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ABSTRACT

An axial flow turbine mass model has been developed
and used to study axial flow turbines for space
power systems. Hydrogen, helium-xenon, hydrogen-
water vapor, air, and potassium vapor working
fluids have been investigated to date. The impact
of construction material, inlet temperature,
rotational speed, pressure ratio, and power level
on turbine mass and volume has been analyzed. This
paper presents the turbine model description and
results of parametric studies showing general
design trends characteristic of any axial flow
machine. Also, a comparison of axial flow turbine
designs using helium-xenon mixtures and potassium
vapor working fluids, which are used in Brayton and
Rankine space power systems respectively, is
presented.

INTRODUCTION

An axial flow expansion turbine model was developed
for use in our space power system studies to
provide consistent mass and performance comparisons
between alternate turbine powered concepts. This
model determines total turbine mass and dimensions
of any axial flow turbine as a function of turbine
operating parameters, working fluid conditions, and
material constraints. The model uses principles
from thermodynamics, fluid dynamics, and strength
of materials to iteratively determine each stage
outlet flow area and size. The combined stages
result in the complete turbine. The turbine model
is programmed for use on an IBM PC, uses little
computer time for most working fluids, and is
incorporated into our system-level space power
codes. This allows optimization studies to be
performed on multi-parameter space power systems in
a consistent and reasonable manner [1]. The model
output identifies basic design trends and limiting
design constrajnts as functions of the system
operating conditions and specified turbine
parameters. The working fluid may be any gas or
condensing vapor provided that the appropriate
equation of state is used to calculate the fluid's
thermodynamic conditions. Despite this level of
detail, the turbine model is considered simplified
because it does not account for effects such as
boundary layer interactions, shock waves, stress
concentrations, hub seal and blade tip leakage,
three-dimensional flows, bending and thermal
stresses, or aerodynamically induced blade
vibrations.

TURBINE MODEL DESCRIPTION

The axial flow turbine model determines the blade
length and disk radius for each stage of a turbine
by calculating: (1) the energy transfer from the
working fluid to the rotating blades for each stage
of the turbine; (2) the flow area required by the
working fluid as it exits each stage; and (3) the
limiting stage blade speed due to material strength
considerations. The process is iterative because
of the interdependence of these calculations.
Blade length and disk radius are then used to
define the turbine stage size because they are the
primary size limiting dimensions. The model
calculates a stage mass based on these size
criteria and sums the individual stage masses to
give the complete turbine mass. This provides a
realistic basis for the turbine model and allows a
consistent comparison between axial flow turbines
for the many system design parameters and working
fluid conditions.

Energy Transfer Considerations

Energy transfer occurs at each stage of an axial
flow turbine when high velocity fluid imparts a
force, due to the momentum change of the working
fluid, to the moving blades and does work on them.
This interaction is represented by the two-
dimensional velocity diagram in Figure 1. The
working fluid enters the stage at absolute velocity
c1, is accelerated through the nozzles to absolute
velocity cg, impinges on the rotor blades that are
traveling at a tangential velocity U, and leaves
the stage at absolute velocity c3. The stage work
per unit mass of working fluid, Wg, is:

Wg = (e2z - €32)U . )

Note that the stage outlet tangential wvelocity,
c3z, may be opposite in direction (and negative)
relative to the inlet fluid velocity, c2z, so that
Wg is always a positive quantity. The momentum
change of the working fluid is calculated at the
mean blade radius for each stage of the turbine.
Thus, the tangential blade velocity used in
Equation (1) is that velocity which corresponds to
the mean blade radius, Ry, or:

U=RyN (2)

vhere N represents the angular rotational speed of
the turbine.

DISTRIBUTION OF THIS DOCUMENT \ésu \MK§T ER
4




DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.



A dimensionless stage work coefficient, ¢, can be
defined as the ratio of change in tangential fluid
velocities to the stage tangential blade velocity
[2], or:

¥ = (c2z - ¢3z2)/U . (3)

Therefore, the turbine stage work may be expressed
as a function of the stage mean blade speed and
design work coefficient by combining Equations (1)
and (3):

Vg = ¥ U2, 4

The stage work is also the working fluid‘s change
in energy across each stage of the turbine. For
adiabatic steady flow and no change in potential
energy, the first law of thermodynamics results in:

Wg = hy - hy + (c12 - ¢32)/2 (5)

vhere hi; and h3 are the static enthalpies of the
turbine working fluid at each stage inlet and exit,
respectively.

Stage Flow Area Considerations

The annular flow area required by the working fluid
at each turbine stage exit is determined by
dividing the stage volume flow rate by the absolute
axial exit velocity, c3y. Thus:

2 xRy L =mv3/eyy (6)

where L is the stage blade length, m is the stage
mass flow rate, and v3 is the specific volume of
the working fluid at the stage exit. The specific
volume is obtained from the stage outlet static
enthalpy (calculated from Equation (5)) and outlet
static pressure. The outlet static pressure is
developed from the definitién of total-to-total
stage efficiency, ng, and the working fluid
equation of state. For example, the stage exit
static pressure, P3, for an ideal gas working fluid
with constant specific heats can be derived based
on an 1isentropic expansion from the stage inlet
pressure, P;, as:

P3 = P1[T3T1¢/(T1T3¢) - wsra/(cpnsr1rat>1§/<k-1>
7)

where total-to-total stage efficiency is defined
as:

ng = Wg/(h1e - h3es) . (8)

In the above equations Ty and T3 are the stage
inlet and exit static temperatures respectively,
T1t (which equals T; + ¢] /2cp) and T3y are the
stage inlet and exit total temperatures
respectively, cp is the working fluid constant
pressure specific heat, k is the ratio of constant
pressure specific heat to constant volume specific
heat, hjt is the stage inlet total enthalpy (which
equals hy + ¢12/2), and h3pg 1is the stage outlet
total enthalpy for an isentropic expansion of the
working fluid. For a non-ideal gas or condensing

vapor working fluid, P3 is that pressure
corresponding to the state point defined by hjeg
(from Equation (8) and using a specified ng) and
the stage inlet entropy.

The specific volume, v3, may then be obtained from
P3 and used to calculate the stage exit annular
flow area from Equation (6). For an ideal gas, v3
= RT3/P3 (where R 1is the gas constant), but for
other working fluids v3 may be a complex expression
involving temperature and numerical constants [3].
The total-to-total stage efficiency is either
specified or based on a default value in the
program that accounts for all stage 1losses
(including wall friction, secondary flow, and
leakage losses) of large, subsonic 50% reaction
turbine designs [4,5). Lower stage efficiencies
are specified for special conditions of short blade
lengths or near sonic fluid velocities. In the
special case of condensing vapors, the stage
efficiency is reduced in direct proportion to the
average stage vapor quality [6].

To determine the working fluid velocities required
in Equations (5) and (6) two restrictions are
applied to the turbine design. First, restriction
of a 50% reaction turbine (defined as equal
enthalpy change of the working fluid across the
nozzles and blades) at the mean blade radius, Ry,
implies that absolute velocity c equals relative
velocity w3. The second restriction of constant
axial fluid velocity through the stage requires
that c2x equals c3jy. These restrictions result in
similar velocity triangles as shown in Figure 1 and
allow determination of the stage outlet velocity,
c3, with knowledge only of the work coefficient, ¥,
nozzle-to-blade angle, a2, and stage blade speed,
U. Thus, from geometry:

c2x = c3x = (p U + U)/(2 tan a3) (9)

and

€3 = U ([(¥ - 1)/2)2 + [(¥ + 1)/(2 tan a3)]2)1/2.
(10)

These restrictions are common design practice in
the gas turbine industry [2] and allow consistent
comparative turbine designs to be obtained without
requiring a large amount of input design data.

Mass flow rate is the last parameter required in
Equation (6) so that the stage annular flow area
can be calculated. This parameter is determined
from the input turbine design information of
working fluid selection, turbine inlet and exhaust
temperatures, power output, and stage efficiency
(if the turbine working fluid is a condensing
vapor). For non-extraction turbines the mass flow
rate through each stage is identical. For
extraction turbines (generally used in regenerative
Rankine systems), the mass flow through each
subsequent stage decreases as fluid is removed from
the turbine. This latter condition requires
iteration through the entire turbine to compute the
required mass flow through each stage. If the
turbine working fluid is a condensing vapor,
exhaust temperature alone does not specify the




outlet conditions. In this case, the overall
turbine efficiency determines the outlet fluid
enthalpy and corresponding mass flow rate. A
condensing vapor case requires iteration through
the entire turbine because stage efficiency
decreases with decreasing stage quality. The mass
flow rate is calculated for all cases within the
program with no additional inputs required.

Turbine Material Strength Considerations

The limiting stage blade speed is derived from the
allowable blade stress at the blade root and the
maximum allowable disk stress at the circumference
of the disk center bore. If these stresses, caused
by the disk and blade centrifugal forces, are
exceeded then the turbine rotational speed must be
correspondingly reduced. For each stage the
program determines the largest possible disk radius
based on material allowable stress and turbine
rotational speed by [7}:

(Rg - L/2) = ((aq /[0.9 paV/2)/N  (11)

where the quantity (Rp - L/2) is the disk radius,
oq is the disk stress, and pq is the disk density.
If the resultant stage blade length is less than
that specified as an input parameter the disk
radius is automatically reduced. Also, the disk
stress is that allowable stress corresponding to
the specified operational temperature at the disk
center bore. This may require disk cooling for
some turbine designs, but this 1s standard practice
in the gas turbine industry [8]. The maximum blade
stress is calculated from [9]:

op = pp 0.7 NZ Ry L (12)

and occurs at the blade root. In Equation (12) oy
is the blade stress (also temperature dependent),
¢b 1s the blade density, and’ 0.7 is a factor for
tapered blades. If the allowable blade stress is
exceeded for any stage, the turbine operating speed
must be reduced.

Turbine Mass Considerations

The overall turbine volume and mass is the sum of
the individual stage volumes and mass. Stage
volumes are obtained by multipling the cross-
sectional area of each stage (disk and blade swept
areas) by the stage thickness, which is determined
from a specified aspect ratio (the ratio of blade
length to blade axial thickness). The individual
stage volumes include the disk, blade, and nozzle
volumes. The turbine blade swept volume and nozzle
volume is then given a mass based on an average
density 30% that of the blade material density.
The disk volume (the circular disk area without
deduction for the shaft center bore times the blade
axial thickness) is assigned an average density
100¢ that of the disk material density. The
remaining stage volume between disks is provided a
mass based on 20% of the disk material density to
account for seals, shaft and connections. The
casing mass is determined from hoop stress
calculations and the resultant disk material
required thickness. Although no specific mass is
allotted for some turbine mechanical components

such as bearings, ducting, seals, and cooling
passages, the gross density estimates indicated
above are intended to account for them in providing
the overall turbine mass.

PARAMETRIC STUDY RESULTS
o ee wer

The axial flow turbine model provides a realistic
and consistent approach to estimating turbine size
and mass for nearly all combinations of working
fluids, materials of construction, and operating
conditions. Thus, the effect of system parameter
variations, such as power level, pressure ratio,
and rotational speed, on turbine designs may be
readily investigated with trends and limiting
conditions identified.

For example, a simple parametric study of axial
flow turbines reveals that turbine mass and size
vary dramatically with operating speed. Turbine
mass decreases more than an order of magnitude as
rotational speed increases by a factor of only two
or three as shown in Figure 2. This mass reduction
occurs for all axial flow turbines and indicates
the futility of specifing turbine mass or turbine
specific mass (i.e., Kg/KW) without a knowledge of
turbine speed. The 10 MWe air working fluid
turbines of Figure 2 are of nickel superalloy
construction, have inlet temperatures of 1350 K,
inlet pressures of 3 MPa, work coefficlents of
about one, and stage efficiencies of 0.9. The disk
centers for all stages of these turbines are cooled
to 900 K to provide increased strength capability
and the minimum allowed blade lengths are 0.01 m.
It is important to note that due to material
strength limitations the curves in Figure 2 can not
be extrapolated. Also, higher speed turbines than
those indicated would only be possible with
increased blade or disk stresses.

The variation of turbine mass with pressure ratio
is also indicated in Figure 2. For any fixed
pressure ratio, turbine mass decreases
significantly with increased speed. However, for a
constant speed, turbine mass increases with
increasing pressure ratio because of the greater
number of stages required. Note that the higher
pressure ratio turbines have higher allowable
maximum speeds before blade stress is exceeded.

Finally, the dotted curves in Figure 2 show the
effects of turbine speed on turbine mass for 5 MWe
and 20 MWe machines. These curves are for a
pressure ratio of 12 with all other design
constraints the same as indicated above. As
expected, for similar operating conditions lower
power machines have higher allowable rotational
speeds. Thus, if speed is not constrained, a
turbine application may be less massive with
several low-power, high-speed machines rather than
one much larger power, low-speed turbine. For
instance, the minimum specific mass of the 20 MWe,
10 MWe, and 5 MWe turbines each operating at its
maximum allowable speed of 8700, 12300, and 17400
rpm respectively, 1is 0.0453, 0.0358, and 0.0278
Kg/KWe as determined from the information in Figure
2. However, for a fixed speed the less massive




turbine arrangement is with a single large turbine
as shown in Figure 2. At a fixed speed of 8000 rpm
a single 20 MWe turbine might have a mass of 1020
Kg, while two 10 MWe turbines would have a combined
mass of 1340 Kg, and four 5 MWe turbines a mass of
1870 Kg. Thus, the speed of the connected load
effects the turbine specific mass.

Figure 3 indicates the variation of turbine mass
with rotational speed for potassium vapor working
fluid turbines. These potassium turbines have the
same design parameters as the air turbines in
Figure 2 except that the turbine power output is 1
MWe, the disks are cooled to 950 K, the minimum
stage blade length is 0.007 m, and the inlet
pressure is saturated vapor at 0.963 MPa. The
significant decrease in turbine mass with
increasing speed is again readily visible from
Figure 3. As indicated, turbine mass decreases
from over 2000 Kg to about 100 Kg for the 900 K
outlet temperature turbine when rotational speed is
allowed to increase from 4000 rpm to nearly 22000

rpm.

The turbine outlet temperature indicated in Figure
3 is also the condensing temperature of a potassium
Rankine cycle because of the two-phase mixture at
the turbine exhaust. Thus, the turbine pressure
ratio can be determined from the outlet saturation
pressure corresponding to the specified turbine
outlet temperature. The turbine pressure ratios in
Figure 3 vary from a little less than 2.5 for the
1200 K outlet temperature up to nearly 38 for the
900 K outlet temperature. The variation of turbine
mass with pressure ratio showm in Figure 3 is
similar to the trend shown previously for the air
working fluid turbines. For either working fluid,
higher pressure ratio turbines have greater mass at
fixed speeds. However, higher pressure ratio
turbines can operate at greater speeds without
exceeding material allowable s’tress limits.

Turbine Inlet Pressure and Work Coefficient

Although turbine rotational speed, power output,
and pressure ratio are primary mass impacts they
are not the only design variables that effect
turbine mass. For example, Figure 4 shows the
effect of inlet pressures on turbine mass. The
results of Figure 4 are for the turbine design
constraints and conditions of Figure 2 at a
pressure ratio of 12. Note that the higher inlet
pressure turbines may operate at much higher
maximum speeds, approximately 18000 rpm for the 6
MPa inlet pressure turbines versus 7000 rpm for the
1 MPa turbines. This higher speed results in
correspondingly less massive and more compact
machines. Even at the same speed, however, higher
turbine inlet pressure contributes to reduced
turbine mass because the higher pressure working
fluid is more dense and results in shorter required
blade lengths at each stage.

Figure 4 also shows the turbine mass reduction
possible as the stage work coefficient is
increased. As can be seen in Figure 4, doubling
the stage work coefficient nearly reduces the
turbine mass at any constant speed by a factor of
two because doubling the stage work coefficient

nearly doubles the stage work provided by the
working fluid (see Equation (4)) and results in
approximately half the number of stages. However,
increased stage work coefficients must be balanced
against the increased fluid velocities which cause
reduced stage efficiencies or the concern for sonic
velocities within the turbine.

Brayton and Rankipe Turbine Comparison

The realistic and consistent turbine dimensions
predicted with this turbine model allow direct
comparisons to be made of axial flow turbines for
nearly any system operating conditions. The axial
flow turbines of both Rankine and Brayton
continuous space power systems are compared in
Table 1 for 1 MWe and 5 MWe net power output
systems. Note that the turbine power outputs must
also include any system parasitic loads such as
pumps and compressors. For the same sized power
systems, Rankine turbines are 3 to 4 times more
massive than the corresponding Brayton turbines,
providing the turbines are constrained to operate
at the same speed and are made of the same nickel
superalloy materials. The associated system
operating conditions are shown in Table 2.

Both the potassium vapor Rankine and helium-xenon
mixture Brayton turbines require cooling to operate
at the conditions indicated in Tables 1 and 2. The
Rankine turbine disks are cooled to 950 K while the
Brayton turbine disks and blades are cooled to 900
K and 1350 K respectively. In addition, the blades
of the 5 MWe Rankine turbine must be constructed of
higher strength material than nickel superalloy
because blade cooling in the two-phase environment
of the Rankine turbine is much more difficult than
for gas turbines. Thus, the 5 MWe Rankine turbine
in Table 1 has TZM blades. If these temperature
limits prove unacceptable, the turbine speeds could
be reduced but only at the expense of increased
turbine mass.

The mass fraction of helium in the Brayton cycle
turbines is selected that provides a minimum mass
turbine with realistic blade lengths at the
required rotational speed. For the systems shown
the mass fraction of helium varied between 0.05 and
0.35. At a fixed turbine speed and work
coefficient, increasing the helium mass fraction
increases the number of stages and mass of the
turbine while simultaneously decreasing the
individual stage blade lengths. However, helium
may be necessary in other parts of the Brayton
system for heat transfer and pressure drop
benefits.

CONCLUSION

A simplified axial flow turbine sizing and mass
model is available that is easy to use and can be
applied to nearly any combination of turbine
materials and working fluids, including gases and
two-phase vapors. The model provides realistic and
consistent mass estimates of axial flow turbines
for most system operating conditions and has been
used to investigate the effect of turbine
parameters on space power system mass. Parametric
studies reveal that turbine mass decreases




significantly with increased rotational speed for
all axial flow turbines. Other conditions that
effect turbine mass are power level, pressure
ratio, work coefficient, and inlet pressure. A
comparison of Rankine and Brayton space power
systems of 1 MWe to 5 MWe shows that Rankine system
potassium vapor axial flow turbines are 3 to 4
times more massive than the corresponding Brayton
system helium-xenon turbines operating at the same
speed.
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Table 1. Comparison of Axial Flow Turbines in Rankine and Brayton Space Power Systems.

1 MWe Systems/15000 rpm Turbines S5 _MWe Systems/10000 rpm Turbines
System Turbine Number Average Turbine Turbine Number Average Turbine
Type Power of Dia. Mass Power of Dia Mass
MWe: Stages m Kg MWe Stages m Kg
Rankine 1.03 5 0.39 95 5.15 5 0.63 441
Brayton 2.0 3 0.24 21 10.0 3 0 60 148
(Simple)
Brayton 1.67 4 0.25 28 8.33 3 0 62 157
(Recuperated)

Table 2. Space Power System Operating Conditions.

Parameter

Inlet
Temperature, K

Inlet
Pressure, MPa

Pressure Ratio
Work Coefficient,y

Turbine
Efficiency, %

Potassium Simple Recuper.

_Rankine  Brayton Brayton

1350 1500 1500
0.963 4.0 4.0
(Sat.)
12.6 3.5 2.0
1.0 2.2 2.0
85 90 90
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