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Abstract

We investigate the infinite dimensional algebras we have previously introduced, which
involve trigonometric functions in their structure constants. We find a realization for
them which provides a basis-independent formulation, identified with the algebra of sine
brackets. A special family of them. the cyclotomic ones, contain SU(N} as invariant
subalgebras. In this basis, it is evident by inspection that the aigebra of SU{oo} is equiv-
alent to the centerless algebra of SDiffg on two-dimensional manifolds. Gauge theories of
SU(oo) are thus simply reformulated in terms of surface (sheet) coordinates. Spacetime-
independent configurations of their gauge fields describe strings through the quadratic

Schild action.

Recently, we have introduced infinite-dimensional algebras involving trigonometric

functions in their structure constants!l. We shall discuss some of their intriguing properties
and relevance to large N and string physics. The generators of the algebras we have
introduced are indexed by 2-vectors m = (m;,m3). The components of these vectors do
not have to be integers to satisfy the Jacobi identities, but we take them to be integral in
what follows for the sake of interpreting them as Fourier modes:

[Km, Kn] = rsin k(m X n) Km+n +a-m 61n+n.0 , (1)

where m x n = myny — myn;, r and k are arbitrary (complex) constants, and a is an

arbitrary 2-vector .

These algebras include as a special case that of SDiffo(T?), the infinitesimal area-

preserving diffeomorphisms of the torus®3, whick emerges as a residual symmetry of the
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membrane when gauge-fixed on the light-cone. Taking r = 1/k in the limit £ — 0 yields
the algebra
[Lm, Ln] = (mx n)Lm+n +a-m fming - (2)

The representation theory of these algebras is an interesting open problem.
The supersymmetric extension of our algebra (1) is
[Km, Kn] = r sin k(m X n} Km+n,

[Km, Fn] =r Sin k(m X n) Fm+n,

{Fm, Fn} = s cosk(m x n) Kmy4n, (3)
where the Fy, are fermionic generators. The Jacobi identity which involves two F’s and
one K dictates that no non-trivial center be present. If a pure Grassmann c-number ¢ were
available, however, then there might be a center ea-m 8mn o in the [Km, Fy| = —[Kn, Fm]

commutator, as occurs in other algebras®5l,

Choosing s = 1, r = 1/k, and taking the & — O limit yields the supersymmetric

generalization of (3) given in ref.[6]:

(L, Ln] = M X 0)Lmin s  [Lm:Gn] = (M x0)Gmin, {GmGn}=Lmin. (4)

The algebra (2) is, in a particular basis optimal for the torus, that of the generic
area-preserving (symplectic) reparameterizations of a 2-surface. Taking z and p to be local
(commuting) coordinates for the surface, and f and g to be differentiable functions of them,
a basis-independent realization for the generators of the centerless algebra is?:

afa dfa

Ly= 323p  3pdz = [Ly,Lgl=Lysgy, (Lygl={f.9}, (5)

where
= 9f9g dfdg

the Poisson bracket of classical phase-space. The generator L; transforms (z,p) to (z —
3f/3p , p+8j/3z). Infinitesimally, this is a canonical transformation?} which preserves
the phasc-space area element dzdp. For a small patch of 2-surface, ve may expand the
functions f(z,p) in any coordinate basis we choose. If the surface is a torus, we shall

prefer a globally adequate coordinate system, s::ch as exp(inz + imp); if it is a sphere,

spherical harmonics; if it is a plane, powers; and so on. Nevertheless, for the infinitesimal



transformations effected by the algebra generators in a patch, any coordinate basis will do,
and may be transformed to other ones. (When such transformations are singular, however,

a number of generators may be lost, leading to a subalgebra, as noted by Pope and Stelle,

and Hoppe?l.)

Choosing the torus basis, f = —e{miz+m2p) and g = —¢ilmz+n2p) 0 < z,p < 2,
yields
Ly = Lim, mg) = —1€ ™) (1,8 /3p — m,3/0z) , (7)
which obey the centerless algebra in the basis (2). Conversely, given the basis (2), any
function f(z,p) can be reconstituted through

f(z,p) == Y F(my,mg)efmztmar) (8)

my,ma
and thus the linear combinations

sz Z F(mlrmZ)L(ml,m,) (9)

my,m3
are seen to obey the Poisson-bracket algebra (5).

We have found an analogous realization for the torus-basis algebra (1) generators:

. o a . a
K(m, m;) = (ir/2) exp(im,z + kmga + fmgp — kmla)

. . 8 a
= (:r/2) exp(zml:: ' ‘,mgp) exp(kmz-a—:—: - kml'a—p) , (10)

somewhat analogous to the one-variable realization found by Hoppe®l. A corresponding
realization for the fermionic generators of (3) is
13 d

szKm(0+T-6_9) ) (11)

for a Grassmann coordinate  and the above realization (10) for K.

To Fourier-compose this to a basis-independent realization, we first define, in analogy

to (9),
Kf = Z F(ml)mZ)K(ml)mZ) = '{:f(z'i"kéa;:p_ ’k%) ’ (12)

mp,msz
where the last side of the equation is a formal expression to evoke (5): the “normal ordering”

of its derivatives is specified in its Fourier-series definition, in which they stand to the right



of all coordinates, by virtue of eq. (10). For a superfield V (z,p,8) = f(z,p)+8 9(=z, p), the

above extends to

., 0 ., 0 is 0 ., 0 ., 0 is d ., 0 ., 0
V(z+1ké;,p——:k ,0+—r—89)— f(a:+1kap,p—1kaz)+(0+ . ao)g(:-{-tkg;,p—tkaz).

dz
(13)
This then yields (10) and (11) for components of f and g, respectively, in the above
exponential basis. Moreover, assembling bosonic and fermionic coordinates on the same
footing and denoting all by 2, this generalizes suggestively to V(' + A;;8/92"), where
the matrix A,; is antisymmetric for both 1, corresponding to bosonic coordinates, and

symmetric for fermionic coordinates.

What is the analogue of the Poisson bracket in this case? It turns out to be the sine, or
Moyal, bracket {{f,9}}, name]y the extension of the Poisson brackets {f, ¢} to statistical
distributions on phase-space, introdaced by Weyl”l and Moyalgb], and explored by several
authors? in an alternative formulation of quantum mechanics, regarded as a deformation
of the algebra of classical observables. It is a generalized convolution which reduces to the

Poisson bracket as %, replaced by 2k in our context, is taken to zero:

({f,9}} = 4;;’;:2 /dp'dp"d:l:’d:z:" f(z',p')g(z",p") sin %(p(:l:'—-:l:")+:r(p"—p')+p’:|:"—p":l:') )
(14)

The argument of the sine above is

1 L'p = 1
;det(l P :’):;fp-dq, (15)
1 p" I"

i.e. 2/k times the area of the equilateral phase-space triangle with vertices at (z, p), (z',p'),
and (z",p"). The antisymmetry of f with g is evident in the determinant. A similar entity
9¢}

b

is the cosine bracket, introduced by Baker

' - 1

(f,9)= 47#; /dp'dp"d::'d:" f(',p)e(z", p") cos(;(p(a:’—:l:")+::(p"——p')+p'::"—p":r')) .
(16)

The sine and cosine brackets together satisfy the graded Jacobi identities?¥l, just as their

Fourier components (3) (see the next paragraph} do, and thus specify a graded Lie algebra.
These brackets help reformulate quantum mechanics in terms of Wigner’s phase-space

distribution?.



The Fourier transform of the sine bracket results from substitution in (14) of the

exponential basis used in (7):
{{f, g}} — g:_;_'%ﬁprdpndzldzu ei(m;z'+n,z")+i(mgp'+n1p") (c{(p(z'—z")+:(p"—p')-!-p'z"—p":')_ (k — —k))
)

= —rsink(m x n) ¢i(mitm)z+ilmatna)p (17)

As in (9), it then follows through the linearity of the operators defined in (12), and (1),
that these indeed obey the algebra

[Ky, Kgl=1r Z F(my,m3)G(ny, nz)sink(m x ) Kmn = K(r4}3 - (18)

my,ma,n;,n2

QOur algebra is thus identified with that of sine brackets. You might wish to expand it in
other bases, such as spherical harmonics, so as to specify the corresponding generalizations
of SDiffg(S?), and so on. The corresponding anticommutation relation for the supersym-

metric extension built out of Fourier-composing {11) naturally involves the cosine bracket.

Focus now on an interesting centerless family of the algebras (1), namely the cyclotomic
family: the one for which k = 2x /N, for integer N > 2. In this family, there is an additional

Z x Z algebra isomorphism
K (my,mz) = K(myma)+(Nt.Nq) (19)

for arbitrary integers t and ¢. Since the structure constants sinzﬁ’(mlng — nymy) are only
sensitive to the modulo-N values of the indices, the 2-dimensional integer lattice separates
into ¥ x N cells, each of which may be referred to some fundamental cell, e.g. around
the coordinate center of the lattice, by proper N-translations. The fundamental N x N
cell contains N? index points, but the operator K(0,0), like its lattice translations K¢ ),
factors out of the algebra: it commutes with all K’s and cannot result as a commutator
of any two such. Thus the fundamental cell invoives only N? — 1 generators, and there
are no more structure constants than those occurring in this cell. In consequence, the

infinite-dimensional centerless cyclotomic algebras, with the K¢ 4)’s factored out, possess
the following finite-dimensional ideal of “lattice average” operators K':

. 27
K(ml,mg) = ZK(m|+N:,m1+Nu}y [Km» Kn] = rs”"ﬁ(m X D) Kma+n, (20)

where mn,m-+n are indices in the fundamental cell, and an infinite normalization has

been absorbed in r.



This (N? - 1)-dimensional ideal specifies, in fact, a basis for SU(N) which may be

thought of as a generalization of the Pauli matrices!®. For brevity, consider odd N’s, and
consult our paper for even ones. A basis for SU(N) algebras, odd N, may be built from

two unitary unimodular matrices:

(1 0 0 0 01 0
0w 0 ... © 001 ..0
g=10 0w ... 0 , k=i oo o s, N=RV=1, (1)
P P 000 1
too 0 wN—1} 100 0

where w is a primitive N’th root of unity, i.e. with period no smaller than N, here taken

to be e**/N. They obey the identity
hg = w gh. (22)

You also encounter these matrices in the context of representations of quantum SU(2) -

cf. the talk by D.B.F. The complete set of unitary unimodular N x N matrices

‘](ml.'ﬂz) = wm.mg/2 g™MhA™ (23)

where
TrJ(m,m;) =0 except for m; =m; =0modN , (24)

J("‘wﬂ:) = J(-"‘l'""") ;

suffice to span the algebra of SU(N). Like the Pauli matrices, they close under multipli-

cation to just one such, by virtue of (22):
Jmdn = W2 (25)
They therefore satisfy the algebra
[Jim, Ja] = —2isin i—v{(m x 1) Jmen - (26)

Consequently, in this convenient two-index basis with the above simple structure constants,
SU(N) describes the algebra (20) of the ideal {K}.

The symmetric d-coefficients in this basis also follow simply from (25):

2
{Jm,Jn} = 2cos Fx(m x 1) Jmin, (27)



and consequently the same matrices may represent the lattice averages of both boson and
fermion operators 7, when these considerations are applied to the obvious corresponding
ideal of the supersymmetric algebra (3). (It is the (f, d) subalgebra of SU(N|N)).

The 2-index SU(N) basis we have considered has a particularly simple large N limit.
As N increases, the fundamental N x N cell covers the entire index lattice; the operators

K supplant the K’s and, in turn, since k — 0, the operators L of eq.(2).

More directly, you immediately see by inspection that, as N — oo, the SU(N) algebra
(26) goes over to the centerless algebra (2) of SDiffo(7T'2) through the identification:

An identification of this type was first noted by Hoppe® in the context of membrane
physics: he connected the infinite N limit of the SU(N) algebra in a special basis to that
of SDiffp(S?), i.e. the infinitesimal symplectic diffeomorphisms in the sphere basis. A
discussion of the group topology of SU(N), or SDifflo(T?) versus SDiffg(S?), or other 2-
dimensional manifolds for that matter, exceeds the scope of this type of local analysis,
important as it may be for membrane physics applications; such a discussion has been
initiated by Pope and Stelle®), who consider central extensions that are sensitive to global

features of the 2-surface.

Floratos et al.4l utilized Hoppe's identification to take the limit of SU(N) gauge the-
ory. Their results are immediately reproduced, again by inspection, on thee basis of the

orthogonality condition dictated by (24) and (25):
N3
TrJmdn = N5m+n,0 =+ TrLpLy = ‘W5m+n,o . (29)

As a result, for a gauge field A, in an SU(N) matrix normalization with trace 1, the analog
of eq. (9) is

Jm ix -
:‘nﬁ — WA:‘“Lm = ATLm , (30)

where summation over repeated m’s is implied, and we have defined AL“ = (4x/£N3/2)A,’,“.

A=A

As N — oo, the indices m cover the entire integer lattice, and hence we may define

aLz,p) = _ Z A:‘nci(m,:+m;p) ] (31)
m
By eq. (5),
[A#:Av] i [La,.y La.,] - L(“m“v} . (32)



Hence, by virtue of the linearity of L in its arguments,
Fup = 044, — 3,Au+ [A,A)] — Ly,

Suv = 8pa, — dya, + {ay,a,} . (33)

The group trace defining the Yang-Mills lagrangian density is thus

M p—m __ __N3 /d:dp Z eiz(ml'{'m:)-{-l'p(mz*nz)Fiszh.mz)j"g’:l.ﬂ‘z)

’I&'F“VF#V—) —W T —_ 64,4

my,ma,n; n2

= (~N%/64x") / dzdp [P fz0) (34)

What emerges is a gauge theory whose group indices are surface (torus) coordinates, and
the fields are rescaled Fourier transforms of the original SU(N) fields; the group composi-

tion rule for them is given by the Poisson bracket, and the trace by surface integration.

Further note that a connection to strings emerges: for gauge fields independent of
z# (e.g. vacuum configurations), this lagrangian density reduces to {a,,a,}{a,,a.}, the
quadratic Schild-Eguchi action density for strings!!), where the a, now serve as string vari-
ables, and the surface serves as the world-sheet. Whether a superstring follows analogously

from super-Yang-Mills is an interesting question.

The lagrangian (34) with the sine bracket supplanting the Poisson bracket is also a
gauge invariant theory, provided that the gauge transformation involves the sine instead

of the Poisson bracket. This is provable through the identities

/dzdp {{f,9}}=0, /dz:dp (f,g):/dzdp fe, (35)

for arbitrary functions f and g, and use of the Jacobi identities. It is not however clear,

at the moment, what system is described by the corresponding spacetime-independent

lagrangian density {{a,,a,}}{{ay,a.}}.

This compact formulation of SU(oo) gauge theory ought to be of use in large- N model
calculations, or various “master-field” efforts; membrane physics?3], as covered in this
conference; and the exploration of connections between gauge theory and strings!ll, as

demonstrated above.
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