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A_Sstract:. In t'his: nob;e,, we consider multilevel! preconditioning: of the reduced boundary ._ys-

_ems, w,hich. arise., in_ non-_verlapping domain: decomposition met, hods, It will: be shown that;

the resulting_ preconditioned/systems have condition numbers which are bounded in the c ase
of multilevel! spaces on, the whole domain and grow at most proportional to t'he number _t"
levels:in t'he:case of rnull;ilevel boundary spaces: without mul ti levelextensions in to the in teri_ r.

I. INTRODUCTION.

This paper dealswith the analysisof multilevelprecondi_ionersfor bomld;_rysysu_ms

whk_h arise in non-overlapping domain decomposition. Domain decomposit, ion algorit, hms

are important in t;hat _hey represent a basic tool for the development of effective algcM t.hms

for solving the discrete systems which', arise from the numerical approximathm _f ellipt, ic

beundary value problems on, computers with modern parallel computing enviromnent,_.

The effective preconditioning of the boundary system is off,en the most critical part; _f'

a domain decomposi.tion algorithm. L order to minimize the amount of interpro,:essor

cormnunication, dommns are chosen of quasi-uniform: size and shape. Some fi.mdament, al

work on t,he development of preconditioners for the boundary systems for problems in tw_

:! and three dimensions v_a_ given in _he series of papers [41]-[7]. In [4{]and [7] pre,:,m,tit.i,,n,_.rs

_ were developed such that the resulting preconditioned system had condition numb,_.rs which

"_ increased! at most like O(1.4- In(d/h) 2). Here d is the subdomain size and h is t.i_e,toe.sh ._ize.

In [6] a technique was provided vehichgave rise toa uniform preconditioner (in¢:tep,-.u_,tv.'nt:

of d and h) with only a moderate increase in computational effort.

The possibility of using a multilevel technique to develop preconditioners for t,he &retain

decomposition boundary systems has been known for a long time [9],[Ii]. In t.his ,_,,t.e.

we show _hat: the condition number of t;he resulting preconditioned boundary sysr, e.n_ is

bounded independently of the number of levels ,,r for _he canonical applic:ld(m <lefin,-.',I

from multilevel spaces on the whole domain. We also consider t;he case when m_lt, ilevel

extensions to the full domain are not available, e.g. tetrahedral mesh in _,hree.._par.ial

dimensions. In this case,, we show that the condition number grows at most, by (.)(.f).

" These resuks improve the existing conditioning bound of O(,f2) (h_.r,e., ] is t;he numl_,_.r _t'

revels) which follows easily from [9] (see. also, [,1]).
The _reduced boundary system iteration can be developed from more t,h_m _m,._p_>inl,

of view. One popular approach is t,o describe the reduction in terms of blo,'k ma.r,ric_-,s.
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Tllereduced!bound_y system:then correspond_to,i_lieSehur Complement. Unfortamately,

t,he matrix approach does noi_providemuch ,analyticalinformation.A,second approach is

based on the fact t_hat tile reduced' sys_'em is equivalen_ to, solving a variational problem

on _fle trace (wi_h: respect bo, _he union of _he Boundaries ofthe subdommns)of the finit, e.

element space. One then can apply multilevel t_eehniques ([1'],[9]) directty to this problem.

A third approach is to, considi_r the reduced _system as an. operator equa.tion on a su,bspace ,,

of _he original finite element space, W.e use tns approach: in this note, in part, icutm,, in

the case when mul_itevei: spaces on _he wtiole domain are available, For _his applica._,ion,

multilevel _heory [1i] on the whoIe d0main, gives rise m corresponding unifi)rm results f(_r
the related! reduced: systems.

The outline of _he remainder of the paper is: as follows. In Section 2; tile model problem

and the assumpt_ions on ttie fun space and subdomain boundary meshes are descri_)ed.

Tile reduced system, formulated as an operator on; a, lower dimensional subspa.ce of the

_)riginal approximation space; is descriBed!in Section 3_ Finally; condition nmnber b,mn_[s

i for precondit, ioned reduced systems are given in Section 4.

2. MOOEL PROBLEM AND MIESIt ASSUMPTIONS.

i Let f2 be a bounded: domain in Ra, for d = 2 or d= 3; with polygonal or polylleclral

b,mndary 0_2. We. consider the Dirichlet problem

£u = f in f_;
: (2.1)

u = O on 0f_,

where

£v=- -
:_ i,j=l

We shall piace some very weak _sumptions on the coet_neients _,bow_.. \,Ve. tirsl; a.ss_mae.

t,ha,r, (L,i is in L'_(fZ). We further assume that the matrix {(Zij (:c)} is unif'_rmly p_)sit.iv_.,
definite almost everywhere.

Let .4(., )denot, e the generalized Dirichlet form corresponding to (2,1 ), " e' 1..._

(2.2) A(v, W ) -- aij O,'_i O,T,j
i,j--I

This is defined for all v and w in the Sobolev space f-ft (f Z) (the space _)f dist.rihllt.i_m._ wit.h

:_quare-in_egrable first derivatives).

Wh shall consider the case of quasi-uniform finite element approximat, ion _)f t,he sol_r,i_m

of (2.1). To define the approximation spaces, we will first define the. im_iertying tn_>h

p_trtitioning. We m_sume t,hat the domain is first partitioned in_,o the. uni_)n _)[' t,riangtes

__r rectangles (i-Z = Ur;_,) of quasi-uniform size f-/ (in the case of t,hree. dimensi_ms. _,}_i._

partitioning is in terms of tetrahedra or bricks). Along with this partitioning, the.r__.i:5 a

fine par_it;ioning of tile region int,o similar structures (12 = tJr/, ) of size h. We. a.._s_m_.,r.hat,
t,lae fine partitioning aligns with the coarser in the sense that _he faces of _,he. _:();tt'sv?r_:;li1
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be writtenas a union offacesofthe finer,For aonvellience_we _shallsubsequentlyrefert;o

allofthe above;mesh elementsgeneric'_yas triangles.

Let F denoi:e,the union of the boundariesofthe coarsetriangles,F = U_c%_. Our goal
, i:_to analyzemul;tilevelpreconditionersforthe reduced systemsresui'tingfrom sulSd.Omain

, sol_esina domain,decomposi_ion_algorithm..Thus,we shallalwaysassume tliat tileIvraceof

_he fullapproximationspace F has a mul_ilevel:__structuze,We prowide_wo.typesofresult,s
depending on whetlieror not _he finemesh approximationspace (:on_) has a multilevel

structure.%'he case where _liefinegrid!does not c_._mefrom:a mullfilevel,_(.q1(.n..is

encountered!in threedimensional:domains with tet'rahedralpartitioningwhere se(!tu(m('es

of mul_ilevelpartitioningsare not available,_ contrast,itiseasy t,odefinem,uit,ilevell

partitioningof threedimensionalregionsbased on "brick,like"elements.

The boundary F inherits a partition from: {r_ } which consists of t,he. faces on F and will

be denoted {_-_}. we make the furtherrestrictionon the finegridmesliand assume,t,hat,

{r_ } resu'It;s from a multilevel sequence of partitioning / (..... f"or{K,k} witti _l(.m(.n:i,s ()f' siz(_.h,.
],i= 1.... , ,f with

co2_-_ < h.'k < c_2 -k.

Ker.e co and cl are positive constants, independent of or. We assume that _,liis rest:ri(:ti()n

correspondsto.the restrictionof a mesh of quasi,uniform size{r/,,/_} define(i(>n(.2.We

can take { r _ r ih,.]}to be { h}. We finallyassume that the meshes {vi

sense that each triangle in {ri{,,} can be written as a union of triangles ()f {rl; _.+_t. ()ur

two types of results will depend on whether or not it is assumed that tl_e triangle.s {vi,,/.:},
_(_= I, .... ,.T, form a nested sequence.

We assume that nodal finite element spaces -_k are defined with respect te _he. mesh

partitioning {_-_,/_}. For example, continuo_m piecewise linear functions can be use_l wh_n
t.hemeshes aredefinedinterms oftri,-mglesand tetrahedraintwo.and three,spat,icldimen-

sionsrespectively.The multilevelboundary spacesI/_are deKned to be the.I.rm'e(>f_,[_.

with respect to F, i.e, V_ is the _pace of functions defined on F which are tt_e. r_sr,ri,:t,i(m._

of those in _>fk The nested assumption imposed on the triangles {v'' I',_} implies l.hat, the

sequence of spaces {V_} are nested, i.e.,

l,i c V,x... c K_.

The Galerkin approximation _o solution of (2.I} is defined to be the uniq_e, function

_,/ _-'1<[.s satisfying

" ( 2.3 ) A( _j, '_ ) = (f, )p) for ali _# __M/.

He.r.e ( ., . ) denotes the inner product in £a(t2). Without loss of generalit, y, w_: may ass_un(:..

t.ha_, f _ M'/.

• 3. _,EDIJCED BOUNDAI1Y SYS'PE/vlS.

In this paper, we shall be concerm;d with ,tevetoping weil condit, ion(:d it,(:r:u;ive meI;h(>,[:_

involving reduced systems resulting from subspa.ce solves. [n the domain ([(e('(m_l),>._it,i()n

application in the next section, this reduction will be associated with :mbd(m_fin ._(>lv_-,.s.
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IIbwever,, in this seelion,,, we: shalli censfder t,llis l_echmque in_terms of an arlSi%rary subspace

We sh_i consider_wQ _ecliniques,O:ne comes _om preconditioning_ reduced:,system

and _he o_lier_om _he directdbvelopment of a_preconditioned!reduced system. In _erms

ofblock m_trices_preconditioning_he reduced!system__o_esponds _o the preconditioning

_heso-¢allediScliurComplement. A',l_erna_ively,l;liesecond:_ecliniqueusesa precondi_ioner B_

for the fidl'proMem directly 5efore reduction.

Equation (2'.3_) cmi_tSe.cast in terms of opera_ors by deft.rang the opera_or ,4_: A,/j _ M'I

by

Note that, (2!3_)can be _rest,a.tedi as _u',z = f.
The reduced! systems are defmedi in terms of a subspace _I ° c _'_/£g. Let Ag J- be die

orthogonal complement ef _I ° wi_ti_respect to the _{.,..) inner product,, i.e.,.

21_fm= {¢_ 7_¢j I .¢_¢,0 ) = @'for al_O_ A#°}.

The solution uj of (2:3;)can, be written u_ -- u ± + u°' where u ° satisfies

A_{u°',O) = (f,,O) for _! 0: e #i °.

Note tha_ u a = POu where po :/VIj _-+ M _ denotes the A'(.,.)orthogonal project,)r onto

A,f° . 1Yloreover, the remainder u m is in: _m and satisfies _he equation

(3.2:) A:u a- = f -- Au°.

Let O a- donote _.heL "2(fZ,) orthogonal, projection, enm the subspace A__-. The first, reduced

system is defined by considering, the operator Q±A. Note that QmA restricted to k,f _- is

a symmetric .and positive definite operator (with respect _o (., .)). Hence (3.2') can b,-:

reduced to the equation. (on .¢//m)

(3.3) Amum = Qa.(f_ Au0).

IIere Am = Qa-A. The preconditioning problem for ¢a.3)is define an operar, ot: S =_-•

Ago _-+ Ma- so, that the action of .B.'m is e_cient to compute and tl_e condi:d,m t:'.unll>.'r

If(B-LA m) is relatively small.

The second reduced system is defined in terms of a preconditione_ B for the flfll ope.rat,(w

.4. II:ere we assume that B is a symmetric (with respect _o (., .)) positive definite ()p_.:r;_t,_)r

on M.z and that

(3,4) _oA(v, v) <__A(BAv, v) <_AiA(v,v) for all, E
with At/k0 net very large. Let pm = (f_ po). We consider the alternative reduced :_yst,em

(3.5 ) _u a- - P a-BAu m = p a-B(f - Au" ).

For u,w E Ma-,

A(R,v, w)= ,4(BAy, w)

and hence the reduced system is symmetric on M m with respect U) the .4(.,. ) inner t)t'_)_I_:l..

Mc)reover,

(3.,_) AoA(v, u) <, X(_v, v) _ AtA(v, v) for all v E kgra,

where ,kt, Ao are the const:mts appearing in (3.4). The following proposition f(_lh)ws fi'¢;m

(3.4) and (3.6).



P_OPOSI_ION 3,1. T/_ereduced}system_/_'issymmetr/c en__" and positivede'hirewi:_i2

_e_,pe,:._;_o._ke .ai(",.")'/,-,n_-p,,od:u,_,_.. _to_,_v_, K(_), < _-!S_._)'.

4. _U&'r_EVEIi pI%:ECON, DITION,I_IG F O1% DOM_A_,I_I DEGO_iPOSITION BOUNDAR'i' ,_¥STEM_S.

En tls secion,we considerthe reduce@ system which resul_sfrom subdomain solvesin

* a domain decomposigion algorifhm:. Let the' mesh, stmlatt._..e 5e as discussed in Section 2:

Tile subspaee W e is defined: to, be the _.nctions 4 E ltJIj_ which va_tish on F. Note _,h_.t
functions in: __I_- are eompletely de_em_ined 5y their values on F.. For v #__9, we define

us to: be' the. _que' function, in' __IJ- whieli coincides; wish v on F.

Let {,#_ }:i denote the usual _nodal 5asiS for _he' £mi_eelemen_ boundary space Vk _md: set

(" = _,v.)H," FoRowing [9],. the first mugtitevel _preeondi$ioner for the reduced system .¢J-
on M j- is defined by

J

-- I_ - '

/¢=1 i

The sum over 'i is _en over _ boundary nodes of V_ on F.

The above pre¢ondi_ioner can be effectively used! in a preconditioned itera.tion [br :_olving

(3.3;). Ac_ual implementation avoids the ¢ompu_ion of Q d. as well as computation of l;he

values of 't_ off F. Kowever, iX does require the solution of problems on the subd,m_a.ins
on each step_ of the i_era_i0n. Before aaalyzing _his precondi_ioner, we sh;_ll discuss it,s

implementation in more detail.
Since the value of a function in k//_- is completely determined by its boun(t:_ry r,rm:e.

one implements the solution to a boundary itera.tion.. A typical preconditioned
iteration for (a.a)with preconditioner B '± requires computation of B_-.4_-',,' for ve,:t,)rs

o,0). _V(e &Ssllnl(e r.hn.r, we nr<..'_; _ M _- as weil'as B _- _pplied _o the right hand side of (" _

given a computational basis {8_} for Mj. The data for f - -4_'_,(_is represent.cd by ;_vect,,r
of values

(4:.:2) (/,o}) .- ....

which are assumed known at the start ortho iteration. The boundary values ,.)f B _-(_±( f -

Au ° ) are trivially computed from the quantities

= - , , ¢_.).(4.3) F_ = (Q.t.(f _ A.t,0),,t_[.) (f,,_.) A(.t, 0 ,_[.)= (f,,,_¢')- .4(,," "

" Kere ,/]_.denotes r,he function in M z which equals ,_[. on P _md vanishes _t all n,,,[e._ (,f :li/
hog on F. Note that for k = ,I, _5 coincides with 81z.for some l _n(i thus r,he. ,[_ant, iti,-.'_

in (4.3)a_e provided by (4.2). The quantities in (4.a,)for/ < ,I _e (:al(:ular, ed re,:_trsively

" using the fact that F_ (:_m be writ, ten _ a_simple (local) linear (:ombin_r,i,m ()[ t,he vn.h>'._

in{ F_.+t }. The evalua_,ion of the action of B -c applied to A_-v is similar. Given r.he value.cxt .nsum. This involve.._
of ,_ on F, we first (:ompute v everywhere by discrete h-armonic _ e "
_,l_esolution of subdomain problems. Next, the quantities {.4(,, 8{/)} n.r,_ _:{m_p,tt;_-.',[l>y

_pplying the "stiffness matrix" R)r M/. The boundazy values of B±A_,_ a.re _:_mq>,_t.,._[

from these quantities as discussed above in the case of B-LQL(f- -4_t_ ).
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We new' p_oeeed'_ wi_h. _he, an_siS ef _4_,1),andl _.st eensi:de= _he, ease when_ _he su,bspaees

_k form a, nes_ed_ seetuence;, i;.e.,,

i4._) g_, C _2 _C ...... C _f_.

In _his case, we wifl! apply _he. _heo_ in, [_]! and_ Propo_i_ion_ 3',_. To ,_ppl_ _,his _lieory, we "

introduce, the following re_az_i_ es_fima_e, for the= domain_ f_:'.

CONDO, ION; C'..I" We voi_ a_s_e tshat _here is: _am,a in, (:Oi_] such, _hat solutions u ¢.ff(2:2)

wi_h L = -A_ sa_iS_ the foEewing _e_:axi_y estimate,

(4.5): [[_'[[:'l!q-c_, _ C'l[fi[--l_-b_ "

Nere, [, [-t+_ is _he is _;he in_e_ol_ed norm between_/;2(_2,), and N-_(f_) (r,lie dun,1 of

E_l(f_')). Thus, we assume that, _he d0m_in_ resut_s in some etlip_,i!c re.gu,la.rii_.yfor ._m(_,)_.h
(:oeNcien_ problems (bug not neeessa_it_ Nfll el_p_ic vegut_i_y). _n_r,wo dimensi_ms, (-kS.)

holds for any po[ygonM domain including _ domain w,ii_h _ crack. Tliis ass_map_ion is

w.eM¢ since (4.5()may not hol_ for any a_ > 0_for the oriNnal; eetu'a_ion wi_la possi_>ly bad
coefficients.

When Condition C.1 l_oMs, we ecn: appl_ Theorem 4;.1:o£ [[] _o,get t;h_r,

, J'

k=l i:

provides a preeendi_ioner for A wi_h =esul_ing condition number [£(B.A) bounded in(le-

pendently of J. I_ere {'0_ }ii denotes _he nodM basis for the space 7P£_and _he sum over i in

(4.6) is _a_ken over ali in_eri0r _.andboundary nodes (on F)of t_he k'_h mesh. By Pr(_posit, ion

We nex_ show that,

(4.7) B-t',4J-w = _w - P_B;A:w for M1 w _ M ±.

Since the images of B '_- and P J- axe in/l;£ J-, ig suNees _o show _ha_, BJ-A_-'w = B:_4'w on ['.
Note trhat _heexpression (4.I) defining B:± defines an extension B -L"!_._ _ M _-. Clear[5_,

Bx'Q ± = B ,x'. By rearrangement, we may assume l:hag f,he function _;,[. is r,he _,ra.ce of 0_'/..

Then, on F,
J

k_-I i

J

: :
k--i i

Bot,h sums above axe _aken only on _he nodes of F since the additi(mn.t r,erm:_ (4.6) v;mish

on F. Thus, we have proved r,he following _heorem.
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TI{._OI_EI_I!4.i. A!ssume./Tha_ #/ie. spaces, {_ }'_,_e nes_edi amd/_f_a_ Condition: C ll l_oi_2s.

Then K _B¢'.44").is 15e,_nded mdependen_Iy of _,he n_ber oflevel_: I.

Before i_vest,i_a_ingl _lie case w.hen spaces: sat,iSo.ing _¢..¢), axe not, av.allaSl., we cc0nsiid_er

_he, fell_,aring, rema_.k. '

• NEIi¢_It_K 4. l: There axe a_pplica¢ions wtien_ _ =/z.j, forj,> _ and, no, ol,5_ious set of coa.rser

spaces {i_2_}i_for k = ]4..... ,,j/- I."a_e availalSre, get MT_ etenete _he fu.netions in, A'_ _uhicli
i

_e ortt_ogenal} w,i_Erespec_ re,(.,,.),_o. _0,. Note _tia_ in__Ike preconditioned a.lgori:t,hm ,

i. one only evalh_l:es l_he acl:ien_ of B:-t' on, f'm_.¢_i0ns of (_he,form, Q±w for w _ ._'_-t'0..Since.
,¢ ' M_-t. _-+._£_ a_d! A2_a" is, in_ertigle+ _,k =esiwic_edi l:o, MT,,'_5as axx, inverse (,Qd_)-t_. \'_re<

replace' _he lower _erms in I¢, 2)>5ya_ sol,e, on,, the j:"_li,level' a_d! e[efine

_2'-d, ' -i ~i

/._=j+ t! i

[{ere Q,_ denoges t,he (.,.) orthogonaJ pro_eetion ont_o, ff_j and .4¢," :_ _ :_f_is ,'[,.:fin,.,d1!,5;

(:.%,, = forac',.,w e

The analysis of (¢.8)is simit'ar _o. _he case consi:deredi a_bove. One sl_ows _ha._, P'J-B>'.4 =

- , on A_/_-for BIgiven,by

I

k--j,+ ]: " i

Note _hat _,his immediately implies f,ha_ B'-LA_-, is symmetMc wit& r_s..pe,"r,..,r,o X(. ,. ) a.n(l

hence B _- is symmetric wi_h respee_ _o (.,.). _en Condition C.1 lioMs, we (:n.n _pply

Theorem 4.1 of [I] _oget _h_t K(BA)is. bounded independently of.f. Ken(:e. Pr(>p,>sir,ion
3.I shows that, Ttieorem 4.1 holds for B;j- given by (4.8).

The _.bovedeW,ion of B x iscomputable, indeed,as we have _Ireadyol)u(.z(.,.[.iti._

only necessary t,.) compute B'_-vwhere v = q_'w, wE MT? ,a_d the dat_ {('w,"i'lT)}i ;u'e.

given. For such a v, .4[_Qj(Qm)-tv = ,_where X E IVIj,sa,_isfies

0)= 0) for 0'e fj.

The application of P-L is a,voided since we only need t,he boundary w_iue.s of B J-,:.

" \;Ve now _urn t_o_,he cruse when nested spaces on _,heflxlt domain are nor, a.v;_.ihd>h'.,i.,._.,

(4.4) fails to. hold'. For _he purpose of ,_m_iysis, we consider oper_r, or,u de.fin,-.'_Ion F. Th(-'

biline_ form on Vj corresponding _o. A ± is

,_(v,w) = (A_'vH,,wH) = A'(vhr, W.H.) for all v, ,v E Vz.

By (3.3),);,he boundary v_lues _,Tof ,r_0sat,isfy _he equation

(4.10) ,_(U, w )= </, ,v ) for ali w _ Vi.
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K_ere(:,, .)_d_no_es tdie' £ 2' i_e= p_,od,hct, on, F aadif7 is _tie, md%ue fun a_ion_ in, I_,_,sa,_ist_d_

As_usuakl,;8-"denoi_esamy extension,o__8,"in_o!-/_i.The-v_e elifid'oes;no_ d'epend!on,blie

dtoie.e o_ ex_ensi0n, sinee, ft-- A_,u,°' is', i_ AgT0_..De_e _]ie opera/mr a_l " Vi _-* VI b,y

_he_, (_.I}@))Ican, be, _ew,ri_en, s_av' = _' We' f-_,,s_ ceasi:db.r' tflie, case' wtien t9 is. (of 1,1n_tsiz_e

aadi B :'k is: d_finedl bF {¢,]i)_. ,i_.,t_hiS:¢ase_, we, d_fme 8," Va; _-+VI by

I

#=:li i:

_ is easy _o, chedt _ha_ b_:j; v' is, eq,u_l! t_o,_e, _aee, of, B;_A3-_v,_ and! _li_,_s,.If (,li,!,_,)_:

K_B:-L.4;_)'.
Se_ .¢;,(.,, .)_denote _he, fo_m._wN-_i_,'_esul_s; _om (2:2)) hue wi_b..,in_e#_t:i,,on._ on,l_ over die

su,b=egien r b. '17_is: _ve_ lmo_n, (¢f_, la:l!, [_]))_tia_a Ai:(v,,,v_j)is: _nig0m,=a} (ii>fi,.'pen&m,_
}

of _ amdlI)iequiva_gn_ _o,_]ie' squa,ve o_ gliehM_' SeSolgv sem.i_-no_m(ilo t_le,orb ). TI_s,
a(!v,. v ) is equiv_en* _o,

2t

II'-'II:,/=,FZ
i:

We new pi,ore: the following _eo_em..

TiIiEOI%E1Hi4<2'. The'condi._ion n,umber K_/Js,j,)_ = A'_B:_'.4J1"), is less _haa or eqrmt _,(_g'.I

where C is independ_m_ of J.1

i P_ooF: We will apply Theorem, 3',1_of [1] _o, t,he form, a(v:, v), wi_li: die space._ I_'],,i. =

, 1,... , g_. By Coeoll_ 3:1 of. [I], i_ su_ices _o, p=ove _he _heorem in _,l_e.ca,so of COllS_;1.1.'Lt;

i coe2_cien{, L.
i
, Following [1]_,we, de'e. operat_ors

]

{
_i (,s,_8,;,_)_= a(o,;_7,,), for _tl o_rr,_ V_. ._

Ii (2') q_" Vj _ V_ by• = <<,,7). "

(3:) r_" V,. _ V_ by

i



'i
,i

i

rcn is easy _e, show tJh_t _tie l'a_gest eigenva_e )i_ of, s;k.is: Bounded lbv a. consg_n,_ _i,mes

h,_ r.. We' =ex_ shove btia_t_£_ w E N, wi_l,_//</C,

the' ease w,hen_ t_he,su_Bdbmains a_e" of, ,,m_ size' for ¢on_eni:enee: .The. more. gene_a,lt a_se. is

simitbm B'ue0ases norms; w.li_h_d_pend!/_ {rel"_tedl to, l_he.norms; on,. _nig si:_e, dbma,ins }by

,= su.a_in:g)_.I

Pi=st,. w,e. no_e' _h_t

II

1 (4.I_3;), ''_ ( '_(_v'¢'):''2'
Let '_' d_eno_e _he ._-liammoni:e ex_ensi_n_ of v,. ii.e..,._ iS eqa_'_lie,o,v _,m F n.,ndi ,-:u,_,iSfie.sf,h,,'

l_omageneous equ'_i:_,m_

aC._.,e.),= 0,
for M_!_..ne_i0ns: in, *_ "_ai_.)iw.'hi'eh,vanish,on, F_, Then,,.

(4;._), l_(,',,¢):{:= _ o,_,,.¢,H,):{i< [_(',_,,a:- <,¢,_¢{!+ l_(,_,,¢,_e,),..

i W.e no_e t_hal]

l,<,_:,o,_.-_,.¢',_,);1!< cA_,OVv-.o,..#- ,_)t'/_I!¢,_,11i_,,,_;.,hol'd'_ for az_y _m:tion, Vg, @_._Y£:,wtLi':,.'.h,eq,u_'s v_z, on, F. Cheosing [IV _ in Se.,,:_,i_0n3; ,,_f[7],
it f(_itO_s _h_t

i Wi_houa_ lbss of, gene_Mi,_y,, we' ma,y assume. _ha_ ';'_. has zero, me,m va_ue _,m r;.}. L,,.'tdenote _he discrete, h_monic extension, ofv, in, _tie, space a_v. 13_is well knoxv_,___(,(,:f. [_':]:,[1J@J)

, iI}_ll:,_.a,< c II?,,ll,,/=,,_..a .
Writing ¢_= _,+ _ a_dl using. _!._eregu_l'a_i:ty gheory (el,. [Ia_]): _md Ttt,eorem 1.4.g.(_; ,,,f [_2'],

it is e_y _o:see that

I!o:l.+.,.a <__ll!aI_,+.,.a,,
hohJs fi,_r some @,< e < t/2: Applging _tm invez, seprope_y of [8];gives

_i Combining _,he ,_bo've es_im_es, ,a_ndiusing ;_standard: inverse property gives

I,<(v.H-,_,¢.,e)l< CC_,..z/h_)"_z7_/'_I"11,,/..,.;,_;,I¢1,.,_;,(_.1,5)

' ' " m ' ' , , ,_ _r , 11_ '



We, liave,usedibhe,P_inea_4,imeq!mJi'_yfo_l_he,lhsl_es_imabe'_bov.e.IJe,_epll,ueet,he.aot,m, Iby
_he'sem.i_norm,.

We' _e,_, es_imal_e _l,_e,se¢ondi _erm_ om t_he righ_ ha_d! side, of_ (i4L,I,_),. Tlhe suSdi0m._,i,l_:_

hax, e gipschi_a cen_int_ous_ bound_ies, _dt tience i_ follbw, s,t_em_ [t11,'3i]I_lk,at_

IIII
hol_tS for aay e in, [.Ol,]J/'2]!.l_ez,e, 0.{0_,d_no_es; lJhe,ouC_.w,a_dtpoim_ing norm,Mi d_.i_atfiv(e con, "

ae_. _tmsi,

I)1a_ ,'_,, t, ,,
I a,r%,

(¢.,_6;) <,C(./t,_/h,,,)_%/'li%,/.,,,o..j_,I!¢ll}o.a,
< _1!tt.,_/bv),_1_,,[w''_'.v. , , . . .

Com,bini_g. (,¢,.l_¢)_._¢,.1_5j,,,_¢.,1_6;)),.summing ,a_dl _ppl_in:g _he S¢,h_a_z, i_eq_,_l,ii_y g.ikms

Ohm>.3,_. Tlien,,

(_.z_) I:(;_- @_)',,.,I;_j+/_'_I:(,_'- Q_)_,IL,,_,''= -< /4'II,,,':.,:,_._,= .

P()r rE Vj,

(¢._s:), _<C_h,_"II;(,£ "' "
<_C'h,.¢_v.,_,v,,_,)_= C'ti.,_._(,v,v),.

By _,ming,',a_,in ve_se inequaJit, y ,,_dl (:¢,118:)_we see _tia_

ilq,_v r,,, ,,2 _- _,,HIl_,/,_.,r< c'h.i:,_IIq'_.,,- Q'_,"_.I_
2 :2' ) ,< c/_,_,';(ll:_q,,- _),,I_+ I1:(_-Q'_)',,H,II_._,.< c'.,(,,..,,).

B,_, (¢I7)implies _hat,

liQ'_,v_.I:_,/..,;r< c.¢(,v_..,vH),= C:_(._,,.,,),

which .implies _h_,

(4_.1_9') q(qkv, q)_v)<_ C'_v, v) for a lli v E Vz,

1,(,)_



Cir % C',T v_'lkere C' is:ind_pend_n_of,"37.
Tl_e fm,at! eendi_ien, ,_ttt,i!eh,must be _eri_edl l_efere' appl_ii, x_ ']]'l_.eomem,3:..I,'of [_11]is _,[_..a_r,

s_t_isfies;

<....Oar,,v,))<c eo ,
II I1 ,'

" [[_,! ! ,
Tlte, ineqta_t_ies: in, (4_.28)))f0llb_ immedi_hely '_-om, q_l_eorem, 3;..1Jof, [_z!l!.Tt_em;em 3;.:L_,)[_[II]:

imphes 1i_ fltie ¢ondi;_iem, mumber of _lke,olpera_t_of !__,_=l, r_)i_,z = /Jo.j_.is Ib,0m_di,.,d!Iby a_
eons_a_ t_imes:37. 'IP,t.iiS:¢ompi_es t_t_.e,proof,' oi{ t_lke._t,ieorem,..

_EI_t!A;I_'K4_.2':: /g,m_bgous _o, l_ema_.k 4L.1J,.t_]Xe_e._re, agpfi:¢_i'oas w,l&en,._ /i.i for, ./, >. i1
I _ I "1 I' ],_ ,_md[ no, olbv.iOus set of ¢oaamer spate_]_ {IK#}i for'/_= li,...... ,,j/- lJ are, avmlalbK. ':FI_(:pr(,.'_dous

tiSeorem, s_il_.!_emai_s: w_l_:d!i_w.e d'efime/J, lby

J;

Compu_aN0nMl_; one 15uil_d_:t_lie,sparse, sti_ess m.atMx eo_respondi.vl_g, t_o.'_r' '!Jl_i:,_i,nv_t:v_.,s

(,.t_in_ _fine g_id! ex'_ensions: o_eeavse, g,ri:d!_ou_d',ary d',a_a.. _lle' _e,su,l_in_ syst_em_[ia,_ tr_.,[i_t_i,_e[_r

few t_nl_no_ns: and! east ge, sol_edl lsy dil, eet_m etliod_:, we, lt_ave,r_ot_tbeen_alblt_,._o, Mio,v,,_h.a;t;iit_

suffi:ees _o, _ept!aee. _l,ie fi_s_ _e_m_in__.25)) t_y _lke ,a_egous, _erm, eon,ain,Egrom,(i4.8): _l_,,a,_,

w,i_tiou_ mul_il_vell spates om _he.,full! d_main,,, i_ may mo_ su_fifiee'_o, use _tte _,_,)_sesaha,trios

A;j in__tie, multilevel! l_eundh_y i_era_f,ien,.
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