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Morel (1981) has developed multigroup Legendre cross sections 

suitable for input to standard discrete ordinates transport codes for 

performing charged-particle Fokker-Planck calculations in one-

dimensional slab and spherical geometries. Since the Monte Carlo 

neutron transport code, MORSE, uses the same multigroup cross section 

data that discrete ordinates codes use, it was natural to consider 

whether Fokker-Planck calculations could be performed with MORSE. An 

investigation showed, however, that the Fokker-Planck cross sections 

possessed two characteristics which rendered them unacceptable to the 

Gauss quadrature scattering algorithm used in MORSE: (1) the cross 

sections modeling the energy operator contain delta functions, and 

(2) the cross sections modeling the angular operator are nonphysical 

(i.e., they do not represent a cross section which is fully positive 

with respect to the angular cosine). Therefore, in order to extend 

the unique three-dimensional forward or adjoint capability of MORSE 

to Fokker-Planck calculations, the MORSE code was modified to cor­

rectly treat the delta-function scattering of the energy operator, 

and a new set of physically acceptable cross sections was derived to 

model the angular operator. These new developments were tested for 

one-dimensional slab geometries by comparing energy and charge 

V 



deposition profiles from MORSE with corresponding solutions from a 

discrete ordinates code (ONETRAN). The agreement was found to be 

excellent. Results from forward and adjoint test runs to compute 

energy deposition in a sphere also showed good agreement. 

Morel (1979) has also developed multigroup Legendre cross sec­

tions suitable for input to standard discrete ordinates codes for per­

forming electron Boltzmann calculations. These electron cross sec­

tions may be treated in MORSE with the same methods developed to treat 

the Fokker-Planck cross sections. The large magnitude of the elastic 

scattering cross section, however, severely increases the computation 

or run time. It is well-known that approximate elastic cross sections 

are easily obtained by applying the extended transport (or delta func­

tion) correction to the Legendre coefficients of the "exact" cross 

section. The extended transport corrected cross sections are extreme­

ly effective in decreasing the run time in discrete ordinates calcula­

tions and would be expected to similarly decrease run times in MORSE. 

However, these corrected cross sections are nonphysical and are there­

fore rejected by the scattering algorithm in MORSE. In order to cor­

rect this problem, a new method for performing the transport correc­

tion, utilizing a Radau quadrature technique, was developed and 

tested. The technique is an exact method for performing the extended 

transport cross section correction in that it produces cross sections 

which are physically acceptable. Sample calculations using electron 

cross sections have demonstrated this new technique to be \/ery effec­

tive in decreasing the large magnitude of the cross sections. 
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CHAPTER I 

INTRODUCTION 

Transport theory is the study of the phenomenon whereby parti­

cles are "transported" from one element of phase space (position, 

solid angle, energy, and time) to a different element of phase space 

through interactions such as elastic or inelastic scattering, absorp­

tion, or radiative collisions. The mathematical equation which de­

scribes this radiation propagation is known as the Boltzmann or 

transport equation (the transport equation and a description of its 

variables is given in the first part of Appendix A). Although the 

transport equation is relatively simple to derive, it is unfortunate­

ly quite difficult to solve for any but the simplest model problems. 

The solution to the transport equation is usually obtained through 

different numerical schemes, such as the discrete-ordinates method, 

or by direct simulation of the particle behavior as it travels 

through matter; i.e., the Monte Carlo method. 

One code system based on the Monte Carlo technique is called 

MORSE. It has been used extensively at Sandia National Laboratories 

and in the general transport community because of some distinct fea­

tures which make it adaptable to many transport problems. MORSE 

(|1ultigroup Oak R̂ idge stochastic Experiment) is specifically a multi­

purpose neutron and gamma-ray transport Monte Carlo code. It was 

developed at ORNL and the University of Tennessee in the late 1960s 

1 



by Straker et al. (1970). Some of its features include (Emmett, 

1975): 

(1) the ability to treat the transport of either neutrons or 

gamma-rays, or a coupled neutron and secondary gamma-ray 

problem, 

(2) the use of multigroup cross sections, 

(3) forward or adjoint transport capability, 

(4) modular input-output, including cross section analysis and 

geometry modules, 

(5) debugging routines, 

(6) time dependence for both shielding and criticality prob­

lems, 

(7) albedo option at any material boundary, 

(8) three-dimensional combinatorial geometry package, and 

(9) several types of optional importance sampling. 

Research Objectives 

The primary research objective of this work is to extend the 

transport capabilities of MORSE. The research consists of two dis­

tinct but related parts: 

(1) provide an option in MORSE whereby each group-to-group 

transfer may be sampled at a forward scattering angle of 

zero degrees (for treating cross sections having forward-

peaked delta function components), and 
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(2) develop multigroup Legendre cross sections suitable for in­

put to MORSE for performing charged-particle Fokker-Planck 

calculations. 

The first research topic will be introduced in Chapter II, and 

the second in Chapter III. The research is sponsored by a contract 

(Document Number 61-9208) between Sandia National Laboratories and 

the Department of Chemical and Nuclear Engineering of the University 

of New Mexico (contractor). 

It is not our intent or within the scope of this paper to de­

scribe in depth the MORSE code or the Monte Carlo technique. The 

documentation on MORSE by Emmett (1975) and Dupree and Lighthill 

(1982) detail thoroughly the capabilities and effective use of the 

code. For the Monte Carlo technique, the references by Carter and 

Cashwell (1975), Renken (1980), Selph and Garrett (1973), and Spanier 

and Gelbard (1969) are just a few examples of the available study 

material. 

In the rest of this chapter, we first briefly discuss some gen­

eral comparisons between Monte Carlo and discrete-ordinates codes in 

order to better understand the relative importance of extending the 

capabilities of MORSE. We will then highlight two topics which par­

ticularly concern our research: the Monte Carlo technique of biased 

sampling and the processing of multigroup cross section sets in 

MORSE. 
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Comparison Between Monte Carlo and Discrete-Ordinates Techniques 

Both Monte Carlo (MC) and discrete-ordinates (DO) methods for 

transport calculations have certain advantages and disadvantages 

which must be evaluated in selecting the type of code best suited for 

a particular problem. We will briefly discuss some of these factors 

below. 

The basic difference between MC and DO is that the MC technique 

is a simulation of particle transport, whereas DO methods attempt to 

solve the Boltzmann equation via direct discretization of the phase 

space variables. This results in inherent statistical uncertainty in 

MC solutions, but deterministic solutions for DO. The accuracy of 

the DO solution is dependent upon the extent to which the discrete 

phase space mesh can be refined. The reliability of the MC estimate, 

however, depends upon the number of particles tracked and the use of 

various variance reducing techniques. Because standard (analog or 

continuous) MC calculations are sometimes impractical to perform, 

certain types of discrete approximations are often employed in the MC 

algorithm. The multigroup Legendre cross section employed in MORSE 

is an example of this type of approximation. In such cases, the MC 

solutions are subject to both statistical and discretization errors. 

One advantage of DO is the ease with which adjoint calculations 

may be performed in comparison with continuous MC. However, adjoint 

calculations are also quite easy with the MORSE code system, due to 

its use of multigroup cross sections. Adjoint calculations for 
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continuous MC are still currently an area of active research in the 

radiation transport field. 

A common disadvantage of DO codes for two and three dimensions 

is the so-called "ray effect." This effect results from a lack of 

rotational invariance in the DO equations and manifests itself in the 

form of non-physical oscillations in the flux solution. The MORSE 

code also suffers from a type of ray effect, though generally not as 

severe as the DO ray effect, caused by its discretized representation 

of the scattering angles. Continuous MC and one-dimensional DO codes 

do not show these effects. In general, both types of ray effects are 

diminished for media characterized by comparatively high scattering-

to-absorption cross section ratios. In MORSE, the ray effect may 

also be decreased by inputting higher order Legendre cross section 

expansions so as to allow for more discrete scattering angles (see 

Chapter II). 

An advantage of MC codes is that they are not geometry limited; 

i.e., they may be adapted to complex physical geometries in as much 

detail as necessary. The DO method on the other hand requires that 

the geometry be expressed in terms of a standard (i.e., cartesian, 

spherical, cylindrical, etc.) coordinate system. 

The running time on the computer is also a factor in choosing 

between MC and DO. The DO codes are much faster in one-dimensional 

geometries, but for two or three dimensions with steady-state condi­

tions, the comparative running time becomes problem specific. If the 
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transport problem is time dependent and uses multidimensional geom­

etries, the MC codes are easily the most efficient. 

Importance Sampling 

As mentioned previously, the Monte Carlo method attempts to 

estimate the solution of a transport problem by analog or direct 

simulation of the real world. The simulation requires that "samples" 

or individual particles be tracked through the medium geometry from 

its source to the point where its case history is terminated through 

leakage from the medium, absorption, Russian roulette, by time kill, 

or energy kill. The tracking, or "random walk", is accomplished by 

choosing alternative events for the particle through random sampling 

of known cumulative probability distributions. Since the tracking of 

individual microscopic particles can never be predicted with certain­

ty, the random walk is non-deterministic. However, by applying the 

law of large numbers, or in the limit as the number of samples in­

creases, the solution obtained from the samples should adequately 

represent the true solution from the "parent population". The rela­

tionship between the Boltzmann equation and Monte Carlo is often 

viewed as empirical; that is, Monte Carlo simply models in detail the 

principles from which the transport equation was derived. However, 

the Monte Carlo technique can also be shown to correspond to each 

term of the Boltzmann in a more direct manner (see Section 4.10 of 

Emmett, 1975). 
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To fully simulate particle transport, one would certainly in­

clude particle elimination by absorption. However, if the transport 

medium is characterized by high absorption cross sections and the 

solution requires deep penetration of particles, then a Monte Carlo 

code would typically require many case histories to obtain relatively 

good statistics on such a calculation. In order to reduce the vari­

ance in the result for a given amount of computer time, MORSE does 

not permit particles to die by absorption. Instead, a quantity known 

as the "weight" is assigned to the particle as it leaves the source. 

This weight is used in calculating the particle's contribution to the 

solution and is changed as the particle proceeds through the system 

so as to compensate for the lack of absorption. This technique is 

known as "survival biasing". 

There are many ways in which a calculation may be biased. Some 

examples of biasing, or "importance sampling", are source direction 

biasing, Russian roulette, path stretching or exponential transform, 

splitting, and time and energy cutoffs. Biasing essentially involves 

sampling from fictitious probability density functions. It is a 

method whereby certain alternative events which are more likely to 

contribute to the desired result are sampled more frequently, while 

other events which contribute little to the result are sampled less 

frequently. 

Choosing the best method to bias the particle random-walk proc­

ess often involves some degree of insight, experience, and trial and 
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error. It is for this reason that the efficient and proper use of 

Monte Carlo, although based on scientific principles of probability, 

has come to be viewed somewhat as an "art". If we are not careful, 

some methods of importance sampling may actually increase rather than 

decrease the statistical error. Thus, it would certainly be advan­

tageous to have a theoretical basis for choosing the best bias tech­

nique. Such a basis exists and takes the form of a so-called "impor­

tance function". The importance function identifies those trajec­

tories which are "important" to the solution of the problem. Coveyou 

et al. (1967), and Renkin (1970 and 1980) explain that a near-optimal 

choice for this importance function is the solution to an appropriate 

adjoint transport equation. The importance function is usually as 

difficult to calculate as the transport solution itself. However, 

even a crude approximation to the importance function is often suffi­

cient to significantly reduce the variance of the calculation. One 

advantage of MORSE is its ability to perform adjoint calculations. 

Therefore, if for a certain transport problem, the discrete approxi­

mations in MORSE cause it to be inadequate, then it would be appro­

priate to perform an adjoint calculation and then use the resulting 

importance function to bias an analog Monte Carlo calculation. 

Group-to-Group Transfer Cross Sections in MORSE 

The implementation of multigroup, multitable cross section sets 

into Monte Carlo codes offers three distinct advantages over contin­

uous or analog Monte Carlo: 
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(1) the cross section sets are already generally available 

since they are used extensively in discrete ordinate appli­

cations, 

(2) they permit a relatively easy solution of the adjoint 

transport equation (coupled neutron-photon or electron-

photon adjoint capability for continuous energy Monte Carlo 

is currently unavailable), and 

(3) they offer a simple technique for the simultaneous treat­

ment of several types of radiation (i.e., neutrons and 

photons, electrons and photons, etc.). 

The primary disadvantage of using multigroup cross sections is that 

the fine structure detail in the cross section is lost. 

Continuous Monte Carlo essentially samples probabilities of 

interaction, collision parameters, etc., by interpolating from a 

table of numbers at discrete energies. A coupled neutron-photon code 

for continuous Monte Carlo called MCNP is currently in use at the Los 

Alamos Scientific Laboratory (see LASL, 1981). However, at the out­

set of the development of MORSE, such a code was not available, and 

the simultaneous transport of neutrons and photons was obtained 

through separate neutron and photon codes in a kind of bootstrapping 

operation. Since the physics of the interaction processes for 

neutrons and photons is so different, a coupled neutron-photon code 

would have required excessive core storage to handle all of the cross 

section input and also a large computer access time. The calcula­

tions then, were computer capability limited. The combination of 
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multigroup cross section sets with Monte Carlo offered a very practi­

cal solution to the problem for several reasons (Emmett, 1975): 

(1) each energy group contains the cross section for all proc­

esses, 

(2) multigroup cross sections have the same format for neutrons 

and gammas, 

(3) the logic of the random walk process becomes the same for 

neutrons and gammas, 

(4) for anisotropic scattering, each group-to-group transfer 

cross section contains an angular distribution which is a 

weighted average over the various cross sections involved 

in the energy process; i.e., the neutron cross section is a 

weighted average of elastic and inelastic probabilities, 

and the gamma cross section is a weighted average of the 

photoelectric effect, pair production, and Compton scatter­

ing probabilities, and 

(5) the generation of a secondary gamma ray may be considered 

as just another group-to-group transfer. 

In summary, the use of multigroup cross sections reduces the effort 

required to produce, store, and sample from the cross section 

libraries. 

For input into the MORSE code system, the cross sections must be 

in the AMPX working library format. The ORNL AMPX package (see 

Greene et al., 1976) is a modular system for producing (generating 
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and collapsing) coupled multigroup neutron-gamma ray cross section 

sets. The basic neutron and gamma cross section data used as input 

for AMPX are obtained from the ENDF/B libraries. MORSE initially 

used multigroup cross sections in the ANISN format. One feature of 

converting to the AMPX format is that none of the zeros in the scat­

tering matrix are stored. This produces a slightly more complex data 

system for input into MORSE but it also saves considerable computer 

core. One of the useful AMPX routines is called LAVA (j-et ANISN 

J/isit AMPX) which will read ANISN-formatted cross sections and write 

an AMPX working library cross section set. 

The older versions of MORSE (along with many discrete-ordinates 

codes) were sometimes "cross section limited" because they read in 

all the cross sections at one time. The current version of MORSE at 

Sandia National Laboratories is termed MORSE-SGC (^uper-Grouped Cross 

Sections). MORSE-SGC has the capability of loading cross sections 

into the core, one table at a time. After some processing, the cross 

sections are stored on a disk and may be recalled into the core a few 

groups (or one supergroup) at a time for further processing. This 

reduces the amount of central memory usually allotted to cross sec­

tions. 

The multigroup cross section processing steps in MORSE-SGC are 

enumerated below (Emmett, 1975). 

First: MORSE-SGC reads AMPX cross sections for media or ele­

ments. The types of cross sections which may be processed are neu­

tron only, gamma-ray only, coupled neutron-gamma ray, or gamma ray 
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from coupled neutron-gamma ray. Fission probabilities may also be 

included. The fission and total cross section for each energy group 

are first read for a particular element into a buffer area and then 

stored. Then each Pg coefficient from the group-to-group Legendre 

expansions is read and placed into its particular slot in a down-

scatter matrix. A downscatter matrix is similarly formed from the Pi 

coefficients, the P2 coefficients, etc. The cross sections are 

transposed and stored if an adjoint problem is being solved. 

Second: after the cross sections for all the elements are read 

and stored, the cross sections are mixed to obtain the media cross 

sections. 

Third: the nonabsorption probability and the gamma production 

probabilities are determined for each energy group by dividing the 

sum of all the probabilities of transfer from that energy group by 

its total cross section. The fission cross section for each energy 

group is also divided by its total cross section to obtain corres­

ponding probabilities of fission. The downscatter matrices are 

converted to probability tables by dividing by the scattering cross 

sections. 

Fourth: the Legendre expansion for each group-to-group transfer 

is used as a weight function in a generalized Gaussian quadrature 

technique to obtain discrete angles and probabilities of scattering 

at those angles; i.e., 
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+1 n 
f(yQ) g(yQ) dUg = £ g(y.) w. , (1-1) 

where g(UQ) = any polynomial of order 2n-l or less, 

f( UQ) - the angular distribution for y , the cosine of the 
scattering angle, 

y. = the set of discrete cosines, and 

OL. = the associated probability for each scattering cosine. 

Chapter II and Appendix B treat this subject in depth. 
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CHAPTER II 

GENERATION OF DISCRETE SCATTERING ANGLES USING RADAU QUADRATURE 

The first phase of the research intended to extend the capabili­

ties of MORSE is to provide MORSE with the option of calculating a 

set of discrete scattering angles, one of which is a forward scatter­

ing angle at zero degrees. The second phase of the research is in­

troduced in Chapter III. 

MORSE currently converts the multigroup Legendre expansions to a 

set of discrete scattering angles and probabilities of scattering at 

those angles using a generalized Gauss quadrature technique. The 

probabilities (or weights) are summed and then normalized to form a 

cumulative probability distribution. MORSE samples a scattering 

angle in its random walk process by generating a random number be­

tween 0 and 1, locating the probability interval in the cumulative 

distribution between whose limits the random number lies, and then 

matching the chosen probability with its appropriate scattering 

angle. The discrete scattering angles tend to concentrate in those 

regions of the actual angular distribution which have high probabili­

ties or peaks. 

The Gauss quadrature technique generates discrete direction co­

sines only on the open interval (-1,+1). However, it is desirable in 

certain particle transport applications to have some finite probabil­

ity in each group-to-group transfer for scattering at zero degrees. 
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One such application, the extended transport cross section correc­

tion, is discussed in a later section. In order to obtain a forward 

scattering angle for sampling, a generalized Radau quadrature tech­

nique has been implemented in MORSE. The rest of this chapter con­

tinues to introduce the Gauss and Radau quadrature techniques as 

methods for obtaining sampling angles in MORSE, Appendix B details 

the theory of the two quadrature methods, and Appendix C contains a 

listing of the updated version of MORSE with the Radau quadrature 

option. 

Legendre Polynomial Expansions of Angular Distributions 

Scattering angular distributions (a) are most often expressed 

through a Legendre expansion of the distribution in terms of the co­

sine of the scattering angle (MQ - cos S Q ) . Since elastically 

scattered neutrons are scattered symmetrically about the azimuthal 

angle (<|io). the scattering distribution may be represented as 

^ = 4r-^(E'^o) ' (2-la) 

dfl "^^ ° 

where E is the energy of the incident neutron, a(E) is the total 

scattering cross section for that energy, E, and 

J f(E,UQ) dUg = 1 . (2-lb) 

We may expand f(E,yo) i" terms of Legendre polynomials 
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21 + 1 f(E.Uo) = E ^ ^ f^(E) P^(yQ) . (2-2) 

(Davis (1966) and Horsley (1966) discuss the techniques involved in 

evaluating angular distr ibut ions and reducing the data into the 

expansion form convenient for computer calculat ions). The energy-

dependent Legendre coeff icients (fji(E)) of the angular d is t r ibut ion 

may be obtained by applying the principle of orthogonality of the 

Legendre polynomials: 

/ 

+ 1 H 

-1 6ll ^ ° ° 

Since 

= 4 r S ^ H ^ f,(E)£ P,(y„) P,(.„) d„„ . (2-3) 

/

+1 0 , k it £ 

^ P,(MO) V ^ o ) d y o = 2 (2-4) ITTT 
, k = £ 

then 

2iT T"^^ do 
^ < « = W / , ^ ^ t - o l X - o - (2-5) 

I f £=0, we have fo(E) equals 1. Since an i n f i n i t e number of coef­

f ic ients (f£) would require too much memory space, the expansion is 

truncated at some convenient order (n) 

f*(E,«„) = t ^ H ^ f,(E) P,(w„) . (2-6) 
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These Legendre expansions are often found to be very useful because 

they offer significant analytical simplifications and compact storage 

of cross section data in computer codes. However, the primary disad­

vantage of the Legendre expansions is that its truncated version may 

contain severe distortions of the actual cross sections, and even 

regions of negativity between (-1,+1). These truncated expansions 

may then produce nonphysical fluctuations in the computed angular 

flux. 

The errors resulting from premature truncation of the Legendre 

expansion tend to increase as the anisotropy of the cross sections 

increases. Highly anisotropic cross sections are very common in 

transport calculations, particularly for problems involving (1) 

radiative or charged particle transport, (2) elastic scattering from 

light elements, or (3) group-to-group transfer cross sections with 

fine energy group structure. The MORSE code system uses group-to-

group transfer cross sections. 

The group g to group k transfer cross section (refer to Bell and 

Glasstone, 1970) can be defined as 

-t "f! Og^ =J dEj ^ dE' tp(F.n'.E') a{?,E' > E.p^)/ 
k̂+1 Vl 

/ dE' i|;(r.n',E') , (2-7) 
f 
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where i|> is the angular flux as a function of position, initial solid 

angle, and initial energy, and where a is the differential cross 

section for scattering from E' to E through JJQ. If we postulate 

that within an energy group, the dependence of ip on E' is separable 

from its dependence on n' and r; then 

^(r,I^',E') = f^{?,n') f2(E') . (2-8) 

If we further assume that fzCE') is a constant, then Equation (2-7) 

becomes 

• / « / 
g-H< J^^ J 0 

Expanding both on^ and a(f,E' •*• E,po) "in terms of Legendre poly­

nomials, p£(iJo)» we obtain a slightly different equation: 

/ . « ! "M-^k V . ^^J ^̂' îî "'̂ ' '̂ ^̂ '̂ ' • ^̂'̂^̂  

Both elastic and inelastic scattering probabilities contribute 

to the cross section. However, inelastically scattered neutrons are 

usually assumed to be emitted isotropically in the center of mass 

system. Also, for heavy scatterers, the laboratory and center of 

mass systems become almost equivalent, and the inelastic scattering 

becomes isotropic in the laboratory system as well. Therefore, the 

inelastic group-to-group transfer may be accounted for by the addi­

tion of a constant over the entire range of scattering angles to the 
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elastic group-to-group cross section (Odom and Shult is, 1976). 

Focussing then just on elastic scattering, the d i f ferent ia l cross 

section may be written as 

o(E' -^E.UQ) = a(E' > E) Hu^ - v^) , (2-11) 

where the 5-function represents the direct coupling between energy 

and angle, and v^ is a function of (E',E). The Legendre expansion 

of the differential cross section will have the coefficients 

r+1 
a^{E' - E) = / a(E' > E) 5( u^ - p^) P^{u^) dy^ (2-12a) 

= a(E' > E ) Pjj(p3) (2-12b) 

which may be substituted into Equation (2-10) to calculate a^ g^. 

We will usually refer to the normalized coefficients of oĵ  n̂.|< for 

some arbitrary g and k simply as fj^. More detailed information on 

the generation and use of multigroup cross sections may be found in 

references by Bucholz (1980), Kidman et al. (1972), and Weisbin et 

al. (1974). 

Figure (2-1) shows a comparison between an actual group-to-group 

transfer cross section and an eighth-order Legendre polynomial ap­

proximation. Note that the truncated Legendre expansion predicts two 

regions of unrealistic negative cross section values. For "direct" 

sampling of some partially negative function, f*(uo)» ^ scattering 

angle us is sampled from the density function 
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2-1. Comparison of water group-to-group elast ic scattering cross 
section with an eighth-order Legendre polynomial approxi­
mation (Odom and Shult is, 1976). The energy groups ( in 
MeV) are (3.0119-3.3287) to (2.4660-2.7253). 



% ( ^o) ^ * i u j \ / l I f*(u'o) du'o, (2-13) 

where fp(UQ) is an everywhere positive, renormalized distribution 

function, and then the weight of the particle is multiplied by 

f*(iJ5)/f (y ) to account for the use of a "biased" distribution. 

Whenever f*(ws) is negative, the particle weight becomes negative; 

this is reasonable since the number of particles that scatter into 

6]1Q about HQ is proportional to f*(uo) duQ. However, these 

"negative" particles tend to increase the statistical errors in the 

Monte Carlo random walk. 

Discrete Angle Approximations of Angular Distributions 

Gauss Quadrature. In order not to sample negative probabil­

ities, we seek to replace f*(yo) with a discrete distribution, 

^divo)y 

fd(î o) = t^ '̂i '^^0-^0 ' (2-14) 

where f{j(yo) must meet two obvious requirements for sampling: 

(1) (Di > 0 for i = l,n and 

(2) -1 < ui < 1 for i = l,n. 

A third requirement is clearly desirable for fc|(yo): 

(3) its first 2n moments, {(MH)k}k=o > ^^^ identical to those 

of the truncated expansion of f(yo)' 
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The above three requirements are satisfied if the ŷ  and w-j of 

f.(y ) are obtained through Gauss quadrature operating on f*(uQ). 

Requirements 1 and 2 are discussed in Appendix B. For the third re­

quirement, let us first review the Gauss quadrature formulae: 

Given a non-negative weight function, f(x) ̂  0 (Restriction I), 

with X as a dummy variable, we want 

l +1 n 
f(x) g(x) dx = L w. g(x.) (Restriction II) (2-15) 

1 i=l ^ ^ 

to hold for all g(x) where g(x) is a polynomial of degree _<2n-l, 

To obtain w-j and x-j, we determine a set of polynomials Q-j(x) 

orthogonal with respect to f(x) 

/ . 

+1 
Q.(x) Qj.(x) f(x) dx = 5.. N. , (2-16) 

where 5-jj is the Kronecker delta and N-j is the normalization con­

stant. Then the x-j are given by the n roots of Qn(x) and 

( n-1 p )-l 

^ ( k=0 "̂  '̂  ) 

Since the functions {x }^"Q are independent and form a basis func­

tion for the space of polynomials g(x), it is equivalent to Restric­

tion II (Equation (2-15)) to require that 

•+1 ,. n 
k̂ = / x^ f(x) dx = E <̂,-X4 for k=0, 2n-l . (2-18) 

J-l i = l ̂  ̂  

22 



The integral (M|̂ ) above is defined as the k^^ moment of f(x). 

The moment of f(j(x) is defined as 

(Mj)^ = / x^ fj^x) dx = E (̂i j x^ 6(x - X.) dx (2-19a) 

JK k 
= L (̂n-x": , k=0, 2n-l . (2-19b) 

i=l ^ ̂  

Comparing Equations (2-18) and (2-19b), we see that for M|< and 

(M(j)|< to be equivalent, then the w-j and x̂- of f(j(x) must be 

obtained through Gauss quadrature operating on f(x). 

The derivation of the formulas for Gauss quadrature is found in 

Appendix B. It is also shown in Appendix B that 

(a) Legendre coefficients and moments are equivalent; in other 

words, the k^h moment of f(yo) is derived from the 

first k Legendre coefficients of f(yo). 

(b) The orthogonal polynomials {Qo,...,Qn} (and hence the n 

roots {yi,...,yn}) may be derived from the first 2n 

moments of f(yo)• 

Therefore, in order to obtain the scattering angles (y^) and proba­

bilities (oji) of fc|(yo) accurate to order 2n-l, knowledge of 

the exact angular distribution is not required. We only need to know 

fo,...,f2n-l or Mo,...M2n-l to obtain fcj(yo). Therefore, 

the generalized quadrature that has been developed is valid for the 

whole class of functions having the same first 2n Legendre coeffi­

cients or moments; i.e., the same Legendre expansion: 
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f( v„) =. f*( .„) = E ' ̂ ^ f, P,( u„) . (2-20) 

In particular, the discrete distribution (fd(uo)) derived using 

Gauss quadrature is itself one function in this class. We show that 

i'dd^) ^̂ ^ ^̂ ^ ^^^ coefficients, fjj, as f*(yo) with the sim­

ple equation sequence below: 

• / ; • ^£ ' / ^*(^^o^ ^(''o) ^^0 ' ^=°' 2n-l (2-21a) 

n 
E 0.. P (y.) (2-21b) 
i=l ^ * ^ 

.? -i r '̂ 0̂ - -̂̂  V^o)^^o (2-21C) 
1-1 -̂  -1 

= r ^d(^o) P£(^o) dyo • (2-21d) 

In developing the Gauss quadrature, we were given a prerequisite 

(Restriction I) that the weight function f(yo) was everywhere 

greater than zero. Although the actual angular distribution f(yo) 

is everywhere positive by definition, the truncated expansion 

f*(yo) may not be. However, since only the first 2n moments of a 

class of functions are needed to develop the quadrature, it is not 

required that all the functions of this class be non-negative; in 
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fact, there are infinitely many which are not. However, it is neces­

sary that at least one function in this class be non-negative 

(Emmett, 1975). 

We have discussed how negative cross section values may result 

due to the truncation of an infinite Legendre series. However, it is 

also possible that a given set of Legendre coefficients may result in 

negative cross sections because they do not represent a physically 

possible (everywhere positive) angular distribution. Irving et al. 

(1966) performed a check on Legendre coefficients from several pub­

lished sources and found a surprisingly large number of instances 

where the coefficients were impossible. What are the mathematical 

criteria that must be satisfied in order that there exist an every­

where positive distribution having a given set of Legendre coeffi­

cients? It was shown by Irving et al. that f*(yo) represents (or 

originated from) an everywhere positive function if we can find an 

fd(iJt))' where the weights are all greater than zero and the roots 

lie between (-1,+1). The failure of either of these two conditions 

expresses the fact that the given coefficients or moments of f*(yo) 

are not those of an everywhere positive function. 

The first condition on f(j(yo). that o-j 2 OJ is replaced in 

the MORSE code system by the requirement that 

N|̂  > 0 for k=l, n-1 . (2-22) 

Since 
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0., = J E Qk(Mi)/Nk 

then we are guaranteed that all the to-j will be non-negative if all 

the N|̂  are greater than zero. In addition. Appendix B shows that 

if the N|( are all positive, then the orthogonal polynomial sequence 

{Qo,...,Qn} will be unique, and the weight function is at least 

"well-behaved". Stroud and Secrest (1966) also mention that for 

positive N-j, the zeros yi,...,yn of the polynomial Qn(yo) 

will be real and distinct and that they will separate the zeros of 

Qp+l(yQ). However, in order to guarantee that the zeros lie 

between (-1,+1), we must be dealing with the coefficients of a non-

negative weight function. 

Radau Quadrature. The generalized Radau quadrature technique is 

very analogous to--and may be considered an extension of--the Gauss 

quadrature method. In effect, we seek to replace f*(yo) with a 

discrete distribution 

f^iuj = E 0). 6(yQ - ŷ .) + % S{% - 1) , (2-23) 

where fd(yo) niust meet the same three requirements mentioned for 

Gauss quadrature, along with a fourth requirement that one of the 

direction cosines lie at PQ = 1. In order to satisfy these 

requirements, the Legendre coefficients for each group-to-group 

-1 
(2-17) 
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transfer are converted to angles and probabilities of scattering at 

those angles by the use of a generalized Radau quadrature: 

Given a non-negative weight function, f(x) ^ 0 (Restriction I), 

we want 

L 
+1 n-1 

f(x) g(x) dx + E <^i 9(xJ + OL g(l) (Restriction II) (2-24) 
-1 i-1 ^ ^ ^ 

to hold for all g(x) where g(x) is a polynomial of degree £2n-2 (this 

is one degree less than for Gauss quadrature since we have pre-

assigned one of the parameters). A set of x^'s and oj-j's that 

satisfy Equation (2-24) must be found. As explained in Appendix B, 

we determine a set of polynomials, Q^, which is orthogonal with 

respect to an altered weight function. 

u(x) = ai(x)(l - x) (2-25) 

such that 

/ . 

+1 
Qi(x) Qj(x) i(x) dx = S.. N. , (2-26) 

where N-j is the normalization constant. The moments of the altered 

weight function M-j, i=0, 2n-3, determine the orthogonal polynomials 

Q-j, i=l, n-1. The n-1 discrete abscissas, x-j, are given by the 

roots of Qn-i» 

Qn.i(Xi) = 0 , (2-27) 

and the corresponding probabilities are 
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( n-2 p -1 
•̂i = (1 - -̂̂  E Qk(x-i)/N. for i=l, n-1 , (2-28) 
1 ( ^ k=0 ^ ^ } 

and 

n-1 
0) = 1 - E (̂i . (2-29) 
" i = l ^ 

In the process of deriving the orthogonal polynomials, some re­

strictions on the moments of the altered weight function are ob­

tained. As in the Gauss quadrature case, these restrictions arise if 

both the original distribution and the derived point distribution are 

to be everywhere positive. Two of these restrictions are: 

1) Ni > 0 for i=l, n-2 and 

2) The roots of Qn-l(uo) ""̂ ^̂  ^̂ ^ ^i^ i" ^^^ interval 

-1 < yi < 1. 

The above restrictions ensure that the oj-j, i = l, n-1 are all posi­

tive and that the y-j are within the correct scattering range for 

Monte Carlo selection. However, they do not guarantee that the 

weight (oip) corresponding to the direction cosine of yp = 1 is 

positive. Therefore, for Radau quadrature, we have a third require­

ment: 

3) ojn > 0 

(in Gauss quadrature, we recall that only the first two restrictions 

are needed to insure that all the weights are positive). 

Advantages and Disadvantages of the Discrete Angle Representa­

tion. The reference by Carter and Forest (1976) discusses and com­

pares three multigroup methods for sampling the scattering angle 
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after a group-to-group scattering event. Each of the methods uses 

the coefficients of a truncated Legendre expansion as a working 

base. These methods include (1) a direct sampling of the truncated 

Legendre series, (2) sampling from a discrete distribution of angles 

and probabilities which conserves all the moments of a truncated 

Legendre polynomial (the technique used in MORSE), and (3) sampling 

from a step function with bounds that are computed to conserve the 

first few moments of the Legendre expansion. However, each of the 

methods has distinct comparative advantages and disadvantages with 

regards to storage requirement, sampling, and modeling of the density 

function. We repeat below only those conclusions of Carter and 

Forest which concern the MORSE sampling techniques. 

Advantages: 

(1) Only positive weights are used in the random walk. 

(2) The sampling of the scattering angle is computationally 

fast. 

(3) The standard flux estimators are positive (however, the 

point detector estimator may give negative fluxes or 

unrealistic fluxes during the first few collisions for 

highly directional extraneous sources). 

Disadvantages: 

(1) Ray effects are present for the first few collisions. 

(2) Subroutines are needed to compute the discrete angles 

and probabilities. 
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(3) For low-order truncations, a few discrete angles may not 

closely represent density functions unless they are highly 

localized. 

The disadvantage of ray effects can be minimized somewhat by 

increasing the number of discrete sampling angles (and this in turn 

usually requires that the order of the Legendre expansion be in­

creased). Increasing the number of sampling angles also has the 

effect of decreasing the statistical variance of the solution. For 

example, a third order Legendre expansion input into MORSE will pro­

vide a discrete scattering distribution of two scattering angles and 

two weights with Gauss quadrature, or three angles and three weights 

with Radau quadrature. Since both quadrature sets have two "free" 

angles (Radau quadrature has one angle "prefixed" at yg = 1) which 

hopefully closely represents or adequately samples the density func­

tions, then this would imply similarly low standard deviations on the 

response of the analog detectors. However, if we have MORSE calcu­

late only two angles and two weights with Radau quadrature using the 

same P3 expansion, then only one angle is free to represent the den­

sity function. In such a case, the standard deviations may increase 

significantly. 

One possibility for increasing the number of scattering angles 

without increasing the order of the Legendre expansion (or assuming a 

value of zero for higher-order moments) is to combine the angles and 

weights from both quadrature methods. That is, for a P3 expansion. 
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we may use the two angles and weights from Gauss quadrature, the 

three angles and weights from Radau quadrature computed with a preset 

angle at yg = 1, and the three angles and weights from Radau qua­

drature with a preset angle at UQ = -1. After linearly combining 

each set of weights into one cumulative probability distribution, a 

total of eight discrete angles may be sampled. The accuracy of such 

a technique has not as yet been verified either theoretically or 

computationally but would have the advantage of decreasing ray 

effects, and perhaps that of decreasing the variance of a solution. 

Comparison Between Radau Quadrature and the Extended Transport 
Cross-Section Correction 

The extended transport cross-section correction (Morel, 1979) 

attempts to approximate a highly forward peaked cross section 

(a(yo)) with the sum of a relatively low-order expansion and a 

delta function: 

<KV = | : ^ ^ < . j P , ( . „ ) (2-30) 

2 n - 2 oo X 1 -* 
= E ^ ^ ^ , P , ( » o ) - | j M . „ - l ) . (2-31) 

* 

The quantities a. and a are obtained by f i r s t expanding the delta 

function in a series of Legendre polynomials 

6(uo - 1) = E ^ ^ - ^ P , ( y J . (2-32) 
° £=0 '̂  ^ ° 
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and substituting the expansion into Equation (2-31). This gives 

00 

211 + 1 , * 
a(Uo) =E^^(^,-^»)P,(Po) . (2-33) 

* 

where we have arbitrarily set a. = 0.0 for £ >̂  2n - 1. If Equation 

(2-33) is to be equivalent to Equation (2-30) up to order 2n-l, we 

require that 

a, + a = 0, , £=0, 2n-l . (2-34) 

Since <J2n_i "" 0-0» then 

a = 02^,;^ (2-35) 

and 

a* = o^- a^^_^ , £=0, 2n-2 . (2-36) 

Now, de l ta funct ion scat ter ing fo r within-group cross sections i s 

equivalent to no scat ter ing at a l l . Thus, we can delete the de l ta 

funct ion from Equation (2-31) to obtain 

2n-2 9« 1 ŷ  

''i^,)'Z^^o^'',i%)-"^i%)- (2-37) 

Morel (1979) refers to a*(yg) as the P2n-1 transport-corrected 

P2n-2 expansion corresponding to a(yo). The lowest order 

expansion of a*(yo), or the Pi transport-corrected PQ expansion, is 

the classical transport-corrected cross section: 
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% ^ % - °l - O Q ^ ^ - î ) = cF̂ p • (2-38) 

It should also be noted that a*(yo) is smaller in magnitude and 

less forward peaked than ©(yg). Although a*(yo) and aivQ) are 

dissimilar in appearance, they are however, equivalent to order 2n-2 

in the sense that they yield identical P2n-1 solutions. 
* 

Let us here remark that the coefficients a. do not usually 

represent, or could not have originated from, an everywhere positive 

distribution. That is, if the coefficients a. are used as input for 

the MORSE code system, some of them will usually be rejected (this 

problem does not arise in Pp calculations). Therefore, a*(yo) is 

often physically unrealistic even though the original function 

a{vQ) is a positive distribution. 

The extended transport correction subtracts from a(yo) a delta 

function of magnitude a = a2n-l *° obtain a*(yQ). Now, if 

a{vQ) is actually the sum of a delta function and some other func­

tion 5, then the value of ag will gradually approach a as £ ->• ». 

But in setting a = a2n-l. we are assuming that a*(yo) with order 

2n-2 actually converges completely to C. In using the extended 

transport correction, it is difficult to decide what expansion order 

to use for a*(yo) in order to retain sufficient accuracy in the 

calculations. Since the expansion order is determined by setting a 

equal to some particular coefficient a2n-l» the question one really 

asks is how large or small to make a. 
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We would expect that within-group cross sections would have a 

higher probability of scattering at angles near yg = 1 than group-

to-group cross sections. It follows (assuming elastic scattering) 

that the expansion coefficients of a within-group cross section would 

tend to remain close to OQ (an extreme example would be a pure 

delta function with all its coefficients equal to OQ) whereas the 

group-to-group coefficients would approach zero much more rapidly (an 

extreme case would be isotropic scattering with fg = 1 and all the 

other coefficients equal to zero). Therefore, within-group cross 

sections would require a relatively high a and group-to-group cross 

sections a relatively low a. 

In order to fix a correctly, we turn to Radau quadrature. We 

recall that Radau quadrature uses the normalized coefficients fĵ  of 

a truncated expansion 

f(Po' " g ' ^ H ^ f . ^ ( " c ) (2-39) 

to produce a discrete distribution with positive weights or probabil­

ities for scattering at angles \iy. 

n-1 

^d(»^o) = ? "i (̂̂ 0̂ • -̂̂  •" "̂  ^(»o - ^̂  • (2-40) 

The probability of scattering at yg = 1 is equal to 0)^. As shown 

in Equations (2-21a) through (2-21d), the discrete distribution 

(fd), if expanded in terms of Legendre polynomials, will have the 
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same first 2n-2 coefficient as f(yo). The coefficients are given 

by 

n-1 

fjl = 5 ''i ''il̂ î̂  * "n ' ^"°' 2"-2 • (2-41) 

I f we substitute Equation (2-41) into (2-39), we have 

, V °o 2^-2 2 £ + 1 f p ( s 
^̂ 0̂  'TH (2-42a) 

a 2 n - 2 -70 X 1 0 Y^ Z£ + 1 
"n-1 

E -^ P,(^-) ^"n 
i = l 

P£(^o) (2-42b) 

2n-2 
^E 

£=0 

2£ + l 
Air '0% -i P£(^-) P£(^o) 

°o% 2jTr2 2£ + 1 
' ^ £ ? 0 - ^ ^ ^ ^ " O ^ PoM (2-42c) 

I f we note the s imi lar i t ies between Equation (2-42c) and (2-31), we 

have 

2n-2 2£ + 1 * 
Oiu,) ~ - E ^ T 7 ^ - £ P £ ( ^ o ) ^ l 7 ^ ( ^ 0 - l ) ' (2-43a) 

where 

* n-1 
^i= '̂o Ŝ  "̂ i ̂ ^̂ -̂  (2-43b) 

and 

a = a . (i)„ 0 n (2-43c) 
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Two important points about Equations (2-43a) through (2-43c) are that 
* 

the coefficients o^ represent an everywhere positive distribution and 

the equations are exact up to order 2n-2 since 

a^ + a = a^ for £=0, 2n-2 . (2-44) 

Therefore, Radau quadrature is an exact method for breaking up a 

cross section into the sum of a delta function and a low-order, 

physically acceptable expansion. This is in contrast to the conven­

tional transport correction which produces a low-order, physically 

unacceptable expansion by setting 02n_i = a. 

In order to i l l us t ra te the effectiveness of the Radau quadrature 

technique in performing the transport cross section correction, sam­

ple calculations were performed on a set of P12 electron cross sec­

t ion expansions (see Morel, 1979, for cross sections). Table 2-1 
it 

compares the rat io °J<^Q for the conventional and Radau-based cross 

section corrections at several energies. Note that both transport 

Table 2-1 

Delta Function Corrected Electron Cross Sections 

°o/^l 
Energy (MeV) Standard Radau 

0.01 0.652 0.490 
0.10 0.132 0.141 
1.00 0.013 0.022 

corrections severely reduce the total magnitude of the cross sections 

at the higher energies, and therefore, greatly reduced running times 

can be expected in the MORSE calculations. 
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CHAPTER I I I 

GENERATION OF CHARGED-PARTICLE MULTIGROUP CROSS SECTIONS 
USING THE FOKKER-PLANCK APPROXIMATION 

In this chapter we shall introduce the second and primary re­

search objective of this work; that of modifying MORSE to perform 

charged-particle Fokker-Planck calculations using appropriate mul t i -

group Legendre cross section data. The f i r s t phase of the research 

has been introduced in Chapter I I . 

The Boltzmann equation models a f u l l range of di f ferent types of 

part ic le interactions. The Fokker-Planck equation, however, is a 

simpler model which assumes that "grazing" col l is ions are the predom­

inant interaction mechanism. Grazing col l is ions entai l small losses 

in energy and small angles of scatter. The attraction and repulsion 

of charged particles is governed by the coulomb force; such interac­

tions are forward peaked and are therefore prime candidates for the 

Fokker-Planck approximation. Tanenbaum (1967) suggested that "the 

Fokker-Planck term is a good approximation for long-range forces, 

such as the coulomb interaction between charged par t ic les, and a poor 

approximation for short-range forces, such as the interaction of hard 

spheres". 

Most of the applications of the Fokker-Planck approximation have 

been directed toward solving energetic charged-particle transport in 

controlled thermonuclear fusion schemes. Two applications in the i n -

e r t ia l confinement scheme are the study of 
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(1) the suprathermal electron energy deposition produced during 

the pellet implosion process, and 

(2) the outward propogation of the supersonic burn-wave caused 

by the reaction products redepositing their energy in the 

pellet; e.g., from a 3.5 MeV alpha particle produced in a 

deuterium-tritium reaction. 

Many different methods have evolved over the past decade to 

solve the Fokker-Planck equation. Corman et al. (1975) devised a 

low-storage computer program which utilized a multigroup method to 

handle the energy dependence and a "flux-limited" diffusion coeffi­

cient to approximate the spatial dependence of the Fokker-Planck 

equation. However, the program was not suitable for problems with 

extreme source discontinuities in space or where detailed behavior 

within a mean free path of the source was important. Antal and Lee 

(1976) attempted to simulate charged particle mass and energy deposi­

tion in a plasma using S^ techniques. The characteristic finite 

difference equations were derived to conserve both mass and energy. 

However, one disadvantage of the method was that angular deflections 

were ignored. Moses (1977) solved the charged particle transport 

equation with a time-dependent particle tracking technique which ap­

proximated the trajectories of the charged particles, from creation 

to thermalization, as straight lines. Even though the integral 

tracking technique ignored angular deflections, it was sufficiently 

accurate to describe the slowing down of the larger thermonuclear 
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reaction products. Haldy and Ligou (1977) were able to take into 

account scattering anisotropy with their modified moment method, but 

were limited to infinite medium problems. One of the more extensive 

formalisms for obtaining a solution to the Fokker-Planck equation was 

developed by Mehlhorn and Duderstadt (1980). Difference relations 

for the Fokker-Planck collision term were derived and then imple­

mented in a discrete ordinates code called TIMEX. The conservation 

of both particles and energy were continuously monitored in the code 

and both angular dispersion and velocity diffusion were accounted 

for. 

Mehlhorn and Duderstadt admitted, however, that their method 

was not the most efficient way to perform Fokker-Planck calculations 

inasmuch as it required internal modification of the codes. They 

noted that in order to take advantage of, and directly utilize all of 

the varied and powerful discrete ordinates codes currently available 

for neutron transport, it would be much more productive to generate 

"effective Fokker-Planck cross sections" that could be used as input 

to the codes. Just such an enhancement was developed by J. E. Morel 

(1981) at Sandia National Laboratories. He succeeded in accommo­

dating the angular dispersion and energy loss effects of the Fokker-

Planck approximation into appropriate multigroup Legendre polynomial 

expansions which could be input directly into discrete ordinate codes 

without internal modification. This eliminated the need to develop a 

redundant or separate set of Fokker-Planck discrete ordinate codes to 

parallel those codes used for neutron transport. 
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Chapter I contained a brief discussion of some of the relative 

advantages and disadvantages of the Monte Carlo versus discrete ordi­

nates method. The primary advantage of multigroup Monte Carlo, and 

in particular the MORSE code system, is its ability to perform three-

dimensional forward or adjoint calculations for coupled neutron-

photon transport. Since adjoint capability for coupled electron-

photon transport currently does not exist with continuous energy 

Monte Carlo, the generation of effective Fokker-Planck cross sections 

for use in MORSE would provide an approximate, yet hopefully very 

reliable solution for adjoint electron-photon transport. Unfortu­

nately, the Fokker-Planck Legendre expansions derived by Morel for 

discrete ordinate codes are not acceptable for use in MORSE; that is, 

the code system will reject them since they do not represent (or do 

not originate from) an everywhere positive distribution. Thus, the 

purpose of this work is to determine a new general purpose algorithm 

for generating the Fokker-Planck cross section coefficients so as to 

treat charged-particle transport with MORSE. 

The derivation of the Fokker-Planck equation is shown in Appen­

dix A. In summarizing the derivation, we start with one form of the 

Boltzmann equation 

V . ni|;(r,y,E) + a^(r,E) i|;(r,y,E) 

/"» /•2TT r+l 
= / / / a^(F,E' > E,M^) i|;(F,y'.E') dy' dcf,' dE' + Q(F,y,E) 

Jo Jo J-l ^3_^^ 
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(the terms of the equation are defined at the beginning of Appendix 

A). The equation assumes that the direction of the particles is 

defined by only one variable, u, the deflection cosine. For discrete 

ordinate codes, this means that only one-dimensional geometries with 

an axis of symmetry, such as a slab or sphere, are considered (see 

Chapter 1 of Bell and Glasstone, 1970). Since the elastic scattering 

cross section is coupled in both energy loss (E' - E) and scattering 

angle (Sg = cos"^ yg), then the Boltzmann may be rearranged to 

form 

V • ^ + 0 i|> = Tpii) + Q , (3-2a) 

where 

â'̂  B̂ 

•2Tr f+l 
rg* = / / [a5(r,E',UQ) *(r,y',E') /.7: 

- o^{r,E,M^) *(r,u,E)] du' d f . (3-2b) 

The term T^^ is known as the Boltzmann scattering operator. In the 

Fokker-Planck approximation, the integrand of T^}^ is first expanded 

in a Taylor series expansion about eg = 0. If we retain only up to 

the second-order terms of the expansion, and then perform a fair 

amount of algebraic manipulation, we obtain the expression 

V . jji|) + Ogt = Tppiii + Q , (3-3a) 

where the in tegra l operator of the Boltzmann equation has been 

replaced by the Fokker-Planck d i f f e r e n t i a l operator: 
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9t 

with 

a^{r,E,\i^){l - Mg) dy^ , (3-3c) 

/•oo 

E -»• E')(E - E') dE' , (3-3d) 

^ / a^i?,E > E')(E - E')2 dE' . (3-3e) 

The terms a, s, and Y are usually referred to as the momentum trans­

fer, the stopping power, and the mean-square stopping power, respec­

tively. 

If the integrand of rgî , and in particular the angular flux 

(ip), varies smoothly as a function of the expanded variables, then 

the Fokker-Planck operator will successfully approximate the 

Boltzmann operator in the region of small Gg. For forward peaked 

scattering, the scattering cross section has little angular support; 

that is, the probability of scattering at large angles is relatively 

small in comparison with scattering at small angles. As the cross 

sections become more forward peaked, the region of angular support 

decreases, and the relative contribution of small angle scatters to 

the solution of the Boltzmann increases. In such a case the Fokker-

Planck solution will gradually converge to the Boltzmann solution. 
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Morel (1981) points out that it is often difficult to establish 

the reliability or accuracy of the Fokker-Planck equation within firm 

limits since the angular flux may not always be sufficiently smooth. 

In some problems, the derivatives of the angular flux with respect to 

energy may be either unbounded or extremely large. However, Morel 

states that "experience has shown that good results for scalar quan­

tities (angle and energy integrated), such as energy and charge depo­

sition profiles, can be expected in charged-particle calculations. 

However, results for detailed differential quantities are generally 

inadequate. The Fokker-Planck equation is very useful in spite of 

this deficiency because it is the scalar rather than the differential 

quantities that are most often of applied interest." 

Theoretical Basis for the Decoupled Cross Section 

As mentioned previously, Mehlhorn and Duderstadt (1980) replaced 

the quadrature forms of the Boltzmann integral operator in discrete 

ordinate codes, with difference equations representing the differen­

tial quantities of the Fokker-Planck operator. Morel's approach was 

to define cross sections in terms of the Fokker-Planck functions. 

The key to his approach was in discerning that the same Fokker-Planck 

equation (Equation (3-3)) may be derived by using a cross section 

decoupled in angle and energy, rather than a coupled cross section. 

Let us reexpress the differential operator (Equation (3-3b)) as 

Fpp tj; = r^p ij; + r|p t , (3-4a) 
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where Ten ^ redistributes in angle with no energy loss: 

and ifp ij) redistributes in energy with no directional change: 

2 

F̂P * = IF ̂ ^ "̂  7 "^ *̂ • ^̂ '̂ ^̂  

Such a decoupling of the Fokker-Planck collision term suggests that 

we may also define a composite, decoupled cross section of the form 

a^{E' > E , U Q ) = a«(E,yQ) 5(E' - E) + a^(E' ^ E) ^ e{u^ - 1) (3-5) 

which when inserted into the Boltzmann equation achieves the same 

result as the coupled cross section. The term a" (E,ug) 5(E' - E) 

permits directional change only, and the term a^(E' -»• E) 5(u - 1)/ 

Z-n allows only energy loss. 

The derivation of the Fokker-Planck equation using the decoupled 

cross section is also shown in Appendix A, and is very similar to the 

derivation for the coupled cross section. Inserting Equation (3-5) 

into (3-1) and rearranging slightly produces the Boltzmann scattering 

operators 

'B 

and 

/-2ir r+l 
l ^ ' J J a"(E,UQ)[tp(y') - t|.(y)]dy' d ^ (3-6a) 
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^ ^ - f [a^(E' *E) ,|,(E') - a^(E > E') t (E)] dE' . (3-6b) 

We approximate Tp ^ and vt ^ by expanding the integrands above about 

9g = 0. After simplifying, we obtain Tpp ij; (Equation (3-4b)), 

where 

r+1 
a = 2Tr / a°'(F,E,Uo)(l - U )̂ dy^ , (3-7) 

and we obtain vtp \j) (Equation (3-4c)), where 

•£ 
eo 

e, e = / a'^iE * E')(E - E') dE' (3-8a) 
0 

and 

Y = / a®(E > E')(E - E')^ dE' (3-8b) 
Jo 

respectively. 

Morel's approach was to define multigroup expansion coefficients 

for the composite, decoupled cross section in terms of the Fokker-

Planck functions (a, 3, and Y) and certain Sp parameters (the order 

of the quadrature set and the energy group structure). Since the 

Fokker-Planck and Boltzmann equation approximate one another with 

forward-peaked scattering, it follows that the Boltzmann solution 

calculated using these coefficients would "converge to the desired 
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Fokker-Planck solution as the S^ space-angle-energy mesh was re­

fined" (Morel, 1981). 

The use of decoupled cross sections in charged particle trans­

port is not new. Such a cross section has been used in continuous 

or analog Monte Carlo programs for many years. Although the actual 

basis for using the decoupled cross section is its theoretical link­

age to the derivation of the Fokker-Planck equation, the decoupled 

cross section is usually considered as simply a model of the physical 

interaction processes involved in charged particle transport. 

Physical Basis for the Decoupled Cross Section 

Let us focus qualitatively on the interactions of charged parti­

cles: ionization, scattering, various types of radiative losses, and 

others, all of which are due primarily to coulomb forces. The mecha­

nisms by which a charged particle loses its kinetic energy, or is 

deflected from its original path, involve four principle types of 

interaction: inelastic collisions with atomic electrons, inelastic 

collisions with a nucleus, elastic collisions with a nucleus, and 

elastic collisions with atomic electrons. Each will be discussed 

briefly in turn. More detailed and quantitative discussions on the 

interaction of radiation with matter may be obtained in references by 

Evans (1955) and Segre (1964). The information below is primarily 

taken from Evans. 
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Inelastic Collisions with Atomic Electrons. Inelastic colli­

sions with bound atomic electrons are usually the primary mechanism 

by which charged particles lose their energy in passing through an 

absorber. Upon entering the absorber, the charged particle imme­

diately interacts simultaneously with many electrons. These orbital 

electrons (primarily valence electrons) receive an impulse from the 

coulomb force (attraction or repulsion) as the particle passes by and 

as a result, energy is transferred to the electron. This does not 

mean that each atom receives a small energy transfer. Either no 

energy is transferred at all, or else an energy approximately equal 

to an excitation or ionization energy of the atom is transferred; 

i.e., the energy available to the atom must be greater than the mini­

mum excitation potential. Because of the small mass of the electron, 

the energy transfer may be relatively large and the electron will 

experience a transition to an excited state (excitation) or to an 

unbound state (ionization). If the atom is ionized, then the liber­

ated electron and the corresponding positive ion constitute a primary 

ion pair. Also, the liberated ion is itself a charged particle 

(called a delta ray) and will produce secondary ionization while 

being brought to rest. 

Head-on collisions would naturally produce the largest impulse 

to the electron, and therefore, the largest energy transfer. In a 

classical sense, the probability of a given energy transfer in an 

inelastic collision varies inversely with the square of the energy 
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loss. Therefore, "soft" collisions, in which the energy loss is 

small, are strongly favored over "hard" collisions, in which the 

energy loss is large. Since hard collisions are very infrequent, 

they contribute very little to the most probable energy loss. How­

ever, because the struck electron in a hard collision is given a 

relatively large amount of kinetic energy, an appreciable fraction 

(roughly one-half) of the energy lost by primary particles occurs in 

such a collision. This means that the average energy loss will ex­

ceed the most probably energy loss. 

Since heavy charged particles (not electrons) have a mass much 

larger than the orbital electrons, the deflection of these charged 

particles is extremely small. Heavy charged particles passing 

through matter have essentially straight paths--apart from the rare 

event of a nuclear collision where a large angle scattering occurs--

and slow down in an almost continuous manner. This introduces the 

concept of range. That is, a monoenergetic beam of heavy charged 

particles, in passing through some small thickness of material, will 

continuously lose energy until all of the particles are "stopped" 

(i.e., reached thermal energies). The distance traveled to the point 

of "stopping" is the range. 

Inelastic Collision with a Nucleus. If a charged particle 

approaches the nucleus in a close, noncapture encounter, the incoming 

particle will experience a deflection (i.e., an acceleration) due to 
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the coulomb fields. In the quantum mechanical model, there is a 

small but finite probability (which increases as a function of inci­

dent particle energy) that a photon will be emitted each time a par­

ticle experiences such a deflection. Because the probability or 

cross section is so small, usually no photon is emitted. However, in 

the few collisions which are accompanied by photon emission, a rela­

tively large amount of energy is released, and the collisions are 

called radiative. The photon emission is termed bremsstrahlung. 

In a classical sense, the total bremsstrahlung per atom varies 

as the square of the atomic number and inversely with the square of 

the mass of the incident particle. Due to the strong dependence on 

the mass of the incident particle, bremsstrahlung is almost complete­

ly negligible for all charged particles other than electrons. And as 

mentioned previously, energy loss by radiation at low energies is 

much less than that by ionization, but at high energies, loss by rad­

iation may predominate. 

In a radiative collision, the initial momentum of the incident 

electron becomes shared between the residual electron, the atomic 

nucleus, and the emitted photon. Although the photon may receive any 

fraction of the total initial kinetic energy of the electron and can 

be emitted in any direction, usually its share of the momentum is 

small compared with that of the deflected electron. Thus, for radia­

tive collisions of moderate energy, the momentum is primarily con­

served between the nucleus and the deflected electron. And since 
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relatively little momentum is transferred to the photon, the angular 

deflections of the incident electron are seldom significant. 

Radiative loss may also occur in electron-electron interac­

tions. However, the electron-electron bremsstrahlung is usually 

accounted for by changing the Z^ dependence of electron-nucleus 

bremsstrahlung to (Z^ + Z). 

Elastic Collision with a Nucleus. An important practical dif­

ference between the ionization behavior of heavy charged particles 

and electrons arises from the fact that the trajectories of electrons 

in matter are rather tortuous and nonlinear. The actual path length 

of an electron passing through two points may be significantly longer 

than the distance between these points measured on a straight line. 

Hence, electrons of the same energy are not all stopped by the same 

thickness of material (in contrast to heavy charged particles) and 

the concept of range has limited applicability. One cause of the 

irregular trajectories of electrons is the elastic collisions with 

the nucleus, or "Rutherford scattering"; that is, the electrostatic 

repulsion or screened coulomb force from the nucleus will deflect the 

charged particle without any photon emission or excitation of the 

nucleus. The charged particle loses only that amount of kinetic 

energy necessary to conserve momentum between the two particles. In 

an elastic electron-molecule collision, the average energy trans­

ferred to the molecule is small. However, such collisions may give 
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rise to large changes in the direction of the colliding particles and 

thus produce large transfers in momentum. 

Incident electrons have a relatively high probability of experi­

encing nuclear elastic scattering. The nuclear scattering increases 

with Z^ while the inelastic electronic scattering increases only with 

Z, the number of electrons per atom. In hydrogen, the cross sections 

for scattering by the two different processes are about equal. In 

higher Z elements, the nuclear scattering will increase and predomin­

ate over the electronic scattering by roughly a factor of Z. 

As is characteristic of other charged particle interactions, 

elastic cross sections are forward peaked. So although the deflec­

tions of many single scatters may be small, the cumulative effect of 

many small nuclear scatters (multiple scattering) for any one elec­

tron may be significant. The theoretical treatment of multiple scat­

tering, in fact, attempts to evaluate the statistical average of many 

elastic nuclear deflections. Also, it is often satisfactory for com­

putational purposes to combine the angular effects of inelastic elec­

tronic scattering and multiple scattering. This is usually done by 

replacing the Z^ dependence in multiple scattering formulas with the 

term (Z^+ Z), since the probability of electron-electron scatter 

increases in proportion to Z. 

Elastic Collision with Atomic Electrons. Incident particles 

which have kinetic energies below the first electronic excitation 
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potential of the medium through which they travel are often called 

subexcitation particles. It is these particles (with energies <100 

eV) which primarily participate in elastic scattering events with 

atomic electrons. The subexcitation particles transfer only that 

amount of energy which is necessary to conserve momentum and energy. 

Summary. The decoupled cross section consists of an energy loss 

only term and a directional change only term. Of the four charged 

particle interactions mentioned above, only elastic nuclear scatter­

ing contributes significantly to the angular term, while the other 

interaction types are primarily energy loss mechanisms. 

Coefficients for o** 

We have established thus far that the composite, decoupled cross 

section 

a^{E' > E,y^) = a°(E,yQ) 5(E' - E) + 0^(E' ^ E) ̂  S{^^^ - 1) (3-9) 

has a theoretical as well as a physical basis; that is, when the 

scattering is highly forward peaked, the decoupled cross section may 

be used to derive the Fokker-Planck equation. In the derivation, we 

noted that r? and Tpp will approximate one another as a" becomes 

increasingly peaked about yg = 1. Similarly, r| and vtp will 

approximate each other as a® becomes increasingly peaked about E' = 

E. This convergence of the Boltzmann and Fokker-Planck scattering 

operators with forward peaked scattering is an important property of 
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our formalism and brings us to the actual development of the expan­

sion coefficients for our multigroup cross sections. 

For this development, we require for each energy group, proba­

bilities of transfer to all other groups. Since the angular redis­

tribution term (a°'(E,ug) 6(E' - E)) of the decoupled cross sec­

tion permits no energy loss, a" must correspond to a within-group 

cross section. Conversely, since the energy redistribution term 

(a^(E' > E) 5(yo - l)/2Tr) is a delta function in angle, a^ must 

correspond to a group-to-group transfer. We will discuss both the 

past work by Morel (1981) and the new developments for each cross 

section in turn. 

Morel's Method for Determining Coefficients for a^^ we first 

define a set of Legendre coefficients (a°) for the within-group cross 

section (â *) such that 

AE,„„) = t ^ ^ c« P,(„,) . (3-10) 

The coefficients of the expansion are determined by forcing the 

Boltzmann and Fokker-Planck operators to be equivalent when operating 

on polynomials of degree L or less. If we assume the angular flux is 

expressible as a polynomial of degree L or less, 

*(M) = E ^ ^ n VM) (3-11) 

then we are in effect requiring that 
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FP 

We reca l l that 

•2TT r+l 

FR * = r° ,(; . (3-12) 

FB t = y V a°'(E,yJ [;|;(y') - ̂ ( M ) ] dy^ d.),̂  . (3-13) 

Replacing i|)(y') and a"(E,yo) with their respective Legendre 

expansions gives 

PB" ^ - t ^ ^ n f ^ ^ a«/;' P,(y,) P,(y') dŷ  d,̂  

- a° ;(;(y) . (3-14) 

To perform the remaining integration, we insert for P£(y'), the 

addition theorem for spherical harmonics (Bell and Glasstone, 1970) 

P,(.') = P,(U) P,(Ug) - 2 t^ I f ^ Pj(y) Pj(y^) COS[r(, - ,^)] . 

(3-15) 

After integrating with respect to (j)g, all but the first term of the 

identity goes to zero and Equation (3-14) becomes 

r? * = i: ̂ ^ h (̂"' I , ̂ ^ <C'™'"°' '̂ '"°' '"̂  

o°*(u) (3-16) 

E ^ ^ ^ •,(•>?- 0°) P,(M) . (3-17) 
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Let us now consider rpp ij). Recall that 

where a carries units of steradians/cm and is known as the momentum 

transfer: 

r+l 
a = / ©"(E.ŷ  ,Q) (1 - y^) dy^ . (3-18b) 

Inserting the Legendre expansion for iĵ (y) as before and using the 

identity 

(1 - y^) P;̂ (y) = -I y Pj^(y) + Z P^_;^(y) (3-19) 

then Equation (3-18a) becomes 

rp"p * = f i; ^ ^ ^ •,[- n Pi(p) - P,(») * PJ.i(u)] . (3-20) 

Using another well-known recurrence relat ion for the Legendre poly­

nomials 

we obtain the f inal expression 

r^P*= i:^^*,[(-|^)(»-l)]P,{u) . (3-22) 

Now , as stipulated in Equation (3-12), we require that Tp i|) be equal 
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to Tpp \\i. Therefore, we equate the coeff icients of their respective 

expansions found in Equations (3-17) and (3-22): 

(Ĵ  - a j = - | ^ ( i l + 1) , A = 1, L . (3-23) 

If we choose a, = 0 so as to minimize the resulting value for OQ, 

Equation (3-23) becomes 

a _ a f CL(L + 1) - £(4 + 1)] , A = 0, L . (3-24) 

The above expression is the equation developed by Morel to define the 

Legendre coefficients for the within-group cross section. Equation 

(3-24) shows that we only need an expansion of degree L for a* in 

order for Tg and Tpp to be equivalent when operating on polynomials 

of degree L or less. 

Some comments regarding the behavior of a'* are appropriate: 

1. The momentum transfer (a) is exact regardless of the expan­

sion order (L). This is easily demonstrated with the equation 

sequence below: 

r+l 
a= 2^ a"(E,yQ) (1 - y^) dy^ (3-25a) 

y -1 

= (jQ - oj (3-25b) 

= ̂  (L) (L + 1) - ° [L(L + 1) - 2] = a . (3-25c) 
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2. a" becomes increasingly forward peaked with increasing 

expansion order. Using the Fokker-Planck equation to redefine the 

average cosine of the scattering angle, we have 

Ug = a°/ag (3-26a) 

_ L(L + 1) - 2 _ 1 2 /, ,g, X 
- L(L + 1 ) - ^ - L(L + 1) • (3-26b) 

The average cosine goes to unity at the approximate rate of 1/L^. 

3. OQ increases without bounds as L increases: 

ag = I L(L + 1) . (3-27) 

Let us synthesize the three comments above by expressing the 

momentum transfer as 

a = ag(l - y^) . (3-28) 

The above equation dictates that as yg approaches unity, then for a 

to remain a constant, OQ must become unbounded. This relationship, 

along with the fact that r? better approximates Tpp as <j°' becomes 

more forward peaked, infers that Fpp corresponds to a type of 

continuous-deflection approximation. Morel states that the Fokker-

Planck operator "effectively causes particles to scatter continuously 

while incurring a differential deflection in each scattering event". 
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I t follows then, that the Fokker-Planck cross section expansions as 

given by Equation (3-24) cause particles to "continuously deflect 

with the mean deflection per unit path length given by the momentum 

transfer". 

An additional important aspect of the Fokker-Planck expansions 

discussed by Morel is that they are "spherical-harmonic equivalent". 

By this i t is meant that one-dimensional slab geometry Sf̂  solutions 

for the Boltzmann equation 

V . n^ + a^ l̂; = r^ ip + Q , (3-29) 

obtained using Gauss quadrature sets of order N in conjunction with 

a" expansions of degree (N-1), are equivalent to the spherical 

harmonics solutions of order (N-1) with Mark boundary conditions for 

the Fokker-Planck equation 

7 . fit(; + â i|; = Tpp i|) + Q . (3-30) 

Therefore, if the Fokker-Planck expansions are to be input to a 

discrete-ordinates/Sf, code, it is advantageous to use Gauss quadra­

ture sets of order N with cross section expansions of degree (N-1). 

We reaffirm that r? and Tpp are approximations to each other and 

are equal only in the limit as jig goes to 1. Although both opera­

tors are linear, positive, and mirror to an extent physical reality, 

the process of forcing them to be equal, when in reality they are 
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not, causes a" to be nonphysical. Since cross sections model prob­

abilities of interaction, they must by definition by everywhere posi­

tive. A cross section a(yg) must be positive over the entire 

interval (-1, +1) spanned by the cosine of the polar angle (yg = 

cos 9 ). However, we do not usually deal with actual cross sections 

in codes, but with approximate representations in the form of trun­

cated Legendre polynomial expansions. The truncated expansions often 

times do become negative over the cosine interval, but it is usually 

sufficient if they originated from, or converge in the limit as the 

expansion becomes infinite, to an everywhere positive function. By 

stating that Morel's expansion is nonphysical, we do not mean to 

infer that the expansion is useless or of little worth--because it is 

still spherical-harmonic equivalent. We simply mean that the coeffi­

cients are representative of a cross section which is negative some­

where over the interval (-1, +1) (i.e., no fully positive cross sec­

tion will have expansion coefficients identical with those of Morel's 

expansion). Although nonphysical. Morel's expansion does converge in 

the limit to a positive function, 5(yg - 1), but in a nonuniform 

fashion; that is, the lower order coefficients converge faster than 

the higher order coefficients. 

We now demonstrate, using the Gauss quadrature technique dis­

cussed in Chapter II and Appendix B, that Morel's Fokker-Planck 

expansion is a truncated version of a physically unrealistic cross 

section, and as such is not amenable to the scattering algorithm in 
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MORSE. We define f*(Mg) as the truncated expansion of f(yg) 

where 

f(»o) =f*(»o' -Z^^H^f,\i'-o) • (3-31) 

In this case, f^ represents the normalized coefficients correspond­

ing to a". We recall that the Gauss quadrature technique seeks to 

replace f*(yg) with a discrete distribution, f(j(yo), 

fd(iio) = E ^^ 5(Mg - u^) , (3-32) 

where the weights ((j-j) are all greater than zero and the roots 

(y-j) lie between (-1, +1). The failure of either of these two con­

ditions indicates that the given coefficients (f£) or moments 

(Mjj) of f*(yg) are not those of an everywhere positive function. 

The nonnegativity requirement on the weights may be shown to yield 

the following restriction or lower limit on the value of ^2' 

f^ > | (3f2 - 1) = P2(f^) = P^iu^) . (3-33) 

At this point, let us note that if a delta function, located at yg 

= fi, is expanded in terms of Legendre polynomials, we have 

^r-Ti '^^o-h^ V^o) d̂ o = ̂ (̂ l) • (3-34) 

Therefore, the lower bound for the coefficient f2 of an everywhere 

positive function is the same as the coefficient f2 of a delta func­

tion expansion at yg = fi. Now Morel's equation for f2 (obtained 
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from Equations (3-23) and (3-25b)) is 

f^ = -2fQ + 3f^ . (3-35) 

Combining the above equation with the restriction on f2 obtained from 

the quadrature technique (Equation (3-33)) gives 

(fj - 1)2 < 0 . (3-36) 

Since the term (f^ - 1)^ can never be negative, i t follows that the 

Fokker-Planck coefficients (a?, a^, . . . ) do not originate from an 

everywhere positive function and are therefore not acceptable to the 

MORSE code. For example, setting L = 3 in Morel's expression for a" 

(Equation (3-24)) gives the following normalized Fokker-Planck 

coeff icients: fo = 1, f i = 5/6, f2 = 1/2, and f^ = 0. Using these 

coefficients as input for the Gauss quadrature subroutines of MORSE 

results in an error message stating that f2 is bad and that the 

acceptable values for f2 are between 0.54167 (= P2(5/6)) and 1. 

Since f2 is bad, the code proceeds to calculate a single direct ion 

and weight for fci(ug) using only fg and f^. The discrete 

direction corresponds to Mg = f i = 5/6, and i t is of course the 

same direction that would have been obtained i f the original weight 

function were 6(yg - 5/6) instead of the Fokker-Planck expression. 

Therefore, only the f i r s t two coeff icients of the Fokker-Planck 

expansion are acceptable in MORSE. We are l imited to a P̂  expansion 

of the Fokker-Planck equation. 
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Triangular Impulse Function Representation for a", we desire to 

obtain a new set of Legendre expansion coefficients to approximate 

cr" which are both physically acceptable and suitable for input to 

MORSE. One highly important requirement for the new expansion is 

that it retain the same OQ and a? as given by Morel's expansion 

a« = f L(L + 1) . fQ , (3-37) 

a" =^[L(L + 1) - 2] = ag fj . (3-38) 

This is to insure that Fg remains equivalent to Tpp in the diffusion 

limit (i.e., they are equivalent when operating on polynomials of 

degree less than or equal to 1). Since 02 is bad, retaining the 

first two coefficients is the best we can do. However, there exist 

an infinite number of expansions with the same OQ and a?. Therefore, 

the other coefficients (op, a?,...) must be chosen so that they are 

in some sense "close" to Morel's coefficients. 

An obvious choice for the new expansion would be a delta func­

tion at jig. It is certainly everywhere positive and retains a^ and 

a? as its first two coefficients: 

"^J.l ^^^° " ̂ 0^ "^^0 = "̂0 * ̂0 ' (3-39) 

'°/-l 

+1 

(̂̂ 0̂ - '̂ o) ̂ 'o ̂ »̂ o = ^0 '̂ o = ^1 • (3-^0) 
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An additional advantage is that the coefficients of the delta 

function are precisely at the edge of physical acceptability (see 

Equation (3-33)) and are therefore the closest in value to Morel's 

coefficients. However, delta functions are not amenable to the 

scattering algorithm in MORSE. The Gauss quadrature technique 

attempts to find a set of polynomials Qi(x) orthogonal with respect 

to the delta function such that 

f _ l Qi(^o) Qj(^o) «(^o - ^o) '̂ ô = ^ j ^ (3-41) 

or 

Qi(yg) Qj(Pg) = ^ij N. . (3-42) 

It is easily seen that if i * j, then either Qi(uQ) or Q.-(iio) niust be 

zero since the Kronecker delta is zero. If i = j, then we have 

Qf(uo) = N̂ . or Qj(yo) = N.. It follows that either N. or N. must 

also be zero and this is unacceptable. From a computational view­

point, we acknowledge that delta functions are not always rejected by 

the quadrature routines. This is because we do not actually input 

delta functions to the code, but truncated expansions of those delta 

functions, with coefficients which are slightly altered due to round­

off. But as may be expected, the computation becomes more ill-

conditioned as the expansion degree is increased and the coefficients 

are made more exact. 
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A second choice for the new expansion might be a rectangular 

impulse function centered at yg with some finite width h. But an 

obvious question is how large or small to make h, 

A third choice for the new expansion for a", and the one which 

we have elected to use, is a triangular impulse function (TIF). As 

depicted in Figure (3-1), the TIF is forward peaked with positive 

slope m and intercept b, and it equals zero at usr ^e will now 

compute the normalized Legendre coefficients (fo»fi,^2»'««) ^o^ TIF 

where fo = 1 and fi = ug. In general. 

(3-43) 

For £ = 0 , 

^ Vy^ (% ^^^ ^^%'> ^^. 

fo = 1 = /* ( % + b) dy^ 

_ m . L m 2 u 
- -^ + b - ^ y^ - by^ . 

Since 

then 

(3-44a) 

(3-44b) 

TIF(y5) = 0 = my^ + b . (3-45a) 

y^ = -b/m (3-45b) 

and Equation (3-44b) becomes 
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Angular Cosine 

TIF = my^ + b 

/ 

/ 

/ 

-r 

Figure (3-1). Triangular impulse function. 
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^0 = 1 - 7 * " " r • (3-46) 

For £ = 1, 

f l = WQ = / ygCmiiQ + b) dy^ (3-47a) 

= i^ + b b^ ^ (3_47jj) 

Equation (3-46) and (3-47b) give us two equations and two unknowns (m 

and b). Solving for the two unknowns gives 

m = | 1 — - ^ (3-48) 

(1 - UQ) 

and 

b = m(2 - 3 MQ) . (3-49) 

And since us = -b/m, then 

Us = OUQ - 2) . (3-50) 

For A = 2 and above, the coefficients are given by 

( \-l ^^s) ^\'^H^ V2 (̂ ^ 1 
\ = "̂  j(2ji - 1) [li + 1) - [H - 1) (2ii + 3) •" [li + 1) (2ii + 3) j 

(3-51) 

The new cross section expansion, o°, is obtained by multiply­

ing each of the normalized expansion coefficients (fo .fijfzs*••) by 
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Morel's OQ (Equation (3-37)). Because the triangular impulse func­

tion retains the same first two coefficients as Morel's expansion, it 

also retains many of the same functional characteristics, i.e., the 

momentiiTi transfer remains exact, the TIF becomes increasingly forward 

peaked with increasing expansion order L, and as MQ approaches 

unity, then the scalar magnitude becomes unbounded. 

The most important property characterizing a" is that FQ 

converges to Fpp as u goes to 1. We will demonstrate this conver­

gence property for the triangular impulse function. Listed for com­

parison in Table 3-1 are the coefficients of three different Fokker-

Planck expansions: Morel's exact expansion, a delta function at U Q , 

and the TIF, for L = 3 to 8. We note, as previously stipulated, that 

each set of expansions has the same first two coefficients, and that 

the last coefficient of Morel's expansion is always zero. Also, for 

any particular L, the coefficients for the delta function expansion 

drop less rapidly than Morel's coefficients but more rapidly than the 

TIF coefficients; this is reasonable since the delta function lies on 

the border between physical/nonphysical cross sections. Of impor­

tance, however, is the fact that as L increases, or as Ug goes to 

1, then the coefficients of the three different expansions converge 

to each other. For example, the third coefficient (a") differs by 

12.7, 1.25, and 0.32 percent at L = 3, 5, and 7, respectively. It 

follows that the three expansions become equivalent in the Fokker-

Planck limit. 
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Table 3-1 

Comparison of Coefficients for Various Fokker-Planck Expansions 

L = 3, \IQ = 5/6 

MFP 6 5 3 0 
DF 6 5 3.25 1.18 
TIF 6 5 3.38 1.69 

L = 4, Mo = 9/10 

MFP 
DF 
TIF 

10 
10 
10 

9 
9 
9 

7 
7.15 
7.23 

4 
4.73 
5.06 

0 
2.08 
2.93 

L = 5, po = 14/15 

MFP 
DF 
TIF 

15 
15 
15 

14 
14 
14 

12 
12.1 
12.15 

9 
9.49 
9.72 

5 
6.42 
7.05 

0 
3.20 
4.47 

L = 6, yo = 20/21 

MFP 
DF 
TIF 

21 
21 
21 

20 
20 
20 

18 
18.07 
18.11 

15 
15.35 
15.52 

11 
12.03 
12.50 

6 
8.35 
9.34 

0 
4.52 
6.32 

L = 7, iio = 27/28 

MFP 28 
DF 28 
TIF 28 

L = 8, Ho = 

MFP 36 
DF 36 
TIF 36 

Definitions: 

27 
27 
27 

35/36 

35 
35 
35 

MFP 

25 
25.05 
25.08 

33 
33.04 
33.06 

- Morel 

22 
22.26 
22.39 

30 
30.21 
30.31 

's Fokkei 

18 
18.78 
19.15 

26 
26.61 
26.90 

"-Planck 

13 
14.79 
15.58 

21 
22.41 
23.05 

7 
10.49 
11.95 

15 
17.76 
18.96 

Expansion 

0 
6.11 
8.49 

8 
12.86 
14.86 

0 
7.90 
10.95 

DF - Delta Function Expansion at VQ 
TIF - Triangular Impulse Function 
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We recall that the Fokker-Planck coeff ic ients, 0° , where 

aj - a j = - | ^ ( J i + 1) . il = 1, L . (3-23) 

were found by equating Fp with a second order accurate ??„. In order 

to show a more rigorous proof of convergence for TIF, let us first 

derive a more accurate expression for a^. We begin with the identity 

'̂^ = 2.y*_^\«(E,,^) P^(p^) du^ . (3-52) 

Since 

P( ) = ̂  (-1)7^ ̂ ")1 (1. )" (3-53) 
^ ° n=0 2"(n!)^ {z - n)! ° 

(see Gradshteyn and Ryzhik, 1965), then 

•+1 

'(n!)" (£ - n ) " 

or 

,« = 2u E i-l)\i^^^y- p ,«(E,y ) (1 . p )" du, (3-54) 
^ n=0 2"(n!)'^ (i - n ! J-1 ° ° ° 

« - V (-1)" a"(il + n)! ,-> „ . 
a - ̂  -~̂ —jĤ  ^ , (3-55a) 
* n=0 2"(n!)'^ (Jl - n)! 

where we have defined the different moments of the momentum transfer 

as 

a" = 2Tr / "" a°'(E,uJ (1 - y^)" dy^ . (3-55b) 
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From the above equation we f ind that for n=0, a = a", and Equation 

(3-55a) may then be rearranged as 

,n n, 
a a. _ Y* \,-i) g 

* 0 ' ntl i V ? 
o, -

(-1)" <x"{l + n)! 

(n!)^ {I - n)! 
(3-56) 

This expression is exact. Note that the first term of the summation 

is the standard Fokker-Planck formula derived by Morel. Although the 

derivation is much too tedious to present here. Equation (3-56) may 

also be derived by first obtaining Fpp exact to infinite order: 

pa , _ V n^^ 
^^ n=l 2"(n!)'^ 

(3-57a) 

where a" is given by Equation (3-55b), and where 

n . n 
3u 

(1 - u ^ ) " ^ 
3y 

(3-57b) 

= f ^^n[(-l)"|l4^]V") . (3-570 

and by then setting r? i(; equal to Ten '!'• Having obtained an exact 

equation for a° in terms of o , we proceed with the demonstration of 

convergence. We first compute the higher order moments of the momen-

tun transfer for the TIF in terms of a^: 

n Z*"̂ ^ a n 
a = 2ir / a"(E,yg) (1 - y^) dy^ 

(3-58a) 
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= a° f (my^ + b) (1 - y^)" dy^ (3-58b) 

«n xn+ljm + b "'̂^ " ̂ M /, co.^ 

2ag 3"(1 - y^)" 
(n + 1) (n + 2) 

(6a) (3"-l) (1 - u ) ' ' - ' ^ 

(3-58d) 

(n + 1) (n + 2) • (̂ -̂ ^̂ ) 

Substituting Equation (3-58e) into (3-56) and extracting the first 

term of the summation gives 

« « a ^ (-1)" (* ̂ " ) ' 3"-̂  (1 --uf^ 
o j - 0̂ =̂ - f (£)(£ + 1) + 6a E -fi 5 

0- ^ ^ n=2 2"(n!)'^ {a - r\)\ (n + 1) (n + 2) 
(3-59) 

It is easily seen in the above equation that in the limit as yo 

goes to 1, all of the higher order summation terms go to zero and 

only the standard Fokker-Planck equation remains. 

The rate of convergence may be determined by analyzing the equa­

tion for the normalized coefficients (obtained by inserting Equation 

(3-58d) into (3-55a)): 

« (-1)" 2 . 3" (1 - -.f {Z + n)! 

^ n=0 2"(n!)'^ (n + 1) (n + 2) {i - n)! 

Since the cosine of the average scattering angle is given by 
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V ^ • L(L + 1) ^^•26'^) 

then 

f, = i „ (-f 3"(..n)l ,3.,̂ ,̂ 
^ n=0 L"(L + 1)" {x\\y (n + 1) (n + 2) [ l - n)\ 

- 1 it(̂  + 1) ^ 3 (£ + 2) (̂  + 1) (̂ ) [ l - 1) fi fiih^ 
^ L(L + 1) ^^ L2(L +1)2 ••• ^^^^^^ 

If Jt is small and L is large, then the ratio of the (n+1) term to the 

nth term goes as approximately -1/L^. If £ = L, then the ratio of 

successive terms goes as approximately -1/n^. Therefore, the lower 

order coefficients converge at a faster rate than the higher order 

coefficients. 

We showed previously in Table (3-1) that the difference between 

the lower order coefficients of Morel's expansion and those of the 

TIF, was smaller than the difference between corresponding higher 

order coefficients. That is, the difference between corresponding 

coefficients diverges with increasing l. However, this "reluctance" 

of fjj to converge, where i is large, does not significantly affect 

the accuracy of the solution. It is instructive to consider the Sp 

scattering source expressed below 

S ( u , ) = | : ^ ^ » j » , P , ( > i , ) . i - l , N (3-62) 

where we have used a truncated cross section expansion of degree 

(N-1) in conjunction with a Gaussian quadrature set of order N. In 
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using a quadrature set of order N, we are also assuming that the 

angular flux may be adequately represented by a polynomial of degree 

(N-1) or less; if not, the coefficients of i|; obtained through Gauss 

quadrature 

/-+1 N 
^^ = IT,J ^{M) P^(y) dp = E 'I'k Pji(uk) \ (3-63) 

will not be exact. In analyzing the scattering source, we wish to 

portray the cross section coefficients as being weighted by the flux 

coefficients. Since the flux coefficients decrease in value with 

increasing £, then each succeeding term of the summation in Equation 

(3-62) contributes less to the scattering source. Therefore, for any 

particular value of A, if ijî  is ^Qvy small, then the contribution 

of a^ is diminished accordingly, and it will not matter signifi­

cantly if a£ is inexact. It follows from this analysis that we 

would expect the TIF expansions to produce approximately the same 

results as Morel's expansions. 

Coefficients for a^ 

We recall that the group-to-group transfer cross section must be 

defined from the term of the decoupled cross section which allows 

redistribution in energy but no angular change: a®(E' -»• E) 5(yo -

l)/27r. The Legendre expansion coefficients of a delta function at 

PQ = 1 are equal to P£(l) = 1. Therefore, a^ must be a trun­

cated delta-function expansion with coefficients of equal magnitude. 
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For convenience. Morel decomposed o® into the sum of two cross 

sections 

a®(E' > E) = â (E' > E) + â (E' > E) . (3-64) 

The cross sections a and â  correspond to the differential operators 

containing g and y, or rEp and rXp, respectively (see Equations 

(3-3b) and (3-3e)). Morel explains that both rEp and rXp correspond 

to a type of continuous scattering approximation. rEp corresponds to 

the well-known continuous slowing down approximation wherein parti­

cles lose energy continuously with the energy loss per unit path 

length given by the stopping power. rXp causes particles to both up-

scatter and downscatter in equal numbers so that the overall energy 

loss is zero. The mean square stopping power determines the amount 

of mean-square energy change experienced by the particles per unit 

path length. This "diffusion" in energy space introduces energy-loss 

stragging into the calculation. 

Morel defined the multigroup cross sections corresponding to 

0^ and a^ as follows: 

p 0(E) for k = g + 1 , if 6(E) > 0 , and 

ĝ-.k = T - : \ ' 
9 "̂  for k = g - 1 , if 8(Eg) < 0 , 

= 0 for all other values of k , (3-65) 

and 
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^n^\, " 7 ' for k = g - 1 and k = g + 1 , 
' 2(Eg - E ^ ) ' 

= 0 for all other values of k . (3-66) 

The variable Eg denotes the group midpoint energy of group g and 

<̂ q>k ""̂  defined as the probability per unit path length that a 

particle will scatter through zero degrees from group g to group k. 

Since a particle cannot upscatter in the first group nor downscatter 

in the last group, we complete the definitions for the multigroup 

cross sections by setting a^ = 0 for the first and last groups, 

a^ = 0 for the first group if 3(Ei) < 0, and a^ = 0 for the last 

(NG) group if Q{E^Q) > 0. 

For problems involving a lower cutoff energy (i.e., an energy 

deposition calculation). Morel also defines an effective absorption 

cross section for the last group (see Equation (3-65)): 

a = -F r~ , (3-67) 
^ ""NG ""f 

where Ef denotes the midpoint energy of a fictitious group below 

the last one. The absorption cross section effectively transfers 

particles from the last group to thermal energies and deposits their 

remaining energy on the spot. 

Let us restate some of the analysis and conclusions drawn by 

Morel concerning the multigroup cross sections: 

1. The multigroup coefficients are based on energy rather than 

particle conservation requirements. 
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^ g.k(S - Ek' = 8(Eg) (3-68) 

is always correct, but the mean-square stopping power 

^ 4 ^ ( E g - E , ) ' = y ( V * B ( E g ) (Eg-E^,i) (3-69) 

converges to Y(Eg) only in the limit as the group width goes to 

zero. 

3. With a uniform energy group width, the multigroup treatment 

for rfp is equivalent to a standard first order backward-difference 

approximation, and the treatment for rXp is equivalent to a standard 

second order center-difference approximation. 

4. The use of a truncated delta function expansion, in conjunc­

tion with the multigroup cross section for a^, is valid for S^ 

calculations if the cross section expansion is of degree (N-1) and 

the Gauss quadrature set is of order N. Quadrature sets other than 

the Gauss quadrature set may not be sufficiently accurate to treat 

delta function scattering. 

5. Since vjp introduces upscatter into a calculation, and since 

the computational cost of treating upscatter is relatively high, then 

it may be advantageous to neglect the rXp term for problems without 

upscatter. 
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Since Morel's coefficients for a^ represent an everywhere 

positive function, no new expansion was derived as in the case for 

a^. But as explained earlier, delta function expansions are not 

suitable for input to the quadrature scattering algorithms present in 

MORSE. This problem was easily remedied however, by inserting some 

Fortran statements into the code to check for those expansions char­

acterized by having all of its coefficients close to 1. If such an 

expansion was found, it was then known to approximate a delta func­

tion and a single scattering direction at PQ = 1 and a weight of 

1 were set for that group-to-group transfer. The new coding state­

ments are shown at the beginning of Subroutine ANGLES in Appendix C. 

Computational Results and Analysis 

In the two previous sections of this chapter, we have discussed 

Morel's multigroup treatment of 0" and 0^, as well as a new 

approximation in the form of a triangular impulse function for o". 

For convenience, we will label Morel's Fokker-Planck expansion for 

o" as MFP and the new expansion as TIF. The MFP has the important 

and highly desirable characteristic of being spherical-harmonic 

equivalent, but it converges to the Fokker-Planck operator, Fpp, from 

the negative region of phase space (it is nonphysical with respect to 

angle). Conversely, the TIF is not spherical-harmonic equivalent, 

except in the diffusion limit, but it approaches Tpp from the 
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positive region of phase space. Nevertheless, the TIF and MFP, each 

with the same order of expansion L, should approximate each other 

when the angular flux is adequately represented by an expansion of 

degree L or less. 

In this section, we will compare the MFP and TIF cross section 

expansions from a computational standpoint via energy and charge 

deposition calculations using the ONETRAN (a one-dimensional finite 

element Sp code; see Hill, 1975) and MORSE codes. The computations 

were performed for 1-MeV electrons isotropically incident on cold 

slabs of aluminum. The slab thicknesses were chosen to correspond to 

approximately one-sixth range (12.5 mil), one-third range (25 mil), 

and two-thirds range (50 mil), denoted as Problems 1, 2, and 3, res­

pectively. Fifty evenly-spaced groups were used, ranging from 1 MeV 

down to 0.1 MeV, and the source strength was normalized to unity. An 

effective absorption cross section (see Equation (3-67)) was defined 

for the last energy group since the range of the electrons in that 

group was small relative to the slab dimensions and the residual 

energy would be deposited locally. The cross section expansions, 

TIF and MFP, were each given the same 0 Q and o?, and were each input 

as P7 expansions. For the ONETRAN code, this means that a Gaussian 

SQ quadrature set must be used to effectively treat the delta func­

tion scattering and to obtain spherical-harmonic equivalency. For 

the MORSE code, it means that we may extract up to four discrete 

directions (NSCT = 1, 2, 3, or 4) and weights from which to sample 

78 



scattering angles. If we elect to compute only one discrete direc­

tion and weight from the P7 expansion, then we are using only the 

first two coefficients of the expansion, and this corresponds to 

inputting a delta function at y = o^/a^. Recall that a delta func­

tion at y lies on the border between the physical (TIF) and the non-

physical (MFP) expansions, and as such, is the best we can do in 

approximating the MFP. Also, since no upscattering occurs at the 

energies of interest, the full second order approximation for 0^ 

was not needed in the calculation, and only the first order continu­

ous slowing down approximation was used. 

Using the identical test case described above. Morel (1981) 

analyzed his Fokker-Planck expansions by comparing the ONETRAN 

results against "exact" solutions from a one-dimensional coupled 

electron-photon Monte Carlo transport code called TIGER (Halbleib and 

Vandevender, 1974). However, the TIGER code had to first be modified 

to solve the Fokker-Planck equation instead of the coupled electron-

photon Boltzmann equation. This was done by removing energy loss 

straggling effects (disallowed sampling from the Landau distribu­

tion), thereby restricting the calculation to the continuous slowing 

down approximation. The scattering angle in TIGER is sampled from a 

Legendre expansion derived from Goudsmit-Saunderson multiple scatter­

ing theory. The coefficients of the expansion contain the term (00 

- oi) which was replaced by the Fokker-Planck equivalent, ai{z + 

l)/2. Morel's comparison of the ONETRAN-MFP results and the "exact" 

79 



solutions from TIGER will be presented along with the TIF and MFP 

comparison. The energy deposition values calculated by TIGER and 

MORSE for each spatial zone have a relative standard deviation of 

less than two percent. 

There are other items pertaining to these computations which 

have been adequately discussed by Morel and need not be repeated in 

detail here: the equations relating the multigroup stopping powers, 

the flux, and the effective absorption cross section to charge and 

energy deposition, as well as the expressions for the nonrelativistic 

momentum transfer (a(E)) and the relativistic stopping power (6(E)) 

required to compute the cross sections. Also, for information 

regarding the input format of the cross section libraries, since it 

is code specific, the reader is referred to the available code 

documentation. 

Figure (3-2) shows three sets of curves which represent Morel's 

energy deposition profiles as a function of slab penetration for 

Problems 1, 2, and 3. The profiles were calculated by TIGER (denoted 

by "Monte Carlo" in the legend) and ONETRAN-MFP (denoted by "S^" in 

the legend). The energy deposition profiles appear to be in excel­

lent agreement. Figures (3-3) through (3-5) show similar profiles 

for MORSE-TIF (NSCT = 1) and ONETRAN-MFP, and as expected, the agree­

ment also appears to be quite good (note that the ordinate axis in 

Figure (3-4) is expanded). 
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1.0 MeV Electrons on Aluminum 

ONETRAN (MFP) 
MORSE (TIF) 

0.0 2.5 5.0 7.5 
Penetration (mil) 

10.0 12J5 

Figure (3-3). Energy deposition prof i le comparison for Problem 1. 



1.0 MeV Electrons on Aluminum 

ONETRAN (S8. MFP) 
ONETRAN (S16, DELTA FUNCTION) 
MORSE (TIF, NSCT=1) 
MORSE (TIF, NSCT=4) 

- I — 
5.0 0.0 lao 15.0 

Penetration (mil) 
20.0 25.0 

Figure (3-4). Energy deposition prof i le comparison for Problem 2. 



1.0 MeV Electrons on Aluminum 

I I 1 1 1 r 
0.0 10.0 20.0 30.0 40.0 50.0 

Penetration (mil) 

Figure (3-5). Energy deposition prof i le comparison for Problem 3. 



A more quantitative analysis of the agreement between TIGER, 

ONETRAN-MFP, and MORSE-TIF may be obtained from the bulk energy depo­

sition values shown in Table (3-2). 

Table (3-2) 

Bulk Energy Deposition 

ONETRAN-MFP MORSE-TIF TIGER 

Problem 1 0.255 0.258 ± 0.2% 0.258 ± 1.0% 
Problem 2 0.512 0.519 ± 0.1% 0.518 ± 0.5% 
Problem 3 0.795 0.802 ± 0.2% 0.806 ± 0.5% 

The data shows that the ONETRAN bulk energy deposit ion values l i e 

approximately 0.8 to 1.4 percent lower than the TIGER and MORSE 

values. This d i f fe rence, though admittedly very smal l , is pers is tent 

and is in part due to convergence of the Ŝ j so lu t ion rather than 

s ta t i s t i ca l error. Although the solution is basically converged as 

far as the energy group structure is concerned. Morel showed that 

increasing the number of energy groups does raise the ONETRAN prof i le 

s l igh t ly . 

The same analysis holds true for increasing the Sp quadrature 

and expansion order. To show t h i s , ONETRAN calculations were per­

formed for the TIF, as well as the MFP, for each test case. The TIF 

and MFP were both input as Py expansions in an Sg calculat ion, and 

the resulting difference in the solutions was usually close enough to 

be indiscernible on a plot . This is what we expected from our theo­

ret ica l analysis. And since a delta function (located at the UQ 
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corresponding to a Py MFP) is on the physical/nonphysical border 

between the MFP and TIF, its solution should likewise be very close 

to the others. However, it was found that if the quadrature order 

was increased from an Sa to an S^g* and the expansion order of the 

same delta function was increased to a P15, then the energy deposi­

tion curve would shift upwards (this effect is shown in Figure (3-4) 

for Problem 2). We would ultimately expect that if the quadrature 

order was increased to Soo, and the expansion order increased to 

infinity to represent the delta function exactly, then the ONETRAN 

curve would converge to the MORSE-TIF (NSCT = 1) profile. This con­

clusion follows from the fact that using MORSE with one allowed dis­

crete scattering cosine, at some yo, is equivalent to an S„ 

calculation with a delta function cross section at the same yg. 

Also shown in Figure (3-4) is an energy deposition profile from 

a MORSE-TIF (NSCT = 4) calculation. Setting the number of allowed 

scattering angles to four permits the code to use all eight moments 

of the Py TIF expansion, instead of just the first two moments in the 

case where NSCT = 1. From the plot, it is difficult to statistically 

resolve any significant difference in the NSCT = 1 and NSCT = 4 solu­

tions. This would indicate that the MORSE solutions using the TIF 

and delta function cross sections are essentially equivalent. 

In addition to energy deposition calculations, charge deposition 

for Problems 1, 2, and 3 was also determined for comparison pur­

poses. Figure (3-6) shows Morel's charge deposition profiles from 
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ONETRAN-MFP and TIGER as a function of penetration. The TIGER pro­

file for Problem 1 is a poor representation due to the large amounts 

of statistical error. The same profiles for Problems 2 and 3 

achieved better statistics and permit more meaningful analysis. Fig­

ures (3-7) through (3-9) show charge deposition profile comparisons 

for ONETRAN-MFP and MORSE-TIF (NSCT = 1 ) . A larger number of parti­

cle histories was generated in the MORSE calculation to enhance its 

statistics somewhat over the TIGER calculations. The agreement 

between the charge deposition profiles from the various codes is 

still very good, though clearly the statistical error is more severe 

than for the energy deposition profile comparisons. The reason for 

the poorer statistical agreement among the charge deposition profiles 

is that the particles may contribute to the charge deposition only 

when they have reached the lowest energy group, whereas particles 

have a finite probability of contributing to the energy deposition at 

every collision. 

The bulk charge electron deposition values are given in Table 

(3-3). 

Table (3-3) 

Bulk Charge Electron Deposition 

ONETRAN-MFP MORSE-TIF TIGER 

Problem 1 0.020 0.022 ± 2.4% 0.017 ± 3% 
Problem 2 0.198 0.202 ± 0.8% 0.193 ± 1% 
Problem 3 0.643 0.649 ± 0.5% 0.651 ± 1% 
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1.0 MeV Electrons on Aluminum 

ONETRAN (MFP) 

MORSE (TIF) 
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Penetration (mil) 
10.0 12.5 

Figure (3-7). Charge deposition profile comparison for Problem 1. 
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Figure (3-8) . Charge deposit ion p r o f i l e comparison fo r Problem 2. 



1.0 MeV Electrons on Aluminum 

— ONETRAN (MFP) 
— MORSE (TIP) 
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Penetration (mil) 
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Figure (3-9). Charge deposition profile comparison for Problem 3. 



The ONETRAN and TIGER values differ by approximately 17.7, 2.6, and 

1.3 percent for Problems 1, 2, and 3, respectively. The MORSE and 

TIGER values differ by approximately 29.4, 4.7, and 0.3 percent for 

the same problems. These percent differences, between the TIGER 

values, and those from ONETRAN and MORSE, appear to decrease with 

increasing thickness. Morel proposes that the poor estimate of 

charge deposition in Problem 1 is due to range or energy-loss strag­

gling. This straggling effect permits particles to thermalize over 

path lengths much shorter or longer than the actual range, and is an 

inherent characteristic of the multigroup approximation to the CSDA 

(continuous slowing down approximation) operator. The range strag­

gling effects decrease with decreasing energy group widths. 

The ONETRAN-TIF profile was not shown along with the ONETRAN-MFP 

profile in any of the figures for charge deposition because the solu­

tions matched so closely. However, the MORSE-TIF profiles are shown 

for both NSCT = 1 and NSCT = 4 in Figure (3-8), and the agreement is 

yery good. This close agreement of solutions from a particular code, 

independent of whether the cross section input is MFP, delta func­

tion, or TIF, is strong evidence for the interchangeability of these 

cross sections. 

Figure (3-8) also contains a charge deposition curve from an S^e 

ONETRAN calculation with a P15 delta function input. The delta func­

tion is positioned at the mean scattering angle characterizing the P? 

MFP. The charge deposition curve is seen to shift up from the 



ONETRAN-MFP curve and again emphasizes that the difference in the 

bulk charge electron values between ONETRAN-MFP and MORSE-TIF (though 

small) is primarily due to Ŝ , convergence. 

Figure (3-10) shows a comparison of the reflected current spec­

trum between ONETRAN-MFP and TIGER for Problem 2. Figure (3-11) 

shows a similar comparison of the transmitted current spectrum for 

various group structures. 

Referencing Figure (3-10) first, the ONETRAN-MFP reflected cur­

rent spectrum shows good agreement with the TIGER spectrum except at 

the source energy end of the spectrum where the ONETRAN curve takes 

an upswing. This high energy peak is characteristic of the ONETRAN 

solution only, and is not found in either the MORSE or TIGER solu­

tions. The cause of the peak is that the full-range Gauss quadrature 

set does not completely satisfy the Marshak boundary condition. The 

peak height is reduced by increasing the quadrature order, or it may 

even be eliminated by using a special half-range quadrature set 

developed by Morel (1983). Figure (3-12) shows the reflected current 

spectrum comparison for ONETRAN and MORSE with various input cross 

sections. Note specifically the difference in the peak heights 

between the Se and Sig ONETRAN solutions. Since Sp calculations 

conserve particles, a result of increasing the quadrature order and 

thereby reducing the high energy peak is that particles are now 

forced to transmit through the slab or be absorbed. And that is why 

the Si6 ONETRAN calculations shifted the energy and charge deposition 
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1.0-MeV electrons on aluminum 
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Figure (3-10). Reflected current spectrum 
comparison for Problem 2. 
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Figure (3-11), Transmitted current spectrum 
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structures for Problem 2. 
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1.0 MeV Electrons on Aluminum 
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Figure (3-12). Reflected current spectrum comparison for Problem 2. 



profiles upwards slightly from the Ss profiles. Further increases in 

quadrature order would enhance the convergence of the ONETRAN solu­

tion to the MORSE solution. 

Additional information may be gained by referring back to the 

transmitted current spectrum comparison shown in Figure (3-11). 

Obviously, the TIGER and ONETRAN-MFP profiles agree very poorly. 

Morel analyzed the spectra comparisons and discussed their signifi­

cance. We will briefly summarize some of this findings and conclu­

sions below. 

1. The TIGER and ONETRAN curves do show good agreement at low 

energies--this is necessary to account for good charge depo­

sition profile agreement. 

2. The spectrum integral represents the total number of parti­

cles transmitted, and the energy-weighted integral repre­

sents the total amount of energy transmitted. These quanti­

ties remain relatively unchanged in comparing one curve to 

another which accounts for the good energy deposition pro­

file agreement. 

3. The broadening effect exhibited by the discrete ordinates 

curves is generally more pronounced at larger distances from 

the source than at smaller distances. 

4. The spectral broadening is due to energy-loss straggling 

originating from the multigroup approximation. Decreasing 

the energy group width enhances convergence, as seen in 
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Figure (3-11). However, the rate of convergence is inverse­

ly related to the slope or rate of change of the true energy 

spectrum. For example, a rapidly varying spectrum denotes 

slow convergence of the S^ solution. 

Since MORSE also uses the same multigroup cross section data as 

ONETRAN, we would expect the MORSE-TIF transmitted spectrum to copy 

the ONETRAN-MFP solution (rather than the TIGER solution). This 

analysis is substantiated by Figure (3-13) showing the transmitted 

current spectrum comparisons for Problem 2 using ONETRAN and MORSE. 

The spectral agreement is excellent and does not seem to depend on 

the type of cross section used. The MORSE spectra exhibits the same 

broadening effect from energy loss straggling as the discrete ordin­

ates spectra. 

We have thus far shown that our treatment of the angular opera­

tor, Tpp, in developing the TIF cross section, is equivalent computa­

tionally to the MFP and is compatible with the scattering algorithm 

in MORSE. The Fokker-Planck approximation using the triangular 

impulse function retains the same benefits and weaknesses as the 

previous cross section set developed by Morel; i.e., accurate solu­

tions may be obtained for energy and charge deposition, but the 

accuracy of the differential spectra is dependent on its distance 

from the source. 

The development of the new set of Fokker-Planck cross sections 

for use in MORSE results in both three-dimensional capability as well 
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1.0 MeV Electrons on Aluminum 

Electron Energy (MeV) 

Figure (3-13). Transmitted current spectrum comparison for Problem 2. 



as a forward or adjoint option for problem solving. This greatly 

increases the versa t i l i t y of the code and the number of applications 

to which the Fokker-Planck approximation could conceivably be 

applied. To demonstrate this ve rsa t i l i t y , we have performed an 

adjoint calculation to calculate energy deposition in the core of a 

sphere. The geometry was chosen to be one-dimensional in angle so 

that comparisons with ONETRAN could be obtained (recall that two-

dimensional quadrature sets do not have suff ic ient accuracy to treat 

the delta function scattering in the energy operator). The problem 

was similar in many aspects to the previous slab calculations. A 1.0 

MeV electron f lux was isotropical ly incident on a sphere of cold 

aluminum. The radius of the sphere was approximately one-third the 

range of a source par t ic le . The inner core of the sphere was arbi­

t r a r i l y set to one-tenth the sphere radius. F i f ty evenly-spaced 

energy groups were used over the energy range from 1.0 to 0.1 MeV. 

Again, we wi l l dismiss with many of the details of the calculation 

and simply refer the reader to ample documentation on the codes and 

adjoint formalism: Halbleib and Morel (1980), Renken (1970), Hansen 

and Sandmeier (1965). 

Table (3-4) shows the forward and adjoint energy deposition 

results for the spherical inner core from ONETRAN-MFP and MORSE-TIF. 
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Table (3-4) 

Bulk Core Energy Deposition 
(MeV X 10-5) 

Forward Adjoint 

ONETRAN-MFP 1.037 1.058 
MORSE-TIF 1.045 ± 2.5% 1.017 ± 1.4% 

The agreement is very good. The ONETRAN and MORSE forward solut ions 

compare yery w e l l , and the MORSE forward and adjo in t solut ions agree 

to wi th in the s t a t i s t i c a l e r ro r . The ONETRAN forward and adjo int 

so lu t i ons , though approximately equal, do not show exact agreement, 

because the adjo int Sp equation in cu rv i l i nea r coordinates is not 

exact ly adjoint to the foward S^ equation. However, the adjo int 

and forward solut ions do converge in the l i m i t as the quadrature 

order is increased wi th a constant spat ia l mesh and group s t ruc tu re . 
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APPENDIX A 

DERIVATION OF THE FOKKER-PLANCK EQUATION 

The following derivation of a second-order accurate Fokker-

Planck equation follows closely the derivation of Morel (1981) and 

somewhat that of Wang and Guth (1951). The derivation is appropriate 

for problems with: 

1. one-dimensional slab or spherical geometry, 

2. an isotropic transport medium (a medium with no preferred 

direction for part ic le t rave l ; crystal l ine structures or 

certain plasma configurations are examples of anisotropic 

medias), and 

3. forward-peaked elastic scattering. 

In order to fully define the working variables, the derivation 

begins with the general time-dependent integro-differential form of 

the Boltzmann transport equation (Emmett, 1975). The Boltzmann equa­

tion describes a bookkeeping process that sets the net storage of 

particles within a differential element of phase space (dr,dE,dn) 

equal to the particle gains minus the particle losses within that 

differential element. One familiar form of the Boltzmann is: 

^ ^ ^r,E,?2,t) + ll ' V^{r,E,Q,t) + a^(r,E) ,j;(r,E,Ji,t) 

= Q(r,E,I^,t) +JI<i^' dfi' a^{r,E' ^ E,^' ^ a) i|)(r,E',n',t), (A-1) 

where 

101 



(r,E,n,t) = the general multidimensional phase space, 

r = position vector, 

E = the particle kinetic energy, 

V = the particles speed corresponding to its kinetic energy, 
E, 

a = a unit vector which describes the particles direction of 
motion, 

t = time variable, 

i|;(r,E,?2,t) = the time-dependent angular flux, 

Tjj(r,E,n,t) dE dn = the number of particles that cross a unit area 
normal_to the fi direction per unit time at the space 
point r and time t with energies in dE about E and 
with directions that lie within the differential 
solid angle dn about the unit vector n, 

1 9 
7 If 'J'(̂ 'E,n,t) dE dn = the net storage (gains minus ]_osses) per 

unit volume and time at the space point f and time t 
of particles with energies in dE about E and with 
directions which lie in dJi about Q, 

n • Vij)(r,E,n,t) dE 6Q = net convective loss per unit volume and 
time at the space point r and time t of particles 
with_energies in dE about E and directions which lie 
in djj about fi, 

a^(r,E) = the total cross section at the space point r for 
particles of energy E, 

oi(r,E) i|;(r,E,?j,t) dE dfi = collision l̂ oss per unit volume and 
time at the space point r and time t of particles 
with_energies in dE about E and directions which lie 
in dn about n, 

a (r,E' -»• E,T2' •»• ll) dE dn = the differential scattering kernel 
which describes the probability per unit path length 
that a particle with an initial energy E' and an 
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initial direction Q' undergoes a scattering collision 
at f which places it into a direction that lies in 
di^ about Q with a new energy in dE about E, 

[J[jfa (r,E' ^E,n' * fi) ^{r,E',fi',t) dE' dn'] dE da = inscatteri_ng 
gain per unit volume and time at the space point r 
and time t of particles with energies in dE about E 
and directions which lie in dJ2 about li, 

Q(r,E,fi,t) dE d?2 = source particles emitted per unit volume and 
time at the space point r and time t with energies 
in dE about E and directions which lie in dfi about 

A simplified version of the Boltzmann equation (Bell and 

Glasstone, 1970), which neglects time dependence, and is limited 

to one-dimensional slab and spherical geometries, is shown below: 

V . ?2ij;(r,p,E) + a^(r,E) i|»(r,|i,E) 

= J J ^s^^'^' ^ ^ ' ^ 0 ^ i>i^,u',E') du' d<j,' dE' -̂  0(F,u,E), 

where 

and 

(A-2a) 

ll' = n'(p',*') = fJ'(cos 9',(|>') , (A-2b) 

fi= Ji(y,4>) = Ji(cos 9,<j)) , (A-2c) 

u = ii'y+[(l - ii'2)(l - u^)]^/2 cos(<|,' - ̂ ) . (A-2d) 

The variables (9,(j)) are shown in the scandard phase space coordinate 

system illustrated in Figure (A-1). The two unit direction vectors. 
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Figure (A-1). Standard phase-space coordinate system. 



ll' and ll. and their inclusive anale 6̂  f= cos"-̂  ur.) are shown 

in a direction-space coordinate system illustrated in Figure (A-2a). 

Also shown in Figure (A-2a) is a spherical triangle formed from ll', 

ll, and from a unit vector along the z-axis. Equation (A-2d) was de­

rived by using the law of cosines for the sides of a spherical tri­

angle, where OQ, 9', and 9 represent the sides. 

There are two ways of deriving the Fokker-Plank equation depend­

ing on how one defines the scattering cross section. 

Method One 

One of the basic assumptions for this derivation is that inelas­

tic scattering is either ignored or irrelevant. Since with elastic 

scattering, energy loss (E'-E) and scattering angle (UQ) ^"^^ 

directly coupled, the differential scattering cross section may be 

expressed as 

a^(r,E' ^E,u^) = a^{r,E',u^) 6(E - E^) (A-3a) 

with 

E, =E3(E',w^) (A-3b) 

or 

a^(F,E' -^E,^^) = a^{r,E' - E) 5( p̂  - w^) (A-3c) 

with 

M5 = Ps^E'.E) . (A-3d) 
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Figure (A-2a). Direction-space coordinate system. 



Because of the direct coupling. Eg = E' when MQ ~ ^ (Equation 

(A-3b)) or ys = 1 when E' = E (Equation (A-3d)). 

Substituting Equation (A-3a) into Equation (A-2a), and inte­

grating over the variable (E') gives 

V . T2iJ;(f,y,E) -l- a^(r,E) >(;(r,M,E) 

•2TT r+l y'*2TT r+l 

0 J-1 
[o^i?,E',^i^) i,{?,u',E')] du' d<(,' + Q(F,u,E) . (A-4a) 

where 

E = E5(E',PQ) . (A-4b) 

Since the total cross section is the sum of the absorption and scat­

tering cross section. 

o^{r,E) 'Jj(r,y,E) = a^^p + â i); 

27r r+l 

i:/: â i})-̂  / / a^{r,E,M^) iJ»(r,w,E) du' d^' , 

(A-5) 

Equation (A-4a) may be rearranged in the following form: 

V *Mr,u,E) + o^{r,E) t|;(F,u,E) = T^^ + Q(F,u,E) , (A-6a) 

where 

B̂ ̂=J J [a^(r,E',UQ) 1;(r,u',E') 

- ajr,E,UQ) i|;(r,u,E)] dy' d^' . (A-6b) 
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The term (rgip) is known as the Boltzmann scattering operator. It 

is this integral operator that is replaced with a differential 

operator in the Fokker-Planck approximation. 

The scattering operator (rgij)) represents the inscatter minus 

the outscatter at a position r, energy E and angle y. Because a^ 

is forward peaked, the significant contributions to Equation (A-6b) 

are made when the quantities (E' - E), (u' - u), and (ij)' - (^) are 

small. Since the angular flux {^) is relatively smooth as a function 

of E and y, then ip will not change much as (E' •*• E) and (y' ->• y). 

Also, the explicit dependence of the cross section (og) on E' var­

ies slowly. However, with regard to UQ, the differential cross 

section may vary dramatically. 

For reasons which will become obvious later on, it will facili­

tate the derivation if we change the variables of integration in 

Equation (A-6b) from y' and ^' to UQ and ^Q. This change of 

variables is carried out by exchanging (dy' d<^') with (J dyg d(j)Q) 

where J represents the absolute value of the Jacobian. Geometrical­

ly, this change of variables is brought about by the sequential 

direction-space coordinate transformations shown in Figures (A-2a), 

(A-2b), and (A-2c). The coordinate system (x',y',z') in Figure 

(A-2b) was formed from the coordinate system (x,y,z) in Figure (A-2a) 

by rotating the x-y plane about the z-axis through an angle (\). Then 

the coordinate system (x",y",z") in Figure (A-2c) was formed from 

(x',y',z') by rotating the x'-z' plane about the y' axis through an 
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n z' = z 
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Figure (A-2b). Direction-space coordinate system. 



y" = y' 

Figure (A-2c). Direction-space coordinate system. 



angle 9. Since the Jacobian of any number of plane rotations equals 

1, then Equation (A-6b) becomes 

" ' V J '̂ ''ŝ '̂ '̂ ''̂ 'o) 1'(r,y',E') 

o^{r,E,\x^) i|;(F,y,E)] dy^ d^^ . (A-7) 

The variable y' is put in terms of y and yg by using the law of 

cosines for the spherical tr iangle pictured in Figure (A-2c): 

y' = w^ + [(1 - y^)(l - y^)] l /2 C0S( IT - ^^) , (A-8a) 

(A-8b) = VM^ - [(1 - vh{l - U Q ) ] ^ / ^ COS ^^ 

The next step in the derivation is to expand the E' and y' 

dependence of as(r,E',yQ) ijj(r,u',E') about 9o = 0. We note 

that E' = E and u' = u (see Equation (A-8b)) when 9o = 0. Although 

Uo is also a function of 9o, we do not expand its dependence. 

Therefore, suppressing the r dependence and keeping only up to and 

including the second-order terms, we obtain the Taylor series expan­

sion 

o^{E',v^) >i;(y',E') = ^^(E.yQ) ii)(y,E) 

^ a 3 ( E ' , y ^ ) ^(y".E')||: 
.9^=0 

(«o) 

+ a^(E.y^) I F ^ ( ^ ' ' ^ ' ) | F 
9̂ =0 

(̂ o) 
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_ ^ , ^ ( E . , y J t(u',E')(||-y 

2.. 
+ ̂  ^s(^''^o) l'(u'.E') ^ 

99. 
7" 

9 =0 

+ a3(E,y^) 
3y 
'^^(^"'^•)(li^J^^*(^'.E')Ti 39 7" • 

0 -"9̂ =0 
0 

(A-9) 

Rearranging gives 

o^{E',M^) i|»(y',E') - a^{E,ix^) ,|;(y,E) = Ii + I2 . (A-lOa) 

where the left-hand side of the equation is now the integrand for 

rBi|; in Equation (A-7), and where Î  and I2 are given below: 

h- -s^E'^oMii*^^'^^ 
3y' 
39. e„=o 

( e „ ) * 
^ ^ ' 

^ 

e ^ 
2 

9̂ =0 

+ ^ ^ { 
3u -^ !fe/l9. = 0 ^ 

(A-lOb) 

and 

h = 1 F ̂ ŝ '̂̂ ô̂  '''(̂ '̂̂ ^ 
3E' 
39. 

»o=° 
(9„) -

r a^E'l 
39 

+ — 7 a (E, y ) tj;( y 
3E^ S 0 •='1®'1 A21 e^ 

8̂ =0 ^ 
0 

(A-10c) 
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Equations (A-lOb) and (A-lOc) contain partials of y' and E' with 

respect to 9o which must now be evaluated at 9o = 0. Recalling 

that 

2 1/2 
v' = u cos 9Q- (1 - y ) ' sin 9Q cos ^^ , (A-8b) 

then 

3« 1 

a^.' 

- ^ 

= -{1 -
6„=0 

= - y 

'v° 

/)^'^ cos t^ , (A-lla) 

(A-llb) 

and 

( % / 9̂ =0 
= (1 - y^) COS^ * (A-llc) 

For the partials of E' with respect to 9o, a Taylor expansion of 

E' about 9o = 0 gives 

E' - E = 
3E' 
39. 

9̂ =0 
(9,) + 

3^E' 

39 0 -• 
T" + ... 

9^=0 

(A-12a) 

and the square of that expansion becomes 

(E' - E)' 
3E' 
39. 9̂ =0 

9̂  + 2 
0 

|3E ' 

I'^oJ 
\^h] 

k J $• 
9̂ =0 

(A-12b) 

Substituting Equations (A-lla) through (A-12b) into Ii and I2 gives 
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I , = a3(E,y^) .9^(1 u2)l/2 cos A "l'-i ; * ( p , E ) 

9 2 

3u 
(A-13a) 

and 

IT °s cJo(E,y„) Ky.E) (E' - E) +-^ 
3E 

7 ^s^^''^o^ '('(i^jE) 

(E' - E)' (A-13b) 

Since we have replaced the integrand in TQT\> ( i n Equation (A-7)) 

with an approximate expression ( I ^ + I 2 ) , we now have 

fZif r+l fZ-n r+l 
^B'̂  = ^ F P * V Q J_^ h^^o^^o^J^ J_^ l2^^od*o' (̂ -14) 

where rppi|; is referred to as the Fokker-Planck scattering opera­

tor. However, Fppij; is yet to be developed into a familiar and 

usable form. For convenience, let us define the integral of Ij 

as I'l, and the integral of I2 as I2. Looking first only at I^, and 

integrating with respect to ^Q over the limits 0 to 2ir gives 

4 = •Ms-sj/: cJs(E,yQ) 9̂  dy^ (A-15a) 

or 

T. _ IT 3 
(1 ••' h .] /;• a3(E,u^) 9̂  dy^ (A-15b) 

Since 
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0̂ ^ 2(1 - .,) (A-16) 

then the equation may be rearranged as follows: 

T' - a 3 
(1 - u ' ) ^ ^ (A-17a) 

where 

a = ZirJ^^ a^{E,UQ)il - ŷ ) dy^ (A-17b) 

Looking now only at I2 (Equation (A-13b)), the integral (12) becomes 

•2 = /.'•/: i [tv (E' - E) + 
1 

3E 
C f e * 2 "s 

(E' - E)^ dy^ d^^. 

(A-18) 

The above equation contains the term (E' - E) where E is the final 

energy after inscattering occurs from energy E'. We recall that 

E' - E 
3E' 
39. 

where 

9 = 0 ' ° ^ ^ 0 0 

E = EJE',e„) 

e ^ (A-12a) 

9̂ =0 

(A-4b) 

Equation (A-4b) is an implicit function of E' in terms of E and 9o. 

Since E (or Eg) is a constant, the first and second total 

derivatives of Eg equal zero: 

dE^(E',9^) 3E3(E',9^) 3,, 3E3(E',9^) 

d9. •3^ 39. 39 
= 0 (A-19) 

and 
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J—"—aT—ZT —:772— [wi — : : ? — de: 36, 3E'. 96 
'0 0 0 

(A-20) 

If we evaluate the two expressions above at Gg = 0, and note that E 

= E' at 9o = 0, we obtain 

3E' 
3e_ 9̂ =0 

^Es(E-»eo) 

39_ 
9̂ =0 

(A-21) 

and 

3̂ E' 

77" 9^=0 6̂ =0 

(A-22) 

Substituting Equations (A-21) and (A-22) into (A-12a) gives 

E = - 39_ 9_ -
9̂ =0 

3 % ( E ' , 9 Q ) 

2 
39. 9̂ =0 

(A-23) 

We note that an expansion of (E - Es(E,9o)) is identical to the 

right-hand side of Equation (A-23); thus 

E- - E = E - E^(E.9^) (A-24) 

and the equation for I2 (Equation (A-18)) becomes 

;-r/:i[ •aF "s* (E-Es'*7 3E 
F^s"^ (E-E^)^ dp^d^^ 

(A-25) 
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The next step in simplifying 12 is to perform a variable change from 

jjQ to T where x is the energy loss (E - E5). Such a transforma­

tion yields 

/-^max(^) ( 
U = ^^J l^\.oJE,uJr)) (̂y,E)] T 

Since 

then 

2̂ "" /Q ) 3E ̂ "s^^'^o" 

^^^lo^iE^u^ir)) ^(y,E)] T ^ l ^ d T . (A.26) 

^^0 2it a^(E,MQ(T)) ̂ = a^(E,T) (A-27) 

h = j IE ^̂ ŝ '̂̂ ) *(̂ '̂ ) ̂^ ̂ ^ 

, /-^max(^) 2 2 
•"7 / ^ [ ^ ( E , T ) ij;(u,E) / ] dT . (A-28) 

We can bring the above indicated integrations inside of the partial 

derivatives and introduce only a very small amount of error. For 

example, using the Leibnitz rule on the first integral in Equation 

(A-28) gives 
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r'^max g g /""̂ max 
/ -^lo^ ^ x] dT = -3^ / a^ ,1. T d t 

The second term on the right-hand side of Equation (A-29) becomes 

negligible in comparison with the f i r s t term in the Fokker-Planck 

l im i t ; i . e . , as the cross section becomes more forward peaked. Thus, 

12 becomes 

' 9 A a x ( ^ ) 
2̂ ^ IE J '^s^^''^^ 'l'(u,E) T dx 

•max(E) 1 3̂  A ' ° " ,, , ,, ,, 2 
Jn ^ 7 ^ 1 <^<;(E.T) *(ii,E) x^ dx (A-30) 

or, in a different form. 

! • / . • 
I9 = 4 r { t / <̂ c{E - E')(E - E') dE 2̂ - X r̂  L °s 

The final result for Tppij;, upon substituting Equations 

(A-17a), (A-17b) and (A-31) into Equation (A-14) (and remembering the 

additional dependence of each variable on r), becomes 

V . fiif; + a^i|; = Fppii) + Q , (A-32a) 

where 
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2 
rpp1; = |-|^ [(1 - u) j ^ *(r,y,E)] +|p e^(F,p,E) + | - 1 ^ Y^(f ,u,E) 

(A-32b) 

r+1 . 
a = 2Tr / a^(r,E,pQ)(l - n^) dŷ ^ , (A-32c) 

•̂  -1 

e = / a fr,E > E')(E - E') dE' , (A-32d) 
^0 ^ 

and 

Y = / a fr,E > E')(E - E')^ dE' . (A-32e) 

The terms (a,8, and y) found in the Fokker-Planck scattering operator 

are usually referred to as the momentum transfer, stopping power, and 

mean-square stopping power, respectively. Although stopping power 

( g) is usually defined as being negative (if particles lose energy on 

the average), we have here defined it with the positive sign conven­

tion. 

Method Two 

To begin the derivation, let us first examine Equation (A-32b) 

by dividing Tfp^ into two segments: 

T^p^ = | { ^ [(1 - ŷ ) 1^ 1'(r,u,E)] (A-33a) 

and 

2 
^^p^ = ^ B4'(r,u,E) + | — 2 Y^iF.y.E) . (A-33b) 

119 



The equation for Fpptji deals exclusively with angle dependence 

at some energy E, and the equation for Tfpip focuses on how certain 

quantities vary with respect to energy at some angle u. In other 

words, all coupling between energy and scattering angle are lost. 

Such decoupling would suggest that we might derive the Fokker-Planck 

equation by initially assuming that the scattering cross section 

itself is decoupled. The term Fppip would be derived by using a 

cross section which redistributes in angle but not energy 

a^{?,E' ^ E , U Q ) = a°'(F,E,iiQ) 5(E' - E) (A-34a) 

and Tppij; would be derived by using a cross section which redistri­

butes in energy but not angle 

a (r,E' > E , P Q ) = a'=(F,E' - E) ̂  5( p^ - 1) . (A-34b) 

Inserting the new cross sections above into the Boltzmann equation 

gives 

/*» rZur+l 
= J J I ^°'(^E,Pg) 5(E' - E) .|>(F,p',E') dp' d,j.' dE' 

+ / / / a (F,E' > E) -^ 5(PQ - 1) ,j;(F,p',E') du' d<|,' dE' 

(A-35) 
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Recalling that we may change the variables of integration from (dp' 

d(i)') to (dpQ d(j)Q), where the Jacobian of the transformation 

equals 1, we integrate the first integrand with respect to E', and 

the second with respect to PQ and <^Q: 

•2Tr r+l 7^2^ r+] 

0 y.i 
V . f2ip + â . i|< = / / a ' * ( r ,E ,PQ) iJ^(f,p',E) dp^ d^^ 

+ / a^( r ,E ' > E) i j ; ( r ,p,E') dE' + Q . (A-36) 

-/o 

If we separate the total cross section into its absorption and 

scattering components as before, i.e., 

ij)= (a + a j ip (A-37a) 

/2-n r+l 
= ^a • 

fZ-n r+l 
^+J I a°'(r,E,PQ) i|j(r,P,E) dp^ (i<^^ 

+ / / ( F , E ̂  E') .|;(r,p,E) dE' , (A-37b) 

Jo 

and suppress the r dependence for simplicity, then Equation (A-36) 

can be rearranged to give 

V . T2ip + a^^^ = Tgij) + Fgii) + Q , (A-38a) 

where 

fZTT r+l 
T^^=J J O°'(E,PQ) [ I J ; ( P ' , E ) - iJ;(p,E)] dp^ d<),Q (A-38b) 
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and 

^B* •f; [a^(E' >E) ^(p,E ' ) - a^(E - E') ip(p,E)] dE' (A-38c) 

As can be seen from Equations (A-38b) and (A-38c), rgii; represents 

the net gain of pa r t i c les having a f ixed d i rec t i on p, and rgij) 

represents the net gain of pa r t i c les having a f i xed d i rec t i on E. The 

next step in the der iva t ion is to expand segments of each integrand 

in a Taylor ser ies . Expanding the term i|;(p',E) in Equation (A-38b) 

about QQ = 0, and re ta in ing terms up to second-order gives 

i|;(p',E) = I K P , E ) + 1 ^ ^ ( ^ * ' E ) | ^ 
9^=0 

(«o) 

^.(p',E)(|^J.^,p',E)iV (9,2/2) 

9^=0 

(A-39) 

Evaluating the pa r t i a l der ivat ives above using Equations ( A - l l a ) , 

( A - l l b ) , and ( A - l l c ) , and rearranging s l i g h t l y produces 

1 9 11" 
- 9,(1 - p2)l/2 COS 4., - - 2 — 

[ 3 / 
^ - (1 - p ) cos A (A-40) 

Upon subs t i tu t ing Equation (A-40) in to the integrand of (A-38b), and 

in tegrat ing with respect to <I>Q and PQ, the f i n a l resu l t becomes 

the same as in the f i r s t der iva t ion 
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B̂̂  = F̂V = 7irt(i- '^)k^(^"'^'E)i ' (A-41a) 

where 

r+l 
a = ZirJ a°'(E,p,)(l - p,) di (A-41b) 

Now let us return to Equation (A-38c) and perform an expansion on 

the integrand of VQ^. The expansion is more easily understood, 

however, if we first express the integrand in terms of the variable 

X, where x represents the energy loss (E' - E): 

4"^=/ [«̂ (E + x,x) ̂ (p,E + x) - a^(E,x) ̂ (p,E)] dx . (A-42) 

Expanding â (E + x,x) ij;(p,E + x) in a Taylor series about x = 0, 

and retaining terms up to (x^) gives 

â (E + x,x) .f»(p,E + x) = â (E,x) if»(p,E) 

3 e 
+ C^C7"(E + T',X) ^(p,E + T')]^.^Q (x) 

3x 
^-^ â (E + x',x) M P , E + X') 

x'=0 (TV2) 

(A-43) 

Since 

3 e 3 e 3E' [-af a'̂ ]̂̂ ,̂ 0 = [^a^(E',x) ̂ (p,E') |£-] p.,, 

= |^[a^(E,T) ,|;(p,E)] , 

(A-44a) 

(A-44b) 

then Equation (A-43) becomes 
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3 e/ a^(E + x,x) ,|,(p,E + x) - a'==(E,x) <|;(p,E) = [-|^ a'=(E,x) ;J,(p,E)] x 

^^ / ( E , x ) ,|;(p,E) 
L3E 

1 2 
^ . (A-45) 

Replacing the integrand in Equation (A-42) with (A-45), and then 

s impl i fy ing the in tegra l in a manner analogous to that in Method 1 , 

we obtain 

,2 

'h^'h^-iE^^'i^-f^^ 

where 

•f '' 
Jo 

(E > E')(E - E') dE' 

and 

Jo 
Y = / a"(E ^ E')(E - E') dE' 

0 

(A-46a) 

(A-46b) 

(A-46c) 
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APPENDIX B 

GENERALIZED GAUSS AND RADAU QUADRATURE 

The Gauss and Radau quadrature methods will be developed in par­

allel in this appendix. Each discussion of a subtopic under Gauss 

quadrature will be followed with a corresponding discussion of Radau 

quadrature. The Radau quadrature, therefore, will be considered as 

an extension of the Gauss quadrature. 

Since the MORSE code system uses the generalized Gauss quadra­

ture technique to analyze its input cross sections, the theory and 

use of Gauss quadrature is explained in depth in the MORSE documenta­

tion, particularly in that by Emmett (1975). Much of the material 

given here on Gauss quadrature is taken directly from that refer­

ence. For the derivation of Radau quadrature, a closely followed 

reference is tĥ at by Hildebrand (1974). Other good references are 

that of Stroud and Secrest (1966), Stroud (1974), and Davis and 

Rabinowitz (1967). 

Generation of the Generalized Gauss Quadrature 

Statement of the Problem. Given a weight function (D(X), a <_ X 

_< b, such that a)(x) >_ 0 (Restriction I), find {xi,a)-j} for i = l,n 

so that 

/ a)(x) g(x) dx = J3 <^^ 9(xJ (Restriction II) (B-1) 
Ji i=l ^ ^ 

holds for all g(x) where g(x) is a polynomial of degree 2n-l or less. 
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Solution. Determine a set of polynomials Qi(x) (i = l,n) 

orthogonal with respect to a)(x). That is 

J a 
Ô -(x) Qj.(x) a)(x) dx = 6.j N. (B-2) 

where 5-jj is the Kronecker delta and N-j is a normalization con­

stant. Then (x.-1"].! are given by the roots of Qn(x). Qo^^i^ ~ ^' "̂'̂  

0,. = 

k=0 "̂  ^ ^ 
(B-3) 

Derivation. Let g(x) be a polynomial of degree £ n + r - 1. By 

simple division of polynomials, we can write the function g(x) as the 

sum 

g(x) = p(x) TT(X) + q(x) , (B-4) 

where Tr(x) is chosen as a polynomial of degree n with roots 

X j , . . . ,X|r| '. 

Tr(x) = (x - x^)(x - x^) ••• (x - x^) . (B-5) 

The polynomial p(x) will be of degree _< r-1 and q(x) will be of 

degree £ n-1 (the exact form of p and q is of no interest to us). 

Now, if we take the expression for g(x), multiply it by a weight 

function a)(x) and integrate, we obtain 

/ w(x) gn+r.i(x) dx = / a)(x) p^,i(x) Tr̂ (x) dx 

/ '̂ (x) ^n-l^^) ^^ • (̂ "̂ ) 
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If we define the notation 

a 

then Equation (B-6) becomes 

E[I(x)] = / a)(x) I(x) dx , (B-7) 

E[gn+^_l(x)] = E[p^_^(x) 7:̂ (x)] + E[q^_j(x)] . (B-8) 

If we choose TTn(x) = On(x), so that Trn(x) is orthogonal with 

respect to a)(x) over the interval [a,b], then 

E[Pr_l(x) 7r̂ (x)] = /* a)(x) p^_;^(x) Q^(x) dx = 0 , (B-9) 

where r - 1 < n. Now we desire a quadrature form such that 

E[gn+r.l(x)] = 2 ^ gn+r-l(>^i) • '̂i (B-10^) 

= E Pr-l(^i) ̂ n^^-) • '̂i + 2 ^n-l^^i) * "̂i (̂ -lOb) 

= Z Pr-l^^i) Qn(^i) • ""i "" E[qn.i(x)] . (B-lOc) 

By subtracting Equation (B-8) from (B-lOc), we find that we must 

require, for all polynomials, Py_i(x), that 

? Pr-l(^-) %^^^) • '̂i = 0 . (B-11) 

This condition can only be met if Qn(xi) = 0; that is, the de­

sired points Xi are the roots of Qn(x). The largest value of r 
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for which the quadrature is exact is for r = n. Therefore, Gauss 

quadrature will integrate polynomials of degree 2n-l or less. 

Now we must pick the weights, OJ-J , so that 

n 
ECqn.i(x)] = .i: qn.i(Xi) • a,. , (B-12) 

where qn-l(x) is an arbitrary polynomial of order n-1 or less. 

Since q^-i may be expanded as a linear sum of the orthogonal poly­

nomials, Qo» Qi..--.Qn-l> it is sufficient to require 

E[Q, (x)] = Z 0.(x.) . u). for k = 0,1,...,n-1 
i=l X 1 1 

(B-13) 

(B-14) 

However, 

E[Qk(x)] = E[Q,̂ (x) Q,(x)] = N, 6^, . 

Thus, we must have 

n 
Z Qk(Xi) • u)̂. = N, 6,̂ , for k = 0,1....,n-1 . (B-15) 

Multiplying Equation (B-15) by [Qk(xj)/N|^] and summing over k, 

we find 

k=0 \ i=l "̂  ^ ^ i=l ^ k=0 \ 

n-1 Qk(x.) = z 
k=0 

N 6, 
0 ko 

_ Q„(x^) 
10-^ N„ = 1 N^ 0 
0 

(B-16) 

Introducing the function 
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n-1 QM Qk(y) 

" ^ k=0 ^k 

we can write Equation (B-16) as 

il 0). D^_i(Xj,x.) = 1 . (B-18) 

To proceed further we must establish the Christoffel-Darboux identi­

ty. Using the standard three-term recurrence relation for orthogonal 

polynomials 

Qn(x) = (X - P̂ ) Qn_i(x) - al_^ 0^_2(x) , (B-19a) 

where 

V l = ̂ -l/^n-2 • (B-19b) 

(Note: the above recurrence relation w i l l be derived in a later sec­

t ion of this appendix), then 

%M Q,.i(y) - Q,.i(x) Q,(y) 

^ - 1 ^ ^ - y^ 

- H Jx - y ) ^^^^ - n̂) Vl(>^) - V l V2(^)^ ^n-l 
n - l 

(y) 

- Q,.i(x) [(y - p,) Q,.i(y) - al^ Q^_^{y)l} (B-20a) 

(^ - y^ Qn-l(>^) Qn-l(^) ' V l t^Qn-l(^) Qn-2(^) ' %-Z^'^ ^-l^^^^ 

(B-20b) 

Qn-l(>^) Qn-l(^) . Qn-l(^) Qn-2(^) ' Qn-2(> )̂ Qn-l(^) V l , , , , , + , . [\i-dOC} 
%-l ^n-r^ y' '̂ n-2 
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— N ; ; : ^ N,.2(^ - y) ^'-'""^ 

\-i %-z ^ - 3 ^ ^ - y^ 

(B-20e) 

n-1 Q,,(x) Q|̂ (y) Q^(x) QQ(y) - QQ(X) Q^(y) 

k=l \ % £ ^^^TT^ ^ " \U - y) ' ' - - ' 

n=,l Qk(x) QJy) (x - p,) - (y - pJ 
= Z ^ ., ^ N V - .S ^ (B-20g) 

k'=l h •" NQ(X - y) 

n^l Q,(x) Q,(y) ^ n^l Q^(x) Q^(y) Q^M Q^jy) 

k=l \ % k=l k̂ "̂ 0 

n-1 QJx) OJy) 

k=0 "̂k " ^ 

Therefore 

. q n ' ^ j ' V l ' ^ j ) - V l ' - ' j ) q n ' ^ i ' 

For i * j and Qn(xj) = Qn(xi) = 0, 

Dr,.i(Xj.,x.) = 0 . (B-22) 

Therefore, returning to Equation (B-18), 

Z -s Dn-l(^j'>^i) = --j Dn-l(>^j'^j) = ^ (^-23) 

or 
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ĵ = ^Vl^^j'^j)] 
-1 g Q^j 1 

k=0 
(B-24) 

Generation of the Generalized Radau Quadrature 

Statement of the Problem. Given a weight function a)(x), 

a _< X _< b, such that a)(x) >̂  0 (Restriction I), find Xo,...,Xn_i 

and â ,...,a:ŷ  SO that 

/ 

b n-1 
a)(x) g(x) dx = Z <̂i g(Xi) + (̂n g(b) (Restriction II) (B-25) 

i=l ^ ^ " 

holds for all g(x) where g(x) is a polynomial of degree 2n-2 or less 

Solution. Determine a set of polynomials Qi(x) (i=l, n-1) 

orthogonal with respect to (JJ*(X) = (b - X) a)(x). That is. 

-/a 
Q.(x) Qj(x) a)*(x) dx = 5.. N. (B-26) 

in-1 
Then the (x. h^j are given by the roots of Qn_i(x), Q^ i^^i) ~ 0| ̂ nd 

0,. 

n-2 
(b • X.) Z %i^0^\ 

^ k=0 "̂  ^ ^. 

-1 for i=l , n-1 (B-27) 

The last weight (UYI) which corresponds to the fixed abscissa (xp 

= b) is given by 

'n ̂  ^ " 1=1 "̂  
(B-28) 
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Derivation. Let us define (n) as the total number of abscissas 

(xi), (r) as the number of "free" abscissas which need to be calcu­

lated, and (n-r) as the number of preassigned abscissas. 

In the Gauss quadrature case, we had 

E[Pr_l(x) 7r̂ (x)] = 0 . (B-29) 

If we predetermine some of the roots of irn(x), then we cannot 

guarantee that u^ix) is still orthogonal to u)(x) over [a,b]. In 

particular, let us preassign (n-r) roots so that 

Tr(x) = iT*(x) v(x) , (B-29a) 

where 

Tr*(x) = (x - xp(x - X2) ••• (x - x^) (B-29b) 

contains the "free" roots, and where 

v(x) = (x - x^^j) ... (x - x^) (B-29c) 

contains the preassigned roots. 

As in the Gauss case, we let g(x) be a polynomial of degree 

<_ n + r-1, and write it as 

g(x) = p(x) Tr(x) + q(x) . (B-4) 

Multiplying both sides by a)(x) and integrating over the limits, we 

obtain 

E[g,+^.l(x)] = E[p^_i(x) iT̂ (x)] + E[q^_j(x)] . (B-8) 

Substituting in for Trn(x) using Equation (B-29a) gives 

E[gn+^.l(x)] = E[p^_^(x) v^_^(x) ir*(x)] + E[q^_j(x)] . (B-30) 
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If we choose •n*(x) = Q (x), so that TV*(X) is orthogonal with respect 

to a)*(x) = a)(x) Vn_r(x) over the interval [a,b], then 

E[Pr.i(x) v^.^(x) Tr*(x)] = j a)*(x) p^_^(x) Q^(x) dx = 0 . (B-31) 
J a 

Now, we desire a quadrature form such that 

E[gn+^_l(x)] = i 0). g(x.) (B-32) 

is exact for a polynomial with degree <_ (n + r-1). This is equiva­

lent to specifying that 

n 
E[p^.l(x) Tr^(x)] = g 0). Pr_i(x^.) TT(X.) . (B-33) 

Since we have already chosen the left-hand side to equal zero (Equa­

tion (B-31)), then the x̂- on the right-hand side are still the 

zeros of Trn(x) = Vp_p(x) Qf.(x). If only one abscissa is speci­

fied, then r = n-1, and the quadrature is exact for polynomials of 

degree _< 2n-2. 

The weights (o)-,-) for Radau quadrature will be derived in a 

slightly different fashion from the Gauss weights. If we evaluate 

both sides of Equation (B-4) at the zeros of Tr(x), we find that 

g(x-j) = q(xi) for i = l,n. Thus, q(x) is a polynomial of degree 

<_ n-1 which interpolates g(x) at x = x-j, i = l,n. We can write 

q(x) as 

n 
q(x) = Z g(Xi) ^i(x) , (B-34a) 

i=l ^ ^ 
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I I 

Noting the similarity between this last expression and Equation 

(B-38), oji becomes 

^ - 1 
'"i ̂  v(x.) Q;(X.) Q^_i(x.) • (^-43) 

To simplify the expression for oi-j further, we need to again refer 

to the Christoffel-Darboux identity. If we insert the equation 

0 = -Q^(y) Qr.i(y) + Q^(y) Q^.i(y) (B-44) 

into the numerator on the right-hand side of the ident i ty (Equation 

(B-39)) and factor, we get 

r -1 Qj(x) Qj(y) 

[Q,(x) - Q,(y)] Q,.i(y) - 10,_^M - Q,.i(y)] Q,(y) 
= N,.i(x - y) • (^-^5) 

By considering the limiting form of the above relation as y ->• x, or 

as (x - y) -»• dx, the identity becomes 

r-1 [Q..(x)]2 

Z - n r : — = N^- [Q;(X) Q^.I(X) - Q;_^(X) Q^(X)] . (B-46) 
1̂  

j=0 "j 'V-1 

If we let X = x-j, it reduces to 

r-1 [Q..(x.)]2 

j=0 ^ \-l " ^ ^^ ^ 

since Qr(xi) = 0. And finally, inserting the above equation into 

Equation (B-43) gives 
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v(x.) 
t 4 [Qj(Xi)]' 

j=0 
, i = l,r (B-48) 

This last equation determines all the weights except those corres­

ponding to the preassigned abscissas. 

In the case when only the abscissa x = b is preassigned, so that 

v(x) = X - b, the corresponding weight is expressed by 

J a 

(B-49) 

Noting that TT(X) = v(x) Qn-i(x) = (x - b) Qn . i ( x ) , and that Ti'(b) 

= Qn- l (b) , then top becomes 

1 r̂  
'̂n = F - ™ - I '̂ (̂ ^ Qn-l(̂ ) d̂  • 

n—i Jo. 
(B-50) 

We recall that the Qn-l(x) above is orthogonal with respect to 

ai*(x), not w(x). To determine an explicit expression for top, we 

refer to the Christoffel-Darboux identity where we have set y = b and 

r = n-1: 

n-2 Q̂ .(x) Q.(b) Q^_2(b) Q^_;^(x) - Q^.]^(b) Q^_2(x) z 
i=0 

N. \.Z^^ - '^ 
(B-51) 

We then multiply the equal members by a)*(x) Qo(x), integrate from a 

to b, and take advantage of the orthogonality of the polynomials to 

obtain 

1 = 
Q^.2(b) rh a)*(x) 0n_i(x) Q^_;^(b) rb a)*(x) Q^.2(x) 

(B-52) 
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Rearranging slightly and then substituting in Equation (B-50) gives 

In comparing the expressions for wp in Equations (B-50) and (B-53), 

we find the identity: 

^ j ^ a.(x) Q.(x) dx = ̂ - ^ / ^ -(X) Q..^(x) dx - Q._^(^bMj(b) 

(B-54) 

I f we substitute Equation (B-54) successively into (B-53), we obtain 

(B-55a) 

% 

rb iv2 N. 

Since the actual weight function being used is a Legendre expansion, 

f(p), the integral of that expansion is 

rh r+l 
j a)(x) dx = / f(p) dp (B-56a) 

= Z -^^-^ f, / PAu) P-(p) dp (B-56b) 

= fg = 1 . (B-56c) 

Therefore, Equation (B-55b) becomes 
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n-2 N. 
0). = 1 - Z n n\ n /n ' (B-57) 
^ " " ^ " fro 0,(1) QH I ( 1 ) ' 

where we have set b = 1. 

Another way to determine the weights corresponding to a pre­

scribed end ordinate or ordinates is to use one or both of the rela­

tions: 

•b 

or 

/ . 

n rh 
Z w. = / co(x) dx (B-58) 
i = l ^ Ji 

n rh 
Z x-o). = I X (o(x) dx , (B-59) 
i=l ^ ̂  Ja 

which require that the error vanish in the expression 

•b n 

)(x) f(x) = Z (̂-i 1'(xJ + error , (B-60) 
a i=l ^ ^ 

when f(x) = 1 and when f(x) = x, respectively. Substituting Equation 

(B-56c) into (B-58), we have 

n-1 
cu = 1 - Z '̂i • (B-61) 
" i = l ^ 

Now all of the above analysis is based on the assumption that a)*(x) 

does not change sign on the interval (a,b); otherwise, the roots of 

Op may be complex or may not lie in the interval (a,b). In order 

for a)*(x) not to change sign, the roots of v(x) must be either a or 
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b, multiple roots of a or b, or perhaps outside of the interval. 

Note: The MORSE code system will reject any N, which is negative. 

Since a)*(x) = (x - b) a)(x) is a negative function, MORSE would theo­

retically generate N, which are unacceptable. Hence, we use the 

weight function -cu*(x) = (b - x) a)(x) where we have factored out a 

-1. 

Equivalence of Moments and Legendre Coefficients 

Gauss Quadrature. We shall use the following form for the nor­

malized Legendre expansion of an angular distribution: 

f(y) = Z ^ ^ ^ ^ Po(u) . (B-62) 
£=0 ^ * * 

From this it follows that 

•i; 

^P=/_\"f(y) 

\ = 1 Hu) Pjj(p) dp and fp = 1 . (B-63) 

The moments of the distribution are defined by 

.) dp . " (B-64) 

If the Legendre polynomials are written 

Pi(u) = Z Pop w" , (B-65) 
* n=0 "̂ 

then it follows simply from Equation (B-63) that 
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^ = Z P̂ p r n^s) p" dp = 2 p M . (B-66) 
* n=0 ̂  J-l n=0 ̂  " 

Equation (B-66) shows how the first n Legendre coefficients of an 

angular distribution may be derived from the first n moments. The 

p 's may be derived from the recurrence relation for Pj,(ii)-

Since 

£P^(p) = {Zi- 1) p P^_^(p) - {Z- I) Pj^_2(p) , (B-67) 

then Equation (B-65) becomes 

V n n _ Zi - 1 ^ „ n+1 I - 1 ^^ ^ n fa «QN 
2^ Pgp u - T— 1^ P o l n ^ • —r~ 2-t Po_? n ^ • (B-68) 
H=0 ^ ^ n=0 ^ ^ ' " ^ n=0 ^ " '̂̂  

As this is an ident i ty, we may separately equate the coeff icients of 

each power of p giving the relat ion 

- P£n = ^ H ^ Pz- l ,n - l - - ^ - ^ P£-2,n • (^"^^^ 

Since Po(y) = 1 and Px(p) = p, then we have as initial values for 

Equation (B-69), p„ „ = 6„„ and Pi „ = S,. ^ \ /> r-Q^p Qp ^l,n In 

We may also derive relations for calculating moments given the 

first n Legendre coefficients of an expansion. Substituting Equation 

(B-62) into (B-64), we have 

M„= Z^^f,£\''P,(ridv. (B.70) 

From the orthogonality property we know that P£(p) is orthogonal to 

any polynomial of degree less than i. Hence 
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/ 

+1 „ 
p" P-(p) dp = 0 for £ > n . (B-71) 

1 ^ 

Then 

where 

are the coefficients for a Legendre expansion of p", that is, 

u" = Z Ppl P.Ctj) • (B-72C) 
z=o "* ^ 

In order to derive the recurrence relation for the p~ 's, we first 
ni 

recall the fundamental recurrence relat ion for Legendre polynomials: 

iZZ+ 1) pP^(p) = H-PsL-l^u) + (Jl+ 1) P4+i(u) . (B-73) 

(Equation (B-73) is equivalent to (B-67)). Substituting Equation 

(B-73) into (B-72b) gives 

Pnl = i r »̂ ""̂  l^*P£-l(^^) ^ (^+ 1) ^ + 1 ^ ^ ' ^ dî  (B-74) 
•'-1 

or, after integrating, 

n-1 - ^ n-1 . 1 + 1 -I fa 7c^ 

PnJl " T i r r r Pn-1,£-1 •" 7 m Pn-l,Ji+l ' ^^'^^^ 

I n i t i a l values for the above recursion formula are pZ = 5^ and 

P M = hv 
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The MORSE code system actually uses the recursion formulas above 

to calculate the moments, given f^,f,,.,.,f. Some example formulas 

for Mp are given below for several values of n: 

MQ = fQ = 1 (B-76a) 

M^ = f^ (B-76b) 

M2 = fg/S + 2 f2/3 (B-76c) 

M3 = 3 f^/5 + 2 f3/5 . (B-76d) 

Radau Quadrature. We will designate the "Radau" moments as M* 2 3 n 

(the moments used for Gauss quadrature will remain as (Mp)). In 

order to calculate the Radau moments, we use an altered weight func­

tion, f*(p), given by 

f*(u) = (1 - u) f(u) , (B-77) 

where we have preassigned an abscissa or point at up ~ ^- ^h^ ̂ O""" 

mula for the moments then becomes 

M„ = J u" f (y) dy = j y"(l - u) f (p) (B-78) 

or 
M, = M^ - M^^i . (B-79) 

Therefore, the Radau moments are calculated simply from the differen­

ces between successive Gauss moments. For example. 
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* 
MQ = 1 - fJ (B-80a) 

M^ = -f^/S + f^ - 2 f2/3 (B-80b) 

M* = fQ/3 - 3 f^/5 + 2 f2/3 - 2 f3/5 . (B-80c) 

Given any set of Legendre coefficients (^Q'^I''* *'^n-P^n^' MORSE 

will first calculate the Gauss moments (MQJM,,. .. ,M p M ) and then 

use Equation (B-79) to calculate the Radau moments (MQ,M,,...,M , ) . 

The number of Legendre coefficients and Gauss moments is always 

greater than the number of Radau moments by one. 

To go in the opposite direction and calculate Legendre coeffi­

cients given Radau moments becomes slightly more complicated. We 

begin by multiplying f*(u) by P|<(IJ) and then integrating between 

the limits -1 to +1: 

j f (y) P,̂ (y) dy = j f( y) P̂ ( y) dy - j yf(y)P^(y)dy 

(B-81a) 

+1 
-f,-t^H^f,l[ .P,(.)Pk(.)d 

(B-81b) 

Substituting Equation (B-73) into the integrand on the right-hand 

side of Equation (B-81b) and integrating again gives 

I +1 *. 1̂  f(y) P^(y)dy=f, . ^ ^ f , . ^ - ^ ^ f , ^ ^ . (B-82) 
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Noting that 

n=0 

we obtain 

k 

I 
n=0 
t Pk„ K-h- 7 ^ fk-1 - ^ F ^ \.l • (8-83) 

Therefore, given any set of Radau moments (Mg,...,M|^) and the 

Legendre coe f f i c ien ts ( f k - l»^k )» ^^^ (k+l) Legendre coe f f i c i en t 

may be calculated. 

Generation of Polynomials Orthogonal with Respect to ai(x) 

Let us now presume that we are given the f i r s t 2n moments, 

Mg,M,,...,M2 1 , of an a rb i t r a r y funct ion a)(x) and are given no addi­

t i ona l information about a)(x). We shal l attempt to derive a set of 

polynomials which are orthogonal with respect to a)(x). (The fo l l ow­

ing analysis on orthogonal polynomials applies to Radau quadrature as 

well as Gauss quadrature--simply replace a)(x) with a)*(x) and Mp 

with M .) Recall ing the notat ion 

b 
E[I(x)] = I I(x) a)(x) dx , (B-84) 

a 

then what we wish is to determine Qo,Qi,...,Qn such that 

Qi(x) = Z a.-b x*" , (B-85) 
^ k=0 ^^ 

with the normalization condi t ion a-j^ = 1 , and such that 
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E[Qi(x) Q^.(x)] = 5.. N. . (B-86) 

Note that 

N^ = E[Q^(x)] = j 0?(x) a)(x) dx . (B-87) 

•̂  a 

Since a)(x) ̂ 0 (Restriction I), then it follows that 

N. > 0 . (B-88) 

Note: Since we wish to relax the non-negativity restriction slightly 

but not completely, we will retain Equation (B-88) as a reasonable 

requirement for a "well-behaved" uj(x). This requirement is essential 

to allow full use of the properties of orthogonal polynomials. It 

is also essential to the eventual use of this development as a Monte 

Carlo selection technique since it is needed to ensure that the 

"probabilities," a»-j, be positive. 

From the properties of orthogonal polynomials we know that an 

arbitrary polynomial of order i, S-j(x), may be expanded in terms of 

the Q polynomials, 

i 
Si(x) = E SikQk(x) . (B-89) 
1 k=0 "̂̂  '̂  

It follows that 

E[S.(x) Qj(x)] = 0 for i < j . (B-90) 

Let us presume that we have obtained the first i polynomials and are 

attempting to derive Q-j+î (x). Due to our normalization condition 

(a-j-j = 1) we have 
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Qi+l(x) = x''̂ ^ + R.(x) , (B-91a) 

where 

Ri(x) = Z a 1 x^ . (B-91b) 
1 k=0 ^^'^ 

Expanding Equation (B-91a) further gives 

Q.^^(x) = x . x"* + R.(x) (B-92a) 

= X . [Q.(x) - Ri_i(x)] + R.(x) (B-92b) 

= X Q.(x) + [R.(x) - X R^._i(x)] . (B-92C) 

The term Ri(x) - x R-|_i(x) is a polynomial of order i and may be 

expanded in terms of the Q's. Thus, 

i 
Oi+l(x) = X Q.(x) + X d̂ ,, Q^(x) . (B-93) 

In order to obtain the familiar three-term recurrence relation for 

orthogonal polynomials (and to have the recurrence relation defined 

in terms of moments), we will multiply Equation (B-93) by a)(x) 

Qj(x) where j <̂  i - 2 (Case 1), j = i - 1 (Case 2), and j = i (Case 

3), and then integrate over the limits from a to b. 

Case 1: For j <_ i - 2, we obtain the orthogonality relation 

E[Qi+i(x) Qj(x)] = 0 = E[x Q.(x) Qj(x)] + ^ d.,̂  E[Q^(x) Q.{x)] 
K — U 

(B-94a) 

= E[Q.(x)(x Qj.(x))] + d.. n. (B-94b) 

dij N. , (B-94C) 
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since x Qj(x) is a polynomial of order _< i-1 and is orthogonal to 

Q-j(x). Since Nj > 0 we must have d-jj = 0. 

If we write 

^i+l=-di,i (S-95) 

and 

a?=-d.^..l , (B-96) 

then Equation (B-93) reduces to 

Qi+l(x) = (x - y.^^) Q.(x) - a] 0._;̂ (x) . (B-97) 

This equation is the basic recurrence relation for our polynomials. 

Case 2: If we multiply Equation (B-93) by a)(x) Qi_i(x) and 

integrate, we have 

E[Q.^^(x) Q^.i(x)] = 0 

= E[x Q.(x) Q^.i(x)] - y.^^ E[Q.(x) ^^_-^W\ - o\ E [ Q 2 _ ^ ( X ) ] 

(B-98a) 

= E[Q.(x)(x Q._^(x))] - a\ N._^ (B-98b) 

i-1 . 
= E[Q.(x){0.(x) - d._^^^ Q^(x)}] - af N._^ (B-98c) 

= E [Q2(X) ] - a? N._^ (B-98d) 

= N. - a? N._j . (B-98e) 

This is easily solved for 
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a? = N./N._^ . (B-99) 

In order to define N̂  (and hence a.) in terms of the moments, we 

use Equation (B-86) in conjunction with (B-92a) to obtain 

N^ = E[Q.(x) Q.(x)] = E[Q.(x) x ] + E[Q.(x) R^._i(x)] (B-lOOa) 

= E[Q.(x) x''] = J2 a., I (.(x) x*" x'' dx = ^ a., M, . .(B-lOOb) 
^ k=0 ^̂  -/a k=0 ^^ ^^ 

Case 3: We will first define 

Li+1 = E[Q.(x) x^-'l] (B-lOla) 

= g j a.̂  M^,.,i . (B-lOlb) 

Then the final orthogonality relation used in defining Qi+i(x) 

gives us_ 

E[Qi+i(x) Q^.(x)] = 0 

= E[Q.^^(x) x""] + E[Q.^j(x) R^_-^M1 (B-102a) 

= E[x Q.(x) x""] - y.^^ E[Q.(x) x''] - a^ E[Q._j(x) x"""] (B-102b) 

= L.^i - y.^1 N. - a^ L. (B-102c) 

or 

•-i+l 2 "-i 
i.l = ̂ 1 7^ - ̂ 'T NT (B-103a) 

•-i+l "-i 
-LA . _ ^ (B-103b) 
'̂i ^i-1 
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Thus far we have formulas to calculate the orthogonal polynomials 

2 
(Q^+l) •>" terms of y-j+i and o:. However, we may also express 

Q-j+1 as a summation 

Qi.l(x) = U a,,i_, x̂  . (B-104) 

In order to calculate the a-j+i k, we will substitute the above 

equation into the orthogonal polynomial recurrence formula (Equation 

(B-97)) 

g ^̂ i,k ̂ ' - ̂  ,4 î.̂  ̂ ' • ̂ î i k?o ^̂ '̂  ̂ ' • '^ § ^-1'^ ̂ ' • 
(B-105) 

Equating the coefficients of x^ on both sides of the equation gives 

^ > l . k = ^i,k-l- ^i+1 ̂ . k - ̂ i ^i-l.k • (^-1°^) 

Let us now review the procedure for obtaining Q-j+i(x) given 

Q. (x). One first uses the moments MQ,...,M2^ and the values of a. ĵ  

from Q. to calculate N. (Equation (B-lOOb)). The term N., along with 

2 
the previously determined N. ,, allows one to calculate a^ (Equation 

(B-99)). The moments MQ,. .. ,M2̂ -+i and the values of a.^ from QAx) 

determine L-^, (Equation (B-lOlb)). This in turn allows the calcula-
2 

tion of y.,1 (Equation (B-103a)). With a^ and y.,̂ ,, the recurrence 
1+i 1 i+i 

relation (Equation (B-97)) determines Q-^.i(x). In sum, the moments 

MQ,M, ,...,M2 1 of a)(x) allow the determination of the orthogonal 

polynomials QQ(X),Q^(x),...,Q^(x). 
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Properties of the Roots of the Orthogonal Polynomials 

The roots of the orthogonal polynomials have two useful proper­

ties which we shall prove. 

Lemma I: Qp(x) has n distinct, real roots which "interleave" 

with the roots of Qp_i(x); that is, between any two adjacent roots 

of Op_i(x) there is one and only one root of Qp(x), and further­

more, there is one root of Qn(x) greater than the largest root of 

Qp_]^(x) and one smaller than the least root of Qp_i(x). Like­

wise, there is one and only one root of Qp-i(x) between any two 

adjacent roots of Qp(x). 

Proof: We assume the Lemma to be true for Qp_i and Qp_2. 

Let x, > Xp > ••• > X -, be the roots of Qp_i. Then it follows that 

the sequence Qp_2(xi), Qn.?^^?^'' "'^n-2^^n-l^ alternates in sign. 

Since 

Qn(^i) = (̂i -^n) Qn-l(^) " ^ 1 ^ 2 ( ^ 1 ) ^^-^^''^ 

= " V l Qn-2(^i) • (B-I07b) 

The sequence Qp(x^) ,Qp(x2) > • • • .Qp(x^_-i) also alternates in sign. 

This establishes that there is at least one root of Qp between any 

two roots of Qp_i- Because the Q^ 's are normalized to a-. = 1, they 

are all positive at +« and alternate in sign at -<». Qp_2 has no 

root between x-j and +«; hence Qp_2(xi) > 0. But a , > 0 (because 

'̂ n-1 '^ ^ "̂̂  '̂ n-2 "̂  '̂ '̂ therefore, Qp(xi) < 0 and Q must have at 

least one root greater than x-. Similar reasoning leads to the con­

clusion that Qp_2(^p-i)» '^n-2^^ '* ~"̂ ' "̂̂  '^n^^ '*' ""̂  ^^^^ ^^^ ^̂ "̂ ^ 
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sign while 0 {x •,) is of the opposite sign. Thus, Q must have at 

least one root between x , and -<*>. Since this gives us n intervals 

where Qp must have "at least one" root, it is clear that Qp has n 

distinct roots which interleave with the roots of Qp-i-

The proof by induction may be completed by using similar argu­

ments to show that one of the two roots of 02(x) lies above the 

single root of Qi(x) and one below it. 

Lemma II: The n roots of Op(x) lie in the interval (a,b). 

Proof: Assume that Qn(x) has only s changes of sign in the 

interval (a,b) at the points x, ,X2,...,x . Let 

6(x) = (x - Xj)(x - X2)(x - X3),...,(x - x^) , (B-108) 

then 9(x) Qp(x) does not change sign in the interval (a,b). It 

follows that* 

E[e(x) Q^(x)] = I 6(x) Q^(x) a)(x) dx * 0 . (B-109) 
•'a 

However, 9(x) is a polynomial of order s £ n. Since Qp(x) is or­

thogonal to all polynomials of order less than n, we must have s = n, 

thus proving the assertion. 

*Note: This step relies on the requirement that aj(x) be non-
negative. We wish to relax this restriction somewhat but not com-
p etely. Since Lemma II expresses a property which will be essen­
tial to the use of this development as a Monte Carlo selection tech­
nique, we will use this property as one of the requirements for a 
"well-behaved" a)(x) with which we shall replace the non-negativity 
restriction. 
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The Replacement of the Non-Negativity Requirement, u)(x) > 0 

Gauss Quadrature. All of the preceding material in this Appendix 

was derived under the assumption that the weight function (aj(x)) is 

strictly positive. However, in the MORSE code system, we do not work 

with the original angular distribution (which is everywhere posi­

tive), but with a truncated Legendre expansion which approximates the 

angular distribution and may not be everywhere positive. In order to 

ensure that the truncated expansion originates from at least one 

function which is everywhere positive, the non-negativity requirement 

may be replaced by two restrictions: 

1) Ni > 0 ; i = l,...,n-l and 

2) Qn(x) has n roots in the interval (-1,+1). 

We will first show how the restriction, N̂  > 0, may be stated in a 

different form. The quantity N-j was previously defined as 

•• •/: 'i N. = / Q?(x) a)(x) dx , (B-llOa) 

where 

' k ^iM = E a., x' . (B-llOb) 
^ k=0 ^^ 

Substituting Equation (B-llOb) into (B-llOa) gives 

•b /-b 
Q. (x) a)(x) dx + a.^ / 

•b o rb 

^ = a^o / Qi(x) a)(x) dx + a.^ / x Q.(x) (o(x) dx 

r° ? /"̂  i 
+ a^2 I ^ Qi(x) a)(x) dx + ••• + a.^ / x Q̂ .(x) a)(x) dx . 

y a -'a 
(B-111) 
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Since Oi(x) is orthogonal to all polynomials of degree less than i, 

then the first i integrals equal zero and the last integral (with 

coefficient â i = 1) equals N-j. If we again use Equation 

(B-llOb) and substitute it into (B-111), and noting that 

"̂  -a 
/ x'̂  aj(x) dx , (B-112) 

J ̂  

then we obtain 

1 
Ni = a.^ E a.^ M̂  + a-^ ^ a.^ M^̂ ^ + a.2 E â .̂  M k+2 

+ • • • • ^ a . . | : a.^ M^^. . (B-113) 

Since the first i integrals in Equation (B-111) were equal to zero, 

then the first i sets of summations are also equal to zero: 

i 
E a,.. M. = 0 (B-114a) 
k=0 ^^ ^ 

E a..,. M.̂ , = 0 (B-114b) 
k=0 ^^ ^^ 

E â k M̂ ,. - N. (B-114C) 

or, in the matrix form CM-j][A-j] = [B ] , 
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% ^ ^2 

h M2 M3 M i+1 

M. M. i+1 M 2i 

iO 

i l 

i i _ j 

~0 ^ 

0 

• 
• 
• 

0 

-'J 
(Note that Equation (B-114c) is the same as (B-lOOb).) The determin­

ant of the matrix [M-j] is the Gram determinant of the functions 

l,x,x2,... jx''. In view of the fact that these functions are lin­

early independent, then the determinant of [M-j] is greater than 

zero, and [M-j] is nonsingular. Since N-j is required to be 

greater than zero, then we can obtain a unique and non-trivial 

solution (Q-j) to the above system of equations. 

Now, let us assume for the moment that N̂  = 0 such that [M-j] 

[A-j] = 0. Referring back to Equation (B-113), we note that for 

Ni = 0, 

i i i 
E a^^ M^^. = -a.Q ̂ EQ a.^ M^ - a.^ E ai^ \ ^ i 

"^i,i-l ^ 0 ^̂'"̂  ̂'̂ '̂'"̂  ' 
(B-115) 

Since the summation on the left-hand side of Equation (B-115) is a 

linear combination of the f i r s t i sets of summations with coe f f i ­

cients - a i o , - a i i , . . . , - a i i _ i , then the last row of the matrix 
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[Mi] is linearly dependent on the other rows. It then follows that 

the determinant of [Mi] equals zero and the solution will either be 

non-existent or non-unique. 

In summary, then, the sequence of polynomials (Qi(x)) which 

satisfies 

E[Qi(x) Qj.(x)] = S.. N. (B-116) 

with Ni > 0, is unique if and only if the determinates Mi , i = 

0,1,2,... are greater than zero. 

The second requirement which replaces the non-negativity re­

quirement is that the roots lie between the limits (-1,+1). However 

instead of actually checking the position of each root, the MORSE 

code system utilizes the principle stated below. 

Lemma III (Irving, 1970): The roots of Qp(x) will be contained 

in the interval (a,b) if and only if the sign of Qi(b) equals +1 

and the sign of Qi(a) equals (-1)^ for i = l,n. 

Proof: Assume that the roots of Qp-i(x) lie in the interval 

(a,b). From Lemma I, we know that only one root of Qp lies above 

the largest root of Qp_i. Since sign (Qp(x -»•+«»)) = +1, the 

largest root of Qp will be less than b if and only if sign 

(Qn{b)) = +1. 

Likewise, there is only one root of Qp below the lowest root 

of Qp-i- This root will be greater than a if and only if sign 

(Qp(a)) = sign (Qn(x ^ — ) ) = (-1)". 

Since the lemma is fairly obvious for Qi(x), the proof by 

induction is complete. 
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Radau Quadrature. This type quadrature uses the same res t r ic ­

tion to replace the non-negativity requirement as Gauss quadrature; 

i . e . , 

1) Ni > 0 , i = l , . . . , n -2 and 

2) Qp-i(x) has n-1 roots in the interval (-1,+1). 

These restrictions force the first n-1 weights and abscissas to be 

positive. However, they put no limits on the value of the weight 

((î ) corresponding to the abscissa Xp = 1. Therefore, the third 

restriction for Radau quadrature is that 

3) ojp > 0. 

2 
Limits of y. and a-

Gauss Quadrature. In the calculations leading to the general­

ized Gaussian quadrature, we obtained two restrictions which had to 

be satisfied in order to have a positive distribution located on the 

interval (-1,+1). These restrictions were: 

1) Ni > 0. 

2) All the roots of Qi(x) lie in the interval (-1,+1). 

Let us determine first what limitations these two restrictions place 

2 
on the quantities y., a.. Consider f i r s t the effect of adding an 

inf initesimal amount Ay to y i . We have 

Q.(x) = (x - y.) Q._^{x) - a?_;^ Q._2(x) (B-117) 

and 
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0*(x) = (x - y. - Ay) Qi_i(x) - a?_j Qi_2(x) = Qi(x) - Ay Qi_i(x) . 

(B-118) 

If Q. has a root at XQ, then Q. will have a root at XQ + AXg 

Qi(xQ + AXQ) = 0 = Q.(XQ + AXQ) - Ay Qi_i(xQ + AXQ) . (B-119) 

If we expand the right-hand side and keep only first-order terms 

0 = Q.(XQ) + AXQ Q!(XQ) - Ay Qi_i(XQ) = AXQ Q!(XQ) - Ay Qi.i(XQ) 

(B-120) 
or 

Qi I(XQ) 
AXn = - V — ^ Ay . (B-121) 

° Qi(xo) 

I 

Since Q.(x) is positive as x approaches +», then Qi(xQ) > 0 at 

XQ equal to the largest root of Q-. At successively smaller roots of 

Q., the sign of Q.(x) alternates from positive to negative. Q. ,(x) 

is similarly positive at +«. Also, it has no roots greater than the 

largest root of Q.. Therefore, Qi_i(x) > 0 at the largest root of 

Q.. Because the roots of Q. -, "interleave" with the roots of Q., the 

sign of Qi_i(x) must alternative at successive roots of Qi(x). 

Therefore, at all roots of Qi(x) we must have: 

Qi.i(x) 

Qi(x) 

or, going back to Equation (B-121), 

> 0 (B-122) 
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dXn 
^ > o . (B-123) 

Therefore, as yi is increased, the roots of Qi(x) s h i f t to the 

r i g h t , and, as yi is decreased, the roots s h i f t downward. I f yi 

i s s teadi ly increased, the largest root of Qi w i l l eventual ly 

equal 1. This point is determined by 

Q.(l) = 0 = (1 - Mi) Q i . i ( l ) - V J Q . _ 2 ( 1 ) ( B - 1 2 4 ) 

or 

2 Qi-2(^^ 
î = ^ - ^i-1 Q-jTTT • (^-^^^^ 

This is clearly the maximum value of yi, which will generate posi­

tivity in the interval (-1,+1). Likewise, there is a minimum value 

at which the lowest root of Qi occurs at x = -1: 

Q.(-l) = 0 = (-1 - Ui) Qi.i(-l) - V l Qi_2(-1) (B-126) 

or 

min _ -, 2 ^i-2^"-^^ , r , , , - , v 
î - -̂  - '̂ i-l 0..^(-l) • (^-^27) 

Note that 

Qi.2(l) 

«i = QTrfrrr > ° ' ^^"^^^^ 

due to the positivity of the functions as they approach +« and that 

Qi.2(-i) 
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due to their alternation in sign at -» . Since ai_i > 0, we have 

the following picture on a yi-axis 

mm max 

-1 .1 . al^ 3i 1 - a^ i -1 '̂i +1 

Now that we have upper and lower limits for y., what can we say 

2 2 2 
about at? Since a: = N./N. ,, restriction I implies that a. > 0. We 
can obtain an upper limit to a. by setting y?^? = J^ly For larger 

values of a., ]SY} > y?^^, which means that there is no value of 
1 1+i 1+i 

y.^, which will allow all the roots of Qi^i(x) to lie inside (-1,+1). 

Thus, 

2 Qi_i(+i) 2 Q i . i ( - i ) 
^ • (''i^max Q,(+l) = "^ " ^'^i^max Q.(-l) (B-130a) 

2 = (af) 
max 

Qi.l(+1) Q i . i ( - l ) 

"OTFTy" •^TRT 

( . ^ 
max 

2/ 
Qi.l(+1) Q i . i ( - l ) 
"QjTfTl QTTTr 

(B-130b) 

(B-130C) 

We can work back from the limits on y. and a. to obtain limits on the 

moments. Substituting the following two equations: 

-i = Ni/^-1 (B-131) 
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i -1 
aik \,^ - M2i - E a^k M^,. since a.. = 1 (B-132) 

k=0 

in to the equation for a- below 

0 < â  < 2/ 
Q i ^ ( ^ 

Qi(+1) 
Q i - i ( - i ) 
Qi( - l ) 

gives 

(B-133) 

i -1 2 ^ - 1 
k?o 'ik V i < '̂ 2i < Qi.il^l) Qi.i(-l) 

i -1 
E a ^ M . (B-134) 
k=0 ^^ ^ ^ 

•QTFIT QTFiy 

This last equation gives the upper and lower l i m i t s on the "even-

numbered" moments. For the "odd-numbered" moments, we reca l l that 

Li+1 Li 
M+1 N, N i -1 

(B-135) 

Rearranging, and set t ing L i+ i to i t s maximum, we obtain 

.max ., / maxx , i i 
h + 1 = ^ ( ^ i + i ) ^ N - ^ 

(B-136a) 

= N: 1 - a 2 Qi-1 (1)1 
i "07(11 + L. at (B-136b) 

Since L i+ i is calculated by the expression 

i i -1 
Li+1 = Z aik M^+i+i = M2i+1 ^ ^ 3 ^ik ^k+i+1 ' (B-137) 

then the upper limit for an "odd-numbered" moment is 
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^Ul < ^ 
2 Qi-1 (1) 

M "^TTTT 
+ L. at 

i-1 

k?o '̂-̂  '^^i^i 
(B-138) 

If we go through the same procedure again with L^j? and u'^+p we 

obtain the lower limit for the moments; 

M2i+i > ^• - 1 - a' 2 Q i - i ( - ^ ) 
i Oi(-l) 

2 '̂"̂  Li <̂i - g ^ a.^ M^^.^^ (B-139) 

To obtain the limits on the Legendre coefficients, take the set 

of moments already determined M,,M2,...,M2^_n combined with M^?^ and 

convert from moments to Legendre coefficients. This gives f"̂ ^̂ . 

When M,,M2,...,M2. , are combined with 1^1" and converted, one 

obtains f m m 
2i • 

Radau Quadrature. In developing Radau quadrature, we obtained 

three restr ict ions which had to be sat isf ied in order to have a posi­

t ive d is t r ibut ion: 

1) Ni > 0, 

2) a l l the roots of Qi(x) l i e in the interval (-1,+1), and 

3) ojn > 0. 

The first two restrictions are the same as those used for Gauss qua­

drature, and hence we could use them to obtain the same limits on 

2 
y. and a. as shown in the preceding section. However, we will find 

that the third restriction (ojp >̂  0) is the most significant because 

2 
it places even tighter limits on y. and at. 

We recall that the formula for the Radau weight (up) corres­

ponding to the preset abscissa, Xp = 1, is 
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"n = 1 - S 
n-1 N i-1 
i t iO, . i ( i>o,( i) 

Limiting ojp to positive values only, we have 

(B-140) 

^•-1 N. 

' ^ ' i4lQi.i(l)Qi(l) Qp_2(i) Vi^i) 
(B-141) 

or, after inserting the three-term recurrence formula for Qp_i(l)» 

N n-2 

^n-2 

n-2 
1- E 

N i-1 
.^1 Q-rrrr^TTTT 

•1 

< (1 - ̂ n-l) V2(l) 

- V 2 %-3 (1) • (S-142) 

Solving for yp_i, and then setting the counter n-1 to an arbitrary 

counter i, gives 

max MIOA y f 2 1 - 2 p / - I X 

î ^^ - ''i-i QT^nr- ^i-i(^) 
(B-143a) 

where 

"i-i 

' ^ Wi.i(i)] 
1 ^ . ' ' 

k î «k.i(i)'Vi> 
(B-143b) 

Comparing Equation (B-143a) with (B-125), we note that 

max _ / max\ ^ /-i\ 
^̂i - (̂i ^Gauss - ^--l^l) 

(B-144) 

mm The formula for y. remains the same as in the Gauss quadrature case 

(B-145) min , 2 Qi-2(- l ) ^i = -1 - o-̂
•-1 Q . _ i ( - 1 ) 
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We next calculate an average yi: 

avg 
max , m m 
y. + U . 
1̂ 1̂ 

'i-1 

avg 

Qi 2(1) Oi 2(-^) 
+ G..^(l) /2 

= (^r)Gauss-Gi-l(l)/2 

(B-146a) 

(B-146b) 

(B-146C) 

2 , The lower limit for a. is zero (since N. > 0). To calculate the 

upper limit for a., we set 

max 
^i+1 

mm 
^•+1 

2 "^i-l^l) 2 Qj-i^-i) 
' i Q i ( - l ) 

(B-147a) 

(B-147b) 

Therefore, 

0 < at < 2 
Qi- i ( i ) Qi - i ( - i ) •i-1 1-1 • ^ G . ( l ) . (B-148) 

Substituting Equation (B-131) and (B-132) into (B-148), we find the 

upper and lower limits to the even-numbered moments: 

2 aik V i < M2i < (Ni.l)(<^?)max " ,^! ̂ 'k ̂ k+i ' 
k=0 k=0 

(B-149) 

The l imi ts on the odd-numbered moments are obtained in the same way 

as in the Gauss quadrature case: 
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Ni(y^l;)H.H. <M2.,i<N.(y^,^;[) + H. (B-I50a) 

where 

2 i-1 
S- = h <̂i - E Q a.^ M^^.^^ (B-150b) 

and y'jjj and y'I'Jjf are given by Equations (B-145) and (B-143a), 

respectively. 
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APPENDIX C 

IMPLEMENTATION OF RADAU QUADRATURE INTO THE MORSE CODE SYSTEM 

The MORSE code system currently uses Gauss quadrature to calcu­

late discrete directions and weights from Legendre polynomial expan­

sions of group-to-group cross sections. The subroutines in the code 

which perform these calculations are XSEC5, ANGLES, GETMUS, FIND, Q, 

BADMOM, and MAMENT. The flowchart in Figure C-1 shows the calling 

sequence between these different subroutines in MORSE. A brief 

description of each subroutine follows: 

XSEC5 retrieves the cross section data from mass-storage tapes, calls 

ANGLES to calculate the scattering angles and probabilities, and 

then stores the calculated results on a different mass-storage 

tape. It prints the angles and probabilities if requested by 

the user. 

ANGLES is the executive routine for the generalized quadrature tech­

nique. It first computes the moments from the given Legendre 

coefficients. It then calls GETMUS to obtain the recurrence 

relations for the orthogonal polynomials, calls FIND to calcu­

late the roots of the orthogonal polynomials, and then computes 

the weight factors associated with each root. 
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XSEC5 

GETMUS 

ANGLES 

FIND BADMOM 

Q 

MAMENT 

Q 

Q 

Figure C-1. Flowchart of quadrature subroutines in MORSE. 



GETMUS calculates the quantities ui and a-j used in the recurrence 

relation for the orthogonal polynomials, Q-j(x). It uses the 

moments, M̂ -, of the angular distribution as input. It also 

2 
checks to determine if o^ > 0. 

FIND first determines if the roots of Q|_(x) will lie within the 

range (-1,+1) by using the property of orthogonal polynomials 

that the roots of Q|_ and QL.J "interleave". If the roots 

meet this criterion, then the subroutine proceeds to calculate 

them. 

Q uses the recurrence relation for the orthogonal polynomials to cal­

culate the value of QL(u) for some specified order L and 

specified angle u. 

BADMOM calculates and prints any "bad" Legendre coefficients which 

have been rejected because of implied negativity in the cross 
2 

sections (occurs when a-j is negative of if the roots do not 

lie between (-1,+!)). The allowed limits on the coefficients 

are also calculated and printed for the user. 

MAMENT is called from BADMOM to convert cross-section moments to 

Legendre coefficients. 
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It is not within the bounds of our intent to provide thorough 

and detailed descriptions of the subroutines above. An adequate 

understanding of the subroutines may be easily obtained by referring 

to the documentation by Emmett (1975), Irving (1970), and Dupree and 

Lighthill (1982). 

In Appendix B, the theory and use of Radau quadrature was devel­

oped as an extension of Gauss quadrature. Therefore, the implementa­

tion of Radau quadrature into MORSE was treated in the same way. 

Except for a few side comments, it is thought that the theory of 

Radau quadrature presented in Appendix B, along with the ample docu­

mentation available on Gauss quadrature and the various subroutines, 

should be sufficient for the user to understand the update coding for 

Radau quadrature. Note: this update coding does not include coding 

for the extended transport cross section correction. 

Additional relevant comments on the code: 

(1) Only the subroutines XSEC5, ANGLES, GETMUS, MAMENT, and BADMOM 

were updated for Radau quadrature. Subroutines FIND and Q were 

not altered. The subroutines are provided in this appendix in 

alphabetical order. 

(2) All updates are identified in columns 73-78 of the code by the 

word RADAU. Coding left unaltered is identified by the word 

MORSE. All code lines are numbered for easy reference. 

(3) Recall that for n points or scattering angles, we require a P^ 

expansion with N=2n-1 for Gauss quadrature, or with N=2n-2 for 

Radau quadrature. However, if the expansion is one order less 
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than that required to obtain n points, then the code will effec­

tively compute an average N^^ Legendre coefficient {f^) from 

certain limiting equations to increase the expansion to P^. 

Some examples of possible expansion orders for various (n) are 

shown below: 

Expansion Orders 
Scatter ing 

Angles 

1 

2 

3 

4 

Gauss 

Pi 

P2.P3 

P^.Ps 

P6.P7 

Radau 

— 

Pl>P2 

Pa.P^ 

P5.P6 

(4) The type of quadrature method is chosen locally in XSEC5 by set­

ting a flag (IGOR) defined in line reference RADAU-195 and 213: 

IGOR = +1 , code chooses Radau quadrature. 

IGOR = -1 , code chooses Gauss quadrature. 

IGOR = 0 , code chooses quadrature method based on the order 

of the Legendre expansion (N) and the number of 

scattering angles desired (n): 

N = odd Gauss 

N > 2n - 1 Gauss 
N = even 

N < 2n - 1 Radau 
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Gauss quadrature is used for N > 2n - 1 (where n is even) in 

order to ensure that we use the maximum number of coefficients. 

For example, suppose we input Pe expansions into the code but we 

only wish to compute three scattering angles. Gauss quadrature 

would use fo,...,f5 to compute the scattering angles while 

Radau quadrature would use only fo...-.f4. 

(5) Since the theory for Radau quadrature is not valid for any roots 

which coincide with preassigned abscissas, we perform a precheck 

on fi to see if it originated from a delta function expansion 

near UQ = 1. This precheck is performed in subroutine ANGLES 

starting at line reference RADAU-3. The characteristic of a 

delta function expansion is that its coefficients all equal 1. 

(6) In Gauss quadrature, "impossible" coefficients are checked for 
2 

by seeing if a^ > 0 and the roots are between (-1,+1). In 

Radau quadrature, we have an additional restriction that the 

weight corresponding to ^{MQ - 1) is nonnegative. This check 

is performed in ANGLES at line reference RADAU-78. 
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SUBROUTINE ANGLES(IG1,MX) 
C(»1M0N/INPUT/IADJM,NSTRT,NM0ST,NITS .NQUIT.ISTAT.NSPLT.NKILL,IRS, 

1 IRRA.NPAST.NOLEAK.IEBIAS.NKCALC.NORMF. 
2 MEDIA,NMIX,MEDALB.MXREG.MFISTP,NNGA.NGGA,NCOEF,NSCT,MAXGP,IRDSG. 
3 ISTR,IFMU,IMOM,IPRIN,IPDN, 
5 ISOUR.NGPFS.ISBUS.NSOUR, 
6 ND,NNE,NE.MT,NA,NR£SP,NEX,NEXND,IFLAG(16), 
7 THAX. TCUT, WTSTRT, AGSTRT, XSTRT, YSTRT, Z STRT, UINP. VINP. WINP. RCMC. 
8 IXTAPE.NG,IFTG.IGG.NNUC,IDT,NRP.NIM.N2M,NSGPS,TITLE(20),DAT,JFTG, 
9 KFTG,LFTG 

COMMON/PERM/INN,lOUT 
CC»0!ON/MEANS/NM,NV,XMn(U) ,VAE(13) ,XN0BML(13) 
C»!M0N/RESULT/P0INT( 14) .WEIGHT( 1 4 ) . R00T( 14 .14 ) 
CC»IM0N/MCMENT/NM0M.3MC»!NT(25) ,F(25) 
C0MMON/DRTACS/NR8.NR9,NRIO 
C(»lM0N/RADAn/IG0R 
DIMENSION P 1 ( 2 5 ) , P 2 ( 2 5 ) 

CHECK IF LEGENDRE COEFFICIENTS ORIGINATED T&CM 
DELTA FUNCTION EXPANSION 

IF(ABS(F(1)).LE.0.999) GO TO 205 
POINT(l) - SIGN(F(1),1.0) 
WEIGHT(l) - 1.0 
NV - 0 
IF(IPUN.LE.O) GO TO 200 
WRITE(IOUT,1000)IG1,MX 

1000 FORMAT(/* DELTA FUNCTION EXPANSION FOUND FOR TRANSFER NO. - *I3, 
1* MATERIAL - *I3) 
RETURN 200 

205 

210 
215 

220 

225 
230 

235 
240 
245 

C 
C 

CALCUUTE GAUSS MOMENTS 

NFM - NMCW-1 
PIO - 0.0 
Pl(l) - 1.0 
XMOMNT(l) - F(l) 
IF(NM(»4-2) 245,210,210 
DO 215 L-2,NM0M 
P1(L) - 0.0 
DO 240 N-2,NM0M 
P20 - Pl(l)/3.0 
P2(l) - PIO + 0.4*P1(2) 
IF( NM(»f-2) 245,230,220 
DO 225 L-2,NFM 
FL - L 
P2(L) - PL*P1(L-1)/(2.0*FL-1.0) + (FL+1.0)*Pl(L+l)/(2.0*FL+3.0) 
FNF - NMOM 
P2(NM(»!) - FNF*P1(NFM)/(2.0*FHF-1.0) 
XMOMNT(N) - P20 
DO 235 L-1,NM0M 
XMOMNT(N) - XMOMNT(N) + P2(L)*F(L) 
P1(L) - P2(L) 
PIO - P20 
CONTINUE 
IF(IGOR.EQ.-I) 265.255 

CALCULATE RADAU MOMENTS 

RADAU 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
RADAU 
MORSE 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
HORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
RADAU 
RADAU 
RADAU 

1 
2858 
2859 
2860 
2861 
2862 
2863 
2864 
2865 
2866 
2867 
2868 
2869 
2870 
2871 

2 
2872 

3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

2874 
2875 
2876 
2877 
2878 
2879 
2880 
2881 
2882 
2883 
2884 
2885 
2886 
2887 
2888 
2889 
2890 
2891 
2892 
2893 
2894 
20 
21 
22 
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255 NMOM - NMOM-1 
DO 260 N-1,NM0M 

260 XMOMHT(N) - XM0MNT(N)-XMCMNT(N+1) 
XM0MNr(NM0M+l) - 0.0 
IF(NMOM) 125,125,265 

265 CONTINUE 
C 
C 
C 
C 
C 
C 
C 
C 
C 

CALCULATE COEFFICIENTS USED IN ORTHOGONAL POLYNOIIAL 
RECURRENCE RELATION. DEFINITIONS -
NM- NUMBER OF MU VALUES ACCEPTED 
NV- NUMBER OF VAR VALUES ACCEPTED 
NM- NV OR NV+1 
NP- NUMBER OF ANGLES IN DISCRETE DISTRIBUTION 
NACC-NUMBER OF MWIENTS ACCEPTED 

DO 10 K-1,NSCT 
WEIGHT(K) - 0 . 0 

10 POINT(K) - 0 . 0 
CALL GETMUS 
IF(IMOM)20,20,15 

15 WRITE(IOUT,1010)(XMCMNT(I),I-1.NMOM) 
1010 P0RMAT(9H MCWENTS ,4X,1P10E12.5 / (1X,11E12.5) ) 

C 
C FIND ABSCISSAS OF ORTHOGONAL POLTOOMIALS 
C 

20 IF(IGOR.EQ.-I) 25 ,23 
23 IF(XMU(1).LT.F(1)) 25 ,125 
25 R00T(1,1)-XMU(1) 

IF(NM-1)40,40,30 
30 DO 35 L-2,SM 

CALL FIND(L,NCK) 
IF(NCK)35,35,120 

35 CONTINUE 
40 IF(NM-NV)45,45,55 
45 XMU(NV+1)—VAR(NV)*(Q(NV-l.l.)/Q(NV,l.)-K)(NV-l,-l.)/Q(NV,-l.))/2. 

IF(IGOR.EQ.-l) 50,46 
46 QK - Q(l,1.0) 

SUM - 1.0-(1.0-F(1))/QK 
IF(NV-l) 49,49,47 

47 DO 48 K - 2,NV 
QKMl - QK 
QK - Q(K,1.0) 

48 SUM - SUM-XN0RML(K)/(QKM1*QK) 
49 XMU(NV+1) - XMU(NV+l)-XNORML(NV)/(QK*QK*SnM*2.0) 
50 CALL FIND(NV+1,NCK) 

IF(NCK) 55,55,53 
53 NV - NV-1 
55 NP-NV+1 

NACC-HM+NV 
DO 60 K-1,NP 

60 POINT(K)-ROOT(K,NP) 
IF(IGOR.EQ.-I) 62,81 

C CALCULATE GAUSS WEIGHTS 

62 IF(NV) 65,65,70 
65 WEIGHT(l) - 1.0 

RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
MORSE 
HORSE 
HORSE 
HORSE 
MORSE 
RADAU 
MORSE 
MORSE 
HORSE 
HORSE 
HORSE 
HORSE 
HORSE 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
HORSE 
MORSE 
HORSE 
HORSE 
HORSE 
MORSE 
MORSE 
HORSE 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
HORSE 
MORSE 
MORSE 
MORSE 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 

23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

2895 
2896 
2897 
2898 
2899 
33 

2900 
2901 
2902 
2903 
2904 
2905 
2906 
34 
35 
36 

2908 
2909 
2910 
2911 
2912 
2913 
2914 
2915 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

2919 
2920 
2921 
2922 
49 
50 
51 
52 
53 
54 
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70 

75 
80 

GO TO 91 
DO 80 K-1,NP 
SUM - 1.0 
DO 75 L-1,NV 
SUH - SDH + (Q(L,P0INT(K)))**2/XN0RML(L) 
WEIGHT(K) - 1.0/SUM 
GO TO 91 

CALCULATE RADAU WEIGHTS 

81 IF(NV) 82,82,83 
82 WEIGHT(l) - (1.0-F(1))/(1.0-POINT(1)) 

GO TO 86 
83 DO 85 K-1,NP 

SUH - 1.0/(1.0-F(1)) 
DO 84 L-1,NV 

84 SUH - SUM+(Q(L,P0INT(K)))**2/XN0RHL(L) 
WEIGHT(K) - 1.0/(SUM*(1.0-POINT(K))) 

85 CONTINUE 
86 P0INT(NP+1) - 1.0 

SUM - 0.0 
DO 87 K-1,NP 

87 SUM - SUM+WEIGHT(K) 
WEIGHT(NP+1) - l.O-SUM 
NP - NP+1 
IF(WEIGHT(NP)) 88,91,91 

88 IF(IPUN) 90,90,89 
89 WRITE(IOUT,1040) IG1,MX 
1040 FORMATC/* NEGATIVE WEIGHT FOUND FOR TRANSFER NO. - *X3, 

1* MATERIAL - *I3) 
90 NV - (NP+NM-3)/2 

NM - NP+NM-3-NV 
IF(NM) 125,125,40 

C 
C ARRANGE POINTS AND WEIGHTS IN ORDER OF DECREASING PROBABILITY 

91 DO 100 K-1,NP 
BIG - WEIGHTCK) 
J - K 
DO 95 L-K,NP 
IFCWEIGHT(L)-BIG) 95,95,92 
BIG - WEIGHT(L) 
J - L 
CONTINUE 
WEIGHTCJ) - WEIGHTCK) 
WEIGHTCK) - BIG 
SPOINT - POINTCK) 
POINTCK) - POINTCJ) 
POINT(J) - SPOINT 
IFCNACC-NMOM)105,115,115 
IFCIPUN)115,115.110 
CALL BAmOM 
WRITECIOUT,1020)NACC,IGl,MX 

1020 FORMATC* NUMBER OF MOMENTS ACCEPTED 
1* TRANSFER NO. - *I3, 
2* MATERIAL - *I3, 
3//38H * * * * * 

115 IFCIGOR.EQ.I) 116,118 

92 

95 

100 

105 
110 

*I3, 

*//) 

RADAU 
RADAU 
RADAU 
MORSE 
HORSE 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
MORSE 
MORSE 
MORSE 
RADAU 
RADAU 
MORSE 
MORSE 
MORSE 
HORSE 
HORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
HORSE 
MORSE 
MORSE 
MORSE 
RADAU 

56 
57 
58 

2929 
2930 
59 
60 
61 
62 
63 
64 
65 
66 
67 
66 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 

2932 
2933 
2934 
90 
91 

2937 
2938 
2939 
2940 
2941 
2942 
2943 
2944 
2945 
2946 
2947 
2948 
2949 
2950 
2951 
92 
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• 

NV - NV+1 
NMOT! • NHCM+l 
RETURN 
lM-L-1 
NV-L-1 
GO TO 45 
CONTINUE 
NM - 0 
NV - 0 
NP - 1 
NACC - 0 
POINTCl) - CF(l)-1.0)/2.0 
GO TO 82 
END 

RADAU 
RADAU 
RADAU 
MORSE 
MORSE 
MORSE 
MORSE 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
MORSE 

93 
94 
95 

2953 
2954 
2955 
2956 
96 
97 
98 
99 
100 
101 

2967 

• 
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SUBROUTINE BADMOM 
REAL MU,MOMENT,NORM,MUT,MUB,MOM,HaHT,H(»(B,L 
COMMON/PERM/INN,lOUT 
C0MMON/H0MENT/NMOM,M0MENTC25),F(25) 
COHMON/MEANS/NN,N,HOC 14),VAR(13),NORMC13) 
C0MMON/QAL/QRC14),A(13,14),LC14) 
C(»iMON/RADAU/IGOR 
NM - N + NN 
NBAD - NM -̂  1 
NMl - N - 1 
NPl - N + 1 
WRITECIOUT,1010)NBAD 

1010 F0RMATC14H0 MWIENTC ,I2,28H) IS BAD, OUTPUT FRCW BAMICM) 
IFCIGOR.EQ.I) GO TO 100 
IFCN)25.10.25 

10 IFCNN)20.15.20 
15 HUT - 1. 

MOB - -1. 
HU(l) - HOtENTCl) 
MOMT - 1. 
MOffl - -1. 
GO TO 40 

20 VART - 2./(l./Q(l,l.) - 1./QC1,-1.)) 
VARB - 0. 
MOMB - M0MENTC1)**2 
MOMT - MOMB * VART 
GO TO 55 

25 IFCN-NN)45,30,45 
30 MUT - 1. - VARCN)*QCNM1,1.)/QCN,1.) 
: THE 2N-)'l MOMENT IS BAD 

MUB - -1. - VAR(N)*QCNM1,-1.)/Q(N,-1.) 
MDCNPl) - QR(NPl) - QRCN) 
MOM - NORM(N) * QR(N) 
DO 35 K-1,N 

35 MOM - MOM - ACN,K) * MOMENT(N-)K) 
MOMT - MOM + NORM(N) * MUT 
MOiB - MOM * NORMCN) * MUB 

C READY TO OUTPUT M0MB,M0MENTCNBAD),M0MT,MDB,MD(NP1),MUT 
40 WRITECIOUT,1020)MDB,NPl,MUCNP1),MUT 
1020 F0RMAT(9H MUBOT -,F15.9,5H MUC,12, 4H) - ,F14.9,9H MUTOP -, 

19) 
GOTO 60 

45 VART - 2./CQ(N,1.)/QCNP1,1.) - QCN,-1.)/Q(NP1,-1.)) 
C NBAD IS 2N+2, VARCN+1) IS BAD 

HOHB - 0. 
VARB - 0. 
DO 50 K-1,NP1 

50 HOMB - MOMB - ACNPI.K) * MOMEHTCN+K) 
MOMT - MCWB + VART * NORMC N) 

C READY TO OUTPUT MOMB,MOMENTCNBAD),MOMT,VAR(NPl),VART 
55 WRITECIOUT,1030)VARB,NPl,VARCNPl),VART 
1030 FORMATC 9H VARBOT -,F15.9,5H VAR(,I2,3H) -,F15.9,10H VARTOP -

1.9) 
60 MOt - MOMENTCNBAD) 

FA - FCNBAD) 
MCMENT CNBAD) - M(»tT 
CALL MAMENT CNBAD) 
FT - F(NBAD) 

MORSE 
MORSE 
MORSE 
MORSE 
HORSE 
MORSE 
RADAU 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
HORSE 
RADAU 
HORSE 
HORSE 
HORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
HORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
HORSE 

F16. MORSE 
MORSE 
HORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
HORSE 

,F15 MORSE 
MORSE 
HORSE 
MORSE 
MORSE 
MORSE 
HORSE 

2968 
2969 
2970 
2971 
2972 
2973 
102 

2974 
2975 
2976 
2977 
2978 
2979 
103 

2980 
2981 
2982 
2983 
2984 
2985 
2986 
2987 
2988 
2989 
2990 
2991 
2992 
2993 
2994 
2995 
2996 
2997 
2998 
2999 
3000 
3001 
3002 
3003 
3004 
3005 
3006 
3007 
3008 
3009 
3010 
3011 
3012 
3013 
3014 
3015 
3016 
3017 
3018 
3019 
3020 
3021 
3022 
3023 
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64 
65 

70 

75 

HOMENT(NBAD) - MOMB 
CALL HAHENT CNBAD) 
FB - FCNBAD) 
MOMENTCNBAD) - MCM 
FCNBAD) - FA 
IFCIGOR.EQ.-I) 6 4 , 6 2 

62 FA - FCNBAD-^1) 
CI - NBAD 
C2 - Cl+1.0 
C3 - 2 ,0*01+1.0 
FZERO - 1 .0 
IFCNBAD.NE.l) FZERO-FCNBAD-1) 
FUN - F(NBAD)-C1*FZER0/C3 
C4 - C 3 * C F U N - F T ) / C 2 
C5 - C 3 * C F U N - F B ) / C 2 
FB - C4 
FT - 05 
IFCHCM-HOMT) 70,70,65 
DEIM - HOI - HOMT 
DELF - FA - FT 
IFCIGOR.EQ.I) DELF - FA-FB 
GO TO 75 
DEIM - MCM - MCMB 
DELF - FA -FB 
IFCIGOR.EQ.I) DELF - FA-FT 
RANGEM - MOMT - MOMB 
RANGEF - FT - FB 

NOW READY TO OUTPUT FB.FA.FT 
WRITECIOUT. 1040)M(»<B.NBAD,MC»fENTCNBAD),MOMT,RANGEM,DEUI 

1040 FORMATC 9H MOMBOT -,F15.9,5H MOMC,I2,3H) -,F15.9,10H MOMTOP 
1.9,5X,8HRANGE - ,F9.6,11H ERROR - ,F9.6) 
IFCIGOR.EQ.I) NBAD-NBAD-fl 
WRITECIOUT,1050)FB,NBAD,FA,FT.RANGEF,DELF 

1050 FORMATC 9H FBOT -,F15.9,5H FC,I2,3H) -,F15.9,9H FTOP -
19,5X,8HRANGE - ,F9.6,11H ERROR • ,F9.6) 
RETURN 
CALCULATE UPPER AND LOWER BOUNDARIES FOR RADAU QUADRATURE 
IFCN) 125,110,125 
IF(NN) 120,115,120 
THE FIRST MOMENT IS BAD 
MUT - FCl) 
MUB - -1.0 
MUCl) - QRCl) 
HOMT - Cl.0-FC1))*FC1) 
MOMB - FCD-l.O 
GO TO 40 

: THE SECOND HOMENT IS BAD 
120 QI - QC 1,1.0) 

ADD - C1.0-FC1))/CQI*QI*C1.0-C1.0-FC1))/QI)) 
VART - C2.0)/CADD+1.0/QI-1.0/QCl,-1.0)) 
VARB - 0.0 
MOIB - QRC1)*M0MENT(1) 
MOMT - M0MB+VART*C1.0-FC1)) 
GO TO 55 

125 IFCN-NN) 145,130,145 
: THE 2N+1 MOMENT IS BAD 
130 MUB - -1.0-VARCN)*QCNH1,-1.0)/QCN,-1.0) 

QIMl - 1.0 

100 
110 

115 

HORSE 
MORSE 
MORSE 
HORSE 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
HORSE 
HORSE 
RADAU 
HORSE 
HORSE 
HORSE 
RADAU 
HORSE 
HORSE 
MORSE 
HORSE 

,P15 MORSE 
MORSE 
RADAU 
HORSE 

F16. HORSE 
HORSE 
MORSE 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 

3024 
3025 
3026 
3027 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 

3029 
3030 

3031 
3032 
3033 

3034 
3035 
3036 
3037 
3038 
3039 
118 
3040 
3041 
3042 
3043 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
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132 

133 
134 

135 

145 

146 

150 

QI - QC1, 1 . 0 ) 
SUM - 1.0-C1.0-FC1))/QI 
IFCN-1) 134,134,132 
DO 133 I - 2,N 
QIMl - QI 
QI - QCI,1.0) 
SUM - SUM-N0RMCI-1)/CQIM1*QI) 
MUT - 1.0-VARCN)*QIM1/QI-N0RMCN)/CQI*QI*SUM) 
MUCNPl) - Q R C N P D - Q R C N ) 
MOf - NORMCN)*QR(N) 
DO 135 K - 1,N 
MOM - MOM-ACN,K)*MffllENTCN+K) 
M(MT - M(»i+NORHCN)*MUT 
MOMB - M0M+NORM(N)*MUB 
GO TO 40 
THE 2N-f2 MOMENT IS BAD 
QI - QC1,1.0) 
SUM - 1 . 0 - ( 1 . 0 - F ( 1 ) ) / Q I 
DO 146 I - 2,NPl 
QMl - QI 
QI - QCI,1 .0) 
SUM - SnM-NORMCl-l)/CQIMl*QI) 
SUM - NORM(N)/CQI*QI*SUH) 
VART - C 2 . 0 ) / C S U M + Q C N , 1 . 0 ) / Q C N P 1 . 1 . 0 ) - Q C N , - 1 . 0 ) / Q C N P 1 , - 1 . 0 ) ) 
VARB - 0 . 0 
MOMB - 0 . 0 
DO 150 K - 1,NP1 
MOMB - M0MB-ACNP1,K)*M0MENTCN+K) 
HOMT - M(MB+VART*N0RMCN) 
GO TO 55 
END 

RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 

140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
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10 

15 
20 

SUBROUTINE FINDCL,NF) 
COMMON/INPUT/IAD JM.NSTRT,NHOST,NITS,NQUIT,ISTAT,NSPLT,NKILL, IRS, 

1 IRRA,NPAST,NOLEAK,IEBIAS,NKCALC.NORHF, 
2 MEDU,NMIX,MEDALB,MXREG,HFISTP,NNGA,NG6A,NC0EF,NSCT,MAXGP,IRDS6. 
3 ISTR,IFMU,IM{»I,IPRIN,IPUH, 
5 ISOUR,NGPFS,ISBUS,NSOUR, 
6 ND,NNE,NE,NT,NA,NRESP,NEX,NEXND,IFLAGC16), 
7 niAX,TCUT,WTSTRT,AGSTRT,XSTRT,YSTRT,ZSTRT,UINP,VINP,WINP,ROMC, 
8 IXTAPE,NG,IFTG,IGG,NNUC,IDT,NRP,NIM,N2M,NSGPS,TITLEC20),DAT,JFTG, 
9 KFTG,LFTG 

COMMON/PERM/INN,lOUT 
C(»JM0N/RESULT/P0INTC14) ,WEIGHT(14) ,R00TCl4,14) 
DIMENSION VALUEC13) 
m i - L - 1 
DO 10 I -1 ,U11 
VALDE(I) - Q C L , R 0 0 T C I , L M 1 ) ) 
R 0 0 T C L , L M 1 ) - 1 .0 
QTOP - Q C L . I . O ) 
I F C Q T 0 P ) 1 5 , 1 5 , 3 0 
IFCIPUN)25,25,20 
WRITECIOUT,1010)L 

1010 FORMATC IIHO— 
25 

-FIND,/12H ROOTS OF Q C , I 2 , 1 S H ) EXTEND BEYOND +1) 
NF-1 
RETURN 
XLOW - - 1 . 
QLOH - Q C L , - 1 . ) 
I F C Q L O W * V A L U E C 1 ) ) 5 0 , 5 0 . 3 5 
IF(IPDN)45,45.40 
WRITECIOUT.1020)L 

1020 FORMATCllHO FIND,/12H ROOTS OF Q(,I2,1SH) EXTEND BEYOND 
45 NF-1 

RETURN 
DO 85 K-1,L 
XUP - ROOTCK.LMl) 
NSP-0 
NSP-NSP+1 
XTRY - C XLOW + XUP )*0.5 
QTRY - QCL,XTRY) 
IFCQTRY*QL0W)65,80,60 
XLOW - XTRY 
QLOW - QTRY 
GO TO 70 
XUP - XTRY 
IFCXUP-XLOW)75,80,75 
IFCNSP-48) 55,80,80 
ROOTCK.L) - XTRY 
XLOW - ROOTCK.LMl) 
QLOW - VALUECK) 
R00TCL,LM1) - 0.0 
NF - 0 
RETURN 
END 

30 

35 
40 

50 

55 

60 

65 
70 
75 
80 

85 

-1) 

HORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
HORSE 
MORSE 
MORSE 
HORSE 
HORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
HORSE 
HORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 

3045 
3046 
3047 
3048 
3049 
3050 
3051 
3052 
3053 
3054 
3055 
3056 
3057 
3058 
3059 
3060 
3061 
3062 
3063 
3064 
3065 
3066 
3067 
3068 
3069 
3070 
3071 
3072 
3073 
3074 
3075 
3076 
3077 
3078 
3079 
3080 
3081 
3082 
3083 
3084 
3085 
3086 
3087 
3088 
3089 
3090 
3091 
3092 
3093 
3094 
3095 
3096 
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SUBROUTINE GETMUS 
COMMON/INPUT/IADJM,NSTRT,NMOST,NITS,NQUIT,ISTAT,NSPLT,NKILL,IRS, 

1 IRRA,NPAST,NOL£AK,IEBIAS,NKCALC,NORMF, 
2 HEDU,NHIX,MEDALB,MXREG,HFISTP,NNGA,NGGA,NCOEF,NSCT,HAXGP,IRDSG, 
3 ISTR,IFMU,IM(»1,IPRIN,IPUN, 
5 ISOnR,NGPFS,ISBIAS,NSOUR, 
6 ND,NNE,NE,NT,NA,NRESP,NEX,NEXND,IFLAGC16), 
7 TMAX,TCUT,WTSTRT,AGSTRT,XSTRT,YSTRT,ZSTRT,UINP,VINP,WINP,R(»!C, 
8 IXTAPE,NG,IFTG,IGG,NNUC,IDT,NRP,N1H,N2M,NSGPS,TITLEC20),DAT,JFTG, 
9 KFTG,LFTG 

CCWHON/PERM/INN,lOUT 
C(»iHON/HOHENT/NHOM,MaMENTC25) , F C 2 5 ) 
CfflIM0N/MEANS/NM,NV,MUCl4),SIGC13),N0RMC13) 
C(»IM0N/QAL/QC14) ,AC13,14) , L C 1 4 ) 
COIMON/RAOAU/IGOR 
REAL HOMENT,L,MU,NORH 
NV-NMCM/2 
NM-NMOM-NV 

: INITIALIZE VARIABLES TO ZERO 
DO 10 I-1,NV 
MUCI) - 0 . 0 
SIGCI) - 0 . 0 
NORHCI) - 0 . 0 
LCD - 0 . 0 
Q(I) - 0 . 0 
DO 10 R«1,NM 

10 A(I,K) - 0 . 0 
L C N M ) - 0 . 
Q C N M ) - 0 . 
M U C N M ) - 0 . 0 
IFCIGOR.EQ.-I) 12 ,21 

Z START CALCULATING COEFFICIENTS FOR GAUSS QUADRATURE 
12 MUCl) - MCMENTCl) 

Q( l ) - MCMENTCl) 
LCD - MCMENTCl) 
AC 1,1) - -MCMENTCD 
AC1,2) - 1 .0 
SIGCl) - M0MENTC2) - M0MENTCl)**2 
NORHCI) - SIGCl) 
IFCSIGC1))85,S5,15 

15 IFCNV-1)55,55,20 

20 L(2) - M0MENTC3) - M0MENTC1)*MC»1ENTC2) 
QC2) - L C 2 ) / N 0 R M ( 1 ) 

HUC2) - QC2) - Q C D 
AC2,3) - 1 . 
AC2,2) - -QC2) 
AC2,1) - CMOMENTC1)*MOMENT(3)-MOMEHTC2)**2)/SIGC1) 
GO TO 24 

0 START CALCULATING COEFFICIENTS FOR RADAU QUADRATURE 
21 LCD - MCMENTCD 

QCD - MCMENTCD/Cl.O-FCD) 
MUCl) - QCD 
A(l,l) - -QCD 
ACl,2) - 1.0 
NORHCI) - -QC1)*MCWENTC1)+M(»1ENTC2) 
SIGCl) - NORMCD/Cl.O-FCD) 
IFCSIGCD) 85,85,22 

22 IFCNV-1) 55,55,23 
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MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
RADAU 
MORSE 
MORSE 
MORSE 
RADAU 
MORSE 
MORSE 
MORSE 
HORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
RADAU 
RADAU 
RADAU 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
HORSE 
HORSE 
HORSE 
HORSE 
HORSE 
MORSE 
MORSE 
MORSE 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 

3268 
3269 
3270 
3271 
3272 
3273 
3274 
3275 
3276 
3277 
3278 
3279 
3280 
3281 
170 

3282 
3283 
3284 
171 

3285 
3286 
3287 
3288 
3289 
3290 
3291 
3292 
3293 
3294 
3295 
172 
173 
174 

3297 
3298 
3299 
3300 
3301 
3302 
3303 
3304 
3305 
3306 
3307 
3308 
3309 
3310 
175 
176 
177 
178 
179 
180 
181 
182 
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24 

25 
30 

35 

40 

45 

50 
55 
60 
65 
70 

75 
80 
85 

90 
95 

100 
105 

110 

115 
120 

AC IHl,K)*M0MENT(IMl+K) 

23 LC2) • -QC1)*MCWENTC2)+H0HENTC3) 
QC2) - LC2)/N0RHCl) 
HUC2) - Q ( 2 ) - Q C D 
AC2,1) - MHC2)*QCl)-SIGCl) 
A(2,2) - -QC2) 
AC2,3) - 1.0 
N0RMC2) - M(»1ENTC4)+AC2,2)*H(»IENTC3)+A(2,1)*MCMENT(2) 
SIG(2) - NORMC2)/NORMCD 
I F C S I G ( 2 ) ) 9 0 , 9 0 , 2 5 
IF(NV-2)55,55,30 
DO 50 1-3,NV 
IMl - I - 1 
IPl - I + 1 
DO 35 K-1,I 
LCD - LCD 
QCD - LCD/NORMCIMI) 
HUCI) - QCD - QCIHI) 
ACI,IP1) - 1.0 
ACI.D - -Q(I) 
DO 40 K-2,IM1 
ACI,K) - ACIM1,K-1) - MU(I)*ACIH1,K) - SIGCIM1)*ACI-2,K) 
ACl.D - -MUCI)*ACIM1,1) - SIGCIHD*AC 1-2,1) 
DO 45 K - 1 , I P 1 
NORH(I) - NORMCD + ACI,K)*MC»!ENTCIM1+K) 
SIGCD - NORHCI)/NORMCIMl) 
IF(SIGCD)95,95,50 
CONTINUE 
IFCNM-NV)75,75,60 
irCNV)75,75,65 
DO 70 K-1,NM 
LCNM)-LCNM)+A(NV,K)*M0MENTCNV+K) 
QCNM)-LCNM)/HORMCNV) 
MUCNM)-QCNH)-QCNV) 
IFCIFHU)105,80,105 
RETURN 
I - 1 
GO TO 95 
1 - 2 
NH-I 
NV-I-1 
IFCIPUN)120,120,100 
WRITECIOUT,1030)I 
WRITECIOUT, 1010)(HUCI), SIGCl),NORMC I),LCI),QCD, I-1,NV) 
WRITECIOUT,1040)MUCNM),LCNM),Q(NM) 

1040 F0RMATC1PE24.5,48X2E24.5) 
IFCNV)120,120,110 
DO 115 I-1,NV 
IPl - I + 1 
WRITECIOUT,1020)1,(AC I,K),K-1,IPl) 
RETURN 

1010 FORMATC/* INTERMEDIATE RESULTS OF MEANS CALCULATION*/13X, 4HHEA 
1N,19X,8HVARUNCE,16X,13HN0RHALI2ATI0N,12X,1HL,23X,1HQ/C1P5E24.5)) 

1020 FORMATC* COEFFICIENTS OF ORTHOGONAL POLYNOMIALS, I, A(I,K)*/I5,lOX 
11P7E15.5/C8E15.5)) 

1030 FORMATC 13H0 GETMUS/lOH VARIANCEC ,12, 22H) IS NEGATIVE OR ZERO 
1.) 
END 
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RADAU 
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RADAU 
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MORSE 
MORSE 
MORSE 
MORSE 
HORSE 
HORSE 
HORSE 
HORSE 
MORSE 
MORSE 
MORSE 
MORSE 
HORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
HORSE 
HORSE 
MORSE 
MORSE 
HORSE 
HORSE 
HORSE 
HORSE 
HORSE 
HORSE 
MORSE 
MORSE 
MORSE 
HORSE 
MORSE 
MORSE 
MORSE 
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HORSE 
HORSE 
MORSE 
MORSE 
MORSE 
MORSE 
HORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 

186 
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188 
189 
190 
191 
192 
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3313 
3314 
3315 
3316 
3317 
3318 
3319 
3320 
3321 
3322 
3323 
3324 
3325 
3326 
3327 
3328 
3329 
3330 
3331 
3332 
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3334 
3335 
3336 
3337 
3338 
3339 
3340 
3341 
3342 
3343 
3344 
3345 
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3355 
3356 
3357 
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3360 
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SUBROUTINE MAMENTCNMO) 
C(»1M0N/M0MENT/NH{»(,XM(»!NTC25) ,FC25) 
COmON/RADAU/IGOR 
DIMENSION P0C25), P1C25), P2C25) 
DO 10 I-1,NH0 
PICD-O. 
POCD-0. 
POO-1. 
PlCD-l. 
PIO-O. 
IFCNHO.EQ.D FCl) - XHOMNTCD 
IFCNM0-2)40,15,15 
DO 35 L-2,NM0 
FL-L 
P20—CFL-1.)/FL*POO 

P2Cl)-C2*rL-l.)/FL*P10-CFL-l.)/FL*P0Cl) 
DO 20 N-2,L 
P2CN)-C2*FL-1)/FL*P1CN-1)-(FL-1)/FL*P0CN) 
DO 30 I-1,L 
POCD-PICD 
P1CI)-P2CI) 
POO-PIO 
P10-P20 
FCNMO) - PIO 
IFCIGOR.EQ.I) FCNMO) - P10*Cl.-FCl)) 
DO 37 M-1,NH0 
FCNMO) - FCNMO)+P2CH)*XMOMNTCH) 
RETURN 
END 

HORSE 
HORSE 
RADAU 
HORSE 
HORSE 
HORSE 
HORSE 
MORSE 
MORSE 
MORSE 
RADAU 
MORSE 
MORSE 
MORSE 
MORSE 
HORSE 
HORSE 
HORSE 
HORSE 
MORSE 
MORSE 
MORSE 
HORSE 
RADAU 
RADAU 
RADAU 
RADAU 
MORSE 
MORSE 

3592 
3593 

3594 
3595 
3596 
3597 
3598 
3599 
3600 

3602 
3603 
3604 
3605 
3606 
3607 
3608 
3612 
3613 
3614 
3615 
3616 

3617 
3618 
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FUNCTION QCND,X) 
C(»1M0N/MEAHS/NM,NV,XMUC 14) .VARC 13) ,XNORHL( 13) 
A - 1 
B - X-XMU(l) 
IF(ND-1)25,20 ,10 

10 DO 15 1-2,ND 
C - ((X-XMU(I))*B ) - VAR(I-1)*A 
A - B 

15 B - C 
20 Q - B 

RETURN 
25 Q - A 

RETURN 
END 

MORSE 
HORSE 
HORSE 
MORSE 
MORSE 
HORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 

3619 
3620 
3621 
3622 
3623 
3624 
3625 
3626 
3627 
3628 
3629 
3630 
3631 
3632 
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SUBROUTINE XSEC5(NRD,NR,MWA,SIGN,L1,L2,L3,L4,L5,L8 
* ,SIGNG,SIGG,NSGL,NSGN,NRE,NMTG,L10,KD1,KD2,KD3) 

C TO CONVERT CROSS SECTIONS ON DISK 8 TO ANGLES AND PROBABILITIES 
C AND PUT THE RESULTS ON DISK 9 
C Ll-MAX OF NIM OR N2H 
C L2-MAX OF NCOEF OR (2*NSCT+1) 
C L3-MEDIA 
C L4-NNGA-fNGGA 
C L5-NSGPS, NO OF SUPERGROUPS 
C NRD IS TO CONTAIN POINTERS TO FINAL CROSS SECTIONS STORED ON DISK9 
C L8-3+4*NSCT+2*NPL 
C NSGN GIVES SUPERGROUP NUMBER OF EACH GROUP 
C NSGL GIVES GPOUP LIMITS OF EACH SUPERGROUP 

COMMON/PERM/INN,lOUT 
CCMMON/MOMENT/NHCM,XM0MNT(25),F(25) 
C0MMON/RESULT/POINTC14),WEIGHTC14),R00TC14,14) 
C0MM0N/HEANS/ITEST,NANS,MEANC14),VARC13),N0RMALC13) 
COMMON/INPUT/IADJH,NSTRT,NHOST,NITS.NQUIT.ISTAT.NSPLT.NKILL, IRS, 
1 IRRA,NPAST,NOLEAK,IEBIAS,NKCALC,NORMF, 
2 MEDIA,NHIX,HEDALB,HXREG,HFISTF,NNGA,NGGA,NCOEF,NSCT,HAXGP,IRDSG, 
3 ISTR,IFMU,IMa!,IPRIN,IPnN, 
5 XSOUR,NGPFS,ISBIAS,NSOUR, 
6 ND,NNE,NE,NT,NA,NRESP,NEX,NEXND,IFLAGC16), 
7 TMAX,TCUT,WTSTRT,AGSTRT,XSTRT,YSTRT,Z STRT,UINP,VINP,WINP, RCMC, 
8 IXTAPE,NG,IFTG,IGG,NNUC,IDT,NRP,NIM,N2M,NSGPS,TITLEC20),DAT,JFTG, 
9 KFTG,LFTG 
COHMON/DRTACS/NRS,NR9,NRIO 
COMMON/RADAU/IGOR 
DIMENSION NRC1),MWACL4,L3),SIGNCL1,L2),NRDCL8,L3,L5) 
DIMENSION SIGNGCKD1,KD2),SIGGCL1,L2),NSGLCL5,2),NSGNCNMTG), 

* NRECL10,KD3,L5) 
LEVEL 2,NRD,NR.MWA,SIGN,SIGNG.SIGG,NSGL,NSGN,NRE 

C KDl-NGGA 
C KD2-NNGA 
C KD3-MEDIA 

DO 90 1-1,25 
XHOTINTCD-O.O 

90 F C D - O . O 
NR9-1 
NPL-NCOEF-1 
DO 110 J-1,MEDU 
IF(NNGA.LE.0)G0 TO 109 
IF(NGGA.LE.O)GO TO 601 
IRP-2+NPL+(J-l)*(3+2*NPL) 
NRS-NR(IRP) 
N-NNGA*NGGA 
CALL REED(SIGNG,N,S) 
M2-NSGN(NNGA) 
Hl-NSGN(l) 
DO 116 L6-M1,M2 
N2-NSGL(L6,2) 
IF(N2.GT.NNGA)N2-NNGA 
N1-NSGL(L6,1) 
LZ-CN2-N1+1)*NGGA 
NRDC2+2*NSCT+NPL,J,L6)-NR9 

116 CALL RITECSIGNGC1,N1),U,9) 
IFCISTR.LE.0)G0 TO 601 
WRITECIOUT,26)J 

HORSE 
HORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
HORSE 
HORSE 
MORSE 
HORSE 
HORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
RADAU 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
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MORSE 
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MORSE 
HORSE 
HORSE 
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MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
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5121 
5122 
5123 
5124 
5125 
5126 
5127 
5128 
5129 
5130 
5131 
5132 
5133 
5134 
5135 
5136 
5137 
5138 
5139 
5140 
5141 
5142 
5143 
5144 
5145 
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5147 
5148 
5149 
5150 
5151 
5152 
5153 
5155 
5156 
5157 
5158 
5159 
5160 
5161 
5162 
5163 
5164 
5165 
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5167 
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5172 
5173 
5174 
5175 
5176 
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26 FORMATCIHl,* NEUTRON TO GAMMA PROBABILITIES FOR MATERIAL NUMBER»I5 
1/) 
DO 600 I-1,NNGA 
WRITECIOUT,30)I 

30 F0RMATC6H GROUP,15,3X9HSIQ1A N-G) 
600 WRITECIOUT,21)CSIGNGCK,I),K-l.NGGA) 
601 CONTINUE 

H2-NSGNCNNGA) 
Hl-NSGNCl) 
DO 500 L6-M1,M2 
N2-NSGLCL6,2) 
IF(N2.GT.NNGA)N2-NNGA 
N1-NSGL(L6,1) 
N3-MWA(N1-1,J)+1 
IF(N1.EQ.1)N3-1 
N4-MWA(N2,J) 
LZ-N4-N3+1 
NSKIP-N3-1 
DO 100 K-1,NCOEF 
NR10-NRE(K,J,L6) 

100 CALL REED(SIGN(1,K),LZ,10) 
IF(NC0EF.LE.1)G0 TO 131 
DO 512 I-1,LZ 
DO 511 K-2,NCOEF 
IF(SIGN(I,1).NE.O.O)GO TO 521 
SIGNCl,K)-0.0 
GO TO 522 

521 SIGNCI,K)-SIGNCI,K)/SIGN(I,1) 
522 L-K-1 
511 CONTINUE 
512 CONTINUE 

IF(NPL.LE.0)GO TO 131 
IF(ISTAT.LE.0)GO TO 131 
DO 403 K-1,NPL 
NRD(1+2*NSCT+K,J,L6)"NR9 

403 CALL RITE(SIGN(1,K+1),U,9) 
IF(ISTR.LE.0)GO TO 131 
WRITE(IOUT,25)J 

25 FORMATdHl,* LEGENDRE COEFFICIENTS FOR MATERIAL NUMBER*I5/) 
DO 502 K-1,NPL 
DO 503 I-N1,N2 
WRITE(I0UT,22)K,I 
LZ1-MWA(I-1,J)+1 
IFCi.EQ.DLZl-l 
LZ2-MWACl,J) 
LZl-LZl-NSKIP 
L22-LZ2-NSKIP 

503 WRITECIOUT,21)(SIGNCL,K+1),L-LZ1,LZ2) 
502 CONTINUE 

22 FORHATC4H PL-,I5,3X6HGROUP-,I5,9H PCOEFN) 
131 CONTINUE 

C SET FUGS FOR GAUSS OR RADAU QUADRATURE 
IGOR - 1 
IFCNSCT.EQ.l) GO TO 320 
IFCIGOR) 320,300,330 

300 K - H0DCNPL,2) 
IFCK) 320,310,320 

310 IF(2*NSCT-1-NPL) 320,320,330 

HORSE 
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HORSE 
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HORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
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5178 
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5190 
5191 
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5195 
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5205 
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320 IGOR - -1 
NMm - 2*NSCT-1 
WRITECIOUT,1000) 

1000 FORMATC/* POINTS AND WEIGHTS OBTAINED BY GAUSS QUADRATURE */) 
GO TO 340 

330 IGOR - 1 
NMCW - 2*NSCT-2 
WRITECIOUT,1010) 

1010 FORMATC/* POINTS AND WEIGHTS OBTAINED BY RADAU QUADRATURE */) 
340 IFCNPL.LT.NMOM) NMOM-NPL 

NC-2*NSCT+1 
IF(NCOEF.GT.NC)NC-NCOEF 
DO 102 I-1,U 
IFCNSCT.LE.O)GO TO 102 

IFCNCOEF.LE.DGO TO 104 

DO 101 K-2,NCOEF 
L-K-1 

101 F(L)-SIGN(I,K)/(2*K-1) 
DO 117 K-2,NC 

117 SIGN(I,K)-0.0 
DO 115 L-l.NHCM 
IF(FCL).NE.0)GO TO 114 

115 CONTINUE 
104 SIGN(I,2+NSCT)—1. 

GO TO 102 
114 CALL ANGLES(I,J) 

SIGN(I,2)-P0INT(1) 
SIGN(I,2+NSCT)-WEIGHT(1) 
IF(NANS.EQ.0)G0 TO 108 
DO 105 K-1,NANS 
SIGN(I,2+K)-P0INT(1+K) 

105 SIGN(I,2+NSCT+K)-SIGNCI,1+NSCT+K)+WEIGHT(1+K) 
108 C-SIGN(I,2-fNSCT'«-NANS) 

NPl-NANS+1 
DO 106 K-1,NPl 
INDX-1+NSCT+K 

106 SIGN(I,INDX)-SIGN(I,INDX)/C 
102 CONTINUE 

: TO NORMALIZE THE NEUTRON P-ZERO MATRIX 
DO 120 K-N1,N2 
IND1^«A( K-1, J)+2-N3+l 
IF(K.EQ.l)INDl-2 
IND2-MWA(K,J)-N3+1 
SUM-SIGN(IND1-1,1) 
IF(IND2.LT.INDDGO TO 122 

DO 121 I-IND1,IND2 
SUM-SUM+SIGN(I,1) 

121 CONTINUE 
122 INDl-INDl-1 

DO 123 I-IND1,IND2 
123 SIGN(I,1)-SIGN(I,1)/SUM 
120 CONTINUE 

NRD(1,J.L6)-NR9 
CALL RITE(SIGN(1.1).LZ,9) 
IF(NSCT.LE.0)GO TO 404 
DO 401 K-1,NSCT 
NRD(1+K,J,L6)-NR9 

401 CALL RITECSIGNC 1,K+1),LZ,9) 
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MORSE 
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RADAU 
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MORSE 
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201 
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5256 
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5261 
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501 
20 

21 
550 

24 

23 

DO 402 K-1,NSCT 
NRDC1+NSCT+K,J,L6)-NR9 

402 CALL RITECSIGNC l.K+1+NSCT).LZ,9) 
404 IFCCIPRIN.LE.O).AND.CISTR.LE.O))GO TO 500 

IFCISTR.LE.0)G0 TO 550 
PRINT 46 

46 FORMATClHl) 
WRITECIOUT,15)J 

15 FORMATClHO.* 2-D CROSS SECTIONS FOR MATERIAL NUMBER*I5/) 
DO 501 I-N1,N2 
WRITECIOUT,20)1 
U1-MWACI-1,J)+1 
IFCi.EQ.DLZl-l 
LZ2-MWACI,J) 
LZl-LZl-NSKIP 
LZ2-LZ2-NSKIP 
WRITECI0UT,21)CSIGNCK,1),K-LZ1,LZ2) 
FORMATCIX, 5HGROUP,I5,3X, 9HSIGMA N-N) 
FORMATC1X1P8E14.4) 
IFCIPRIN.LE.O)GO TO 500 
IFCNSCT.LE.0)G0 TO 500 
WRITECIOUT,24)J 
FORMATC* ANGLES AND PROBABILITIES FOR MATERIAL NUMBER*I5/) 
WRITECIOUT,23)CK,K-1,NSCT) 
FORMATC3X9HGP TO GP ,4C6X5HANGLE,I3,6X4HPR0B4X)/) 
DO 504 I-N1,N2 
LZ1-MWACI-1,J)+1 
IFCi.EQ.DLZl-l 
LZ2-MWACI,J) 
Ul-LZl-NSKIP 
LZ2-LZ2-NSKIP 
DO 505 L-LZ1,U2 
LL-I+L-L21 
IF((I.GT.IPTG).AND.(I.LE.JFTG))LL-IFTG+L-U1 
WRITE(I0UT,27)I,LL 

27 FORMAT(I5.1X15) 
505 W R I T E ( I O U T , 5 0 6 ) ( S I G N ( L , K + 1 ) , S I G N C L , K + 1 + N S C T ) , K - 1 , N S C T ) 
506 FORMATC1H+,12X8E14.4/C12XSE14.4)) 
504 CONTINUE 
500 CONTINUE 
109 IFCNGGA.LE.O)GO TO 110 

H2-NSGNCNMTG) 
Hl-NSGNCNNGA-i-D 
DO 207 L6-M1,M2 
N2-NSGLCL6,2) 
N1-NSGLCL6.1) 
IFCNl .LE.NNGA)N1-NNGA+1 
N 3 - M W A C N 1 - 1 . J ) + 1 
I F C N 1 . E Q . N N G A + 1 ) N 3 - 1 
N4-MWACN2.J) 
LZ-N4-N3+1 
NSKIP-N3-1 
DO 200 K-1.NCOEF 
NRl 0-NRECK+NCOEF,J,L6) 

200 CALL REEDCSIGGC1,K),LZ,10) 
IFCNCOEF.LE.DGO TO 231 
DO 812 I-1,LZ 
DO 811 K-2,NCOEF 
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HORSE 
HORSE 
HORSE 
HORSE 
MORSE 
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MORSE 
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MORSE 
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HORSE 
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NORSE 
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HORSE 
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HORSE 
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NORSE 
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5290 
5291 
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5295 
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5299 
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5303 
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5311 
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5329 
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5331 
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5333 
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821 
822 
811 
812 

703 

803 
802 

82 
231 

350 

360 
370 

380 

390 

201 

217 

215 
204 

214 

IFCSIGGCI,1).NE.0.0)G0 TO 821 
SIGGCl,K)-0.0 
GO TO 822 
SIGGCI,K)-SIGGCI,K)/SIGGCI,D 

L-K-1 
CONTINUE 
CONTINUE 
IFCISTAT.LE.O)GO TO 231 
IFCNPL.LE.0)GO TO 231 
DO 703 K-1,NPL 
NRDC 3+4*NSCT+NPL+K,J,L6)-NR9 

CALL RITECSIGGC1,K'H),LZ,9) 

IFCISTR.LE.O)GO TO 231 
WRITECIOUT,25)J 
DO 802 K-1,NPL 
DO 803 I-N1,N2 
WRITECIOUT,82)K,I 
LZ1-MWACI-1,J)+1 
IFCi.EQ.NNGA+DLZl-l 
LZ2-MWACI,J) 
LZl-LZl-NSKIP 
U2-LZ2-NSKIP 
WRITECIOUT,21)CSIGG(L,K+1),L-LZ1,LZ2) 
CONTINUE 
F0RMATC4H PL-I5,3X6HGROUP-I5,9H PCOEFG) 
CONTINUE 
SET FLAGS FOR GAUSS OR RADAU QUADRATURE 
IGOR - 1 
IFCNSCT.EQ.l) GO TO 370 
IFClGOR) 370,350,380 
K - M0DCNPL,2) 

IF(K) 370,360,370 
IFC2*NSCT-1-NPL) 370,370,380 
IGOR - -1 
NMCW - 2*NSCT-1 
WRITECIOUT,1000) 
GO TO 390 
IGOR - 1 
NMOM - 2*NSCT-2 
WRITECIOUT,1010) 
IFCNPL.LT.NMOM) NMOM-NPL 
NC-2*NSCT-t-l 
IFC NCOEF. GT. NOHC-NCOEF 
DO 202 I-1,LZ 
DO 201 K-2,NCOEF 
I F C N S C T . L E . O ) G O TO 202 
IFCNCOEF.LE.DGO TO 204 
L-K-1 
FCL)-SIGGCl,K)/C2*K-l) 
DO 217 K-2,HC 
SIGGCl,K)-0.0 
DO 215 L-1,NM0M 
IF(FCL).NE.0)GO TO 214 
CONTINUE 
SIGGCI,2+NSCT)—1. 
GO TO 202 
CALL ANGL£SCl,J) 
SIGGCI,2)-P0INTC1) 

HORSE 
MORSE 
MORSE 
HORSE 
HORSE 
HORSE 
MORSE 
HORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
HORSE 
HORSE 
HORSE 
MORSE 
MORSE 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
RADAU 
MORSE 
MORSE 
MORSE 
MORSE 
HORSE 
HORSE 
HORSE 
HORSE 
HORSE 
HORSE 
MORSE 
MORSE 
MORSE 
HORSE 
MORSE 
RADAU 
MORSE 

5337 
5338 
5339 
5340 
5341 
5342 
5343 
5344 
5345 
5346 
5347 
5348 
5349 
5350 
5351 
5352 
5353 
5354 
5355 
5356 
5357 
5358 
5359 
5360 
5361 
5362 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 

5365 
5366 
5367 
5368 
5369 
5370 
5371 
5372 
5373 
5374 
5375 
5376 
5377 
5378 
5379 
227 
5381 
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SIGGCI,2+NSCT)-WEIGHTC1) 
IFCNANS.EQ.O)GO T O 208 
DO 205 K-1.NANS 
SIGGCI,2+K)-P0INTC1+K) 

205 SIGGCI,2+NSCT+K)-SIGGCl,1+NSCT+K)+WEIGHTC1+K) 
208 C-SIGGCI,2+NSCT+NANS) 

NPl-NANS+1 
DO 206 K-1,NPl 
INDX-1+NSCT+K 

206 SIGGCI,INDX)-SIGNCI,INDX)/C 
202 CONTINUE 

TO NORMALIZE THE GAHHA P-ZERO MATRIX 
DO 220 K-N1,N2 
INDl-HWACK-1,J)+2-N3+l 
IFCK.EQ.NNCA+1)IND1-2 
IND2-HWACK.J)-N3+1 
SUH-SIGGClNDl-1,1) 
IFCIND2.LT.INDDG0 TO 222 
DO 221 I-IND1.IND2 
SUH-SUH+SIGGCI.D 

221 CONTINUE 
222 INDl-INDl-1 

DO 223 I-IND1.IND2 
223 SIGGCI,1)-SIGG(I,1)/SUH 
220 CONTINUE 

NRD(3+2*NSCT+NPL.J,L6)-NR9 
CALL RITE(SIGG( 1,1).LZ.9) 
IF(NSCT.LE.0)GO TO 704 
DO 701 K-1,NSCT 
NRD(3+2*NSCT+NPL+K,J,L6)-NR9 

701 CALL RITE(SIGGC 1,K+1),LZ,9) 
DO 702 K-1,NSCT 
NRDC 3+3*NSCT+NPL+K,J,L6)-NR9 

702 CALL RITECSIGGC 1,K+1+NSCT) ,LZ,9) 
704 IF((IPRIN.LE.O).AND.(ISTR.LE.O))GO T O 207 

IF(ISTR.LE.0)GO TO 850 
WRITE(I0UT,15)J 
DO 801 I-N1,N2 
WRITE dour, 80) I 
LZ1-HWA(I-1,J)+1 
IF(I.EQ.NNGA+DLZ1-1 
LZ2-HWA(I.J) 
LZl-LZl-NSKIP 
LZ2-U2-NSKIP 

801 WRITECIOUT, 21)CSIGG(K,1),K-LZ1,U2) 
80 FORMATCIX, 5HGROUP,I5,3X, 9HSIGMA G-G) 

850 IFCIPRIN.LE.O)GO TO 207 
IFCNSCT.LE.O)GO TO 207 
WRITECIOUT,24)J 
WRITEClOUT,23)CK,K-1,NSCT) 
DO 804 I-N1,N2 
LZ1-MWACI-1,J)+1 
IFCi.EQ.NNGA+DLZl-l 
LZ2-MWACl,J) 
Ul-LZl-NSKIP 
LZ2-LZ2-NSKIP 
DO 805 L-LZ1,LZ2 
LL-I+L-LZl 

MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
HORSE 
HORSE 
HORSE 
MORSE 
MORSE 
MORSE 
MORSE 
HORSE 
HORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
HORSE 
MORSE 
MORSE 
MORSE 
HORSE 
HORSE 
HORSE 
HORSE 
HORSE 
HORSE 
MORSE 
MORSE 
MORSE 
MORSE 
HORSE 
HORSE 
HORSE 
HORSE 
MORSE 
MORSE 
MORSE 
HORSE 
HORSE 
MORSE 

5383 
5384 
5385 
5386 
5387 
5388 
5389 
5390 
5391 
5392 
5393 
5394 
5395 
5396 
5397 
5398 
5399 
5400 
5401 
5402 
5403 
5404 
5405 
5406 
5407 
5408 
5409 
5410 
5411 
5412 
5413 
5414 
5415 
5416 
5417 
5418 
5419 
5420 
5421 
5422 
5423 
5424 
5425 
5426 
5427 
5428 
5429 
5430 
5431 
5432 
5433 
5434 
5435 
5436 
5437 
5438 
5439 
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IFCCl.GT.KFTG).AND.Cl.LE.LFTG))LL-KFTG+L-LZl 
WRITECI0UT,27)I,LL 

805 WRITECIOUT,506)CSIGGCL,K+D,SIGGCL,K+1+HSCT),K-1,NSCT) 
804 CONTINUE 
207 CONTINUE 
110 CONTINUE 

RETURN 
END 

MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
MORSE 
HORSE 
MORSE 

5440 
5441 
5442 
5443 
5444 
5445 
5446 
5447 
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