skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Microwave production of hydrogen and sulfur from hydrogen sulfide wastes

Conference ·
OSTI ID:5909435

A waste-treatment process is being developed that uses cold'' microwave plasma-chemical reactions to split hydrogen sulfide into elemental hydrogen and sulfur. A clean sulfur product can be recovered and sold, while product gases are purified and separated into seams containing hydrogen, hydrogen sulfide for recycle, and the process purge containing carbon dioxide and water. Experiments with pure hydrogen sulfide at 0.5 to 1.5 L/min flow rates and microwave powers of 400 to 1000 W confirmed that conversions of over 90% per pass at process energy requirements approaching 5 kcal/mol are possible. Experiments with impurities typical of petroleum refinery waste hydrogen sulfide streams have demonstrated that these impurities are compatible with the plasma dissociation process and that they do not create new waste treatment problems. This technology has a long-term potential for saving 40 to 70 {times} 10{sup 12} Btu/yr in the refining industry, for an economic savings of $500 million to $1000 million annually. Although the microwave process should show particular advantages for the petroleum refining industry, the low capital costs and modular nature of the new process should make it economically attractive in connection with the small-scale waste-treatment technologies currently used in the natural gas industry. Currently, in the U.S.S.R., a 500-kW demonstration microwave hydrogen sulfide treatment unit operating at near atmospheric pressure is being tested at the natural gas fields in Orenberg. 3 refs.

Research Organization:
Argonne National Lab., IL (United States)
Sponsoring Organization:
USDOE; USDOE, Washington, DC (United States)
DOE Contract Number:
W-31109-ENG-38
OSTI ID:
5909435
Report Number(s):
ANL/CP-74879; CONF-920122-5; ON: DE92005190
Resource Relation:
Conference: American Society of Mechanical Engineers (ASME) energy sources technology conference and exhibition, Houston, TX (United States), 26-30 Jan 1992
Country of Publication:
United States
Language:
English