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Abstract  

The performance o f  Rankine cyc le  b ina ry  
systems f o r  geothermal power generation us ing a 
hydrothermal resource has been inves t i ga ted  as a 
p a r t  o f  the U. S. Department of Energy, 
Geothermal Technology D i v i s i o n  (DOE/GTD) Heat 
Cycle Research Program. To date, i n  a d d i t i o n  t o  
many pure f l u i d s ,  mix tures o f  Paraf f in- type 
hydrocarbons and water-ammonia mixtures have been 
investigated. This paper gives the  r e s u l t s  of 
cons iderat ion o f  mix tures o f  halocarbons as 
working f l u i d s  i n  these power cycles. The 
performance o f  mix tures o f  Refr igerant-114 
(R-114) and Refr igerant -22 (R-22) i n  combinations 
from pure R-114 t o  pure R-22 was ca l cu la ted  fo r  
such cycles. Various a l t e r n a t i v e s  were 
considered: 1. minimum g e o f l u i d  o u t l e t  
temperature const ra in t /no const ra in t ,  2.  d r y  
tu rb ine  expansion/expansion through vapor dome, 
3. use o f  t u rb ine  exhaust gas recupera to rho  
recuperator. 

Results o f  the study i n d i c a t e  t h a t  the 
halocarbon mixtures are a t  l e a s t  as good as the 
hydrocarbon mixtures p rev ious l y  analyzed f o r  a 
360 F resource. The magnitude o f  the n e t  
g e o f l u i d  ef fect iveness (ne t  energy produced per  
u n i t  mass g e o f l u i d  f l ow)  f o r  the R-114/R-22 
mixtures i s  t he  same as f o r  the best hydrocarbon 
m ix tu re  p rev ious l y  analyzed. The percentage 
improvement i n  e f fect iveness i n  us ing mixtures 
over us ing the pure f lu ids.  as working f l u i d s  i s  
comparable f o r  both classes o f  working f l u i d s .  

I n t r o d u c t i o n  

The performance o f  Rankine cyc le  b ina ry  
systems f o r  power generation using hydrothermal 
resources has been invest igated,  and those 
systems are now being used i n  a number o f  
appl icat ions.  The se lec t i on  o f  a working f l u i d  
t o  maximize performance and/or minimize cos t  o f  
product ion o f  e l e c t r i c a l  energy fo r  a p a r t i c u l a r  
resource i s  a primary concern. The use o f  
pa ra f f i n -se r ies  hydrocarbons alone and i n  b ina ry  
mixtures has been stud ied f a i r l y  ex tens i ve l y  by 
Demuth and Kochan1.2 and M i lo ra  and Testers. 
Bliem4 mixtures o f  water and amnonia. M i lo ra  
and Tester3 have shown t h a t  pure halocarbons 
(Freons) are comparable w i t h  the hydrocarbons i n  
performance. Demuth and Kochan2 showed an 
increase i n  performance o f  b ina ry  mixtures o f  t he  
hydrocarbons over the pure hydrocarbon of about 7 
t o  9 percent. One would expect s i m i l a r  increases 
f o r  the halocarbons. The Freon Products 
Laboratory o f  E. I .  Du Pont de Nemours & Company 
has r e c e n t l y  developed computer programs t o  
determine the thermodynamic p roper t i es  of b ina ry  
mixtures of  the Freons.5 Data f o r  two such 
mixtures are avai lab le.  Because o f  a l l  o f  these 
developments, i t  was decided t h a t  t h i s  would be a 
good t ime t o  i nves t i ga te  halocarbon mixtures i n  
geothermal Rankine cyc le  systems. The purpose o f  
the present work was t o  conduct a p re l im ina ry  

i n v e s t i g a t i o n  o f  the halocarbons; i t  was n o t  t o  
be an exhaustive study. Therefore, t h i s  r e p o r t  
i nves t i ga tes  on ly  one promising mixture, R-22 and 
R-114, r e a l i z i n g  t h a t  there are, probably, b e t t e r  
mixtures. However, a l l  of the i n fo rma t ion  needed 
t o  develop the thermodynamic data requ i red  i n  the 
ana lys i s  was ava i l ab le  f o r  t h i s  mix ture.  

Overal l ,  the paper discusses the f e a s i b i l i t y  
o f  us ing mixtures of halocarbons i n  geothermal 
power p lants .  The next  sect ion contains a 
d iscuss ion o f  the halocarbons as represented by 
the  standard re f r i ge ran ts  and t h e i r  poss ib le  
a p p l i c a b i l i t y .  This i s  fo l lowed by a sect ion on 
the approach and assumptions made i n  the study. 
Resul-ts and conclusions are presented i n  the 
f i n a l  sections. The work i s  discussed i n  more 
d e t a i l  i n  Reference 6. 

This work was supported by the U. S. 
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Div is ion,  (DOE/GTD) , under Contract No. 
DE-AC07-76ID01570. M r .  Ray LaSala i s  the DOE 
program manager. 

Halocarbon Working F lu ids  

Halocarbons o r  halogenated hydrocarbons have 
been used as r e f r i g e r a n t s  f o r  a l ong  per iod of 
time. These substances have been s y n t h e t i c a l l y  
produced, p a r t i c u l a r l y  f o r  t h e i r  r e f r i g e r a t i n g  
proper t ies,  by the s u b s t i t u t i o n  of a halogen f o r  
one o r  more o f  the hydrogen atoms i n  methane, 
ethane and propane. The halogens used are 
f l u o r i n e ,  c h l o r i n e  and sometimes bromine. The 
American Society o f  Heating, Re f r i ge ra t i ng ,  and 
A i r - cond i t i on ing  Engineers (ASHRAE) has developed 
a numerical system f o r  des ignat ion d i f f e r e n t  
r e f r i g e r a n t s .  The l a s t  d i g i t  i n  t he  des ignat ion 
( t h e  one on the r i g h t )  i nd i ca tes  the number of 
f l u o r i n e  atoms i n  the molecule formed. The 
second d i g i t  from the r i g h t  i s  one more than the 
number o f  hydrogen atoms remaining, and the t h i r d  
d i g i t  i s  one less  than the number o f  carbon atoms 
(blank i n d i c a t i n g  methane st ructure;  1, ethane 
s t r u c t u r e  and 2, propane s t ruc tu re ) .  I f  bromine 
i s  used, t h i s  des ignat ion i s  fo l lowed by a B w i t h  
the  number o f  bromine atoms a f t e r  the B. 

F igure 1 shows the c r i t i c a l  pressures and 
temperatures o f  some o f  these r e f r i g e r a n t s .  
Experimental values are shown by the open c i r c l e s  
a re  the methane-based halocarbons (10-40) , and by 
the  open squares fo r  some o f  the ethane-based 
halocarbons. The shaded c i r c l e s  and squares 
represent computed values f o r  c r i t i c a l  p roper t i es  
deduced from the molecular s t r u c t u r e  o f  the 
compound. Experimental values f o r  the 
pa ra f f i n -se r ies  hydrocarbons are shown on the 
p l o t ,  as references, i n  small closed t r i ang les .  
The dashed l i n e  connects the normal form o f  each 
o f  the hydrocarbons from ethane (C2) through 
heptane (C7). The other  t r i a n g l e s  are the 
isomers o f  each hydrocarbon ( f o r  example, the 
t r i a n g l e  a t  C4 n o t  on the l i n e  i s  isobutane and 
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Fig. 1 C r i t i c a l  States f o r  Hydrocarbons and 

the p o i n t  on the l i n e  i s  normal butane). It can 
be seen t h a t  the halocarbons have c r i t i c a l  s ta tes  
which bracket the range o f  c r i t i c a l  s ta tes  f o r  
the hydrocarbons. 

The choice o f  a halocarbon mixture f o r  t h i s  
i n i t i a l  study was made u'sing the in format ion i n  
Figure 1. It was f e l t  t h a t  mix ture c r i t i c a l  
temperature was an important parameter i n  
determination o f  thermodynamic performance. 
Previous s tud ies 192 i nd i ca ted  t h a t  the best  
performance f o r  a 360 F resource was obtained 
w i t h  mixtures o f  isobutane and a very small 
q u a n t i t y  o f  heptane ( 4  percent by mass), and 
propane w i t h  5 percent hexane. To a f i r s t  
approximation, the m ix tu re  c r i t i c a l  temperature 
i s  the mole-weighted average o f  the cons t i t uen t  
c r i t i c a l  temperatures. I t  was, therefore, f e l t  
t h a t  halocarbons spanning the range of c r i t i c a l  
temperatures between isobutane and propane might  
g i ve  good thermodynamic resu l t s .  Refr igerant-22 
and 114 f i t  the des i red c r i t e r i o n .  Du Pont had 
suppl ied the i n t e r a c t i o n  parameter needed t o  
represent t h i s  m ix tu re  w i t h  t h e i r  computer codes, 
so no a d d i t i o n a l  experimental work was necessary 
t o  determine the  thermodynamic p roper t i es  o f  any 
mixture o f  these re f r i ge ran ts .  

One a d d i t i o n a l  p o i n t  may be deduced from 
Figure 1. The e a r l i e r  s tud ies o f  mixtures o f  t he  
pa ra f f i n - t ype  hydrocarbons i nd i ca ted  t h a t  a 
b inary mixture gave as h igh a thermodynamic 
performance as a t e r t i a r y  m ix tu re  o f  these 
hydrocarbons. The mole-weighted average c r i t i c a l  
pressure gives a f i r s t  order  approximation o f  the 
mixture c r i t i c a l  pressure. This approximation 
i s  n o t  as good as the s i m i l a r  approximation f o r  
temperatures, b u t  i t  i s  close. ( I n  fac t ,  the 
mixture c r i t i c a l  pressure may be somewhat above 
the mole-weighted average.) Using the 
approximation, a b ina ry  mixture s t a t e  would be 
p l o t t e d  along the  s t r a i g h t  l i n e  connecting the 
components. A t e r t i a r y  mix ture s t a t e  would be 
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w i t h i n  the t r i a n g l e  connecting the three 
substances. The pa ra f f i n - t ype  hydrocarbons are 
grouped so c lose t o  a s t r a i g h t  l i n e  t h a t  i t  i s  
doubt fu l  t h a t  s i g n i f i c a n t  d i f f e rence  could be 
seen between two o r  th ree  component mixtures. 
With the halocarbons, however, t he re  would be a 
substant i  a 1 dif ference. Therefore, i s  an 
a d d i t i o n a l  degree o f  freedom r e s u l t s  f o r  mix tures 
o f  halocarbons, and the c r i t i c a l  pressure o f  the 
mixture i n  a d d i t i o n  t o  c r i t i c a l  temperature could 
be t a i l o r e d  t o  the des i red requirements. I t  i s  
f e l t  t h a t  three component mix tures o f  the 
halocarbons should be i nves t i ga ted  t o  determine 
i f  t h i s  conjecture i s  co r rec t .  

Approach and Assumptions 

The system performance f o r  a simple Rankine 
cyc le  was ca l cu la ted  us ing assumptions consis tent  
w i t h  those used i n  References 1, 2, and 4 ( the  
hydrocarbon and ammonia-water analyses). 
Mixtures from pure R-114 t o  pure R-22 were used 
as working f l u i d s .  The f o l l o w i n g  subsections 
describe the cycles, l i s t  t he  assumptions made i n  
the  analys is ,  and then descr ibe the a n a l y t i c a l  
procedure. A more complete d iscuss ion o f  the 
approach i s  given i n  Reference 6 along w i t h  a 
computer which was used t o  determine the cyc le  
performance. 

Binary Geothermal Cycle Descr ip t ions 

The working f l u i d  i n  a b ina ry  geothermal 
e l e c t r i c  power p l a n t  undergoes the processes o f  a 
Rankine thermodynamic cycle. F igure 2, which i s  a 
schematic diagram o f  a simple b i n a r y  geothermal 
cycle, i l l u s t r a t e s  these processes as w e l l  as the 
major components o f  the p lan t .  S t a r t i n g  a t  the 
condensate storage tank, the working f l u i d  i s  
pumped from the condenser pressure t o  the heater 
pressure. Heat i s  t rans fe r red  from the g e o f l u i d  
t o  the working f l u i d  i n  the heater (a 
shell-and-tube heat exchanger). I n  most o f  the 
cyc les analyzed, the heater pressure was above 
the  m ix tu re  c r i t i c a l  pressure so the re  was no 
d i s c r e t e  change o f  phase i n  the  heater. I f  the 
pressure i s  l ess  than the c r i t i c a l  pressure, the 
heater i s  a preheater, b o i l e r  and superheater. 
The working f l u i d  i s  heated t o  the  appropr ia te 
tu rb ine  i n l e t  temperature. The working f l u i d  
vapor then f lows through the turb ine,  producing 
work a t  t he  tu rb ine  shaf t .  The tu rb ine  d r i ves  

ir 
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Fig. 2 Simple Binary Geothermal Cycle 



the generator, which produces the e l e c t r i c a l  
work. The turbine-exhaust working f l u i d  i s  then 
condensed ( a f t e r  being desuperheated, i f  
necessary) i n  the condenser, and the heat i s  
t rans fe r red  t o  coo l i ng  water. This heat i s  
re jected,  i n  turn,  t o  atmospheric a i r  us ing a wet 
coo l i ng  tower. The condensed working f l u i d  i s  
then returned t o  the condensate storage tank and 
the cyc le  i s  repeated. 

I n  many instances, there i s  enough energy a t  
a h igh enough temperature i n  the tu rb ine  exhaust, 
t o  preheat o f  the working f l u i d  going t o  the 
heater. A recuperator may be added t o  the cyc le  
t o  accomplish t h i s  task as i s  shown i n  Figure 3. 
This m o d i f i c a t i o n  i s  p a r t i c u l a r l y  use fu l  when the 
l i m i t  on the g e o f l u i d  o u t l e t  temperature i s  
imposed. I n  these appl icat ions,  the recuperator 
al lows the working-fluid-to-geofluid-flow r a t i o  
t o  be changed i n  order t o  increase the g e o f l u i d  
ef fect iveness.  The heat r e j e c t e d  i s  a l so  
reduced, b u t  t h i s  i s  a small e f f e c t .  I n  the  case 
where the re  i s  no minimum imposed on the geof lu id  
o u t l e t  temperature, recuperat ion i s  genera l l y  n o t  
worthwhile because on ly  the heat r e j e c t e d  i s  
decreased which gives a small increment i n  
g e o f l u i d  ef fect iveness a t  the expense o f  a more 
complex system. 

Feed pump INELJ.17W 

Fig. 3 B inary Geothermal Cycle w i t h  
Turbine-Exhaust Recuperator 

Thermodynamic Assumptions 

The assumptions made i n  t h i s  ana lys i s  a re  
e s s e n t i a l l y  the same assumptions t h a t  were made 
i n  previous working f l u i d  s tud ies . l . 2~4  The 
assumptions are: 

1. The g e o f l u i d  suppl ied t o  the p l a n t  was 
l i q u i d  a t  360 F and was s l i g h t l y  subcooled. 
2. Cooling water was supplied t o  the  
condenser from a wet coo l i ng  tower. The 
wet-bulb temperature was assumed t o  be 60 F 
and the tower approach temperature 
d i f f e rence  was 10 F. Therefore, coo l i ng  
water entered the condenser a t  70 F. The 
p a r a s i t i c  power requirements were estimated 
as described i n  References 1 and 2. 
3. Pinch p o i n t  temperature d i f f e rences  i n  
the heater and condenser were taken t o  be 10 
F. The pinch p o i n t  i n  the recuperator was 
assumed t o  be 9 F. 
4. Pump and tu rb ine  i s e n t r o p i c  e f f i c i e n c i e s  
were assumed t o  be 80 and 85 percent, 
respec t i ve l y .  E l e c t r i c a l  losses were no t  
included. 
5. Geof lu id  pumping requirements ( a t  a given 

g e o f l u i d  f l ow  r a t e )  were assumed t o  be the 
same i n  a l l  cases and those p a r a s i t i c s  were 
n o t  included. 
6. Component, va lve and p i p i n g  pressure 
drops were neglected. 
7. Geofluid p roper t i es  were assumed t o  be 
those o f  pure water and were taken from the 
ASME Steam Tables7 as were coo l i ng  water 
proper t ies.  The working f l u i d  p roper t i es  
were taken from the Du Pont computer codes. 

The p roper t i es  are obtained using the 
Redlich-Kwong equation o f  s t a t e  w i t h  Soave's 
modi f icat ions,  i nc lud ing  b ina ry  i n t e r a c t i o n  
c o e f f i c i e n t s .  The l i q u i d  densi ty  i s  
provided by the user. Superheated vapor 
p roper t i es  were taken from SUPERTABLE, 
bubble and dew po in ts  were taken from 
SATTABLE (each o f  which generated a 
hard-copy tab le ) ,  and the  two-phase 
p roper t i es  between the bubble p o i n t  and the 
dew p o i n t  were obtained from an i n t e r a c t i v e  
program CYCLE. 

Some inconsis tenc ies were noted i n  the 
p roper t i es  o f  the halocarbon mixtures i n  the 
compressed l i q u i d  s tate.  The r e s o l u t i o n  o f  these 
inconsis tenc ies i s  discussed i n  d e t a i l  i n  
Reference 6. 

Method o f  Analysis 

A computer program was w r i t t e n  which w i l l  
perform a thermodynamic cyc le  ana lys i s  us ing the 
assumptions l i s t e d  i n  the previous section. A 
l i s t i n g  o f  the program along w i t h  i n p u t  
i n s t r u c t i o n s  and the r e s u l t s  o f  a t y p i c a l  run are 
given i n  the appendix t o  Reference 6. 
Thermodynamic p roper t i es  ( se ts  o f  temperature, 
enthalpy and entropy) are i n p u t  a t  the heater 
pressure and the condenser pressure w i t h  a 
temperature range t o  cover the poss ib le  operat ing 
range o f  the  system. A t u r b i n e  i n l e t  temperature 
o r  entropy i s  specif ied, and the  program analyzes 
f o u r  cases: no g e o f l u i d  o u t l e t  temperature 
r e s t r i c t i o n  w i t h  and w i thou t  a recuperator, and a 
s p e c i f i e d  minimum g e o f l u i d  o u t l e t  temperature 
w i t h  and w i thou t  a recuperator. 

Mix tures from 0 t o  100 percent R-114 were 
analyzed (every 25 % from 0 t o  75 % R-114, and 
then every 5 % t o  100 %). For each mixture, a 
heater pressure was chosen and the tu rb ine  i n l e t  
temperature va r ied  from the p o i n t  which would 
g i v e  an i s e n t r o p i c  tu rb ine  o u t l e t  s t a t e  w i t h  10% 
moisture t o  the p o i n t  a t  which a pinch p o i n t  
occurs a t  the heater o u t l e t  (350 F). The 
temperature a t  which the g e o f l u i d  ef fect iveness 
was a maximum was determined f o r  f o u r  cases: 1. 
no minimum g e o f l u i d  o u t l e t  temperature l i m i t  (10 
F pinch p o i n t )  w i t h  an i s e n t r o p i c  tu rb ine  
expansion which avoided the two-phase reg ion 
(w i thou t  a recuperator). 2. no minimum g e o f l u i d  
o u t l e t  temperature l i m i t  w i t h  an i s e n t r o p i c  
tu rb ine  expansion which could pass through the 
two-phase reg ion (w i thou t  a recuperator) .  3. 160 
F minimum g e o f l u i d  o u t l e t  temperature w i thou t  a 
recuperator. 4. 160 F minimum g e o f l u i d  o u t l e t  
temperature l i m i t  w i t h  a recuperator. The 
i n i t i a l  data showed t h a t  the gains i n  performance 
adding a recuperator t o  a system w i t h  no minimum 
g e o f l u i d  temperature l i m i t  was genera l l y  l ess  
than 0.1% f o r  reasons noted i n  the previous 
section. This gain could n o t  o f f s e t  the added 



complexity and c a p i t a l  cos t  o f  a recuperator. 
Therefore, no recuperators were considered when 
there was no g e o f l u i d  temperature const ra in t .  
S i m i l a r l y ,  no system w i t h  a 160 F g e o f l u i d  o u t l e t  
temperature 1 i m i  t produced an optimum value w i t h  
an expansion which passed through the two-phase 
region. Indeed, i n  most cases, maximum 
performance occurred near the p o i n t  w i t h  maximum 
tu rb ine  i n l e t  temperature. 

The optimum tu rb ine  i n l e t  temperature was 
found f o r  each pressure f o r  each case mentioned 
above. I n  general, the tu rb ine  i n l e t  
temperatures were d i f f e r e n t  f o r  the d i f f e r e n t  
cases. (This was more o t i m i z a t i o n  than was done 
i n  the previous studiesl,g,4.) 

On the condensing side, the working f l u i d  
pressure was obtained us ing the f o l l o w i n g  r u l e s  
( t o  avoid a separate op t im iza t i on ) :  I f  the 
condensing range (d i f f e rence  between the dew 
p o i n t  and the bubble p o i n t )  was less than 20 F, 
the dew p o i n t  was taken t o  be 105 F. I f the 
condensing range was greater  than 20 F, the 
bubble p o i n t  was taken t o  be 85 F. These a re  
a l so  the r u l e s  t h a t  were used i n  the previous 
anal y s i  ,19294. Some recent  analyses have 
ind i ca ted  t h a t  op t im iza t i on  o f  the condenser 
pressure may change the r e s u l t s  t o  some extent; 
t h i s  behavior should be examined f u r t h e r  f o r  the 
near optimum cases. 

Results 

The r e s u l t s  o f  the ana lys i s  discussed i n  the 
previous sect ion are shown i n  Figures 4 and 5. 
Figure 4 gives the r e s u l t s  f o r  a mix ture 
conta in ing 50 % by mass R-114, the composition 
g i v i n g  the maximum g e o f l u i d  ef fect iveness.  
Figure 5 gives the same r e s u l t s  f o r  a m ix tu re  
conta in ing 95 % by mass o f  R-114. 

Not ice t h a t  t he re  i s  no curve f o r  expanding 
through the dome (Case 2) i n  Figure 4. It was 
found t h a t  unless the f l u i d  p roper t i es  r e s u l t e d  
i n  a d ry ing  e f f e c t  on expansion, there was no 
ca l cu la ted  performance gain by going i n t o  the 
dome (even w i t h  the o p t i m i s t i c  assumption o f  no 
tu rb ine  e f f i c i e n c y  degradation w i t h  moisture). 
A t  each pressure, the tu rb ine  i n l e t  temperature 
was va r ied  t o  ob ta in  the maximum g e o f l u i d  
ef fect iveness under the assumptions o f  each of 
the remaining three single-phase-expansion cases: 
1) no g e o f l u i d  o u t l e t  temperature cons t ra in t ,  3 )  
160 F g e o f l u i d  o u t l e t  temperature c o n s t r a i n t  
w i thou t  a recuperator, and 4) 160 F g e o f l u i d  
o u t l e t  temperature c o n s t r a i n t  w i t h  a 
recuperator. The tu rb ine  i n l e t  temperature a t  
the maximum ef fect iveness i s  noted on the f i g u r e  
f o r  each case. Normally , the 
cons t r a  i ned-ou t 1 e t -  temperature cases o p t i  m i  zed a t  
h igher  heater pressures and tu rb ine  i n l e t  
temperatures than d i d  the unconstrained cases. 
The constrained-temperature case w i thou t  a 
recuperator optimized a t  a h igher  temperature and 

No geofluid cutla temperature connrslnt 
1 0t-y ~wnuopic wrblne expanam - 

8 
1 eooF Qeolluid outlet lemperatum eonltmnt: 

3 No recupere101 
4 Recuperator 

( ) Turbine inlet temperawn at optimum 
elfe*ivcmws in DF 

I I I I 
900 loo0 1100 12W 1300 

H a w  pnuure @&a) E l O C U  

Fig. 4 Cycle Performance f o r  a 50% R-114 
50% R-22 Mixture 

I 1 I I 

No outldt temperature construm 
1 Dry ircmaOplc turblne expansion 
2 Twroshese tsenuoptc turbine expansion 

1- ~ f l u l d  outlet temperature construnt: 
3 No rscuperator 
4 Recuperator 

I ) Turbine inlet temperature at opumum 
effectiveness in O F  

I I I I 
600 700 800 900 1 

Fig. 5 Cycle Performance f o r  a 95% R-114 
5% R-22 Mixture 



pressure than the case w i t h  a recuperator. 
Indeed, the unrecuperated, constrained case 
usua l l y  maximized a t  the p o i n t  a t  which the  
tu rb ine  i n l e t  temperature was as h igh  as poss ib le  
(350 F) g i v i n g  a pinch p o i n t  a t  the heater 
out1 e t .  

S i m i l a r  r e s u l t s  are shown i n  Figure 5 f o r  
the 95 % R-114 case Here, the tu rb ine  expansion 
i s  d ry ing  so a performance improvement i s  
poss ib le  by expanding through the two-phase 
dome. I n  general, t h e  maximum g e o f l u i d  
ef fect iveness i s  achieved w i t h  the i s e n t r o p i c  
expansion ending on the sa tu ra t i on  l i n e ;  i n  some 
cases, however, the o u t l e t  s t a t e  was s l i g h t l y  
superheated. 

Figure 6 shows the maximum performance f o r  
each o f  the f o u r  cases as a func t i on  o f  mix ture 
composition. Note t h a t  the two-phase tu rb ine  
expansion through the dome shows improvement over 
a d ry  i s e n t r o p i c  tu rb ine  expansion on ly  f o r  
compositions w i t h  65% o r  more R-114. (Pure R-114 
d r i e s  on expansion w h i l e  R-22 wets on 
expansion.) Two r e l a t i v e  maxima appear on each 
curve. Past cyc le  analyses f o r  hydrocarbon 
mixtures have n o t  shown t h i s  e f f e c t .  Reference 
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1, however, on l y  considered a small range o f  
compositions, espec ia l l y  f o r  those mixtures w i t h  
sharp ly  peaked performance curves such as 
propane-hexane and isobutaneyheptane mixtures. 
Closer examination o f  these curves i nd i ca tes  t h a t  
the slopes o f  the curves must change and a t  l e a s t  
an i n f l e c t i o n  p o i n t  ( i f  n o t  a l esse r  maximum) 
must occur, p r i o r  t o  reaching the pure heavy 
const i tuent .  With the halocarbon mixtures 
considered i n  t h i s  repor t ,  the pure components 
have approximately equal performance, wh i l e  w i t h  
the hydrocarbon mixtures mentioned above, the 
performance o f  the pure heavy cons t i t uen t  i s  
q u i t e  a b i t  lower than t h a t  o f  the pure l i g h t  
component. Therefore, where two maxima appear 
w i t h  the halocarbons, poss ib l y  on l y  one e x i s t s  
w i t h  thee hydrocarbons ( o r  a t  l e a s t  the second 
maximum w i l l  be much lower than those shown i n  
Reference 1). 

For the R-114/R-22 mixture, the maximum 
performance occurs a t  compositions between 30 and 
50% R-114. The maximum i s  very f l a t  and 
therefore system performance w i l l  n o t  be 
s e n s i t i v e  t o  changes i n  composition. The lower 
maximum occurs a t  a composition o f  90 t o  95% 
R-114 and i s  considerably more peaked. For the 
unconstrained o u t l e t  temperature case, the second 
maximum i s  2.7% lower than the h ighest  maximum i f  
wet i s e n t r o p i c  tu rb ine  expansion (through the 
dome) i s  allowed, and 5.0% lower i f  the 
i s e n t r o p i c  expansion i s  forced t o  remain dry. 
For the  case i n  which the  g e o f l u i d  o u t l e t  
temperature i s  constrained t o  remain above 160 F, 
t he  second maximum i s  2.6% lower than the h ighest  
maximum. The use o f  an exhaust gas recuperator 
w i t h  the constrained geofluid-temperature 
produced an ef fect iveness curve having a maximum 
w i t h i n  1.4% o f  the unconstrained maximum. 

Conclusions and Recommendations 

The r e s u l t s  o f  t h e  study and the  conclusions 

1. The performance o f  halocarbon b ina ry  
geothermal cyc les appears t o  be as good as 
t h a t  o f  hydrocarbons as measured by the n e t  
geof 1 u i d  e f f e c t  i veness (wat t  - h r / l  b geof 1 u i  d 
f low) .  The h ighest  values o f  g e o f l u i d  
ef fect iveness are i n  the range from 9 t o  10 
wa t t -h r / l b  g e o f l u i d  f o r  both types o f  
working f l u i d s .  

2. The incremental increase i n  
performance w i t h  halocarbon mixtures as 
compared w i t h  single-component halocarbons 
i s  a t  l e a s t  as l a rge  as t h a t  f o r  hydrocarbon 
mixtures: With no g e o f l u i d  o u t l e t  
temperature r e s t r i c t i o n  and no recuperation, 
a 7.8 percent increase i n  g e o f l u i d  
ef fect iveness was poss ib le  w i t h  a halocarbon 
m ix tu re  r e l a t i v e  t o  a pure halocarbon f o r  a 
c y c l e  having a d ry  t u r b i n e  expansion, and a 
6.0 percent increase f o r  a cyc le  w i t h  
expansion through vapor dome. With the 160 
F g e o f l u i d  o u t l e t  temperature r e s t r i c t i o n  an 
increase o f  3.0 percent w i t h  no tu rb ine  
exhaust recuperator was observed f o r  t h i s  
m ix tu re  and an 8.8 percent increase w i t h  a 
recuperator. 

3. Turbine exhaust recuperat ion 
increases the optimum performance w i t h  the 
160 F g e o f l u i d  o u t l e t  temperature l i m i t  t o  

reached are sumnarized below: 



w i t h i n  1.4 percent o f  the optimum 
performance w i t h  no l i m i t  on o u t l e t  g e o f l u i d  
temperature. The unrecuperated case w i t h  
the r e s t r i c t i o n  i s  10.3 percent below the 
u n r e s t r i c t e d  case. These r e s u l t s  are s i m i l a r  
t o  those noted f o r  the hydrocarbon mixtures. 

4. There i s  some i n d i c a t i o n  t h a t  
t e r t i a r y  mixtures may g i ve  b e t t e r  r e s u l t s  
than b ina ry  mixtures f o r  the halocarbons 
(wh i l e  t h i s  was n o t  the case f o r  the 
p a r a f f  i n -se r ies  hydrocarbons). 

As a r e s u l t  of t h i s  p re l im ina ry  study, the 

1. Fur ther  study o f  the halocarbon 
mixtures as working f l u i d s  i n  geothermal 
power p lan ts  should be conducted. This work 
should include: a. A study t o  i nves t i ga te  
the e f f e c t  o f  op t im iz ing  the condenser 
pressure on performance. b. Thermodynamic 
performance stud ies o f  o the r  halocarbon 
mixtures ( i n c l u d i n g  t e r t i a r y  mix tures) .  c. 
A second law ( a v a i l a b i l i t y )  analys is  o f  the 
systems. d. Studies es t ima t ing  the cos t  o f  
e l e c t r i c i t y  f o r  a halocarbon p l a n t  r e l a t i v e  
t o  a hydrocarbon p lant .  

2. A more c r i t i c a l  look a t  the 
thermodynamic p roper t i es  o f  the halocarbon 
mixtures should be taken. The e f f o r t  might  
a l so  requ i re  the use o f  o the r  thermodynamic 
modeling o f  the f l u i d  mix tures such as the 
extended corresponding s tates model o f  the 
National Bureau o f  Standards. The Du Pont 
code p red ic t s  the thermodynamic p roper t i es  
o f  b ina ry  mixtures only; i f  t e r t i a r y  
mix tures are t o  be considered, o ther  models 
wou 1 d be required. Some a d d i t i o n a l  
experimental data would be requi red t o  
determine the i n t e r a c t i o n  parameters f o r  a 
given mixture i f  extremely accurate 
p roper t i es  are needed. However, f o r  
p re l im ina ry  analyses , an approximation o f  
these p roper t i es  can be made w i thou t  the 
a d d i t i o n a l  experimental resu l t s .  

f o l l o w i n g  reconmendations are made: 

Fur ther  study w i l l  v e r i f y  whether mixtures 
o f  halocarbons are v i a b l e  candidate working 
f l u i d s  f o r  geothermal power cycles. 

1. 

2. 

3. 

4. 

5 .  

6. 

7. 
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