other cases,

In all cases the friction coefficient at the outer wall (r = ro)
increasces {at Teast initially) with increasing duct angle. However, the
rate of increase is largest for b/a = 1 and smallest for b/a = 1/3. High
values of Cf at r = r, are initially favored by low values of De but the
reverse is true for ¢ > 1.2 radians. At the inner curvature wall Cf
appears to be relatively insensitive to changes in De and for ¢ > .7 is
Targest for b/a = 3. The potential flow profiles show Ce decreasing at r =

and increasing at r = ros respectively and is due to the boundary layer

qrowth occurring on these walls.,

Variation of temperature and Nusselt number.

Figures 6-a, b and ¢ show the effects of duct geometry., flow

characteristics and duct entrance conditions on normalized temperature and

r



Nusselt number, respectively. In the plots the Nusselt number has been

calculated from

where tois the {local) hedat transfer coefficient daveraged over the duct

perivieter at o duct angle ;. Thus,

b= o/lT -T) (¢

x
=

where o i+ the ‘perineter) averaged heat flux at the | plane and Tw and T
are the wall, temperature and averaqe flow temperatures, respectively, at
the: same toncitudinagl position.

‘e curves in Fig. 6-a all show Nu increasing asymptotically with
duct arc-length, after an initial and rather abrupt period of decay. The
caibie decrease in Nu is due to the relatively weak mixing effect of the
weconaary motion during this stage of the flow. However, as the flow
develops and the intensity of the secondary motion increases, heat transfer
in enhanced and Nu increases with . The minima in the curves are seen
i depend on the value of De and, in general, Nu increases with increasing
ge. Initially, the averaqge temperature of fluid in the ducts appears to

be insensitive to variation in the De number. Eventually, however,



secondary motions in  the shorter but more strongly curved duct

{De - 106) enhance heat transfer to the point where a definite trend

in the tempe cature profiles emerqges. [t may be concluded therefore

that, for certain conditions, short ducts with intense secondary motion can
transfer as much heat or more compared to ducts of longer length but with
weaker wross-stream flow.  Thal this io indeed the cace was independently
confirmed by performing total heat balances for cases 1 and 1A in Table 1.
Thus, for conditions of ecqual arc length, 115 tines more heat was

added to the duct with higher De.

From Fig., Ff-b it is seen that Nu i< highest for bh/a = 1 for . . .4
radians. [t would appear that initial heat transfer qains through increaserd
surface area are evenlually offsel by reductions due Lo weaker cross-strean
flows for both b/a - 35 and b/a - 1/2. The plobs also whow that temperature
gradients at the aouter radius wall have a more pronounced effect on the
rate of heat transfer than corresponding qradiert at the inner wall.  This
is partly due to a surface effect but also to the presence of higher
gradients of velocity at the outer radius wall.

In order to assess the relative contributions to heat transfer
arising from separate duct walls during flow development, calculations were
performed fcr the conditions corresponding to cases 10-12 in Table 1. The

results for Nu and ¢, are shown in Fiq. 6-c. If allowance is made for the

R
difference in wall areas among the cases the plots still indicate that the

hijhest rates of heat transfer occur through the side and outer radius wails
inocurved duct flow.  This result is linked to the high values of secondary

motion which arise. especially in the vicinity of the side walls, and is the cause

for the pronounced maximum in the Nu plot corresponding to case 11. By
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comparison similar variations and maximum values of Nu are less for the
case of heat transfer through the inner curvature wall. Energy balances
for these three cases show that the total heat added to the duct heated
through the outer wall was 1.58 times larger than that added to the duct
heated through the inner wall. In turn, the total heat added to the duct
heated through the side walls (allowing for the fact that there were two)

was 1.07 times larger than that added to the duct heated through the outer

wall.



CONCLUSTONS

The folluowing major conclusions are dorived from Lho pregent

study:

1.

(83}

Secondary motions in developing curved duct flow are largely
reaponsible for enhanced rates of hoat transfer after an
initial period transpires to allow significant development of
the cross-stream flow. In the precsent <tudy thic period

corresponded to @ bend angle of 307 -+ - 507 approximately.

Short ducts with strong curvature may transfer as much or nore
heat {to a moving fluid in which the secondary motion is
intense) as longer ducts which are not as strongly curved

{and in which the secondary motion is weaker).

Higher rates of heat transfer are favored hy large De,
b/a - 1., parabolic velocity entrance conditions, and large
tenperature and velocity gradient conditions at outer curvature

and side walls, respectively.

For a plug-flow entrance velocity caondition initial heat
transfer rates are large but are subsequently reduced {(quite
considerably) due to the much slower development of the cross-

stream flow.

Whereas high values of De number favor large heat transfer rates.
the advantage must be weighed against corresponding increases in

friction losses.



fi. tlows in curved ducts with strong curvature recaire a fully
elliptic numerical treatment to yield satisfactory computations.,
Calculations based on parabolic forme of the transport equations

can produce erraneous results,

In general, the studv shows that heat transfer in developing curved
duct Tarinar flow can be usefully and couprehensively investigated through
numerical computation of finite difference transport equations. The
results obtained are of sufficient accuracy for engineering use and are
Pimited in resolution only hy the deqgree of mesh refinement imposed in the
calculations,  Lquivalent experiments would be laborious, time consuming
and expensive to perforn.

The calculation procedure used for this work is presently the basis
for turbulent <ingle and two-phase flow predictions in curved duct geometries.
Because of the hiah turbulence fluctuations observed at the curved and
side walls in these flows [2], it is anticipated that contributions
through turbulent diffusinn of particles and/or heat will significantly
inTluenoe scaiar transport even though the fluid mechanics appear to be

dictated primarily by pressure gradient and body force field effects.
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FIGURE CAPTIONS

Fig. | Curved duct cylindrical coordinate qgeometry.

Fig. 2-a,b Comparison of elliptic ( - ) and parabolic
(---) calculations with experimental (0)
measurements of longitudinal velocity.
Measurements are from Humphrey, et. al. [9].
(a): z/(b/2) = 0: (b): z/(b/?) = N.5.

Fin, ?-¢ Comparison of elliptic {---) and paraholic (---)
calculations of pressure at inner and outer
curvature walls,

Fig. 2=a,bh Calculated { - ) and measured (o,’) lTongitudinal
velocity. Experiments are from Mori, et. al.
[12]. (a): ¥ 2 De = 3493 (b) K = /2 De = 876.

g, 3-c,d Calculated { - ) and measured (o0,7) temperature.
Experiments are from Mori, et. al. [12].
is wall temperature gradient  0.49°C/cm.
(c): ¥ = /2 De =309 (d): K=+ 2 De = 376.
rig. d-a Longitudinal velocity (VA/VP)‘ secondary
motion ( V /VP) and temperature ' at
= 0% far Case 1 in Table )

Fig. 4-h Lonaitudinal velocity (Vv/VB)’ secandary
motion { V /VP) and temperature i at
. = 45% for Case 1 in Table 1.

Fig. 4-c Longitudinal velocity (Vm/VB)‘ secondary
motion ( V /VB) and température iat
4 = 90° for Case 1 in Table 1.

Fig. 4-d Longitudinal velocity (Vm/VB)’ secondary
motion ( V /VB) and temperature A at
o = 90° for Case 2 in Table 1.

Fig. 4-e Longitudinal velocity (Vw/VB)‘ secondary
motion ( V /VB) and temperature © at
4+ = 90° for Case 3 in Table 1.

Fig. 4-F Longitudinal velocity (V»/VB)' secondary
motion ( V /Vg) and temperature ¢
5 = 90° for Case 7 in Table 1.



Fig. 4-q Temperature at 90" for Cases 10, 11 and 12
in Table 1.
Fig. 4-h Lonqitudinal velocity (VM/VB)‘ secondary
motion ( V /VP) and temperature i at
- 90" for Case 13 in Table |1

MNag. 5-q Pressure 1nss curves for case studies in
Table 1.
Fig. 5-b lriction coefficient curves for case

studies in Table 1.

fia. G-a Longitudinal variation of Husselt and
temperature for different De.

Fig. 6-b Longitudinal variation of Nusselt for
different b/a (Cases 1,2,3) and for
different temperature and velocity
entrance conditions (Cases 7,8,9).

Fig. 6-c¢ Longitudinal variation of Nusselt and
temperature for individually heated walls.
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