; .

CONTRACTOR REPORT

SANDS83 —-7094
Unlimited Release

uC—32 ‘09 ‘ )
7 DE&3 015023

A New Multigroup Monte Carlo Scattering
Algorithm Suitable for Neutral and
Charged-Particle Boltzmann and
Fokker-Planck Calculations

Daniel Parl Sloan
The University of New Mexico
Albuquerque, New Mexico

Prepared by Sandia National Laboratories Albuguergue, New Mexico 87185
and Livermore, California 94550 for the United States Department of Energy
under Contract DE-AC04-76DP00789

Printed May 1983

MASTER

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED



DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

ii



DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.



Printed May 1983 SANDR3~7094

limited Release Category UC~32
unii Contract# 61-9208

A NEW MULTIGROUP MONTE CARLO SCATTERING ALGORITHM
SUITABLE FOR NEUTRAL~-AND CHARGED-PARTICLE

BOLTZMANN AND FOKKER-PLANCK CALCULATIONS

BY
DANIEL PARL SLOAN
B.S., Brigham Young University, 1978

M.S., University of New Mexico, 1981

DISSERTATION

Submitted in Partial Fulfillment of the
Requirements for the Degree of

Doctor of Philosophy in Engineering

The University of New Mexico
Albuquerque, New Mexico

April, 1983

Sandia Contractina Renresentative: Jim E. Morel, 1231

iii MAST DISTRIBUTION OF THIS DOCUMENT IS Uﬂiﬂﬂfﬂ
STER a



ACKNOWLEDGEMENTS

This work was made possible by a contract (Document No. 61-9208)
between Sandia National Laboratories and the University of New
Mexico. The typing and final preparation of the manuscript was per-
formed by the Bureau of Engineering Research (UNM). I would like to
thank Sandia National Laboratories for the use of their computer
facilities and the many courtesies extended me in the form of office
space and technical support. I wish to extend special gratitude to
my wife, Amy, for her encouragement and enduring patience, and Dr.
J. C. Robertson (UNM) for his continuous and generous support
throughout my graduate studies. And finally, I wish to acknowledge
my deep indebtedness to Dr. J. E. Morel (SNL) for initiating the
contract, supervising the research, and proofreading the final manu-
script. I appreciate his invaluable comments, criticisms, and sug-

gestions which have given this work direction and perspective.

iv




A NEW MULTIGROUP MONTE CARLO SCATTERING ALGORITHM
SUITABLE FOR NEUTRAL- AND CHARGED-PARTICLE BOLTZMANN
AND FOKKER-PLANCK CALCULATIONS
Daniel Parl Sloan
B.S., Chemical Engineering, Brigham Young University, 1978
M.S., Nuclear Engineering, University of New Mexico, 1981
Ph.D., Nuclear Engineering, University of New Mexico, 1983

Morel (1981) has developed multigroup Legendre cross sections
suitable for input to standard discrete ordinates transport codes for
performing charged-particle Fokker-Planck calculations in one-
dimensional slab and spherical geometries. Since the Monte Carlo
neutron transport code, MORSE, uses the same multigroup cross section
data that discrete ordinates codes use, it was natural to consider
whether Fokker-Planck calculations could be performed with MORSE. An
investigation showed, however, that the Fokker-Planck cross sections
possessed two characteristics which rendered them unacceptable to the
Gauss quadrature scattering algorithm used in MORSE: (1) the cross
sections modeling the energy operator contain delta functions, and
(2) the cross sections modeling the angular operator are nonphysical
(i.e., they do not represent a cross section which is fully positive
with respect to the angular cosine). Therefore, in order to extend
the unique three-dimensional forward or adjoint capability of MORSE
to Fokker-Planck calculations, the MORSE code was modified to cor-
rectly treat the delta-function scattering of the energy operator,
and a new set of physically acceptable cross sections was derived to
model the angular operator. These new developments were tested for

one-dimensional slab geometries by comparing energy and charge



deposition profiles from MORSE with corresponding solutions from a
discrete ordinates code (ONETRAN). The agreement was found to be
excellent. Results from forward and adjoint test runs to compute
energy deposition in a sphere also showed good agreement.

Morel (1979) has also developed multigroup Legendre cross sec-
tions suitable for input to standard discrete ordinates codes for per-
forming electron Boltzmann calculations. These electron cross sec-
tions may be treated in MORSE with the same methods developed to treat
the Fokker-Planck cross sections. The large magnitude of the elastic
scattering cross section, however, severely increases the computation
or run time. It is well-known that approximate elastic cross sections
are easily obtained by applying the extended transport (or delta func-
tion) correction to the Legendre coefficients of the "exact" cross
section. The extended transport corrected cross sections are extreme-
ly effective in decreasing the run time in discrete ordinates calcula-
tions and would be expected to similarly decrease run times in MORSE.
However, these corrected cross sections are nonphysical and are there-
fore rejected by the scattering algorithm in MORSE. In order to cor-
rect this problem, a new method for performing the transport correc-
tion, utilizing a Radau quadrature technique, was developed and
tested. The technique is an exact method for performing the extended
transport cross section correction in that it produces cross sections
which are physically acceptable. Sample calculations using electron
cross sections have demonstrated this new technique to be very effec-

tive in decreasing the large magnitude of the cross sections.
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CHAPTER I
INTRODUCTION

Transport theory is the study of the phenomenon whereby parti-
cles are "transported" from one element of phase space (position,
solid angle, energy, and time) to a different element of phase space
through interactions such as elastic or inelastic scattering, absorp-
tion, or radiative collisions. The mathematical equation which de-
scribes this radiation propagation is known as the Boltzmann or
transport equation (the transport equation and a description of its
variables is given in the first part of Appendix A). Although the
transport equation is relatively simple to derive, it is unfortunate-
ly quite difficult to solve for any but the simplest model problems.
The solution to the transport equation is usually obtained through
different numerical schemes, such as the discrete-ordinates method,
or by direct simulation of the particle behavior as it travels
through matter; i.e., the Monte Carlo method.

One code system based on the Monte Carlo technique is called
MORSE. It has been used extensively at Sandia National Laboratories
and in the general transport community because of some distinct fea-
tures which make it adaptable to many transport problems. MORSE
(Multigroup Oak Ridge Stochastic Experiment) is specifically a multi-
purpose neutron and gamma-ray transport Monte Carlo code. It was

developed at ORNL and the University of Tennessee in the late 1960s



by Straker et al. (1970). Some of its features include (Emmett,

the ability to treat the transport of either neutrons or

gamma-rays, or a coupled neutron and secondary gamma-ray

the use of multigroup cross sections,

forward or adjoint transport capability,

modular input-output, including cross section analysis and
geometry modules,

debugging routines,

time dependence for both shielding and criticality prob-

albedo option at any material boundary,
three-dimensional combinatorial geometry package, and

several types of optional importance sampling.

1975):
(1)
problem,
(2)
(3)
(4)
(5)
(6)
lems,
(7)
(8)
(9)
Research Objectives
The

primary research objective of this work is to extend the

transport capabilities of MORSE. The research consists of two dis-

tinct but related parts:

(1)

provide an option in MORSE whereby each group-to-group
transfer may be sampled at a forward scattering angle of
zero degrees (for treating cross sections having forward-

peaked delta function components), and




(2) develop multigroup Legendre cross sections suitable for in-
put to MORSE for performing charged-particle Fokker-Planck
calculations.

The first research topic will be introduced in Chapter II, and
the second in Chapter III. The research is sponsored by a contract
(Document Number 61-9208) between Sandia National Laboratories and
the Department of Chemical and Nuclear Engineering of the University
of New Mexico (contractor).

It is not our intent or within the scope of this paper to de-
scribe in depth the MORSE code or the Monte Carlo technique. The
documentation on MORSE by Emmett (1975) and Dupree and Lighthill
(1982) detail thoroughly the capabilities and effective use of the
code. For the Monte Carlo technique, the references by Carter and
Cashwell (1975), Renken (1980), Selph and Garrett (1973), and Spanier
and Gelbard (1969) are just a few examples of the available study
material.

In the rest of this chapter, we first briefly discuss some gen-
eral comparisons between Monte Carlo and discrete-ordinates codes in
order to better understand the relative importance of extending the
capabilities of MORSE. We will then highlight two topics which par-
ticularly concern our research: the Monte Carlo technique of biased
sampling and the processing of multigroup cross section sets in

MORSE.



Comparison Between Monte Carlo and Discrete-Ordinates Techniques

Both Monte Carlo (MC) and discrete-ordinates (DO) methods for
transport calculations have certain advantages and disadvantages
which must be evaluated in selecting the type of code best suited for
a particular problem. We will briefly discuss some of these factors
below.

The basic difference between MC and DO is that the MC technique
is a simulation of particle transport, whereas DO methods attempt to
solve the Boltzmann equation via direct discretization of the phase
space variables. This results in inherent statistical uncertainty in
MC solutions, but deterministic solutions for DO. The accuracy of
the DO solution is dependent upon the extent to which the discrete
phase space mesh can be refined. The reliability of the MC estimate,
however, depends upon the number of particles tracked and the use of
various variance reducing techniques. Because standard (analog or
continuous) MC calculations are sometimes impractical to perform,
certain types of discrete approximations are often employed in the MC
algorithm. The multigroup Legendre cross section employed in MORSE
is an example of this type of approximation. In such cases, the MC
solutions are subject to both statistical and discretization errors.

One advantage of DO is the ease with which adjoint calculations
may be performed in comparison with continuous MC. However, adjoint -
calculations are also quite easy with the MORSE code system, due to

its use of multigroup cross sections. Adjoint calculations for




continuous MC are still currently an area of active research in the
radiation transport field.

A common disadvantage of DO codes for two and three dimensions
is the so-called "ray effect." This effect results from a lack of
rotational invariance in the DO equations and manifests itself in the
form of non-physical oscillations in the flux solution. The MORSE
code also suffers from a type of ray effect, though generally not as
severe as the DO ray effect, caused by its discretized representation
of the scattering angles. Continuous MC and one-dimensional DO codes
do not show these effects. In general, both types of ray effects are
diminished for media characterized by comparatively high scattering-
to-absorption cross section ratios. In MORSE, the ray effect may
also be decreased by inputting higher order Legendre cross section
expansions so as to allow for more discrete scattering angles (see
Chapter II).

An advantage of MC codes is that they are not geometry limited;
i.e., they may be adapted to complex physical geometries in as much
detail as necessary. The DO method on the other hand requires that
the geometry be expressed in terms of a standard (i.e., cartesian,
spherical, cylindrical, etc.) coordinate system.

The running time on the computer is also a factor in choosing
between MC and DO. The DO codes are much faster in one-dimensional
geometries, but for two or three dimensions with steady-state condi-

tions, the comparative running time becomes problem specific. If the



transport problem is time dependent and uses multidimensional geom-

etries, the MC codes are easily the most efficient.

Importance Sampling

As mentioned previously, the Monte Carlo method attempts to
estimate the solution of a transport problem by analog or direct
simulation of the real world. The simulation requires that "samples"
or individual particles be tracked through the medium geometry from
its source to the point where its case history is terminated through
leakage from the medium, absorption, Russian roulette, by time kill,
or energy kill. The tracking, or "random walk", is accomplished by
choosing alternative events for the particle through random sampling
of known cumulative probability distributions. Since the tracking of
individual microscopic particles can never be predicted with certain-
ty, the random walk is non-deterministic. However, by applying the
law of large numbers, or in the limit as the number of samples in-
creases, the solution obtained from the samples should adequately
represent the true solution from the "parent population®. The rela-
tionship between the Boltzmann equation and Monte Carlo is often
viewed as empirical; that is, Monte Carlo simply models in detail the
principles from which the transport equation was derived. However,
the Monte Carlo technique can also be shown to correspond to each
term of the Boltzmann in a more direct manner (see Section 4.10 of

Emmett, 1975).




To fully simulate particle transport, one would certainly in-
clude particle elimination by absorption. However, if the transport
medium is characterized by high absorption cross sections and the
solution requires deep penetration of particles, then a Monte Carlo
code would typically require many case histories to obtain relatively
good statistics on such a calculation. In order to reduce the vari-
ance in the result for a given amount of computer time, MORSE does
not permit particles to die by absorption. Instead, a quantity known
as the "weight" is assigned to the particle as it leaves the source.
This weight is used in calculating the particle's contribution to the
solution and is changed as the particle proceeds through the system
so as to compensate for the lack of absorption. This technique is
known as "survival biasing".

There are many ways in which a calculation may be biased. Some
examples of biasing, or "importance sampling", are source direction
biasing, Russian roulette, path stretching or exponential transform,
splitting, and time and energy cutoffs. Biasing essentially involves
sampling from fictitious probability density functions. It is a
method whereby certain alternative events which are more likely to
contribute to the desired result are sampled more frequently, while
other events which contribute little to the result are sampled less
frequently.

Choosing the best method to bias the particle random-walk proc-

ess often involves some degree of insight, experience, and trial and



error. It is for this reason that the efficient and proper use of
Monte Carlo, although based on scientific principles of probability,
has come to be viewed somewhat as an "art". If we are not careful,
some methods of importance sampling may actually increase rather than
decrease the statistical error. Thus, it would certainly be advan-
tageous to have a theoretical basis for choosing the best bias tech-
nique. Such a basis exists and takes the form of a so-called "impor-
tance function". The importance function identifies those trajec-
tories which are "important" to the solution of the problem. Coveyou
et al. (1967), and Renkin (1970 and 1980) explain that a near-optimal
choice for this importance function is the solution to an appropriate
adjoint transport equation. The importance function is usually as
difficult to calculate as the transport solution itself. However,
even a crude approximation to the importance function is often suffi-
cient to significantly reduce the variance of the calculation. One
advantage of MORSE is its ability to perform adjoint calculations.
Therefore, if for a certain transport problem, the discrete approxi-
mations in MORSE cause it to be inadequate, then it would be appro-
priate to perform an adjoint calculation and then use the resulting

importance function to bias an analog Monte Carlo calculation.

Group-to-Group Transfer Cross Sections in MORSE

The implementation of multigroup, multitable cross section sets
into Monte Carlo codes offers three distinct advantages over contin-

uous or analog Monte Carlo:

-



(1) the cross section sets are already generally available
since they are used extensively in discrete ordinate appli-
cations,

(2) they permit a relatively easy solution of the adjoint
transport equation (coupled neutron-photon or electron-
photon adjoint capability for continuous energy Monte Carlo
is currently unavailable), and

(3) they offer a simple technique for the simultaneous treat-
ment of several types of radiation (i.e., neutrons and
photons, electrons and photons, etc.).

The primary disadvantage of using multigroup cross sections is that
the fine structure detail in the cross section is lost.

Continuous Monte Carlo essentially samples probabilities of
interaction, collision parameters, etc., by interpolating from a
table of numbers at discrete energies. A coupled neutron-photon code
for continuous Monte Carlo called MCNP is currently in use at the Los
Alamos Scientific Laboratory (see LASL, 1981). However, at the out-
set of the development of MORSE, such a code was not available, and
the simultaneous transport of neutrons and photons was obtained
through separate neutron and photon codes in a kind of bootstrapping
operation. Since the physics of the interaction processes for
neutrons and photons is so different, a coupled neutron-photon code
would have required excessive core storage to handle all of the cross
section input and also a large computer access time. The calcula-

tions then, were computer capability limited. The combination of




multigroup cross section sets with Monte Carlo offered a very practi-
cal solution to the problem for several reasons (Emmett, 1975):

(1) each energy group contains the cross section for all proc-
esses,

(2) multigroup cross sections have the same format for neutrons
and gammas,

(3) the logic of the random walk process becomes the same for
neutrons and gammas,

(4) for anisotropic scattering, each group-to-group transfer
cross section contains an angular distribution which is a
weighted average over the various cross sections involved
in the energy process; i.e., the neutron cross section is a
weighted average of elastic and inelastic probabilities,
and the gamma cross section is a weighted average of the
photoelectric effect, pair production, and Compton scatter-
ing probabilities, and

(5) the generation of a secondary gamma ray may be considered
as just another group-to-group transfer.

In summary, the use of multigroup cross sections reduces the effort
required to produce, store, and sample from the cross section
libraries.

For input into the MORSE code system, the cross sections must be

in the AMPX working library format. The ORNL AMPX package (see

Greene et al., 1976) is a modular system for producing (generating

10




and collapsing) coupled multigroup neutron-gamma ray cross section
sets. The basic neutron and gamma cross section data used as input
for AMPX are obtained from the ENDF/B libraries. MORSE initially
used multigroup cross sections in the ANISN format. One feature of
converting to the AMPX format is that none of the zeros in the scat-
tering matrix are stored. This produces a slightly more complex data
system for input into MORSE but it also saves considerable computer
core. One of the useful AMPX routines is called LAVA (Let ANISN
Visit AMPX) which will read ANISN-formatted cross sections and write
an AMPX working library cross section set.

The older versions of MORSE (along with many discrete-ordinates
codes) were sometimes "cross section limited" because they read in
all the cross sections at one time. The current version of MORSE at
Sandia National Laboratories is termed MORSE-SGC (Super-Grouped Cross
Sections). MORSE-SGC has the capability of loading cross sections
into the core, one table at a time. After some processing, the cross
sections are stored on a disk and may be recalled into the core a few
groups (or one supergroup) at a time for further processing. This
reduces the amount of central memory usually allotted to cross sec-
tions.

The multigroup cross section processing steps in MORSE-SGC are
enumerated below (Emmett, 1975).

First: MORSE-SGC reads AMPX cross sections for media or ele-
ments. The types of cross sections which may be processed are neu-

tron only, gamma-ray only, coupled neutron-gamma ray, or gamma ray

11



from coupled neutron-gamma ray. Fission probabilities may also be
included. The fission and total cross section for each energy group
are first read for a particular element into a buffer area and then
stored. Then each P, coefficient from the group-to-group Legendre
expansions is read and placed into its particular slot in a down-
scatter matrix. A downscatter matrix is similarly formed from the P;
coefficients, the P, coefficients, etc. The cross sections are
transposed and stored if an adjoint problem is being solved.

Second: after the cross sections for all the elements are read
and stored, the cross sections are mixed to obtain the media cross
sections.

Third: the nonabsorption probability and the gamma production
probabilities are determined for each energy group by dividing the
sum of all the probabilities of transfer from that energy group by
its total cross section. The fission cross section for each energy
group is also divided by its total cross section to obtain corres-
ponding probabilities of fission. The downscatter matrices are
converted to probability tables by dividing by the scattering cross
sections.

Fourth: the Legendre expansion for each group-to-group transfer
is used as a weight function in a generalized Gaussian quadrature
technique to obtain discrete angles and probabilities of scattering

at those angles; i.e.,

12




+1 n
fl lug) () duy = 22 alug) Wy s (1-1)
- ]:

where g(uo) = any polynomial of order 2n-1 or less,

f(uo) = the angular distribution for Uy the cosine of the
scattering angle,
= the set of discrete cosines, and
w = the associated probability for each scattering cosine.

Chapter II and Appendix B treat this subject in depth.
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CHAPTER 11
GENERATION OF DISCRETE SCATTERING ANGLES USING RADAU QUADRATURE

The first phase of the research intended to extend the capabili-
ties of MORSE is to provide MORSE with the option of calculating a
set of discrete scattering angles, one of which is a forward scatter-
ing angle at zero degrees. The second phase of the research is in-
troduced in Chapter III.

MORSE currently converts the multigroup Legendre expansions to a
set of discrete scattering angles and probabilities of scattering at
those angles using a generalized Gauss quadrature technique. The
probabilities (or weights) are summed and then normalized to form a
cumulative probability distribution. MORSE samples a scattering
angle in its random walk process by generating a random number be-
tween 0 and 1, locating the probability interval in the cumulative
distribution between whose limits the random number lies, and then
matching the chosen probability with its appropriate scattering
angle. The discrete scattering angles tend to concentrate in those
regions of the actual angular distribution which have high probabili-
ties or peaks.

The Gauss quadrature technique generates discrete direction co-
sines only on the open interval (-1,+1). However, it is desirable in
certain particle transport applications to have some finite probabil-

ity in each group-to-group transfer for scattering at zero degrees.
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One such application, the extended transport cross section correc-
tion, is discussed in a later section. In order to obtain a forward
scattering angle for sampling, a generalized Radau quadrature tech-
nique has been implemented in MORSE. The rest of this chapter con-
tinues to introduce the Gauss and Radau quadrature techniques as
methods for obtaining sampling angles in MORSE, Appendix B details
the theory of the two quadrature methods, and Appendix C contains a
listing of the updated version of MORSE with the Radau quadrature

option.

Legendre Polynomial Expansions of Angular Distributions

Scattering angular distributions (o) are most often expressed
through a Legendre expansion of the distribution in terms of the co-
sine of the scattering angle (ug = cos 6y). Since elastically
scattered neutrons are scattered symmetrically about the azimuthal

angle (¢g9), the scattering distribution may be represented as

= 9E) £(E,u,) . (2-1a)

n.'o.
o1 la

where E is the energy of the incident neutron, o(E) is the total

scattering cross section for that energy, E, and

+1
[1 f(E,uO) duo =1. (2-1b)

We may expand f(E,uy) in terms of Legendre polynomials

15



fEa) = 5 Z3L £,00) Py() - (2-2)

(Davis (1966) and Horsley (1966) discuss the techniques involved in
evaluating angular distributions and reducing the data into the
expansion form convenient for computer calculations). The energy-
dependent Legendre coefficients (fy(E)) of the angular distribution
may be obtained by applying the principle of orthogonality of the

Legendre polynomials:

® +1
-G 2 Bt rym [1 Polg) Pilug) dug o (2-3)
Since
+1 0 , k # 2
f Polug) Prlug) du, ) (2-4)
ZwET K4
then
+1
SRS, TPl O - (2-5)

If 220, we have f,(E) equals 1. Since an infinite number of coef-
ficients (fy) would require too much memory space, the expansion is

truncated at some convenient order (n)

F*(E,u ) 20 2821 £ Pl . (2-6)
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These Legendre expansions are often found to be very useful because
they offer significant analytical simplifications and compact storage
of cross section data in computer codes. However, the primary disad-
vantage of the Legendre expansions is that its truncated version may
contain severe distortions of the actual cross sections, and even
regions of negativity between (-1,+1). These truncated expansions
may then produce nonphysical fluctuations in the computed angular
flux.

The errors resulting from premature truncation of the Legendre
expansion tend to increase as the anisotropy of the cross sections
increases. Highly anisotropic cross sections are very common in
transport calculations, particularly for problems involving (1)
radiative or charged particle transport, (2) elastic scattering from
light elements, or (3) group-to-group transfer cross sections with
fine energy group structure. The MORSE code system uses group-to-
group transfer cross sections.

The group g to group k transfer cross section (refer to Bell and

Glasstone, 1970) can be defined as

Og-»k zj; dEjf; dE' ¢(r,Q',E') ofr,E *E,uo)/
k+l g+l

Eg
f dE’ 'J)(F,?Z',E') H (2'7)
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where ¢ is the angular flux as a function of position, initial solid
angle, and initial energy, and where o is the differential cross
section for scattering from E' to E through u,. If we postulate
that within an energy group, the dependence of ¢ on E' is separable

from its dependence on &' and r; then

\I)(Y‘,Q',E') = fl(Fsﬁl) fz(El) . (2"8)
If we further assume that f,(E') is a constant, then Equation (2-7)
becomes

% ='/k'dE'/g‘dE| o(r,E! +E,uo)/AE' . (2-9)

Expanding both ag -k and ofr,E' > E,uy) in terms of Legendre poly-

nomials, P,(1y), we obtain a slightly different equation:

%y,q % =./; dE./; dE' oz(F,E' + E)/AE" . (2-10)

Both elastic and inelastic scattering probabilities contribute
to the cross section. However, inelastically scattered neutrons are
usually assumed to be emitted isotropically in the center of mass
system. Also, for heavy scatterers, the laboratory and center of
mass systems become almost equivalent, and the inelastic scattering
becomes isotropic in the laboratory system as well. Therefore, the
inelastic group-to-group transfer may be accounted for by the addi-

tion of a constant over the entire range of scattering angles to the
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elastic group-to-group cross section (Odom and Shultis, 1976).
Focussing then just on elastic scattering, the differential cross

section may be written as

- ), (2-11)

o E* +E,u0) = g(E' + E) S(uo s

where the &-function represents the direct coupling between energy
and angle, and u is a function of (E',E). The Legendre expansion

of the differential cross section will have the coefficients

+1
o (E' +E) =~/'1 olE' + E) 8(uy - u.) Py(n)) du, (2-12a)
= g(E' + E) Pz(us) (2-12b)

which may be substituted into Equation (2-10) to calculate ag,gk-

We will usually refer to the normalized coefficients of oy g, for

some arbitrary g and k simply as fg. More detailed information on

the generation and use of multigroup cross sections may be found in
references by Bucholz (1980), Kidman et al. (1972), and Weisbin et

al. (1974).

Figure (2-1) shows a comparison between an actual group-to-group
transfer cross section and an eighth-order Legendre polynomial ap-
proximation. Note that the truncated Legendre expansion predicts two
regions of unrealistic negative cross section values. For "direct"
sampling of some partially negative function, f*(ug), a scattering

angle ug is sampled from the density function
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Figure 2-1. Comparison of water group-to-group elastic scattering cross

section with an eighth-order Legendre polynomial approxi-
mation (Odom and Shultis, 1976). The energy groups (in
MeV) are (3.0119-3.3287) to (2.4660-2.7253).




fp(uo) =

+1
/f
-1

where fp(uo) is an everywhere posittve, renormalized distribution

f*(u,) Fre(uty) | du'ys (2-13)

function, and then the weight of the particle is multiplied by
f*(us)/fp(us) to account for the use of a "biased" distribution.
Whenever f*(uc) is negative, the particle weight becomes negative;
this is reasonable since the number of particles that scatter into
dug about yy is proportional to f*(uy) duy. However, these
"negative" particles tend to increase the statistical errors in the

Monte Carlo random walk,

Discrete Angle Approximations of Angular Distributions

Gauss Quadrature. In order not to sample negative probabil-

ities, we seek to replace f*(uy) with a discrete distribution,

faluo)s
n
fqluy) = 5;% wo 8wy - ) s (2-14)

where f4(ug) must meet two obvious requirements for sampling:
(1) wj >0 for i=1,n and
(2) -1<wuj <1l for i=1,n.
A third requirement is clearly desirable for fg(ug):
(3) its first 2n moments, {(Md)k}Egal, are identical to those

of the truncated expansion of f(ug).
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The above three requirements are satisfied if the uj and wi of
fd(uo) are obtained through Gauss quadrature operating on f*(uo).
Requirements 1 and 2 are discussed in Appendix B. For the third re-
quirement, let us first review the Gauss quadrature formulae:

Given a non-negative weight function, f(x) > 0 (Restriction I),

with x as a dummy variable, we want

+1
fl f(x) g(x) dx = }El w; g(xi) (Restriction II) (2-15)
- 1:

to hold for all g(x) where g(x) is a polynomial of degree <2n-1.
To obtain wj and xj, we determine a set of polynomials Q;(x)

orthogonal with respect to f(x)

+1
[ Qi(x) Q;(x) f(x) dx = Gij Ni s (2-16)

where &;j is the Kronecker delta and N;j is the normalization con-

stant. Then the x4 are given by the n roots of Q(x) and
n-l 2 "1

2n-1
k=0

tion for the space of polynomials g(x), it is equivalent to Restric-

Since the functions {xk} are independent and form a basis func-

tion II (Equation (2-15)) to require that

1, n K
M =f X" f(x) dx = 3 wx; for k=0, 2n-1 . (2-18)
-1 =1
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The integral (My) above is defined as the kth moment of f(x).

The moment of f4(x) is defined as

+1 K n +1 K
(Md)k =[_ X fd(x) dx = Z wij: X" 8(x - x1.) dx (2-19a)

1 i=1 1
f k
= 2, wXxg , k=0, 2n-1 . (2-19b)
i=]

Comparing Equations (2-18) and (2-19b), we see that for My and
(Mg)x to be equivalent, then the wj and x; of f4(x) must be
obtained through Gauss quadrature operating on f(x).
The derivation of the formulas for Gauss quadrature is found in
Appendix B. It is also shown in Appendix B that
(a) Legendre coefficients and moments are equivalent; in other
words, the kth moment of f(ug,) is derived from the
first k Legendre coefficients of f(ug).
(b) The orthogonal polynomials {Qqg,...,Qn} (and hence the n
roots {u],...,u}) may be derived from the first 2n
moments of f(u,).
Therefore, in order to obtain the scattering angles (u;) and proba-
bilities (wj) of fg(uy) accurate to order 2n-1, knowledge of
the exact angular distribution is not required. We only need to know
fgse..sfon-1 Or Mg,...Myq_1 to obtain f4(uy). Therefore,
the generalized quadrature that has been developed is valid for the
whole class of functions having the same first 2n Legendre coeffi-

cients or moments; i.e., the same Legendre expansion:
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2n-1
22 + 1
= 2,

flu) = f*(u) = f, P, lu) . (2-20)

0 " =0
In particular, the discrete distribution (fy(ug)) derived using
Gauss quadrature is itself one function in this class. We show that
fq(uy) has the same coefficients, fy, as f*(u,) with the sim-

ple equation sequence below:

+1
fy =f_1 f*(uy) Pyluy) duy s 220, 2n-1 (2-21a)

n

= 2o Pylwy) (2-21b)
n +1

= Egi mi.}i1 $(uy - ;) Pluw)) duy (2-21c)
+1

=_/i1 Fqlug) Polug) duy . (2-21d)

In developing the Gauss quadrature, we were given a prerequisite
(Restriction I) that the weight function f(ug) was everywhere
greater than zero. Although the actual angular distribution f(ug)
is everywhere positive by definition, the truncated expansion
f*(ug) may not be. However, since only the first 2n moments of a
class of functions are needed to develop the quadrature, it is not

required that all the functions of this class be non-negative; in
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fact, there are infinitely many which are not. However, it is neces-
sary that at least one function in this class be non-negative
(Emmett, 1975).

We have discussed how negative cross section values may result
due to the truncation of an infinite Legendre series. However, it is
also possible that a given set of Legendre coefficients may result in
negative cross sections because they do not represent a physically
possible (everywhere positive) angular distribution. Irving et al.
(1966) performed a check on Legendre coefficients from several pub-
lished sources and found a surprisingly large number of instances
where the coefficients were impossible. What are the mathematical
criteria that must be satisfied in order that there exist an every-
where positive distribution having a given set of Legendre coeffi-
cients? It was shown by Irving et al. that f*(py) represents (or
originated from) an everywhere positive function if we can find an
f4(ug), where the weights are all greater than zero and the roots
1ie between (-1,+1). The failure of either of these two conditions
expresses the fact that the given coefficients or moments of f*(u,)
are not those of an everywhere positive function.

The first condition on fy(ug), that wj > 0, is replaced in

the MORSE code system by the requirement that

Nk >0 for k=1, n-1 . (2-22)

Since
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n=l -1

then we are guaranteed that all the wj will be non-negative if all
the Ng are greater than zero. In addition, Appendix B shows that
if the N are all positive, then the orthogonal polynomial sequence
{Qgs.--»Qn} will be unique, and the weight function is at least
"well-behaved". Stroud and Secrest (1966) also mention that for
positive Nj, the zeros ui,...,u, of the polynomial Qu(ug)

will be real and distinct and that they will separate the zeros of
Qn+1( ). However, in order to guarantee that the zeros lie
between (-1,+1), we must be dealing with the coefficients of a non-

negative weight function.

Radau Quadrature. The generalized Radau quadrature technique is

very analogous to--and may be considered an extension of--the Gauss
quadrature method. In effect, we seek to replace f*(uy) with a
discrete distribution

5
Falug) = ] w; 8(uy - wy) + o, 8wy - 1), (2-23)

where fd(po) must meet the same three requirements mentioned for
Gauss quadrature, along with a fourth requirement that one of the
direction cosines 1ie at ug = 1. In order to satisfy these

requirements, the Legendre coefficients for each group-to-group
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transfer are converted to angles and probabilities of scattering at
those angles by the use of a generalized Radau quadrature:
Given a non-negative weight function, f(x) > O (Restriction I),

we want
+1 n-1
fl f(x) g(x) dx + 'Zl w; g(xi) * g(l) (Restriction II) (2-24)
- i-

to hold for all g(x) where g(x) is a polynomial of degree <2n-2 (this
is one degree less than for Gauss quadrature since we have pre-
assigned one of the parameters). A set of x;'s and wj's that

satisfy Equation (2-24) must be found. As explained in Appendix B,
we determine a set of polynomials, Qj, which is orthogonal with

respect to an altered weight function.

w(x) = w(x)(1l - x) (2-25)

such that

+1
,I’.]. Q-i(x) QJ(X) l:)(X) dx = Gij N’i s (2‘26)

where Ni is the normalization constant. The moments of the altered
weight function My, i=0, 2n-3, determine the orthogonal polynomials
Qj, i=1, n-1. The n-1 discrete abscissas, xj, are given by the

roots of Qp.1,

0p.1(x;) = 0, (2-27)

and the corresponding probabilities are
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n-2 2 -1
w = (1 - xi) k}_jo Qk(xi)/Nk for i=1, n-1, (2-28)
and
n-1
w =1- Zl w - (2-29)
]::

In the process of deriving the orthogonal polynomials, some re-
strictions on the moments of the altered weight function are ob-
tained. As in the Gauss quadrature case, these restrictions arise if
both the original distribution and the derived point distribution are
to be everywhere positive. Two of these restrictions are:

1) Nj > 0 for i=1, n-2 and

2) The roots of Qp.1(ug) must all lie in the interval

-1 <y < 1
The above restrictions ensure that the wj, i=1l, n-1 are all posi-
tive and that the u; are within the correct scattering range for
Monte Carlo selection. However, they do not guarantee that the
weight (w,) corresponding to the direction cosine of u, = 1 is
positive. Therefore, for Radau quadrature, we have a third require-
ment:

3) wy >0
(in Gauss gquadrature, we recall that only the first two restrictions
are needed to insure that all the weights are positive).

Advantages and Disadvantages of the Discrete Angle Representa-

tion. The reference by Carter and Forest (1976) discusses and com-

pares three multigroup methods for sampling the scattering angle
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after a group-to-group scattering event. Each of the methods uses
the coefficients of a truncated Legendre expansion as a working
base. These methods include (1) a direct sampling of the truncated
Legendre series, (2) sampling from a discrete distribution of angles
and probabilities which conserves all the moments of a truncated
Legendre polynomial (the technique used in MORSE), and (3) sampling
from a step function with bounds that are computed to conserve the
first few moments of the Legendre expansion. However, each of the
methods has distinct comparative advantages and disadvantages with
regards to storage requirement, sampling, and modeling of the density
function. We repeat below only those conclusions of Carter and
Forest which concern the MORSE sampling techniques.

Advantages:

(1) Only positive weights are used in the random walk.

(2) The sampling of the scattering angle is computationally
fast.

(3) The standard flux estimators are positive (however, the
point detector estimator may give negative fluxes or
unrealistic fluxes during the first few collisions for
highly directional extraneous sources).

Disadvantages:
(1) Ray effects are present for the first few collisions.
(2) Subroutines are needed to compute the discrete angles

and probabilities.
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(3) For low-order truncations, a few discrete angles may not
closely represent density functions unless they are highly
localized.

The disadvantage of ray effects can be minimized somewhat by
increasing the number of discrete sampling angles (and this in turn
usually requires that the order of the Legendre expansion be in-
creased). Increasing the number of sampling angles also has the
effect of decreasing the statistical variance of the solution. For
example, a third order Legendre expansion input into MORSE will pro-
vide a discrete scattering distribution of two scattering angles and
two weights with Gauss quadrature, or three angles and three weights
with Radau quadrature. Since both quadrature sets have two "free"
angles (Radau quadrature has one angle "prefixed" at py = 1) which
hopefully closely represents or adequately samples the density func-
tions, then this would imply similarly low standard deviations on the
response of the analog detectors. However, if we have MORSE calcu-
late only two angles and two weights with Radau quadrature using the
same P3 expansion, then only one angle is free to represent the den-
sity function. In such a case, the standard deviations may increase
significantly.

One possibility for increasing the number of scattering angles
without increasing the order of the Legendre expansion (or assuming a
value of zero for higher-order moments) is to combine the angles and

weights from both quadrature methods. That is, for a P3 expansion,
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we may use the two angles and weights from Gauss quadrature, the
three angles and weights from Radau quadrature computed with a preset
angle at py = 1, and the three angles and weights from Radau qua-
drature with a preset angle at uy = -1. After linearly combining
each set of weights into one cumulative probability distribution, a
total of eight discrete angles may be sampled. The accuracy of such
a technique has not as yet been verified either theoretically or
computationally but would have the advantage of decreasing ray

effects, and perhaps that of decreasing the variance of a solution.

Comparison Between Radau Quadrature and the Extended Transport
Cross~-Section (orrection

The extended transport cross-section correction (Morel, 1979)
attempts to approximate a highly forward peaked cross section
(o{ wp)) with the sum of a relatively low-order expansion and a

delta function:

i) = 3 Hpt oy P () (2-30)
2n-2
= -2—274:—1 o’; Pz(uo) +-°2‘7 G(uo -1) . (2-31)

2=0

The quantities o’;

function in a series of Legendre polynomials

and o« are obtained by first expanding the delta

o 1 = X ==l (2-32)
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and substituting the expansion into Equation (2-31). This gives

2% +
2(3) : 1 oz+ a) Poluy) s (2-33)
where we have arbitrarily set c = 0.0 for 2> 2n - 1. If Equation
(2-33) is to be equivalent to Equation (2-30) up to order 2n-1, we

require that
g, + a=g, , &0, 2n-1. (2-34)

0 * -
Since o, 1 = 0.0, then

a = Gzn_l (2-35)

and

g 2=0, 2n-2 . (2-36)

2- % " %n-1
Now, delta function scattering for within-group cross sections is
equivalent to no scattering at all. Thus, we can delete the delta
function from Equation (2-31) to obtain

2n=-2 29 - 1 *

) = 2 it o) Ply) = oM lug) - (2-37)

0

Morel (1979) refers to o*(uy) as the Po,.] transport-corrected
Pon-2 expansion corresponding to o(uy). The lowest order
expansion of o*(1y), or the P, transport-corrected Py expansion, is

the classical transport-corrected cross section:
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9 = 9% - 9 = co(l - qu) = Opp - (2-38)

It should also be noted that o*(uy) is smaller in magnitude and
less forward peaked than o(ug). Although o*(uy) and o) are
dissimilar in appearance, they are however, equivé]ent to order 2n-2
in the sense that they yield identical Pp,.1 solutions.
Let us here remark that the coefficients cz do not usually
represent, or could not have originated from, an everywhere positive
*

distribution. That is, if the coefficients a,

the MORSE code system, some of them will usually be rejected (this

are used as input for

problem does not arise in P, calculations). Therefore, o*(uy) is
often physically unrealistic even though the original function
o( p) is a positive distribution.

The extended transport correction subtracts from o(u,) a delta
function of magnitude a = opp.1 to obtain o*(uy). Now, if
o( ip) is actually the sum of a delta function and some other func-
tion £, then the value of o4 will gradually approach « as £ » =,
But in setting a = app.1, we are assuming that o*(u,) with order
2n-2 actually converges completely to £. In using the extended
transport correction, it is difficult to decide what expansion order
to use for o*(uy) in order to retain sufficient accuracy in the
calculations. Since the expansion order is determined by setting «
equal to some particular coefficient opn.1, the question one really

asks is how large or small to make a.
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We would expect that within-group cross sections would have a
higher probability of scattering at angles near u, = 1 than group-
to-group cross sections. It follows (assuming elastic scattering)
that the expansion coefficients of a within-group cross section would
tend to remain close to gy (an extreme example would be a pure
delta function with all its coefficients equal to o4) whereas the
group-to-group coefficients would approach zero much more rapidly (an
extreme case would be isotropic scattering with fg = 1 and all the
other coefficients equal to zero). Therefore, within-group cross
sections would require a relatively high a and group-to-group cross
sections a relatively low a.

In order to fix a correctly, we turn to Radau quadrature. We
recall that Radau quadrature uses the normalized coefficients fy of

a truncated expansion

] )~2§f22“1f P (u) (2-39)
ol T & 2 A A )
to produce a discrete distribution with positive weights or probabil-

ities for scattering at angles pj:

n-1

Falup) = .21 wp 8wy - ) + oo 8wy - 1) . (2-40)
'|=

The probability of scattering at ug = 1 is equal to wy. As shown
in Equations (2-2la) through (2-21d), the discrete distribution

(fg), if expanded in terms of Legendre polynomials, will have the
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same first 2n-2 coefficient as f(uy). The coefficients are given

by

wg Po(ug) + o

N 2=0, 2n-2 . (2-41)

dby) =2 i"z 22 Ls b u) (2-422)
< 2 i:: 22 ¥ 1E{j w Py(u) + mr] P,(u) (2-42b)
ot Eo pIPRY m] P ()

k. 22‘_‘:2 282 1 e, (u) (2-42c)

If we note the similarities between Equation (2-42c) and (2-31), we

have
2n-2
22 +1 * a
)= 2 Ta o Palvg) H gy s - 1) (2-43a)
where
* n-
o, = 9, 12:1 wy Po(ug) (2-43b)
and
@ = 0y W - (2-43c)
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Two important points about Equations (2-43a) through (2-43c) are that
the coefficients c; represent an everywhere positive distribution and

the equations are exact up to order 2n-2 since

*

o, +a =0, for 2=0, 2n-2 . (2-44)

Therefore, Radau quadrature is an exact method for breaking up a
cross section into the sum of a delta function and a low-order,
physically acceptable expansion. This is in contrast to the conven-
tional transport correction which produces a low-order, physically

unacceptable expansion by setting opn_1 = o.

In order to illustrate the effectiveness of the Radau quadrature
technique in performing the transport cross section correction, sam-
ple calculations were performed on a set of P2 electron cross sec-
tion expansions (see Morel, 1979, for cross sections). Table 2-1
compares the ratio o;/oo for the conventional and Radau-based cross

section corrections at several energies. Note that both transport

Table 2-1

Delta Function Corrected Electron Cross Sections

*
oo/°1

Energy (MeV) Standard Radau

0.01 0.652 0.490
0.10 0.132 0.141
1.00 0.013 0.022

corrections severely reduce the total magnitude of the cross sections
at the higher energies, and therefore, greatly reduced running times

can be expected in the MORSE calculations.
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CHAPTER 111

GENERATION OF CHARGED-PARTICLE MULTIGROUP CROSS SECTIONS
USING THE FOKKER-PLANCK APPROXIMATION

In this chapter we shall introduce the second and primary re-
search objective of this work; that of modifying MORSE to perform
charged-particle Fokker-Planck calculations using appropriate multi-
group Legendre cross section data. The first phase of the research
has been introduced in Chapter II.

The Boltzmann equation models a full range of different types of
particle interactions. The Fokker-Planck equation, however, is a
simpler model which assumes that "grazing" collisions are the predom-
inant interaction mechanism. Grazing collisions entail small losses
in energy and small angles of scatter. The attraction and repulsion
of charged particles is governed by the coulomb force; such interac-
tions are forward peaked and are therefore prime candidates for the
Fokker-Planck approximation. Tanenbaum (1967) suggested that "the
Fokker-Planck term is a good approximation for long-range forces,
such as the coulomb interaction between charged particles, and a poor
approximation for short-range forces, such as the interaction of hard
spheres”.

Most of the applications of the Fokker-Planck approximation have
been directed toward solving energetic charged-particle transport in
controlled thermonuclear fusion schemes. Two applications in the in-

ertial confinement scheme are the study of
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(1) the suprathermal electron energy deposition produced during

the pellet implosion process, and

(2) the outward propogation of the supersonic burn-wave caused

by the reaction products redepositing their energy in the
pellet; e.g., from a 3.5 MeV alpha particle produced in a
deuterium-tritium reaction.

Many different methods have evolved over the past decade to
solve the Fokker-Planck equation. Corman et al. (1975) devised a
low-storage computer program which utilized a multigroup method to
handle the energy dependence and a "flux-limited" diffusion coeffi-
cient to approximate the spatial dependence of the Fokker-Planck
equation. However, the program was not suitable for problems with
extreme source discontinuities in space or where detailed behavior
within a mean free path of the source was important. Antal and Lee
(1976) attempted to simulate charged particle mass and energy deposi-
tion in a plasma using S, techniques. The characteristic finite
difference equations were derived to conserve both mass and energy.
However, one disadvantage of the method was that angular deflections
were ignored. Moses (1977) solved the charged particle transport
equation with a time-dependent particle tracking technique which ap-
proximated the trajectories of the charged particles, from creation
to thermalization, as straight lines. Even though the integral
tracking technique ignored angular deflections, it was sufficiently

accurate to describe the slowing down of the larger thermonuclear
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reaction products. Haldy and Ligou (1977) were able to take into
account scattering anisotropy with their modified moment method, but
were limited to infinite medium problems. One of the more extensive
formalisms for obtaining a solution to the Fokker-Planck equation was
developed by Mehlhorn and Duderstadt (1980). Difference relations
for the Fokker-Planck collision term were derived and then imple-
mented in a discrete ordinates code called TIMEX. The conservation
of both particles and energy were continuously monitored in the code
and both angular dispersion and velocity diffusion were accounted
for.

Mehlhorn and Duderstadt admitted, however, that their method
was not the most efficient way to perform Fokker-Planck calculations
inasmuch as it required internal modification of the codes. They
noted that in order to take advantage of, and directly utilize all of
the varied and powerful discrete ordinates codes currently available
for neutron transport, it would be much more productive to generate
"effective Fokker-Planck cross sections" that could be used as input
to the codes. Just such an enhancement was developed by J. E. Morel
(1981) at Sandia National Laboratories. He succeeded in accommo-
dating the angular dispersion and energy loss effects of the Fokker-
Planck approximation into appropriate multigroup Legendre polynomial
expansions which could be input directly into discrete ordinate codes
without internal modification. This eliminated the need to develop a
redundant or separate set of Fokker-Planck discrete ordinate codes to

parallel those codes used for neutron transport.
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Chapter I contained a brief discussion of some of the relative
advantages and disadvantages of the Monte Carlo versus discrete ordi-
nates method. The primary advantage of multigroup Monte Carlo, and
in particular the MORSE code system, is its ability to perform three-
dimensional forward or adjoint calculations for coupled neutron-
photon transport. Since adjoint capability for coupled electron-
photon transport currently does not exist with continuous energy
Monte Carlo, the generation of effective Fokker-Planck cross sections
for use in MORSE would provide an approximate, yet hopefully very
reliable solution for adjoint electron-photon transport. Unfortu-
nately, the Fokker-Planck Legendre expansions derived by Morel for
discrete ordinate codes are not acceptable for use in MORSE; that is,
the code system will reject them since they do not represent (or do
not originate from) an everywhere positive distribution. Thus, the
purpose of this work is to determine a new general purpose algorithm
for generating the Fokker-Planck cross section coefficients so as to
treat charged-particle transport with MORSE.

The derivation of the Fokker-Planck equation is shown in Appen-
dix A. In summarizing the derivation, we start with one form of the

Boltzmann equation
Ve -QlP(F, uaE) + Ot(FaE) \P(F,H,E)

o r2x r+1 . . )
fo fo fl 0 (FLE > Eou) w(Fau' E') du' d¢ dE' + Q(F,u,E)

{3-1) .
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(the terms of the equation are defined at the beginning of Appendix
A). The equation assumes that the direction of the particles is
defined by only one variable, u, the deflection cosine. For discrete
ordinate codes, this means that only one-dimensional geometries with
an axis of symmetry, such as a slab or sphere, are considered (see
Chapter 1 of Bell and Glasstone, 1970). Since the elastic scattering
cross section is coupled in both energy loss (E' - E) and scattering

-1

angle (8, = cos™* 1), then the Boltzmann may be rearranged to

form
Velp+ o p=Tpy+Q, (3-2a)
where
2n r+1 _ _
T A R ACE R RCATICY
0 -1
- o(FoEsuy) W(F,wE)] du' dg' . (3-2b)

The term Tgy is known as the Boltzmann scattering operator. In the
Fokker-Planck approximation, the integrand of rgy is first expanded
in a Taylor series expansion about 845 = 0. If we retain only up to
the second-order terms of the expansion, and then perform a fair

amount of algebraic manipulation, we obtain the expression
Velyptow=Tepp+Q, (3-3a)

where the integral operator of the Boltzmann equation has been

replaced by the Fokker-Planck differential operator:

a1



ot =5 =[-8 =+ & B‘P"‘%‘izwi (3-3b)
with
+1 _

a = ZW_/il o (P E u (1 - w)) dug (3-3c)
B8 =./ﬁ GS(F,E +E')(E - E') dE' , (3-3d)

0
Y =f o (F.E > E')(E - E')% dE" . (3-3e)

0

The terms a, B, and y are usually referred to as the momentum trans-
fer, the stopping power, and the mean-square stopping power, respec-
tively.

If the integrand of TIgy, and in particular the angular flux
(y), varies smoothly as a function of the expanded variables, then
the Fokker-Planck operator will successfully approximate the
Boltzmann operator in the region of small 8,. For forward peaked
scattering, the scattering cross section has little angular support;
that is, the probability of scattering at large angles is relatively
small in comparison with scattering at small angles. As the cross
sections become more forward peaked, the region of angular support
decreases, and the relative contribution of small angle scatters to
the solution of the Boltzmann increases. In such a case the Fokker-

Planck solution will gradually converge to the Boltzmann solution. ‘
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Morel (1981) points out that it is often difficult to establish
the reliability or accuracy of the Fokker-Planck equation within firm
1imits since the angular flux may not always be sufficiently smooth.
In some problems, the derivatives of the angular flux with respect to
energy may be either unbounded or extremely large. However, Morel
states that "experience has shown that good results for scalar quan-
tities (angle and energy integrated), such as energy and charge depo-
sition profiles, can be expected in charged-particle calculations.
However, results for detailed differential quantities are generally
inadequate. The Fokker-Planck equation is very useful in spite of
this deficiency because it is the scalar rather than the differential

quantities that are most often of applied interest."

Theoretical Basis for the Decoupled Cross Section

As mentioned previously, Mehlhorn and Duderstadt (1980) replaced
the quadrature forms of the Boltzmann integral operator in discrete
ordinate codes, with difference equations representing the differen-
tial quantities of the Fokker-Planck operator. Morel's approach was
to define cross sections in terms of the Fokker-Planck functions.

The key to his approach was in discerning that the same Fokker-Planck
equation (Equation (3-3)) may be derived by using a cross section
decoupled in angle and energy, rather than a coupled cross section.

Let us reexpress the differential operator (Equation (3-3b)) as

Tep v = TRp ¥ * Thp ¥ (3-4a)
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where r;b v redistributes in angle with no energy loss:
g v =32 [ -f) 3o ] (3-4b)

and PEP ¢ redistributes in energy with no directional change:

e, =218 p 12 (3-4c)
A S A AL
Such a decoupling of the Fokker-Planck collision term suggests that

we may also define a composite, decoupled cross section of the form

o (E' > E,ng) = o%(E,uy) 8(E' - B) + o*(E' » E) 5= 8(

! -1 (3-5)

o]

which when inserted into the Boltzmann equation achieves the same
result as the coupled cross section. The term o (Eyug) 8(E' - E)

permits directional change only, and the term o®(E* + E) &§(u, - 1)/

0
2n allows only energy loss.

The derivation of the Fokker-Planck equation using the decoupled
cross section is also shown in Appendix A, and is very similar to the
derivation for the coupled cross section. Inserting Equation (3-5)

into (3-1) and rearranging slightly produces the Boltzmann scattering

operators

2w
Tg ¥ = f / o Lvlu') - wW(u)] du' de¢' (3-6a)

and
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Ty w=/0[ce(E' >E) Y(E') - o°(E »E') WE)]dE' . (3-6b)
0

We approximate rg ¥ and rg ¢ by expanding the integrands above about
8 = 0. After simplifying, we obtain rgp v (Equation (3-4b)),

where

+1
axon [ SEER - ) dy, (3-7)

and we obtain rgp v (Equation (3-4c)), where

B =/°° Ge(E > El)(E - Ee) dEc (3-86)
0
and
Y =fw B(E » E')(E - £')2 dE’ (3-8b)
0

respectively.

Morel's approach was to define multigroup expansion coefficients
for the composite, decoupled cross section in terms of the Fokker-
Planck functions (@, B, and y) and certain S, parameters (the order
of the quadrature set and the energy group structure). Since the
Fokker-Planck and Boltzmann equation approximate one another with
forward-peaked scattering, it follows that the Boltamann solution

calculated using these coefficients would "converge to the desired
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Fokker-Planck solution as the S, space-angle-energy mesh was re-
fined" (Morel, 1981).

The use of decoupled cross sections in charged particle trans-
port is not new. Such a cross section has been used in continuous
or analog Monte Carlo programs for many years. Although the actual
basis for using the decoupled cross section is its theoretical link-
age to the derivation of the Fokker-Planck equation, the decoupled
cross section is usually considered as simply a model of the physical

interaction processes involved in charged particle transport.

Physical Basis for the Decoupled Cross Section

Let us focus qualitatively on the interactions of charged parti-
cles: ionization, scattering, various types of radiative losses, ;nd
others, all of which are due primarily to coulomb forces. The mecha-
nisms by which a charged particle Toses its kinetic energy, or is
deflected from its original path, involve four principle types of
interaction: inelastic collisions with atomic electrons, inelastic
collisions with a nucleus, elastic collisions with a nucleus, and
elastic collisions with atomic electrons. Each will be discussed
briefly in turn. More detailed and quantitative discussions on the
interaction of radiation with matter may be obtained in references by
Evans (1955) and Segre (1964). The information below is primarily

taken from Evans.
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Inelastic Collisions with Atomic Electrons. Inelastic colli-

sions with bound atomic electrons are usually the primary mechanism
by which charged particles Tose their energy in passing through an
absorber. Upon entering the absorber, the charged particle imme-
diately interacts simultaneously with many electrons. These orbital
electrons (primarily valence electrons) receive an impulse from the
coulomb force (attraction or repulsion) as the particle passes by and
as a result, energy is transferred to the electron. This does not
mean that each atom receives a small energy transfer. Either no
energy is transferred at all, or else an energy approximately equal
to an excitation or ionization energy of the atom is transferred;
i.e., the energy available to the atom must be greater than the mini-
mum excitation potential. Because of the small mass of the electron,
the energy transfer may be relatively large and the electron will
experience a transition to an excited state (excitation) or to an
unbound state (ionization). If the atom is ionized, then the liber-
ated electron and the corresponding positive ion constitute a primary
ion pair. Also, the liberated ion is itself a charged particle
(called a delta ray) and will produce secondary ionization while
being brought to rest.

Head-on collisions would naturally produce the largest impulse
to the electron, and therefore, the largest energy transfer. 1In a
classical sense, the probability of a given energy transfer in an

inelastic collision varies inversely with the square of the energy
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loss. Therefore, "soft" collisions, in which the energy loss is
small, are strongly favored over "hard" collisions, in which the
energy loss is large. Since hard collisions are very infrequent,

they contribute very little to the most probable energy loss. How-

ever, because the struck electron in a hard collision is given a
relatively large amount of kinetic energy, an appreciable fraction
(roughly one-half) of the energy lost by primary particles occurs in

such a collision. This means that the average energy loss will ex-

ceed the most probably energy loss.

Since heavy charged particles (not electrons) have a mass much
Targer than the orbital electrons, the deflection of these charged
particles is extremely small. Heavy charged particles passing
through matter have essentially straight paths--apart from the rare
event of a nuclear collision where a large angle scattering occurs--
and slow down in an almost continuous manner. This introduces the
concept of range. That is, a monoenergetic beam of heavy charged
particles, in passing through some small thickness of material, will
continuously lose energy until all of the particles are "stopped"
(i.e., reached thermal energies). The distance traveled to the point

of "stopping" is the range.

Inelastic Collisjon with a Nucleus. If a charged particle

approaches the nucleus in a close, noncapture encounter, the incoming

particle will experience a deflection (i.e., an acceleration) due to .
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the coulomb fields. In the quantum mechanical model, there is a
small but finite probability (which increases as a function of inci-
dent particle energy) that a photon will be emitted each time a par-
ticle experiences such a deflection. Because the probability or
cross section is so small, usually no photon is emitted. However, in
the few collisions which are accompanied by photon emission, a rela-
tively large amount of energy is released, and the collisions are
called radiative. The photon emission is termed bremsstrahlung.

In a classical sense, the total bremsstrahlung per atom varies
as the square of the atomic number and inversely with the square of
the mass of the incident particle. Due to the strong dependence on
the mass of the incident particle, bremsstrahlung is almost complete-
1y negligible for all charged particles other than electrons. And as
mentioned previously, energy loss by radiation at low energies is
much less than that by ijonization, but at high energies, loss by rad-
jation may predominate.

In a radiative collision, the initial momentum of the incident
electron becomes shared between the residual electron, the atomic
nucleus, and the emitted photon. Although the photon may receive any
fraction of the total initial kinetic energy of the electron and can
be emitted in any direction, usually its share of the momentum is
small compared with that of the deflected electron. Thus, for radia-
tive collisions of moderate energy, the momentum is primarily con-

served between the nucleus and the deflected electron. And since
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relatively little momentum is transferred to the photon, the angular
deflections of the incident electron are seldom significant.
Radiative loss may also occur in electron-electron interac-
tions. However, the electron-electron bremsstrahlung is usually
accounted for by changing the Z? dependence of electron-nucleus

bremsstrahlung to (22 + Z).

Elastic Collision with a Nucleus. An important practical dif-

ference between the jonization behavior of heavy charged particles
and electrons arises from the fact that the trajectories of electrons
in matter are rather tortuous and nonlinear. The actual path length
of an electron passing through two points may be significantly longer
than the distance between these points measured on a straight line.
Hence, electrons of the same energy are not all stopped by the same
thickness of material (in contrast to heavy charged particles) and
the concept of range has limited applicability. One cause of the
irregular trajectories of electrons is the elastic collisions with
the nucleus, or "Rutherford scattering"; that is, the electrostatic
repulsion or screened coulomb force from the nucleus will deflect the
charged particle without any photon emission or excitation of the
nucleus. The charged particle loses only that amount of kinetic
energy necessary to conserve momentum between the two particles. 1In
an elastic electron-molecule collision, the average energy trans-

ferred to the molecule is small. However, such collisions may give
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rise to large changes in the direction of the colliding particles and
thus produce large transfers in momentum.

Incident electrons have a relatively high probability of experi-
encing nuclear elastic scattering. The nuclear scattering increases
with Z2 while the inelastic electronic scattering increases only with
Z, the number of electrons per atom. In hydrogen, the cross sections
for scattering by the two different processes are about equal. In
higher Z elements, the nuclear scattering will increase and predomin-
ate over the electronic scattering by roughly a factor of Z.

As is characteristic of other charged particle interactions,
elastic cross sections are forward peaked. So although the deflec-
tions of many single scatters may be small, the cumulative effect of
many small nuclear scatters (multiple scattering) for any one elec-
tron may be significant. The theoretical treatment of multiple scat-
tering, in fact, attempts to evaluate the statistical average of many
elastic nuclear deflections. Also, it is often satisfactory for com-
putational purposes to combine the angular effects of inelastic elec-
tronic scattering and multiple scattering. This is usually done by
replacing the Z? dependence in multiple scattering formulas with the
term (Z2 + Z), since the probability of electron-electron scatter

increases in proportion to Z.

Elastic Collision with Atomic Electrons. Incident particles

which have kinetic energies below the first electronic excitation
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potential of the medium through which they travel are often called
subexcitation particles. It is these particles (with energies <100
eV) which primarily participate in elastic scattering events with
atomic electrons. The subexcitation particles transfer only that

amount of energy which is necessary to conserve momentum and energy.

Summary. The decoupled cross section consists of an energy loss
only term and a directional change only term. Of the four charged
particle interactions mentioned above, only elastic nuclear scatter-
ing contributes significantly to the angular term, while the other

interaction types are primarily energy loss mechanisms.

Coefficients for o%

We have established thus far that the composite, decoupled cross

section

og (' > Eyug) = o®(E,ng) 8(E' = B) + o®(E' » E) 3= 6(ug = 1) (3-9)

has a theoretical as well as a physical basis; that is, when the
scattering is highly forward peaked, the decoupled cross section may
be used to derive the Fokker-Planck equation. In the derivation, we
noted that rg and ng will approximate one another as ¢* becomes
increasingly peaked about py = 1. Similarly, rg and PEP will
approximate each other as o¢® becomes increasingly peaked about E' =
E. This convergence of the Boltzmann and Fokker-Planck scattering

operators with forward peaked scattering is an important property of
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our formalism and brings us to the actual development of the expan-
sion coefficients for our multigroup cross sections.

For this development, we require for each energy group, proba-
bilities of transfer to all other groups. Since the angular redis-
tribution term (o%(E,uy) 8(E' - E)) of the decoupled cross sec-
tion permits no energy loss, ¢% must correspeond to a within-group
cross section. Conversely, since the energy redistribution term
(®(E' + E) 6(ug - 1)/2n) is a delta function in angle, o€ must
correspond to a group-to-group transfer. We will discuss both the
past work by Morel (1981) and the new developments for each cross

section in turn.

Morel's Method for Determining Coefficients for ¢% e first

define a set of Legendre coefficients (og) for the within-group cross

section (o®) such that

ey = L gt o 7y () (3-10)

The coefficients of the expansion are determined by forcing the
Boltzmann and Fokker-Planck operators to be equivalent when operating
on polynomials of degree L or less. If we assume the angular flux is

expressible as a polynomial of degree L or less,

L
o) = 2 == ¢, Py(u) (3-11)

then we are in effect requiring that



rg p = rgp v . (3-12)

We recall that

2n ,+1
1Sy fo [ ) B - v g g - (3-13)

Replacing y(u') and o%(E,uy) with their respective Legendre

expansions gives
L o +1
a ., _ 22 + 1 2m+1 a '
8 ¥ = gg I % }._;‘07"_ c"m'/:l Palig) Pylu’) dug dog

- oZ W) - (3-14)
To perform the remaining integration, we insert for Pg(u'), the
addition theorem for spherical harmonics (Bell and Glasstone, 1970)
] = L -
Polu') = Plu) Pou) +2 Z '(z_+:5"’Pz( ) Prlug) coslr(s - o,)] .

(3-15)

After integrating with respect to ¢4, all but the first term of the

identity goes to zero and Equation (3-14) becomes

L +1
a . 22 +1 2m+1 a
Tg ¥ g: I % 2. Z 2 m_/_‘1 Pm(uo) Pz(“o) dug

m=0

- o2 W) (3-16)
L 22 + 1 a a
= Eb—-a“—— ¢,(ay = o) Pu) . (3-17)
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Let us now consider ng y. Recall that

b= [ - D) 2l (3-18a)

where q carries units of steradians/cm and is known as the momentum

transfer:

+1
a =H/P o*(Eyu ) (1 - u ) du_ . (3-18b)

1 0 0 0

Inserting the Legendre expansion for y(u) as before and using the

jdentity

(1= %) Pylu) = =2 u Py(w) + 2P, y(n) (3-19)
then Equation (3-18a) becomes

L
fp v =% L AT ol w P - Pl ¢ Pyw] L (3-20)

Using another well-known recurrence relation for the Legendre poly-

nomials
= Pe(u) + Py q(w) = -2 P (u), (3-21)
we obtain the final expression

L
v 2 222 1, 0-43 (2 DI P . (3-22)

Now, as stipulated in Equation (3-12), we require that rg y be equal
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to ng ¢. Therefore, we equate the coefficients of their respective

expansions found in Equations (3-17) and (3-22):

o"-og=-=§°-‘(z+1), a=1, L. (3-23)

If we choose o = 0 so as to minimize the resulting value for ag,

Equation (3-23) becomes

o;=§[L(L+1) -2(e+ )], 2=0, L. (3-24)

The above expression is the equation developed by Morel to define the
Legendre coefficients for the within-group cross section. Equation
(3-24) shows that we only need an expansion of degree L for o% in
order for rg and r?P to be equivalent when operating on polynomials
of degree L or less.

Some comments regarding the behavior of ¢“ are appropriate:

1. The momentum transfer (a) is exact regardless of the expan-
sion order (L). This is easily demonstrated with the equation

sequence below:

+1

a= 2“/1 ca(E,uo) (1 - wy) duy (3-25a)
- o - o (3-25b)
=%(L) (L+1) -%[L(L+1) -2l =a. (3-25¢)
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2. 0% becomes increasingly forward peaked with increasing
expansion order. Using the Fokker-Planck equation to redefine the

average cosine of the scattering angle, we have

ﬁo = og/og (3-26a)
_{L+1) -2 _ 2
S A e (3-26b)

The average cosine goes to unity at the approximate rate of 1/L2.
3. 08 increases without bounds as L increases:
a=a | -
% ?-L(L + 1) . (3-27)

Let us synthesize the three comments above by expressing the

momentum transfer as
a = 08(1 - ﬁo) . (3-28)

The above equation dictates that as ugy approaches unity, then for o
to remain a constant, 08 must become unbounded. This relationship,
along with the fact that rg better approximates P%P as o becomes
more forward peaked, infers that F%P corresponds to a type of
continuous-deflection approximation. Morel states that the Fokker-
Planck operator "effectively causes particles to scatter continuously

while incurring a differential deflection in each scattering event”.
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It follows then, that the Fokker-Planck cross section expansions as
given by Equation (3-24) cause particles to "continuously deflect
with the mean deflection per unit path length given by the momentum
transfer".

An additional important aspect of the Fokker-Planck expansions
discussed by Morel is that they are "spherical-harmonic equivalent".
By this it is meant that one-dimensional slab geometry S, solutions

for the Boltzmann equation
Veaptop=TgytQ, (3-29)

obtained using Gauss quadrature sets of order N in conjunction with
0% expansions of degree (N-1), are equivalent to the spherical
harmonics solutions of order (N-1) with Mark boundary conditions for

the Fokker-Planck equation
Voeyto- rgp p+ Q. (3-30)

Therefore, if the Fokker-Planck expansions are to be input to a
discrete-ordinates/S, code, it is advantageous to use Gauss quadra-
ture sets of order N with cross section expansions of degree (N-1).
We reaffirm that rg and rgp are approximations to each other and
are equal only in the limit as p, goes to 1. Although both opera-
tors are linear, positive, and mirror to an extent physical reality,

the process of forcing them to be equal, when in reality they are
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not, causes o* to be nonphysical. Since cross sections model prob-
abilities of interaction, they must by definition by everywhere posi-
tive. A cross section o(uo) must be positive over the entire
interval (-1, +1) spanned by the cosine of the polar angle (uq =
cos 60). However, we do not usually deal with actual cross sections
in codes, but with approximate representations in the form of trun-
cated Legendre polynomial expansions. The truncated expansions often
times do become negative over the cosine interval, but it is usually
sufficient if they originated from, or converge in the limit as the
expansion becomes infinite, to an everywhere positive function. By
stating that Morel's expansion is nonphysical, we do not mean to
infer that the expansion is useless or of little worth--because it is
sti11 spherical-harmonic equivalent. We simply mean that the coeffi-
cients are representative of a cross section which is negative some-
where over the interval (-1, +1) (i.e., no fully positive cross sec-
tion will have expansion coefficients identical with those of Morel's
expansion). Although nonphysical, Morel's expansion does converge in
the 1imit to a positive function, &(ug - 1), but in a nonuniform
fashion; that is, the lower order coefficients converge faster than
the higher order coefficients.

We now demonstrate, using the Gauss quadrature technique dis-
cussed in Chapter II and Appendix B, that Morel's Fokker-Planck
expansion is a truncated version of a physically unrealistic cross

section, and as such is not amenable to the scattering algorithm in
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MORSE. We define f*(pg) as the truncated expansion of f(ug)

where

2n-1
flug) = ug) = 2 21, p,(n) - (3-31)

In this case, fy represents the normalized coefficients correspond-

ing to ¢ We recall that the Gauss quadrature technique seeks to

a
g
replace f*(uy) with a discrete distribution, f4(ug),

n
fd(\-‘o) = ‘i§l wy 5(110 - D-i) N (3-32)

where the weights (wj) are all greater than zero and the roots

(uj) 1ie between (-1, +1). The failure of either of these two con-
ditions indicates that the given coefficients (f;) or moments

{Mg) of f*(uy) are not those of an everywhere positive function.
The nonnegativity requirement on the weights may be shown to yield

the following restriction or lower 1imit on the value of f,:
£, 3 (362 - 1) = P,y(F,) = Py(ii) . (3-33)

At this point, let us note that if a delta function, located at ug,

= f,, is expanded in terms of Legendre polynomials, we have
+1
fy ./1 5uy - F1) Pylug) dug = Pu(F)) . (3-34)

Therefore, the lower bound for the coefficient f, of an everywhere
positive function is the same as the coefficient f, of a delta func-

tion expansion at pug = f). Now Morel's equation for f, (obtained
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from Equations (3-23) and (3-25b)) is

fo=-2fy + 3f . (3-35)

Combining the above equation with the restriction on f, obtained from

the quadrature technique (Equation (3-33)) gives

(f; - n%<o. (3-36)

Since the term (f; - 1)2 can never be negative, it follows that the
Fokker-Planck coefficients (cg, cg,...) do not originate from an

everywhere positive function and are therefore not acceptable to the

a

MORSE code. For example, setting L = 3 in Morel's expression for g,

(Equation (3-24)) gives the following normalized Fokker-Planck
coefficients: fo = 1, f; = 5/6, f, = 1/2, and f3 = 0. Using these
coefficients as input for the Gauss quadrature subroutines of MORSE
results in an error message stating that f, is bad and that the
acceptable values for f, are between 0.54167 (= P,(5/6)) and 1.
Since f, is bad, the code proceeds to calculate a single direction
and weight for fq(ug) using only fy and f,. The discrete

direction corresponds to ug = f; = 5/6, and it is of course the
same direction that would have been obtained if the original weight
function were §(uy - 5/6) instead of the Fokker-Planck expression.
Therefore, only the first two coefficients of the Fokker-Planck
expansion are acceptable in MORSE. We are limited to a P; expansion

of the Fokker-Planck equation.
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Triangular Impulse Function Representation for o® e desire to

obtain a new set of Legendre expansion coefficients to approximate
o® which are both physically acceptable and suitable for input to
MORSE. One highly important requirement for the new expansion is

that it retain the same 08 and o? as given by Morel's expansion
gg =g LL+1) - fy, (3-37)
a _ o - s 3

This is to insure that Pg remains equivalent to P%P in the diffusion
1imit (i.e., they are equivalent when operating on polynomials of
degree less than or equal to 1). Since a% is bad, retaining the
first two coefficients is the best we can do. However, there exist
an infinite number of expansions with the same og and c?. Therefore,
the other coefficients (og, og,...) must be chosen so that they are
in some sense "close" to Morel's coefficients.

An obvious choice for the new expansion would be a delta func-
tion at uy. It is certainly everywhere positive and retains 08 and

cf as its first two coefficients:

+1
a by = a 3 -
a +1 - - Qa
00[1 S(uo - uo) "y duo = 08 My = 07 - (3-40)
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An additional advantage is that the coefficients of the delta
function are precisely at the edge of physical acceptability (see
Equation (3-33)) and are therefore the closest in value to Morel's
coefficients. However, delta functions are not amenable to the
scattering algorithm in MORSE. The Gauss quadrature technique
attempts to find a set of polynomials Q;(x) orthogonal with respect

to the delta function such that

+1
_/ﬂ Q;(ny) Qslug) 8(ug = ) dug = 8:. Ny (3-41)
or

Q; (ny) Q:(n,) = 8,5 No . (3-42)

It is easily seen that if i # j, then either Qi(ﬁo) or Qj(io) must be
zero since the Kronecker delta is zero. If i = j, then we have

2=y - 2=y -
05 (kg) = Ny or Q5(,) = Ny

also be zero and this is unacceptable. From a computational view-

It follows that either Ni or Nj must

point, we acknowledge that delta functions are not always rejected by
the quadrature routines. This is because we do not actually input
delta functions to the code, but truncated expansions of those delta
functions, with coefficients which are slightly altered due to round-
off. But as may be expected, the computation becomes more ill-
conditioned as the expansion degree is increased and the coefficients

are made more exact.
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A second choice for the new expansion might be a rectangular
ijmpulse function centered at ﬁo with some finite width h. But an
obvious question is how large or small to make h.

A third choice for the new expansion for ¢%, and the one which
we have elected to use, is a triangular impulse function (TIF). As
depicted in Figure (3-1), the TIF is forward peaked with positive
slope m and intercept b, and it equals zero at ug, We will now
compute the normalized Legendre coefficients (fg,fy,f2,...) for TIF

where fo = 1 and f; = py. In general,

1
f =
2 ‘/:S (muy + b) Po(uy) duy . (3-43)
For 2 =0,
1
fo =1 =f (muo + b) duo (3-44&)
Mg
=0 +b -0 ul - by (3-44b)
Since
TIF(ug) =0 =mu, + b, (3-45a)
then
By = -b/m (3-45b)

and Equation (3-44b) becomes
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Figure (3-1). Triangular impulse function.
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_ 4 _Mm b
fo=1=Tsp+0 . (3-46)
For 2 =1,
- 1
f1 = u, =.)( o(muy + b) dug (3-47a)
Hg
3
=m.b b (3-47b)
37 E;?

Equation (3-46) and (3-47b) give us two equations and two unknowns (m

and b). Solving for the two unknowns gives

m=s 1 (3-48)
(1-u,)
and
b=m2-3u) . (3-49)
And since ug = -b/m, then
ug = (3iy - 2) . (3-50)

For 2 = 2 and above, the coefficients are given by

‘ Pz_z (HS) ZPQ(HS) Pz+2 (HS) ) .

f1=mlwz-1)Qz+1)'Q2-T)Qz+3)+uz+1)wz+3”

(3-51)

The new cross section expansion, ¢%, is obtained by multiply-

ing each of the normalized expansion coefficients (fq,f;,fs,...) by
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Morel's og (Equation (3-37)). Because the triangular impulse func-
tion retains the same first two coefficients as Morel's expansion, it
also retains many of the same functional characteristics, i.e., the
momentum transfer remains exact, the TIF becomes increasingly forward
peaked with increasing expansion order L, and as u, approaches

unity, then the scalar magnitude becomes unbounded.

The most important property characterizing ¢% is that r%
converges to ng as u, goes to 1. We will demonstrate this conver-
gence property for the triangular impulse function. Listed for com-
parison in Table 3-1 are the coefficients of three different Fokker-
Planck expansions: Morel's exact expansion, a delta function at ﬁo,
and the TIF, for L = 3 to 8. We note, as previously stipulated, that
each set of expansions has the same first two coefficients, and that
the last coefficient of Morel's expansion is always zero. Also, for
any particular L, the coefficients for the delta function expansion
drop Tess rapidly than Morel's coefficients but more rapidly than the
TIF coefficients; this is reasonable since the delta function lies on
the border between physical/nonphysical cross sections. Of impor-
tance, however, is the fact that as L increases, or as u, goes to
1, then the coefficients of the three different expansions converge
to each other. For example, the third coefficient (¢3) differs by
12.7, 1.25, and 0.32 percent at L = 3, 5, and 7, respectively. It
follows that the three expansions become equivalent in the Fokker-

Planck limit.
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Comparison of Coefficients for Various Fokker-Planck Expansions

MEP 6
DF 6
TIF 6
L =4, io =
MFP 10
DF 10
TIF 10
L=59I10=
MFP 15
DF 15
TIF 15
L"69I10=
MFP 21
DF 21
TIF 21
L =7, g
MFP 28
DF 28
TIF 28
L=8, fip =
MFP 36
DF 36
TIF 36
Definitions:

5 3
5 3.25
5 3.38
9/10
9 7
9 7.15
9 7.23
14/15
14 12
14 12.1
14 12.15
20/21
20 18
20 18.07
20 18.11
= 27/28
27 25
27  25.05
27  25.08
35/36
35 33
35 33.04
35 33.06

MFP - Morel's Fokker-Planck Expansion
DF - Delta Function Expansion at ug,

Table 3-1
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15.35
15.52
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30.31
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13
14.79
15.58

21
22.41
23.05

TIF - Triangular Impulse Function
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We recall that the Fokker-Planck coefficients, oz, where

_ La

o, = 9 = 2—(2*‘1), 2 =1, L, (3-23)

were found by equating rg with a second order accurate rgp. In order

to show a more rigorous proof of convergence for TIF, let us first

derive a more accurate expression for a;. We begin with the identity
+1 a

0(2!, = 217[1 g (E,uo) Pz(uo) duo . (3-52)

Since
2 n
_ -1)" (2 + n)! n
Pyln) = 2 — (1 - ) (3-53)
270 n=0 2"(n!)2 (2 - n)! 0

(see Gradshteyn and Ryzhik, 1965), then

+1
SRS yECIUNCLE [ g )" s (3-50)

a0 2"(n1)? (g - n)tJ-1 0 of o

or

O‘Z - Z -l)n an(l +n)!

~ (3-55a)
n=0 2n(n!)2 (2 - n)t ’ :

where we have defined the different moments of the momentum transfer

as

n +1 n
o = zn—/_l o“(E,uo) (1 - ”o) du,, - (3-55b)
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From the above equation we find that for n=0, a° = og, and Equation

(3-55a) may then be rearranged as

o+ )t (3-56)
n= 2 (z -n)!

This expression is exact. Note that the first term of the summation
is the standard Fokker-Planck formula derived by Morel. Although the
derivation is much too tedious to present here, Equation (3-56) may

also be derived by first obtaining ng exact to infinite order:

o" (A¥)

T (3-57a)

ISy v =
FP n=1 2"(n!)

where o' is given by Equation (3-55b), and where

A = —ann [(1 - )" —-‘2} (3-57b)
ou Bu
- 22 + 1 2 +n)!
2: ( 1" 1——-—714 P.(u) (3-57c)

and by then setting Pg y equal to F?P ¢. Having obtained an exact

equation for ¢% in terms of an, we proceed with the demonstration of

L
convergence. We first compute the higher order moments of the momen-

tum transfer for the TIF in terms of al:

n *1 a n
a =27 ) ] (E,uo) (1 - uo) du0 (3-58a)

70




1
= 08'[11 (muo +b) (1 - uo)n duc (3-58b)

N 08(1 - ) In + 1 n+ 2 ‘ (3-58c)
262 3M(1 - u )"
0
B CERmC +°2) (3-58d)
(6a) (3"1) (1 - w1
= . (3-58e)

(n+1) (n+2)

Substituting Equation (3-58e) into (3-56) and extracting the first
term of the summation gives
-1 - \n-1
g (D" (24 n)t 3T (1 - q))
oz - 08 = -3 (2) (¢+1)+6a - > 9
n=2 2°(n!)* (¢ -nm! (n+1) (n+2)

(3-59)

It is easily seen in the above equation that in the limit as u,
goes to 1, all of the higher order summation terms go to zero and
only the standard Fokker-Planck equation remains.

The rate of convergence may be determined by analyzing the equa-
tion for the normalized coefficients (obtained by inserting Equation
(3-58d) into (3-55a)):

- )" (2 + )1

9 . (3-60)
(n +1) (n +2) (2 - n)!

Since the cosine of the average scattering angle is given by
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1-1°= 1- m (3'26b)

then

(3-61a)

(-2)" 3" (¢ + n)!
i "L+ D" (1) (n+1) (n+2) (& -n)!

]
—t
=
—
P
+
—
—s e

$3022) W GE-1 0 (3.61)
Lo(L + 1)

If 2 is small and L is large, then the ratio of the (n+l) term to the

nth term goes as approximately -1/L%. If g = L, then the ratio of

successive terms goes as approximately -1/n2. Therefore, the lower

order coefficients converge at a faster rate than the higher order

coefficients.

We showed previously in Table (3-1) that the difference between
the lower order coefficients of Morel's expansion and those of the
TIF, was smaller than the difference between corresponding higher
order coefficients. That is, the difference between corresponding
coefficients diverges with increasing 2. However, this "reluctance"
of fy to converge, where 2 is large, does not significantly affect
the accuracy of the solution. It is instructive to consider the Sy
scattering source expressed below

S(uy) = Eg% g&z%~l o, b, Poluy) i=1, N (3-62)
where we have used a truncated cross section expansion of degree

(N-1) in conjunction with a Gaussian quadrature set of order N. In ‘
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using a quadrature set of order N, we are also assuming that the
angular flux may be adequately represented by a polynomial of degree
(N-1) or less; if not, the coefficients of y obtained through Gauss

quadrature

+1 N
by = 2“-/-1 v(u) Py(u) du = k);l W Py i) w (3-63)

will not be exact. In analyzing the scattering source, we wish to
portray the cross section coefficients as being weighted by the flux
coefficients. Since the flux coefficients decrease in value with
increasing £, then each succeeding term of the summation in Equation
(3-62) contributes less to the scattering source. Therefore, for any
particular value of &, if ¢4 is very small, then the contribution

of oy is diminished accordingly, and it will not matter signifi-
cantly if oy is inexact. It follows from this analysis that we

would expect the TIF expansions to produce approximately the same

results as Morel's expansions.

Coefficients for of

We recall that the group-to-group transfer cross section must be
defined from the term of the decoupled cross section which allows
redistribution in energy but no angular change: o®(E' » E) &§(ug -
1)/2w. The Legendre expansion coefficients of a delta functicn at
no = 1 are equal to Py(l) = 1. Therefore, ¢© must be a trun-

cated delta-function expansion with coefficients of equal magnitude.
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For convenience, Morel decomposed o® into the sum of two cross

sections

oC(E' > E) = ®(E' » E) + ¢"(E' » E) . (3-64)

B

The cross sections of and o' correspond to the differential operators

containing g8 and y, or rgp and r}P, respectively (see Equations

(3-3b) and (3-3e)). Morel explains that both PEP and r}P correspond
8
T

to a type of continuous scattering approximation. Fp corresponds to

the well-known continuous slowing down approximation wherein parti-

cles lose energy continuously with the energy loss per unit path
length given by the stopping power. r}P causes particles to both up-
scatter and downscatter in equal numbers so that the overall energy
loss is zero. The mean square stopping power determines the amount
of mean-square energy change experienced by the particles per unit
path length. This "diffusion" in energy space introduces energy-loss
stragging into the calculation.

Morel defined the multigroup ¢ross sections corresponding to

oB and oY as follows:

8(E_) for k

g+1, if 8(Ej) >0, and

9 k for k

g-1, if s(Eg) <0,

= 0 for all other values of k , (3-65)

and
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¥(E )

Y - - -
°g+k = ——————ﬁL——T? , fork=g-1 and k=g+1,

2(Eg - Ek)

= 0 for all other values of k . (3-66)

The variable Eg denotes the group midpoint energy of group g and
ag +k is defined as the probability per unit path length that a
particle will scatter through zero degrees from group g to group k.
Since a particle cannot upscatter in the first group nor downscatter
in the last group, we complete the definitions for the multigroup
cross sections by setting ¢ = 0 for the first and last groups,
o8 = 0 for the first group if 8(E;) < 0, and ¢B = 0 for the last
(NG) group if g(Eyng) > O.

For problems involving a lower cutoff energy (i.e., an energy
deposition calculation), Morel also defines an effective absorption

cross section for the last group (see Equation (3-65)):

«  B(Eyg)
g = , (3-67)
a Eyg - Ef

where Ef denotes the midpoint energy of a fictitious group below
the last one. The absorption cross section effectively transfers
particles from the last group to thermal energies and deposits their
remaining energy on the spot.

Let us restate some of the analysis and conclusions drawn by
Morel concerning the multigroup cross sections:

1. The multigroup coefficients are based on energy rather than

particle conservation requirements.
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E -E) = 8(E -
Zk: gk (g = E) = 8(Ey) (3-68)
is always correct, but the mean-square stopping power
e 2
- = E + E - -
%og*(sg BT = v(EQ) + B(EQ) (Ey - Eyy) (3-69)

converges to y(Eg) only in the limit as the group width goes to
zero.

3. With a uniform energy group width, the multigroup treatment
for rgp is equivalent to a standard first order backward-difference
approximation, and the treatment for rgp is equivalent to a standard
second order center-difference approximation.

4, The use of a truncated delta function expansion, in conjunc-
tion with the multigroup cross section for o€, is valid for S,
calculations if the cross section expansion is of degree (N-1) and
the Gauss quadrature set is of order N. Quadrature sets other than
the Gauss quadrature set may not be sufficiently accurate to treat

delta function scattering.

5. Since PFP introduces upscatter into a calculation, and since
the computational cost of treating upscatter is relatively high, then
it may be advantageous to neglect the FEP term for problems without

upscatter.
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Since Morel's coefficients for o€ represent an everywhere
positive function, no new expansion was derived as in the case for
0% But as explained earlier, delta function expansions are not
suitable for input to the quadrature scattering algorithms present in
MORSE. This problem was easily remedied however, by inserting some
Fortran statements into the code to check for those expansions char-
acterized by having all of its coefficients close to 1. If such an
expansion was found, it was then known to approximate a delta func-
tion and a single scattering direction at uy = 1 and a weight of
1 were set for that group-to-group transfer. The new coding state-

ments are shown at the beginning of Subroutine ANGLES in Appendix C.

Computational Results and Analysis

In the two previous sections of this chapter, we have discussed
Morel's multigroup treatment of o% and ¢€, as well as a new
approximation in the form of a triangular impulse function for o%.
For convenience, we will label Morel's Fokker-Planck expansion for
o® as MFP and the new expansion as TIF. The MFP has the important
and highly desirable characteristic of being spherical-harmonic
equivalent, but it converges to the Fokker-Planck operator, r?p’ from
the negative region of phase space (it is nonphysical with respect to
angle). Conversely, the TIF is not spherical-harmonic equivalent,

except in the diffusion 1imit, but it approaches rgp from the
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positive region of phase space. Nevertheless, the TIF and MFP, each
with the same order of expansion L, should approximate each other
when the angular flux is adequately represented by an expansion of
degree L or less.

In this section, we will compare the MFP and TIF cross section
expansions from a computational standpoint via energy and charge
deposition calculations using the ONETRAN (a one-dimensional finite
element S, code; see Hill, 1975) and MORSE codes. The computations
were performed for 1-MeV electrons isotropically incident on cold
slabs of aluminum. The slab thicknesses were chosen to correspond to
approximately one-sixth range (12.5 mil), one-third range (25 mil),
and two-thirds range (50 mil), denoted as Problems 1, 2, and 3, res-
pectively. Fifty evenly-spaced groups were used, ranging from 1 MeV
down to 0.1 MeV, and the source strength was normalized to unity. An
effective absorption cross section (see Equation (3-67)) was defined
for the last energy group since the range of the electrons in that
group was small relative to the slab dimensions and the residual
energy would be deposited locally. The cross section expansions,
TIF and MFP, were each given the same og and c?, and were each input
as Py expansions. For the ONETRAN code, this means that a Gaussian
Sg quadrature set must be used to effectively treat the delta func-
tion scattering and to obtain spherical-harmonic equivalency. For
the MORSE code, it means that we may extract up to four discrete

directions (NSCT = 1, 2, 3, or 4) and weights from which to sample
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scattering angles. If we elect to compute only one discrete direc-
tion and weight from the P, expansion, then we are using only the
first two coefficients of the expansion, and this corresponds to
inputting a delta function at ﬁo = o?/og. Recall that a delta func-
tion at ﬁo lies on the border between the physical (TIF) and the non-
physical (MFP) expansions, and as such, is the best we can do in
approximating the MFP. Also, since no upscattering occurs at the
energies of interest, the full second order approximation for o€

was not needed in the calculation, and only the first order continu-
ous slowing down approximation was used.

Using the identical test case described above, Morel (1981)
analyzed his Fokker-Planck expansions by comparing the ONETRAN
results against "exact" solutions from a one-dimensional coupled
electron-photon Monte Carlo transport code called TIGER (Halbleib and
Vandevender, 1974). However, the TIGER code had to first be modified
to solve the Fokker-Planck equation instead of the coupled electron-
photon Boltzmann equation. This was done by removing energy loss
straggling effects (disallowed sampling from the Landau distribu-
tion), thereby restricting the calculation to the continuous slowing
down approximation. The scattering angle in TIGER is sampled from a
Legendre expansion derived from Goudsmit-Saunderson multiple scatter-
ing theory. The coefficients of the expansion contain the term (o4
- ay) which was replaced by the Fokker-Planck equivalent, a2(2 +

1)/2. Morel's comparison of the ONETRAN-MFP results and the "exact"
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solutions from TIGER will be presented along with the TIF and MFP
comparison. The energy deposition values calculated by TIGER and
MORSE for each spatial zone have a relative standard deviation of
less than two percent.

There are other items pertaining to these computations which
have been adequately discussed by Morel and need not be repeated in
detail here: the equations relating the multigroup stopping powers,
the flux, and the effective absorption cross section to charge and

energy deposition, as well as the expressions for the nonrelativistic

momentum transfer («(E)) and the relativistic stopping power (8(E))

required to compute the cross sections. Also, for information
regarding the input format of the cross section libraries, since it
is code specific, the reader is referred to the available code
documentation.

Figure (3-2) shows three sets of curves which represent Morel's
energy deposition profiles as a function of slab penetration for
Problems 1, 2, and 3. The profiles were calculated by TIGER (denoted
by "Monte Carlo" in the legend) and ONETRAN-MFP (denoted by “Sy" in
the legend). The energy deposition profiles appear to be in excel-
lent agreement. Figures (3-3) through (3-5) show similar profiles
for MORSE-TIF (NSCT = 1) and ONETRAN-MFP, and as expected, the agree-
ment also appears to be quite good (note that the ordinate axis in

Figure (3-4) is expanded).
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Figure (3-2). Energy deposition profile comparison for
Problems 1, 2, and 3 (top to bottom).
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Figure (3-5). Energy deposition profile comparison for Problem 3.




A more quantitative analysis of the agreement between TIGER,
ONETRAN-MFP, and MORSE-TIF may be obtained from the bulk energy depo-

sition values shown in Table (3-2).

Table (3-2)

Bulk Energy Deposition

ONETRAN-MFP MORSE-TIF TIGER
Problem 1 0.255 0.258 £ 0.2% 0.258 + 1.0%
Problem 2 0.512 0.519 + 0.1% 0.518 + 0.5%
Problem 3 0.795 0.802 + 0.2% 0.806 *+ 0.5%

The data shows that the ONETRAN bulk energy deposition values lie
approximately 0.8 to 1.4 percent lower than the TIGER and MORSE
values. This difference, though admittedly very small, is persistent
and is in part due to convergence of the Sy solution rather than
statistical error. Although the solution is basically converged as
far as the energy group structure is concerned, Morel showed that
increasing the number of energy groups does raise the ONETRAN profile
slightly.

The same analysis holds true for increasing the S, quadrature
and expansion order. To show this, ONETRAN calculations were per-
formed for the TIF, as well as the MFP, for each test case. The TIF
and MFP were both input as P, expansions in an Sg calculation, and
the resulting difference in the solutions was usually close enough to
be indiscernible on a plot. This is what we expected from our theo-

retical analysis. And since a delta function (located at the uj,
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corresponding to a Py MFP) is on the physical/nonphysical border
between the MFP and TIF, its solution should likewise be very close
to the others. However, it was found that if the quadrature order
was increased from an Sg to an S;g, and the expansion order of the
same delta function was increased to a P;s, then the energy deposi-
tion curve would shift upwards (this effect is shown in Figure (3-4)
for Problem 2). We would ultimately expect that if the quadrature
order was increased to S,, and the expansion order increased to
infinity to represent the delta function exactly, then the ONETRAN
curve would converge to the MORSE-TIF (NSCT = 1) profile. This con-
clusion follows from the fact that using MORSE with one allowed dis-
crete scattering cosine, at some py, is equivalent to an S
calculation with a delta function cross section at the same ug.

Also shown in Figure (3-4) is an energy deposition profile from
a MORSE-TIF (NSCT = 4) calculation. Setting the number of allowed
scattering angles to four permits the code to use all eight moments
of the P TIF expansion, instead of just the first two moments in the
case where NSCT = 1. From the plot, it is difficult to statistically
resolve any significant difference in the NSCT = 1 and NSCT = 4 solu-
tions. This would indicate that the MORSE solutions using the TIF
and delta function cross sections are essentially equivalent.

In addition to energy deposition calculations, charge deposition
for Problems 1, 2, and 3 was also determined for comparison pur-

poses. Figure (3-6) shows Morel's charge deposition profiles from
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Figure (3-6). Charge deposition profile comparison for
Problems 1, 2, and 3 (top to bottom).
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ONETRAN-MFP and TIGER as a function of penetration. The TIGER pro-
file for Problem 1 is a poor representation due to the large amounts
of statistical error. The same profiles for Problems 2 and 3
achieved better statistics and permit more meaningful analysis. Fig-
ures (3-7) through (3-9) show charge deposition profile comparisons
for ONETRAN-MFP and MORSE-TIF (NSCT = 1). A larger number of parti-
cle histories was generated in the MORSE calculation to enhance its
statistics somewhat over the TIGER calculations. The agreement
between the charge deposition profiles from the various codes is
still very good, though clearly the statistical error is more severe
than for the energy deposition profile comparisons. The reason for
the poorer statistical agreement among the charge deposition profiles
is that the particles may contribute to the charge deposition only
when they have reached the lowest energy group, whereas particles
have a finite probability of contributing to the energy deposition at
every collision.

The bulk charge electron deposition values are given in Table

(3-3).

Table (3-3)

Bulk Charge Electron Deposition

ONETRAN-MFP MORSE-TIF TIGER
Problem 1 0.020 0.022 + 2.4% 0.017 + 3%
Problem 2 0.198 0.202 + 0.8% 0.193 + 1%
Problem 3 0.643 0.649 + 0.5% 0.651 + 1%
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The ONETRAN and TIGER values differ by approximately 17.7, 2.6, and
1.3 percent for Problems 1, 2, and 3, respectively. The MORSE and
TIGER values differ by approximately 29.4, 4.7, and 0.3 percent for
the same problems. These percent differences, between the TIGER
values, and those from ONETRAN and MORSE, appear to decrease with
increasing thickness. Morel proposes that the poor estimate of
charge deposition in Problem 1 is due to range or energy-loss strag-
gling. This straggling effect permits particles to thermalize over
path lengths much shorter or longer than the actual range, and is an
inherent characteristic of the multigroup approximation to the CSDA
(continuous slowing down approximation) operator. The range strag-
gling effects decrease with decreasing energy group widths.

The ONETRAN-TIF profile was not shown along with the ONETRAN-MFP
profile in any of the figures for charge deposition because the solu-
tions matched so closely. However, the MORSE-TIF profiles are shown
for both NSCT = 1 and NSCT = 4 in Figure (3-8), and the agreement is
very good. This close agreement of solutions from a particular code,
independent of whether the cross section input is MFP, delta func-
tion, or TIF, is strong evidence for the interchangeability of these
cross sections.

Figure (3-8) also contains a charge deposition curve from an S;g
ONETRAN calculation with a P;5 delta function input. The delta func-
tion is positioned at the mean scattering angle characterizing the Py

MFP. The charge deposition curve is seen to shift up from the
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ONETRAN-MFP curve and again emphasizes that the difference in the
bulk charge electron values between ONETRAN-MFP and MORSE-TIF (though
small) is primarily due to S, convergence.

Figure (3-10) shows a comparison of the reflected current spec-
trun between ONETRAN-MFP and TIGER for Problem 2. Figure (3-11)
shows a similar comparison of the transmitted current spectrum for
various group structures.

Referencing Figure (3-10) first, the ONETRAN-MFP reflected cur-
rent spectrum shows good agreement with the TIGER spectrum except at
the source energy end of the spectrum where the ONETRAN curve takes
an upswing. This high energy peak is characteristic of the ONETRAN
solution only, and is not found in either the MORSE or TIGER solu-
tions. The cause of the peak is that the full-range Gauss quadrature
set does not completely satisfy the Marshak boundary condition. The
peak height is reduced by increasing the quadrature order, or it may
even be eliminated by using a special half-range quadrature set
developed by Morel (1983). Figure (3-12) shows the reflected current
spectrum comparison for ONETRAN and MORSE with various input cross
sections. Note specifically the difference in the peak heights
between the Sg and S;g ONETRAN solutions. Since S, calculations
conserve particles, a result of increasing the quadrature order and
thereby reducing the high energy peak is that particles are now
forced to transmit through the slab or be absorbed. And that is why

the S,g ONETRAN calculations shifted the energy and charge deposition
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profiles upwards slightly from the Sg profiles. Further increases in
quadrature order would enhance the convergence of the ONETRAN solu-
tion to the MORSE solution.

Additional information may be gained by referring back to the
transmitted current spectrum comparison shown in Figure (3-11).
Obviously, the TIGER and ONETRAN-MFP profiles agree very poorly.
Morel analyzed the spectra comparisons and discussed their signifi-
cance. We will briefly summarize some of this findings and conclu-
sions below.

1. The TIGER and ONETRAN curves do show good agreement at low
energies--this is necessary to account for good charge depo-
sition profile agreement.

2. The spectrum integral represents the total number of parti-
cles transmitted, and the energy-weighted integral repre-
sents the total amount of energy transmitted. These quanti-
ties remain relatively unchanged in comparing one curve to
another which accounts for the good energy deposition pro-
file agreement.

3. The broadening effect exhibited by the discrete ordinates
curves is generally more pronounced at larger distances from
the source than at smaller distances.

4. The spectral broadening is due to energy-loss straggling
originating from the multigroup approximation. Decreasing

the energy group width enhances convergence, as seen in
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Figure (3-11). However, the rate of convergence is inverse-
ly related to the slope or rate of change of the true energy
spectrum. For example, a rapidly varying spectrum denotes
slow convergence of the S, solution.

Since MORSE also uses the same multigroup cross section data as
ONETRAN, we would expect the MORSE-TIF transmitted spectrum to copy
the ONETRAN-MFP solution (rather than the TIGER solution). This
analysis is substantiated by Figure (3-13) showing the transmitted
current spectrum comparisons for Problem 2 using ONETRAN and MORSE.
The spectral agreement is excellent and does not seem to depend on
the type of cross section used. The MORSE spectra exhibits the same
broadening effect from energy loss straggling as the discrete ordin-
ates spectra.

We have thus far shown that our treatment of the angular opera-
tor, rgp, in developing the TIF cross section, is equivalent computa-
tionally to the MFP and is compatible with the scattering algorithm
in MORSE. The Fokker-Planck approximation using the triangular
impulse function retains the same benefits and weaknesses as the
previous cross section set developed by Morel; i.e., accurate solu-
tions may be obtained for energy and charge deposition, but the
accuracy of the differential spectra is dependent on its distance
from the source.

The development of the new set of Fokker-Planck cross sections

for use in MORSE results in both three-dimensional capability as well
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as a forward or adjoint option for problem solving. This greatly
increases the versatility of the code and the number of applications
to which the Fokker-Planck approximation could conceivably be
applied. To demonstrate this versatility, we have performed an
adjoint calculation to calculate energy deposition in the core of a
sphere. The geometry was chosen to be one-dimensional in angle so
that comparisons with ONETRAN could be obtained (recall that two-
dimensional quadrature sets do not have sufficient accuracy to treat
the delta function scattering in the energy operator). The problem
was similar in many aspects to the previous slab calculations. A 1.0
MeV electron flux was isotropically incident on a sphere of cold
aluminum. The radius of the sphere was approximately one-third the
range of a source particle. The inner core of the sphere was arbi-
trarily set to one-tenth the sphere radius. Fifty evenly-spaced
energy groups were used over the energy range from 1.0 to 0.1 MeV.
Again, we will dismiss with many of the details of the calculation
and simply refer the reader to ample documentation on the codes and
adjoint formalism: Halbleib and Morel (1980), Renken (1970), Hansen
and Sandmeier (1965).

Table (3-4) shows the forward and adjoint energy deposition

results for the spherical inner core from ONETRAN-MFP and MORSE-TIF.
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Table (3-4)

Bulk Core Energy Deposition

(MeV x 10-3)
Forward Adjoint
ONETRAN-MFP 1.037 1.058
MORSE-TIF 1.045 + 2.5% 1.017 £ 1.4%

The agreement is very good. The ONETRAN and MORSE forward solutions
compare very well, and the MORSE forward and adjoint solutions agree
to within the statistical error. The ONETRAN forward and adjoint
solutions, though approximately equal, do not show exact agreement,
because the adjoint S, equation in curvilinear coordinates is not
exactly adjoint to the foward S, equation. However, the adjoint

and forward solutions do converge in the 1imit as the quadrature

order is increased with a constant spatial mesh and group structure.
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APPENDIX A
DERIVATION OF THE FOKKER-PLANCK EQUATION

The following derivation of a second-order accurate Fokker-
Planck equation follows closely the derivation of Morel (1981) and
somewhat that of Wang and Guth (1951). The derivation is appropriate
for problems with:

1. one-dimensional slab or spherical geometry,

2. an isotropic transport medium (a medium with no preferred
direction for particle travel; crystalline structures or
certain plasma configurations are examples of anisotropic
medias), and

3. forward-peaked elastic scattering.

In order to fully define the working variables, the derivation
begins with the general time-dependent integro-differential form of
the Boltzmann transport equation (Emmett, 1975). The Boltzmann equa-
tion describes a bookkeeping process that sets the net storage of
particles within a differential element of phase space (dr,dE,dd)
equal to the particle gains minus the particle losses within that

differential element. One familiar form of the Boltzmann is:

it
-
m
-
He
-
ot
g

]
"SI
K)

g /de' d2' o (F,E' > E,8' » R) o(F,E',@',t), (A-1)

where
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the general multidimensional phase space,

r = position vector,

E = the particle kinetic energy,

v = the particles speed corresponding to its kinetic energy,
E,

© = a unit vector which describes the particles direction of
motion,

t = time variable,

yr,E,Q,t) = the time-dependent angular flux,

Wr,E,Q,t) dE d% = the number of particles that cross a unit area
normal_to the Q direction per unit time at the space
point r and time t with energies in dE about E and
with directions that lie within the differential
solid angle d9 about the unit vector ,

%f Wr,E,2t) dE d& = the net storage (gains minus losses) per

unit volume and time at the space point r and time t
of particles with energ1es in dE about E and with
directions which lie in d@ about @,

<|p

Q « wr,E,Q,t) dE dQ = net convective loss per unit volume and
time at the space point r and time t of particles

with_energies in dE about E and directions which lie
in dQ about &,

ot(F,E) = the total cross section at the space point r for
particles of energy E,

(r E) ¢(r,E,Q,t) dE d& = collision loss per unit volume and
t1me at the space point r and time t of particles
with energ1es in dE about E and directions which lie
in df about Q

oé(F,E' +E,2" +» Q) dE dQ = the differential scattering kernel
which describes the probability per unit path length
that a particle with an initial energy E' and an
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initial direction Q' undergoes a scattering collision
at r which places it into a direction that lies in
dQ about 2 with a new energy in dE about E,

[ffo (F.E' »E,@ » ) y(F,E',&,t) dE' d@'] dE dfi = inscattering
gain per unit volume and time at the space point r
and time t of particles with energies_in dE about E
and directions which lie in df about @,

Q(r,E,Q,t) dE dQ = source particles emitted per unit volume and
time at the space point r and time t with energies
in dE about E and directions which lie in dQ@ about
.

A simplified version of the Boltzmann equation (Bell and

Glasstone, 1970), which neglects time dependence, and is limited

to one-dimensional slab and spherical geometries, is shown below:

V. -QlP(Y-‘, U9E) + Ut(F’E) ‘p(FaU,E)

o 271+l . _ .
=/ / f O'S(r,E' > E,uo) q)(rsu.’El) du' d¢' dE' + O(V',H,E),
0/0 J-1

(A-2a)
where
Q' = Q'(u',9') = Q' (cos 8',9") , (A-2b)
Q= Q(u,¢4) = Q(cos 6,¢) , (A-2c)
and
b= a1 - 0?1 - 212 cos(er - 4) (A-2d)

0
The variables (8,¢) are shown in the standard phase space coordinate

system illustrated in Figure (A-1). The two unit direction vectors,
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Figure (A-1). Standard phase-space coordinate system.




@' and Q. and their inclusive angle 85 (= cos~! uy) are shown
in a direction-space coordinate system illustrated in Figure (A-2a).
Also shown in Figure (A-2a) is a spherical triangle formed from Q',
Q, and from a unit vector along the z-axis. Equation (A-2d) was de-
rived by using the law of cosines for the sides of a spherical tri-
angle, where 65, 8', and 6 represent the sides.

There are two ways of deriving the Fokker-Plank equation depend-

ing on how one defines the scattering cross section.

Method One

One of the basic assumptions for this derivation is that inelas-
tic scattering is either ignored or irrelevant. Since with elastic
scattering, energy loss (E'-E) and scattering angle (uy) are
directly coupled, the differential scattering cross section may be

expressed as

Os(r,E' > E;uo) = OS(F’EIQUO) G(E = ES) (A'3a)
with
E. = E((E',n) (A-3b)
or
o (T B > E,u) = o (r,B' > E) 8(u, - u) (A-3c)
with
US = HS(E',E) . (A-3d)
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Figure (A-2a).

Direction-space coordinate system.




Because of the direct coupling, Eq = E' when yy = 1 (Equation
(A-3b)) or ug = 1 when E' = E (Equation (A-3d)).
Substituting Equation (A-3a) into Equation (A-2a), and inte-

grating over the variable (E') gives

Vo (r, uE) + o (FLE) w(r,u,E)
21 o+l . _

=f f [US(Y',E',UO) \P(Y‘,u 9 )] dy' d’b + Q( LAPR T ) . (A"4a)
0 -1

where

E = ES(E',uO) . (A-4b)

Since the total cross section is the sum of the absorption and scat-

tering cross section,

o (F,E) W(F,mE) = o v+ o ¥

2T _
g 1p+/ / (r E,u ) w(r,u,E) du' de' ,

(A-5)

Equation (A-4a) may be rearranged in the following form:

Vo ap(r, mE) + o (F,E) w(r,u,E) = Tpy + Q(r,u,E) , (A-6a)

where

2w [+1 _ .
PB‘P':'/(; ,/:1 [US(Y',E',UO) IP(Y',IJ',E')

- o (ryEyu ) w(r,u,E)] du' d¢' . (A-6b)
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The term (rgy) is known as the Boltzmann scattering operator. It
is this integral operator that is replaced with a differential
operator in the Fokker-Planck approximation.

The scattering operator (Tgy) represents the inscatter minus
the outscatter at a position r, energy E and angle u. Because gg
is forward peaked, the significant contributions to Equation (A-6b)
are made when the quantities (E' - E), (u' - u), and (¢' - ¢) are
small. Since the angular flux (y) is relatively smooth as a function
of E and u, then ¢ will not change much as (E' » E) and (u' + u).
Also, the explicit dependence of the cross section (og) on E' var-
ies slowly. However, with regard to uy, the differential cross
section may vary dramatically.

For reasons which will become obvious later on, it will facili-
tate the derivation if we change the variables of integration in
Equation (A-6b) from u' and ¢' to uy and ¢g. This change of
variables is carried out by exchanging (du' d¢') with (J dugy dég)
where J represents the absolute value of the Jacobian. Geometrical-
1y, this change of variables is brought about by the sequential
direction-space coordinate transformations shown in Figures (A-2a),
(A-2b), and (A-2c). The coordinate system (x',y',z') in Figure
(A-2b) was formed from the coordinate system (x,y,z) in Figure (A-2a)
by rotating the x-y plane about the z-axis through an angle ¢. Then y
the coordinate system (x",y",z") in Figure (A-2c) was formed from

(x',y',z') by rotating the x'-z' plane about the y' axis through an .
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angle 6. Since the Jacobian of any number of plane rotations equals

1, then Equation (A-6b) becomes
2n [ +1 _ _
%w=]ﬂ j~ Log (FAE su)) w(Fsu',E")
0 -1
- US(F,E,UO) ¢(F,U,E)] duo d¢0 . (A'7)

The variable u' is put in terms of u and uy by using the law of

cosines for the spherical triangle pictured in Figure (A-2c):

wos #0801 cos(n - g (A-82)
=y - L1 = D)1 - w21 cos (A-8b)

The next step in the derivation is to expand the E' and u'
dependence of og(r,E',uy) (r,u',E') about 85 = 0. We note
that E' = E and p' = u (see Equation (A-8b)) when 85 = 0. Although

1y is also a function of 8y, we do not expand its dependence.

Therefore, suppressing the r dependence and keeping only up to and
including the second-order terms, we obtain the Taylor series expan-

sion

og (E's ) wlw',E') = o (E,u)) w(u,E)
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ot o]
+ 3 (El ) ( [] EI) 32El eg
3T % sHy ) Wi, ';;Z" 7
o "8 =0
0
32 ' 2 azu' eCZJ
+ GS(E,IJO) [—Z W(u',EY) -a-e—> * 5T Y(u',E") —2—] v
o' 0 39 ~
0o 78 =0
0
(A-9)
Rearranging gives
GS(E',IJO) ‘P(IJ',E') - OS(E’HO) ‘p(HQE) = Il + 12 s (A'loa)

where the left-hand side of the equation is now the integrand for

rgy in Equation (A-7), and where I, and I, are given below:

2
' 2 8
I = oS(E,u0)§—§; ¥ u,E) [[g—;o]e _(8) + [i—;“—] 7"—]
0 0o -0 =0
0
2
2 2 6
+ 2 y(u,E) [<3L>] 0%  (A-10b)
e 39, eo=oT
and
2
2 8
9 oE! 3 E! 0
I = = (Es ) 11'( 9E> aa (9)"‘[ ] ]
2 7 TE %\hok) WM Ha%]e;O 0 . 0,0 z

2 2 8
3 E
+ ? O'S(E,UO) ‘P( ]J,E> [(g—e-> ]e -0 -22 . (A-].OC)
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Equations (A-10b) and (A-10c) contain partials of y' and E' with

respect to 6y which must now be evaluated at 6, = 0. Recalling

that
u' = upcos 85" (1 - u2)1/2 sin 8, COS ¢ » (A-8b)
then
311' = (1 2)1/2
U ~(1 -y cos ¢ , (A-11a)
%1 =0 °
32 !
! l = -y (A-11b)
a6 -
0 60—0
and
<§HL>2 = (1 - u2) cos2 $ (A-11c)
36 le =0 o]

For the partials of E' with respect to 6,5, a Taylor expansion of

E' about 85 = O gives
2
2 8
. _ | oF" o E' 0 .
E' - E = [39—] ) (eo) + [—2—-] -2— + . (A-lZa)
0 eo—O 5 =0

and the square of that expansioh becomes

w

2 2 9
2 oF 2 3°E! 0
E' - E) + 2 —— > + e A-12b
( [ae ]6 =0 O [360} [eeo }e -0 ( )

Substituting Equations (A-1la) through (A-12b) into I; and I, gives
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9
I = og(E,u) {[ 05 (1 - 1212 cos ¢ - —g—u}gﬁ ¥(n,E)
2
+ eo 2 82
> (1 - w") cos ¢O';2'¢(M,E) (A-13a)
and

L2 o) wwd)] € -8+ L[E o e s
2 = LBy ¥( u, > SE? o (Esuy vy,

(B - E)2 . (A-13b)

Since we have replaced the integrand in Tgy (in Equation (A-7))

with an approximate expression (I; + I,), we now have

2w o+l 21 [+1
gy = rFP¢=A /:1 I1 duo d¢0 +/(; f-l I2 duo d¢0 . (A-14)

where Tppy is referred to as the Fokker-Planck scattering opera-
tor. However, Tppy is yet to be developed into a familiar and
usable form. For convenience, let us define the integral of I;

as I}, and the integral of I, as I;. Looking first only at I,, and

integrating with respect to ¢o over the limits 0 to 2= gives

2\ .2 +1
o - 3 3
I = [n<_1__zu_>a_ug - T"&]'/I o (E,n,) eg dug (A-15a)

or

I;_wa (l 2,y 3 +1 2d
175 - W) 5 . o (E,uy) 8, du, . (A-15b)

Since
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02 = 2(1 - yy) (A-16)

then the equation may be rearranged as follows:

R [(1 SRR w], (A-172)
where
+1
a = 211']:1 ch(E,uO)(l - uo) duo . (A-17b)

Looking now only at I, (Equation (A-13b)), the integral (I,) becomes

| 2w +1 3 ' 1 32 . 2
Ig=f0 f_l [‘aT o v | (E' - E) *?[;ﬁ"s‘b}“ - E) }d”o d4g-

(A-18)
The above equation contains the term (E' - E) where E is the final

energy after inscattering occurs from energy E'. We recall that

2 /
' _ oF' 1 3°E! 2
E' - E = EDN 8, +-2———2—ae g, t oo (A-12a)
0 0 8 =0
0
where
E = ES(E',eO) . (A-4b)

Equation (A-4b) is an implicit function of E' in terms of E and ¢,.
Since E (or Eg) is a constant, the first and second total
derivatives of Eg equal zero:

dEg(E',0) BEG(E',8,) . X
deo ok aeo a6

5E (E',8
sE- %) = 0 (A-19)

(o}

and
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2 ] ] 2 ] 2 !
d Es(E ,eo) i aES(E ,eo) aZE' . 3 ES(E ,eo) (aE‘)Z . ) ES(E ,eo) o
2 aET 2 a 30 2 T

deo 38, 3E " ) 36,

(A-20)
If we evaluate the two expressions above at 65 = 0, and note that E

= E' at 8y = 0, we obtain

oF! _ E (E"eo)
W' T T 36 (A-21)
0 90—0 0 60-0
and
2 2%E_(E',0.)
_ S 0
_Z_l Y A (A-22)
30 _ 36 -
0 6_=0 0 8 =0
0 0
Substituting Equations (A-21) and (A-22) into (A-12a) gives
3E _(E',0)) 2E (E' 9 2
F' wF = -« 20 % - eee (A-23)
38, 6 _0 2 '2_ :
0

We note that an expansion of (E - Eg(E,8p)) is identical to the

right-hand side of Equation (A-23); thus

' -E=E - ES(E,eo) (A-24)

and the equation for I, (Equation (A-18)) becomes

2 r+l 152 2
ff{[ ](E-E>+=z[a—;z°s¢](5-55) }duod%

(A-25)
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The next step in simplifying I, is to perform a variable change from
uo to T where t is the energy loss (E - Eg). Such a transforma-

tion yields

, Tmax(E)
I, = ZW.IZ {%E'[°S(E’“0(T)) Wu,E)] T

1 3 2] 9%
+?;E—2—[05(E’UO(T)) ‘P(U,E)] T }a—_r—- dr . (A-26)
Since
duo
2m o (E,uy(7)) o= = og(E, ) (A-27)
then

\ frmax(E) )
I, = . g Log(E,1) w(u,E) 1] dr

I Tnax (E) 52 2
+ 7:12 ;E7 Lo (E, 1) 9(u,E) 7] dr . (A-28)

We can bring the above indicated integrations inside of the partial
derivatives and introduce only a very small amount of error. For
example, using the Leibnitz rule on the first integral in Equation

(A-28) gives
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[Tmaxa a'/Tmax
. ﬁ[cswr]dr=—a_fo o, ¥ T drt

dThax
- os(E’ﬂnax) P( u,E) Thax —dE - (A-29)

The second term on the right-hand side of Equation (A-29) becomes
negligible in comparison with the first term in the Fokker-Planck
limit; i.e., as the cross section becomes more forward peaked. Thus,

IE becomes
.5 TnaxE)
12 =‘3‘E’ 0 as(EaT) ‘l)(u,E) Tdr

2

13 Tmax(E) 2
+ 7.7, o (E,t) w(w,E) 17 dt (A-30)
]

or, in a different form,
I =-§E—{¢fo o (E + E')(E - E') dE'}

L1 " ol(E > E')(E - £ Y
?EZ Y ) OS( + E')(E - ) . (A-31)

The final result for Tppy, upon substituting Equations
(A-17a), (A-17b) and (A-31) into Equation (A-14) (and remembering the

additional dependence of each variable on r), becomes

Ve Dy + o0 = Tgpv + Q (A-32a)

where
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Tpt = 5 2= [(1 - ) = wWFwB)1 + 3 sulF, ) +7}—:-E7 YU(F s, E)
(A-32b)
+1 _
a= Zw./il o (FyEsu N1 - ) duy (A-32c)
B =[ os(r.‘,E > E'")(E - E') dE' , (A-32d)
0
and
Y =.l~ cS(F,E + E')(E - E')2 de' . (A-32e)
0

The terms (a,B8, and y) found in the Fokker-Planck scattering operator
are usually referred to as the momentum transfer, stopping power, and
mean-square stopping power, respectively. Although stopping power

(B) is usually defined as being negative (if particles lose energy on
the average), we have here defined it with the positive sign conven-

tion.

Method Two
To begin the derivation, let us first examine Equation (A-32b)

by dividing Tgpy into two segments:

v = 3211 - ) & u(FuE)] (A-33a)
and
3 L= 1% .
TEp ¥ = = BUF,u,E) * 3 YU E) (A-33b)
3
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The equation for Tfpy deals exclusively with angle dependence

at some energy E, and the equation for ngw focuses on how certain
quantities vary with respect to energy at some angle u. In other
words, all coupling between energy and scattering angle are lost.
Such decoupling would suggest that we might derive the Fokker-Planck
equation by initijally assuming that the scattering cross section
itself is decoupled. The term FEPw would be derived by using a

cross section which redistributes in angle but not energy
o (F,E' > E,u ) = o"(F,E,u ) 8(E' - E) (A-34a)

and F%PW would be derived by using a cross section which redistri-

butes in energy but not angle

o (FaE' > Eyu) = R(F,E » E) = o( - 1) . (A-34b)

Inserting the new cross sections above into the Boltzmann equation

gives

V. Qy+ o ¥

o ~271 ,~+1 _ i
-/ [ Ry s B F e o ae o
0.0 J-1

©» 21 ~+]1
e,= 1 -
+ o (r,k' + E) S(u. - 1) p(r,u',E") du' d¢' dE'
/c;fo /-1 2 "o

+Q. (A-35)
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Recalling that we may change the variables of integration from (du'
d¢') to (duy d¢g), where the Jacobian of the transformation
equals 1, we integrate the first integrand with respect to E', and

the second with respect to u, and ¢q:

) 2+l - _
VeQpt op= . f_l o (r,Eyuy) w(r,u',E) duy de,

+f o*(F,E' » E) w(F,u,E') dE' +Q . (A-36)
0

If we separate the total cross section into its absorption and

scattering components as before, i.e.,

a ¥ = (aa + cs) Y (A-37a)

2n [+1 - _
Ua¢+'£ /:1 g (Y‘,E,uo) ‘p(rsUaE) duo d¢0

]

+/ S(F,E » E') o(F,u,E) dE' (A-37b)
0

and suppress the r dependence for simplicity, then Equation (A-36)

can be rearranged to give

VT o= rgw + rgw +Q, (A-38a)

2n [+]
rgv /o /-1 oN(Esuy) [w(u',E) = w(w,E)] duy do, (A-38b)
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and
P§w=fm[ce(E' +E) Wu,E') - o°(E » E') w(u,E)] dE' .  (A-38c)
0

As can be seen from Equations (A-38b) and (A-38c), rgw represents

the net gain of particles having a fixed direction u, and Pgw
represents the net gain of particles having a fixed direction E. The
next step in the derivation is to expand segments of each integrand
in a Taylor series. Expanding the term w(u',E) in Equation (A-38b)

about 8, = 0, and retaining terms up to second-order gives

Wu',E) = WukE) + [3%7 W(u',E) %%j]e -0 (8,)
0

32 ou' 2 ] azu' 2
+ [‘;—"2' y(u',E) <_'§6—> 5T P(u',E) ——2—] (90/2)
H 0 390 6 =0

o
(A-39)
Evaluating the partial derivatives above using Equations (A-1la),

(A-11b), and (A-1llc), and rearranging slightly produces

o u
Wu'sE) - o) = 2= 9] [ o,(1 - 12)Y% cos ¢ —3——]
2
2 8
+ [i—? w] [?g-(l - uz) cos2 ¢o]‘ (A-40)
H

Upon substituting Equation (A-40) into the integrand of (A-38b), and

integrating with respect to ¢o and uy, the final result becomes -

the same as in the first derivation
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Sl (A-41a)

where

+1
a = 21r/ oa(E,uo)(l - uo) duo . (A-41b)

Now let us return to Equation (A-38c) and perform an expansion on
the integrand of Pgw. The expansion is more easily understood,
however, if we first express the integrand in terms of the variable

1, where Tt represents the energy Toss (E' - E):

fﬁ=/:[fm+rn>wmz+n-o%aﬂwwﬁndr. (A-42)

Expanding o®(E + 1,1) w(u,E + ) in a Taylor series about t = O,

and retaining terms up to (2) gives

F(E + 1,7) w(wE + 1) = ¢%(E,7) w(u,E)

+ [gor o¥(E + t',1) w(uE + v 4 (1)

2
+[L2- o°(E + t',7) 9(u,E + r')]t.=0 (<2/2).

at'
(A-43)
Since
(e 411 = [or o®(E',0) w(u,E) 357 [0 (A-44a)
= 2 [o%(E,7) w(w,B)] , (A-44b)

then Equation (A-43) becomes
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FE+ 1) WwE + 1) - *(E, 1) w(wE) = [F o®(E,1) w(uE)] =

82 e 1‘2
+[—3_E—2- o°(E, 1) q,(u,s)] = . (A-45)

Replacing the integrand in Equation (A-42) with (A-45), and then

simplifying the integral in a manner analogous to that in Method 1,

we obtain

e e 3 1 32

Tg¥ = Tpp¥ = 52 BY + > s W, (A-46a)
where

8 =f0° (E > E')(E - E') dE (A-46b)
and

y =/; & (E » E')(E - E') dE* . (A-46c)
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APPENDIX B
GENERALIZED GAUSS AND RADAU QUADRATURE

The Gauss and Radau quadrature methods will be developed in par-
allel in this appendix. Each discussion of a subtopic under Gauss
quadrature will be followed with a corresponding discussion of Radau
quadrature. The Radau quadrature, therefore, will be considered as
an extension of the Gauss quadrature.

Since the MORSE code system uses the generalized Gauss quadra-
ture technique to analyze its input cross sections, the theory and
use of Gauss quadrature is explained in depth in the MORSE documenta-
tion, particularly in that by Emmett (1975). Much of the material
given here on Gauss quadrature is taken directly from that refer-
ence. For the derivation of Radau quadrature, a closely followed
reference is that by Hildebrand (1974). Other good references are
that of Stroud and Secrest (1966), Stroud (1974), and Davis and

Rabinowitz (1967).

Generation of the Generalized Gauss Quadrature

Statement of the Problem. Given a weight function w(x), a < x

< b, such that w(x) > 0 (Restriction I), find {xj,wj} for i = 1,n

so that
b
J/ﬁ w(x) g(x) dx = ;?% w; g(xi) (Restriction II) (B-1)
a E
holds for all g(x) where g(x) is a polynomial of degree 2n-1 or less.
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Solution. Determine a set of polynomials Qj(x) (i = 1,n)
orthogonal with respect to w(x). That is

b
/; Q.](X) QJ(X) m(X) dx = 61‘) N1 s (8‘2)

where §ij is the Kronecker delta and Nj is a normalization con-

stant. Then {xi}q=1 are given by the roots of Qn(x), Q (x;) =0, and

nt1
n-l , -1
wy = kz_jo Qp (x;)/N, |77 . (B-3)

Derivation. Let g(x) be a polynomial of degree < n + r - 1. By
simple division of palynomials, we can write the function g(x) as the
sum

g(x) = p(x) =(x) + a(x) , (B-4)
where =(x) is chosen as a polynomial of degree n with roots
X1seeesXpt

m(x) = (x - xl)(x - x2) eee (X - xn) . (B-5)

The polynomial p(x) will be of degree < r-1 and g(x) will be of
degree < n-1 (the exact form of p and q is of no interest to us).
Now, if we take the expression for g(x), multiply it by a weight

function w(x) and integrate, we obtain

b b
j; w(x) g4 1(x) dx =j; w(x) p._1(x) m (x) dx

b
+~/~ w{x) qn_l(x) dx . (B-6)
a
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If we define the notation

b
E[I(x)] =~/' w(x) I(x) dx , (B-7)
a
then Equation (B-6) becomes
£l ep.y ()] = Elp,_1(x) m ()] + ELq,_1(x)] . (8-8)

If we choose my(x) = Qn(x), so that w,(x) is orthogonal with

respect to w(x) over the interval [a,b], then

b
oy 1(0) 5001 = [ ) pylx) ) x =0, (5-9)
a

where r - 1 < n. Now we desire a quadrature form such that

n
El9pep-1(x)] = = Iner-1(¢5) * o5 (B-10a)
n
- ] Prp(X3) Qpxg) = wy # sg% po1(X;) * w  (B-10b)
n
= 1.;1 Pro1(xi) Qulx;) o wy + Efq_1(x)] . (B-10c)

By subtracting Equation (B-8) from (B-10c), we find that we must

require, for all polynomials, pp.1{x), that
n
;E% Prop (%) Qp(x5) » w = 0. (B-11)
]:

This condition can only be met if Qu(x;) = 0; that is, the de-

sired points xj are the roots of Qu(x). The largest value of r
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for which the quadrature is exact is for r = n. Therefore, Gauss
quadrature will integrate polynomials of degree 2n-1 or less.

Now we must pick the weights, w;, so that
n
E[qn_l(x)] = ‘|z=:l qn-l(xi) * oW, (B-12)

where dp.1(x) is an arbitrary polynomial of order n-1 or Tless.
Since gn.1 may be expanded as a linear sum of the orthogonal poly-

nomials, Qg, Q1,...,Qn-1, it is sufficient to require

E[Qk(x)] = ﬁ;.Ok(xi) . o for k =0,1,...,n=1 . (B-13)
i=

However,
ELQ (x)] = E[Qu(x) Qy(x)] = N, &, - (B-14)

Thus, we must have

n
.}:1 Qu(x;) + w =N &, for k=0,1,...,0-1. (8-15)
i=

Multiplying Equation (B-15) by [Qk(Xj)/Nk] and summing over k,

we find
n-1 Q,(x:) n n-1Q, (x;) Q,(x;)
2 kNJ 2 Qlx) -y = w; kJNk1
ko0 "k i1 i=1 k=0 k
n=1 Q (x.) Q.(x;)
= kN J NO (Sko = o__J NO =1
k=0 k 0

(B-16)

Introducing the function
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n-1 Q. (x) Q(y)
Dn-l(x’y) = k§;0 —'—T—— s (B-17)

we can write Equation (B-16) as

52% o Do (xg5x;) = 1. (8-18)

To proceed further we must establish the Christoffel-Darboux identi-

ty. Using the standard three-term recurrence relation for orthogonal

polynomials
0, (0) = (x = ) Q_1(x) = &&_y O ,(x) , (B-19a)
where
o2 =N /N (B-19b)
n-1 n-1""n-2 °

(Note: the above recurrence relation will be derived in a later sec-

tion of this appendix), then

Qp(x) Q,_1(¥) - Q,_1(x) Q. (¥)
Ny (x - y)



file:///i-dOC}

0,_1(x) Q_1(y)  0._1(x) Q_,(¥) - O, _»(x) Q_y(¥)

B-20d
n-1 Nn-2(x -Y) ( )

Qn-l(x) Qn_l(.Y) Qn_z(x) Qn_z(.Y) On_z(x) Qn_3(.Y) - On_3(x) Qn_z(.)')

) Nn-1 ' Ny-2 ' Nn-3(47' y)
(B-20e)
n-1 Q. (x) Q. (y) Q;(x) Qu(y) - Qy(x) Q;(y)
-y e A e (B-20f)
k=1 k 0
n=1 Q. (x) Qy) (x - uy) - (y - )
- + (B-20g)
W Notx = ¥)
n-1 Q. (x) Q.(y) n-1Q.(x) Q. (y) Qn(x) Qu(y)
=Zka +11“_= ka +°N° (B-20h)
k=1 k 0 k=1 k 0
n=1 Q. (x) Q(y)
= — = ] (X,y) . (8'201)
k;o Ny n-1
Therefore
Qn(xj) Qn-l(xi) - Qn-l(xj) Qn(xi)
Dn"]-(xj ’X'i) - Nn_l(xj — X,‘) (8'21)
For i #J and Qn(xj) = Qp(x3) =0,
Dn-l(xj’xi) =0 . (B-22)
Therefore, returning to Equation (B-18),
n
121 of Da_q(X5>x) = wg Dy q(xgux5) = 1 (B-23)

or
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LN A (B-24)

Generation of the Generalized Radau Quadrature

Statement of the Problem. Given a weight function w(x),

a < x <b, such that w(x) > 0 (Restriction I), find xg,...,Xn-1

and wy,...,up SO that

b -1
./” w(x) g(x) dx = EZ% w; g(xi) *u g(b) (Restriction II) (B-25)
a i=

holds for all g(x) where g(x) is a polynomial of degree 2n-2 or less.
Solution. Determine a set of polynomials Qi(x) (i=1, n-1)

orthogonal with respect to w*(x) = (b - x) w(x). That is,

b
./; Qi(x) Qj(x) w*(x) dx = 8§, N . (B-26)

n-1 .
Then the {xi}i=1 are given by the roots of Qn_l(x), Qn-l(xi) = 0, and

2 2 -1
w; = [(b - xi) Eg% Qk(xi)/Nk] for i=1, n-1. (B-27)

The last weight (w,) which corresponds to the fixed abscissa (xp

= b) is given by

(Un = 1 - E U.)i . (8'28)

i=1
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Derivation. Let us define (n) as the total number of abscissas
(x3), (r) as the number of "free" abscissas which need to be calcu-
Tated, and (n-r) as the number of preassigned abscissas.

In the Gauss quadrature case, we had
Elpp_1(x) m(x)}] =0 . (B-29)

If we predetermine some of the roots of mp(x), then we cannot
guarantee that mu(x) is still orthogonal to w(x) over [a,b]. In

particular, let us preassign (n-r) roots so that

m(x) = w*(x) v(x) , (B-29a)
where
m™(x) = (x - xl)(x - x2) eee (x - X (B-29b)

contains the "free" roots, and where
v(x) = (x = xpeq) eee (x - xp) (B-29c)
contains the preassigned roots.

As in the Gauss case, we let g(x) be a polynomial of degree

<n +r-1, and write it as

g(x) = p(x) n(x) + a(x) . (B-4)

Multiplying both sides by w(x) and integrating over the limits, we

obtain

Elgpep.1 ()] = Elp._1(x) = (x)] + E[a,_;(x)] . (B-8)
Substituting in for wp(x) using Equation (B-29a) gives

Elgneyo1(X)] = Elp_1(x) v, _.(x) w*(x)] + E[q,_;(x)] .  (B-30)
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If we choose n;(x) = Qr(x), so that w;(x) is orthogonal with respect

to w*(x) = w(x) vp-p(x) over the interval [a,b], then

b
Elp,._1(x) v _n(x) mk(x)] =.f; w*(x) p._1(x) Q.(x) dx =0 . (B-31)

Now, we desire a quadrature form such that

Elagar- (] = 2 oy a05;) (8-32)
i=

is exact for a polynomial with degree < (n + r-1). This is equiva-
lent to specifying that
n

Elp,._1(x) m (x)] = ;g% w; Pp_q(xy) mx) . (B-33)

Since we have already chosen the left-hand side to equal zero (Equa-
tion (B-31)), then the x; on the right-hand side are still the

zeros of my(x) = vp_p(x) Qn(x). If only one abscissa is speci-
fied, then r = n-1, and the quadrature is exact for polynomials of
degree < 2n-2.

The weights (wj) for Radau quadrature will be derived in a
slightly different fashion from the Gauss weights. If we evaluate
both sides of Equation (B-4) at the zeros of =(x), we find that
g(x3) = a(xj) for i = 1,n. Thus, g(x) is a polynomial of degree
< n-1 which interpolates g(x) at x = x5, i = 1,n. We can write

q(x) as

n
a(x) = ;g% g(x;) 2;(x) , (B-34a)
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Noting the similarity between this last expression and Equation

(B-38), wj becomes

. = -1 (B-43)
Toovlxg) Qeleg) Oy txg)

To simplify the expression for wj further, we need to again refer

to the Christoffel-Darboux identity. If we insert the equation
0 = -0.(y) Qp_1(¥) + Qu(¥) Qu_q(¥) (B-44)

into the numerator on the right-hand side of the identity (Equation

(B-39)) and factor, we get

RN
o N

J

[0,.(x) = Qu(¥)1 Qu_q(¥) - [Q,_1(x) - Qu_1(¥)] Q.(¥)
Nr—l(x - Y)

(B-45)

By considering the limiting form of the above relation as y + x, or
as (x - y) +dx, the identity becomes

=l [0;(0 7

1 . .
& TN TN [0.(x) Q._1(x) - QL_{(x) Q.(x)] .  (B-46)

If we Tet x = x4, it reduces to

]2

r-1 [Q.(x.)
L e Ni-l [0 (x;) Q_q(x;)] (8-47)

since Qq(xj) = 0. And finally, inserting the above equation into

Equation (B-43) gives



27-1
=1 [Q;(x,)]
w = v(xi) . Ez: ——ngj———- , 1= 1,r . (B-48)
j=0 J

This last equation determines all the weights except those corres-
ponding to the preassigned abscissas.
In the case when only the abscissa x = b is preassigned, so that

v(x) = x - b, the corresponding weight is expressed by

w{x)

b
o = _"—%E)_j; w(x) HX_ gy . (B-49)

b

Noting that =(x) = v(x) Qpn.7(x) = (x - b) Qn-1(x), and that ='(b)

= Qn-1(b), then w, becomes

b
1
wn =wL w(X) Qn_l(X) dx . (8-50)

We recall that the Qn-l(x) above is orthogonal with respect to
w*(x), not w(x). To determine an explicit expression for w,, we

refer to the Christoffel-Darboux identity where we have set y = b and

r = n-1:
n-2 Qi(X) Qi(b) Qn_z(b) Qn_l(x) - Qn-l(b) Qn-z(x)
= . B-51
T gl = B o

We then multiply the equal members by w*(x) Qu(x), integrate from a
to b, and take advantage of the orthogonality of the polynomials to
obtain

Qn_z(b)./ﬁb w*(x) On_l(x) Qn-l(b) b w*(x) Qn-Z(X)
N, ), e W fa x5 9 -

1 =

(B-52)
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Rearranging slightly and then substituting in Equation (B-50) gives

* 5T fb (x) Q. _,(x) dx - -2 (8-53)
*h n-22) Ja ’ n-2 Qp_2(0) Q1 (B) ~

In comparing the expressions for wy in Equations (B-50) and (B-53),

we find the identity:

b b
1 - 1
QJISF,[a w(X) QJ(X) dx = W/; N(X) QJ-].(X) dx - QJ_I

(B-54)

If we substitute Equation (B-54) successively into (B-53), we obtain

w = 1 b (D(X) Q (X) dx - Nn'3 _ Nn-Z
h T T, 50T J, n-3 0300 0, (67 ~ T _,(6) q,_{1b)
. (B-55a)
b n-2 N.
- - 1 -

Since the actual weight function being used is a Legendre expansion,

f(u), the integral of that expansion is

b +1
f w(x) dx = fl f(u) du (B-56a)
a -
-22£+1ff+1P()P()d (B-56b)
= I SR R s
=f =1 (B-56¢)

Therefore, Equation (B-55b) becomes
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n-2 Ni
o =1 2 g

(B-57)

where we have set b 1.

Another way to determine the weights corresponding to a pre-
scribed end ordinate or ordinates is to use one or both of the rela-

tions:

n b
2w =f w(x) dx (B-58)
a

or

n b

Z X 5w =f x w(x) dx , (B-59)
a

which require that the error vanish in the expression

b
f w(x) f(x) = }El ws f(xi) + error , (B-60)
a i=

when f(x) = 1 and when f(x) = x, respectively. Substituting Equation

(B-56c) into (B-58), we have
n-1
=1 - Zl w (B-61)
1=

Now all of the above analysis is based on the assumption that w*(x)
does not change sign on the interval (a,b); otherwise, the roots of
Op may be complex or may not lie in the interval (a,b). In order

for w*{x) not to change sign, the roots of v(x) must be either a or
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b, multiple roots of a or b, or perhaps outside of the interval.
Note: The MORSE code system will reject any N;j which is negative.
Since w*(x) = (x - b) w(x) is a negative function, MORSE would theo-
retically generate N; which are unacceptable. Hence, we use the
weight function -w*(x) = (b - x) w(x) where we have factored out a

-1.

Equivalence of Moments and Legendre Coefficients

Gauss Quadrature. We shall use the following form for the nor-

malized Legendre expansion of an angular distribution:
N 22+ 1
fu) = 22%)——5— fo Py(n) . (B-62)
From this it follows that
1
fz = 1 f(u) Pz(u) du and fO =1. (B-63)
The moments of the distribution are defined by
M =.]. u" () du . " (B-64)
If the Legendre polynomials are written
Z n
P u) = ég% Pog ¥ > (B-65)

then it follows simply from Equation (B-63) that
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2 +1 £
f,= 2. p f flu) w du= > p, M . (B-66)
. n=0 n -1 n=0 o

Equation (B-66) shows how the first n Legendre coefficients of an
angular distribution may be derived from the first n moments. The
pzn's may be derived from the recurrence relation for Pg(“)°
Since

2P (w = (22-1) uw P, q(w) - (2-1) Py (1), (B-67)

then Equation (B-65) becomes

21 n+1 2 -1

2-2 n
Pg-1,n ¥ % gg% Pe-2,n ® - (B-68)

‘ij n.o2e-l
n=0 n . n=0

As this is an identity, we may separately equate the coefficients of

each power of u giving the relation

o2 -1 g -1

P T T Peinel T T Peezn (8-69)

Since Pg(u) =1 and Py(u) = u, then we have as initial values for

Equation (B-69), Po.n = 8, and P = P

We may also derive relations for calculating moments given the
first n Legendre coefficients of an expansion. Substituting Equation
(B-62) into (B-64), we have

- 22+ 1
M=§:——2—ff
N =0 2 Ja

1
w Po(u) du . (B-70)

From the orthogonality property we know that Pg(u) is orthogonal to

any polynomial of degree less than %£. Hence
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+1
f un Pl(u) du =0 for 2> n . (B-71)

1
Then
n -1
Mo = Z:O Fe Pag o (B-72a)
where
+
Pai = 33;%—l 11 W P (u) du (B-72b)

are the coefficients for a Legendre expansion of u", that is,
n 0, -1
W o= ZE) Py Po(m) . (B-72c)
2:

In order to derive the recurrence relation for the pai‘s, we first

recall the fundamental recurrence relation for Legendre polynomials:

(22 + 1) uPy(u) = 2Py q(u) + (2+1) P () . (B-73)

(Equation (B-73) is equivalent to (B-67)). Substituting Equation
(B-73) into (B-72b) gives

-1 .1 +1 n-1
ez ), 0 DaPgle (e D PLy(W] e (874)

or, after integrating,

-1 2 -1 L+1 -1
Pre 2 20T Paol,e-l b 20T Pail el (8-75)

1

Initial values for the above recursion formula are pa g
b

602 and

-1 _
P1,e " ¢
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The MORSE code system actually uses the recursion formulas above

to calculate the moments, given fo,fl,...,f Some example formulas

0"
for M, are given below for several values of n:

M0 = fO =1 (B-76a)
My = (B-76b)
M, = f0/3 + 2 f2/3 (B-76¢)
My =3 fl/5 + 2 f3/5 . (B-76d)

Radau Quadrature. We will designate the "Radau" moments as M;

(the moments used for Gauss quadrature will remain as (Mp)). In
order to calculate the Radau moments, we use an altered weight func-

tion, f*(u), given by

*

f(uw =(1-u flw, (B-77)

where we have preassigned an abscissa or point at up, = 1. The for-

mula for the moments then becomes

+1 +1
M: = fl () d =fl W1 - w) f(w) (B-78)
or
MMM (B-79)

Therefore, the Radau moments are calculated simply from the differen-

ces between successive Gauss moments. For example,
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*

M0 =1 - fl (B-80a)
*
*

M2 = f0/3 -3 f1/5 + 2 f2/3 -2 f3/5 . (B-80c)

Given any set of Legendre coefficients (fo,fl,...,fn_l,fn), MORSE
will first calculate the Gauss moments (MO’MI""’Mn-l’Mn) and then
use Equation (B-79) to calculate the Radau moments (M;,MI,...,M:_I).
The number of Legendre coefficients and Gauss moments is always
greater than the number of Radau moments by one.

To go in the opposite direction and calculate Legendre coeffi-
cients given Radau moments becomes slightly more complicated. We

begin by multiplying f*(u) by Pe(u) and then integrating between

the limits -1 to +1:

+1 +1 +1
/} f(u)Pﬂu)du‘Jfl ﬁu)Pgu)du-.[l uf(u) P (u) du

(B-81a)

+1
‘Z. ot f WPy Plu) du .
-1

(B-81b)
Substituting Equation (B-73) into the integrand on the right-hand

side of Equation (B-81b) and integrating again gives

+1
f O P du s fy -y oy - T Fer - (882 ®
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Noting that

k
Pl = > o w"
K i=h kn
we obtain
i TR . S . A (B-83)
2 PknTn T Tk T WHT Tkel T2 AT kel

Therefore, given any set of Radau moments (MS,...,ME) and the
Legendre coefficients (fy.1,fk), the (k+1) Legendre coefficient

may be calculated.

Generation of Polynomials Orthogonal with Respect to w(x)

Let us now presume that we are given the first 2n moments,
MO’MI""’MZn-l’ of an arbitrary function w(x) and are given no addi-
tional information about w(x). We shall attempt to derive a set of
polynomials which are orthogonal with respect to w(x). (The follow-
ing analysis on orthogonai polynomials applies to Radau quadrature as
well as Gauss quadrature--simply replace w(x) with w*(x) and M,

with M:.) Recalling the notation
b
E[I(x)] = J[. I(x) w(x) dx , (B-84)
a
then what we wish is to determine Qp,Q1,...,Qn such that
] k
Qi(x) = 25 a5, x (B-85)
k=0
with the normalization condition ajj = 1, and such that
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ELQ; (x) Q501 = &5 Ny . (B-86)

Note that

2 b 5
Ni = E[Qi(x)] =.lp Oi(x) w(x) dx . (B-87)
a

Since w(x) > 0 (Restriction I), then it follows that

N, >0 . (B-88)

Note: Since we wish to relax the non-negativity restriction slightly
but not completely, we will retain Equation (B-88) as a reasonable
requirement for a "well-behaved" w(x). This requirement is essential
to allow full use of the properties of orthogonal polynomials. It
is also essential to the eventual use of this development as a Monte
Carlo selection technique since it is needed to ensure that the
"probabilities," wj, be positive.

From the properties of orthogonal polynomials we know that an
arbitrary polynomial of order i, Sj(x), may be expanded in terms of
the Q polynomials,

;

Si(x) = ég% sika(x) . (B-89)

It follows that

E[Si(x) Qj(x)] =0 for i<j. (B-90)

Let us presume that we have obtained the first i polynomials and are
attempting to derive Qj4+1(x). Due to our normalization condition

(ag7 = 1) we have

146



+ Ri(x) s (B-91a)

where

i
) = Z a’i'*'].,k Xk . (B~91b)

Expanding Equation (B-91a) further gives

05, (x) = %+ x' +R.(x) (B-92a)
= x ¢ [Qs(x) - Ry_1(x)] + Ry(x) (B-92b)
= x Q;(x) *+ [Ry(x) = x R;_(x)] . (B-92¢)

The term Rj(x) - x Ry.1(x) is a polynomial of order i and may be

expanded in terms of the Q's. Thus,
1‘
01'+1(X) =X Qi(x) + |<2=:() d‘ik Qk(x) . (B-93)

In order to obtain the familiar three-term recurrence relation for
orthogonal polynomials (and to have the recurrence relation defined
in terms of moments), we will multiply Equation (B-93) by w(x)
Qj(x) where j < i - 2 (Case 1), j =i -1 (Case 2), and j = i (Case
3), and then integrate over the limits from a to b.

Case 1: For j < i - 2, we obtain the orthogonality relation

;
ELQy4(x) Q4(x)] = 0 = E[x Q;(x) 2; ik ELQ(x) 05(x)]

(B-94a)

= E[Qi(x)(x QJ(X))] + dij Nj (B-94b)

= dij Nj , (B-94c)
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since x Qj(x) is a polynomial of order < i-1 and is orthogonal to
Q;(x). Since Nj > 0 we must have dj; = 0.

If we write

u.i+1 = -d.i,,i (8-95)
and

2

01- -di,i-l ’ (8'96)

then Equation (B-93) reduces to
Qipq(x) = (x = uiyg) Qi(x) - of Q;_q(x) . (8-97)

This equation is the basic recurrence relation for our polynomials.

Case 2: If we multiply Equation (B-93) by w(x) Qj-1(x) and

integrate, we have

E[Qi+l(x) Qi-l(x)] =0

Ex 0;(x) Q_y(x)] = upyq ELQ(x) Q;_;(x)] - of ELQZ_j(x)]

(B-98a)

= E[Q; (x)(x Q;_y(x)] = of N;_; (8-98)
i-1 2

= E[Qi(x){oi(x) - ‘=0 di-l,k Qk(x)}] -9 Ni-l (B-98c)

= E[Qf(x)] - o Ny (B-984)

=Ny - E N (B-98e)

This is easily solved for
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2 _
o5 = N1./N1._1 . (B-99)

In order to define N;j (and hence 01?) in terms of the moments, we

use Equation (B-86) in conjunction with (B-92a) to obtain

N; = E[Q;(x) Q;(x)] = E[Q;(x) x T + E[Q;(x) R, _4(x)] (B-100a)
i1 b k1 1
= E[Q;(x) x'] = kZO 2 ). w(x) x" x' dx = kz_“b a5 My -(B-100b)

Case 3: We will first define

Liyy = ELQ () 1] (8-101a)
i
= 2 ey Meaar (B-101b)

Then the final orthogonality relation used in defining Qj+1(x)

gives us.

E[Q;41(x) Q3(x)] = 0

= E[Q5,, (%) %'+ E[Q;4; (x) Ry_q(x)] (8-1023)

E0x Q;(x) x'] = i,y E[Q;(x) x'T - of E[Q;_;(x) x']  (B-102b)

- 2
“Llisp mome M- g Ly (8-102c)
or
L. L.
_ i+l 2 i
Ll_i+1 = N,‘ - O’_i W.I— (B°103a)
L. L.
_1N+—l - N—L (B-103b)
i M



Thus far we have formulas to calculate the orthogonal polynomials

(Qi+1) in terms of ui41 and c?. However, we may also express

Qi+1 as a summation

+]
2

k=0

—

k

Qi+1(x) = A1k X - (B-104)

In order to calculate the aj4j g, we will substitute the above
equation into the orthogonal polynomial recurrence formula (Equation

(B-97))

kK _ k kK 2 k
z;)ai+l,k X=X Eg% 4k X7 M4 Eg% G kX 79 Eg% Gk X

—

=~

(B-105)

Equating the coefficients of xK on both sides of the equation gives

- 2
Bel,k T k-1 T M fik T % kLK (B-106)

Let us now review the procedure for obtaining Qj4+1(x) given
Qi(x). One first uses the moments Mj,...,M,. and the values of a;,

from Qi to calculate Ni (Equation (B-100b)). The term N s along with

the previously determined Ni-l’ allows one to calculate o? (Equation

(B-99)). The moments MO""’M2i+1 and the values of P from Qi(x)

determine L1-+1 (Equation (B-101b)). This in turn allows the calcula-

tion of Mipq (Equation (B-103a)). With a? and . the recurrence

i i+1°

relation (Equation (B-97)) determines Qi+1(x). In sum, the moments
MO’MI""’MZn—l of w(x) allow the determination of the orthogonal

polynomials QO(x),Ql(x),...,Qn(x).
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Properties of the Roots of the Orthogonal Polynomials

The roots of the orthogonal polynomials have two useful proper-
ties which we shall prove.

Lemma I: Qu(x) has n distinct, real roots which "interleave"
with the roots of Q,.1(x); that is, between any two adjacent roots
of On-1(x) there is one and only one root of Qn(x), and further-
more, there is one root of Qn(x) greater than the largest root of
Qn-1(x) and one smaller than the least root of Q_1(x). Like-
wise, there is one and only one root of Q,.1(x) between any two
adjacent roots of Qu(x).

Proof: We assume the Lemma to be true for Qu.1 and Q,.».

Let x; > x5 > e+ > x, 1 be the roots of Q) ;. Then it follows that
the sequence Q. _o{(x1), Q_o(X5),...,Q, _»(x, 1) alternates in sign.
Since

Q (x.) (B-107a)

n' 1

1]
—
>
—
!
h =4
>3
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3
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“of 1 0,50k (B-107b)

The sequence Qn(xi)’Qn(XZ)""’Qn(Xn-l) also alternates in sign.
This establishes that there is at least one root of Q, between any
two roots of Q _;. Because the Q,'s are normalized to a;, = 1, they
are all positive at += and alternate in sign at -«=. Qu.p has no
root between x; and +«; hence Qn-Z(xl) > 0. But °§-1 > 0 (because
Nn-l > 0 and Nn-2 > 0); therefore, Qn(xl) <0 and Qn must have at

least one root greater than x Similar reasoning leads to the con-

,i.

clusion that Qn-Z(xn—l)’ Qn_z(x > -»), and Qn(x + -») have the same
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sign while On(xn_l) is of the opposite sign. Thus, Qn must have at
least one root between x , and -=. Since this gives us n intervals
where Q, must have "at least one" root, it is clear that Q, has n
distinct roots which interleave with the roots of Q,_3.

The proof by induction may be completed by using similar argu-
ments to show that one of the two roots of Qx(x) lies above the
single root of Qi(x) and one below it.

Lemma II: The n roots of Oy(x) lie in the interval (a,b).

Proof: Assume that Qn(x) has only s changes of sign in the

jnterval (a,b) at the points X X0 eseaXon Let

8(x) = (x - xl)(x - xz)(x - x3),...,(x - xs) , (B-108)

then 8(x) Q,(x) does not change sign in the interval (a,b). It

follows that*

b
E[ o(x) Qn(x)] =f 8(x) Qn(x) w(x) dx #0 . (B-109)
a

However, 6(x) is a polynomial of order s < n. Since Qu(x) is or-
thogonal to all polynomials of order less than n, we must have s = n,

thus proving the assertion.

*Note: This step relies on the requirement that w(x) be non-
negative. We wish to relax this restriction somewhat but not com-
p etely. Since Lemma Il expresses a property which will be essen-
tial to the use of this development as a Monte Carlo selection tech-
nique, we will use this property as one of the requirements for a
"well-behaved" w(x) with which we shall replace the non-negativity
restriction.

152



The Replacement of the Non-Negativity Requirement, w(x) > O

Gauss Quadrature. All of the preceding material in this Appendix

was derived under the assumption that the weight function (w(x)) is
strictly positive. However, in the MORSE code system, we do not work
with the original angular distribution (which is everywhere posi-
tive), but with a truncated Legendre expansion which approximates the
angular distribution and may not be everywhere positive. In order to
ensure that the truncated expansion originates from at least one
function which is everywhere positive, the non-negativity requirement
may be replaced by two restrictions:

1) N3>05 i=1,...,n-1 and

2) Qq(x) has n roots in the interval (-1,+1).
We will first show how the restriction, Nj > 0, may be stated in a

different form. The quantity N; was previously defined as

/Q ) wlx) dx (8-110)

where
! k
= é;% . x . (B-110b)

Substituting Equation (B-110b) into (B-110a) gives

b
Ny = 10./f Q ) w(x) dx + a, i1 d/; X Qi(x) w(x) dx

b b .
tag, jz x2 Qi(x) w(x) dx + eee + a1]./; x Qi(x) w(x) dx
(B-111)
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Since Qj(x) is orthogonal to all polynomials of degree less than 1,
then the first i integrals equal zero and the last integral (with
coefficient aj; = 1) equals Nj. If we again use Equation

(B-110b) and substitute it into (B-111), and noting that
by
Mk =/ x w(x) dx , (B-112)
a

then we obtain

: i i
Ny = 340 k>=30 2 Mt 21 2 i Mo * 24 k% 3k Mer

i
+oeee ¥ oA, Z a5 Mk+1‘ . (B-113)
k=0
Since the first i integrals in Equation (B-111) were egqual to zero,
then the first i sets of summations are also equal to zero:

i

2 2k M = 0 (B-114a)
1.
|<Z=E) 2k Mk+1 =0 (B-114b)
i
kz;b 4k Meai = N (B-114c)

or, in the matrix form [M;][A;] = [B],
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[ - - — —
Mo My My oo My En 0
Mpo My Mgoeeee Moy 31 0
L ] [ ] O

LM M e My L] LN

(Note that Equation (B-114c) is the same as (B-100b).) The determin-
ant of the matrix [Mj] is the Gram determinant of the functions
1,x,x2,...,x1. In view of the fact that these functions are lin-
early independent, then the determinant of [M;j] is greater than
zero, and [Mj] is nonsingular. Since Nj is required to be
greater than zero, then we can obtain a unique and non-trivial
solution (Qj) to the above system of equations.

Now, let us assume for the moment that Nj = 0 such that [M;]
[A;] = 0. Referring back to Equation (B-113), we note that for
Ny =0,

i i i
k% 8 Mewi = ~24g kz:b e M -3 k% A My
i
- sae -a’i,’i—l kZO aik Mk+1-_1 . (8‘115)

Since the summation on the left-hand side of Equation (B-115) is a
linear combination of the first i sets of summations with coeffi-

cients -ajp,-aj1,...,-3j j-1, then the last row of the matrix
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[M;] is linearly dependent on the other rows. It then follows that
the determinant of [M;] equals zero and the solution will either be
non-existent or non-unique.

In summary, then, the sequence of polynomials (Qj(x)) which

satisfies

E[Qi(x) QJ(X)] = G'ij Ni (B-116)

with Ny > 0, is unique if and only if the determinates M; , i =
0,1,2,... are greater than zero.

The second requirement which replaces the non-negativity re-
guirement is that the roots lie between the limits (-1,+1). However,
instead of actually checking the position of each root, the MORSE
code system utilizes the principle stated below.

Lemma III (Irving, 1970): The roots of Qu(x) will be contained
in the interval (a,b) if and only if the sign of Qi(b) equals +1
and the sign of Q;(a) equals (-1)7 for i = 1,n.

Proof: Assume that the roots of Q,.1(x) lie in the interval
(a,b). From Lemma I, we know that only one root of Qn lies above
the largest root of Qu.1. Since sign (Qu(x + +=)) = +1, the
largest root of Q, will be Tess than b if and only if sign
(Qn(b)) = +1.

Likewise, there is only one root of Q, below the lowest root
of Qq-1. This root will be greater than a if and only if sign
(Qn(a)) = sign (Qp(x » -=)) = (-1)7.

Since the lemma is fairly obvious for Qi(x), the proof by

induction is complete.
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Radau Quadrature. This type quadrature uses the same restric-

tion to replace the non-negativity requirement as Gauss quadrature;
i.e.,

1) Ny >0, i=1,...,n-2 and

2) Qp.1(x) has n-1 roots in the interval (-1,+1).
These restrictions force the first n-1 weights and abscissas to be
positive. However, they put no limits on the value of the weight
(uw) corresponding to the abscissa xp = 1. Therefore, the third
restriction for Radau quadrature is that

3) wy > 0.

Limits of M and c?

Gauss Quadrature. In the calculations leading to the general-

jzed Gaussian quadrature, we obtained two restrictions which had to
be sat%sfied in order to have a positive distribution located on the
interval (-1,+1). These restrictions were:

1) N; > 0.

2) A1l the roots of Qj(x) lie in the interval (-1,+1).
Let us determine first what limitations these two restrictions place
on the quantities His o?. Consider first the effect of adding an

infinitesimal amount Au to uj. We have

0;(x) = (x = w) 05_1(x) - ob_q Qu_,(x) (B-117)

and

157



0:(x) = (x - uy - Au) Qi-l(x) - 0?_1 Qi-z(x) = Qi(x) - Au Qi-l(x)

(B-118)

If Qi has a root at Xqg» then Q: will have a root at Xq + Axo

Qj(xg + axg) = 0= Qy(xy + &xg) - Au O _q(xg * 8xy) . (B-119)

If we expand the right-hand side and keep only first-order terms

0= Qi(xo) + Axo Qi(xo) - Au Qi-l(xo) = AXO Qi(xo) - Au Qi-l(xo)

(B-120)
or ( )
Q; _4(x
ax, = =107, (B-121)
QT(XO)

Since Qi(x) is positive as x approaches +«, then Qi(xo) >0 at
Xq equal to the largest root of Qi' At successively smaller roots of

Q., the sign of Q;(x) alternates from positive to negative. Qi-l(x)

i
is similarly positive at +o. Also, it has no roots greater than the
largest root of Q. Therefore, Qi-l(x) > 0 at the largest root of
Qi' Because the roots of Qi-l "interleave" with the roots of Qi’ the
sign of Qi-l(x) must alternative at successive roots of Qi(x).

Therefore, at all roots of Qj(x) we must have:

?-"—jl(x—) > 0 (B-122)
Q; (x)

or, going back to Equation (B-121),
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dXn

aT;-? VI (B-123)

Therefore, as u; is increased, the roots of Q;(x) shift to the
right, and, as pj is decreased, the roots shift downward. If p;
is steadily increased, the largest root of Q; will eventually

equal 1. This point is determined by

0;(1) =0 = (1 - w) Q_y(1) = oy 0_,(1) (B-124)
or
Q; _»(1)
A AR e (B-125)

i-

This is clearly the maximum value of uj, which will generate posi-

tivity in the interval (-1,+1). Likewise, there is a minimum value

at which the lowest root of Qi occurs at x = -1:
Q;(-1) = 0= (-1 - w) Qu_y(-1) - d&_; Q;_,(-1) (B-126)
or
min 2 Qy_p(-1)
Ui = -1 - o} T -1 (B-127)
1 1'1 01-_1 -
Note that
0551
ai = 6—7—1-7- >0 ’ (B"128)

'|-
due to the positivity of the functions as they approach +« and that

_ 01-2(-1)
B'I = --Q-—_l—(_:r)_ > 0 Py (8-129)

1
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due to their alternation in sign at -=. Since c%_l > 0, we have

the following picture on a uj-axis

min max
U.i U.i
| | | | Wy
| | 1 | !
2 2
‘1 "1 + O_i_l Bi 1 - 01'-1 Q_i +1

Now that we have upper and lower limits for TP what can we say

about #7 Since & = N/N;_;, restriction I implies that of > 0. Me

can obtain an upper limit to o? by setting J?l? = qui. For larger

2 min max
: MR
values of oi, Wiy > MiL7s

Wl which will allow all the roots of Qi+1(x) to lie inside (-1,+1).

which means that there is no value of

Thus,
2 Q‘i-l(+1) 2 01-1('1)
b= (Oihna e = 1 - Cidnax oD (B-130a)
Q;_1(+1)  Q;_4(-1)
= (AL i-1 i-1
2 = (9§ )nax G (FD) - q,(-1) (B-130b)
Q; _1(+1)  Q;_4(-1)
2 - i-1 i-1
(oi)max =2/ Qi(+1) - Qi('l) . (B-130c)

We can work back from the limits on s and cf to obtain limits on the

moments. Substituting the following two equations:

2 .
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i i-1
Ni = ég% as Mk+1 = MZi + Eg% I Mk+1 since a,; = 1 (B-132)

into the equation for o? below

Qi-l(+1) Q'i-l(-l)

2
0 < a;< 2/ Qi(+l) - Qi(_l) (B-133)
gives
i-1 2N'i-1 j-1
) kz=:0 Uk Meri <My ST @D kgo a5, Mey; - (B-138)

LD T oD

This last equation gives the upper and lower limits on the "even-

numbered" moments. For the "odd-numbered" moments, we recall that

L .
My = oL (8-135)

Rearranging, and setting Lj41 to its maximum, we obtain

N.L.
max _ max 11
Q; (1)
_ 2 -1 2
= N,| [1 - 0'1- T.‘(T)_] + L.‘ O',i . (B-136b)

Since Ly41 is calculated by the expression

i =1
i+l © kz;zj Gk Merier = Mo ¥ k2=o 4k Merisl o (B-137)

L

then the upper 1limit for an "odd-numbered" moment is
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2 %11 2 W
M21+1 < N_i 1 - O'_i Ti—(-r)_ + L_' O,i - kz=%) aik Mk+1-+1 . (8-138)

min min

If we go through the same procedure again with Li+1 and ippe We

obtain the lower limit for the moments:

2 8.1 2
Maseg > Ny |- 1 - o o |t Ly of - k% & Mipieg - (B-139)

To obtain the limits on the Legendre coefficients, take the set

of moments already determined Ml’MZ"“’MZi-l combined with Mg?x and

convert from moments to Legendre coefficients. This gives fMmax

2i
When Ml’MZ"‘°’M21-1 are combined with Mg}n and converted, one

. min
obtains fZi .

Radau Quadrature. In developing Radau quadrature, we obtained

three restrictions which had to be satisfied in order to have a posi-
tive distribution:

1) Ny >0,

2) all the roots of Qj(x) lie in the interval (-1,+1), and

3) a2 0.
The first two restrictions are the same as those used for Gauss qua-
drature, and hence we could use them to obtain the same 1imits on

2

My and g; as shown in the preceding section. However, we will find

that the third restriction (w, > 0) is the most significant because
it places even tighter limits on P and c%.
We recall that the formula for the Radau weight (w,) corres-

ponding to the preset abscissa, x, = 1, is
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n-l Ni"l

w =1- ) . (B-140)
h S PR e
Limiting w, to positive values only, we have
n- N. N

0<1 i-1 n-2 (B-141)

R L FHEY O P 6 YT Y 0 O IR )

or, after inserting the three-term recurrence formula for Q,.1(1),

n-2 2 Nio1 -1

-, 0, 5 (1) . (B-142)

Solving for up-1, and then setting the counter n-1 to an arbitrary

counter i, gives

max 2 01-2(1)
”i sl - G_i_l m - G1_1(1) ’ (B-143a)
where
6, (1) = —-fi:l-? 1.3 -1 RCRIES
i-1 [01_1(1)] k=1 Qk-l(l) Qk(]')
Comparing Equation (B-143a) with (B-125), we note that
“Tax N (“Tax)Gauss - 6;_q(1) . (B-144)

The formula for uT1" remains the same as in the Gauss quadrature case

- Q;_,(-1)
min 2 i-2
Hs = -] - o, T .= (B-145)
1 1'1 Qi-l -
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We next calculate an average pj:

Jpax + ur[n'n
u?vQ = —1——2——1—-— (B-1466)
Q; _,(1) (-1) )
2 i-2 i-2
=z - {"1’-1 [WD— U—_(_U]+ G. (1) ‘ /2 (B-146b)
N (”?vg)Gauss - 6;_1(1)/2. (B-146c)

The Tower limit for o% is zero (since Ni > 0). To calculate the

upper limit for o%, we set

JI3% = 0 (B-147a)
LD U S = L
T e i i 0.0

i i

(B-147b)

Therefore,

Q;_1(1)  Qy_1(-1) | Ny |-1
2 i-1 i-1 i-1
0 <oy<2 {[ (1)~ 0, (-1) ]* N Gi(l)‘ - (B-148)

Substituting Equation (B-131) and (B-132) into (B-148), we find the

upper and lower limits to the even-numbered moments:

i-1
= 2 A5 Mg <My <IN _)(o 1 ) max E i Megs - (B-149)

The 1imits on the odd-numbered moments are obtained in the same way

as in the Gauss quadrature case:
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max

min
Ni(“i+1) + Hi < M21.+1 < Ni(”i+1) + Hi . (B-150a)
where
5 i-1
min max

and Miel and uipp are given by Equations (B-145) and (B-143a),

respectively.



APPENDIX C
IMPLEMENTATION OF RADAU QUADRATURE INTO THE MORSE CODE SYSTEM

The MORSE code system currently uses Gauss quadrature to calcu-
late discrete directions and weights from Legendre polynomial expan-
sions of group-to-group cross sections. The subroutines in the code
which perform these calculations are XSEC5, ANGLES, GETMUS, FIND, Qq,
BADMOM, and MAMENT. The flowchart in Figure C-1 shows the calling
sequence between these different subroutines in MORSE. A brief

description of each subroutine follows:

XSECS retrieves the cross section data from mass-storage tapes, calls
ANGLES to calculate the scattering angles and probabilities, and
then stores the calculated results on a different mass-storage
tape. It prints the angles and probabilities if requested by

the user.

ANGLES is the executive routine for the generalized quadrature tech-
nique. It first computes the moments from the given Legendre
coefficients. It then calls GETMUS to obtain the recurrence
relations for the orthogonal polynomials, calls FIND to calcu-
Tate the roots of the orthogonal polynomials, and then computes

the weight factors associated with each root.
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XSECS
ANGLES
GETMUS FIND BADMOM
Q
MAMENT
Figure C-1. Flowchart of quadrature subroutines in MORSE.




GETMUS calculates the quantities u; and c% used in the recurrence
relation for the orthogonal polynomials, Q;(x). It uses the
moments, M;j, of the angular distribution as input. It also

checks to determine if o% > 0.

FIND first determines if the roots of Q (x) will 1ie within the
range (-1,+1) by using the property of orthogonal polynomials
that the roots of Qg and Qg .y "interleave". If the roots
meet this criterion, then the subroutine proceeds to calculate

them.

Q uses the recurrence relation for the orthogonal polynomials to cal-
culate the value of Q (u) for some specified order L and

specified angle u.

BADMOM calculates and prints any "bad" Legendre coefficients which
have been rejected because of implied negativity in the cross
sections (occurs when o% is negative of if the roots do not
lie between (-1,+1)). The allowed limits on the coefficients

are also calculated and printed for the user.

MAMENT is called from BADMOM to convert cross-section moments to

Legendre coefficients.
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It is not within the bounds of our intent to provide thorough
and detailed descriptions of the subroutines above. An adequate
understanding of the subroutines may be easily obtained by referring
to the documentation by Emmett (1975), Irving (1970), and Dupree and
Lighthill (1982).

In Appendix B, the theory and use of Radau guadrature was devel-
oped as an extension of Gauss quadrature. Therefore, the implementa-
tion of Radau quadrature into MORSE was treated in the same way.
Except for a few side comments, it is thought that the theory of
Radau quadrature presented in Appendix B, along with the ample docu-
mentation available on Gauss quadrature and the various subroutines,
should be sufficient for the user to understand the update coding for
Radau quadrature. Note: this update coding does not include coding
for the extended transport cross section correction.

Additional relevant comments on the code:

(1) Only the subroutines XSEC5, ANGLES, GETMUS, MAMENT, and BADMOM
were updated for Radau quadrature. Subroutines FIND and Q were
not altered. The subroutines are provided in this appendix in
alphabetical order.

(2) ATl updates are identified in columns 73-78 of the code by the
word RADAU. Coding left unaltered is identified by the word
MORSE. A1l code lines are numbered for easy reference.

(3) Recall that for n points or scattering angles, we require a Py
expansion with N=2n-1 foF Gauss quadrature, or with N=2n-2 for

Radau quadrature. However, if the expansion is one order less
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than that required to obtain n points, then the code will effec-
tively compute an average nth Legendre coefficient (fy) from
certain limiting equations to increase the expansion to Py.

Some examples of possible expansion orders for various (n) are
shown below:

Expansion Orders

Scattering
Angles Gauss Radau
1 P1 ---
2 Py,P3 P1,Ps
3 PysPsg P3,Py
4 PgsP 7 Ps,Pg

The type of quadrature method is chosen locally in XSEC5 by set-
ting a flag (IGOR) defined in line reference RADAU-195 and 213:

IGOR = +1 , code chooses Radau quadrature.
IGOR = -1 , code chooses Gauss quadrature.
IGOR = 0 , code chooses quadrature method based on the order

of the Legendre expansion (N) and the number of

scattering angles desired (n):

N = odd Gauss

N>2n -1 Gauss

=
H

even
N<?2n -1 Radau
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Gauss quadrature is used for N > 2n - 1 (where n is even) in
order to ensure that we use the maximum number of coefficients.
For example, suppose we input Pg expansions into the code but we
only wish to compute three scattering angles. Gauss guadrature
would use fp,...,fg to compute the scattering angles while

Radau quadrature would use only fg,...,fg.

Since the theory for Radau quadrature is not valid for any roots
which coincide with preassigned abscissas, we perform a precheck
on f1 to see if it originated from a delta function expansion
near uy = 1. This precheck is performed in subroutine ANGLES
starting at line reference RADAU-3. The characteristic of a

delta function expansion is that its coefficients all equal 1.

In Gauss quadrature, "impossible" coefficients are checked for
by seeing if o? > 0 and the roots are between (-1,+1). In
Radau quadrature, we have an additional restriction that the
weight corresponding to 8(ug - 1) is nonnegative. This check

is performed in ANGLES at line reference RADAU-78.
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c
c
c

O W~ WA

SUBROUTINE ANGLES(IGI1,MX)
COMMON/INPUT/IADJM ,NSTRT,NMOST ,NITS,NQUIT,ISTAT,NSPLT,NKILL,IRS,
IRRA,NPAST, NOLEAR, IEBIAS, NKCALC, NORMF,

ISTR,IFMU, IMOM, IPRIN, IPUN,

ISOUR,NGPFS,ISBIAS,NSOUR,

ND,NNE, NE, NT, NA,NRESP, NEX, NEXND, IFLAG(16),

TMAX, TCUT,WISTRT,AGSTRT, XSTRT, YSTRT,ZSTRT,UINP, VINP,WINP,ROMC,

KFTG,LFTG

COMMON/PERM/ INN, IOUT
COMMON/MEANS/NM,RV,XMU(14) ,VAR(13) ,XNORML(13)
COMMON/RESULT/POINT(14) ,WEIGHT(14) ,RO0T(14,14)
COMMON/MOMENT/NMOM , XMOMNT ( 25) , F(25)
COMMON/DRTACS/NR8,NR9,NR10

COMMON/RADAU/IGOR

DIMENSION P1(25),P2(25)

CHECK IF LEGENDRE COEFFICIENTS ORIGINATED FROM
DELTA FUNCTION EXPANSION

IF(ABS(F(1)).LE.0.999) GO TO 205
POINRT(1) = SIGN(F(1),1.0)
WEIGHT(1) = 1.0

NV =0

IF(IPUN.LE.0) GO TO 200
WRITE(10OUT, 1000)IG1,MX

1000 FORMAT(/* DELTA FUNCTION EXPANSION FOUND FOR TRANSFER NO. = *I3,

200

205

210
215

220

225
230

235
240
245

1% MATERIAL = *13)
RETURN

CALCULATE GAUSS MOMENTS

NFM = NMOM-1

P10 = 0.0

P1(1) = 1.0

XMOMNT(1) = F(1)

IF(NMOM-2) 245,210,210

DO 215 L=2,NMOM

P1(L) = 0.0

DO 240 N=2,NMOM

P20 = P1(1)/3.0

P2(1) = P10 + 0.4*P1(2)
IF(NMOM-2)245,230,220

DO 225 L=2,NFM

FL = L

P2(L) = FL*P1(L-1)/(2.0*FL-1.0) + (FL+1.0)*P1(L+1)/(2.0%*FL+3.0)
FNF = NMOM

P2(NMOM) = FNF*P1(NFM)/(2.0%FKF-1.0)
XMOMNT(N) = P20

DO 235 L=1,NMOM

XMOMNT(N) = XMOMNT(N) + P2(L)*F(L)
P1(L) = P2(L)

P10 = P20

CONTINUE

IF(IGOR.EQ.-1) 265,255

CALCULATE RADAU MOMENTS
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MEDIA,NMIX,MEDALB,MXREG,MFISTP,NNGA,NGGA,NCOEF,NSCT,MAXGP, IRDSG,

IXTAPE NG, IFTG, IGG,NNUC, IDT,NRP ,N1M,N2M,NSGPS, TITLE(20) ,DAT, JFTG,
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MORSE
MORSE
MORSE
MORSE
MORSE
MORSE
MORSE
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MORSE
MORSE
MORSE
MORSE
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RADAU
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RADAU
RADAU
RADAU
RADAU
RADAU
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RADAU
RADAU
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RADAU
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MORSE
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MORSE
MORSE
MORSE
MORSE
MORSE
MORSE
MORSE
MORSE
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MORSE
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MORSE
MORSE
MORSE
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c
255

260

265

[+ e NesNrNeNeNs NNl

10

15
1010

anon

20
23
25
30
35
40
45

46

47

48
49
50

53

60

aonon

62
65

NMOM = NMOM-1

DO 260 N=] ,NMOM

XMOMNT(N) = XMOMNT{N)-XMOMNT(N+1)
XMOMNT (NMOM+1) = 0.0

IFP(NMOM) 125,125,265

CONTINUE

CALCULATE COEFFICIENTS USED IN ORTHOGONAL POLYNOMIAL
RECURRENCE RELATION. DEFINITIONS =

NM= NUMBER OF MU VALUES ACCEPTED

KV= NUMBER OF VAR VALUES ACCEPTED

NM= NV OR NV+l

NP= NUMBER OF ANGLES IN DISCRETE DISTRIBUTION
NACC=NUMBER OF MOMENTS ACCEPTED

DO 10 K=1,NSCT

WEIGHT(K) = 0.0

POINT(K) = 0.0

CALL GETMUS

IF(IMOM)20, 20,15

WRITE(IOUT,1010)(XMOMNT(I) ,I=1,NMOM)
PORMAT(9H MOMENTS ,4X,1P10E12.5/(1X,11E12.5))

FIND ABSCISSAS OF ORTHOGONAL POLYNOMIALS

IF(IGOR.EQ.-1) 25,23
IF(XMU(1) .LT.F(1)) 25,125
ROOT(1,1)=XMU(1)
IF(NM-1)40,40,30

DO 35 L=2,NM

CALL FIND(L,NCK)
IF(NCK)35,35,120
CONTINUE
IF(NM-NV)45,45,55

XMU(NV+])=-VAR(NV)*(Q(NV-1,1.)/Q(RV,1.)+Q(NV~1,-1.) /Q(NV,~1.)) /2.

IF(IGOR.EQ.-1) 50,46

oK = Q(1,1.0)

SUM = 1.0-(1.0-F(1))/QK
IF(NV~1) 49,49,47

DO 48 K = 2,NV

QRM]l = QK

QK = Q(K,1.0)

SUM = SUM-XNORML(K)/(QKMI*QK)
XMU(NV+1) = XMU(NV+1)-XNORML(NV)/(QR*QR*SUM*2.0)
CALL FIND(NV+1,NCK)

IF(NCK) 55,55,53

NV = NV-]

NP=NV+1

NACC=NM+NV

DO 60 K=1,NP
POINT(K)=ROOT(K,NP)
IF(IGOR.EQ.-1) 62,81

CALCULATE GAUSS WEIGHTS

IF(NV) 65,65,70
WEIGHT(1) = 1.0
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[rX>Ne]

OO0

(e}
70 DO 8
UM

75 SM = SM + (Q(L,POINT(K)))**2/XNORML(L)
80 WEIGHT(K) = 1.0/5UM
GO TO 91

CALCULATE RADAU WEIGHTS

81 1IF(NV) 82,82,83
82 WEIGHT(1) = (1.0-F(1))/(1.0-POINT(1))
GO TO 86
83 DO 85 K=1,NP
SUM = 1.0/(1.0-F(1))
DO 84 L=i,NV
84 SUM = SUM+(Q(L,POINT(K)))%**2/XNORML(L)
WEIGHT(K) = 1.0/(SUM*(1.0-POINT(K)))
85 CONTINUE
86 POINT(NP+l) = 1.0
SIM = 0.0
DO 87 K=1,NP
87 SUM = SUM+WEIGHT(K)
WEIGHT(NP+1) = 1.0-STM
NP = NP+l
IF(WEIGHT(NP)) 88,91,91
88 IF(IPUN) 90,90,89
89 WRITE(IOUT,1040) IG1,MX
1040 FORMAT(/* NEGATIVE WEIGHT FOUND FOR TRANSFER NO. = *I3,
1% MATERIAL = #13)
90 NV = (NP+NM-3)/2
RM = NP+NM-3-NV
IF(NM) 125,125,40

ARRANGE POINTS AND WEIGHTS IN ORDER OF DECREASING PROBABILITY

91 DO 100 K=1,NP
BIG = WEIGHT(R)
J=K
DO 95 L=K,NP
IF(WEIGHT(L)-BIG) 95,95,92
92 BIG = WEIGHT(L)
J=1
95  CONTINUE
WEIGHT(J) = WEIGHT(K)
WEIGHT(K) = BIG
SPOINT = POINT(K)
POINT(K) = POINT(J)
100 POINT(J) = SPOINT
IF(NACC-NMOM)105,115,115
105 TIF(IPUN)115,115,110
110 CALL BADMOM
WRITE(IOUT,1020)NACC, IG1,MX
1020 FORMAT(* NUMBER OF MOMENTS ACCEPTED = *13,
1% TRANSFER NO. = #I3,
2% MATERIAL = #I3,
3//380 * * * * * * *//)
115 IF(IGOR.EQ.1) 116,118

174

RADAU
RADAU
RADAU
RADAU
MORSE



116

118
120

125

NV = RV+1
NMOM = NMOM+1
RETURN
NM=L-1

Rv=L-1

GO TO 45
CORTINUE

N = 0

NV =0

NP = ]

NACC = 0
POINT(1) = (¥(1)-1.0)/2.0
GO TO 82

END
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1010

10
15

20

25
30

SUBROUTINE BADMOM

REAL MU,MOMENT,NORM,MUT,MUB,MOM,MOMT,MOMB,L
COMMON/PERM/ INN, I0UT
COMMON/MOMENT/ NMOM ,MOMENT (25) ,F(25)
COMMON/MEANS/RN,N,MU(14),VAR(13) ,NORM(13)
COMMON/QAL/QR(14),A(13,14),L(14)
COMMON/RADAU/IGOR

MM = N + NN

NBAD = NM + 1

NMl =N -1

NPl =N +1

WRITE(IOUT,1010)NBAD
FORMAT(14H0~——-——-MOMENT(,12,288) IS BAD, OUTPUT FROM BADMOM)
IF(IGOR.EQ.1) GO TO 100

IF(N)25,10,25

IF(NN)20,15,20

MUT = 1.

MUB = -1.

MU(1) = MOMENT(1)

MOMT = 1.

MOMB = -1.

GO TO 40

VART = 2./(1./Q(1,1.) - 1./Q(1,-1.))
VARB = 0.

MOMB = MOMENT(1)#*%2

MOMT = MOMB + VART .

GO TO 55

IP(N-NN)45,30,45

MUT = 1. - VAR(N)*Q(NM1,1.)/Q(R,1.)

THE 2N+]1 MOMENT IS BAD

35

MUB = -1, - VAR(N)*Q(NM1,-1.)/Q(N,-1.)
MU(NP1) = QR(NP1) - QR(N)

MOM = NORM(N) * QR(N)

DO 35 K=1,N

MOM = MOM - A(N,K) * MOMENT(N+K)

MOMT = MOM + NORM(N) * MUT

MOMB = MOM + NORM(N) * MUB

READY TO OUTPUT MOMB,MOMENT(NBAD) ,MOMT,MUB,MU(NP1) ,MUT

40

1020 FORMAT(9H MUBOT =,F15.9,5B MU(,I2, 4H) = ,F14.9,98 MUTOP =,Fl6.

45

WRITE(IOUT, 1020)MUB,NP1,MU(NP1) ,MUT

19)
GOTO 60
VART = 2./(Q(N,1.)/Q(NP1,1.) -~ Q(N,-1.)/qQ(NP1,-1.))

NBAD IS 2N+2, VAR(N+l) IS BAD

50

MOMB = 0.

VARB = 0.

DO 50 K=1,NP1

MOMB = MOMB — A(NP1,K) * MOMENT(N+K)
MOMT = MOMB + VART * RORM(N)

READY TO OUTPUT MOMB,MOMENT(NBAD) ,MOMT,VAR(NP}), VART

55

1030 FORMAT( 9H VARBOT =,F15.9,5H VAR(,12,3H) =,F15.9,10H VARTOP = ,Fl15

60

WRITE(IOUT, 1030)VARB,NP1,VAR(NP1),VART

1.9)
MOM = MOMENT(NBAD)
FA = F(NBAD)

MOMENT (NBAD) = MOMT
CALL MAMENT (NBAD)
¥T = F(NBAD)
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62

64
65

70

75

MOMENT(NBAD) = MOMB

CALL MAMENT (NBAD)

FB = F(NBAD)

MOMENT(NBAD) = MOM

F(NBAD) = FA
IF(IGOR.EQ.-1) 64,62

FA = F(NBAD+])

Cl = NBAD

C2 = Cl+1.0

C3 = 2.0%Cl+1.0

FZERO = 1.0

IF(NBAD.NE.1) FZERO=F(NBAD-1)
FUN = F(NBAD)-C1*FZERO/C3
C4 = C3*(FUN-FT)/C2

C5 = C3*(FUN-FB)/C2

FB = C4

FT = CS

IF(MOM-MOMT) 70,70,65

DELM = MOM - MOMT

DELF = FA - FT
IF(IGOR.EQ.1) DELF = FA-FB
GO TO 75

DELM = MOM - MOMB

DELF = FA -FB
IF(IGOR.EQ.1) DELF = FA-FT
RANGEM = MOMT - MOMB
RANGEF = FT -~ FB

NOW READY TO OUTPUT FB,FA,FT
WRITE(IOUT, 1040)MOMB ,NBAD, MOMENT(NBAD) ,MOMT, RANGEM, DELM

1040 PORMAT( 9H MOMBOT =,F15.9,5H MOM(,I2,3H) =,F15.9,10H MOMTOP = ,F15

1050 PORMAT( 9H FBOT =,F15.9,5H F(,I12,3H) =,F15.9,9H

100
110

115

120

125
130

1.9,5X,8HRANGE = ,F9.6,11H ERROR = ,F9.6)
IF(IGOR.EQ.]1) NBAD=NBAD+]
WRITE(IOUT, 1050) FB,NBAD, FA,FT, RANGEF ,DELF

19,5X,8HRANGE = ,F9.6,11H ERROR = ,F9.6)
RETURN

FTOP = ,F16.

CALCULATE UPPER AND LOWER BOUNDARIES FOR RADAU QUADRATURE

IF(N) 125,110,125

IF(NN) 120,115,120

THE FIRST MOMENT IS BAD

MUT = F(1)

MUB = -1.0

MU(1) = QR(1)

MOMT = (1.0-F(1))*F(1)

MOMB = F(1)~1.0

GO TO 40

THE SECOND MOMENT IS BAD

QI = q(1,1.0)

ADD = (1.0-F(1))/(QI*QI*(1.0-(1.0-F(1))/QI))
VART = (2.0)/(ADD+1.0/Q1-1.0/Q(1,-1.0))
VARB = 0.0

MOMB = QR(1)*MOMENT(1)

MOMT = MOMB+VART*(1.0-F(1))

GO TO 55

IF(N-NN) 145,130,145

THE 2N+1 MOMENT IS BAD

MUB = -1.0-VAR(N)*Q(NM1,-1.0)/Q(N,-1.0)
QIMl = 1.0
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133

134

135

145

146

150

QI = Q(1,1.0)

SUM = 1.0-(1.0-F(1))/Q1
IF(N-1) 134,134,132

DO 133 I = 2,N

QIM]1 = QI

QI = Q(1,1.0)

SUM = SUM~NORM(I-1)/(QIM1*QI)
MUT = 1.0-VAR(N)*QIM1/QI-NORM(N)/(QI*QI*SUM)
MU(NP1) = QR(NP1)-QR(N)

MOM = NORM(N)*QR(N)

DO 135K = 1,N

MOM = MOM~A(N,K)*MOMENT(N+K)
MOMT = MOM+NORM(N)*MUT

MOMB = MOM+NORM(N)*MUB

GO TO 40

THE 2N+2 MOMENT IS BAD

QI = q(1,1.0)

SUM = 1.0-(1.0-F(1))/Q1

DO 146 I = 2,KP1

QM1 = Q1

QI = Q(1,1.0)

SUM = SUM-NORM(I-1)/(QIMI1*QI)
SUM = NORM(N)/{QI*QI*SUM)

VART = (2.0)/(suM+Q(N,1.0)/Q(NP1,1.0)-Q(N,~1.0)/Q(NP1,~1.0))

VARB = 0.0

MOMB = 0.0

DO 150 K = ]1,NPI]

MOMB = MOMB-A(NP],K)*MOMENT(N+K)
MOMT = MOMB+VART*NORM(N)

GO TO 55

END
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DO 0O~ O WIN

SUBROUTINE FIND(L,NF)

COMMON/INPUT/IADJM,NSTRT ,NMOST,NITS,NQUIT,ISTAT,NSPLT,NKILL, IRS,
IRRA,NPAST,NOLEAK, IEBIAS, NKCALC, NORMF,
MEDIA,NMIX,MEDALB,MXREG,MFISTP,NNGA,NGGA,NCOEF,NSCT,MAXGP, IRDSG,

ISTR,IFMU, IMOM, IPRIN, IPUN,
ISOUR,NGPFS,ISBIAS,NSOUR,

KD, NNE, NE,NT,NA, NRESP, NEX, NEXND, IFLAG(16),
TMAX,TCUT,WISTRT,AGSTRY, XSTRT, YSTRT,ZSTRT,UINP, VINP, ,WINP,ROMC,
IXTAPE,NG, IFTG, IGG, NNUC, IDT, NRP, NIM,N2M,NSGPS, TITLE(20) ,DAT, JFTG,

KFTG,LFTG
COMMON/PERM/ INN, IOUT

COMMON/RESULT/POINT(14) ,WEIGHET(14) ,RO0T(14,14)

DIMENSION VALUE(13)

IMl =L -1

DO 10 I=1,LMl

VALUE(I) = Q(L,RO0T(I,LM1))
ROOT(L,LM1) = 1.0

Qror = Q(L,1.0)
IF(QTOP)15,15,30
IF(IPUN)25,25,20
WRITE(IOUT,1010)L

FORMAT(11HO~~---=FIND,/12H ROOTS OF Q(,I2,18H) EXTEND BEYOND +1)

NF=1

RETURN

ILOW = -1,

QLOW = Q(L,~1.)
IF(QLOW*VALUE(1))50,50,35
IF(IPUN)45,45,40
WRITE(IOUT, 1020)L

FORMAT(} 1H0~~~=~~FIND,/12R ROOTS OF Q(,I2,18H) EXTEND BEYOND -1)

NF=]

RETURN

DO 85 K=1,L

XUP = ROOT(K,IM1)
NSP=Q

NSP=NSP+1

XTRY = ( XLOW + XUP )%0.5
QTRY = Q(L,XTRY)
IP(QTRY*QLOW)65,80,60
XLOW = XTRY

QLOW = QTRY

GO TO 70

XUP = XTRY
IF(XUP-XLOW)75,80,75
IF(NSP-48) 55,80,80
ROOT(K,L) = XTRY
XLOW = ROOT(K,LM1)
QLOW = VALUE(K)
ROOT(L,IM1) = 0.0
NF = 0

RETURN

END
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SUBROUTINE GETMUS

COMMON/INPUT/IADJM ,NSTRT,NMOST,NITS,NQUIT,ISTAT,NSPLT,NKILL,IRS,

IRRA,NPAST,NOLEAK, IEBIAS, NKCALC, NORMF,

ISTR, IFMU, IMOM, IPRIN, IPUN,
ISOUR,NGPFS,ISBIAS,NSOUR,
ND, NNE, NE,NT,NA, NRESP, NEX, NEXND, IFLAG(16),

WA NWN =

KFTG,LFTG

COMMON/PERM/ INN, IOUT
COMMON/MOMENT/NMOM , MOMENT( 25) , F(25)
COMMON/MEANS/NM, NV, MU(14),8S1G(13),NORM(13)
COMMON/QAL/Q(14) ,A(13,14),L(14)
COMMON/RADAU/IGOR

REAL MOMENT,L,MU,NORM

RV=NMOM/ 2

TM=NMOM-NV

INITIALIZE VARIABLES TO ZERO

DO 10 I=1,NV

MU(I) = 0.0

SIG(I) = 0.0

NORM(I) = 0.0

L(I) = 0.0

Q(1I) = 0.0

DO 10 K=1,NM

A(I,K) = 0.0

L{KM)=0.

Q(NM)=0.

MU(NM)=0.0

IF(IGOR.EQ.-1) 12,21

START CALCULATING COEFFICIENTS POR GAUSS QUADRATURE
MU(1) = MOMENT(1)

Q(1) = MOMENT(1)

L(1) = MOMENT(1)

A(1,1) = -MOMENT(1)

A(1,2) = 1.0

SIG(1) = MOMENT(2) - MOMENT(1)%#*2
NORM(1) = SIG(1)

IF(S16(1))85,85,15

IF(NV~-1)55,55,20

L(2) = MOMENT(3) - MOMENT(1)*MOMENT(2)
Q(2) = L(2)/NORM(1)

MU(2) = Q(2) - Q(1)

A(2,3) = 1.

A(2,2) = —q(2)

A(2,1) = (MOMENT(1)*MOMENT(3)-MOMENT(2)%**2)/SIG(1)
GO TO 24

START CALCULATING COEFFICIENTS FOR RADAU QUADRATURE
L(1) = MOMENT(1)

Q(1) = MOMENT(1)/(1.0-F(1))

MU(1) = Q(1)

A(1,1) = -q(1)

A(1,2) = 1.0

NORM(1) = —Q(1)*MOMENT(1)+MOMENT(2)
SIG(1) = NORM(1)/(1.0~F(1))

IF(SIG(1)) 85,85,22

IF(NV-1) 55,55,23

180

MEDIA,NMIX,MEDALB ,MXREG,MFISTP,NNGA,NGGA,NCOEF ,NSCT ,MAXGP, IRDSG,

TMAX, TCUT,WISTRT,AGSTRT, XSTRT, YSTRT,ZSTRT,UINP, VINP,WINP,ROMC,
IXTAPE,NG, IFTG, IGG,NNUC, IDT, NRP,N1M,N2M,NSGPS , TITLE(20) ,DAT, JFTG,

RADAU
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3306
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23

24

25
30

35

40

45

50
55
60
65
70

75
80
85
90
95
100
105
1040

110

115 WRITE(IOUT,1020)I,(A(I,K),K=1,IP1)

120

1010 PORMAT(/* INTERMEDIATE RESULTS OF MEANS CALCULATION*/13X,
1N, 19X,8HVARIANCE, 16X, 13ENORMALIZATION, 12X, 1HL, 23X, 1HQ/ (1P5E24.5))

1020 FORMAT(* COEFFICIENTS OF ORTHOGONAL POLYNOMIALS, I, A(I,K)*/I5,10X
11P7E15.5/(8E15.5))

1030 FORMAT(13HO~---——-GETMUS/10H VARIANCE(,I2, 22E) IS NEGATIVE OR ZERO
1.)

L(2) = -Q(1)*MOMENT(2)+MOMENT(3)

Q(2) = L(2)/NORM(1)

MU(2) = Q(2)-Q(1)

A(2,1) = MU(2)*Q(1)-5IG(1)
A(2,2) = -Q(2)

A(2,3) = 1.0

NORM(2) = MOMENT(4)+A(2,2)*MOMENT(3)+A(2,1)*MOMENT(2)

SIG(2) = NORM(2)/NORM(1)
IF(516(2))90,90,25
IF(KV-2)55,55,30

DO 50 I=3,NV

Ml =1-1

IPI =1+ 1

DO 35 K=I,I

L(I) = L(I) + A(IM1,R)*MOMENT(IM1+K)

Q(I) = L(I)/NORM(TM1)
MU(I) = Q(I) - Q(IM1)
A(I,IP1) = 1.0

A(I,I) = -Q(I)

DO 40 K=2,IMI

A(I,K) = A(IMI1,R-1) - MU(I)*A(IM1,K) -~ SIG(IM1)*A(I-2,K)
A(I,1) = -MU(I)*A(IM1,1) - SIG(IM1)*A(I-2,1)

DO 45 K=1,IPl

NORM(I) = NORM(I) + A(I,K)*MOMENT(IM1+K)

SIG(I) = NORM(I)/NORM(IM1)
IF(S16(1))95,95,50
CONTINUE

IF(NM-NV)75,75,60
IF(NV)75,75,65

DO 70 K=1,NM

L(NM)=L(NM) +A(NV,R)*MOMENT(NV+K)

Q(NM)=L(NM) /NORM(NV)
MU(NM)=Q(NM)-Q(NV)
IF(1FMU)105,80,105
RETURN

I1=1

GO TO 95

I1»=2

NM=1

NV=l-1
IF(IPUN)120,120,100
WRITE(IOUT,1030)1

WRITE(IOUT, 1010)(MU(I),SIG(I),NORM(I),L(I),Q(I),I=1,RV)
WRITE(IOUT, 1040)MU(NM) ,L(NM),Q(NM)

FORMAT(1PE24.5,48X2E24.5)
IF(NV)120,120,110

DO 115 I=1,NV

IP1 =1+ 1

RETURN

END
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37
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SUBROUTINE MAMENT(NMO)
COMMON/MOMENT/NMOM , XMOMNT (25) , F(25)
COMMON/RADAU/IGOR

DIMENSION P0O(25), P1(25), P2(25)

DO 10 I=1,NMO

P1(1)=0.

PO(1)=0.

POO=1.

P1(1)=].

P10=0.

IF(NMO.EQ.1) F(1) = XMOMNT(1)
IF(NM0-2)40,15,15

DO 35 L=2,NMO

FL=L

P20=-(FL-1.)/FL*P00
P2(1)=(2*FL-1.)/FL*P10-(FL-1.)/FL*PO(1)
DO 20 N=2,L
P2(N)=(2%FL-1)/FL*P1(N-1)-(FL~1)/FL*PO(N)
DO 30 I=},L

PO(I)=P1(I)

P1(I)=P2(1)

PO0=P10

P10=P20

P(NMO) = P10

IF(IGOR.EQ.1) F(NMO) = P10%(1.-F(1l))
DO 37 M=1,NMO

F(NMO) = F(NMO)+P2(M)*XMOMNT(M)
RETURN

END
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15
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FUNCTION Q(ND,X)

COMMON/MEANS/NM,NV,XMU(14) , VAR(13) ,XNORML(13)

A=1

B = X-XMU(1)
IF(ND-1)25,20,10
DO 15 I=2,ND

C = ((X-XMU(I))*B ) - VAR(I~1)*A

A=3
B=C
Q=8
RETURN
Q=A
RETURN
END
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SUBROUTINE XSEC5(NRD,NR,MWA,SIGN,L1,L2,L3,L4,L5,L8
* ,SIGNG,SIGG,NSGL,NSGN,NRE,NMTG,L10,KD1,KD2,KD3)

TO CONVERT CROSS SECTIONS ON DISK 8 TO ANGLES AND PROBABILITIES
AND PUT THE RESULTS ON DISK 9

L1=MAX OF N1M OR N2M

L2=MAX OF NCOEF OR (2*NSCT+l)

L3=MEDIA
L4=NNGA+NGGA

L5=NSGPS, NO OF SUPERGROUPS
NRD IS TO CONTAIN POINTERS TO FINAL CROSS SECTIONS STORED ON DISK9

L8=3+4*NSCT+2*NPL

NSGN GIVES SUPERGROUP NUMBER OF EACH GROUP
NSGL GIVES GPOUP LIMITS OF EACH SUPERGROUP

COMMON/PERM/INN,IOUT

COMMON/MOMENT/NMOM , MOMNT (25) ,F(25)
COMMON/RESULT/POINT(14) ,WEIGHT(14) ,RO0T(14,14)
COMMON/MEANS/ITEST, NANS,MEAN(14) ,VAR(13) ,NORMAL(13)
COMMON/INPUT/IADJM,NSTRT, NMOST,NITS,NQUIT,ISTAT,NSPLT,NKILL, IR8,
IBRA,NPAST, NOLEAK, IEBIAS ,NKCALC , NORMF,

MEDIA,NMIX,MEDALB ,MXREG,MFISTP,NNGA,NGGA,NCOEF ,NSCT,MAXGP, IRDSG,

ISTR, IFMU, IMOM, IPRIN, IPUN,
ISOUR,NGPFS,ISBIAS,NSOUR,

ND,NNE,NE, NT,NA,NRESP,NEX, NEXND, IFLAG(16),
TMAX, TCUT,WTSTRT,AGSTRT, XSTRT, YSTRT, ZSTRT, UINP, VINP ,WINP,ROMC,
IXTAPE, NG, IFTG, IGG, NNUC, IDT, NRP,N1M, N2M ,NSGPS, TITLE(20) ,DAT, JFTG,

KFTG,LFIG
COMMON/DRTACS/NR8, NR9 , NR10
COMMON/RADAU/IGOR

DIMENSION NR(1),MWA(L4,L3),SIGN(L1,L2),NRD(L8,L3,L5)
DIMENSION SIGNG(KD1,KD2),SIGG(L1,L2),NSGL(L5,2) ,NSGN(NMIG),

* NRE(L10,KD3,L5)

90

116

LEVEL 2,NRD,NR,MWA,SIGKR,SIGNG,SIGG,NSGL,NSGN,NRE

KD1=NGGA

KD2=NNGA

KD3=MEDIA

DO 90 I=1,25
XMOMNT(I)=0.0

F(1)=0.0

NR9=]

NPL=NCOEF-1

DO 110 J=1,MEDIA
IF(NNGA.LE.0)GO TO 109
IF(NGGA.LE.0)GO TO 601
IRP=2+NPL+(J-1)*(342*NPL)
NR8=NR(IRP)
N=NNGA*NGGA

CALL REED(SIGNG,N,8)
M2=NSGN(NNGA)
M1=NSGN(1)

DO 116 L6=M1,M2
N2=NSGL(L6,2)
IF(N2.GT.NNGA)N2=NNGA
N1=NSGL(L6,1)
LZ=(N2-N1+1)*NGGA
NRD(2+2*NSCT+NPL,J,L6)=NR9

CALL RITE(SIGNG(1,N1),LZ,9)

IF(ISTR.LE.0)GO TO 601
WRITE(IOUT,26)J
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26

30
600
601

100

521
522
511
512

403

25

503

502
22

131

300

310

FORMAT(1H1,* NEUTRON TO GAMMA PROBABILITIES FOR MATERIAL NUMBER*I5 MORSE

1/)
DO 600 I=1,NNGA

WRITE(IOUT,30)1

FORMAT(6H GROUP,15,3X9HSIGMA N-G)
WRITE(IOUT,21)(SIGNG(K,I),K=1,NGGA)
CONTINUE

M2=NSGN(NNGA)

M1=NSGN(1)

DO 500 L6=M1,M2

N2=NSGL(L6,2)
IF(N2.GT.NNGA)N2=NNGA
N1=NSGL(L6,1)
N3=MWA(N1~1,J)+1
IF(N1.EQ.1)N3=1

N4=MWA(N2,J)

LZ=N4~-N3+1

NSKIP=N3-1

DO 100 K=1,NCOEF
NR10=NRE(K,J,L6)

CALL REED(SIGN(1,K),LZ,10)
IF(NCOEF.LE.1)GO TO 131

DO 512 I=1,LZ

DO 511 K=2,NCOEF
IF(SIGN(I,1).NE.0.0)GO TO 521
SIGN(1,K)=0.0

GO TO 522
SIGN(I,K)=SIGN(I,K)/SIGN(I,1)
L=K~-1

CONTINUE

CONTINUE

IF(NPL.LE.0)GO TO 131
IF(ISTAT.LE.0)GO TO 131

DO 403 K=1,NPL
NRD(1+2*NSCT+K,J,L6)=NR9
CALL RITE(SIGN(1,K+1),1Z,9)
IF(ISTR.LE.0)GO TO 131
WRITE(IOUT,25)J

FORMAT(1H1,* LEGENDRE COEFFICIENTS FOR MATERIAL NUMBER*I5/)
DO 502 K=1,NPL

DO 503 I=N1,N2
WRITE(IOUT,22)K,I
LZ1=MWA(I~1,J)+]
1F(I.EQ.1)LZ1=]

L22=MWA(TI,J)

LZ1=LZ1-NSKIP

LZ2=122-NSKIP

WRITE(IOUT,21)(SIGN(L,K+1),L=LZ]1,LZ2)
CONTINUE

FORMAT(4H PL=,15,3X6HGROUP=,I5,9H  PCOEFN)
CONTINUE

SET PLAGS FOR GAUSS OR RADAU QUADRATURE
IGOR = 1

IF(NSCT.EQ.1) GO TO 320
IF(IGOR) 320,300,330

K = MOD(NPL,2)

IF(R) 320,310,320
IF(2*NSCT-1-NPL) 320,320,330

N
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1000

330

1010
340
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106
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121
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120

401

IGOR = -1

NMOM = 2*NSCT-1
WRITE(I0OUT, 1000}
FORMAT( /*
GO TO 340
IGOR = 1
NMOM = 2%NSCT-2
WRITE(IOUT,1010)
FORMAT( /*
IP(NPL.LT.NMOM) NMOM=NPL
NC=2%NSCT+1
IF(NCOEF.GT.NC)NC=NCOEF
DO 102 I=1,LZ
IF(NSCT.LE.0)GO TO 102
IF(NCOEF.LE.1)G0 TO 104
DO 101 K=2,NCOEF

L=K-1
F(L)=SIGN{I,K)/(2%K-1)
DO 117 K=2,KC
SIGN(I,K)=0.0

DO 115 L=} ,NMOM

IF(F(L) .NE.0)GO TO 114
CONTINUE
SIGN(I,2+NSCT)=~1.

GO TO 102

CALL ANGLES(I,J)
SIGN(I,2)=POINT(1)
SIGN(I,2+NSCT)=WEIGHT(1)
IF(NANS.EQ.0)GO TO 108
DO 105 K=1,NANS
SIGN(I,2+K)=POINT(1+K)

SIGN(I,2+NSCT+K)=SIGN(I,1+NSCT+K)+WEIGHT(1+K)

C=SIGR(1,2+NSCT+NANS)
NP1=NANS+1

DO 106 K=1,NP1
INDX=1+NSCT+K

SIGR(I, INDX)=SIGR(I,INDX)/C

CONTINUE

TO NORMALIZE THE NEUTRON P-ZERO MATRIX

DO 120 K=N1,N2
IND1=MWA(K~1,J)+2~N3+1
IF(K.EQ.1)IND1=2
IND2=MWA(K, J)-N3+1
SUM=SIGN(IND1-1,1)
IF(IND2.LT.IND1)GO TO 122
DO 121 I=IND1,IND2
SUM=SUM+SIGN(I,1)
CONTINUE

INDI=IND]~-1

DO 123 I=IND1,IND2
SIGN(I,1)=SIGN(I,1)/SUM
CONTINUE

NRD(1,J,L6)=NR9

CALL RITE(SIGN(1,1),LZ,9)
IF(NSCT.LE.0)GO TO 404
DO 401 K=1,NSCT
NRD(1+K,J,L6)=NR9

CALL RITE(SIGN( 1,K+1),1Z,9)

POINTS AND WEIGHTS OBTAINED BY GAUSS QUADRATURE */)

POINTS AND WEIGHTS OBTAINED BY RADAU QUADRATURE */)
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402
404

46

15

27

505

506
504
500
109

200

DO 402 K=1,NSCT

NRD( 1+NSCT+K,J,L6)=NR9

CALL RITE(SIGN( 1,R+1+NSCT),LZ,9)
IF((IPRIN.LE.0) .AND.(ISTR.LE.0))GO TO 500
IP(ISTR.LE.0)GO TO 550

PRINT 46

FORMAT(1H1)

WRITE(IOUT,15)J

FORMAT(1HQ,* 2-D CROSS SECTIONS FOR MATERIAL RUMBER*I5/)
DO 501 I=N1,N2

WRITE(I0UT,20)1

LZ1=MWA(I-1,J)+1

IF(I.EQ.1)LZ1=]

LZ2=MWA(I,J)

LZ1=LZ]1-NSKIP

LZ2=LZ2-NSKIP
WRITE(10UT,21)(SIGN(K,1),K=LZ1,LZ2)
FORMAT(1X, SHGROUP,I5,3X, 9HSIGMA N-N)
FORMAT(1X1P8E14.4)

IF(IPRIN.LE.0)GO TO 500

IF(NSCT.LE.0)GO TO 500

WRITE(IOUT,24)J

FORMAT(* ANGLES AND PROBABILITIES FOR MATERIAL NUMBER*I5/)

WRITE(10UT,23)(K,K=1,NSCT)
PORMAT(3X9HGP TO GP ,4(6XSHANGLE,I3,6X4HPROB4X)/)
DO 504 I=N1,N2

LZ1=MWA(I-1,J)+1

IF(I.EQ.1)1Z1=]

LZ2=MWA(1,J)

1Z1=LZ1-NSKIP

LZ2=LZ2-NSKIP

DO 505 L=LZ1,L22

LL=I+L-L21

IF((I.GT.IFTG) .AND.(I.LE.JFTG) )LL=IFTG+L-LZ1
WRITE(IOUT,27)I,LL
FORMAT(15,1X15)
WRITE(IOUT,506)(SIGN(L,K+1),SIGN(L,R+1+NSCT),K=1,NSCT)
FORMAT( 1H+,12X8E14.4/(12X8E14.4))
CONTINUE

CONTINUE

IF(NGGA.LE.0)GO TO 110
M2=NSCN(NMTG)

M1=NSGN(NNGA+1)

DO 207 L6=M1,M2

N2=NSGL(L6,2)

N1=NSGL(L6,1)
IF(N1.LE.NNGA)N1=NNGA+1
N3=MWA(N1-1,J)+1
IF(N1.EQ.NNGA+1)N3=1

N4=MWA(N2,J)

LZ=N4-N3+1

NSKIP=N3-1

DO 200 K=1,NCOEF
NR10=NRE(R+NCOEF,J,L6)

CALL REED(S1GG(1,K),LZ,10)
IF(NCOEF.LE.1)GO TO 231

DO 812 I=1,LZ

DO 811 K=2,NCOEF
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821
822
811
812

703

803
802

231

350

360
370

380

390

201
217
215
204

214

IF(SIGG(1,1).NE.0.0)GO TO 821
SIGG(I,K)=0.0

GO TO 822
SIGG(I,K)=SIGG(I,K)/SIGG(I,1)
L=K-1

CONTINUE

CONTINUE

IF(ISTAT.LE.0)GO TO 231
IF(NPL.LE.0)GO TO 231

PO 703 K=1,NPL

NRD( 3+4*NSCT+NPL+K,J,L6)=NR9
CALL RITE(SIGG(1,K+1),LZ,9)
IP(ISTR.LE.0)GO TO 231
WRITE(IOUT,25)J

DO 802 K=1,NPL

DO 803 I=N1,N2
WRITE(IOUT,82)K,I
LZ1=MWA(I-1,J)+1
IF(I.EQ.NNGA+1)LZ1=]
LZ2=MWA(I,J)

121=LZ1-NSKIP

1Z2=1Z2-NSKIP

WRITE(IOUT,21)(SIGG(L,R+1),L=LZ1,LZ2)

CONTINUE

FORMAT(4H PL=I15,3X6HGROUP=I5,9H

CONTINUE

SET FLAGS FOR GAUSS OR RADAU QUADRATURE

IGOR = 1

IF(NSCT.EQ.1) GO TO 370
IF(IGOR) 370,350,380

K = MOD(NPL,2)

IF(K) 370,360,370
IF(2*NSCT-1-NPL) 370,370,380
IGOR = -]

NMOM = 2#NSCT-1
WRITE(IOUT,1000)

GO TO 390

IGOR = 1

NMOM = 2#NSCT-2
WRITE(IOUT,1010)
IF(NPL.LT.NMOM) NMOM=NPL
NC=2*NSCT+1
IP(NCOEF.GT.NC)NC=NCOEF
DO 202 I=1,12

DO 201 K=2,NCOEF
IF(NSCT.LE.0)GO TO 202
IF(NCOEF.LE.1)GO TO 204
L=K-1
P(L)=SIGG(I,K)/(2*K-1)
DO 217 K=2,XNC
SIGG(I,K)=0.0

DO 215 L=1,NMOM
IP(F(L).NE.0)GO TO 214
CONTINUE
SIGG(I,2+NSCT)=-1.

GO TO 202

CALL ANGLES(I,J)
SIGG(I,2)=POINT(1)
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205
208

206
202

221
222

223
220

701

702
704

801

850

SIGG(I,2+NSCT)=WEIGHT(1)
IF(NANS.EQ.0)GO TO 208
DO 205 K=1,NANS
SIGG(I,2+K)=POINT(1+K)

SIGG(I,2+NSCT+K)=SIGG(I, 1+NSCT+K)+WEIGHT(1+4K)

C=SI1GG(I,2+NSCT+NANS)
NP1=NANS+1

DO 206 K=1,NP1

INDX=1+NSCT+K
SIGG(I,INDX)=SIGN(I,INDX)/C
CONTINUE

TO NORMALIZE THE GAMMA P-ZERO MATRIX
DO 220 K=N1,N2
IND1=MWA(K-1,J)+2-N3+1
IF(K.EQ.NNGA+1)IND1=2
IND2=MWA(K,J)-N3+1
SUM=SIGG(IND1-1,1)
IF(IND2.LT.IND1)GO TO 222

DO 221 I=IND1,IND2
SUM=SUM+SIGG(I,1)

CONTINUE

IND1=IND1-1

DO 223 I=INDI,IND2
SIGG(I,1)=SIGG(I,1)/SUM
CONTINUE

NRD( 3+2*NSCT+NPL,J,L6)=NR9
CALL RITE(SIGG( 1,1),LZ,9)
IF(NSCT.LE.0)GO TO 704

DO 701 R=},NSCT
NRD(3+2%*NSCT+NPL+K,J,L6)=NR9
CALL RITE(SIGG( 1,K+1),1Z,9)
DO 702 K=1,NSCT
NRD(3+3*NSCT+NPL+K,J,L6)=NR9
CALL RITE(SIGG( 1,K+1+NSCT),1Z,9)
IF((IPRIN.LE.Q).AND.(ISTR.LE.0))GO TO 207
IF(ISTR.LE.0)GO TO 850
WRITE(IOUT,15)J

DO 801 I=N1,N2
WRITE(IOUT,80)I
LZ1=MWA(I-1,J)+1
IF(I1.EQ.NNGA+1)LZ1=1
LZ2=MWA(1,J)

LZ1=LZ]-NSKIP

LZ2=LZ2-NSKIP
WRITE(IOUT,21)(SIGG(K,1),K=LZ2]1,1L22)
FORMAT(1X, SHGROUP,IS5,3X, 9HSIGMA G-G)
IF(IPRIN.LE.0)GO TO 207
IF(NSCT.LE.0)GO TO 207
WRITE(IOVUT,24)J
WRITE(IOUT,23)(K,K=1,NSCT)
DO 804 I=N1,N2
LZ1=MWA(I-1,J)+1
IF(I.EQ.NNGA+])LZ1=}
1Z2=MWA(1,J)

LZ1=LZ]1~-NSKIP

LZ2=LZ2-NSKIP

DO 805 L=LZ1,L22

LL=I+L-LZ1
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5382
5383
5384
5385
5386
5387
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5390
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5392
5393
539
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5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
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5417
5418
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IF((I.GT.KFTG).AND.(I.LE.LFTG) )LL=KFTG+L~LZ1 MORSE 5440

WRITE(IOUT,27)I,LL MORSE 5441

805 WRITE(I0UT,506)(SIGG(L,K+1),SIGG(L,K+1+NSCT),K=1,NSCT) MORSE 5442
804 CONTINUE MORSE 5443
207 CONTINUE MORSE 5444
110 CONTINUE MORSE 5445
RETURN MORSE 5446

END MORSE 5447
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