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SUMMARY. Embedded Markov chain analysis has been used to quantifi geologic inter-
pretation of juxtapositional tendencies of geologic facies. Such interpretations can also
be translated into continuous-lag Markov chain models of spatial variability for use in
geostatistical simulation of facies architecture.

1. INTRODUCTION

Traditional indicator geostatistical approaches rely on empirical curve-fitting of in-
dicator variograms to develop models of spatial variability from detailed data sets or
“training images.” However, most real-world data sets characterize spatial variability
adequately in the vertical direction at best. Direct means are needed for infising subjec-
tive knowledge of facies architecture into the conditional simulation prwess, so that the
resulting “realizations” are indeed realistic.

Alternatively indicator geostatistics can be recast in a conceptually siinple yet theo-
retically powerfid transition probability/Markov framework. Model parameters directly
relate to fi.mdamentalproperties of proportions, mean length, and juxtapositional tenden-
cies. Mathematically, Markov chains consist of linear combinations exponential func-
tions, although a spectrum of model shapes can be produced, including “hole effect”
and Gaussian-like structures. Asymmetric juxtapositional patterns such as fining-upward
tendencies common to fluvial depositional systems can be considered. An example is de-
veloped for a hypothetical fluvial system with no data to demonstrate possibilities for
implementing geostatistics in situations of sparse data.

2. EMBEDDED MARKOV CHAIN ANALYSIS

Markov chain analysis has been used by geologists since Vktelius in 1949 [13] for
quantitative interpretation of juxtapositional tendencies in vertical stratigraphic succes-
sions and, more specifically, to address various questions arising in geologic interpreta-
tion, for example:

. Does a vertical sequence exhibit a fining-upward tendency?

. Are lateral juxtapositional tendencies similar to those in the vertical (i.e., Walther’s
Law)?

. What is the degree of order (vs. disorder) in the j uxtapositional tendencies?

Now consider a fluvial system consisting of five facies:

1 = lower channel (lc)
2 = upper channel (UC)
3 = levee/crevasse splay (lCS)
4 = floodplain ~)
5=peat(pt)

Embedded Markov chain analysis [5,6,9,10] evaluates the probabilities of one geologic
unit occurring adjacent to another in a particular direction, say vertical (z), in terms of
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~ihn fkequencks #jk,z

#fi,z = Pr ~ occurs below andpt occurs above}

or transition (conditional) probabilities ~jk,z

n~~,z= Pr @t occurs above Ifl occurs below}

For example, a classical fting-upward tendency of

k-+uc+lcs -+ flept

would be evident in a vertical embedded transition probability matrix IIz of

‘Z=[2:::::1=
3. MAXIMUM DISORDER

— 1.0 0 0 0
0.005 – 0.600 0.395 0
0.005 0.020 – 0.975 0
0.071 0.036 0.570 – 0.324
0.020 0 0 0.980 –

(1)

The juxtapositional tendencies in a geologic system reflect some degree of order (or
disorder) in he stratigraphy [6]. Indeed, the disorder in a particular direction, say z, can
be measured by the entropy S= of the transition frequencies ~j~,z

jk

Given the frequencies of the embedded occurrences #j,=

(2)

(3)
k k

a system of maximally disordered juxtapositional tendencies can be found by maximizing
(2) subject to (3) using iterativ:~~:~fion fitting (mF) [7]. A “maximum entropy”
transition probability matrix IL can then be obtained by dividing the maximum
entropy transition frequencies by their row sums

@nax) =

— 0.028 0.143 0.763 0.066
0.016 – 0.145 0.773 0.066
0.018 0.032 – 0.874 0.075

[

0.062 0.111 0.566 – 0.260
0.016 0.030 0.150 0.804 –

The fining-upward tendency is evident in ~. because tie ~j(j+l) en~es me greater t~
(Smax)

inn. .

4. CONTINUOUS-LAG MARKOV CHAIN MODELS

Markov chain models can also be constructed with a spatial dependency to formulate
a geostatistical model of spatial variability [3,8,9]. A transition probability matrix T(h)
is constructed as a fimction of time or distance separation or “lag” h. Under a Markov
assumption, the probability of a category k occurring at a location z depends on the
transition probability matrix T(Ah) for the nearest datum located at z – Ah. Spatial
Markov chains are usually formulated in the discrete form by successive multiplication
of T(Alz), which has limited applicability because it depends on a regular data spacing.

A more general mathematical expression of a Markov chain model is given by the
continuous-lag form

T(h) = exp [Rh] (4)
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Figure 1: Matrix of transition probabilitiesforvertical direction showing inteqxeted (solid lines) and

maximum entropy (dashed lines) continuous-lag Markov chain models.

a vertical transition rate matrix R. can be established from II. and (7) as

i

–1.2500 1.2500 0 ‘0 o
0.0025 –0.5000 0.3000 0.1975 0

RZ = 0.0125 0.0500 –2.5000 2.4375

1

0 m-l

0.1211 0.0611 0.9778 –1.7156 0.5556
0.0500 0 0 2.4500 –2.500

which yields the continuous-lag Markov chain model shown in Figure 1. Similarly, the
maximum entropy embedded transition probability matrix can be transformed to obtain
a “maximum entropy” continuous-lag Markov chain model, also shown in Figure 1.

The column and row summing constraints (5) and (6) eliminate the need to speci~ en-
tries for one row and column. If symmetry is assumed for a particular cross-relationship,
then the relationship . .

Pk
Tjk = — Tkj (8)

Pj
holds, so that only one of the opposing upper or lower off-diagonal entries needs to be
specified. For example, a strike (z)-direction IIZ could be developed conceptually as

~z=[~;();;o;] - (6) O

—

where the entries in parentheses indicate the equations applied. Assuming proportions



as above and x-direction mean lengths of ( 10, 20, 20, *, 50) meters, the corresponding
transition rate matrix & becomes

[

–0.1000 0.0870 0.0070 0.0050 0.0010
0.0218 –0.0500 0.0200 0.0083 0

m’ 0.0018 0.0200 –0.0400 0.0183 0.0000
0.0006 0.0037 0.0081 –0.0167 0.0433
0.0005 0 0 0.0195 –0.0200 1

Two- or 3-D Markov chain models can then be developed by ellipsoidally interpolating
transition rates [4] so that spatial variability in any one direction is modeled by a 1-D
Markov Chill[11 ].
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Figure 2. Geostatistical simulation based on interpreted Markov chain models.
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Figure 3. Geostatisticalsimulation based onmaximumentropyjuxtapositionaltendencies.

6. GEOS’IXHSTICAL SIMULATION

The 3-D Markov chain model can be used to formulate cokriging estimates [2,3] and
objective fimctions used in the implementation of sequential indicator simulation and
simulated quenching (zero-temperature annealing) geostatistical simulation algorithms
[4], respectively Figure 2 shows a perspective view of a 3-D “realization” resulting
from the interpreted 3-D Markov chain model. Fining upward tendencies as per (1) are
clearly eviden~ as are juxtapositional tendencies of

. lcs occurring laterally adjacent to uch

. lch occurring below uch

This geologically-plausible facies architecture was originally prescribed in the embedded
transition probability matrix and carried through to end result of the geostatistical simula-
tion process. As a comparison, Markov chains with ‘maximum entropy” juxtapositional
tendencies were used to implement the geostatistical simulation procedure to create the
realization shown in Figure 3. The main difference between the two realizations appears
to be the location of lch, which is reflected in the difference between the interpreted and
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Figue 3. Geostatisticsl simulation based on maximum entrepy juxtqmsitioml tendencies.

6.GEOSTATISTICAL SIMULATION

The 3-D Markov ctiln model can be used to formulate cokriging estimates [2,3] and
objective functions used in the implementation of sequential indicator simulation and
simulated quenching (zero-temperature annealing) geostatistical simulation algorithms
[4], respectively. Figure 2 shows a perspective view of a 3-D “realization” resulting
from the interpreted 3-D Markov chain model. Fining upward tendencies as per (1) are
clearly evident, as are juxtapositional tendencies of

. lcs occurring laterally adjacent to uch
● lch occurring below uch

This geologically-plausible facies architecture was originally prescribed in the embedded
transition probability matrix and carried through to end result of the geostatistical simula-
tion process. As a comparison, Markov chains with “maximum entropy” juxtapositional
tendencies were used to implement the geostatistical simulation procedure to create the
realization shown in Figure 3. The main difference between the two realizations appears
to be the location of lch, which is reflected in the difference between the interpreted and



maximum entropy vertical Markov chain models of Figure 1. Comparison of flow and
transport modeling results for both geologically-ordered and maximally disordered sys-
tems could add to understanding of the role of facies architecture in hydrogeologic and
petroleum reservoir system behavior.

7. CONCLUSIONS

The Markov chain approach ensures a consistency with probability laws and geologic
interpretation, which demands a rigorous understanding of the model parameters. The
resulting interpretability facilitates interplay and feedback between the spatial variability
modeling procedure, geology, and geostatistical simulation results as compared to the
more prevalent empirical approaches.
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