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Tensile specimens of normalized-and-cempered 9Cr-lMoVNb, 9Cr-lMoVNb-

2Ni, 12Cr-lMoVW, 12Cr-lMoVW-lNi, and 12Cr-lMoVW-2Ni were irradiated in the

Experimental Breeder Reactor at 390, 450, 500, and 550°C to displacement-

damage levels of approximately 16 dpa. The only difference in the effect

of irradiation on the tensile behavior of the nickel-doped and undoped

steels was attributed to the difference in tempering treatments the two

types of steels received. The nickel-doped steels were stronger prior to

irradiation due to a lower tempering temperature. After irradiation, the

properties of the steels with and without nickel were similar, indicating

that the presence of nickel did not affect the behavior of the steels

during irradiation. Nickel was added to the steels to study the effect of

helium on the properties of these steels. Helium can be formed in an

alloy containing nickel by irradiating in a mixed-spectrum reactor. To

help determine the effect of helium on properties, these steels are also

being irradiated in fast reactors, where little helium is formed. The

present fast-reactor results indicate that it is feasible to use the

nickel-doped ferritic steels to study helium effects.
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1» Introduction

To study alloys for fusion reactor first wall applications, it is

necessary to have a technique for studying the effect of irradiation-

produced displacement damage and transmutation helium simultaneously pro-

duced by irradiation. To do this in the 9% Cr and 12% Cr Cr-Mo steels,

nickel is added to the steels, and they are then irradiated in a mixed-

spectrum reactor such as the High Flux Isotope Reactor (HFIR) [1,2],

Displacement damage is produced by the fast neutrons in the spectrum, and

helium is produced by a transmutation reaction of 58Ni with the thermal

neutrons in the spectrum. Such a study is in progress on 9Cr—IMoVNb and

12Cr-lMoVW steels to which up to 2% Ni has been added. The steels are

being irradiated in HFIR to produce helium and displacement damage. They

have also been irradiated in the Experimental Breeder Reactor (EBR-II), a

fast reactor where displacement damage occurs but essentially no helium is

produced.

This report presents tensile results from specimens irradiated in the

AD-2 experiment conducted by the Hanford Engineering Development

Laboratory in EBR-II. When the tests on the HFIR-irradiated specimens are

completed, the effect of helium on the properties.will be determined by

comparing the results from the two experiments.

2. Experimental Procedure

Electroslag-remelted heats of standard 12Cr-lMoW (0.5% Ni) and

9Cr-lMoVNb (0.1% Ni) steels were prepared by Combustion Engineering, Inc.,

Chattanooga, Tennessee. These compositions with 1 and IX Ni, desig-

nated 9Cr-lMoVNb-2Ni, 12Cr-lMoVW-lNi, and 12Cr-lMoVW-2Ni» were also pre-

pared. Sheet tensile specimens were machined from 0,76-nm-thick cold



rolled sheet. Gage lengths were machined parallel to the rolling direc-

tion; the reduced section was 20.3-nun long by 1.52 mm wide by 0.76 mm

thick. The specimens were irradiated in the normalized arid tempered con-

dition. The normalizing treatment for the 9 Cr steels w 0.5 h at 1040°C

and for the 12 Cr steels 0.5 h at 1050°C, after which they were cooled in

flowing helium. The 9Cr-lMoVNb was tempered 1 h at 760°C; the 12Cr-lMoVW

and 12Cr-lMoVW-lNi were tempered 2.5 h at 780°C. The 9Cr-lMoVNb-2Ni and

12Cr-lMoVW-2Ni steels were tempered 5 h at 700°C. Tempered martensite

microstructures were obtained by these heat treatments. Details on

chemical composition, heat treatment, and microstructure have been

published [1—3].

Specimens x*ere irradiated in capsules designed to maintain tempera-

tures of 390, 450, 500, and 550°C. Irradiation was in row 4 of EBR-II,

and the specimens were exposed to fluences of ~3.2 to 3.4 x io 2 6

neutrons/m2 (E > 0.1 MeV), depending on the axial position from the reac-

tor midplane. This fluence produced displacement damage of about 15.4 to

16.2 dpa. The uncertainty in fluence has been estimated as ±10% and the

temperature uncertainties are 390 ± 10°C, 450 ± 15°C, 500 ± 20°C, and

550 ± 30°C.

After irradiation, tensile tests were conducted at the irradiation

temperature and, where specimens were available, at room temperature. As-

heat-treated as well as thermally aged control samples were also tested to

separate the effect of irradiation from thermal-aging effects. Thermal

aging was at the irradiation temperatures for 5000 h — the approximate

time of the irradiation. The tensile tests were made in a vacuum chamber



on a 44-kN-capacity Instron universal testing machine at a crosshead speed

of 8.5 pm/s, which "results in a nominal strain rate of 4.2 x 10 V s .

3. Results

In the normalized and tempered condition, the steels with 2% Ni were

considerably stronger than the standard materials and the 12Cr-lMoVW-lNi

steel [1,2]. This difference was probably caused by the different tem-

pering treatments used for the steels with 2% Ni. These latter steels

were tempered at 700°C, where tempering was slower than for the higher

temperatures used for the standard steels and the one with 1% Ni. It was

not possible to temper the 2%-Ni steels at the same temperatures because

those temperatures are above the AQ temperature [2] .

Thermal aging for 5000 h (the approximate time in the reactor) in the

range 400 to 550°C had little effect on the strength properties of the

9Cr-lMoVNb, 12Cr-lMoVW, and 12Cr-lMoVW-lNi. There was also no effect of

thermal aging on the 9Cr-lMoVNb-2Ni and 12Cr-lMoVW-2Ni steels at 400 and

450°C; however, these steels showed a large decrease in strength after

aging at 550°C, where the strength of the 2%-Ni steels approached that of

the steels without nickel. There was little effect of aging on the duc-

tility of any of the steels. Because of space limitations and because the

aged specimens are the most appropriate as controls, the unaged data will

not be presented.

The irradiated specimens were compared with the aged specimens for

tensile tests at the irradiation (aging) temperatures (Figs. 1 to 6) and

for tests at room temperature. (Details on the room-temperature results

will not be presented here). Strengthening, as determined by an increased



yield stress and ultimate tensile strength, occurred for the 9Cr-lMoVNb,

12Cr-lMoVW, and 12Cr~lMoVW-lNi steels irradiated at 390°C, Little change

in strength occurred for the steels with 2% Ni. There was considerably

less difference in the strengths of the steels irradiated at 390°C with

different nickel contents than there was in the unirradiated condition.

After irradiation at 450°C, the 9Cr-lMoVNb and 9Cr-lMoVNb-2Ni steels

had similar strengths (Figs. 1 and 2). The strength of the irradiated

9Cr-lMoVNb steel was also similar to the strength before irradiation and

after aging. However, the strength of the 9Cr-lMoVNb-2Ni steel showed a

large decrease over the unirradiated strength. The strength of the 12 Cr

steels showed similar effects (Figs. '< and 5), with the irradiated

strengths of the 12Cr-lMoVW and 12Cr-lMoVW-lNi steels being similar to the

aged strengths, and the steel with 2% Ni showing a significant decrease

from the aged values.

Irradiated and aged steels were also compared at 550°C. Irradiation

softened the 9Cr-lMoVNb and 9Cr-lMoVNb-2Ni steel;! more than aging did

(Figs. 1 and 2), and there was little difference between the strength of

the 9-Cr steel with no nickel added and with 2% Hi. In general, the

strengths of the 12-Cr steels with and without nickel showed similar

trends, although there was somewhat more scatter in the data (Figs. 4

and 5).

Irradiation appeared to have only a minor effect on ductility

(Figs. 3 and 6). The major effect was at 400°C, where the irradiation-

induced strengthening led to a decrease in uniform and total elongation.

The tensile behavior measured by the room-temperature tests was similar to

that observed in the elevated-temperature tests.



4.j Discussion

- - The unirradiated 9-Cr and 12-Cr steels with and without 2% Ni have

been examined by TEM [3]. Both contained a high density of M23C6

precipitates and some fine MC particles, i-i Fig. 7, micrographs of

extraction replicas and foil specimens for the 12Cr-lMoVW and 12Cr-lMoVW-

2Ni steels are shown. The 9-Cr steels with and without nickel were simi-

lar. However, they contained more MC particles than were present in the

12-Cr steels, which is due to the niobium in these steels [3]. The pri-

mary difference between the microstructures of the standard steels and the

steels with 2% Ni was that the 2%-Ni steel had a finer average precipitate

size, a finer cell size, and a higher dislocation density. The differ-

ences in microstructure can be attributed to the different tempering

treatments (1 h at 760°C and 2.5 h at 780°C for the standard 9 Cr and 12

Cr steels, respectively, compared to 5 h at 700°C for the two steels with

2% Ni). Furthermore, the higher strength for the unirradiated and unaged

2%-Ni steels over the standard steels can also be attributed to this dif-

ference in microstructure.

The relative effects of aging on mechanical.properties also seem to
•»

be due to the difference in the tempering treatment. The loss of strength

of the 2%-Ni steels when aged at 550°C results from additional tempering

of the unstable microstructure of this steel, whereas the highly tempered

standard steels and the 12Cr-lMoVW-lNi steel are relatively stable for the

given aging conditions. This would be consistent with the thermal aging

bringing the strength of the 2%-Ni steels in line with the other steels.

Such an explanation is reasonable, because nickel is not expected to have

a significant effect on the strength [4].



The different relative changes in strength among the various irra-

diated steels can also be attributed to the microstruetures. The large

increase in strength of the standard 9-Cr and 12-Cr steels and the

12Cr-lMoVW-lNi steel when irradiated at 390°C is similar to the change

previously observed for other heats of 9Cr-lMoVNb and 12Cr-lMoVW steels

irradiated to similar fluences in EBR-I1 [5,6] - The fact that the 2%-Ni

steels showed little strength change during irradiation reflects the tem-

pering differences of these steels relative to the standard steels.

Strengthening by irradiation at 390°C has been attributed to the formation

of irradiation-induced dislocation loops and precipitates [5—7] . It seems

reasonable that similar strengthening effects would occur for the standard

steels and the steel with 1% Ni. The lack of a significant strength

change for the steels with 2% Ni may mean that, in these steels,

strengthening caused by the formation of an irradiation-induced structure

is offset by an irradiation-aided tempering, which advances the process

started at 700°C.

These same heats of steel were previously irradiated in HF1R at 50°C,

and irradiation caused an increase in strength for all of the steels. The

2%-Ni steels were strongest before irradiation and were also strongest

after irradiation. For those experiments, hardening was concluded to be

caused by irradiation-induced dislocation-loop formation. At the lower

temperature, no precipitation was expected, and no irradiation-aided tem-

pering was possible.

When the irradiated and aged steels were compared at 450°C, there was

little effect of irradiation on the standard steels and the 12Cr-lMoVW-lNi
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steel, but the irradiated steels with 2% Ni showed a large strength

decrease compared to the aged specimens. The strength of the irradiated

steels with 2% Ni had strengths comparable to the other steels after irra-

diation at 450°C. Irradiation at 550°C also resulted in similar strengths

for all steels, regardless of the nickel content. The strength of the

irradiated steels in this case fell slightly bolow the strengths of the

thermally aged standard steels.' (The 2%-Ni steels had a higher strength

than the other steels after thermal aging.) These differences in the

behavior of the 2%-Ni steels can also be attributed to the differ- nt tem-

pering treatments before irradiation &n.d the subsequent irradiation-aided

tempering of the nickel-doped steels.

In the future, we will examine TEM disks that were irradiated under

the conditions of the present experiment. However, even without the

information derived from such studies, several interesting observations

can be made.

Previous irradiation studies of 12Cr-lMoVW steel indicated that

nickel-rich G-phase forms during irradiation in EBR-II at 390°C, and it

was concluded that much of the strengthening observed was caused by this

precipitate [7]. It was also concluded that the hardening caused by G-

phase could lead to an irradiation-induced increase in the ductile-brittle

transition temperature (DBTT). If this were true, then the 2%-Ni steels

should show a much larger irradiation-hardening effect than the standard

steels. Neither an enhanced strengthening as measured by the tensile

properties nor a larger increase in the DBTT shift was observed in the

steels with 2% Ni [8]. Future TEM studies will provide insight to the

obeserved properties behavior.

As stated in the Introduction, the primary purpose for Investigating

the nickel-doped steels is to irradiate the steels in a mixed-spectrum



reactor to produce both displacement damage and transmutation helium.

However, to use this technique, it is necessary to show that nickel does

not cause any effects that are not present in the standard alloys. The

present results indicate that the nickel has not produced.microstructural

changes that affect the postirradiation tensile behavior of the 9-Cr and

12-Cr steels prior to irradiation or thermal aging. The original higher

strength for the 2%-Ni steels is an effect of the different tempering

treatments. When aged or irradiated, the steels with and without nickel

approached similar strengths; this is consistent with the fact that nickel

generally adds little solid-solution strengthening and apparently does not

cause the formation of additional precipitate phases after thermal aging

[4] . Although TEM on these steels is required, the tensile and impact

results indicate that the use of the nickel-doped steels to simulate the

simultaneous production of helium and displacement damage appears valid.

5. Summary

The standard 9Cr-lMoVNb and 12C-lMoVW ferritic (martensitic) steels

with up to 2% Ni were irradiated in EBR-II to 15 to 16 dpa at 390, 450,

500, and 550°C. After irradiation, the strength and ductility did not

depend on the nickel content. All indications are that the addition of

nickel to these steels does not adversely affect the unirradiated or irra-

diated behavior. Therefore, it should be possible to use the nickel-doped

steels to study helium effects on the properties of the irradiated

steels.
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List of Figures

..-_. Fig.* 1. The 0.2% yield stress as a function of test temperature for
"thermally aged (5000 h) and irradiated (~16 dpa) 9Cr-lMoVNb and 9Cr-
lMoVNb-2Ni steels. Tests were at the aging and"irradiation temperatures.

Fig. 2. The ultimate tensile strength a^ a function of test tem-
perature for thermally aged (5000 h) and irradiated (~16 dpa)
9Cr-lMoVNb and 9Cr-lMoVNb-2Ni steels. Tests were at the aging and irra-
diation temperatures.

Fig. 3. The uniform and total elongation as a function of test
temperature for thermally aged (5000 h) and irradiated (~16 dpa)
9Cr-iMoVNb and 9Cr-iMoVNb-2Ni steels. Tests were at the aging and
irradiation temperatures.

Fig. 4. The 0.2% yield stress as a function of test temperature for
thermally aged (5000 h) and irradiated (-16 dpa) 12Cr-lMoVW, 12Cr-
J.MoVW-lNi, and 12Cr-lMoVW-2Ni steels. Tests were at the aging and irra-
diation temperatures.

Fig. 5. The ultimate tensile strength as a function of test tem-
perature for thermally aged (5000 h) and irradiated (~16 dpa) 12Cr-lMoVW,
12Cr-lMoVW-lNi, and 12Cr-lMoVW-2Ni steels. Tests were at the aging and
irradiation temperatures.

Fig. 6. The uniform and total elongation as a function of test
temperature for thermally aged (5000 h) and irradiated (~16 dpa)
12Cr-lMoVW, 12Cr-lMoVW-lNi, and 12Cr-lMoVW-2Ni steels. Tests were at the
aging and irradiation temperatures.

Fig. 7. Transmission electron micrographs of normalized-and-tempered
12Cr-lMoVW steel (left) and 12Cr-lMoVW-2Ni steel (right).
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