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VARL\BLE METRIC METHOD FOR MINIMIZATION 

William C. Davidon 

This is a method for de te rmining numer ica l ly local minima of dif-
ferent iable functions of s eve ra l va r i ab l e s . In the p r o c e s s of locating each 
min imum, a m a t r i x which c h a r a c t e r i z e s the behavior of the function about 
the minimunn is de te rmined . F o r a region in which the function depends 
quadra t ica l ly on the v a r i a b l e s , no m o r e than N i te ra t ions a r e r equ i red , 
where N is the number of v a r i a b l e s . By suitable choice of s ta r t ing values 
and without modification of the p r o c e d u r e , l inear cons t ra in ts can be imposed 
upon the v a r i a b l e s . 

1. INTRODUCTION 

The solution to many different types of physical and ma thema t i ca l 
p rob lems can be obtained by min imiz ing a function of a finite number of 
v a r i a b l e s . Among these p rob lems a r e l e a s t - s q u a r e s fitting of exper imenta l 
data , de te rmina t ion of sca t t e r ing ampl i tudes and energy eigenvalues by 
var ia t iona l me thods , the solution of differential equat ions, e tc . With the 
u s e of h igh-speed digital c o m p u t e r s , n u m e r i c a l methods for finding the 
min ima of functions have rece ived i n c r e a s e d at tention. Some of the p r o ­
cedures which have been used a r e those of opt imum gradient ,(1) conjugate 
gradients , (2) the Newton-Raphson i tera t ion , (3) and one by Garwin and 
Reich.'"*) In many ins t ances , however , a l l of these methods r equ i re a l a rge 
number of i t e ra t ions to achieve a given accuracy in locating the min imum. 
Alsr», for some behaviors of the function being min imized , the p rocedures 
do not converge . 

The method p re sen t ed in this pape r has been developed to improve 
the speed and a c c u r a c y with which the min ima of functions can be evaluated 
numer i ca l ly . In addition, a m a t r i x cha rac t e r i z ing the behavior of the func­
tion in the neighborhood of the m i n i m u m is de te rmined in the p r o c e s s . 
L inea r cons t ra in t s can be imposed upon the va r i ab les by suitable choice of 
ini t ia l condit ions, without a l t e ra t ion of the p r o c e d u r e . 

2. NOTATION 

We will employ the summat ion convention: 

N 
aM bpt = E aM b ^ . 

/ i = 1 



4 

In descr ib ing the i t e ra t ive p rocedure , we will use symbols for m e m o r y 
locations r a t h e r than success ive values of anumber ; e.g., we would write 
X + 3 —*• X ins tead of X£ + 3 = Xĵ ^̂  • I^ this notation, the sequence of oper ­
ations is general ly re levant . The following symbols will be used. 

xM: ^ = 1, . . . , N: the set of N independent var iables 

f (x): the value of the function to be minimized evaluated at the 
point X-

Sn (s): t^s der iva t ives of f (x) with r e spec t to x^ evaluated at x: 

af(x) 
gju (s) = SxM 

h^^: a non-negat ive s y m m e t r i c m a t r i x which will be used as a 
m e t r i c in the space of the va r i ab les . 

A: The de te rminant of hM^ 

£: 2 t imes absolute accuracy to which the function f (x) is 
to be minimized . 

K: an integer which specif ies the number of t imes the var iables 
a r e to be changed in a random manner to tes t the re l iabi l i ty 
of the de terminat ion of the min imum. 

3. GEOMETRICAL INTERPRETATION 

It is convenient to use geomet r i ca l concepts to descr ibe the m i n i ­
mizat ion p rocedure . We do so by considering the var iab les xM to be the 
coordinates of a point in an N-dimens iona l l inear space . As shown in 
F ig . l a , the se t of x for which f (x) is constant forms an N-1 dimensional 
surface in this space . One of this family of surfaces pa s se s through each x. 
and the surface about a point is cha rac t e r i zed by the gradient of the function 
at that point: 

r X af(x) 

These N components of the gradient can in turn be cons idered as the coor­
dinates of a point in a different space , as shown in F ig . l b . As long as f (x) 
is differ entiable at a l l points , t he re is a unique point g in the gradient space 
a s soc ia t ed with each point x in the posi t ion space, though there may be 
naore than one x with the same g. 



(a) (b) 

Fig. 1. Geomet r i ca l in terpre ta t ion of xM and g (x) 
'M 

In the neighborhood of any one point A the second derivat ives of 
f(x) specify a l inear mapping of changes in position, dx, onto changes in 
gradient dg, in accordance with the equation 

d g 
^£ 

M ^xM^x^^ dx^ (3.1) 

The vec tors dx and dg will be in the same direct ion only if dx is an 
eigenvector of the Hess ian ma t r i x : 

a f̂ 
BxM^x^ 

If the ra t ios among the corresponding eigenvalues a r e l a rge , then for mos t 
dx the re will be considerable difference in the direct ions of these two 
v e c t o r s . 

All i t e ra t ive gradient methods , of which this is one, for locating 
the min ima of functions consis t of calculating g for var ious x̂  in an effort 
to locate those values of x for which g = 0, and for which the Hess ian 
m a t r i x is posit ive definite. If this m a t r i x were constant and explicitly 
known, then the value of the gradient at one point would suffice to determine 
the min imum. In that case the change des i r ed in g would be -g , so we 
would have 

^^f 
Ax^ (3.2) 

from which we could obtain Ax^ by multiplying Eq. (3.2) by the inverse of 



the m a t r i x SxM dxV However, in mos t situations of in te res t , h'i 
^x/̂ axT^ 

is not constant , nor would explicit evaluation at points that might be far from 
a min imum r e p r e s e n t the bes t expenditure of t ime . 

Instead, an ini t ial t r i a l value is a s sumed for the m a t r i x 
a^f 

Sx^ax^ 
This m a t r i x , denoted by h.^^^, specif ies a l inear mapping of al l changes in 
the gradient onto changes in posit ion. It is to be symmet r i c and non-negative 
(positive definite if t he re a r e no cons t ra in t s on the var iab les ) . After 
making a change in the var iab le x> this t r i a l value is improved on the bas i s 

r? f 
of the ac tual re la t ion between the changes in g and x. If ax/^Sx V IS c o n ­

s tant , then, after N i t e r a t ions , not only will the min imum of the function be 
a^f - 1 

de te rmined , but a lso the final value of h'^ will equal "^—,,^ .,, . We 
^ axMdx^ 

shal l subsequently d i scuss the significance of this m a t r i x in specifying the 
a c c u r a c y to which the va r i ab les have been de te rmined . 

The m a t r i x h ^ can be used to a s soc ia t e a squared length to any 
gradient , defined by h''̂  SuSy I^ ^^^ Hess i an m a t r i x were constant and h^^ 

were i t s i n v e r s e , then jh''^ SuSy would be the amount by which f(x) would 

exceed i ts m i n i m u m value. We the re fore consider hM^ as specifying a 
m e t r i c , and when we re fe r to the lengths of v e c t o r s , we will imply thei r 
lengths using hr as the m e t r i c . We have cal led the method a "var iable 
m e t r i c " method to ref lect the fact that h^ is changed after each i te ra t ion . 

We have divided the p rocedure into five p a r t s which to a l a rge ex­
tent a r e logically dis t inct . This not only faci l i ta tes the p resen ta t ion and 
ana lys i s of the method, but it is convenient in p r o g r a m m i n g the method for 
mach ine computation. 

4. READY: CHART 1 

The function of this sect ion is to es tab l i sh a d i rect ion along which 
to s e a r c h for a re la t ive min imum, and to box off an in te rva l in this d i r e c ­
tion within which a re la t ive m i n i m u m is located. In addition, the c r i t e r ion 
for t e rmina t ing the i t e ra t ive p rocedu re is evaluated. 

Those opera t ions which a r e only pe r fo rmed at the beginning of the 
calculat ion and not r epea ted on succes s ive i t e ra t ions have been included in 
Char t 1 (page 7) . These include the loading of input data, ini t ia l p r in t -ou t s , 
and the ini t ia l calculat ion of the function and i ts gradient . This l a t t e r ca l ­
culat ion is t r e a t e d as an independent subrout ine , which may on i ts ini t ial and 
final ca lcula t ions include some opera t ions not p a r t of the usua l i t e ra t ion , 
such a s loading ope ra t ions , calculat ion of quant i t ies for r epea ted u se , spec ia l 
p r i n t - o u t s , e t c . A counter r ecord ing the number of i t e ra t ions has been found 
to be a convenience, and is labeled I. 
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The i t e ra t ive p a r t of the computation begins with "READY 1." The 
di rect ion of the f i r s t s tep is chosen by using the m e t r i c h^^^ in the relat ion 

- h ^ % ^ - * s ^ (4.1) 

The component of the gradient in this d i rect ion is evaluated through the 
re la t ion 

sM g ^ , — g s . (4.2) 

F r o m E q s . (4.1) and (4.2) we see that -gg is the squared length of g, and 
hence the improvement to be expected in the function is - i g g . The posit ive 
defini teness of hf-^ i n s u r e s that gg is negat ive, so that the step is in a di rec­
tion which (at l ea s t ini t ial ly) d e c r e a s e s the function. If its dec rease is 
within the accu racy des i r ed , i . e . , if gg + e > 0, then the min imum has been 
de te rmined . If not, we continue with the p r o c e d u r e . 

- 1 
In a f i r s t effort to box in the nainimum, we take a s tep which is 

a^f 
twice the s ize that would locate the min imum if the t r i a l hM^were r—,,.. ,. 

BxM-dx'̂  
However , in o r d e r to prevent this s tep from being unreasonably l a rge when 
the t r i a l hP"^ is a poor e s t i m a t e , we r e s t r i c t the step to a length such that 
(XsM)gH, the d e c r e a s e in the function if it continued to dec rea se l inear ly , is 
not g r e a t e r than some p rea s s igned maximum, 2f. We then change x/^ by 

xM+Xs /^—^x+^ , (4.3) 

and calculate the new value of the function and i ts gradient at x"'"'̂ . If the 
project ion s^ gn = gg of the new gradient in the di rect ion of the step is 
pos i t ive , o r if the new value of the function f̂  is g r ea t e r than the or ig inal f, 
then t h e r e is a re la t ive min imum along the d i rec t ion s between x and x , 
and we p roceed to "Aim" where we will in terpola te i ts posit ion. However, 
if ne i ther of these conditions is fulfilled, the function has dec reased and is 
dec reas ing at the point jc"*", and we infer that the step taken was too sma l l . 
If the step had been l imited by the p reas s igned change in the fxinction, h^^ is 
not modified. If the step had been taken on the bas i s of h^^, we modify h^^ 
so as to double the squared length of s^, leaving the length of al l pe rpend ic - ' 
u la r vec to r s unchanged. This i s accompl ished by 

hF-'^ + J sM sv —«- hMV , (4.4) 

where Z is the squa red length of s^. This doubles the de te rminant of h^^. 
The p r o c e s s is then r epea t ed , s t a r t i ng from the new pos i t ion . 



5. AIM: CHART 2 

The function of this section is to es t imate the location of the r e l a ­
tive minimum within the in terval selected by "Ready." Also a comparison 
is made of the improvement expected by going to this minimum with that 
from a step perpendicular to this direct ion. 

AIM 

1 
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X ' + gs + gs -* z 

22 

( ^ ' - g s g s / ' - Q 

2 3 
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24 

^ ( § 3 + z + 2Q) a2 - t„ 

f+ - t„ - f0 2 5 

32 
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36 
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37 
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31 
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29 
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26 
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28 
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a x ^ + (1 - a) X + M ^ tM 

FIRE 

DRESS 2 CHART 2: AIM 

Inasmuch as the interpolation is along a one-dimensional interval , 
it is convenient to plot the function along this direction as a simple graph 
(see Fig. 2). 

The values of f and f̂  of the function at points x and x"*" a r e known, 
and so a r e i ts s lopes , gg and gg, at these two points. We interpolate for 
the location of the minimum by choosing the "smoothest" curve satisfying 
the boundary conditions at x. and x^, namely, the curve defined as the one 
which minimizes 

.X 

-(S) 



a=o a = X 

Fig . 2 

Plot of f ^ ) along a 
one-dimensional in terval . 

over the curve . This is the curve formed by a flat spring fitted to the 
known ordinates and slopes at the end points , provided the slope is smal l . 
The resul t ing curve is a cubic, and i ts slope at any a (0 ^ c t ^ X ) is given by 

, 2 

gM = g, 2a 
(gs + z ) + ^ ( g s + g s + 2 z ) . (5.1) 

where 

. - ^ i l ) . »s 

The root of Eq. (5.1) that cor responds to a minimum lies between 
0 and X in vi r tue of the fact that gg < 0 and e i ther gg > 0 or z < gg + g 
can be exp re s sed as 

+ 
s' It 

where 

a 
m m 

= X(i . a) 

a =-
g+ + Q - z 

g . + 2Q 
(5.2) 

a n d 

Q = (̂ ^ - gs&tf' 

The pa r t i cu la r form of Eq, (5.2) is chosen to obtain maximum accuracy , 
which might o therwise be lost in taking the difference of near ly equal 
quant i t ies . The amount by which the min imum in f is expected to fall be­
low f"*" is given by 

'(X-aX) 
d a g „ ( a ) = - r ( g s + z + 2Q)a2 X (5.3) 
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The ant icipated change is now compared with what would be expected from 
a perpendicular s tep . On the bas is of the m e t r i c h^^, the step to the opti­
m u m point in the (N-1)-dimensional surface perpendicular to s^ through 
x"*''̂  is given by 

- h / ^ ^ g + + - ^ s ^ - ^ t M . (5.4) 

The change in f to be expected from this s tep is jt^ gn. Hence, the 
decis ion whether to interpolate for the minimum along ŝ  or to change x ^Y 
use of Eq. (5.4) is made by comparing gf = t^ gt with express ion (5.3). 

The purpose of allowing for this option is to improve the speed of 
convergence when the function is not quadra t ic . Consider the situation of 
F ig . 3. The optimum point between ic and xj^ is point A. However, by going 
to point B, a g r ea t e r improvement can be made in the function. When the 
behavior of the function is desc r ibed by a curving valley, this option is of 
pa r t i cu la r value, for it enables success ive i te ra t ions to proceed around 
the curve without backtracking to the local min imum along each s tep. How­
ever , if evaluation of the function at this new position does not give a bet ter 
value than that expected from the interpolat ion, then the interpolated position 
is used . Should the new posit ion be bet ter as expected, it is then des i red to 
modify h'^ to incorpora te the new information obtained about the function. 
The full s tep taken is s to red at ŝ ,̂ and i ts squared length is the sum of the 
squa res of the step along ŝ  and the perpendicular step. The component in 
the step d i rec t ion of the resu l t ing gradient i s s to red at ggg and these 
quanti t ies a r e used in the section " D r e s s " in a manner to be descr ibed . 

F ig . 3 

I l lus t ra t ion of procedure for nonquadratic 
functions. Point A is the optimum point 
along (x, x"*"); point B is the location for 
the new-tr ia l . 

Fo r the in terpolated s tep, we se t 

a x ^ + (1 - a ) x + ^ — ^ t ^ . (5.5) 

By d i rec t use of the xM instead of the sM g rea t e r accuracy is obtained m 
the event that a is sma l l . After making this interpolat ion, we proceed to 
" F i r e . " 



6. FIRE: CHART 3 

The purposes of this sect ion a r e to evaluate the function and i ts 
gradient at the in terpola ted point and to de te rmine if the local min imum 
has been sufficiently well located. If so , then the r a t e of change of g r a ­
dient is evaluated (or, m o r e accura te ly , X t imes the r a t e of change) by 
interpolat ing from i ts values at x, x j , and at the in terpolated point. 

If the function were cubic, then f at the interpolated point would 
be a min imum, the component of the gradient at this point along s_ would 
be ze ro , and the second der ivat ive of the function at the min imum along 
the line would be 2Q/X. However , as the function will general ly be m o r e 
complicated, none of these p r o p e r t i e s of f and i ts der iva t ives at the i n t e r ­
polated point will be exactly sat isf ied. We designate the actual value of f 
and i ts gradient at the in terpola ted point by f and g" .̂ The component of 
g^ along s. is s^ g^ = ^ g . Should f be g r e a t e r than f or f+ by a significant 
amount (> e), the interpolat ion is not cons idered sa t i s fac tory and a new one 
is made within that p a r t of the or ig ina l in te rva l for which f at the end 
point is s m a l l e r . 

F r o m the values of the grad ien t ^ , g^, and gju a t t h ree points along 
a l ine , we can in te rpola te to obtain i ts r a t e of change at the interpolated 
point. With a quadra t ic in terpola t ion for the gradient , we obtain 

1-a 
is^J.-g^l)-i^ + ie^^-g^)-^-'-^ s^lB > ^̂ -̂ ^ 

1 
where p̂  ĝ ĝ is the r a t e of change of the gradient at the in terpola ted point. 
The component of gng in the d i rec t ion of s, namely , s/^ g„g = ggg. can be 
e x p r e s s e d a s 

. i ^ ) + 2 Q _ * g g g . (6.2) 

If the in te rpola ted point were a m in imum, then gg = 0 and ggg = 2Q. 

An addit ional c r i t e r i on imposed upon the interpolat ion is that the 
f i r s t t e r m on the left of Eq. (6,2) be s m a l l e r in magnitude than Q, Among 
other th ings , this i n s u r e s that the in te rpola ted value for the second de r iva ­
tive is pos i t ive . If this c r i t e r i o n is not fulfilled, no interpolat ion is m a d e , 

LlV and the m a t r i x h*̂  is changed in a l e s s sophis t ica ted m a n n e r . 
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7. DRESS: CHART 4 

The purpose of this sect ion is to modify the m e t r i c hP^ on the bas i s 
of information obtained about the function along the di rect ion s_. The new 
ĥ ^ is to have the p roper ty that (h^^)' g^g = X s^, and mus t re ta in the infor­
mat ion which the preceding i te ra t ions had given about the function. 

If the vec tor h" g^g = t^ were in the direct ion of sM, then it would 
be sufficient to add to h/^^ a m a t r i x propor t iona l to s/^s^. If tM is not in the 
d i rec t ion of s^, the sma l l e s t squared length for the difference between sM 

X 1 
and (hM^ + a s ^ s ^ ) g ^ g is obtained when a = --j , F o r this value of a , 

gss * 
g2 

the squared length of the difference is tg ^ , where to is the squared 
i/ 

length of gng. namely , ^^^gnsgvs- When this quantity is sufficiently smiall 
(<e), the m a t r i x h ^ ^ undergoes the change: 

— hH-^ . (7,1) 
ss 

The cor responding change in the de te rminan t of h ^ ^ i s 

g s s 

When the vec to r s tM and sl^ a r e not sufficiently col inear , it is n e c e s s a r y to 
modify hH^ by a m a t r i x of rank two ins tead of one, i .e . , 

h M V . t ^ + _i_gMsV__^l^MV . (7.3) 
to gss 

Then the change in the de te rminan t of hf̂ ^ is 

Xg ss 
to 

(7.4) 

After the m a t r i x is changed, the i t e ra t ion is~complete; after print ing out 
whatever information is d e s i r e d about this p a r t of the calculat ion, a new 
i t e ra t ion is begun. This is r epea ted unti l the function is min imized to with­
in the accu racy requ i red . 

8. STUFF: CHART 5 

The purposes of this sect ion a r e to t e s t how well the function has 

been min imized and to t e s t how well the m a t r i x hM^ approx imates 

at the min imum. This i s done by displacing point x f rom the location of the 
m i n i m u m in a random di rec t ion . 
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The displacement of point ĉ is chosen to be a unit length in t e r m s 
II h^ { 11"^ 

of h^^ as the m e t r i c . When h^^ = || T jj~^ y || , such a step will inc rease 

f by half the square of the length of the s tep. 

If the direct ion were to be randomly distr ibuted, then it would not 
be sa t is factory to choose the range of each component of t^ independently; 
r a t h e r , the range for the ty, should be such that h'-^^ t|:i ty is bounded by 
p reass igned va lues . However, this refinement has not been incorporated 
into the cha r t s nor the computer p r o g r a m . The length of the step is an 
input p a r a m e t e r , P , so that the function should inc rease by -|-P when each 
random step is taken. 

Significance of h^^: 

We examine a l e a s t - s q u a r e s analysis to i l lus t ra te how the init ial 
t r i a l value for h^^ is chosen, and what i ts final value signifies. In this 
case , the function to be min imized will be chosen to beX^/2 , where x^ is 
the s ta t i s t i ca l m e a s u r e of goodness of fit. The functionX / 2 is the na tura l 
logar i thm of the re la t ive probabil i ty for having obtained the observed set 
of data as a function of the var iab les X^ being determined. 

The m a t r i x h/^^ = 
a ^ f 

cor re la t ions among the var iab les by 

then specifies the spreads and 

<AxMAx^> = 
_ / d^x (xM- <xM»(x^ - <x^^ >) e •x^/ ' 

/dNx e - x " ^ 

hM^ (8.1) 



The diagonal e lements of hH'^ give the m e a n - s q u a r e uncer ta in ty for each of 
the v a r i a b l e s , while the off-diagonal e lements de te rmine the cor re la t ions 
among them. The full s ignificance of this m a t r i x (the e r r o r ma t r ix ) is to 
be found in var ious works on s ta t i s t i c s , (5 ) It enables us to de te rmine the 
uncer ta in ty in any l inear function of the va r i ab l e s , for, if u = a^ x^, then 

<u> = a ^ < x M > 

< {Anf> = a^ a^ «xM x^'> - <xM><x^ » 

= 3.11 a-•jU '^v h ^ ^ , (8,2a) 

If u is a m o r e genera l function of 3c, then if in a Taylor expansion about the 
value of _x der iva t ives h igher than f i r s t can be ignored, we have 

< u (x)> = u « 5 i » 

< A u ^ ) > 2 = ^ ( < x > ) | ^ « x » h ^ ^ , (8.2b) 

If it is poss ib le to e s t ima te the accu racy with which the var iab les 
a r e de te rmined , the use of such e s t i m a t e s in the ini t ia l t r i a l value of h^^ 
will speed the convergence of the min imiza t ion p r o c e d u r e . Suppose, for 
example , that to fit some set of expe r imen ta l data, it is e s t ima ted that the 
va r i ab l e s xM have the va lues : 

x^= 3 . 0 + a . l 

x=' = 28,0+ 2 

x^ = 10* ± 10^ . (8,3) 

Then, the ini t ia l values for xM and h^̂ ^ would be 

x ^ = (3,0 28.0 10*) 

0 
4 
0 l O y , (8,4) 

If this e s t ima te is even c o r r e c t to within a couple of o r d e r s of magni tude, 
the number of i t e ra t ions r equ i r ed to locate the min imum may be subs tan­
t ia l ly l e s s than that for some m o r e a r b i t r a r y choice, such as the unit 
nnatrix. 

If it i s d e s i r e d to impose l inear cons t ra in t s on the v a r i a b l e s , this 
can be read i ly done by s t a r t ing with a m a t r i x h^^ which is no longer pos i ­
tive definite, but which has ze ro e igenvalues . F o r the cons t ra in t s 



aaxM = a 

bju x^ = A, e tc . , (8.5) 

the miatrix h'^^ m u s t be chosen so that 

hMV av = 0 

hM^ bv = 0 , (8.6) 

and the s ta r t ing value for xM m u s t satisfy Eq, (8.5), Fo r example , if x^ is 
to be held constant , a l l e lements of hM^ in the th i rd row and th i rd column 
a r e se t equal to ze ro and x is se t equal to the constant value. 

When cons t ra in t s a r e imposed, ins tead of set t ing A equal to the de­
t e rminan t of h^ (=0), it is set equal to the product of the non-ze ro eigen­
value of hf-^. Then, except for round-off e r r o r s , not only will the conditions 
(8,6) be p r e s e r v e d in subsequent i t e r a t i ons , but a l so A will continue to equal 
the product of non -ze ro e igenvalues . 

Though A is not u sed in the ca lcula t ions , i ts value may be of i n t e r e s t 
in es t imat ing how well the va r i ab les have been de te rmined , sinceShMM gives 

M 
the sum of the eigenvalues of W^^, while A gives thei r product . The square 
roo t of each of these eigenvalues is equal to one of the pr inc ipa l semiaxes 
of the e l l ipse formed by a l l x for which f (x) exceeds i ts min imum value by ^, 

9. CONCLUSION 

The min imiza t ion method desc r ibed has been coded for the IBM-704 
using F o r t r a n . Exper ience is now being ga thered on the operat ion of the 
method with d ive r se types of functions. P a r t s of the p r o c e d u r e , not incor ­
pora t ing al l of the provis ions desc r ibed h e r e , have been in use for some 
t ime in l e a s t - s q u a r e s ca lcula t ions for such computat ions a s the ana lys is 
of 7T-P sca t t e r ing expe r imen t s , ( " / for the analys is of delayed neutron ex­
p e r i m e n t s , (7) and s i m i l a r computa t ions . Though full ma thema t i ca l analys is 
of i ts s tabi l i ty and convergence has not been m a d e , genera l cons idera t ions 
and n u m e r i c a l exper ience with it indicate that min ima of functions can be 
genera l ly m o r e quickly located than in a l t e rna te p r o c e d u r e s . The abili ty of 
the m e t r i c , hF^, to accumula te informat ion about the function and to compen­
sa te for i l l -condi t ioned gup i s the p r i m a r y r e a s o n for this advantage. 

The author wishes to thank Dr . G. Per low and Dr . M. Peshkin for 
valued d i scuss ions and sugges t ions , and Mr . K, Hi l l s t rom for ca r ry ing out 
the computer p r o g r a m m i n g and opera t ion . 



APPENDIX * 

If we have the gradient of the function at a point in the neighborhood 

of a min imum together with G_" , where jG = Hi , then, neglecting Sx/̂ ax^ 
t e r m s of h igher o r d e r , the locat ion of the min imum would be given in 
m a t r i x notation by 

t = X - G"^ V , (1) 

In the method to be desc r ibed , a t r i a l m a t r i x is used for G~^ and a s tep 
de t e rmined by Eq, (1) is taken, Frona the change in the gradient resu l t ing 
from this s tep , the t r i a l value is improved and this p rocedure is repea ted . 
The changes made in the t r i a l value for GT^ a r e r e s t r i c t e d to keep the hunt­
ing p rocedure " r easonab le" r e g a r d l e s s of the na ture of the function. Let 
H be the t r i a l value for jG~^. Then the s tep taken will be to the point 

x"*" = X - H V . (2) 

The gradient at x"*", V^. i s then evaluated. Let D = V - V be the change in 
the gradient a s a r e s u l t of the s tep S = x"*" - x = -H V. We form the new 
t r i a l m a t r i x by 

HJT. = H^y + a(H 7^)^ (H v \ . (3) 

The constant a is de te rmined by the following two conditions: 

1. The ra t io of the de te rminan t of II to that of ^ should be between 
R"* and R, where R is a p r e a s s i g n e d constant g r e a t e r than 1. 
This i s to p reven t undue changes in the t r i a l m a t r i x and, in 
p a r t i c u l a r , if H is posi t ive definite, H"̂  will be posi t ive definite 
a l s o . 

2, The non-negat ive quanti ty 

A = D H+ D + S (H"*")"̂  S - 2 S- D (4) 

is to be min imized . This quanti ty vanishes when S = H"*" D, The a which 
sa t i s f ies these r e q u i r e m e n t s , together with the cor responding A, as functions 
of N = V+ HV+ and M = V+ HV , a r e a s follows: (8) 

*The following method is a desc r ip t ion of a simplif ied method embody­
ing some of the ideas of the p r o c e d u r e p re sen t ed in this r epo r t . 



Range of M _a_ _A_ 

M < - N / ( R - 1) l / ( M - N) 0 
- N / ( R - 1) < M < N / ( R + 1) ( I / R N ) - ( 1 / N ) (N - M -f MR)yRN 
N / ( R + 1) < M < N R / ( R + 1) ( N - 2 M ) / N ( M - N ) 4 M (N - M ) / N 

N R / ( R + 1) < M < N R / ( R - 1) ( R / N ) - ( 1 / N ) (M + N R - MR)yRN 
N R / ( R - 1) < M I / ( M - N ) 0 (5) 

The dependence of A on M is be l l - shaped , s y m m e t r i c about a max imum at 
M = N / 2 , for which a = 0 and A = N. 

After forming the new t r i a l m a t r i x H"*", the next s tep is taken in 
accordance with Eq, (2) and the p r o c e s s repea ted , provided tha tN =V"̂ HV"*" 
is g r e a t e r than some p r e a s s i g n e d e. When the gradient is constant , it can 
be wr i t ten a s 

V = G . ( x - e ) . (6) 

If u is an e igenvector of HG with eigenvalue one, then it will be an e igen­
vec tor of H"*"G with eigenvalue one as well , s ince 

H+Gu = HGu + a HV + (V+ HGu) 

= u + a H V+ [VHG (1 - HG) u] 

= u . (7) 

F u r t h e r m o r e , when A = 0, 

H + G S = H_+ D = S , (8) 

so that S becomes another such e igenvector . After no m o r e than N steps 
(for which A = 0), H will equal G"^ and the following step will be to the exact 
ra in imum. 

The ent i re p rocedure is covar ian t under an a r b i t r a r y l inear coord i ­
nate t r ans fo rma t ion . Under these t r ans fo rmat ions of x, V t r a n s f o r m s a s a 
covar ian t vec tor , G t r a n s f o r m s as a covar ian t t ensor of 2nd rank, and H 
t r a n s f o r m s a s a con t ravar ian t t enso r of 2nd rank. The in t r ins ic c h a r a c t e r ­
i s t i cs of a pa r t i cu l a r hunting calculat ion a r e de te rmined by the eigenvalues 
of the mixed t ensor HG, and the components of the ini t ia l value of (x - | ) 
along the d i rec t ion of the cor responding e igenvec to rs . Since success ive 
s teps will b r ing HG c lo se r to unity, convergence will be rapidly acce l e ra t ing 
even when G itself is i r r e g u l a r . Cons t ra in t s of the form b • x = c can be 
improved by using an ini t ia l H which annuls b , i . e . , 

H • b = 0 

and choosing the ini t ia l vec tor x such that it sa t is f ies b • x = c. Then al l 
s teps taken will be pe rpend icu la r to b and this inner product will be con­
se rved . F o r example , if it is d e s i r e d to hold one component of x constant , 
a l l the e lements of H cor responding to that component a r e ini t ial ly se t equal 
to z e r o . 
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