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DOMAIN DECOMPOSITION BOUNDARY SYSTEMS

A MULTILEVEL PRECONDITIONER FOR
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AbBstract. In this note, we consider multilevel preconditioning of the reduced boundary sys-
tems which' arise in' non-overlapping domain decompaosition methods. It will be shown that
the resulting precanditioned 'systems: have condition numbers which are bounded in the case
of multilevel spaces on: the whole domain and grow at most proportional to the number of
levelsin the:case of multilevel boundary spaces without multilevel extensions into the interior.

1. INTRODUCTION.

This paper deals with the analysis of multilevel preconditioners for boundary systems
whivh arise in non-overlapping domain decomposition. Domain decomposition algorithms
are important in that they represent a basic tool for the development of effective algorithms
for solving the discrete systems which: arise from the numerical approximation of elliptic
beundary value problems on computers with modern parallel computing environments.

The effective preconditioning of the boundary system is offen the most critical part of
a domain decomposition algorithm. In order to minimize the amount of interprocessor
communication, domains are chosen of quasi-uniform size and shape. Some fundamental
work on the development of preconditioners for the boundary systems for problems in two
and three dimensions was given in the series of papers {4]-[7]. In [4] and [7], preconditioners
were developed such that the resulting preconditioned system had condition numbers which
increased at most like O(1+1n(d/h)?). Here d is the subdomain size and £ is the mesh size.
In [6] a technique was provided which gave rise to a uniform preconditioner (independent
of d and h) with only a moderate increase in computational effort.

The possibility of using a multilevel technique to develop preconditioners for the doman
decomposition boundary systems has been known for a long time [9],[11]. In this aote.
we show that the condition number of the resulting preconditioned boundary system is
bounded independently of the number of levels J for the canonical application defined
from multilevel spaces on the whole domain. We also consider the case when multilevel
extensions to the full domain are not available, e.g. tetrahedral mesh in three spatial
dimensions. In this case, we show that the condition number grows at most by (J(.J).
These results improve the existing conditioning bound of O(J?) (here, J is the number of
levels) which follows easily from [9] (see also, [11})).

The reduced boundary system iteration can be developed from more than one pomt
of view. One popular approach is to describe the reduction in terms of block matrices.
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The reduced boundary system then corresponds:to the Schur Complement. Unfortunately,
the matrix approach does not provide much analytical information. A second approach is
based on the fact that the reduced system is equivalent to solving a variational problem
on the trace (with respect to the union of the boundaries of the subdomains) of the finite
element space. One then can apply multilevel techniques ([1],[9]) directly to this problem.
A third approach is to consider the reduced system as an operator equation on a subspace
of the original finite element space. We use this approach in this note, in particular, in
the case when multilevel spaces on the whole domain are available. For this application,
multilevel theory [1] on the whole domain gives rise to corresponding uniform results for
the related reduced systems. '

The outline of the remainder of the paper is as follows.. In Section 2, the model problem
and the assumptions en the full space and subdomain boundary meshes are described.
The reduced system, formulated as an operator on a lower dimensional subspace of the
original approximation space, is described in Section 3. Finally, condition number bounds
for preconditioned reduced systems are given in Section 4.

2. MODEL PROBLEM AND MESH ASSUMPTIONS.

Let @ be a bounded domain in R%, for d = 2 or d = 3, with polygonal or polyhedral
boundary 9€). We consider the Dirichlet problem

_ Lu=f in 2,
(2.1)
u=0 on 0,
where ,
: a ov
Ly = — i;{ 5;:(04']‘ ‘8;;)

We shall place some very weak assumptions on the coefficients above. We first assnme
that «,, is in L>(Q). We further assume that the matrix {a;;(z)} is numformly positive
definite almost everywhere.

Let A(-,-) denote the generalized Dirichlet form corresponding to (2.1), i.e.,

d
Alv,w) = Z v O Ow dz,

TGy m—
Q Y 5-’1:1' 5.'L'j

,—\
(R
[3¥]

N

Hy=1

This is defined for all v and w in the Sobolev space H!(Q) (the space of distributions with
square-integrable first derivatives).

We shall consider the case of quasi-uniform finite element approximation of the solution
of (2.1). To define the approximation spaces, we will first define the underlving mesh
partitioning. We assume that the domain is first partitioned into the union of triangles
or rectangles (2 = Uty ) of quasi-uniform size H (in the case of three dimensions. this
partitioning is in terms of tetrahedra or bricks). Along with this partitioning, there is a
fine partitioning of the region into similar structures (Q = Ut} ) of size h. We assue that
the fine partitioning aligns with the coarser in the sense that the faces of the coarser can
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be written as a union of faces of the finer. For convenience, we shall subsequently refer to
all of the abov: mesh elements generically as triangles.

Let [ denote the union of the boundaries of the coarse triangles, [' = U;d7};. Our goal
is to analyze multilevel preconditioners for the reduced systems resulting from subdomain
solves in a domain decomposition algorithm. Thus, we shall always assume that the trace of
the full approximation space I has a multilevel structure. We provide two types of results
depending on whether or not the fine mesh approximation space (on ) has a multilevel
structure.. The case where the fine grid does not cume from a multilevel sequence is
encountered in three dimensional domains with tetrahedral partitioning where sequences
of multilevel partitionings are not available. In contrast, it is easy to define multilevel
partitioning of three dimensional regions based on “brick-like” elements.

The boundary I inherits a partition from {7}} which consists of the faces on T and will
be denoted {7i}. We make the further restriction on the fine grid mesh and assume that
{r}} results from a multilevel sequence of partitioning {Tli i} with elements of size by for
h=1,...,J with

C()Qr.k S hk S C12-‘k.

Here ¢g and ¢, are positive constants, independent of J. We assume that this restriction
corresponds to the restriction of a mesh of quasi-uniform size {r; ,} defined on Q. We
can take {7} ;} to be {r;}. We finally assume that the meshes {7} .} are nested in the
sense that each triangle in {T’ﬁk} can be written as a union of triangles of {7} ,,,}. Owr
two types of results will depend on whether or not it is assumed that the triangles {7} .},
k=1,...,.71, form a nested sequence.

We assume that nodal finite element spaces My are defined with respect to the mesh
partitioning { 7',';’ i ). For example, continuous piccewise linear functions can be used when
the meshes are defined in terms of triangles and tetrahedra in two-and three spatial dimen-
sions respectively. The multilevel boundary spaces Vi are defined to be the trace of A4y
with respect to [, i.e. Vj is the space of functions defined on I' which are the restrictions
of those in My. The nested assumption imposed on the triangles {7} ,} implies that the
sequence of spaces {V}} are nested, i.e.,

VicVy--CVy

The Galerkin approximation to solution of (2.1) is defined to be the unique function
wy & My satisfying

(2.3) Alug, ) = (f,) for all v € M.

Here (-, ) denotes the inner product in L*(Q). Without loss of generality, we may assune
that f & M.

3. REDUCED BOUNDARY SYSTEMS.

In this paper, we shall be concerned with developing well conditioned iterative methods
involving reduced systems resulting from subspace solves. In the domain decomposition
application in the next section, this reduction will be associated with subdomam solves.



However, in this section,. we:shall consider this technique in terms of an arbitrary subspace
MY C M.

We shall consider two technigues. One comes from preconditioning a reduced system
and the other from the direct development of a preconditioned reduced system. In terms
of block matrices, preconditioning the reduced system: corresponds to the preconditioning
the so-called Schur Complement. Alternatively, the second technique-uses a preconditioner
for the full problem directly before reduction.

Equation (2.3) can be cast in terms of operators by defining the operator 4 : M ; = M,
by
(3.1) (Aig,8) = A(¢,8) for all ¢,8 € M.

Note that (2.3) can be restated as du ;= f.

The reduced systems are defined in terms of a subspace MY C M. Let M* be the

orthogonal complement of M° with respect to the A(:,-) inner product, i.e.,

Mt ={pe M;|4¢,8) =0for all € M},
The solution w; of (2.3) can be written u; = ut + u® where u’ satisfies
A(u®,8) = (f,8) for all 8 € M.
Note that u® = P% where P : M; — M? denotes the A4(-, ) orthogonal projector onto
M°. Moreover, the remainder v+ is in M'* and satisfies the equation
(3.2) Aut = f - A,

Let Q4 denote the L?(2) orthogonal projection onto the subspace M'+. The first reduced
system is defined by considering the operator @+ 4. Note that @+ 4 restricted to ML is
a symmetric and positive definite operator (with respect to (-,-)). Hence (3.2) can be
reduced to the equation. (on M*)

(3.3) Atut = QH(f — Au”).

Here 4+ = Q< 4. The preconditioning problem for (3.3) is to define an operator B+
M? — M+ so that the action of B is efficient to compute and the condition rimber
K(B+ AL is relatively small.

The second reduced system is defined in terms of a preconditioner B for the full operator
4. Here we assume that B is a symmetric (with respect to (-, -)) positive definite operator
on M ; and that

(3.4) MA(v,v) < A(BAv,v) < Ay A(v,v) for all v € M,
with A, /Mg not very large. Let P+ = (I — P%). We consider the alternative reduced system
(3.5) Rut = P+*BAut = PLB(f — Au").

For v,w € M+,
A(Rv,w) = A(BAv,w)
and hence the reduced system is symmetric on M+ with respect to the A(-, ) inner prodiet.
Moreover,
(3.8) Ao A(v,v) < A( R'u,'u) < A A(v,v) for all v € M+,

where \|, A\ are the constants appearing in (3.4). The following proposition follows from
(3.4) and (3.6).




ProprosITION 3.1. The reduced system: Ris symmetric on M2 and positive definite with
respect to the A(-,-) inner product. Moreover K(R) < K(BA).

4. MULTILEVEL PRECONDITIONING FOR DOMAIN DECOMPOSITION BOUNDARY SYSTEMS.

In this section, we consider the reduced system which results from subdomain solves in
a domain decomposition algorithm. Let the mesh structure be as discussed in Section 2.
The subspace M?° is defined to be the functions ¢ € M which vanish on T'. Note that
functions in ML are completely determined by their values on I'. Forv € V, we define
vy to be the unique function in' M L which coincides with v on: T'. ‘

Let {d)ih denote the usual nodal basis for the finite element boundary space Vi and set
WY = (k). Following [9], the first multilevel preconditioner for the reduced system 4+
on M+ is defined by |

J
(4.1) Btov = Z lii"i'Z(u, d:,’;,) l[)i for all v & M+
k=1 1

The sum over i is taken over all boundary nodes of Vi on T

The above preconditioner can be effectively used in a preconditioned iteration for solving
(3.3). Actual implementation avoids the computation of @ as well as computation of the
values of d;‘k off . However, it does require the solution of problems on the subdomains
on each step of the iteration. Before analyzing this preconditioner, we shall discuss its
implementation in more detail.

Since the value of a function in M+ is completely determined by its boundary trace,
one implements the solution to (3.3) as a houndary iteration. A typical precondifioned
iteration for (3.3) with preconditioner B requires computation of Bl Aty for vectors
v & M+ as well as B+ applied to the right hand gide of (3.3). We assume that we are
siven a computational basis {6} for M ;. The data for f — 4u® is represented by a vector
of values

(4.2) (f,85) — A(u’,6), i=12,...

which are assumed known at the start of the iteration. The boundary values of BLQ+(f -
Au") are trivially computed from the quantities

(4.3) Fo=(Q*(f — 4u”), k) = (f, GL) — A(u® ph) = (Fod) — Al ).

Here i ,, denotes the function in M ; which equals iﬁi on [ and vanishes at all nodes of AL,
not on [. Note that for k = J, i’ coincides with #, for some [ and thus the (rantities
in (4.3) are provided by (4.2). The quantities in (4.3) for k < J are caleulated recursively
nsing the fact that F} can be written as a simple (local) linear combination of the values
in {F} +1}- The evaluation of the action of B+ applied to Atv is similar. Given the value
of v on [, we first compute v everywhere by discrete harmonic extension. This involves
the solution of subdomain problems. Next, the quantities {A(v,6)} are computed by
applying the “stiffness matrix” for M ;. The boundary values of BLAte are computed
from these quantities as discussed above in the case of BXQ+(f — Au").
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We now proceed with: the analysis of (4.1) and first consider the case when the subspaces
My, form: a nested sequence, i.e.,. ‘

(4.4) My C My C ...C My.

In this case, we will apply the theory in [1] and Proposition: 3.1. To apply this theory, we
introduce the following regularity estimate for the domain: @.

ConprmioN C.1: We will assume that there is an @ in (0, 1] such that solutions u of (2.1)
with L = —A satisfy the following regularity estimate;

(4.5) Follysa < C Al

Here |[-||_,,, is the is the interpolated norm between L2(Q) and H~-'(Q) (the dual of
H!(Q)). Thus, we assume that the domain results in some elliptic regularity for smooth
coeflicient problems (but not necessarnily full elliptic regularity). In two dimensions, (4.3)
holds for any polygonal demain including a domain with a crack. This assumption is
weak since (4.5) may not hold for any @ > 0 for the original equation with possibly bad
coefficients. ‘

When Condition C.1 holds, we can apply Theorem 4.1 of [1] to get that

\ . , J
(4.6) Bo=3 K™Y (v,6}) 6}
k=1 1.

provides a preconditioner for A with resulting condition number K(BA4) bounded inde-
pendently of J. Here {#},}; denotes the nodal basis for the space Mj and the sum over i in
(4.6) is taken over all interior and boundary nodes (on I') of the %’th mesh. By Proposition
3.1, K(R) < K(BA).

We next show that

(4.7) B+4*w = Rw = PtBAw  for all w € M*.

Since the images of B+ and P+ are in M*, it suffices to show that B+ 44w = Bdw on [.
Note that the expression (4.1) defining B+ defines an extension B+ : M — M L. Clearly,
B+Q+ = B*. By rearrangement, we may assume that the function ¢} is the trace of 8},
Then, on I,

J
BrAtw =Bltaw =Y hi"Y (Aw,¢}) b}
k=1 i

J
hi Z(A‘“Ja #,) 6}, = BAw.
k=1 i

Both sums above are taken only on the nodes of I' since the additional terms (4.6) vanish
on I'. Thus, we have proved the following theorem.
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THEOREM 4.1. Assume that the spaces {Mj} are nested and that Condition C.I ho]ds
Then K(B+ALl) is bounded independently of the number of levels J.

Before investigating the case when spaces safblsfymg (4.4) are not available, we umaulm
the following remark. '
REMARK 4.1: There are applications when B = fi; for 5 > 1 and no obvious set of coarser
spaces {Mj) for k = 1,... ,j — 1 ave available. Let Mj- denote the functions in M which
are orthogonal with respect to (-,-) to M". Note that in the preconditioned algorithm |
one only evaluates the action of B+ on functions of the form @1w for w € M. Since
A ML — MG and At is invertible, @+ restricted to Mj- has an inverse (@+)~!. We
replace the lower terms in (4.1) by a solve on the j'th level and define

(4.8) Btv = P+ 4—1@ (@"L)— v+ Z hz d‘Z(U 1/);.» ll)k for all v & M+,
R=g41 i

Here @; denotes the (-, ) orthogenal projection onto M and 4 : M, — M, is defined by
(4jv,w) = Alvyw)  for all v,w € M.

The analysis of (4.8) is similar to the case considered above. One shows that PLBA4 =
Bt A+ on M+ for B given by

(4.9) By = A7'Q5v + Z h?*dzv )

k=g 1

Note that this immediately implies that B+A* is symmetric with respect to A(- ) and
hence B+ is symmetric with respect to (+,+). When Condition C.1 holds, we can apply
Theorem 4.1 of {1] to get that K(BA) is bounded independently of J. Hence. Proposition
3.1 shows that Theorem 4.1 holds for B+ given by (4.8).

The above definition of Bt is computable. Indeed, as we have already observed, it is
only necessary to compute BLv where v = Qtw, w € M- and the data {(w,¢4)}, are
given. For such a v, A;l Q;(Q*%)"'v = x where y € M; satisfles

Alx,8) = (w, ) for all ¢ € M;.

The application of P+ is avoided since we only need the boundary values of Btu.

We now turn to the case when nested spaces on the full domain are not available, 1.,
(4.4) fails to hold. For the purpese of analysis, we consider operators defined on [ The
bilinear form on V corresponding to At is

(v, w) = (A.J'?JH.,'ZUH) = Alvyg,wpg) for all v, w & V.

By (3.3), the boundary values U of u" satisfy the equation

(4.10) s(U,w) = <f, 7u> for all w & ¥



Here (-, -) denotes the L? inner product on I' and f is the unique function in V) satistying
< f9)> = (f— Au®,0) forall e ¥y

As usual,, & denot‘es any extension of @ inte: M. The value of f does not depend on the
clioice of extension since f — Au? is in M. Define the operator sy = Vs V) by

(squ,w) = s(vyw)  for all v, w & V.

Then: (4.10) can be rewrittens s v = fl. We: first consider the case when H is. of unit size
and B is defined by (4.1). I this: case, we define b: Wy — ¥V by

(4.12) b = ;s f“, (v, k) v forallve V.
, K )X

K= L

It is easy to check that bsy v is equal to the trace of BLAY vy and thus, K(ls,) =
K(B*AtL).

Let Aj(-,-) denote the form: which results. from: (2.2)) but with integration only over fle
subregion 7§, It is well known (cf. [3], [4]) that Aj;(vg,vy) is uniformly (independent
of H and J) equivalent to the square of the half Sobolev semi-norm: ({v], Jaomi ) Thus,

s(v,v) 18 equivalent to

w2 \ 2
lolly /2 = Z ,”]2‘1/2-,1%;; g

We now prove the following theorem..

THEOREM 4.2. The conditior number K(bsy) = K(BLAL) is less than or equal to C'.J
where C' is independent of J. '

PROOI‘ We will apply Theorem 3.1 of [1] to the form s(v,v) with the spaces Vi, + =
,J. By Corollary 3.1 of [1.]., it guffices to prove the theorem in the case of constant
u)(’fﬁuenfh L.
Following [1], we define operators

(1) sp: Vk — Vi by'
(sx8,m) = 3(f,n)  for all ,n € Vi.

(2) qx : Vi— Vi b
(qrb,m) = (6.n) .
(3) 7 Vi Vi by
TRV = hi"d Z <v, zbi) bl



S

It is easy to show that the langest eigenvalue Ay of gk i3 bounded by a constant times
h'xi[”. We next show that for v € ¥, with I/ < ¥,

(4.12), X lswolla < C(Hw/Bu)P® 3wy v)

holds: for some € > Q. Here |||, denotes the L? norm om I. We give this argument in
the case when the subdomains are of unit size for convenience. The more general case is
similar but uses norms which dbppnd* H (related to the norms on umit size domains by
scaling).

First, we note that

- | | (v, )"
(4.13) (T o 4 ( el )

Let v denote the A-harmonic extension of v, e, ¥ i3 equal to v on [ and satisfies the
llomogeneous equation:

A(0,0)=0
for alll functions in: Hj(Q) which vanish on I'.. Then,

(4.14) [3(v,. @) = [Alvm, br)| < [Alve — U, o4 AT, o)l

We note that

Ai(vg — v, ¢m)| < CALW — 5.0 — 5)V/*

bl -

holds for any function: W e M which equals v on I'. Choosing T as in Section 3 of (7,
it follows that

Ai(vg — 0, 0m)| < Ch||B ‘IH.( mis H(ISH“l T

Without loss of generality, we may assume that ogy has zero mean value on rj,. Let
denote the discrete harmonic extension of v in the space M. Tt is well known (cf. [7], [10])
that
vw: ‘<lv(',4vl~"b

“‘)“»1,7-;;,{ <C ”‘"”»v/zﬁr”j
Writing % = #' + ¥ and! using the regularity theory (cf. [14]) and Theorem 1.4.4.6 of [12].
it 15 eagy to see that

llfﬁ‘“‘l’ﬁ-(z,r;l‘ -<- C ||;'5||)1‘+r:,r;'i: )

holds for some 0 < e < 1/2. Applying the inverse property of (8] gives

70 oge, s, < CRINON 0 < ChE Hlolly

1,7y 2,97

Combining the above estimates and using a standard inverse property gives
—1/2
[ Ailvr =0, )l < Clha/h) Ry ol g e, 16100

(4.15) ¢ -1/
<Ch]/h{ quf‘[r' [lp“«)'l'“ '

9.



We have used! the Poincaré inequality for the last estimate above to replace the normy by
the semi-norm.

We' next estimate the second term on the right hand! side of (4.14). The subdomaing
have Lipschitz continuous: boundaries and hence it follows: from [13] that

gl ,
anll < e|loflyjzse, mis
‘ |-z, oy, ST

holds for any ¢ in [0},1/2]. Here @/@h denotes the outward pointing normall derivative on:

Oy, Thus,
o\
(4,6, ) = |<(,ah ¢>6W

—1 2 | bl
< Chu /) B M* I*uu@;liil,,,,;}{ i, -

L “ﬂ’H.u/zw an I|¢‘|§1\/2’—W*}},

II’

(4.16)

Combining (4.14);. (4.15), (4.16), summing and applying the Schwarz inequality gives.
st @) < €l /) ™ 5w, 0)* [l
This completes the proof of (4.12) whicl implies. (3.5) of [1].

We next show that (3:1) of [1] is satisfied.. Let Q) denote the L*( ) orthezonal projection
onto M. Then,

o ) . . -
(4.17) T = @uwllg + BRI - @u)wll g < B lwlli g -
Forv € V¥,

I(F = ge)ell < I — @ v}
(4.18), < Clhg " II = Qi)vallg, + F 1T — Qu)vnll} o)
< Chpdlvg, v )= Chys(v,v).

By using an inverse inequality and (4.18), we see that
laww = Quomlls pr < ChE laxw — Quvally
< C'li;l(tn(‘q,y - [)’u”{i +||(F - Q’k)u[g]|‘é) < C's(e,v).
But, (4.17) implies that
H'Qik””‘ﬂ“i/g,r < CAlvg,vg)= Cs(v,v)
which implies that
(4.19) s(qru,qu) < Cylv,v) for all v e V.
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3

Combining (4.18), (4.19) and Theorem 1 of [9]| gives: that (3:1) of [1] holds with constant
Cy < C'J where C'is independent of J.

The final condition which must be verified before applying Theorem 3.1 of (1] is that ry
sabisfies

n2 A
(4.20) Cll?;\lm - < (rgvyol < G“—w)-gn—hl for alll v € Vy.
- K

The' inequalities: in: (4.20) follow immediately from Theorem 3.1 of [2]. Theorem 3.1 of [1]
implies that the condition number of the operator (zz,f___v )y = By is bounded by o
constant times. J.. This: completes the proof of the theorem.. '
REMARK 4.2: Analogous to Remark 4.1, there are applications when H = fA; for j > 1
and! no obvious. set of coarser spaces {Vi ) for A= 1,... ,j— 1 are available. The previous
theorem: stilll remains: valid iff we define b by

- N '
(4.21) bo=s7lgu+ 3 KUY (wh) g forallve Wy
Ié:j,-p]_k b

Computationallly, one builds: the sparse stiffness matrix corresponding tio. s;. This imvolves
doing fine grid extensions of coarse grid boundary data. The resulting system: has velatively
few unknowns and can be solved by direct methods. We have not been alble to show that it
suffices to replace the first term in (4.21) by the analogous term: coming fromy (4.8). Thus,
without multilevel spaces o the full domain, it may not suffice to use the connse solution
A in the multilevel boundary iteration.
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